WO2021033275A1 - Catheter device and treatment method - Google Patents

Catheter device and treatment method Download PDF

Info

Publication number
WO2021033275A1
WO2021033275A1 PCT/JP2019/032506 JP2019032506W WO2021033275A1 WO 2021033275 A1 WO2021033275 A1 WO 2021033275A1 JP 2019032506 W JP2019032506 W JP 2019032506W WO 2021033275 A1 WO2021033275 A1 WO 2021033275A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
catheter device
shaft portion
energy
blood vessel
Prior art date
Application number
PCT/JP2019/032506
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 田島
翔平 松原
嘉気 渡部
Original Assignee
株式会社Alivas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Alivas filed Critical 株式会社Alivas
Priority to PCT/JP2019/032506 priority Critical patent/WO2021033275A1/en
Publication of WO2021033275A1 publication Critical patent/WO2021033275A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes

Definitions

  • the present invention relates to a catheter device and a treatment method.
  • a catheter device used for irradiating energy such as heat in a living lumen such as a blood vessel to treat or improve various diseases has been known.
  • a technique of cauterizing a nerve existing outside a blood vessel is carried out (see, for example, Patent Document 1).
  • the renal artery is selected as the blood vessel to be treated, and the catheter device is held in order to enable the catheter device to be held in the blood vessel during the treatment.
  • a geometric shape such as a spiral shape may be added to the shaft portion.
  • the shaft portion of the catheter device When performing treatment in a living lumen such as a blood vessel, it is preferable to make the outer shape of the shaft portion of the catheter device as small as possible to improve its deliveryability when delivering into the living lumen.
  • the shaft portion was provided on the shaft portion by shifting the position of the shaft portion from a desired position on the tube wall of the biological lumen during the treatment. It is preferable to prevent the energy radiating portion (for example, a heat source to which heat energy is applied) from being arranged at a position different from the treatment target portion.
  • the shaft portion of the catheter device when a part of the shaft portion of the catheter device is geometrically shaped such as a spiral shape, the shaft portion has a spiral shape after being delivered into the biological lumen. A plurality of points on the outer surface of the portion come into contact with the tube wall (wall portion) of the biological lumen. Therefore, it seems that the displacement of the shaft portion can be suppressed during the procedure using the catheter device.
  • the spirally formed shaft portion is premised on the fact that the living lumen (for example, a blood vessel) has a right cylindrical shape. Contrary to this assumption, if the biological lumen to be treated is highly bent, it may not be possible to exert a sufficient holding force on the tube wall of the biological lumen. Further, in order for the spiral shape to exert its holding power, it is necessary that at least one circumference of the spiral shape is contained in the lumen of the living body. Therefore, it is premised that the biological lumen to be treated has a certain length of extension that enables the arrangement of one spiral-shaped circumference as described above.
  • the present invention has been made based on the above-mentioned problems, and it is possible to increase the holding force of the shaft portion with respect to the tube wall of the biological lumen, and more accurately with respect to the treatment target site of the biological lumen. It is an object of the present invention to provide a catheter device capable of irradiating energy and a treatment method.
  • the catheter device includes an energy radiating portion capable of radiating energy in a biological lumen, a first portion in which at least a part of the energy radiating portion is arranged, and a tip of the first portion. It has a second portion located on the side and has a shaft portion that can be inserted into the biological lumen, and the shaft portion is provided on at least a part of the tip portion of the second portion. It can be transformed into a first shape in which a folded portion folded in the axial direction is formed, and a second shape in which at least a part of the folded portion of the second portion is extended substantially linearly.
  • the position of the shaft portion in the biological lumen can be easily adjusted without using a guide wire or the like. Can be done. Further, by deforming the second part of the shaft portion into the second shape in the living lumen, the substantially linearly extended portion of the second part is brought into contact with the tube wall of the living lumen. Can be done. Therefore, the holding force of the shaft portion with respect to the tube wall of the biological lumen can be increased. For example, even when the shaft portion cannot be backed up using a guiding catheter or the like, the shaft portion is positioned from the tube wall of the biological lumen. It is possible to effectively suppress the deviation.
  • FIG. 8 is a flowchart showing an example of a procedure for treatment using the catheter device 100.
  • 9 and 10 are diagrams for explaining the blood vessel V which is the target of the treatment method using the catheter device 100.
  • 11 to 13 are views for explaining a usage example of the catheter device 100. Note that FIG. 13 shows a cross section of the blood vessel V along a direction orthogonal to the traveling direction of the blood vessel V (direction indicated by arrows 13A-13A in FIG. 12).
  • the arrow X1 in the figure indicates the insertion direction of the catheter device 100 into the blood vessel V
  • the arrow X2 in the figure indicates the direction opposite to the insertion direction
  • arrows Y1-Y2 in the figure indicate directions orthogonal to arrows X1-X2
  • arrows Z1-Z2 in the figure indicate directions orthogonal to the respective directions of arrows X1-X2 and arrows Y1-Y2.
  • the treatment target site S will be described with reference to FIGS. 9 and 10.
  • the symbol VR indicates the right renal artery
  • the symbol VL indicates the left renal artery.
  • the symbol Va indicates the superior mesenteric artery
  • the symbol Vb indicates the celiac artery
  • the symbol Vc indicates the inferior mesenteric artery
  • the symbol Vd indicates the aorta.
  • an operator such as a doctor (hereinafter referred to as “operator”) has an autonomic nerve in a blood vessel V having a peripheral nerve (nerve plexus) Na that innervates the intestinal tract of the patient.
  • the peristaltic movement of the intestinal tract is enhanced.
  • the surgeon performs at least one symptom of abdominal bloating, abdominal pain, peristal discomfort, and frequent stools due to constipation and / or abnormal peristaltic movement of the intestinal tract. Relief of constipation in patients and / or at least one of the symptoms caused by abnormal peristaltic movements of the intestinal tract can be promoted.
  • the blood vessel V to which the treatment method is applied may be capable of enhancing the peristaltic movement of the intestinal tract of the patient (subject) by being subjected to the predetermined treatment according to the embodiment (energy is applied by electromagnetic waves described later).
  • energy is applied by electromagnetic waves described later.
  • the blood vessel V for example, at least one of superior mesenteric artery Va, celiac artery Vb, and inferior mesenteric artery Vc can be preferably selected.
  • the surgeon applies energy to one peripheral nerve Na or a plurality of peripheral nerve Nas.
  • the operator can enhance the peristaltic movement of the intestinal tract by damaging the peripheral nerve Na and completely or partially blocking the autonomic nerve transmission to the digestive tract by the peripheral nerve Na.
  • the following mechanism is considered as the reason why the peristaltic movement of the intestinal tract is activated by performing the above-mentioned treatment for reducing the activity of the autonomic nerve in the blood vessel V.
  • the sympathetic nervous system among the sympathetic nervous system and the parasympathetic nervous system becomes It is relatively weakened and becomes parasympathetic dominant.
  • the enteric nervous system that autonomously controls intestinal motility in the periphery becomes dominant, and intestinal peristalsis is activated.
  • activation of intestinal peristalsis promotes and normalizes colonic transit time, resulting in abdominal bloating, abdominal pain, perineal discomfort, and frequent stools due to constipation and / or abnormal intestinal peristalsis. Relief of at least one of these symptoms is promoted.
  • the intestinal peristaltic movement of the large intestine is reduced, and as a result, the passage time of the stool is delayed, resulting in constipation. It can preferably promote the relief of the symptoms of constipation with delayed colonic transit time.
  • the treatment target site (region containing one or more peripheral nerve Na) S to be treated in the blood vessel V is not particularly limited as long as it can enhance the peristaltic movement of the intestinal tract.
  • treatment may be performed on an arbitrary range (site) of the traveling direction (extending direction) of the blood vessel V, or in the circumferential direction of the blood vessel V (circumferential direction of the cross section). Treatment may be performed on the range (site) of.
  • the treatment may be performed a plurality of times on a plurality of locations of the same blood vessel V, or may be performed a plurality of times on any location of a different blood vessel V.
  • the treatment method according to the present embodiment includes performing treatment on the Vao around the origin of the superior mesenteric artery Va.
  • an example of the range of the treatment target site S existing outside the superior mesenteric artery Va will be described with reference to FIG.
  • the treatment target site S preferably includes a range of 0 mm to 20 mm (range indicated by reference numeral L1) along the extension direction of the superior mesenteric artery Va with reference to the opening of the superior mesenteric artery Va.
  • the treatment target site S is based on the bifurcation of the superior mesenteric artery Va.
  • a range of 0 mm to 100 mm (range indicated by reference numeral L2) along the extension direction of the aorta Vd may be included.
  • the depth of energy penetration from the superior mesenteric artery Va side is preferably at least 1 mm to 6 mm from the intima of the superior mesenteric artery Va.
  • the peripheral nerve Na existing outside the superior mesenteric artery Va exists at a relatively deep position in the Vao around the origin of the superior mesenteric artery Va. More specifically, the peripheral nerve Na is present in bundles in the adipose tissue outside the superior mesenteric artery Va, supported by connective tissue.
  • the peripheral nerve Na is efficiently removed by allowing the energy to reach a position of 1 mm to 6 mm in the intima of each blood vessel Va and Vd. Can be nervous.
  • the catheter device 100 As shown in FIGS. 1 to 7, the catheter device 100 according to the present embodiment is roughly described by an energy radiating unit 150 capable of radiating energy in a blood vessel V (corresponding to a “living cavity”) and energy radiating. It has a first portion 111 in which at least a part of the portion 150 is arranged and a second portion 112 located on the distal end side of the first portion 111, and has a shaft portion 110 that can be inserted into the blood vessel V.
  • an energy radiating unit 150 capable of radiating energy in a blood vessel V (corresponding to a “living cavity”) and energy radiating. It has a first portion 111 in which at least a part of the portion 150 is arranged and a second portion 112 located on the distal end side of the first portion 111, and has a shaft portion 110 that can be inserted into the blood vessel V.
  • the second portion 112 extends continuously toward the tip end side of the first portion 111.
  • a proximal region 113 of the shaft portion 110 is formed on the proximal end side of the first portion 111.
  • the shaft portion 110 is composed of a long and flexible member.
  • the material used for the shaft portion 110 is not particularly limited, but for example, the same material as the resin material used for a known catheter device can be used.
  • the outer diameter, inner diameter, axial length, cross-sectional shape, etc. of the shaft portion 110 are not particularly limited.
  • the second portion 112 of the shaft portion 110 is configured to be deformable into the first shape shown in FIG. 2 and the second shape shown in FIG.
  • the first portion 111 of the shaft portion 110 is maintained in a substantially linear shape along the axial direction of the shaft portion 110 without being deformed due to the deformation of the second portion 112 before and after the deformation of the second portion 112. It is configured.
  • a folded-back portion 112a folded back in the axial direction of the shaft portion 110 is formed in at least a part of the second portion 112.
  • the second portion 112 is wound at least partially in the first shape. More specifically, in the first shape, the second portion 112 including the tip portion of the shaft portion 110 is wound a plurality of times from the tip end side to the base end side in the axial direction of the shaft portion 110 as shown by an arrow b1. As a result, it has a folded portion 112a having a rounded outer shape.
  • the tip of the second portion 112 of the shaft portion 110 may be shaped in the first shape so as to face, for example, the proximal end direction of the shaft portion 110 (direction of arrow X2 in FIG. 2). it can.
  • the specific shape of the first shape is not limited as long as the "folded portion folded at least once on the base end side and / or the tip end side in the axial direction of the shaft portion" is formed.
  • the second shape exhibits a shape in which at least a part of the folded-back portion 112a of the second portion 112 is extended in a substantially straight line.
  • the second portion 112 in the second shape, extends substantially linearly as a whole by unwinding the winding shaped in the first shape.
  • the second portion 112 is arranged at a position where the axial center C2 at the tip of the second portion 112 is eccentric from the axial center C2 of the first portion 111 in the first shape.
  • the axial center C1 and the axial center C2 are arranged so as not to overlap each other in the arrow Y1-Y2 direction perpendicular to the arrow X1-X2 along the axial direction of the shaft portion 110. There is.
  • the second portion 112 is arranged at a position where the axial center C1 at the tip of the second portion 112 overlaps with the axial center C1 of the first portion 111 in the second shape.
  • the axis C1 and the axis C2 are arranged so as to overlap each other in the directions of arrows Y1-Y2 (overlap from the upper surface in projection view).
  • the second portion 112 is arranged at a position where the axial center C1 at the tip of the second portion 112 is separated from the axial center C1 of the first portion 111 in the direction of arrows Z1-Z2.
  • the second portion 112 extends substantially linearly in the second shape so that the distance between the first portion 111 and the axial center C1 gradually increases toward the proximal end side. Therefore, by deforming the second site 112 into the second shape in the blood vessel V, the second site 112 can be more reliably brought into contact with the tube wall Vai of the blood vessel V (see FIG. 12).
  • the second portion 112 has a curved portion 114 that curves with a predetermined curvature between the first portion 111 and the second portion 112 in the second shape.
  • the second portion 112 extends from the curved portion 114 on the tip end side of the shaft portion 110 so as to be separated from the first portion 111. Therefore, when the second portion 112 is deformed into the second shape, the first portion 111 and the second portion 112 exhibit a substantially U-shape facing each other with the curved portion 114 in between.
  • the curvature, length, range, etc. of the curved portion 114 are not particularly limited.
  • the shaft portion 110 places each of the first portion 111 and the second portion 112 at different positions in the circumferential direction of the tube wall Vai of the blood vessel V. It is configured so that it can come into contact with the water.
  • the first portion 111 and the second portion 112 can face each other on the cross section shown in FIG.
  • the first site 111 and the second site 112 can be arranged in a positional relationship facing each other with the center position O of the blood vessel V in between.
  • the electromagnetic wave radiated from the energy radiating portion (antenna element) 150 arranged in the first portion 111 is arranged in the second portion 112 of the reflector 130 (tube).
  • the body 140) can reflect to the first portion 111 side.
  • the electromagnetic wave radiated from the antenna element 150 and the electromagnetic wave reflected by the reflector 130 are subjected to the treatment target site S containing the peripheral nerve Na existing outside the tube wall Vai of the blood vessel V with which the first site 111 is in contact. It becomes possible to irradiate the body locally.
  • the first site 111 and the second site 112 do not have to be arranged at positions that strictly face each other on the cross section of the blood vessel V. Further, when the energy emitting unit 150 has a structure other than the antenna element capable of radiating electromagnetic waves, the arrangement of the reflector 130 on the second portion 112 can be omitted. Even when the catheter device 100 is configured in this way, the first portion 111 extending substantially linearly and the second portion 112 deformed into a second shape and extending substantially linearly are provided along the extending direction of the blood vessel V. The holding force of the shaft portion 110 on the blood vessel V can be increased by bringing it into contact with the tube wall Vai over a predetermined length.
  • FIG. 4 shows a side view of the shaft portion 110 of the second portion 112 of the first shape
  • FIG. 5 shows a partial cross-sectional view of the shaft portion 110 in the state shown in FIG.
  • FIG. 6 shows a side view of the shaft portion 110 of the second portion 112 of the second shape
  • FIG. 7 shows a partial cross-sectional view of the shaft portion 110 in the state shown in FIG.
  • the energy radiating unit 150 can be configured by an antenna element 150 capable of radiating electromagnetic waves.
  • the energy radiating unit 150 is also referred to as an antenna element 150.
  • a reflector 130 capable of reflecting electromagnetic waves radiated from the antenna element 150 can be arranged at least a part of the second portion 112. As shown in FIG. 7, at least a part of the reflector 130 can be arranged at a position facing the antenna element 150 in the second shape.
  • the second portion 112 is provided with a restraining member 140 that suppresses the second portion 112 from being twisted when the second portion 112 is deformed into the second shape.
  • the restraining member 140 is composed of a tubular body 140 including a plurality of metal knot rings 141 and 142 oscillatingly connected to each other.
  • the tubular body 140 has a function as a reflector 130.
  • the knot rings 141 and 142 adjacent to each other in the longitudinal direction of the pipe body 140 are connected to each other via the convex portion 143 and the concave portion 144.
  • the convex portion 143 is idled in the concave portion 144 and can swing along the inner surface of the concave portion 144.
  • Each of the nodal rings 141 and 142 has a hollow ring shape.
  • the knots 141 and 142 are provided with an inclined surface 145 for regulating the bending direction of the pipe body 140.
  • the operation of the adjacent knot rings 141 and 142 is limited to the range in which the inclined surface 145 is formed. Therefore, the tubular body 140 can be curved in the direction of arrow r1 shown in FIG.
  • the tubular body 140 when the tubular body 140 tries to swing in the direction of arrow r2 in the direction opposite to that of arrow r1, the swing is regulated by the regulating surfaces 146 formed on the nodal rings 141 and 142. Therefore, when the second portion 112 is deformed into the second shape, the tubular body 140 can be easily deformed into the substantially linear shape shown in FIG. 7, and the second portion 112 is warped outward. It is possible to suppress the deformation to.
  • the catheter device 100 can suppress the twisting of the second site 112 when the second site 112 is deformed into the second shape in the blood vessel V. Therefore, the second portion 112 can be more reliably brought into contact with the tube wall of the blood vessel V over the length direction thereof.
  • the specific shape of the restraining member 140 is not limited as long as it can prevent the second portion 112 from being twisted when the second portion 112 is deformed into the second shape.
  • the restraining member 140 may be composed of, for example, a metal rod-shaped member or a metal flat plate-shaped member.
  • the shaft portion 110 has a resin tube 120 constituting the shaft portion 110.
  • the tube body 140 and the antenna element 150 are interpolated inside the shaft portion 110.
  • the tube 120 can be made of, for example, a tubular member made of a known resin.
  • the antenna element 150 can be configured to have, for example, a helical element 151 capable of radiating microwaves as an electromagnetic wave.
  • the reflector 130 is arranged at a second portion 112 away from the first portion 111 where the antenna element 150 is arranged. By arranging the reflector 130 away from the antenna element 150, the reflector 130 is arranged inside the shaft portion 110 together with the antenna element 150, while the reflector 130 is not electrically connected to the antenna element 150 and is in a non-energized state. Can be maintained.
  • a coaxial cable 160 is arranged inside the shaft portion 110.
  • the tip of the coaxial cable 160 is not covered with the outer conductor, and the inner conductor (center conductor) 161 and the dielectric (not shown) are led out to the tip side of the coaxial cable 160 by a predetermined length.
  • a connecting portion 163 is arranged at the tip of the inner conductor 161.
  • the tip of the helical element 151 is electrically connected to the connecting portion 163 to form a helical antenna.
  • a balun 165 that converts an electric signal in a balanced and unbalanced state is arranged on the coaxial cable 160.
  • the antenna element 150 radiates electromagnetic waves by receiving an electric current via the coaxial cable 160.
  • the antenna element 150 is composed of a structure (helical element 151, a part of the internal conductor 161 and a connecting portion 163) located on the tip side of the internal conductor 161 with respect to the portion protruding from the coaxial cable 160. There is.
  • the center frequency of the antenna element 150 can be set to, for example, 915 MHz, 2.45 GHz, 5.8 GHz, or 24.125 GHz. it can.
  • Each structure constituting the antenna element 150 is not particularly limited in structure, shape, frequency and material of the radiated electromagnetic wave, arrangement form in the shaft portion 110, etc. as long as it can radiate electromagnetic waves.
  • the spiral winding direction of the helical element 151 may be either the forward direction or the reverse direction, and the number of windings is not particularly limited.
  • the axial length of the helical element 151 is not particularly limited.
  • the helical element 151 can be made of, for example, a platinum alloy.
  • the reflector 130 can be made of, for example, a known metal.
  • the metal for example, copper, aluminum, stainless steel, platinum alloy, shape memory alloy and the like can be used.
  • the material constituting the reflector 130 is made of, for example, nickel from the viewpoint of maintaining the shape of the tip of the shaft portion 110 in the shape shown in FIG. 2 in a natural state in which no external force is applied to the second portion 112. It is preferable to use a shape memory alloy such as a titanium alloy.
  • the reflector 130 can also be composed of a metal reinforcing wire (blade wire) provided on the shaft portion 110.
  • a metal reinforcing wire is provided on the shaft portion 110, the reinforcing wire is the first portion 111 on which the antenna element 150 is arranged so that the radiation characteristics of the electromagnetic waves radiated from the antenna element 150 are not significantly impaired.
  • the antenna is not arranged in the entire circumferential direction and the axial direction.
  • the reflector 130 is not particularly limited as long as it can reflect electromagnetic waves, and is composed of a metal member other than the tube body 140 having a plurality of nodal rings 141 and 142. It is also possible (see FIG. 15).
  • the energy radiating unit 150 may be configured by other than the antenna element 150 capable of radiating electromagnetic waves.
  • the energy radiating unit 150 can radiate, for example, ultrasonic waves, light, heat, cold radiation, magnetic, electrical, cryotherapy, plasma, chemical energy, potential energy, nuclear energy, hydromechanical energy, and the like. It may have a structure.
  • a filler 123 for suppressing the movement of the antenna element 150 in the shaft portion 110 is arranged inside the shaft portion 110.
  • the filler 123 can be made of a known resin material.
  • the filler 123 is formed with a passage 123a for enabling the movement of the traction member 171 described later.
  • the catheter device 100 has an operation unit for deforming the second portion 112 of the shaft portion 110 from the first shape to the second shape.
  • the operation unit has a hand-side operation member 170 (see FIG. 1) and a traction member 171 (see FIGS. 5 and 7) arranged on the hub 180 of the catheter device 100.
  • the traction member 171 is a long member that is fixed to the tip of the shaft portion 110 and can reversibly deform the shaft portion 110 from the first shape to the second shape by a push-pull operation at hand. It is composed of.
  • the tip of the traction member 171 is fixed to the outer surface of the tip of the tube 140 arranged at the tip of the shaft 110. Further, the base end portion of the traction member 171 is fixed to the hand side operating member 170 arranged on the hub 180.
  • the specific configuration of the hand side operating member 170 is not particularly limited, but for example, it can be configured by a handle mechanism capable of pushing and pulling the traction member 171 in conjunction with a rotation operation and an advance / retreat operation.
  • the material, outer diameter, cross-sectional shape, etc. of the traction member 171 are not particularly limited as long as the force generated when the operator operates the hand side operating member 170 can be transmitted to the tip end side of the shaft portion 110.
  • the hand side operation member 170 may be provided with a lock mechanism for holding the towed member 171 in a towed state and holding the towed member 171 in a released state.
  • the second portion 112 of the shaft portion 110 is shaped so as to form the first shape as shown in FIGS. 4 and 5 in a natural state in which no external force (traction force) is applied to the traction member 171. ..
  • the traction force is transmitted to the tip of the tubular body 140, and the second portion 112 is the second as shown in FIGS. 6 and 7. It transforms into a shape.
  • the shaft portion 110 has an axial center C1 at the tip of the second portion 112 and an axial center C2 at the first portion 111 substantially along the axial direction.
  • the shaft portion 110 can be reversibly deformed so as to return from the second shape to the first shape when the application of the traction force transmitted via the traction member 171 is released.
  • the tube 120 of the shaft portion 110 can be habituated to form the first shape.
  • the second portion 112 may be configured to have the first shape in a natural state. ..
  • the traction member 171 can insert a part of the filler 123 and the pipe body 140 and lead the traction member 171 to the outer surface side of the pipe body 140 near the tip of the second portion 112. it can.
  • the traction member 171 is located near the first portion 111 in order to reversibly and smoothly deform the second portion 112 from the first shape to the second shape in conjunction with the traction operation of the traction member 171. Then, it passes through a position eccentric from the axis C1, passes through a substantially center position of the shaft portion 110 at the position where the filler 123 is inserted, and passes through a position eccentric from the axis C2 of the second portion 112 on the tip side of the tubular body 140.
  • the arrangement of the traction member 171 shown in FIG. 7 is merely an example, and is not limited to such an arrangement.
  • the method of manipulating the deformation of the second portion 112 of the shaft portion 110 is not limited to only applying and releasing the physical traction force using the traction member 171.
  • the traction member 171 may be made of an alloy having a temperature responsiveness that deforms into the first shape and the second shape in response to a temperature change or the like, and may be deformed by adjusting the temperature. ..
  • a tip tip 115 can be attached to the tip of the shaft portion 110.
  • the tip 115 can be made of, for example, a flexible resin material.
  • the tip tip 115 can be fixed to the tip of the shaft portion 110 with the fixing member 115a.
  • the fixing member 115a can be made of, for example, a known resin material.
  • the shaft portion 110 is not formed with a guide wire lumen for inserting a guide wire used for guiding the movement of the catheter device 100 in a living body. Therefore, the shaft portion 110 can be made smaller.
  • the antenna element 150 is adopted as the energy radiating portion, and the reflector 130 is further arranged on the shaft portion 110 so that the electromagnetic wave radiated from the antenna element 150 is directed in a predetermined direction on the cross section of the blood vessel V. It is configured so that it can be irradiated locally (see FIG. 13).
  • the catheter device 100 configured in this way, when electromagnetic waves are radiated from the antenna element 150 with the guide wire inserted in the shaft portion 110, it is difficult to control the radiation direction of the electromagnetic waves by the guide wire containing metal in the constituent members. become. Therefore, the shaft portion 110 is not provided with a guide wire lumen for inserting the guide wire.
  • the catheter device 100 according to the present embodiment is shaped so that the second portion 112 located at the tip end portion of the shaft portion 110 has the first shape having the folded-back portion 112a. Even when the guide wire is not used, the operator can easily and smoothly position the tip of the shaft portion 110 in the blood vessel V (see FIG. 11).
  • the catheter device 100 can have a structure in which the guide wire lumen is not formed on the shaft portion 110.
  • the shaft portion 110 may be configured to include, for example, a lumen through which the guide wire and various media can pass, in addition to the lumen in which the antenna element 150 is arranged.
  • a port for communicating inside and outside the shaft portion 110 is provided at the tip of the shaft portion 110 so that the guide wire can be inserted only in the vicinity of the tip of the shaft portion 110. be able to.
  • the emission of electromagnetic waves by the antenna element 150 can be controlled via, for example, a predetermined controller (control device) 200.
  • the controller 200 can be electrically connected to the coaxial cable 160 via, for example, an electric wire led out from a hub 180 provided in the catheter device 100.
  • the controller 200 for example, a known control device including a CPU and a storage unit can be used.
  • the storage unit includes a ROM for storing various programs and data, a RAM for temporarily storing programs and data as a work area, a hard disk capable of storing various programs and data, and the like.
  • a series of programs necessary for controlling the operation of the catheter device 100 can be stored in the storage unit.
  • the transmission form of the operation command to the antenna element 150 for example, a wired one via a telecommunication line, a wireless one not via the telecommunication line, an operator via an operation unit incorporated in the controller, or the like.
  • the treatment using the antenna element 150 is performed by, for example, a medical device such as a treatment robot that substitutes the work by the operator. It may be carried out. In this case, the treatment may be performed by an operator or the like controlling the treatment robot at a medical site such as an operating room, or by controlling the treatment robot at a remote location.
  • a device 10 in which a catheter device 100 and a controller 200 are combined is provided as a medical device used for a predetermined treatment by radiating electromagnetic waves in a biological lumen such as a blood vessel V. can do.
  • the catheter device 100 is used for a procedure of enhancing the peristaltic movement of the intestinal tract by applying energy to the peripheral nerve Na running around the blood vessel V (superior mesenteric artery Va) and damaging the peripheral nerve Na.
  • V blood vessel
  • An example of doing so will be described.
  • the treatment procedure described in the present specification is only an example, and for example, some procedures, procedures not particularly described, medical devices other than the catheter device 100 used in the procedure, and the like are known in the medical field. It is possible to adopt the thing as appropriate.
  • the treatment method according to the present embodiment includes a first portion 111 in which at least a part of the energy radiating portion 150 capable of radiating energy is arranged, and a second portion 112 located on the tip side of the first portion 111. It has a first step of inserting the catheter device 100 including the shaft portion 110 having the above into the blood vessel V, and a second step of radiating energy from the energy radiating unit 150 in the blood vessel V. Then, in the first step, at least a folded portion 112a of the second portion 112 from the first shape in which the folded portion 112a folded back in the axial direction of the shaft portion 110 is formed at least a part of the tip portion of the second portion 112. Includes transforming the second portion 112 into a second shape that is partially elongated in a substantially linear shape.
  • the catheter device 100 is delivered into the blood vessel V (S11), and the second site 112 of the shaft portion 110 is arranged in the blood vessel V in the first shape. That (S12), the second portion 112 of the shaft portion 110 is deformed from the first shape to the second shape (S13), and the shaft portion 110 is brought into contact with the tube wall Vai of the blood vessel V (S14). , To radiate an electromagnetic wave from the antenna element 150 (S15).
  • the operator uses a known guiding catheter 300 to deliver the catheter device 100 to the blood vessel V.
  • the operator manipulates the traction member 171 to deform the second site 112 into an elongated shape.
  • the first portion 111 and the second portion 112 of the shaft portion 110 extend substantially linearly and are reduced in diameter. The operator can deliver the tip of the shaft 110 into the blood vessel V in a reduced diameter state.
  • the operator projects the shaft portion 110 by a predetermined length from the tip opening of the guiding catheter 300.
  • the second site 112 protrudes from the tip opening of the guiding catheter 300, it deforms into the first shape as shown in FIG.
  • the operator operates the hand-side operating member 170 to deform the second portion 112 from the first shape to the second shape, as shown in FIG.
  • the operator brings the first site 111 and the second site 112 into contact with the tube wall Vai of the blood vessel V.
  • the second portion 112 in which the reflector 130 is arranged is arranged.
  • the surgeon brings the first site 111 and the second site 112 into contact with the tube wall Vai of the blood vessel V, so that the shaft portion 110 is brought from the tube wall Vai of the blood vessel V while performing the procedure of radiating electromagnetic waves. It can be prevented from shifting.
  • the surgeon brings the first site 111 and the second site 112 into contact with the tube wall Vai of the blood vessel V so that the first site 111 and the second site 112 are positioned parallel to each other on the cross section of the blood vessel V. It is possible to stably maintain the opposite state in the relationship.
  • each of the first portion 111 and the second portion 112 of the shaft portion 110 is substantially linear.
  • the blood vessel V abuts along the extending direction of the tube wall Vai over a predetermined length. Therefore, the holding force of the shaft portion 110 with respect to the blood vessel V can be further improved as compared with the case where a part of the shaft portion 110 is brought into point contact with the tube wall Vai of the blood vessel V.
  • the shape of the tip portion of the shaft portion 110 is changed to the first portion 111 and the second portion.
  • the curved portion 114 formed between the 112, the first portion 111 and the second portion 112 forms a substantially U-shape. Therefore, since the shaft portion 110 has a high followability to the bending of the blood vessel V, it is difficult for the holding force to the tube wall Vai to decrease due to the anatomical structure of the blood vessel V.
  • the antenna element 150 arranged in the first portion 111 and the reflector 130 arranged in the second portion 112 are also arranged in parallel with each other. Be placed. Therefore, when the electromagnetic wave is radiated from the antenna element 150, the electromagnetic wave can be more reliably reflected toward the antenna element 150 by the reflector 130 arranged in parallel with the antenna element 150. Further, since the shaft portion 110 is configured so that the first portion 111 and the second portion 112 are arranged in parallel, a catheter device in which the antenna element 150 and the reflector 130 are separately provided is delivered to the blood vessel V. The outer shape of the catheter device can be miniaturized during delivery as compared to the case of Therefore, the catheter device 100 has improved deliverability into the blood vessel V.
  • the surgeon radiates electromagnetic waves from the antenna element 150 arranged in the blood vessel V, reflects the electromagnetic waves by the reflector 130, and locally applies energy to some peripheral nerves Na that innervate the intestinal tract.
  • the surgeon can reduce the activity of the autonomic nerve of the patient's peripheral nerve Na, and can enhance the peristaltic movement of the intestinal tract.
  • the range in which energy is applied to the Vao around the origin of the superior mesenteric artery Va is, for example, 50% or less (of the blood vessel V) in the outer peripheral direction of the superior mesenteric artery Va. It is preferably in the range of 180 ° or less in the circumferential direction on the cross section).
  • the denervation range is 50% or more in the outer peripheral direction of the superior mesenteric artery Va, the enhancement of peristaltic movement after denervation may be excessively promoted. Therefore, it is preferable to denervate within the above range.
  • FIG. 13 shows an example of the temperature distribution of each region A1, A2, and A3 irradiated with the electromagnetic wave radiated from the antenna element 150 and the electromagnetic wave reflected by the reflector 130.
  • the temperature of the region A1 close to the position where the antenna element 150 is arranged on the tube wall Vai of the blood vessel V becomes the highest due to the influence of electromagnetic waves.
  • the region A2, which is farther from the antenna element 150 to the outside of the blood vessel V than the region A1 has a lower temperature after irradiation with the electromagnetic wave than the region A1.
  • the temperature of the region A3 located on the outer side of the blood vessel V with respect to the region A2 after irradiation with the electromagnetic wave is further lower than that of the region A2.
  • the peripheral nerve Na existing outside the blood vessel V can be denervated mainly by the heat energy applied to the region A1 having a temperature higher than the regions A2 and A3.
  • the arrangement of the shaft portion 110 in the blood vessel V shown in FIGS. 12 and 13 is an example.
  • the arrangement form of the shaft portion 110 in the blood vessel V is not particularly limited as long as energy (for example, electromagnetic waves) can be irradiated toward a predetermined peripheral nerve Na.
  • the catheter device 100 according to the present embodiment is used for treatment in the superior mesenteric artery Va, it is further beneficial for the following problems.
  • the superior mesenteric artery Va has an acute angle of bifurcation on the lower limb side with the aorta Vd, unlike the renal arteries VR and VL. Therefore, when delivering the catheter device 100 to the superior mesenteric artery Va, it is preferable to approach from the upper limb side.
  • a balloon or basket structure is adopted as a mechanism for holding the catheter device 100 against the tube wall Vai of the superior mesenteric artery Va from the viewpoint of reducing the diameter of the shaft portion 110. It is not appropriate to do.
  • the catheter device 100 according to the present embodiment since the first site 111 and the second site 112 can be delivered to the superior mesenteric artery Va in a substantially linearly extended state, an approach from the upper limb side is possible. It will be possible.
  • the treatment target site S is the origin near the entrance of the superior mesenteric artery Va from the viewpoint of suppressing the energy from reaching the organs as described above. It is preferable to set it in the peripheral Vao. However, when the treatment target site S is set to such a position, it is difficult to accurately position and hold the tip of the guiding catheter 300 on the Vao around the origin of the superior mesenteric artery Va, and the guiding catheter Unable to get backup by 300. In response to such a problem, in the case of the catheter device 100, as shown in FIG. 12, the first site 111 and the second site with respect to the tube wall Vai of the Vao around the origin of the superior mesenteric artery Va. By bringing the 112 into contact with each other, the holding force can be obtained by the catheter device 100 alone.
  • the superior mesenteric artery Va branches from the aorta Vd and then sharply bends toward the lower limbs and runs almost in parallel with the aorta Vd. Therefore, when a shaft portion having a spiral shape or a corrugated shape is used, a plurality of parts of the shaft portion are in point contact with the tube wall Vai of the superior mesenteric artery Va. It is not possible to obtain sufficient holding power.
  • the first site 111 and the second site 112 abut on the tube wall Vai over a relatively long range along the traveling direction of the superior mesenteric artery Va. Therefore, a sufficient holding force can be obtained.
  • the treatment is performed with the guide wire containing metal in the catheter device 100 inserted through the catheter device 100 from the viewpoint of adjusting the radiating direction of the electromagnetic wave. Is not desirable. For example, when a guide wire is used, it is necessary to remove the guide wire from the catheter device and insert the guide wire into the catheter device each time the antenna element 150 is irradiated with an electromagnetic wave.
  • the shaft portion 110 In response to such a problem, in the case of the catheter device 100, since the folded-back portion 112a is formed at the second portion 112 located at the tip portion of the shaft portion 110 in the first shape in the natural state, the shaft portion 110 The position of the tip of the shaft portion 110 within the superior mesenteric artery Va can be adjusted without damaging the duct wall Vai of the superior mesenteric artery Va by the tip. Therefore, it is not necessary to use a guide wire to guide the tip of the shaft portion 110 into the superior mesenteric artery Va, and it is possible to reduce the complexity of the procedure associated with the use of the guide wire as described above. it can.
  • the second portion 112 of the shaft portion 110 has the first shape in the blood vessel V, so that a guide wire or the like is not used. , The position of the shaft portion 110 in the blood vessel V can be easily adjusted. Further, by deforming the second portion 112 of the shaft portion 110 into the second shape in the blood vessel V, the substantially linearly extended portion of the second portion 112 is brought into contact with the tube wall Vai of the blood vessel V. Can be made to. Therefore, the holding force of the shaft portion 110 with respect to the tube wall Vai of the blood vessel V can be increased. For example, even when the shaft portion 110 is not backed up by using a guiding catheter or the like, the shaft portion is formed from the tube wall Vai of the blood vessel V. It is possible to effectively prevent the 110 from being displaced.
  • the reflector 130 is formed by a metal member (for example, a plate-shaped, tubular, or rod-shaped metal member) arranged at the second portion 112 in a state where the antenna element 150 is not energized. It is configured.
  • a metal member for example, a plate-shaped, tubular, or rod-shaped metal member
  • the reflector 130 can be made of, for example, a known metal.
  • the metal for example, copper, aluminum, stainless steel, platinum alloy, shape memory alloy and the like can be used.
  • a shape memory alloy such as a nickel titanium alloy is used from the viewpoint of maintaining the shape of the second portion 112 of the shaft portion 110 in the first shape shown in FIG. 14 in a natural state. Is more preferable.
  • FIG. 16 shows the shaft portion 110B according to the second modification.
  • the traction member 171 is connected to the antenna element 150. Therefore, the operator can push and pull the traction member 171 by moving the antenna element 150 forward and backward at hand to deform the second portion 112 into the first shape and the second shape.
  • a balun 165 can be used as a member for connecting the traction member 171 and the antenna element 150.
  • the biological lumen to be treated by the catheter device is not limited to blood vessels such as the superior mesenteric artery, the celiac artery, and the inferior mesenteric artery, but other blood vessels, the bile duct, the trachea, the esophagus, and the like. It may be the esophagus, the otolaryngal lumen, etc.
  • a catheter device is used to apply energy to the sympathetic nerve existing in the outer membrane of the renal artery of a patient by radiating energy from an energy radiating part arranged in the renal artery to lower the blood pressure of the patient. It can be configured as a device.
  • the catheter device can be configured as a device for expanding the bronchus of a patient by radiating energy from an energy radiating portion arranged in the bronchus.
  • each member included in the catheter device are not particularly limited as long as the effects of the present invention are exhibited, and are arbitrarily changed and replaced. It is possible. Further, the catheter device can appropriately add arbitrary constituent members and the like which are not particularly described in the specification, and the additional members described in the specification can be appropriately omitted. Further, any procedure not particularly described in the specification can be appropriately added to the treatment method, and the additional procedure described in the specification can be omitted as appropriate. Further, as for the treatment method, the order of the procedures can be appropriately changed as long as the effects of the invention can be exhibited.
  • first shape and the second shape formed by the second part of the shaft portion are not limited to the shapes illustrated in the drawings.
  • the suppressing member for suppressing the twisting of the shaft portion is not limited to the tubular body having a plurality of knot rings.
  • Medical device 100
  • Catheter device 110, 110A, 110B Shaft part 111 First part 112 Second part 112a Folded part 113 Base end area 114 Curved part 115 Tip tip 130 Reflector 140 Tube (suppressing member) 141, 142 Nodal ring 150 Energy radiating part (antenna element) 151 Helical element 170 Hand side operation member 171 Tow member 180 Hub 200 Controller 300 Guiding catheter Na Peripheral nerve S Treatment target site V Blood vessel (living lumen) Va Superior mesenteric artery Vai Tube wall Vb Celiac artery Vc Inferior mesenteric artery Vd Aorta

Abstract

[Problem] To provide: a catheter device with which it is possible to increase the holding strength of a shaft part in a living body lumen and to more accurately radiate energy onto an area to be treated in the living body lumen; and a treatment method. [Solution] A catheter device 100 comprises an energy radiation part 150 that can radiate energy within a blood vessel V and a shaft part 110 that can be inserted into the blood vessel and has a first area 111 in which at least a portion of the energy radiation part is disposed, and a second area 112 that is located on the tip side of the first area, wherein the shaft part is deformable into a first shape in which a bending part 112a that is bent in the axial direction of the shaft part 110 is formed in at least a portion of the tip of the second area and a second shape in which at least a portion of the bending part 112a in the second area 112 is extended into a substantially straight line.

Description

カテーテルデバイスおよび処置方法Catheter device and treatment method
 本発明は、カテーテルデバイスおよび処置方法に関する。 The present invention relates to a catheter device and a treatment method.
 従来から、血管等の生体管腔内において、熱等のエネルギーを照射し、各種疾患の治療や改善等を行うために使用されるカテーテルデバイスが知られている。上記のようなカテーテルデバイスを使用した処置方法の一例として、血管の外部に存在する神経を焼灼する手技が実施されている(例えば、特許文献1を参照)。 Conventionally, a catheter device used for irradiating energy such as heat in a living lumen such as a blood vessel to treat or improve various diseases has been known. As an example of the treatment method using the catheter device as described above, a technique of cauterizing a nerve existing outside a blood vessel is carried out (see, for example, Patent Document 1).
国際公開第2013-134541号International Publication No. 2013-134541
 特許文献1に記載されたカテーテルデバイスを使用した処置方法等では、腎動脈を処置対象の血管として選定したうえで、処置の間、血管に対するカテーテルデバイスの保持を可能にするために、カテーテルデバイスのシャフト部にらせん形状等の幾何学的な形状を付加することがある。 In the treatment method using the catheter device described in Patent Document 1, the renal artery is selected as the blood vessel to be treated, and the catheter device is held in order to enable the catheter device to be held in the blood vessel during the treatment. A geometric shape such as a spiral shape may be added to the shaft portion.
 血管のような生体管腔内で処置を行う場合、生体管腔内への送達時には、カテーテルデバイスのシャフト部の外形を可能な限り小さくし、その送達性を高めることが好ましい。一方で、カテーテルデバイスを生体管腔内へ送達した後は、処置を実施している間にシャフト部が生体管腔の管壁の所望の位置から位置ずれすることにより、シャフト部に設けられたエネルギー放射部(例えば、熱エネルギーを付与する熱源等)が処置対象部位とは異なる位置に配置されてしまうことを防止することが好ましい。 When performing treatment in a living lumen such as a blood vessel, it is preferable to make the outer shape of the shaft portion of the catheter device as small as possible to improve its deliveryability when delivering into the living lumen. On the other hand, after the catheter device was delivered into the biological lumen, the shaft portion was provided on the shaft portion by shifting the position of the shaft portion from a desired position on the tube wall of the biological lumen during the treatment. It is preferable to prevent the energy radiating portion (for example, a heat source to which heat energy is applied) from being arranged at a position different from the treatment target portion.
 前述したように、カテーテルデバイスのシャフト部の一部にらせん形状等の幾何学的な形状付けがなされている場合、シャフト部が生体管腔内に送達された後、シャフト部のらせん形状をなす部分の外表面の複数の箇所が生体管腔の管壁(壁部)と当接する。そのため、カテーテルデバイスを使用した処置を実施している間、シャフト部が位置ずれすることを抑制できると思われる。 As described above, when a part of the shaft portion of the catheter device is geometrically shaped such as a spiral shape, the shaft portion has a spiral shape after being delivered into the biological lumen. A plurality of points on the outer surface of the portion come into contact with the tube wall (wall portion) of the biological lumen. Therefore, it seems that the displacement of the shaft portion can be suppressed during the procedure using the catheter device.
 しかしながら、らせん形状に形成されたシャフト部は、生体管腔(例えば、血管)が直円筒状であることを前提としている。この仮定に反して、処置対象となる生体管腔が高度に屈曲している場合、生体管腔の管壁に対して十分な保持力を作用させることができない可能性がある。また、らせん形状が保持力を発揮するためには、らせん形状の少なくとも1周分が生体管腔内に収まっている必要がある。そのため、処置対象の生体管腔には、上記のようにらせん形状の1周分を配置することが可能となるある程度の延伸長さが存在することが前提とされる。この仮定に反して、生体管腔の処置対象となる延伸方向の長さが短い場合や、生体管腔の処置対象部位が生体管腔の分岐部に非常に近い生体管腔の起始部などである場合、シャフト部を生体管腔の管壁に対して十分に保持する保持力を発揮することができない可能性がある。また、生体内に存在する生体管腔の処置対象部位に対してエネルギー放射部を高精度に位置決めして配置することも容易ではない。 However, the spirally formed shaft portion is premised on the fact that the living lumen (for example, a blood vessel) has a right cylindrical shape. Contrary to this assumption, if the biological lumen to be treated is highly bent, it may not be possible to exert a sufficient holding force on the tube wall of the biological lumen. Further, in order for the spiral shape to exert its holding power, it is necessary that at least one circumference of the spiral shape is contained in the lumen of the living body. Therefore, it is premised that the biological lumen to be treated has a certain length of extension that enables the arrangement of one spiral-shaped circumference as described above. Contrary to this assumption, when the length of the living tube to be treated is short in the stretching direction, or when the treatment target site of the living tube is very close to the bifurcation of the living tube, the origin of the living tube, etc. If this is the case, it may not be possible to exert a holding force that sufficiently holds the shaft portion against the tube wall of the biological lumen. In addition, it is not easy to position and arrange the energy radiating portion with high accuracy with respect to the treatment target site of the biological lumen existing in the living body.
 本発明は上記のような課題に基づいてなされたものであり、生体管腔の管壁に対するシャフト部の保持力を高めることができ、かつ、生体管腔の処置対象部位に対してより正確にエネルギーを照射することが可能なカテーテルデバイスおよび処置方法を提供することを目的とする。 The present invention has been made based on the above-mentioned problems, and it is possible to increase the holding force of the shaft portion with respect to the tube wall of the biological lumen, and more accurately with respect to the treatment target site of the biological lumen. It is an object of the present invention to provide a catheter device capable of irradiating energy and a treatment method.
 本発明の一の形態に係るカテーテルデバイスは、生体管腔内においてエネルギーを放射可能なエネルギー放射部と、前記エネルギー放射部の少なくとも一部が配置された第1部位と、前記第1部位の先端側に位置する第2部位と、を有し、前記生体管腔内に挿入可能なシャフト部と、を備え、前記シャフト部は、前記第2部位の先端部の少なくとも一部に前記シャフト部の軸方向に折り返された折り返し部が形成された第1形状と、前記第2部位の前記折り返し部の少なくとも一部が略直線状に延ばされた第2形状とに変形可能である。 The catheter device according to one embodiment of the present invention includes an energy radiating portion capable of radiating energy in a biological lumen, a first portion in which at least a part of the energy radiating portion is arranged, and a tip of the first portion. It has a second portion located on the side and has a shaft portion that can be inserted into the biological lumen, and the shaft portion is provided on at least a part of the tip portion of the second portion. It can be transformed into a first shape in which a folded portion folded in the axial direction is formed, and a second shape in which at least a part of the folded portion of the second portion is extended substantially linearly.
 本開示によれば、生体管腔内においてシャフト部の第2部位を第1形状とすることにより、ガイドワイヤ等を使用せずに、生体管腔内におけるシャフト部の位置を容易に調整することができる。また、生体管腔内においてシャフト部の第2部位を第2形状に変形させることにより、第2部位の略直線状に延ばされた部分を生体管腔の管壁に対して当接させることができる。そのため、生体管腔の管壁に対するシャフト部の保持力を高めることができ、例えば、ガイディングカテーテルなどを使用してシャフト部をバックアップできない場合においても、生体管腔の管壁からシャフト部が位置ずれすることを効果的に抑制することができる。 According to the present disclosure, by making the second portion of the shaft portion into the first shape in the biological lumen, the position of the shaft portion in the biological lumen can be easily adjusted without using a guide wire or the like. Can be done. Further, by deforming the second part of the shaft portion into the second shape in the living lumen, the substantially linearly extended portion of the second part is brought into contact with the tube wall of the living lumen. Can be done. Therefore, the holding force of the shaft portion with respect to the tube wall of the biological lumen can be increased. For example, even when the shaft portion cannot be backed up using a guiding catheter or the like, the shaft portion is positioned from the tube wall of the biological lumen. It is possible to effectively suppress the deviation.
実施形態に係るカテーテルデバイスの全体構成を概略的に示す図である。It is a figure which shows schematic the whole structure of the catheter device which concerns on embodiment. 実施形態に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す斜視図であり、第2部位が第1形状の状態を示す図である。It is an enlarged perspective view which shows the tip part of the shaft part included in the catheter device which concerns on embodiment, and is the figure which shows the state of the 1st shape in the 2nd part. 実施形態に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す斜視図であり、第2部位が第2形状の状態を示す図である。It is an enlarged perspective view which shows the tip part of the shaft part provided with the catheter device which concerns on embodiment, and is the figure which shows the state of the 2nd shape in the 2nd part. 実施形態に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す側面図であり、第2部位が第1形状の状態を示す図である。It is an enlarged side view which shows the tip part of the shaft part provided with the catheter device which concerns on embodiment, and is the figure which shows the state of the 1st shape in the 2nd part. 実施形態に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す部分断面図であり、第2部位が第1形状の状態を示す図である。It is a partial cross-sectional view which shows the tip part of the shaft part included in the catheter device which concerns on embodiment in an enlarged manner, and is the figure which shows the state of the 1st shape in the 2nd part. 実施形態に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す側面図であり、第2部位が第2形状の状態を示す図である。It is an enlarged side view which shows the tip part of the shaft part provided with the catheter device which concerns on embodiment, and is the figure which shows the state of the 2nd shape in the 2nd part. 実施形態に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す部分断面図であり、第2部位が第2形状の状態を示す図である。It is a partial cross-sectional view which shows the tip part of the shaft part included in the catheter device which concerns on embodiment in an enlarged manner, and is the figure which shows the state of the 2nd shape in the 2nd part. 実施形態に係る処置方法の手順を概略的に示すフローチャートである。It is a flowchart which shows the procedure of the treatment method which concerns on embodiment. 処置方法の適用対象である血管を模式的に示す図である。It is a figure which shows typically the blood vessel to which the treatment method is applied. 処置方法の適用対象である血管の一部を模式的に示す断面図である。It is sectional drawing which shows typically a part of the blood vessel to which the treatment method is applied. 実施形態に係るカテーテルデバイスを使用した処置方法を実施している際の様子を模式的に示す血管の断面図である。It is sectional drawing of the blood vessel which shows typically the state at the time of carrying out the treatment method using the catheter device which concerns on embodiment. 実施形態に係るカテーテルデバイスを使用した処置方法を実施している際の様子を模式的に示す血管の断面図である。It is sectional drawing of the blood vessel which shows typically the state at the time of carrying out the treatment method using the catheter device which concerns on embodiment. 実施形態に係るカテーテルデバイスを使用した処置方法を実施している際の様子を模式的に示す血管の断面図(横断面図)である。It is sectional drawing (cross-sectional view) of the blood vessel which shows typically the state at the time of carrying out the treatment method using the catheter device which concerns on embodiment. 変形例1に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す部分断面図であり、第2部位が第1形状の状態を示す図である。It is a partial cross-sectional view which shows the tip part of the shaft part provided with the catheter device which concerns on modification 1 in an enlarged manner, and is the figure which shows the state of the 1st shape in the 2nd part. 変形例1に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す部分断面図であり、第2部位が第2形状の状態を示す図である。It is a partial cross-sectional view which shows the tip part of the shaft part provided with the catheter device which concerns on modification 1 in an enlarged manner, and is the figure which shows the state of the 2nd shape in the 2nd part. 変形例2に係るカテーテルデバイスが備えるシャフト部の先端部を拡大して示す部分断面図であり、第2部位が第2形状の状態を示す図である。It is a partial cross-sectional view which shows the tip part of the shaft part provided with the catheter device which concerns on modification 2 in an enlarged manner, and is the figure which shows the state of the 2nd shape in the 2nd part.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の説明は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。また、本明細書において示す範囲「X~Y」は「X以上、Y以下」を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. The following description does not limit the technical scope and meaning of terms described in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. Further, the range "XY" shown in the present specification means "X or more and Y or less".
 <第1実施形態>
 図1~図7は、実施形態に係るカテーテルデバイス100の各部の説明に供する図である。図8は、カテーテルデバイス100を使用した処置の手順例を示すフローチャートである。図9、図10は、カテーテルデバイス100を使用した処置方法の対象となる血管Vを説明するための図である。図11~図13は、カテーテルデバイス100の使用例の説明に供する図である。なお、図13は、血管Vの走行方向と直交する方向(図12の矢印13A-13Aで示す方向)に沿う血管Vの横断面を示す。
<First Embodiment>
1 to 7 are views provided for explaining each part of the catheter device 100 according to the embodiment. FIG. 8 is a flowchart showing an example of a procedure for treatment using the catheter device 100. 9 and 10 are diagrams for explaining the blood vessel V which is the target of the treatment method using the catheter device 100. 11 to 13 are views for explaining a usage example of the catheter device 100. Note that FIG. 13 shows a cross section of the blood vessel V along a direction orthogonal to the traveling direction of the blood vessel V (direction indicated by arrows 13A-13A in FIG. 12).
 図中の矢印X1は、カテーテルデバイス100の血管V内への挿入方向を示し、図中の矢印X2は挿入方向と反対方向を示す。また、図中の矢印Y1-Y2は矢印X1-X2と直交する方向を示し、図中の矢印Z1-Z2は矢印X1-X2、矢印Y1-Y2の各々の方向と直交する方向を示す。 The arrow X1 in the figure indicates the insertion direction of the catheter device 100 into the blood vessel V, and the arrow X2 in the figure indicates the direction opposite to the insertion direction. Further, arrows Y1-Y2 in the figure indicate directions orthogonal to arrows X1-X2, and arrows Z1-Z2 in the figure indicate directions orthogonal to the respective directions of arrows X1-X2 and arrows Y1-Y2.
 <処置対象部位>
 図9、図10を参照して、処置対象部位Sについて説明する。符号VRは右腎動脈を示し、符号VLは左腎動脈を示している。また、符号Vaは上腸間膜動脈、符号Vbは腹腔動脈、符号Vcは下腸間膜動脈、符号Vdは大動脈を示している。
<Site to be treated>
The treatment target site S will be described with reference to FIGS. 9 and 10. The symbol VR indicates the right renal artery, and the symbol VL indicates the left renal artery. Further, the symbol Va indicates the superior mesenteric artery, the symbol Vb indicates the celiac artery, the symbol Vc indicates the inferior mesenteric artery, and the symbol Vd indicates the aorta.
 本実施形態に係る処置方法では、医師等の術者(以下、「術者」とする)は、患者の腸管の神経支配を行う周囲神経(神経叢)Naを有する血管V内において、自律神経の活性を低下させる処置を行うことにより、腸管の蠕動運動を亢進させる。術者は、このような処置を行うことにより、患者の便秘および/または腸管の蠕動運動の異常に起因する腹部膨満感、腹痛、会陰部の不快感、頻回便のうちの少なくとも一つの症状(患者の便秘の緩和および/または腸管の蠕動運動の異常に起因する症状群の中の少なくとも一つ)の緩和を促すことができる。 In the treatment method according to the present embodiment, an operator such as a doctor (hereinafter referred to as “operator”) has an autonomic nerve in a blood vessel V having a peripheral nerve (nerve plexus) Na that innervates the intestinal tract of the patient. By taking measures to reduce the activity of the intestinal tract, the peristaltic movement of the intestinal tract is enhanced. By performing such a procedure, the surgeon performs at least one symptom of abdominal bloating, abdominal pain, peristal discomfort, and frequent stools due to constipation and / or abnormal peristaltic movement of the intestinal tract. Relief of constipation in patients and / or at least one of the symptoms caused by abnormal peristaltic movements of the intestinal tract can be promoted.
 処置方法が適用される血管Vは、実施形態に係る所定の処置(後述する電磁波によるエネルギーの付与)が施されることにより、患者(被験者)の腸管の蠕動運動を亢進することが可能であれば特に限定されない。一例として、血管Vは、例えば、上腸間膜動脈Va、腹腔動脈Vb、下腸間膜動脈Vcのうちの少なくとも一つを好適に選択することができる。 The blood vessel V to which the treatment method is applied may be capable of enhancing the peristaltic movement of the intestinal tract of the patient (subject) by being subjected to the predetermined treatment according to the embodiment (energy is applied by electromagnetic waves described later). There is no particular limitation. As an example, as the blood vessel V, for example, at least one of superior mesenteric artery Va, celiac artery Vb, and inferior mesenteric artery Vc can be preferably selected.
 術者は、処置として、一つの周囲神経Naまたは複数の周囲神経Naにエネルギーを付与する。それにより、術者は、周囲神経Naを障害し、周囲神経Naによる消化管への自律神経伝達を完全にまたは一部遮断することにより、腸管の蠕動運動を亢進させることができる。 As a treatment, the surgeon applies energy to one peripheral nerve Na or a plurality of peripheral nerve Nas. Thereby, the operator can enhance the peristaltic movement of the intestinal tract by damaging the peripheral nerve Na and completely or partially blocking the autonomic nerve transmission to the digestive tract by the peripheral nerve Na.
 血管V内において上記のような自律神経の活性を低下させる処置を行うことにより、腸管の蠕動運動が活性化する理由として、次のような機序が考えられる。 The following mechanism is considered as the reason why the peristaltic movement of the intestinal tract is activated by performing the above-mentioned treatment for reducing the activity of the autonomic nerve in the blood vessel V.
 血管V内から照射したエネルギーによって周囲神経Naを障害し、周囲神経Naによる消化管への自律神経伝達が完全にまたは一部遮断されると、交感神経系、副交感神経系のうち交感神経系が相対的に減弱して副交感優位になる。また、中枢からの神経伝達が遮断されることにより、末梢で腸管運動を自律的に制御している腸管神経系が優位になり、腸管の蠕動運動が活性化する。さらに、腸管の蠕動運動が活性化すると、結腸通過時間が促進・正常化するため、便秘および/または腸管の蠕動運動の異常に起因する腹部膨満感、腹痛、会陰部の不快感、頻回便のうちの少なくとも一つの症状の緩和が促される。特に、本実施形態に係る処置方法によれば、結腸に器質的な異常のない機能性便秘のなかで、大腸の腸蠕動運動が低下し、そのために便の通過時間に遅延が認められて便秘を来している結腸通過時間遅延型便秘の症状の緩和を好適に促すことができる。 When the surrounding nerve Na is damaged by the energy irradiated from inside the blood vessel V and the autonomic nerve transmission to the digestive tract by the surrounding nerve Na is completely or partially blocked, the sympathetic nervous system among the sympathetic nervous system and the parasympathetic nervous system becomes It is relatively weakened and becomes parasympathetic dominant. In addition, by blocking nerve transmission from the central nervous system, the enteric nervous system that autonomously controls intestinal motility in the periphery becomes dominant, and intestinal peristalsis is activated. Furthermore, activation of intestinal peristalsis promotes and normalizes colonic transit time, resulting in abdominal bloating, abdominal pain, perineal discomfort, and frequent stools due to constipation and / or abnormal intestinal peristalsis. Relief of at least one of these symptoms is promoted. In particular, according to the treatment method according to the present embodiment, in functional constipation with no organic abnormality in the colon, the intestinal peristaltic movement of the large intestine is reduced, and as a result, the passage time of the stool is delayed, resulting in constipation. It can preferably promote the relief of the symptoms of constipation with delayed colonic transit time.
 血管Vにおいて処置が施される処置対象部位(一つまたは複数の周囲神経Naが含まれる領域)Sは、腸管の蠕動運動を亢進させることが可能な限り、特に限定されない。例えば、血管V内において、血管Vの走行方向(延在方向)の任意の範囲(部位)に対して処置を実施してもよいし、血管Vの周方向(横断面の周方向)の任意の範囲(部位)に対して処置を実施してもよい。また、処置は、同一の血管Vの複数の箇所に対して複数回実施してもよいし、異なる血管Vの任意の箇所に対して複数回実施してもよい。 The treatment target site (region containing one or more peripheral nerve Na) S to be treated in the blood vessel V is not particularly limited as long as it can enhance the peristaltic movement of the intestinal tract. For example, in the blood vessel V, treatment may be performed on an arbitrary range (site) of the traveling direction (extending direction) of the blood vessel V, or in the circumferential direction of the blood vessel V (circumferential direction of the cross section). Treatment may be performed on the range (site) of. In addition, the treatment may be performed a plurality of times on a plurality of locations of the same blood vessel V, or may be performed a plurality of times on any location of a different blood vessel V.
 本実施形態では、図12に示すように、上腸間膜動脈Vaを処置対象とした処置方法を説明する。また、本実施形態に係る処置方法は、上腸間膜動脈Vaの起始部周辺Vaoに対して処置を実施することを含む。ここで、図10を参照して、上腸間膜動脈Vaの外部に存在する処置対象部位Sの範囲の一例を説明する。 In this embodiment, as shown in FIG. 12, a treatment method for the superior mesenteric artery Va will be described. In addition, the treatment method according to the present embodiment includes performing treatment on the Vao around the origin of the superior mesenteric artery Va. Here, an example of the range of the treatment target site S existing outside the superior mesenteric artery Va will be described with reference to FIG.
 処置対象部位Sは、上腸間膜動脈Vaの開口を基準にして、上腸間膜動脈Vaの延伸方向に沿って0mm~20mmの範囲(符号L1で示す範囲)を含むことが好ましい。上腸間膜動脈Vaの上記範囲内でエネルギーを付与することにより、上腸間膜動脈Vaの末梢側に位置する臓器(例えば、膵臓や十二指腸)に対してエネルギーが伝達されることを効果的に抑制することができる。なお、上腸間膜動脈Vaの末梢側に位置する臓器に対してエネルギーが伝達されることをより確実に抑制する観点より、上腸間膜動脈Va内からのエネルギーの付与は、上腸間膜動脈Vaの延伸方向に沿って0mm~20mmの範囲内のみで実施することがより好ましい。 The treatment target site S preferably includes a range of 0 mm to 20 mm (range indicated by reference numeral L1) along the extension direction of the superior mesenteric artery Va with reference to the opening of the superior mesenteric artery Va. By applying energy within the above range of the superior mesenteric artery Va, it is effective that energy is transmitted to organs located on the peripheral side of the superior mesenteric artery Va (for example, pancreas and duodenum). Can be suppressed. From the viewpoint of more reliably suppressing the transfer of energy to the organ located on the peripheral side of the superior mesenteric artery Va, the application of energy from within the superior mesenteric artery Va is performed between the superior mesentery. It is more preferable to carry out only within the range of 0 mm to 20 mm along the extension direction of the mesenteric artery Va.
 本実施形態に係る処置方法のように、上腸間膜動脈Vaから処置対象部位Sに対してエネルギーを付与する場合、処置対象部位Sには上腸間膜動脈Vaの分岐部を基準にして、大動脈Vdの延伸方向に沿って0mm~100mmの範囲(符号L2で示す範囲)が含まれてもよい。 When energy is applied from the superior mesenteric artery Va to the treatment target site S as in the treatment method according to the present embodiment, the treatment target site S is based on the bifurcation of the superior mesenteric artery Va. , A range of 0 mm to 100 mm (range indicated by reference numeral L2) along the extension direction of the aorta Vd may be included.
 上腸間膜動脈Va側からのエネルギーの深達長(図10の符号d1で示す距離)は、上腸間膜動脈Vaの内膜から少なくとも1mm~6mmであることが好ましい。上腸間膜動脈Vaの外側に存在する周囲神経Naは、上腸間膜動脈Vaの起始部周辺Vaoでは比較的深い位置に存在する。より具体的には、周囲神経Naは、上腸間膜動脈Vaの外側の脂肪組織の中で結合組織により支持された状態で束になって存在する。したがって、上腸間膜動脈Vaの起始部周辺Vaoからエネルギーを付与する場合、各血管Va、Vdの内膜の1mm~6mmの位置までエネルギーを到達させることにより、周囲神経Naを効率良く除神経することができる。 The depth of energy penetration from the superior mesenteric artery Va side (distance indicated by reference numeral d1 in FIG. 10) is preferably at least 1 mm to 6 mm from the intima of the superior mesenteric artery Va. The peripheral nerve Na existing outside the superior mesenteric artery Va exists at a relatively deep position in the Vao around the origin of the superior mesenteric artery Va. More specifically, the peripheral nerve Na is present in bundles in the adipose tissue outside the superior mesenteric artery Va, supported by connective tissue. Therefore, when energy is applied from the Vao around the origin of the superior mesenteric artery Va, the peripheral nerve Na is efficiently removed by allowing the energy to reach a position of 1 mm to 6 mm in the intima of each blood vessel Va and Vd. Can be nervous.
 <カテーテルデバイス>
 図1~図7に示すように、本実施形態に係るカテーテルデバイス100は、概説すると、血管V(「生体管腔」に相当する)内においてエネルギーを放射可能なエネルギー放射部150と、エネルギー放射部150の少なくとも一部が配置された第1部位111および第1部位111の先端側に位置する第2部位112を有し、血管V内に挿入可能なシャフト部110と、を有する。
<Catheter device>
As shown in FIGS. 1 to 7, the catheter device 100 according to the present embodiment is roughly described by an energy radiating unit 150 capable of radiating energy in a blood vessel V (corresponding to a “living cavity”) and energy radiating. It has a first portion 111 in which at least a part of the portion 150 is arranged and a second portion 112 located on the distal end side of the first portion 111, and has a shaft portion 110 that can be inserted into the blood vessel V.
 <シャフト部の形状>
 第2部位112は、第1部位111の先端側へ連続的に延びている。第1部位111の基端側には、シャフト部110の基端領域113が形成されている。
<Shaft shape>
The second portion 112 extends continuously toward the tip end side of the first portion 111. A proximal region 113 of the shaft portion 110 is formed on the proximal end side of the first portion 111.
 シャフト部110は、可撓性を備える長尺状の部材で構成している。シャフト部110に用いられる材料は特に限定されないが、例えば、公知のカテーテルデバイスに用いられる樹脂材料と同様のものを用いることができる。なお、シャフト部110の外径、内径、軸方向の長さ、断面形状等は特に限定されない。 The shaft portion 110 is composed of a long and flexible member. The material used for the shaft portion 110 is not particularly limited, but for example, the same material as the resin material used for a known catheter device can be used. The outer diameter, inner diameter, axial length, cross-sectional shape, etc. of the shaft portion 110 are not particularly limited.
 シャフト部110の第2部位112は、図2に示す第1形状と図3に示す第2形状とに変形可能に構成している。シャフト部110の第1部位111は、第2部位112の変形前後において、第2部位112の変形に伴って変形することなく、シャフト部110の軸方向に沿って略直線形状を維持するように構成されている。 The second portion 112 of the shaft portion 110 is configured to be deformable into the first shape shown in FIG. 2 and the second shape shown in FIG. The first portion 111 of the shaft portion 110 is maintained in a substantially linear shape along the axial direction of the shaft portion 110 without being deformed due to the deformation of the second portion 112 before and after the deformation of the second portion 112. It is configured.
 第1形状は、図2に示すように、第2部位112の少なくとも一部にシャフト部110の軸方向に折り返された折り返し部112aが形成される。本実施形態では、第2部位112は、第1形状において、少なくとも一部が巻回されている。より具体的には、第1形状は、シャフト部110の先端部を含む第2部位112を矢印b1で示すように、シャフト部110の軸方向の先端側から基端側にかけて複数回巻き回されることにより、丸められた外形形状の折り返し部112aを有する。また、本実施形態では、シャフト部110の第2部位112の先端は、第1形状において、例えば、シャフト部110の基端方向(図2の矢印X2方向)を向くように形状付けすることができる。なお、第1形状は、「シャフト部の軸方向の基端側及び/又は先端側に少なくとも一度折り返された折り返し部」が形成されている限り、具体的な形状は限定されない。 In the first shape, as shown in FIG. 2, a folded-back portion 112a folded back in the axial direction of the shaft portion 110 is formed in at least a part of the second portion 112. In the present embodiment, the second portion 112 is wound at least partially in the first shape. More specifically, in the first shape, the second portion 112 including the tip portion of the shaft portion 110 is wound a plurality of times from the tip end side to the base end side in the axial direction of the shaft portion 110 as shown by an arrow b1. As a result, it has a folded portion 112a having a rounded outer shape. Further, in the present embodiment, the tip of the second portion 112 of the shaft portion 110 may be shaped in the first shape so as to face, for example, the proximal end direction of the shaft portion 110 (direction of arrow X2 in FIG. 2). it can. The specific shape of the first shape is not limited as long as the "folded portion folded at least once on the base end side and / or the tip end side in the axial direction of the shaft portion" is formed.
 第2形状は、図3に示すように、第2部位112の折り返し部112aの少なくとも一部が略直線状に延ばされた形状を呈する。本実施形態では、第2部位112は、第2形状において、第1形状において形状付けされた巻回が解かれることにより、全体が略直線状に延びている。 As shown in FIG. 3, the second shape exhibits a shape in which at least a part of the folded-back portion 112a of the second portion 112 is extended in a substantially straight line. In the present embodiment, in the second shape, the second portion 112 extends substantially linearly as a whole by unwinding the winding shaped in the first shape.
 第2部位112は、図2に示すように、第1形状において、第2部位112の先端の軸心C2が第1部位111の軸心C2から偏心した位置に配置される。本実施形態では、第1形状において、軸心C1と軸心C2は、シャフト部110の軸方向に沿う矢印X1-X2と直行する矢印Y1-Y2方向において互いに重ならないようにずれて配置されている。 As shown in FIG. 2, the second portion 112 is arranged at a position where the axial center C2 at the tip of the second portion 112 is eccentric from the axial center C2 of the first portion 111 in the first shape. In the first embodiment, in the first shape, the axial center C1 and the axial center C2 are arranged so as not to overlap each other in the arrow Y1-Y2 direction perpendicular to the arrow X1-X2 along the axial direction of the shaft portion 110. There is.
 第2部位112は、図3に示すように、第2形状において、第2部位112の先端の軸心C1が第1部位111の軸心C1と重なる位置に配置される。具体的には、第1形状に変形すると、軸心C1と軸心C2は、矢印Y1-Y2方向において互いに重なる(上面から投影視において重なる)ように配置される。一方で、第2部位112は、第2形状において、第2部位112の先端の軸心C1が第1部位111の軸心C1に対して矢印Z1-Z2方向において離間した位置に配置される。 As shown in FIG. 3, the second portion 112 is arranged at a position where the axial center C1 at the tip of the second portion 112 overlaps with the axial center C1 of the first portion 111 in the second shape. Specifically, when deformed into the first shape, the axis C1 and the axis C2 are arranged so as to overlap each other in the directions of arrows Y1-Y2 (overlap from the upper surface in projection view). On the other hand, in the second shape, the second portion 112 is arranged at a position where the axial center C1 at the tip of the second portion 112 is separated from the axial center C1 of the first portion 111 in the direction of arrows Z1-Z2.
 第2部位112は、図3に示すように、第2形状において、第1部位111の軸心C1との間の距離が基端側へ向けて徐々に広がるように略直線状に延びる。そのため、血管V内で第2部位112を第2形状に変形させることにより、第2部位112を血管Vの管壁Vaiに対してより確実に当接させることができる(図12を参照)。 As shown in FIG. 3, the second portion 112 extends substantially linearly in the second shape so that the distance between the first portion 111 and the axial center C1 gradually increases toward the proximal end side. Therefore, by deforming the second site 112 into the second shape in the blood vessel V, the second site 112 can be more reliably brought into contact with the tube wall Vai of the blood vessel V (see FIG. 12).
 また、第2部位112は、第2形状において、第1部位111と第2部位112の間に所定の曲率で湾曲する湾曲部114を有する。第2部位112は、湾曲部114からシャフト部110の先端側において、第1部位111から離間するように伸びている。したがって、第2部位112は、第2形状に変形した際、第1部位111と第2部位112が湾曲部114を間に挟んで互いに対向する略U字形状を呈する。なお、湾曲部114の曲率、長さ、範囲等は特に限定されない。 Further, the second portion 112 has a curved portion 114 that curves with a predetermined curvature between the first portion 111 and the second portion 112 in the second shape. The second portion 112 extends from the curved portion 114 on the tip end side of the shaft portion 110 so as to be separated from the first portion 111. Therefore, when the second portion 112 is deformed into the second shape, the first portion 111 and the second portion 112 exhibit a substantially U-shape facing each other with the curved portion 114 in between. The curvature, length, range, etc. of the curved portion 114 are not particularly limited.
 シャフト部110は、図13に示すように、第2部位112が第2形状に変形した際、第1部位111と第2部位112の各々を、血管Vの管壁Vaiの周方向の異なる位置に対して当接可能に構成されている。例えば、第1部位111と第2部位112は、図13に示す横断面上において互いに対向させることができる。具体的には、第1部位111と第2部位112は、血管Vの中心位置Oを間に挟んで向き合う位置関係で配置することができる。このように配置することにより、後述するように、第1部位111に配置されたエネルギー放射部(アンテナエレメント)150から放射した電磁波の少なくとも一部を第2部位112に配置されたリフレクタ130(管体140)により、第1部位111側へ反射することができる。それにより、アンテナエレメント150から放射した電磁波と、リフレクタ130により反射させた電磁波を、第1部位111が当接された血管Vの管壁Vaiの外側に存在する周囲神経Naを含む処置対象部位Sに対して局所的に照射することが可能になる。 As shown in FIG. 13, when the second portion 112 is deformed into the second shape, the shaft portion 110 places each of the first portion 111 and the second portion 112 at different positions in the circumferential direction of the tube wall Vai of the blood vessel V. It is configured so that it can come into contact with the water. For example, the first portion 111 and the second portion 112 can face each other on the cross section shown in FIG. Specifically, the first site 111 and the second site 112 can be arranged in a positional relationship facing each other with the center position O of the blood vessel V in between. By arranging in this way, as will be described later, at least a part of the electromagnetic wave radiated from the energy radiating portion (antenna element) 150 arranged in the first portion 111 is arranged in the second portion 112 of the reflector 130 (tube). The body 140) can reflect to the first portion 111 side. As a result, the electromagnetic wave radiated from the antenna element 150 and the electromagnetic wave reflected by the reflector 130 are subjected to the treatment target site S containing the peripheral nerve Na existing outside the tube wall Vai of the blood vessel V with which the first site 111 is in contact. It becomes possible to irradiate the body locally.
 なお、カテーテルデバイス100を使用した処置を実施する際、第1部位111と第2部位112は、血管Vの横断面上において厳密に対向する位置に配置されていなくてもよい。また、エネルギー放射部150が電磁波を放射可能なアンテナエレメント以外の構造を有する場合、第2部位112へのリフレクタ130の配置は省略することができる。このようにカテーテルデバイス100を構成する場合においても、略直線状に延びた第1部位111と第2形状に変形して略直線状に延びた第2部位112を血管Vの延伸方向に沿って所定の長さに亘って管壁Vaiに対して当接させることにより、血管Vへのシャフト部110の保持力を高めることができる。 When performing the procedure using the catheter device 100, the first site 111 and the second site 112 do not have to be arranged at positions that strictly face each other on the cross section of the blood vessel V. Further, when the energy emitting unit 150 has a structure other than the antenna element capable of radiating electromagnetic waves, the arrangement of the reflector 130 on the second portion 112 can be omitted. Even when the catheter device 100 is configured in this way, the first portion 111 extending substantially linearly and the second portion 112 deformed into a second shape and extending substantially linearly are provided along the extending direction of the blood vessel V. The holding force of the shaft portion 110 on the blood vessel V can be increased by bringing it into contact with the tube wall Vai over a predetermined length.
 <シャフト部の構造>
 図4は、第1形状の第2部位112のシャフト部110の側面図を示し、図5は、図4に示す状態のシャフト部110の部分断面図を示す。図6は、第2形状の第2部位112のシャフト部110の側面図を示し、図7は、図6に示す状態のシャフト部110の部分断面図を示す。
<Structure of shaft part>
FIG. 4 shows a side view of the shaft portion 110 of the second portion 112 of the first shape, and FIG. 5 shows a partial cross-sectional view of the shaft portion 110 in the state shown in FIG. FIG. 6 shows a side view of the shaft portion 110 of the second portion 112 of the second shape, and FIG. 7 shows a partial cross-sectional view of the shaft portion 110 in the state shown in FIG.
 本実施形態に係るエネルギー放射部150は、電磁波を放射可能なアンテナエレメント150により構成することができる。以下、エネルギー放射部150をアンテナエレメント150とも称する。 The energy radiating unit 150 according to the present embodiment can be configured by an antenna element 150 capable of radiating electromagnetic waves. Hereinafter, the energy radiating unit 150 is also referred to as an antenna element 150.
 図5に示すように、第2部位112の少なくとも一部にはアンテナエレメント150から放射された電磁波を反射可能なリフレクタ130を配置することができる。リフレクタ130の少なくとも一部は、図7に示すように、第2形状において、アンテナエレメント150と対向する位置に配置することができる。 As shown in FIG. 5, a reflector 130 capable of reflecting electromagnetic waves radiated from the antenna element 150 can be arranged at least a part of the second portion 112. As shown in FIG. 7, at least a part of the reflector 130 can be arranged at a position facing the antenna element 150 in the second shape.
 図5、図7に示すように、第2部位112には、当該第2部位112が第2形状に変形した際、第2部位112が捻じれることを抑制する抑制部材140を配置している。抑制部材140は、互いに揺動可能に接続された金属製の複数の節輪141、142を備える管体140で構成している。本実施形態では、管体140がリフレクタ130としての機能を持つ。 As shown in FIGS. 5 and 7, the second portion 112 is provided with a restraining member 140 that suppresses the second portion 112 from being twisted when the second portion 112 is deformed into the second shape. .. The restraining member 140 is composed of a tubular body 140 including a plurality of metal knot rings 141 and 142 oscillatingly connected to each other. In this embodiment, the tubular body 140 has a function as a reflector 130.
 管体140の長手方向に隣接する節輪141、142同士は凸部143と凹部144を介して接続されている。凸部143は、凹部144に遊篏されており、凹部144の内面に沿って揺動可能である。各節輪141、142は、中空のリング形状を有する。各節輪141、142には、管体140の曲げ方向を規制するための傾斜面145が設けられている。各節輪141、142が揺動する際、隣接する節輪141、142の動作は、傾斜面145が形成された範囲内に制限される。そのため、管体140は、図7に示す矢印r1方向へ湾曲することが可能になる。一方で、管体140は、矢印r1と反対方向の矢印r2方向へ揺動しようとする際、節輪141、142に形成された規制面146によって揺動が規制される。そのため、管体140は、第2部位112が第2形状に変形した際、図7に示す略直線形状に容易に変形することができ、かつ、第2部位112が外方側に反るように変形することを抑制することができる。 The knot rings 141 and 142 adjacent to each other in the longitudinal direction of the pipe body 140 are connected to each other via the convex portion 143 and the concave portion 144. The convex portion 143 is idled in the concave portion 144 and can swing along the inner surface of the concave portion 144. Each of the nodal rings 141 and 142 has a hollow ring shape. The knots 141 and 142 are provided with an inclined surface 145 for regulating the bending direction of the pipe body 140. When the knot rings 141 and 142 swing, the operation of the adjacent knot rings 141 and 142 is limited to the range in which the inclined surface 145 is formed. Therefore, the tubular body 140 can be curved in the direction of arrow r1 shown in FIG. On the other hand, when the tubular body 140 tries to swing in the direction of arrow r2 in the direction opposite to that of arrow r1, the swing is regulated by the regulating surfaces 146 formed on the nodal rings 141 and 142. Therefore, when the second portion 112 is deformed into the second shape, the tubular body 140 can be easily deformed into the substantially linear shape shown in FIG. 7, and the second portion 112 is warped outward. It is possible to suppress the deformation to.
 カテーテルデバイス100は、抑制部材140を有することにより、血管V内で第2部位112が第2形状に変形した際、第2部位112が捻じれることを抑制できる。そのため、血管Vの管壁に対して第2部位112をその長さ方向に亘ってより確実に当接させることができる。なお、抑制部材140は、第2部位112が第2形状に変形した際、第2部位112が捻じれることを防止可能な限り、具体的な形状は限定されない。抑制部材140は、例えば、金属製の棒状の部材や金属製の平板状の部材で構成してもよい。 By having the suppressing member 140, the catheter device 100 can suppress the twisting of the second site 112 when the second site 112 is deformed into the second shape in the blood vessel V. Therefore, the second portion 112 can be more reliably brought into contact with the tube wall of the blood vessel V over the length direction thereof. The specific shape of the restraining member 140 is not limited as long as it can prevent the second portion 112 from being twisted when the second portion 112 is deformed into the second shape. The restraining member 140 may be composed of, for example, a metal rod-shaped member or a metal flat plate-shaped member.
 図5、図7に示すように、シャフト部110は、シャフト部110を構成する樹脂製のチューブ120を有する。管体140およびアンテナエレメント150は、シャフト部110の内部に内挿されている。チューブ120は、例えば、公知の樹脂で構成された管状部材で構成することができる。 As shown in FIGS. 5 and 7, the shaft portion 110 has a resin tube 120 constituting the shaft portion 110. The tube body 140 and the antenna element 150 are interpolated inside the shaft portion 110. The tube 120 can be made of, for example, a tubular member made of a known resin.
 アンテナエレメント150は、例えば、電磁波としてマイクロ波を放射可能なヘリカルエレメント151を有するように構成することができる。リフレクタ130は、アンテナエレメント150が配置された第1部位111から離間した第2部位112に配置している。リフレクタ130は、アンテナエレメント150から離隔して配置されることにより、アンテナエレメント150とともにシャフト部110の内部に配置される一方で、アンテナエレメント150とは電気的に接続されていない非通電の状態を維持することができる。 The antenna element 150 can be configured to have, for example, a helical element 151 capable of radiating microwaves as an electromagnetic wave. The reflector 130 is arranged at a second portion 112 away from the first portion 111 where the antenna element 150 is arranged. By arranging the reflector 130 away from the antenna element 150, the reflector 130 is arranged inside the shaft portion 110 together with the antenna element 150, while the reflector 130 is not electrically connected to the antenna element 150 and is in a non-energized state. Can be maintained.
 シャフト部110の内部には同軸ケーブル160を配置している。同軸ケーブル160の先端部は外部導体に覆われておらず、内部導体(中心導体)161および誘電体(図示省略)が同軸ケーブル160の先端側へ所定の長さだけ導出されている。内部導体161の先端には接続部163を配置している。ヘリカルエレメント151の先端は接続部163と電気的に接続されることにより、ヘリカルアンテナを形成している。同軸ケーブル160には、平衡と不平衡の状態にある電気信号を変換するバラン165を配置している。アンテナエレメント150は、同軸ケーブル160を介して電流を受給することにより、電磁波を放射する。本実施形態では、アンテナエレメント150は、内部導体161において同軸ケーブル160から突出した部分よりも先端側に位置する構造物(ヘリカルエレメント151、内部導体161の一部、接続部163)により構成している。 A coaxial cable 160 is arranged inside the shaft portion 110. The tip of the coaxial cable 160 is not covered with the outer conductor, and the inner conductor (center conductor) 161 and the dielectric (not shown) are led out to the tip side of the coaxial cable 160 by a predetermined length. A connecting portion 163 is arranged at the tip of the inner conductor 161. The tip of the helical element 151 is electrically connected to the connecting portion 163 to form a helical antenna. A balun 165 that converts an electric signal in a balanced and unbalanced state is arranged on the coaxial cable 160. The antenna element 150 radiates electromagnetic waves by receiving an electric current via the coaxial cable 160. In the present embodiment, the antenna element 150 is composed of a structure (helical element 151, a part of the internal conductor 161 and a connecting portion 163) located on the tip side of the internal conductor 161 with respect to the portion protruding from the coaxial cable 160. There is.
 アンテナエレメント150の中心周波数は、アンテナエレメント150が電磁波としてマイクロ波を放射するように構成されている場合、例えば、915MHz、2.45GHz、5.8GHz、24.125GHzのいずれかに設定することができる。 When the antenna element 150 is configured to radiate microwaves as an electromagnetic wave, the center frequency of the antenna element 150 can be set to, for example, 915 MHz, 2.45 GHz, 5.8 GHz, or 24.125 GHz. it can.
 アンテナエレメント150を構成する各構造物は、電磁波を放射可能な限り、構造、形状、放射される電磁波の周波数、材質、シャフト部110における配置形態等は特に限定されない。また、アンテナエレメント150は、ヘリカルエレメント151を有する場合、ヘリカルエレメント151のらせん巻きの方向は順方向又は逆方向のいずれでもよいし、巻き数も特に限定されない。また、ヘリカルエレメント151の軸方向の長さも特に限定されない。また、ヘリカルエレメント151は、例えば、プラチナ合金で構成することができる。 Each structure constituting the antenna element 150 is not particularly limited in structure, shape, frequency and material of the radiated electromagnetic wave, arrangement form in the shaft portion 110, etc. as long as it can radiate electromagnetic waves. When the antenna element 150 has the helical element 151, the spiral winding direction of the helical element 151 may be either the forward direction or the reverse direction, and the number of windings is not particularly limited. Further, the axial length of the helical element 151 is not particularly limited. Further, the helical element 151 can be made of, for example, a platinum alloy.
 リフレクタ130は、例えば、公知の金属で構成することができる。金属としては、例えば、銅、アルミニウム、ステンレス、プラチナ合金、形状記憶合金などを用いることができる。なお、リフレクタ130を構成する材料は、第2部位112に外力が付与されていない自然状態において、シャフト部110の先端部の形状を図2に示すような形状に保持する観点より、例えば、ニッケルチタン合金などの形状記憶合金を用いることが好ましい。 The reflector 130 can be made of, for example, a known metal. As the metal, for example, copper, aluminum, stainless steel, platinum alloy, shape memory alloy and the like can be used. The material constituting the reflector 130 is made of, for example, nickel from the viewpoint of maintaining the shape of the tip of the shaft portion 110 in the shape shown in FIG. 2 in a natural state in which no external force is applied to the second portion 112. It is preferable to use a shape memory alloy such as a titanium alloy.
 リフレクタ130は、シャフト部110に設けられる金属製の補強線材(ブレード線)により構成することもできる。シャフト部110に金属製の補強線材が設けられる場合、アンテナエレメント150から放射される電磁波の放射特性が著しく損なわれることのないように、補強線材は、アンテナエレメント150が配置された第1部位111の全周方向および軸方向の全体に亘って配置されないようにすることが好ましい。なお、後述するように、リフレクタ130は、電磁波を反射可能であればその具体的な構成は特に限定されず、複数の節輪141、142を備える管体140以外の金属製の部材で構成することも可能である(図15を参照)。 The reflector 130 can also be composed of a metal reinforcing wire (blade wire) provided on the shaft portion 110. When a metal reinforcing wire is provided on the shaft portion 110, the reinforcing wire is the first portion 111 on which the antenna element 150 is arranged so that the radiation characteristics of the electromagnetic waves radiated from the antenna element 150 are not significantly impaired. It is preferable that the antenna is not arranged in the entire circumferential direction and the axial direction. As will be described later, the reflector 130 is not particularly limited as long as it can reflect electromagnetic waves, and is composed of a metal member other than the tube body 140 having a plurality of nodal rings 141 and 142. It is also possible (see FIG. 15).
 エネルギー放射部150は、電磁波を放射可能なアンテナエレメント150以外で構成することもできる。エネルギー放射部150は、例えば、超音波、光、熱、寒放射線、磁気的、電気的、冷凍療法、プラズマ、化学的エネルギー、潜在的エネルギー、原子核的エネルギー、流体力学的エネルギーなどを放射可能な構造を有していてもよい。 The energy radiating unit 150 may be configured by other than the antenna element 150 capable of radiating electromagnetic waves. The energy radiating unit 150 can radiate, for example, ultrasonic waves, light, heat, cold radiation, magnetic, electrical, cryotherapy, plasma, chemical energy, potential energy, nuclear energy, hydromechanical energy, and the like. It may have a structure.
 図5、図7に示すように、シャフト部110の内部には、シャフト部110内でアンテナエレメント150が移動することを抑制するための充填材123を配置している。充填材123は、公知の樹脂材料で構成することができる。充填材123には、後述する牽引部材171の移動を可能にするための通路123aを形成している。 As shown in FIGS. 5 and 7, a filler 123 for suppressing the movement of the antenna element 150 in the shaft portion 110 is arranged inside the shaft portion 110. The filler 123 can be made of a known resin material. The filler 123 is formed with a passage 123a for enabling the movement of the traction member 171 described later.
 カテーテルデバイス100は、シャフト部110の第2部位112を第1形状から第2形状へ変形させるための操作部を有している。 The catheter device 100 has an operation unit for deforming the second portion 112 of the shaft portion 110 from the first shape to the second shape.
 操作部は、カテーテルデバイス100のハブ180に配置された手元側操作部材170(図1を参照)と、牽引部材171(図5、図7を参照)と、を有する。 The operation unit has a hand-side operation member 170 (see FIG. 1) and a traction member 171 (see FIGS. 5 and 7) arranged on the hub 180 of the catheter device 100.
 牽引部材171は、シャフト部110の先端部と固定され、手元での押し引き操作に伴ってシャフト部110を第1形状から第2形状へ可逆的に変形させることが可能な長尺状の部材で構成している。 The traction member 171 is a long member that is fixed to the tip of the shaft portion 110 and can reversibly deform the shaft portion 110 from the first shape to the second shape by a push-pull operation at hand. It is composed of.
 本実施形態では、牽引部材171の先端部は、シャフト部110の先端部に配置された管体140の先端部の外表面に固定されている。また、牽引部材171の基端部は、ハブ180に配置された手元側操作部材170に固定されている。手元側操作部材170の具体的な構成は特に限定されないが、例えば、回転操作や進退操作に連動させて牽引部材171を押し引きすることが可能なハンドル機構により構成することができる。牽引部材171の材質、外径、断面形状等は、術者が手元側操作部材170を操作した際に生じる力をシャフト部110の先端部側まで伝達可能な限り特に限定されない。なお、手元側操作部材170には、牽引部材171を牽引した状態の保持、および牽引を解除した状態の保持を可能にするためのロック機構を設けることができる。 In the present embodiment, the tip of the traction member 171 is fixed to the outer surface of the tip of the tube 140 arranged at the tip of the shaft 110. Further, the base end portion of the traction member 171 is fixed to the hand side operating member 170 arranged on the hub 180. The specific configuration of the hand side operating member 170 is not particularly limited, but for example, it can be configured by a handle mechanism capable of pushing and pulling the traction member 171 in conjunction with a rotation operation and an advance / retreat operation. The material, outer diameter, cross-sectional shape, etc. of the traction member 171 are not particularly limited as long as the force generated when the operator operates the hand side operating member 170 can be transmitted to the tip end side of the shaft portion 110. The hand side operation member 170 may be provided with a lock mechanism for holding the towed member 171 in a towed state and holding the towed member 171 in a released state.
 シャフト部110の第2部位112は、牽引部材171に対して外力(牽引力)が付与されていない自然状態では、図4、図5に示すように第1形状をなすように形状付けされている。術者が手元側操作部材170を操作して牽引部材171を牽引すると、管体140の先端部に対して牽引力が伝達されて、第2部位112が図6、図7に示すように第2形状に変形する。術者がさらに牽引部材171を牽引して管体140を引っ張ると、シャフト部110は、第2部位112の先端部の軸心C1と第1部位111の軸心C2が軸方向に沿って略直線状に重なってシャフト部110全体が略直線状をなすように変形する。シャフト部110は、牽引部材171を介して伝達された牽引力の付与が解除されると、第2形状から第1形状に戻るように可逆的に変形することができる。なお、第2部位112が自然状態において第1形状を形成するようにするために、シャフト部110のチューブ120は、第1形状をなすように癖付けすることができる。また、牽引部材171を第1形状に形状付けした形状記憶合金(例えば、ニッケルチタン合金)などで形成することにより、自然状態において第2部位112が第1形状をなすように構成してもよい。 The second portion 112 of the shaft portion 110 is shaped so as to form the first shape as shown in FIGS. 4 and 5 in a natural state in which no external force (traction force) is applied to the traction member 171. .. When the operator operates the hand-side operating member 170 to pull the traction member 171, the traction force is transmitted to the tip of the tubular body 140, and the second portion 112 is the second as shown in FIGS. 6 and 7. It transforms into a shape. When the operator further pulls the traction member 171 and pulls the tubular body 140, the shaft portion 110 has an axial center C1 at the tip of the second portion 112 and an axial center C2 at the first portion 111 substantially along the axial direction. It overlaps in a straight line and the entire shaft portion 110 is deformed so as to form a substantially straight line. The shaft portion 110 can be reversibly deformed so as to return from the second shape to the first shape when the application of the traction force transmitted via the traction member 171 is released. In addition, in order for the second portion 112 to form the first shape in the natural state, the tube 120 of the shaft portion 110 can be habituated to form the first shape. Further, by forming the traction member 171 with a shape memory alloy (for example, nickel titanium alloy) shaped into the first shape, the second portion 112 may be configured to have the first shape in a natural state. ..
 牽引部材171は、例えば、図7に示すように、充填材123及び管体140の一部を挿通するとともに、第2部位112の先端部付近において管体140の外表面側に導出させることができる。牽引部材171の牽引操作に連動させて第2部位112を第1形状から第2形状へ可逆的に円滑に変形させるために、牽引部材171は、図7に示すように、第1部位111付近では軸心C1から偏心した位置を通り、充填材123を挿通した箇所ではシャフト部110の略中心位置を通り、管体140の先端側では第2部位112の軸心C2から偏心した位置を通るように配置することができる。なお、図7に示す牽引部材171の配置はあくまで一例であり、このような配置に限定されることはない。 As shown in FIG. 7, for example, the traction member 171 can insert a part of the filler 123 and the pipe body 140 and lead the traction member 171 to the outer surface side of the pipe body 140 near the tip of the second portion 112. it can. As shown in FIG. 7, the traction member 171 is located near the first portion 111 in order to reversibly and smoothly deform the second portion 112 from the first shape to the second shape in conjunction with the traction operation of the traction member 171. Then, it passes through a position eccentric from the axis C1, passes through a substantially center position of the shaft portion 110 at the position where the filler 123 is inserted, and passes through a position eccentric from the axis C2 of the second portion 112 on the tip side of the tubular body 140. Can be arranged as follows. The arrangement of the traction member 171 shown in FIG. 7 is merely an example, and is not limited to such an arrangement.
 シャフト部110の第2部位112の変形を操作する方法は、牽引部材171を利用した物理的な牽引力の付与及び解除のみに限定されることはない。例えば、牽引部材171を温度変化などに応じて第1形状と第2形状に変形するような温度応答性を有する合金などで構成し、温度の調整により変形させるように構成することも可能である。 The method of manipulating the deformation of the second portion 112 of the shaft portion 110 is not limited to only applying and releasing the physical traction force using the traction member 171. For example, the traction member 171 may be made of an alloy having a temperature responsiveness that deforms into the first shape and the second shape in response to a temperature change or the like, and may be deformed by adjusting the temperature. ..
 図5、図7に示すように、シャフト部110の先端には先端チップ115を取り付けることができる。先端チップ115は、例えば、柔軟性を備える樹脂材料で構成することができる。先端チップ115は、固定部材115aでシャフト部110の先端に固定することができる。固定部材115aは、例えば、公知の樹脂材料で構成することができる。 As shown in FIGS. 5 and 7, a tip tip 115 can be attached to the tip of the shaft portion 110. The tip 115 can be made of, for example, a flexible resin material. The tip tip 115 can be fixed to the tip of the shaft portion 110 with the fixing member 115a. The fixing member 115a can be made of, for example, a known resin material.
 本実施形態に係るシャフト部110は、カテーテルデバイス100の生体内での移動をガイドするために使用されるガイドワイヤを挿通させるためのガイドワイヤルーメンが形成されていない。そのため、シャフト部110の細経化を図ることができる。また、カテーテルデバイス100では、エネルギー放射部としてアンテナエレメント150を採用し、さらにリフレクタ130をシャフト部110に配置することにより、アンテナエレメント150から放射した電磁波を血管Vの横断面上の所定の方向に局所的に照射することができるように構成している(図13を参照)。このように構成されたカテーテルデバイス100では、ガイドワイヤをシャフト部110に挿入した状態でアンテナエレメント150から電磁波を放射すると、金属を構成部材に含むガイドワイヤによって電磁波の放射方向を制御することが困難になる。したがって、シャフト部110にはガイドワイヤを挿通させるためのガイドワイヤルーメンを設けていない。なお、後述するように、本実施形態に係るカテーテルデバイス100は、シャフト部110の先端部に位置する第2部位112が折り返し部112aを有する第1形状をなすように形状付けされているため、ガイドワイヤを使用しない場合においても、術者は、血管V内でのシャフト部110の先端部の位置決めを容易かつ円滑に実施することができる(図11を参照)。 The shaft portion 110 according to the present embodiment is not formed with a guide wire lumen for inserting a guide wire used for guiding the movement of the catheter device 100 in a living body. Therefore, the shaft portion 110 can be made smaller. Further, in the catheter device 100, the antenna element 150 is adopted as the energy radiating portion, and the reflector 130 is further arranged on the shaft portion 110 so that the electromagnetic wave radiated from the antenna element 150 is directed in a predetermined direction on the cross section of the blood vessel V. It is configured so that it can be irradiated locally (see FIG. 13). In the catheter device 100 configured in this way, when electromagnetic waves are radiated from the antenna element 150 with the guide wire inserted in the shaft portion 110, it is difficult to control the radiation direction of the electromagnetic waves by the guide wire containing metal in the constituent members. become. Therefore, the shaft portion 110 is not provided with a guide wire lumen for inserting the guide wire. As will be described later, the catheter device 100 according to the present embodiment is shaped so that the second portion 112 located at the tip end portion of the shaft portion 110 has the first shape having the folded-back portion 112a. Even when the guide wire is not used, the operator can easily and smoothly position the tip of the shaft portion 110 in the blood vessel V (see FIG. 11).
 上記のようにカテーテルデバイス100は、シャフト部110にガイドワイヤルーメンが形成されていない構造とすることが可能である。ただし、シャフト部110は、例えば、アンテナエレメント150が配置される内腔の他に、ガイドワイヤや各種の媒体が通過可能な内腔を備えるように構成することもできる。シャフト部110にガイドワイヤルーメンを設ける場合、例えば、シャフト部110の先端付近のみにガイドワイヤを挿通させることが可能となるようにシャフト部110の先端にシャフト部110の内外に連通するポートを設けることができる。 As described above, the catheter device 100 can have a structure in which the guide wire lumen is not formed on the shaft portion 110. However, the shaft portion 110 may be configured to include, for example, a lumen through which the guide wire and various media can pass, in addition to the lumen in which the antenna element 150 is arranged. When the guide wire lumen is provided in the shaft portion 110, for example, a port for communicating inside and outside the shaft portion 110 is provided at the tip of the shaft portion 110 so that the guide wire can be inserted only in the vicinity of the tip of the shaft portion 110. be able to.
 図1に示すように、アンテナエレメント150による電磁波の放射は、例えば、所定のコントローラ(制御装置)200を介して制御することができる。コントローラ200は、例えば、カテーテルデバイス100に設けられたハブ180から導出される電線を介して同軸ケーブル160と電気的に接続することができる。 As shown in FIG. 1, the emission of electromagnetic waves by the antenna element 150 can be controlled via, for example, a predetermined controller (control device) 200. The controller 200 can be electrically connected to the coaxial cable 160 via, for example, an electric wire led out from a hub 180 provided in the catheter device 100.
 コントローラ200としては、例えば、CPUと記憶部を備える公知の制御用デバイスを利用することができる。記憶部は、各種のプログラムやデータを格納するROM、作業領域として一時的にプログラムやデータを記憶するRAM、各種のプログラムやデータを格納可能なハードディスク等を備える。上記記憶部には、カテーテルデバイス100の動作制御に必要な一連のプログラムを記憶させることができる。また、アンテナエレメント150に対する動作指令の送信形態としては、例えば、電気通信線を介した有線によるもの、電気通信線を介さない無線によるもの、コントローラに組み込まれた操作部を介した術者等からの入力に基づいて送信を行うもの、コントローラとは別の装置として準備された外部通信手段等からの入力に基づいて送信を行うものなどを挙げることができるが、具体的な形態は特に限定されない。また、アンテナエレメント150を使用した処置(エネルギー放射部150からのエネルギーの放射、および第2部位112の変形操作を含む)は、例えば、術者による作業を代替する処置用ロボット等の医療デバイスにより実施させてもよい。この場合、処置は、手術室等の医療現場において術者等が処置用ロボットを制御してもよいし、遠隔地において処置用ロボットを制御するようにしてもよい。また、図1に示すように、カテーテルデバイス100とコントローラ200とを組み合わせたデバイス10を、血管V等の生体管腔内での電磁波の放射による所定の治療を目的として使用される医療デバイスとして提供することができる。 As the controller 200, for example, a known control device including a CPU and a storage unit can be used. The storage unit includes a ROM for storing various programs and data, a RAM for temporarily storing programs and data as a work area, a hard disk capable of storing various programs and data, and the like. A series of programs necessary for controlling the operation of the catheter device 100 can be stored in the storage unit. Further, as the transmission form of the operation command to the antenna element 150, for example, a wired one via a telecommunication line, a wireless one not via the telecommunication line, an operator via an operation unit incorporated in the controller, or the like. A device that transmits based on the input of the above, a device that transmits based on an input from an external communication means prepared as a device separate from the controller, and the like, but the specific form is not particularly limited. .. Further, the treatment using the antenna element 150 (including the radiation of energy from the energy radiating unit 150 and the deformation operation of the second part 112) is performed by, for example, a medical device such as a treatment robot that substitutes the work by the operator. It may be carried out. In this case, the treatment may be performed by an operator or the like controlling the treatment robot at a medical site such as an operating room, or by controlling the treatment robot at a remote location. Further, as shown in FIG. 1, a device 10 in which a catheter device 100 and a controller 200 are combined is provided as a medical device used for a predetermined treatment by radiating electromagnetic waves in a biological lumen such as a blood vessel V. can do.
 <処置方法>
 次に、カテーテルデバイス100を使用した処置方法の一例を説明する。以下では、血管V(上腸間膜動脈Va)の周囲を走行する周囲神経Naにエネルギーを付与し、周囲神経Naを障害することにより、腸管の蠕動運動を亢進させる手技にカテーテルデバイス100を使用する例を説明する。なお、本明細書で説明する処置手順は一例に過ぎず、例えば、一部の手順や特に説明のない手順、手技に使用されるカテーテルデバイス100以外の医療器具等については、医療分野において公知のものを適宜採用することが可能である。
<Treatment method>
Next, an example of a treatment method using the catheter device 100 will be described. In the following, the catheter device 100 is used for a procedure of enhancing the peristaltic movement of the intestinal tract by applying energy to the peripheral nerve Na running around the blood vessel V (superior mesenteric artery Va) and damaging the peripheral nerve Na. An example of doing so will be described. The treatment procedure described in the present specification is only an example, and for example, some procedures, procedures not particularly described, medical devices other than the catheter device 100 used in the procedure, and the like are known in the medical field. It is possible to adopt the thing as appropriate.
 本実施形態に係る処置方法は、概説すると、エネルギーを放射可能なエネルギー放射部150の少なくとも一部が配置された第1部位111と、第1部位111の先端側に位置する第2部位112と、を有するシャフト部110を備えるカテーテルデバイス100を、血管V内に挿入する第1ステップと、血管V内においてエネルギー放射部150からエネルギーを放射する第2ステップと、を有する。そして、第1ステップは、第2部位112の先端部の少なくとも一部にシャフト部110の軸方向に折り返された折り返し部112aが形成された第1形状から第2部位112の折り返し部112aの少なくとも一部が略直線状に延ばされた第2形状へ第2部位112を変形させることを含む。 Generally speaking, the treatment method according to the present embodiment includes a first portion 111 in which at least a part of the energy radiating portion 150 capable of radiating energy is arranged, and a second portion 112 located on the tip side of the first portion 111. It has a first step of inserting the catheter device 100 including the shaft portion 110 having the above into the blood vessel V, and a second step of radiating energy from the energy radiating unit 150 in the blood vessel V. Then, in the first step, at least a folded portion 112a of the second portion 112 from the first shape in which the folded portion 112a folded back in the axial direction of the shaft portion 110 is formed at least a part of the tip portion of the second portion 112. Includes transforming the second portion 112 into a second shape that is partially elongated in a substantially linear shape.
 より具体的には、本実施形態に係る処置方法は、カテーテルデバイス100を血管V内に送達すること(S11)と、シャフト部110の第2部位112を第1形状で血管V内に配置すること(S12)と、シャフト部110の第2部位112を第1形状から第2形状へ変形させること(S13)と、シャフト部110を血管Vの管壁Vaiに当接させること(S14)と、アンテナエレメント150から電磁波を放射させること(S15)と、を含む。 More specifically, in the treatment method according to the present embodiment, the catheter device 100 is delivered into the blood vessel V (S11), and the second site 112 of the shaft portion 110 is arranged in the blood vessel V in the first shape. That (S12), the second portion 112 of the shaft portion 110 is deformed from the first shape to the second shape (S13), and the shaft portion 110 is brought into contact with the tube wall Vai of the blood vessel V (S14). , To radiate an electromagnetic wave from the antenna element 150 (S15).
 術者は、図11に示すように、公知のガイディングカテーテル300を使用して血管Vへカテーテルデバイス100を送達する。術者は、カテーテルデバイス100を送達する際、牽引部材171を操作して、第2部位112を延ばした形状に変形させる。シャフト部110の第1部位111および第2部位112は略直線状に延びて細径化される。術者は、シャフト部110の先端部を細径化した状態で血管V内へ送達することができる。 As shown in FIG. 11, the operator uses a known guiding catheter 300 to deliver the catheter device 100 to the blood vessel V. When delivering the catheter device 100, the operator manipulates the traction member 171 to deform the second site 112 into an elongated shape. The first portion 111 and the second portion 112 of the shaft portion 110 extend substantially linearly and are reduced in diameter. The operator can deliver the tip of the shaft 110 into the blood vessel V in a reduced diameter state.
 術者は、ガイディングカテーテル300の先端開口部からシャフト部110を所定の長さだけ突出させる。第2部位112は、ガイディングカテーテル300の先端開口部から突出すると、図11に示すように、第1形状に変形する。次に、術者は、手元側操作部材170を操作して、図12に示すように、第2部位112を第1形状から第2形状へ変形させる。術者は、第1部位111と第2部位112を血管Vの管壁Vaiに対して当接させる。この際、図13に示すように、血管Vの横断面上において互いに対向する位置(血管Vの周方向に180°の角度差を持つ位置)に、アンテナエレメント150が配置された第1部位111とリフレクタ130が配置された第2部位112を配置する。 The operator projects the shaft portion 110 by a predetermined length from the tip opening of the guiding catheter 300. When the second site 112 protrudes from the tip opening of the guiding catheter 300, it deforms into the first shape as shown in FIG. Next, the operator operates the hand-side operating member 170 to deform the second portion 112 from the first shape to the second shape, as shown in FIG. The operator brings the first site 111 and the second site 112 into contact with the tube wall Vai of the blood vessel V. At this time, as shown in FIG. 13, the first portion 111 in which the antenna element 150 is arranged at a position facing each other on the cross section of the blood vessel V (a position having an angle difference of 180 ° in the circumferential direction of the blood vessel V). And the second portion 112 in which the reflector 130 is arranged is arranged.
 術者は、第1部位111と第2部位112を血管Vの管壁Vaiに当接させることにより、電磁波を放射する処置を実施している間にシャフト部110が血管Vの管壁Vaiからずれすることを防止できる。また、術者は、第1部位111と第2部位112を血管Vの管壁Vaiに当接させることにより、第1部位111と第2部位112が血管Vの横断面上で互いに平行な位置関係で対向した状態を安定的に維持することができる。 The surgeon brings the first site 111 and the second site 112 into contact with the tube wall Vai of the blood vessel V, so that the shaft portion 110 is brought from the tube wall Vai of the blood vessel V while performing the procedure of radiating electromagnetic waves. It can be prevented from shifting. In addition, the surgeon brings the first site 111 and the second site 112 into contact with the tube wall Vai of the blood vessel V so that the first site 111 and the second site 112 are positioned parallel to each other on the cross section of the blood vessel V. It is possible to stably maintain the opposite state in the relationship.
 また、本実施形態に係るカテーテルデバイス100を使用した手技では、アンテナエレメント150から電磁波を放射して処置を行う際、シャフト部110の第1部位111および第2部位112の各々が略直線状に延びた状態で血管Vの管壁Vaiの延伸方向に沿って所定の長さに亘って当接する。そのため、シャフト部110の一部を血管Vの管壁Vaiに対して点接触させるような場合とし比較して、血管Vに対するシャフト部110の保持力をより向上させることができる。 Further, in the procedure using the catheter device 100 according to the present embodiment, when the treatment is performed by radiating an electromagnetic wave from the antenna element 150, each of the first portion 111 and the second portion 112 of the shaft portion 110 is substantially linear. In the extended state, the blood vessel V abuts along the extending direction of the tube wall Vai over a predetermined length. Therefore, the holding force of the shaft portion 110 with respect to the blood vessel V can be further improved as compared with the case where a part of the shaft portion 110 is brought into point contact with the tube wall Vai of the blood vessel V.
 特に、本実施形態に係るカテーテルデバイス100は、図12に示すように、第2部位112が第2形状に変形した際、シャフト部110の先端部の形状は、第1部位111、第2部位112、第1部位111と第2部位112との間に形成された湾曲部114により、略U字形状となる。そのため、シャフト部110は、血管Vの屈曲に対する追従性が高いものとなるため、血管Vの解剖学的構造に起因して管壁Vaiに対する保持力の低下が生じ難くなる。 In particular, in the catheter device 100 according to the present embodiment, as shown in FIG. 12, when the second portion 112 is deformed into the second shape, the shape of the tip portion of the shaft portion 110 is changed to the first portion 111 and the second portion. The curved portion 114 formed between the 112, the first portion 111 and the second portion 112 forms a substantially U-shape. Therefore, since the shaft portion 110 has a high followability to the bending of the blood vessel V, it is difficult for the holding force to the tube wall Vai to decrease due to the anatomical structure of the blood vessel V.
 シャフト部110は、第1部位111と第2部位112とが互いに平行に配置されるため、第1部位111に配置されたアンテナエレメント150と第2部位112に配置されたリフレクタ130も互いに平行に配置される。そのため、アンテナエレメント150から電磁波を放射した際、アンテナエレメント150と平行に配置されたリフレクタ130により電磁波をアンテナエレメント150側へより確実に反射させることができる。また、シャフト部110は、第1部位111と第2部位112が平行に配置されるように構成されているため、アンテナエレメント150とリフレクタ130とが別々に設けられたカテーテルデバイスを血管Vへ送達する場合と比較して、送達している間のカテーテルデバイスの外形を小型化することができる。したがって、カテーテルデバイス100は、血管V内への送達性が向上されたものとなる。 In the shaft portion 110, since the first portion 111 and the second portion 112 are arranged in parallel with each other, the antenna element 150 arranged in the first portion 111 and the reflector 130 arranged in the second portion 112 are also arranged in parallel with each other. Be placed. Therefore, when the electromagnetic wave is radiated from the antenna element 150, the electromagnetic wave can be more reliably reflected toward the antenna element 150 by the reflector 130 arranged in parallel with the antenna element 150. Further, since the shaft portion 110 is configured so that the first portion 111 and the second portion 112 are arranged in parallel, a catheter device in which the antenna element 150 and the reflector 130 are separately provided is delivered to the blood vessel V. The outer shape of the catheter device can be miniaturized during delivery as compared to the case of Therefore, the catheter device 100 has improved deliverability into the blood vessel V.
 術者は、血管V内に配置したアンテナエレメント150から電磁波を放射させつつ、リフレクタ130により電磁波を反射させて、腸管の神経支配を行う一部の周囲神経Naにエネルギーを局所的に付与する。術者は、この処置により、患者の周囲神経Naの自律神経の活性を低下させることができ、腸管の蠕動運動を亢進させることが可能になる。なお、上腸間膜動脈Vaの起始部周辺Vaoに対してエネルギーを付与する範囲(除神経する範囲)は、上腸間膜動脈Vaの外周方向において、例えば、50%以下(血管Vの横断面上の周方向において180°の範囲以下)であることが好ましい。除神経する範囲が上腸間膜動脈Vaの外周方向において50%以上であると、除神経後の蠕動運動の亢進が過剰に促進される可能性がある。そのため、上記の範囲で除神経することが好ましい。 The surgeon radiates electromagnetic waves from the antenna element 150 arranged in the blood vessel V, reflects the electromagnetic waves by the reflector 130, and locally applies energy to some peripheral nerves Na that innervate the intestinal tract. By this procedure, the surgeon can reduce the activity of the autonomic nerve of the patient's peripheral nerve Na, and can enhance the peristaltic movement of the intestinal tract. The range in which energy is applied to the Vao around the origin of the superior mesenteric artery Va (the range in which the nerve is denervated) is, for example, 50% or less (of the blood vessel V) in the outer peripheral direction of the superior mesenteric artery Va. It is preferably in the range of 180 ° or less in the circumferential direction on the cross section). When the denervation range is 50% or more in the outer peripheral direction of the superior mesenteric artery Va, the enhancement of peristaltic movement after denervation may be excessively promoted. Therefore, it is preferable to denervate within the above range.
 図13には、アンテナエレメント150から放射した電磁およびリフレクタ130で反射した電磁波が照射された各領域A1、A2、A3の温度分布の一例を示している。例えば、血管Vの管壁Vaiにおいてアンテナエレメント150が配置された位置に近接した領域A1は、電磁波の影響により温度が最も高くなる。また、領域A1よりもアンテナエレメント150から血管Vの外方に離れた領域A2は、領域A1と比較して電磁波の照射後の温度が低い。また、領域A2よりも血管Vの外方側に位置する領域A3は、領域A2と比較して電磁波の照射後の温度がさらに低い。アンテナエレメント150を使用した処置では、主として、領域A2、A3よりも高温な領域A1に付与された熱エネルギーにより、血管Vの外部に存在する周囲神経Naを除神経することができる。 FIG. 13 shows an example of the temperature distribution of each region A1, A2, and A3 irradiated with the electromagnetic wave radiated from the antenna element 150 and the electromagnetic wave reflected by the reflector 130. For example, the temperature of the region A1 close to the position where the antenna element 150 is arranged on the tube wall Vai of the blood vessel V becomes the highest due to the influence of electromagnetic waves. Further, the region A2, which is farther from the antenna element 150 to the outside of the blood vessel V than the region A1, has a lower temperature after irradiation with the electromagnetic wave than the region A1. Further, the temperature of the region A3 located on the outer side of the blood vessel V with respect to the region A2 after irradiation with the electromagnetic wave is further lower than that of the region A2. In the treatment using the antenna element 150, the peripheral nerve Na existing outside the blood vessel V can be denervated mainly by the heat energy applied to the region A1 having a temperature higher than the regions A2 and A3.
 なお、図12、図13に示す血管V内におけるシャフト部110の配置形態は一例である。血管V内におけるシャフト部110の配置形態は、エネルギー(例えば、電磁波)を所定の周囲神経Naに向けて照射可能な限り特に限定されない。 The arrangement of the shaft portion 110 in the blood vessel V shown in FIGS. 12 and 13 is an example. The arrangement form of the shaft portion 110 in the blood vessel V is not particularly limited as long as energy (for example, electromagnetic waves) can be irradiated toward a predetermined peripheral nerve Na.
 本実施形態に係るカテーテルデバイス100を上腸間膜動脈Vaでの処置に使用した場合、さらに以下のような課題に対して有益なものとなる。 When the catheter device 100 according to the present embodiment is used for treatment in the superior mesenteric artery Va, it is further beneficial for the following problems.
 上腸間膜動脈Vaは、各腎動脈VR、VLと異なり、大動脈Vdとの間における下肢側での分岐角度が鋭角になる。そのため、上腸間膜動脈Vaへカテーテルデバイス100を送達する場合、上肢側からアプローチすることが好ましい。上肢側からのアプローチを選択する場合、シャフト部110の細径化の観点より、カテーテルデバイス100を上腸間膜動脈Vaの管壁Vaiに対して保持するための機構としてバルーンやバスケット構造を採用することは適切ではない。本実施形態に係るカテーテルデバイス100であれば、第1部位111及び第2部位112を略直線状に延ばした状態で上腸間膜動脈Vaへ送達することができるため、上肢側からのアプローチが可能となる。 The superior mesenteric artery Va has an acute angle of bifurcation on the lower limb side with the aorta Vd, unlike the renal arteries VR and VL. Therefore, when delivering the catheter device 100 to the superior mesenteric artery Va, it is preferable to approach from the upper limb side. When selecting the approach from the upper limb side, a balloon or basket structure is adopted as a mechanism for holding the catheter device 100 against the tube wall Vai of the superior mesenteric artery Va from the viewpoint of reducing the diameter of the shaft portion 110. It is not appropriate to do. With the catheter device 100 according to the present embodiment, since the first site 111 and the second site 112 can be delivered to the superior mesenteric artery Va in a substantially linearly extended state, an approach from the upper limb side is possible. It will be possible.
 また、上腸間膜動脈Vaに対する処置を実施する場合、前述したようにエネルギーが臓器まで及ぶことを抑制する観点より、処置対象部位Sは、上腸間膜動脈Vaの入口付近の起始部周辺Vaoに設定することが好ましい。ただし、処置対象部位Sをこのような位置に設定した場合、上腸間膜動脈Vaの起始部周辺Vaoにガイディングカテーテル300の先端部を正確に配置および保持することは難しく、ガイディングカテーテル300によるバックアップを得ることができない。このような課題に対して、カテーテルデバイス100であれば、図12に示すように、上腸間膜動脈Vaのの起始部周辺Vaoの管壁Vaiに対して第1部位111及び第2部位112を当接させることにより、カテーテルデバイス100単体で保持力を得ることができる。 Further, when the treatment for the superior mesenteric artery Va is performed, the treatment target site S is the origin near the entrance of the superior mesenteric artery Va from the viewpoint of suppressing the energy from reaching the organs as described above. It is preferable to set it in the peripheral Vao. However, when the treatment target site S is set to such a position, it is difficult to accurately position and hold the tip of the guiding catheter 300 on the Vao around the origin of the superior mesenteric artery Va, and the guiding catheter Unable to get backup by 300. In response to such a problem, in the case of the catheter device 100, as shown in FIG. 12, the first site 111 and the second site with respect to the tube wall Vai of the Vao around the origin of the superior mesenteric artery Va. By bringing the 112 into contact with each other, the holding force can be obtained by the catheter device 100 alone.
 また、上腸間膜動脈Vaは、大動脈Vdから分岐した後、急峻に下肢方向に曲がり、大動脈Vdとほぼ並走する。そのため、らせん形状や波型の形状が付加されたシャフト部を使用した場合、シャフト部の複数の箇所が上腸間膜動脈Vaの管壁Vaiに対して点接触されるが、このような配置では十分な保持力を得ることができない。このような課題に対して、カテーテルデバイス100であれば、上腸間膜動脈Vaの走行方向に沿って第1部位111および第2部位112を比較的長い範囲に亘って管壁Vaiに当接せることができるため、十分な保持力を得ることができる。 In addition, the superior mesenteric artery Va branches from the aorta Vd and then sharply bends toward the lower limbs and runs almost in parallel with the aorta Vd. Therefore, when a shaft portion having a spiral shape or a corrugated shape is used, a plurality of parts of the shaft portion are in point contact with the tube wall Vai of the superior mesenteric artery Va. It is not possible to obtain sufficient holding power. In response to such a problem, in the case of the catheter device 100, the first site 111 and the second site 112 abut on the tube wall Vai over a relatively long range along the traveling direction of the superior mesenteric artery Va. Therefore, a sufficient holding force can be obtained.
 また、エネルギー放射部150がアンテナエレメント150で構成されている場合、電磁波の放射方向を調整する観点より、カテーテルデバイス100に金属を構成部材に含むガイドワイヤを挿通させた状態で処置を実施することは好ましくない。例えば、ガイドワイヤを使用する場合、アンテナエレメント150から電磁波を照射させる度に、ガイドワイヤをカテーテルデバイスから抜去し、また必要に応じてガイドワイヤをカテーテルデバイス内に挿入する作業を行う必要が生じる。このような課題に対して、カテーテルデバイス100であれば、自然状態の第1形状においてシャフト部110の先端部に位置する第2部位112に折り返し部112aが形成されているため、シャフト部110の先端により上腸間膜動脈Vaの管壁Vaiを傷めることなく、上腸間膜動脈Va内でのシャフト部110の先端部の位置を調整することができる。そのため、上腸間膜動脈Va内へシャフト部110の先端部を案内するために、ガイドワイヤを使用する必要がなく、上記のようなガイドワイヤの使用に伴う手技の煩雑化を低減することができる。 When the energy radiating unit 150 is composed of the antenna element 150, the treatment is performed with the guide wire containing metal in the catheter device 100 inserted through the catheter device 100 from the viewpoint of adjusting the radiating direction of the electromagnetic wave. Is not desirable. For example, when a guide wire is used, it is necessary to remove the guide wire from the catheter device and insert the guide wire into the catheter device each time the antenna element 150 is irradiated with an electromagnetic wave. In response to such a problem, in the case of the catheter device 100, since the folded-back portion 112a is formed at the second portion 112 located at the tip portion of the shaft portion 110 in the first shape in the natural state, the shaft portion 110 The position of the tip of the shaft portion 110 within the superior mesenteric artery Va can be adjusted without damaging the duct wall Vai of the superior mesenteric artery Va by the tip. Therefore, it is not necessary to use a guide wire to guide the tip of the shaft portion 110 into the superior mesenteric artery Va, and it is possible to reduce the complexity of the procedure associated with the use of the guide wire as described above. it can.
 以上説明したように、本実施形態に係るカテーテルデバイス100及び処置方法によれば、血管V内においてシャフト部110の第2部位112を第1形状とすることにより、ガイドワイヤ等を使用せずに、血管V内におけるシャフト部110の位置を容易に調整することができる。また、血管V内においてシャフト部110の第2部位112を第2形状に変形させることにより、第2部位112の略直線状に延ばされた部分を血管Vの管壁Vaiに対して当接させることができる。そのため、血管Vの管壁Vaiに対するシャフト部110の保持力を高めることができ、例えば、ガイディングカテーテルなどを使用してシャフト部110をバックアップしない場合においても、血管Vの管壁Vaiからシャフト部110が位置ずれすることを効果的に抑制することができる。 As described above, according to the catheter device 100 and the treatment method according to the present embodiment, the second portion 112 of the shaft portion 110 has the first shape in the blood vessel V, so that a guide wire or the like is not used. , The position of the shaft portion 110 in the blood vessel V can be easily adjusted. Further, by deforming the second portion 112 of the shaft portion 110 into the second shape in the blood vessel V, the substantially linearly extended portion of the second portion 112 is brought into contact with the tube wall Vai of the blood vessel V. Can be made to. Therefore, the holding force of the shaft portion 110 with respect to the tube wall Vai of the blood vessel V can be increased. For example, even when the shaft portion 110 is not backed up by using a guiding catheter or the like, the shaft portion is formed from the tube wall Vai of the blood vessel V. It is possible to effectively prevent the 110 from being displaced.
 図14、図15は、変形例1に係るシャフト部110Aを示す。本変形例に係るシャフト部110Aは、アンテナエレメント150とは非通電な状態で第2部位112に配置された金属製の部材(例えば、板状、筒状、棒状の金属部材)によってリフレクタ130が構成されている。 14 and 15 show the shaft portion 110A according to the first modification. In the shaft portion 110A according to this modification, the reflector 130 is formed by a metal member (for example, a plate-shaped, tubular, or rod-shaped metal member) arranged at the second portion 112 in a state where the antenna element 150 is not energized. It is configured.
 リフレクタ130は、例えば、公知の金属で構成することができる。金属としては、例えば、銅、アルミニウム、ステンレス、プラチナ合金、形状記憶合金などを用いることができる。なお、リフレクタ130を構成する材料は、シャフト部110の第2部位112の形状を自然状態において図14に示す第1形状に保持する観点より、例えば、ニッケルチタン合金などの形状記憶合金を用いることがより好ましい。 The reflector 130 can be made of, for example, a known metal. As the metal, for example, copper, aluminum, stainless steel, platinum alloy, shape memory alloy and the like can be used. As the material constituting the reflector 130, for example, a shape memory alloy such as a nickel titanium alloy is used from the viewpoint of maintaining the shape of the second portion 112 of the shaft portion 110 in the first shape shown in FIG. 14 in a natural state. Is more preferable.
 図16は、変形例2に係るシャフト部110Bを示す。本変形例に係るシャフト部110Bは、牽引部材171がアンテナエレメント150と連結されている。そのため、術者は、手元でアンテナエレメント150を前進や後退させることにより、牽引部材171を押し引きして、第2部位112を第1形状と第2形状に変形させることができる。なお、牽引部材171とアンテナエレメント150を接続する部材には、例えば、バラン165を利用することが可能である。 FIG. 16 shows the shaft portion 110B according to the second modification. In the shaft portion 110B according to this modification, the traction member 171 is connected to the antenna element 150. Therefore, the operator can push and pull the traction member 171 by moving the antenna element 150 forward and backward at hand to deform the second portion 112 into the first shape and the second shape. For example, a balun 165 can be used as a member for connecting the traction member 171 and the antenna element 150.
 以上、実施形態を通じて本発明に係るカテーテルデバイスおよび処置方法を説明したが、本発明は明細書において説明した内容のみに限定されるものでなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 Although the catheter device and the treatment method according to the present invention have been described above through the embodiments, the present invention is not limited to the contents described in the specification, and may be appropriately modified based on the description of the claims. Is possible.
 例えば、カテーテルデバイスによる処置対象となる生体管腔は、上腸間膜動脈、腹腔動脈、下腸間膜動脈等の血管のみに限定されることはなく、その他の血管、胆管、気管、食道、尿道、耳鼻内腔等であってもよい。一例として、カテーテルデバイスは、腎動脈内に配置したエネルギー放射部からエネルギーを放射することにより、患者の腎動脈外膜に存在する交感神経にエネルギーを付与して、患者の血圧を低下させるためのデバイスとして構成することが可能である。また、その他の例として、カテーテルデバイスは、気管支内に配置したエネルギー放射部からエネルギーを放射することにより、患者の気管支を拡張させるためのデバイスとして構成することも可能である。 For example, the biological lumen to be treated by the catheter device is not limited to blood vessels such as the superior mesenteric artery, the celiac artery, and the inferior mesenteric artery, but other blood vessels, the bile duct, the trachea, the esophagus, and the like. It may be the esophagus, the otolaryngal lumen, etc. As an example, a catheter device is used to apply energy to the sympathetic nerve existing in the outer membrane of the renal artery of a patient by radiating energy from an energy radiating part arranged in the renal artery to lower the blood pressure of the patient. It can be configured as a device. In addition, as another example, the catheter device can be configured as a device for expanding the bronchus of a patient by radiating energy from an energy radiating portion arranged in the bronchus.
 また、カテーテルデバイスが備える各部材の材質、形状、大きさ、配置、部材同士の接続構造等は、本発明の効果が発揮される限り、特に限定されることはなく、任意に変更および置換することが可能である。また、カテーテルデバイスは、明細書内において特に説明のなかった任意の構成部材等を適宜付加することが可能であるし、明細書内において説明した付加的な部材の省略も適宜行い得る。また、処置方法には、明細書内において特に説明のなかった任意の手順を適宜付加することが可能であるし、明細書内において説明した付加的な手順の省略も適宜行い得る。また、処置方法は、発明の効果が発揮され得る限り、手順の順番を適宜入れ替えることもできる。 Further, the material, shape, size, arrangement, connection structure between members, etc. of each member included in the catheter device are not particularly limited as long as the effects of the present invention are exhibited, and are arbitrarily changed and replaced. It is possible. Further, the catheter device can appropriately add arbitrary constituent members and the like which are not particularly described in the specification, and the additional members described in the specification can be appropriately omitted. Further, any procedure not particularly described in the specification can be appropriately added to the treatment method, and the additional procedure described in the specification can be omitted as appropriate. Further, as for the treatment method, the order of the procedures can be appropriately changed as long as the effects of the invention can be exhibited.
 例えば、シャフト部の第2部位がなす第1形状および第2形状は、図面に例示した形状に限定されることない。また、例えば、シャフト部が捻じれることを抑制する抑制部材は、複数の節輪を備える管体に限定されることはない。 For example, the first shape and the second shape formed by the second part of the shaft portion are not limited to the shapes illustrated in the drawings. Further, for example, the suppressing member for suppressing the twisting of the shaft portion is not limited to the tubular body having a plurality of knot rings.
10    医療デバイス
100   カテーテルデバイス
110、110A、110B シャフト部
111   第1部位
112   第2部位
112a  折り返し部
113   基端領域
114   湾曲部
115   先端チップ
130   リフレクタ
140   管体(抑制部材)
141、142 節輪
150   エネルギー放射部(アンテナエレメント)
151   ヘリカルエレメント
170   手元側操作部材
171   牽引部材
180   ハブ
200   コントローラ
300   ガイディングカテーテル
Na    周囲神経
S     処置対象部位
V     血管(生体管腔)
Va    上腸間膜動脈
Vai   管壁
Vb    腹腔動脈
Vc    下腸間膜動脈
Vd    大動脈
10 Medical device 100 Catheter device 110, 110A, 110B Shaft part 111 First part 112 Second part 112a Folded part 113 Base end area 114 Curved part 115 Tip tip 130 Reflector 140 Tube (suppressing member)
141, 142 Nodal ring 150 Energy radiating part (antenna element)
151 Helical element 170 Hand side operation member 171 Tow member 180 Hub 200 Controller 300 Guiding catheter Na Peripheral nerve S Treatment target site V Blood vessel (living lumen)
Va Superior mesenteric artery Vai Tube wall Vb Celiac artery Vc Inferior mesenteric artery Vd Aorta

Claims (17)

  1.  生体管腔内においてエネルギーを放射可能なエネルギー放射部と、
     前記エネルギー放射部の少なくとも一部が配置された第1部位と、前記第1部位の先端側に位置する第2部位と、を有し、前記生体管腔内に挿入可能なシャフト部と、を備え、
     前記シャフト部は、
     前記第2部位の先端部の少なくとも一部に前記シャフト部の軸方向に折り返された折り返し部が形成された第1形状と、前記第2部位の前記折り返し部の少なくとも一部が略直線状に延ばされた第2形状とに変形可能である、カテーテルデバイス。
    An energy radiant part that can radiate energy in the lumen of the living body,
    A shaft portion having a first portion in which at least a part of the energy radiating portion is arranged, a second portion located on the distal end side of the first portion, and a shaft portion that can be inserted into the biological lumen. Prepare,
    The shaft portion
    A first shape in which a folded portion folded in the axial direction of the shaft portion is formed at least a part of the tip portion of the second portion, and at least a part of the folded portion of the second portion is substantially linear. A catheter device that can be transformed into an extended second shape.
  2.  前記第2部位は、前記第1形状において、少なくとも一部が巻回されており、
     前記第2部位は、前記第2形状において、前記巻回が解かれることにより、略直線状に延びる、請求項1に記載のカテーテルデバイス。
    At least a part of the second portion is wound in the first shape.
    The catheter device according to claim 1, wherein the second site extends substantially linearly in the second shape when the winding is unwound.
  3.  前記第2部位は、前記第2形状において、前記第1部位の軸心との間の距離が基端側へ向けて徐々に広がるように略直線状に延びる、請求項2に記載のカテーテルデバイス。 The catheter device according to claim 2, wherein the second site extends substantially linearly in the second shape so that the distance between the second site and the axial center of the first site gradually increases toward the proximal end side. ..
  4.  前記シャフト部は、前記第2部位が前記第2形状に変形することにより、前記第1部位と前記第2部位の各々を、前記生体管腔の管壁の周方向の異なる位置に対して当接可能である、請求項1~3のいずれか1項に記載のカテーテルデバイス。 By deforming the second portion into the second shape, the shaft portion applies each of the first portion and the second portion to different positions in the circumferential direction of the tube wall of the biological lumen. The catheter device according to any one of claims 1 to 3, which is accessible.
  5.  前記エネルギー放射部は、電磁波を放射可能なアンテナエレメントにより構成されており、
     前記第2部位の少なくとも一部には前記アンテナエレメントから放射された前記電磁波を反射可能なリフレクタが配置されており、
     前記リフレクタの少なくとも一部は、前記第2形状において、前記アンテナエレメントと対向する位置に配置される、請求項1~4のいずれか1項に記載のカテーテルデバイス。
    The energy emitting unit is composed of an antenna element capable of radiating electromagnetic waves.
    A reflector capable of reflecting the electromagnetic wave radiated from the antenna element is arranged in at least a part of the second portion.
    The catheter device according to any one of claims 1 to 4, wherein at least a part of the reflector is arranged at a position facing the antenna element in the second shape.
  6.  前記第2部位には、前記第2部位が前記第2形状に変形した際、前記第2部位が捻じれることを抑制する抑制部材が配置されており、
     前記抑制部材は、互いに揺動可能に接続された金属製の複数の節輪を備える管体で構成されており、
     前記管体は、前記リフレクタを構成する、請求項5に記載のカテーテルデバイス。
    In the second portion, a suppressing member for suppressing twisting of the second portion when the second portion is deformed into the second shape is arranged.
    The restraining member is composed of a tube body having a plurality of metal knots oscillatingly connected to each other.
    The catheter device according to claim 5, wherein the tube body constitutes the reflector.
  7.  前記第2部位には、前記第2部位が前記第2形状に変形した際、前記第2部位が捻じれることを抑制する抑制部材を有する、請求項1~6のいずれか1項に記載のカテーテルデバイス。 The second portion according to any one of claims 1 to 6, further comprising a suppressing member that suppresses twisting of the second portion when the second portion is deformed into the second shape. Catheter device.
  8.  前記抑制部材は、互いに揺動可能に接続された複数の節輪を備える管体で構成されている、請求項7に記載のカテーテルデバイス。 The catheter device according to claim 7, wherein the restraining member is composed of a tubular body having a plurality of knots oscillatingly connected to each other.
  9.  前記シャフト部を前記第1形状から前記第2形状へ変形させるための操作部をさらに有し、
     前記操作部は、
     前記シャフト部の先端部と固定され、手元での押し引き操作に伴って前記シャフト部を前記第1形状から前記第2形状へ可逆的に変形させることが可能な牽引部材を有する、請求項1~8のいずれか1項に記載のカテーテルデバイス。
    It further has an operating portion for deforming the shaft portion from the first shape to the second shape.
    The operation unit
    1. A traction member which is fixed to the tip of the shaft portion and can reversibly deform the shaft portion from the first shape to the second shape by a push-pull operation at hand. The catheter device according to any one of 8 to 8.
  10.  前記生体管腔は、上腸間膜動脈、腹腔動脈、下腸間膜動脈のうちの少なくとも一つの血管であり、
     前記血管内に配置した前記エネルギー放射部から放射した前記エネルギーを腸管の神経支配を行う周囲神経に付与して自律神経の活性を低下させることにより、前記腸管の蠕動運動を亢進させる、請求項1~9のいずれか1項に記載のカテーテルデバイス。
    The biological lumen is at least one blood vessel of the superior mesenteric artery, the celiac artery, and the inferior mesenteric artery.
    Claim 1 to enhance the peristaltic movement of the intestinal tract by applying the energy radiated from the energy radiating portion arranged in the blood vessel to the surrounding nerves that innervate the intestinal tract to reduce the activity of the autonomic nerves. 9. The catheter device according to any one of 9.
  11.  エネルギーを放射可能なエネルギー放射部の少なくとも一部が配置された第1部位と、前記第1部位の先端側に位置する第2部位と、を有するシャフト部を備えるカテーテルデバイスを、生体管腔内に挿入する第1ステップと、
     前記生体管腔内において前記エネルギー放射部から前記エネルギーを放射する第2ステップと、を有し、
     前記第1ステップは、前記第2部位の先端部の少なくとも一部に前記シャフト部の軸方向に折り返された折り返し部が形成された第1形状から前記第2部位の前記折り返し部の少なくとも一部が略直線状に延ばされた第2形状へ前記第2部位を変形させることを含む、処置方法。
    A catheter device including a shaft portion having a first portion in which at least a part of an energy radiating portion capable of radiating energy is arranged and a second portion located on the distal end side of the first portion is provided in a biological lumen. The first step to insert in
    It has a second step of radiating the energy from the energy radiating portion in the living lumen.
    In the first step, at least a part of the folded portion of the second portion from the first shape in which a folded portion folded in the axial direction of the shaft portion is formed at least a part of the tip portion of the second portion. A treatment method comprising transforming the second portion into a second shape that is stretched substantially linearly.
  12.  前記第2部位は、前記第1形状において、少なくとも一部が巻回されており、
     前記第2部位は、前記第2形状において、前記巻回が解かれることにより、略直線状に延びており、
     前記第1ステップは、前記第1形状から前記第2形状へ前記第2部位を変形させることにより、前記第1部位と前記第2部位の各々を、前記生体管腔の管壁の周方向の異なる位置に対して当接させることを含む、請求項11に記載の処置方法。
    At least a part of the second portion is wound in the first shape.
    In the second shape, the second portion extends substantially linearly by unwinding the winding.
    In the first step, by deforming the second part from the first shape to the second shape, each of the first part and the second part is formed in the circumferential direction of the tube wall of the biological lumen. The treatment method according to claim 11, which comprises abutting against different positions.
  13.  前記第1ステップは、前記第1部位の少なくとも一部および前記第2部位の少なくとも一部を、前記生体管腔の起始部周辺の前記管壁に当接させることを含む、請求項11または請求項12に記載の処置方法。 11. The first step comprises bringing at least a part of the first part and at least a part of the second part into contact with the tube wall around the origin of the biological lumen. The treatment method according to claim 12.
  14.  前記エネルギー放射部は、電磁波を放射可能なアンテナエレメントにより構成されており、
     前記第2部位の少なくとも一部には前記アンテナエレメントから放射された前記電磁波を反射可能なリフレクタが配置されており、
     前記第1ステップは、前記第1形状から前記第2形状へ前記第2部位を変形させることにより、前記リフレクタの少なくとも一部を前記アンテナエレメントと対向する位置に配置することを含み、
     前記第2ステップは、前記アンテナエレメントから前記電磁波を放射しつつ、前記リフレクタにより前記電磁波を前記生体管腔の横断面の所定方向へ向けて反射させることを含む、請求項11~13のいずれか1項に記載の処置方法。
    The energy emitting unit is composed of an antenna element capable of radiating electromagnetic waves.
    A reflector capable of reflecting the electromagnetic wave radiated from the antenna element is arranged in at least a part of the second portion.
    The first step includes arranging at least a part of the reflector at a position facing the antenna element by deforming the second portion from the first shape to the second shape.
    The second step is any one of claims 11 to 13, wherein the second step radiates the electromagnetic wave from the antenna element and reflects the electromagnetic wave toward a predetermined direction in a cross section of the biological lumen by the reflector. The treatment method according to item 1.
  15.  前記第2部位には、前記第2部位が前記第2形状に変形した際、前記第2部位が捻じれることを抑制する抑制部材が配置されており、
     前記抑制部材は、互いに揺動可能に接続された金属製の複数の節輪を備える管体で構成されており、
     前記管体は、前記リフレクタを構成する、請求項14に記載の処置方法。
    In the second portion, a suppressing member for suppressing twisting of the second portion when the second portion is deformed into the second shape is arranged.
    The restraining member is composed of a tube body having a plurality of metal knots oscillatingly connected to each other.
    The treatment method according to claim 14, wherein the tube body constitutes the reflector.
  16.  前記カテーテルデバイスは、前記シャフト部を前記第1形状から前記第2形状へ変形させるための操作部をさらに有し、
     前記第1ステップは、前記操作部を操作することにより、前記生体管腔内で前記第2部位を前記第1形状から前記第2形状へ変形させることを含む、請求項11~15のいずれか1項に記載の処置方法。
    The catheter device further includes an operating portion for deforming the shaft portion from the first shape to the second shape.
    Any of claims 11 to 15, wherein the first step includes transforming the second part from the first shape to the second shape in the living lumen by operating the operation unit. The treatment method according to item 1.
  17.  前記生体管腔は、上腸間膜動脈、腹腔動脈、下腸間膜動脈のうちの少なくとも一つの血管であり、
     前記血管内に配置した前記エネルギー放射部から放射させた前記エネルギーを腸管の神経支配を行う周囲神経に付与して自律神経の活性を低下させることにより前記腸管の蠕動運動を亢進させる、請求項11~16のいずれか1項に記載の処置方法。
    The biological lumen is at least one blood vessel of the superior mesenteric artery, the celiac artery, and the inferior mesenteric artery.
    11. Claim 11 that the energy radiated from the energy radiating portion arranged in the blood vessel is applied to the surrounding nerves that innervate the intestinal tract to reduce the activity of the autonomic nerve, thereby enhancing the peristaltic movement of the intestinal tract. The treatment method according to any one of 16 to 16.
PCT/JP2019/032506 2019-08-20 2019-08-20 Catheter device and treatment method WO2021033275A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032506 WO2021033275A1 (en) 2019-08-20 2019-08-20 Catheter device and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032506 WO2021033275A1 (en) 2019-08-20 2019-08-20 Catheter device and treatment method

Publications (1)

Publication Number Publication Date
WO2021033275A1 true WO2021033275A1 (en) 2021-02-25

Family

ID=74660665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032506 WO2021033275A1 (en) 2019-08-20 2019-08-20 Catheter device and treatment method

Country Status (1)

Country Link
WO (1) WO2021033275A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141187A (en) * 1974-03-01 1975-11-13
JP2002191699A (en) * 2000-12-22 2002-07-09 Terumo Corp Introduction sheath positioning instrument
JP2005511135A (en) * 2001-11-29 2005-04-28 メッドウェイブズ、インコーポレイテッド High frequency based catheter system with improved deflection and steering mechanisms
JP2011528581A (en) * 2008-07-18 2011-11-24 バイトロナス, インコーポレイテッド Method and system for locating energy sources
JP2014516614A (en) * 2011-04-08 2014-07-17 コビディエン エルピー Flexible microwave catheter for natural or artificial lumen
JP2016538054A (en) * 2013-11-19 2016-12-08 エシコン・インコーポレイテッドEthicon, Inc. Thoracoscopy method for the treatment of bronchial diseases
US20170071670A1 (en) * 2014-03-12 2017-03-16 Paul Pittaluga Medical device comprising a hydrophilic curved flexible tip for the treatment of varicose veins
US20180154155A1 (en) * 2016-12-05 2018-06-07 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation devices for delivering neuromodulation energy to proximal vascular portions and distal vascular portions and associated systems and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141187A (en) * 1974-03-01 1975-11-13
JP2002191699A (en) * 2000-12-22 2002-07-09 Terumo Corp Introduction sheath positioning instrument
JP2005511135A (en) * 2001-11-29 2005-04-28 メッドウェイブズ、インコーポレイテッド High frequency based catheter system with improved deflection and steering mechanisms
JP2011528581A (en) * 2008-07-18 2011-11-24 バイトロナス, インコーポレイテッド Method and system for locating energy sources
JP2014516614A (en) * 2011-04-08 2014-07-17 コビディエン エルピー Flexible microwave catheter for natural or artificial lumen
JP2016538054A (en) * 2013-11-19 2016-12-08 エシコン・インコーポレイテッドEthicon, Inc. Thoracoscopy method for the treatment of bronchial diseases
US20170071670A1 (en) * 2014-03-12 2017-03-16 Paul Pittaluga Medical device comprising a hydrophilic curved flexible tip for the treatment of varicose veins
US20180154155A1 (en) * 2016-12-05 2018-06-07 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation devices for delivering neuromodulation energy to proximal vascular portions and distal vascular portions and associated systems and methods

Similar Documents

Publication Publication Date Title
US20200337765A1 (en) Systems and methods for modulating nerves or other tissue
US20200197086A1 (en) Modulation of targeted nerve fibers
CN106420045B (en) Catheter apparatus, systems, and methods for renal neuromodulation
US8152799B2 (en) Radio frequency-based catheter system with improved deflection and steering mechanisms
EP3060152B1 (en) Catheter apparatuses for modulation of nerves in communication with the pulmonary system and associated systems
TW201223582A (en) Catheter apparatuses, systems, and methods for renal neuromodulation
JP2015524310A (en) Flexible expandable electrode and method for intraluminal delivery of pulsed power
JP2017507725A (en) Catheter with independent radial expansion member and related devices, systems and methods
WO2021065912A1 (en) Medical device
WO2021033275A1 (en) Catheter device and treatment method
JPWO2020071023A1 (en) Light irradiation medical equipment
JP6924540B1 (en) Medical device for gradual nerve
WO2020250417A1 (en) Catheter device and treatment method
WO2019189702A1 (en) Treatment method and medical device
TW202123891A (en) Energy transmitting therapeutic medical device
WO2023286637A1 (en) Heating device, heating system, and method for operating vein heating device
WO2023281887A1 (en) Medical device and method for forming shunt
WO2019186786A1 (en) Treatment method
JP2020031782A (en) Catheter device
JP2023028553A (en) catheter
JP2021523779A (en) Lumen reinforcement devices and systems
JP2017164045A (en) Nerve stimulation electrode
JPH049165A (en) Applicator for warming treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP