WO2021032026A1 - 非连续接收方法、相关装置及系统 - Google Patents

非连续接收方法、相关装置及系统 Download PDF

Info

Publication number
WO2021032026A1
WO2021032026A1 PCT/CN2020/109378 CN2020109378W WO2021032026A1 WO 2021032026 A1 WO2021032026 A1 WO 2021032026A1 CN 2020109378 W CN2020109378 W CN 2020109378W WO 2021032026 A1 WO2021032026 A1 WO 2021032026A1
Authority
WO
WIPO (PCT)
Prior art keywords
sidelink
harq process
feedback
terminal
timer
Prior art date
Application number
PCT/CN2020/109378
Other languages
English (en)
French (fr)
Inventor
徐海博
肖潇
魏冬冬
常俊仁
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022509717A priority Critical patent/JP7241237B2/ja
Priority to EP23205730.7A priority patent/EP4358633A3/en
Priority to US17/635,654 priority patent/US12063533B2/en
Priority to KR1020227008565A priority patent/KR20220048009A/ko
Priority to EP20853647.4A priority patent/EP4017211B1/en
Publication of WO2021032026A1 publication Critical patent/WO2021032026A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a discontinuous reception method, related devices and systems.
  • the communication interface between the user equipment (UE) and the base station (eNB/gNB) is called the Uu port.
  • the communication interface between UEs is called PC5 port.
  • the link through which the UE sends data to the base station on the Uu interface is called the uplink (Uplink), and the link through which the UE receives data from the base station is called the downlink (Downlink).
  • the data transmission link between the UE and the UE on the PC5 port is called a side link (Sidelink).
  • the PC5 port is generally used in scenarios where direct communication between devices such as vehicle to everything (V2X) or device to device (D2D) can be performed.
  • V2X vehicle to everything
  • D2D device to device
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • a method currently adopted by 3GPP is a discontinous reception (DRX) mechanism.
  • DRX discontinous reception
  • the existing DRX mechanism may cause the TX UE to enter the dormant state and no longer monitor the PDCCH, causing the TXUE to be The retransmission of the data is delayed.
  • the present application provides a discontinuous receiving method, related device and system, which can improve the efficiency of data retransmission on Sidelink and avoid increasing the delay of Sidelink data retransmission.
  • the present application provides a discontinuous reception method, which may include: at the first time unit (for example, the first symbol) after the HARQ feedback opportunity of the first SidelinkHARQ process, the first device may start drx -HARQ-RTT-TimerSL. If the drx-HARQ-RTT-TimerSL times out, and the HARQ feedback of the first SidelinkHARQ process is not acknowledged NACK, the first device starts drx-RetransmissionTimerSL. During the operation of drx-RetransmissionTimerSL, the first device monitors the downlink physical control channel PDCCH.
  • the first device may be a terminal device, such as a user equipment such as a mobile phone, a wearable device, a vehicle, or the like, or a chip that may be set on the terminal device.
  • a terminal device such as a user equipment such as a mobile phone, a wearable device, a vehicle, or the like, or a chip that may be set on the terminal device.
  • the first Sidelink HARQ process is associated with the first data.
  • drx-HARQ-RTT-TimerSL and drx-RetransmissionTimerSL are associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process can be used by the first device (TX UE) to send the first data to the second device (RX UE).
  • the HARQ feedback opportunity occasion can be used by the first device to send the HARQ feedback feedback of the first Sidelink HARQ process to the network device.
  • HARQ feedback can be used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not. When the HARQ feedback is NACK, it may indicate that the reception of the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the time unit may be a symbol or a time slot.
  • the length of the symbol and the time slot may depend on the Numerology of the parameter set of the bandwidth part BWP of the Sidelink used to transmit the data.
  • the length of the symbol and the time slot may also depend on the parameter set Numerology of the BWP of the uplink bandwidth part of the HARQ feedback sent by the first device to the network device.
  • an RRC connection is established between the first device and the network device.
  • the first device is in the RRC connected state.
  • a Sidelink is established between the first device and the second device.
  • the network device configures the DRX cycle for the first device in the RRC connected state.
  • the DRX cycle is composed of "On Duration” and "Opportunity for DRX”: in “On Duration”, the first device monitors and receives PDCCH (active state); in "Opportunity for DRX", the first device does not receive downlink channel information Data to save power consumption (sleep state).
  • the network device configures timers for the first device in the RRC connected state: drx-InactivityTimer, drx-HARQ-RTT-TimerSL, drx-RetransmissionTimerSL.
  • drx-HARQ-RTT-TimerSL can be referred to as the first timer
  • drx-RetransmissionTimerSL can be referred to as the second timer.
  • the first device may also send a resource scheduling request to the network device to request the network device to schedule transmission resources for the first data transmission.
  • the network device can transmit scheduling resources for Sidelink, and deliver the scheduled resources in the PDCCH.
  • the first device can learn the resources scheduled by the network device by monitoring the PDCCH.
  • the first device can turn on drx-HARQ-RTT-TimerSL, and when drx-HARQ-RTT-TimerSL times out Turn on drx-RetransmissionTimerSL.
  • the first device after the HARQ feedback opportunity, during the operation of drx-RetransmissionTimerSL, the first device is in the active state, and can monitor and receive the retransmission of the first Sidelink HARQ process issued by the network device during this period. PDCCH. In this way, the retransmission efficiency of the first Sidelink HARQ process can be improved, and the delay of sidelink data retransmission can be avoided.
  • the specific implementation of starting the first timer by the first device may include: if the HARQ feedback is NACK, the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process , The first device starts the first timer.
  • the first device when the first device monitors the first PDCCH, the first device may stop the second timer.
  • the first PDCCH is used to schedule transmission resources of the first side uplink HARQ process.
  • the first device may also monitor the second PDCCH.
  • the second PDCCH is used to indicate the resource scheduled by the network device for the previous transmission of the first Sidelink HARQ process.
  • the first device may determine the HARQ feedback of the first Sidelink HARQ process in the following manner:
  • the first device can determine that the HARQ feedback of the first Sidelink HARQ process is NACK, and can determine that the reception of the previous transmission of the first Sidelink HARQ process is unsuccessful:
  • the HARQ feedback is used to indicate whether the previous transmission of data associated with the first Sidelink HARQ process was successfully received by the second device.
  • the HARQ feedback is NACK, it may indicate that the second device has not successfully received the data associated with the first Sidelink HARQ process.
  • the reason why the second device fails to receive the data associated with the first Sidelink HARQ process may include but is not limited to: the second device fails to decode the data.
  • the first resource is a resource scheduled by the network device for the previous transmission of the first Sidelink HARQ process.
  • Case 2 The first device does not receive the HARQ feedback sent by the second device.
  • S108 in Figure 3 does not exist.
  • the first device did not receive the HARQ feedback sent by the second device, which specifically may mean that the first device did not receive the HARQ feedback sent by the second device at the feedback timing of the first Sidelink HARQ process.
  • the feedback timing of the first Sidelink HARQ process can be configured by the network device.
  • Case 3 The first device does not transmit the Sidelink data to the second device on the first resource.
  • the first resource is a resource scheduled by the network device for the previous transmission of the first Sidelink HARQ process.
  • the cause of case 3 may be resource conflict, that is, the first device transmits other data on the first resource instead of data a.
  • the first device can determine that the HARQ feedback of the first Sidelink HARQ process is ACK, and can determine that the reception of the previous transmission of the first Sidelink HARQ process is successful:
  • the HARQ feedback sent by the second device received by the first device is ACK.
  • the HARQ feedback is ACK, it may indicate that the second device successfully receives the data associated with the first Sidelink HARQ process.
  • the first device may maintain several implementations of the two timers, drx-HARQ-RTT-TimerSL and drx-RetransmissionTimerSL in the following manner.
  • the first device may turn on drx-HARQ-RTT-TimerSL. If the HARQ feedback of the first Sidelink HARQ process is NACK, when the drx-HARQ-RTT-TimerSL times out, the first device may turn on the drx-RetransmissionTimerSL. During the operation of drx-RetransmissionTimerSL, the first device monitors the PDCCH.
  • the first device may turn on drx-HARQ-RTT-TimerSL at the first time unit after the HARQ feedback timing of the first Sidelink HARQ process.
  • the first device can turn on the drx-RetransmissionTimerSL.
  • the first device monitors the PDCCH.
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process can also be used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the state variable SL_HARQ_FEEDBACK may be referred to as the first variable.
  • the first device may also maintain the two timers drx-HARQ-RTT-TimerSL and drx-RetransmissionTimerSL according to the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, the first device can turn on HARQ-RTT-TimerSL at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process. If the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, when the HARQ-RTT-TimerSL times out, the first device can turn on the drx-RetransmissionTimerSL.
  • the time units of the two timers drx-HARQ-RTT-TimerSL and drx-RetransmissionTimerSL can be implemented in the following ways:
  • the unit of drx-HARQ-RTT-TimerSL may be a symbol, and the unit of drx-RetransmissionTimerSL may be a slot.
  • the length of the symbol and the time slot may depend on the Numerology of the parameter set of the bandwidth part BWP of the Sidelink used to transmit the data.
  • the unit of drx-HARQ-RTT-TimerSL may be a symbol, and the unit of drx-RetransmissionTimerSL may be a slot.
  • the length of the symbol and the time slot may also depend on the parameter set Numerology of the BWP of the uplink bandwidth part of the HARQ feedback sent by the first device to the network device.
  • Mode 3 The unit of these two timers can be an absolute length of time, for example, milliseconds.
  • the present application provides a device, which may be the first device in the first aspect.
  • the device may include multiple functional units to implement the method described in the first aspect.
  • the device may include: a processing unit and a communication unit, where the processing unit may be a processor, or a unit composed of one or more modules with processing capabilities; the communication unit may be a transceiver, or one or more A unit composed of functional modules.
  • the processing unit may be used to start the first timer at the first time unit after the HARQ feedback opportunity of the first sidelink hybrid automatic repeat request Sidelink HARQ process.
  • the processing unit may also be used to start the second timer if the first timer expires and the HARQ feedback is NACK.
  • the communication unit may be used to monitor the PDCCH during the running of the second timer.
  • the first timer and the second timer are associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process is associated with first data.
  • the first Sidelink HARQ process is used by the first device to send the first data to the second device.
  • the HARQ feedback opportunity occasion is used by the first device to send the HARQ feedback of the first Sidelink HARQ process to the network device.
  • the HARQ feedback is used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the processing unit may be specifically configured to start the first timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • how the processing unit determines that the HARQ feedback of the first Sidelink HARQ process is NACK may refer to the related content in the first aspect, which will not be repeated here.
  • the first Sidelink HARQ process is associated with a first variable, and the first variable is used to record whether the reception of the previous transmission of the first Sidelink HARQ process is successful.
  • the first variable is NACK, it indicates that the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the processing unit may be specifically configured to start the first timing at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the first variable is NACK Device.
  • the processing unit may be specifically configured to start the second timer if the first timer expires and the first variable is NACK.
  • the processing unit may be specifically configured to stop the second timer when the first device monitors the first PDCCH; the first PDCCH is used to schedule the first PDCCH Transmission resources of the side link HARQ process.
  • the communication unit may also be used to monitor the second PDCCH before the HARQ feedback opportunity of the first Sidelink HARQ process, and the second PDCCH is used to indicate that the network device is the first A resource scheduled for the previous transmission of a Sidelink HARQ process.
  • the communication unit may be further configured to: send the HARQ feedback of the first Sidelink HARQ process to the network device at the HARQ feedback timing; or, at the HARQ feedback timing, transmit The second data, the second data is not the HARQ feedback of the first Sidelink HARQ process.
  • a device in a third aspect, is provided.
  • the device may be the first device in the first aspect and can be used to perform the discontinuous reception method described in the first aspect.
  • This device may be called the first device.
  • the first device may include: a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein the transmitter is used to send a signal to another wireless communication device, the receiver is used to receive a signal sent by another wireless communication device, and the memory It is used to store the implementation code of the discontinuous reception method described in the first aspect, and the processor is used to execute the program code stored in the memory, that is, execute the discontinuous reception method described in any one of the possible implementation manners of the first aspect.
  • the processor may be configured to start the first timer at the first time unit after the HARQ feedback timing of the first sidelink hybrid automatic repeat request Sidelink HARQ process.
  • the processor may also be configured to start the second timer if the first timer expires and the HARQ feedback is NACK.
  • the receiver may be used to monitor the PDCCH during the running of the second timer.
  • the transmitter may be used to transmit the first data to the second device through the first Sidelink HARQ process.
  • the first timer and the second timer are associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process is associated with first data.
  • the first Sidelink HARQ process is used by the first device to send the first data to the second device.
  • the HARQ feedback opportunity occasion is used by the first device to send the HARQ feedback of the first Sidelink HARQ process to the network device.
  • the HARQ feedback is used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the processor may be specifically configured to start the first timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • how the processor processing unit determines that the HARQ feedback of the first Sidelink HARQ process is NACK may refer to the related content in the first aspect, which will not be repeated here.
  • the first Sidelink HARQ process is associated with a first variable, and the first variable is used to record whether the reception of the previous transmission of the first Sidelink HARQ process is successful.
  • the first variable is NACK, it indicates that the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the processor may be specifically configured to start the first timing at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the first variable is NACK Device.
  • the processor may be specifically configured to start the second timer if the first timer expires and the first variable is NACK.
  • the processor may be specifically configured to stop the second timer when the first device monitors the first PDCCH; the first PDCCH is used to schedule the first PDCCH Transmission resources of the side link HARQ process.
  • the receiver may also be used to monitor the second PDCCH before the HARQ feedback opportunity of the first Sidelink HARQ process, and the second PDCCH is used to indicate that the network device is the first A resource scheduled for the previous transmission of a Sidelink HARQ process.
  • the transmitter may also be used to: send HARQ feedback of the first Sidelink HARQ process to the network device at the HARQ feedback timing; or, at the HARQ feedback timing, transmit The second data, the second data is not the HARQ feedback of the first Sidelink HARQ process.
  • the present application provides a discontinuous reception method, which may include: at the first time unit (for example, the first symbol) after the HARQ feedback timing of the first SidelinkHARQ process, the first device may start drx -RetransmissionTimerSL. During the operation of drx-RetransmissionTimerSL, the first device monitors the downlink physical control channel PDCCH.
  • the first Sidelink HARQ process is associated with the first data.
  • drx-RetransmissionTimerSL is associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process can be used by the first device (TX UE) to send the first data to the second device (RX UE).
  • the HARQ feedback opportunity occasion can be used by the first device to send the HARQ feedback feedback of the first Sidelink HARQ process to the network device.
  • HARQ feedback can be used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not. When the HARQ feedback is NACK, it may indicate that the reception of the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the first device may be a terminal device, such as a user equipment such as a mobile phone, a wearable device, a vehicle, or the like, or a chip that may be set on the terminal device.
  • a terminal device such as a user equipment such as a mobile phone, a wearable device, a vehicle, or the like, or a chip that may be set on the terminal device.
  • the time unit may be a symbol or a time slot.
  • the length of the symbol and the time slot may depend on the Numerology of the parameter set of the bandwidth part BWP of the Sidelink used to transmit the data.
  • the length of the symbol and the time slot may also depend on the parameter set Numerology of the BWP of the uplink bandwidth part of the HARQ feedback sent by the first device to the network device.
  • an RRC connection is established between the first device and the network device.
  • the first device is in the RRC connected state.
  • a Sidelink is established between the first device and the second device.
  • the network device configures the DRX cycle for the first device in the RRC connected state.
  • DRX cycle is composed of "On Duration” and "Opportunity for DRX”: in “On Duration”, the first device monitors and receives PDCCH (active state); in "Opportunity for DRX", the first device does not receive downlink channel information Data to save power consumption (sleep state).
  • the network device configures timers for the first device in the RRC connected state: drx-InactivityTimer, drx-RetransmissionTimerSL.
  • drx-RetransmissionTimerSL can be called the third timer.
  • the first device may also send a resource scheduling request to the network device to request the network device to schedule transmission resources for the first data transmission.
  • the network device can transmit scheduling resources for Sidelink, and deliver the scheduled resources in the PDCCH.
  • the first device can learn the resources scheduled by the network device by monitoring the PDCCH.
  • the first device in the first time unit after the HARQ feedback timing of the first Sidelink HARQ process, can turn on the drx-RetransmissionTimerSL.
  • the first device monitors the PDCCH.
  • the first device starts from the first time unit after the HARQ feedback opportunity, the first device is in the active state and can monitor the PDCCH issued by the network device for scheduling the retransmission of the first Sidelink HARQ process. In this way, the retransmission efficiency of the first Sidelink HARQ process can be improved, and the delay of sidelink data retransmission can be avoided.
  • the specific implementation of starting the first timer by the first device may include: if the HARQ feedback is NACK, the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process , The first device starts the third timer.
  • the first device when the first device monitors the first PDCCH, the first device may stop the third timer.
  • the first PDCCH is used to schedule transmission resources of the first side uplink HARQ process.
  • the first device may also monitor the second PDCCH.
  • the second PDCCH is used to indicate the resource scheduled by the network device for the previous transmission of the first Sidelink HARQ process.
  • the first device determines the implementation manner of the HARQ feedback of the first Sidelink HARQ process. You can refer to the related content in the first aspect, which is not repeated here.
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process can also be used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the first device may also maintain the drx-RetransmissionTimerSL according to the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, then at the first time unit after the HARQ feedback timing of the first Sidelink HARQ process, the first device can turn on drx-RetransmissionTimerSL
  • the time unit of the timer drx-RetransmissionTimerSL can be implemented in the following ways:
  • the unit of drx-RetransmissionTimerSL may be a slot.
  • the length of the time slot may depend on the parameter set Numerology of the bandwidth part BWP of the Sidelink used to transmit the data.
  • the unit of drx-RetransmissionTimerSL may be a slot.
  • the length of the time slot may also depend on the Numerology of the BWP parameter set of the uplink bandwidth part of the HARQ feedback sent by the first device to the network device.
  • Method 3 The unit of this timer can be an absolute length of time, such as milliseconds.
  • this application provides a device, which may be the first device in the fourth aspect.
  • the device may include multiple functional units to implement the method described in the fourth aspect.
  • the device may include: a processing unit and a communication unit, where the processing unit may be a processor, or a unit composed of one or more modules with processing capabilities; the communication unit may be a transceiver, or one or more A unit composed of functional modules.
  • the processing unit may be used to start the third timer at the first time unit after the HARQ feedback timing of the first sidelink hybrid automatic repeat request Sidelink HARQ process.
  • the communication unit may be used to monitor the PDCCH during the operation of the third timer.
  • the three timers are associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process is associated with first data.
  • the first Sidelink HARQ process is used by the first device to send the first data to the second device.
  • the HARQ feedback opportunity occasion is used by the first device to send the HARQ feedback of the first Sidelink HARQ process to the network device.
  • the HARQ feedback is used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the processing unit may be specifically configured to start the third timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • the processing unit may be specifically configured to start the third timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • how the processing unit determines that the HARQ feedback of the first Sidelink HARQ process is NACK may refer to the related content in the first aspect, which will not be repeated here.
  • the first Sidelink HARQ process is associated with a first variable, and the first variable is used to record whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not. When the first variable is NACK, it indicates that the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the processing unit may be specifically configured to start the third time unit at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the first variable is NACK. Timer.
  • the processing unit may be specifically configured to stop the third timer when the first device monitors the first PDCCH; the first PDCCH is used to schedule the first PDCCH Transmission resources of the side link HARQ process.
  • the communication unit may also be used to monitor the second PDCCH before the HARQ feedback opportunity of the first Sidelink HARQ process, and the second PDCCH is used to indicate that the network device is the first A resource scheduled for the previous transmission of a Sidelink HARQ process.
  • the communication unit may be further configured to: send the HARQ feedback of the first Sidelink HARQ process to the network device at the HARQ feedback timing; or, at the HARQ feedback timing, transmit The second data, the second data is not the HARQ feedback of the first Sidelink HARQ process.
  • a device in a sixth aspect, is provided.
  • the device may be the first device in the fourth aspect and can be used to perform the discontinuous reception method described in the fourth aspect.
  • This device may be called the first device.
  • the first device may include: a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein the transmitter is used to send a signal to another wireless communication device, the receiver is used to receive a signal sent by another wireless communication device, and the memory It is used to store the implementation code of the discontinuous reception method described in the fourth aspect, and the processor is used to execute the program code stored in the memory, that is, execute the discontinuous reception method described in any of the possible implementation manners of the fourth aspect.
  • the processor may be configured to start the third timer at the first time unit after the HARQ feedback opportunity of the first sidelink hybrid automatic repeat request Sidelink HARQ process.
  • the receiver may be used to monitor the PDCCH during the running of the third timer.
  • the transmitter may be used to transmit the first data to the second device through the first Sidelink HARQ process.
  • the third timer is associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process is associated with first data.
  • the first Sidelink HARQ process is used by the first device to send the first data to the second device.
  • the HARQ feedback opportunity occasion is used by the first device to send the HARQ feedback of the first Sidelink HARQ process to the network device.
  • the HARQ feedback is used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the processor may be specifically configured to start the third timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • the processor may be specifically configured to start the third timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • how the processor determines that the HARQ feedback of the first Sidelink HARQ process is NACK may refer to the related content in the first aspect, which is not repeated here.
  • the first Sidelink HARQ process is associated with a first variable, and the first variable is used to record whether the reception of the previous transmission of the first Sidelink HARQ process is successful.
  • the first variable is NACK, it indicates that the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the processor may be specifically configured to, if the first variable is NACK, start the third time unit at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process Timer.
  • the processor may be specifically configured to stop the third timer when the first PDCCH is monitored; the first PDCCH is used to schedule the first side uplink HARQ The transmission resources of the process.
  • the receiver may also be used to monitor the second PDCCH before the HARQ feedback opportunity of the first Sidelink HARQ process, and the second PDCCH is used to indicate that the network device is the first A resource scheduled for the previous transmission of a Sidelink HARQ process.
  • the transmitter may also be used to: send the HARQ feedback of the first Sidelink HARQ process to the network device at the HARQ feedback timing; or, at the HARQ feedback timing, transmit The second data, the second data is not the HARQ feedback of the first Sidelink HARQ process.
  • the present application provides a discontinuous reception method, which may include: if the reception of the previous transmission of the first Sidelink HARQ process is not successful, the first one after the HARQ feedback timing of the first Sidelink HARQ process In a time unit (for example, the first symbol), the first device can start to monitor the downlink physical control channel PDCCH. When the first device monitors the first PDCCH, and the following conditions are not met, the first device stops monitoring the PDCCH:
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the first PDCCH is used for scheduling transmission resources of the first side uplink HARQ process.
  • the first Sidelink HARQ process is associated with the first data.
  • drx-RetransmissionTimerSL is associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process can be used by the first device (TX UE) to send the first data to the second device (RX UE).
  • the HARQ feedback opportunity occasion can be used by the first device to send the HARQ feedback feedback of the first Sidelink HARQ process to the network device.
  • HARQ feedback can be used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not. When the HARQ feedback is NACK, it may indicate that the reception of the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the first device may be a terminal device, such as a user equipment such as a mobile phone, a wearable device, a vehicle, or the like, or a chip that may be set on the terminal device.
  • a terminal device such as a user equipment such as a mobile phone, a wearable device, a vehicle, or the like, or a chip that may be set on the terminal device.
  • the time unit may be a symbol or a time slot.
  • the length of the symbol and the time slot may depend on the Numerology of the parameter set of the bandwidth part BWP of the Sidelink used to transmit the data.
  • the length of the symbol and the time slot may also depend on the parameter set Numerology of the BWP of the uplink bandwidth part of the HARQ feedback sent by the first device to the network device.
  • an RRC connection is established between the first device and the network device.
  • the first device is in the RRC connected state.
  • a Sidelink is established between the first device and the second device.
  • the network device configures the DRX cycle for the first device in the RRC connected state.
  • DRX cycle is composed of "On Duration” and "Opportunity for DRX”: in "On Duration”, the first device listens to and receives PDCCH (active state); in "Opportunity for DRX", the first device does not receive downlink channel information Data to save power consumption (sleep state).
  • the network device configures timers for the first device in the RRC connected state: drx-InactivityTimer, drx-RetransmissionTimerSL.
  • drx-RetransmissionTimerSL can be called the third timer.
  • the first device may also send a resource scheduling request to the network device to request the network device to schedule transmission resources for the first data transmission.
  • the network device can transmit scheduling resources for Sidelink, and deliver the scheduled resources in the PDCCH.
  • the first device can learn the resources scheduled by the network device by monitoring the PDCCH.
  • the first device may start monitoring the PDCCH at the first time unit after the HARQ feedback timing of the first Sidelink HARQ process. That is to say, if the reception of the previous transmission of the first Sidelink HARQ process is unsuccessful, after the HARQ feedback opportunity, the first device is in the active state and can monitor and receive the first Sidelink HARQ issued by the network device for scheduling PDCCH for process retransmission. In this way, the retransmission efficiency of the first Sidelink HARQ process can be improved, and the delay of sidelink data retransmission can be avoided.
  • whether the reception of the previous transmission of the first Sidelink HARQ process is unsuccessful or not can be determined from the following two aspects:
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the HARQ feedback of the first Sidelink HARQ process when the HARQ feedback of the first Sidelink HARQ process is NACK, it can indicate that the reception of the previous transmission of the first Sidelink HARQ process is unsuccessful; when the HARQ feedback of the first Sidelink HARQ process is ACK, it can indicate the first Sidelink HARQ The previous transmission of the process was successfully received.
  • the value of the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, it may indicate that the reception of the previous transmission of the first Sidelink HARQ process was unsuccessful; when the value of the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process When it is ACK, it can indicate that the reception of the previous transmission of the first Sidelink HARQ process is successful.
  • the first device determines the specific implementation of the HARQ feedback of the first Sidelink HARQ process, which may refer to the related content in the first aspect, which will not be repeated here.
  • the first device may monitor the PDCCH according to the HARQ feedback of the first Sidelink HARQ process.
  • the specific implementation may be as follows: if the HARQ feedback of the first Sidelink HARQ process is NACK, the first device may start monitoring the PDCCH at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the first device may also monitor the PDCCH according to the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the specific implementation may be as follows: if the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, then at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process, the first device may start to monitor the PDCCH.
  • the first device may stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, but the state variable CURRENT_SL_TX_NB associated with the first Sidelink HARQ process indicates that the number of transmissions of data a has reached the maximum number of transmissions. In this case, and the following conditions are not met, the first device may stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • this application provides a device, which may be the first device in the seventh aspect.
  • the device may include multiple functional units to implement the method described in the seventh aspect.
  • the device may include: a processing unit and a communication unit, where the processing unit may be a processor, or a unit composed of one or more modules with processing capabilities; the communication unit may be a transceiver, or one or more A unit composed of functional modules.
  • the processing unit may be used to determine whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the communication unit can be used to start monitoring the downlink physical control at the first time unit (for example, the first symbol) after the HARQ feedback timing of the first Sidelink HARQ process if the reception of the previous transmission of the first Sidelink HARQ process is not successful Channel PDCCH.
  • the communication unit may also be used to stop monitoring the PDCCH when the first device monitors the first PDCCH and the following conditions are not met:
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the processing unit can determine whether the reception of the previous transmission of the first Sidelink HARQ process is unsuccessful or not from the following two aspects:
  • the HARQ feedback of the first Sidelink HARQ process when the HARQ feedback of the first Sidelink HARQ process is NACK, it can indicate that the reception of the previous transmission of the first Sidelink HARQ process is unsuccessful; when the HARQ feedback of the first Sidelink HARQ process is ACK, it can indicate the first Sidelink HARQ The previous transmission of the process was successfully received.
  • the value of the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, it may indicate that the reception of the previous transmission of the first Sidelink HARQ process was unsuccessful; when the value of the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process When it is ACK, it can indicate that the reception of the previous transmission of the first Sidelink HARQ process is successful.
  • the processing unit determines the specific implementation of the HARQ feedback of the first Sidelink HARQ process, which may refer to the related content in the first aspect, which will not be repeated here.
  • the processing unit may monitor the PDCCH according to the HARQ feedback of the first Sidelink HARQ process.
  • the specific implementation can be as follows: if the HARQ feedback of the first Sidelink HARQ process is NACK, the communication unit can start monitoring the PDCCH at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the communication unit may also monitor the PDCCH according to the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, the communication unit can start monitoring the PDCCH at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the communication unit may stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, but the state variable CURRENT_SL_TX_NB associated with the first Sidelink HARQ process indicates that the number of transmissions of data a has reached the maximum number of transmissions. In this case, and the following conditions are not met, the communication unit can stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • a device in a ninth aspect, may be the first device in the seventh aspect, and may be used to execute the discontinuous reception method described in the seventh aspect.
  • This device may be called the first device.
  • the first device may include: a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein the transmitter is used to send a signal to another wireless communication device, the receiver is used to receive a signal sent by another wireless communication device, and the memory It is used to store the implementation code of the discontinuous reception method described in the seventh aspect, and the processor is used to execute the program code stored in the memory, that is, execute the discontinuous reception method described in any one of the possible implementation manners of the seventh aspect.
  • the processor may be used to determine whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the receiver can be used to start monitoring the downlink at the first time unit (for example, the first symbol) after the HARQ feedback opportunity of the first Sidelink HARQ process if the reception of the previous transmission of the first Sidelink HARQ process is not successful Physical control channel PDCCH.
  • the first time unit for example, the first symbol
  • the receiver may also be used to stop monitoring the PDCCH when the first device monitors the first PDCCH and the following conditions are not met:
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the receiver may monitor the PDCCH according to the HARQ feedback of the first Sidelink HARQ process.
  • the specific implementation can be as follows: if the HARQ feedback of the first Sidelink HARQ process is NACK, the receiver can start monitoring the PDCCH at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the receiver may monitor the PDCCH according to the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, the receiver can start monitoring the PDCCH at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the receiver can stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, but the state variable CURRENT_SL_TX_NB associated with the first Sidelink HARQ process indicates that the number of transmissions of data a has reached the maximum number of transmissions. In this case, and the following conditions are not met, the receiver can stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first device sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first device has received the response message of non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the initial value of the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process can be set to ACK.
  • SL_HARQ_FEEDBACK is ACK
  • SL_HARQ_FEEDBACK is NACK
  • the following describes how the first device maintains the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the first device can set SL_HARQ_FEEDBACK to ACK.
  • Case 1 The first device receives the HARQ feedback sent by the second device as ACK.
  • Case 2 The first device monitors and receives the PDCCH used to schedule the transmission (including initial transmission and retransmission) of the first Sidelink HARQ process.
  • the first device can set SL_HARQ_FEEDBACK to NACK.
  • Case 2 The first device does not receive the HARQ feedback sent by the second device.
  • the first device did not receive the HARQ feedback sent by the second device, which specifically may mean that the first device did not receive the HARQ feedback sent by the second device at the feedback timing of the HARQ feedback.
  • Case 3 The first device does not transmit data a associated with the first Sidelink HARQ process to the second device on the transmission resources allocated to the first Sidelink HARQ process.
  • the transmission resources allocated to the first Sidelink HARQ process can be used for initial transmission or retransmission of the first Sidelink HARQ process.
  • the cause of case 3 may be resource conflict, that is, the first device transmits other data on the transmission resource allocated to the first Sidelink HARQ process instead of data a.
  • the initial value of the state variable CURRENT_SL_TX_NB associated with the first Sidelink HARQ process can be set to 0.
  • the first device monitors and receives the PDCCH used to schedule the transmission (including initial transmission and retransmission) of the first Sidelink HARQ process
  • the first device may increase the CURRENT_SL_TX_NB associated with the first Sidelink HARQ process by 1.
  • the PDCCH used to schedule the transmission of the first Sidelink HARQ process may indicate the transmission resources allocated by the network device to the first Sidelink HARQ process.
  • the length of the symbol and the time slot may depend on the Numerology of the BWP parameter set of the bandwidth part of the Sidelink used to transmit the first data, such as subcarrier space (SCS).
  • SCS subcarrier space
  • the length of the symbol and the time slot may also depend on the Numerology of the BWP parameter set of the uplink bandwidth part of the HARQ feedback sent by the first device to the network device, such as SCS.
  • a device which may include a processor and a memory, the processor is coupled to the memory, the memory stores instructions, and the processor is used to call the instructions in the memory , So that the device executes the discontinuous reception method described in the first, fourth or seventh aspect.
  • another computer-readable storage medium is provided, and instructions are stored on the readable storage medium, which when run on a computer, cause the computer to execute the non-disclosure described in the first, fourth, or seventh aspect. Continuous receiving method.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the discontinuous receiving method described in the first, fourth or seventh aspect.
  • FIG. 1 is a schematic diagram of the architecture of a wireless communication system provided by the present application.
  • Figure 2A is a schematic diagram of an existing DRX cycle
  • Figure 2B is a schematic diagram of a DRX cycle introducing a timer drx-InactivityTimer
  • Figure 2C is a schematic diagram of an existing sidelinkDRX cycle
  • FIG. 3 is a schematic flowchart of a discontinuous receiving method provided by an embodiment of the present application.
  • 4A-4B are schematic diagrams of a timer maintenance process in the embodiment of FIG. 3;
  • FIG. 5A-5B are schematic diagrams of another timer maintenance process in the embodiment of FIG. 3;
  • FIG. 6 is a schematic flowchart of a discontinuous receiving method provided by another embodiment of the present application.
  • FIG. 7A-7B are schematic diagrams of the timer maintenance process in the embodiment of FIG. 6;
  • FIG. 8 is a schematic flowchart of a discontinuous receiving method provided by still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of the PDCCH monitoring process in the embodiment of FIG. 8;
  • FIG. 10 is a schematic diagram of the hardware architecture of a terminal provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the hardware architecture of a network device provided by an embodiment of the present application.
  • Fig. 12 is a functional block diagram of related devices of the wireless communication system provided by the present application.
  • Fig. 1 shows a wireless communication system 100 involved in the present application.
  • the wireless communication system 100 can be a long-term evolution (LTE) system, a fifth-generation mobile communication (5G) system, a new radio interface (NR) system, or a machine-to-machine (M2M) system, the first evolution of the future.
  • LTE long-term evolution
  • 5G fifth-generation mobile communication
  • NR new radio interface
  • M2M machine-to-machine
  • the wireless communication system 100 may include: one or more network devices 101, two or more user devices 103, and a core network (not shown). among them:
  • the network device 101 may be used to communicate with the user equipment 103 through the Uu interface 105 under the control of a network device controller (not shown), such as a base station controller (BSC).
  • a network device controller such as a base station controller (BSC).
  • BSC base station controller
  • the network device controller may be a part of the core network, or may be integrated into the network device 101.
  • the network device 101 may also be used to transmit control information or user data to the core network through a backhaul (blackhaul) interface, such as an S1 interface.
  • a backhaul (blackhaul) interface such as an S1 interface.
  • the network device 101 and the network device 101 may also communicate with each other directly or indirectly through a backhaul (blackhaul) interface, such as an X2 interface.
  • a backhaul (blackhaul) interface such as an X2 interface.
  • the communication interface 107 between the user equipment 103 and the user equipment 103 is called a PC5 interface.
  • the data transmission link between the user equipment 103 and the user equipment 103 is called a side link (Sidelink).
  • Sidelink the data transmission link between the user equipment 103 and the user equipment 103
  • Sidelink the data transmission link between the user equipment 103 and the user equipment 103
  • the Uu interface 105 may be used under the control of the cellular network. No matter whether it is in the E-UTRAN coverage area, the user equipment 103 can use the PC5 interface 107 to perform Sidelink communication.
  • Sidelink communication may be a point-to-point communication between two user equipment 103, or may be a multicast communication performed by a group of more than two user equipment 103.
  • the network equipment 101 can be a base transceiver station (BTS) in a Time Division Synchronous Code Division Multiple Access (Time Division Multiple Access, TD-SCDMA) system, or it can be an evolved base station (Evolutional Base Station) in an LTE system. Node B, eNB), and base stations in 5G systems, New Air Interface (NR) systems, etc.
  • the base station may also be an access point (Access Point, AP), a transmission node (Trans TRP), a central unit (Central Unit, CU) or other network entities, and may include some or all of the functions of the above network entities .
  • the user equipment 103 may be a wireless communication device such as a vehicle-mounted terminal, a smart phone, a roadside unit (RSU), an Internet of Things terminal device, and a machine type communication (Machine Type Communication, MTC) terminal.
  • the user equipment may also include one or more base stations with partial UE functions, such as micro base stations.
  • the user equipment may be distributed in the entire wireless communication system 100, and may be stationary or mobile.
  • the wireless communication system 100 shown in FIG. 1 is only to illustrate the technical solution of the application more clearly, and does not constitute a limitation to the application.
  • Those of ordinary skill in the art will know that with the evolution of the network architecture and new services In the emergence of scenarios, the technical solutions provided in this application are equally applicable to similar technical problems.
  • V2X refers to connecting vehicles to the Internet or connecting vehicles into a network.
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2N vehicle to network
  • V2P vehicle to pedestrian
  • vehicles, roadside infrastructure, application servers, and pedestrians collect, process and share status information of surrounding vehicles and the environment to provide more intelligent services, such as unmanned driving and autonomous driving (automated driving/ADS), driver assistance/ADAS, intelligent driving, connected driving, intelligent network driving, car sharing, etc.
  • intelligent services such as unmanned driving and autonomous driving (automated driving/ADS), driver assistance/ADAS, intelligent driving, connected driving, intelligent network driving, car sharing, etc.
  • the user equipment 103 may be a vehicle-mounted terminal.
  • the vehicle-mounted terminal and the vehicle-mounted terminal can exchange data through Sidelink, such as vehicle location, vehicle speed, driving direction, etc., indicating vehicle dynamics.
  • Sidelink such as vehicle location, vehicle speed, driving direction, etc.
  • the vehicle-mounted terminal A may send data to another vehicle-mounted terminal B through Sidelink, and the data is used to indicate the driving dynamics of the vehicle in which the vehicle-mounted terminal A is located.
  • the vehicle-mounted terminal A is the TX UE
  • the vehicle-mounted terminal B is the RX UE.
  • the vehicle-mounted terminal B After receiving the data, the vehicle-mounted terminal B can display the user interface 20.
  • the user interface 20 can display the content 21 expressed by the data, such as the license plate number of the rear vehicle (“FAF787”), the driving operation being performed by the rear vehicle (“the rear vehicle FAF787 is performing an overtaking operation”), and the current speed of the rear vehicle (“80km/h”), etc. In this way, the incidence of traffic accidents can be reduced and driving safety can be enhanced.
  • the data such as the license plate number of the rear vehicle (“FAF787”)
  • the driving operation being performed by the rear vehicle (“the rear vehicle FAF787 is performing an overtaking operation”
  • the current speed of the rear vehicle 80km/h
  • one of the main resource allocation methods for Sidelink communication is the resource allocation method based on base station scheduling.
  • the base station issues downlink control information DCI on the PDCCH to dynamically allocate resources, and the TXUE needs to monitor the PDCCH to obtain the grant issued by the base station.
  • DRX mechanism On the Uu interface 105, in order to reduce the power consumption caused by the UE constantly monitoring the PDCCH, a solution currently adopted by 3GPP is the DRX mechanism. The following describes the existing DRX mechanism.
  • the DRX mechanism is that a network device configures a DRX cycle (DRX cycle) for a UE in a radio resource control (radio control resource, RRC) connection state.
  • DRX cycle is composed of two time periods: "On Duration” and "Opportunity for DRX".
  • “On Duration” can be called a duration
  • “Opportunity for DRX” can be called a DRX opportunity.
  • On Duration the UE monitors and receives the PDCCH.
  • the UE does not monitor PDCCH to reduce power consumption.
  • On Duration (such as 10 ms) specifies the time that the UE needs to monitor the PDCCH from the start position of the DRX Cycle.
  • On Duration can be greater than 1ms or less than 1ms.
  • the UE In “On Duration”, the UE is in the active state, that is, the UE monitors the PDCCH.
  • the UE In “Opportunity for DRX”, the UE is in the dormant state, that is, the UE does not monitor the PDCCH.
  • the dormant state is only for monitoring the PDCCH, which means that the UE does not monitor the PDCCH.
  • the UE in the dormant state is still in the RRC connection state, and can transmit uplink data through physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), etc. on Uu interface 105 or through physical
  • the physical downlink shared channel (PDSCH) receives the downlink data sent by the base station, and can also use the physical side link shared channel (PSSCH) and physical side link control channel (physical side link control channel) on the PC5 interface 107. channel, PSCCH) etc. to transmit Sidelink data.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • PSSCH physical side link control channel
  • Physical side link control channel Physical side link control channel
  • the DRX mechanism introduces a timer: drx-InactivityTimer. As shown in FIG. 2B, when the UE monitors and receives a PDCCH for scheduling new data, the UE starts (or restarts) the timer drx-InactivityTimer.
  • the UE will monitor the PDCCH in each subframe during the operation of the drx-InactivityTimer until the timer expires.
  • the indication information of the new data will be carried in the PDCCH, occupying 1 bit. It can be seen that the introduction of drx-InactivityTimer can ensure that the UE is in an active state during the operation of the drx-InactivityTimer and receives the scheduling of the next base station, which is equivalent to extending the "On Duration".
  • the UE will successively start (or restart) multiple drx-InactivityTimers, which may cause the UE to be active throughout the DRX cycle, that is, "On Duration" may be extended to The entire DRX cycle.
  • the DRX mechanism on the Uu interface 105 has the following enhancements: when the TXUE receives the PDCCH sent by the base station, and the PDCCH schedules the SLgrant for new data transmission on the Sidelink , TXUE will start or restart drx-InactivityTimer. This can ensure that the TXUE can be in an active state and receive the SLgrant scheduled by the base station next.
  • the base station configures the sidelink-based hybrid automatic repeat request (HARQ) feedback retransmission mechanism for the TXUE, then for the resource allocation method based on the base station scheduling, a possible HARQ work
  • the method is: the base station schedules retransmission resources for the TXUE according to the HARQ feedback (feedback) of the Sidelink data transmission.
  • HARQ feedback can be not acknowledgment (NACK) or acknowledgment (ACK).
  • NACK acknowledgment
  • ACK acknowledgment
  • FIG. 2C if the HARQ feedback of data a is NACK, after receiving the NACK, the base station schedules resources for the retransmission of data a, and issues an SL grant for retransmission of data a on the PDCCH.
  • the Tx UE when the HARQ of the data a sent by the Tx UE to the base station is confirmed as NACK, the Tx UE needs to receive the PDCCH issued by the base station to schedule the retransmission of data a to perform the retransmission of data a. .
  • the TX UE may have entered the DRX state and no longer monitors the PDCCH.
  • the TX UE needs to wait until the "On Duration" of the next DRX cycle to monitor the PDCCH, and then can receive the PDCCH issued by the base station for scheduling the retransmission of data a, and then perform the retransmission of data a. This will cause the data retransmission of the TxUE on the Sidelink to be delayed, resulting in that the QoS requirements of the services transmitted on the Sidelink cannot be met.
  • the present application provides a discontinuous reception method, which is beneficial to reduce the transmission delay of Sidelink data.
  • the TX UE can be in an active state, so that the TX UE can monitor the PDCCH used to schedule the retransmission of the Sidelink data, without waiting for the "On Duration" of the next DRX cycle. It can avoid increasing the delay of Sidelink data retransmission.
  • the TX UE can set a Sidelink HARQ process for each Sidelink data, such as the MAC PDU transmitted by the TX UE to the RX UE. That is, a Sidelink data associated with a Sidelink HARQ process, the Sidelink data can be stored in the Sidelink HARQ buffer associated with the Sidelink HARQ process.
  • a Sidelink HARQ process can maintain a state variable CURRENT_SL_TX_NB, which is used to indicate the number of transmissions of Sidelink data associated with the Sidelink HARQ process. CURRENT_SL_TX_NB can be initialized to 0.
  • the Sidelink HARQ process may also maintain a state variable SL_HARQ_FEEDBACK, which is used to indicate the HARQ feedback of the Sidelink data associated with the Sidelink HARQ process.
  • CURRENT_SL_TX_NB can be called the first variable
  • SL_HARQ_FEEDBACK can be called the second variable. It is not limited to CURRENT_SL_TX_NB, SL_HARQ_FEEDBACK, and the naming of the first variable and the second variable can also be different, which is not limited in this application.
  • the HARQ feedback timing of the Sidelink HARQ process associated with a Sidelink data can be used by the TX UE to send the HARQ feedback of the Sidelink HARQ process to the network device.
  • the HARQ feedback opportunity is a time resource, which can be used to carry the TX UE to send the HARQ feedback to the network device.
  • the HARQ feedback may be used to indicate whether the reception of the previous transmission of the Sidelink HARQ process is successful, that is, whether the reception of the previous transmission of the Sidelink data associated with the Sidelink HARQ process is successful or not.
  • the HARQ feedback opportunity can be a symbol or a time period composed of multiple consecutive symbols.
  • the HARQ feedback opportunity may also be a time slot (slot) or a time period composed of multiple consecutive time slots.
  • the TX UE is in the RRC connected state and is configured with DRX cycle. Within a period of time from the start time of the DRX cycle, the TX UE is in the active state and can monitor and receive a PDCCH.
  • the PDCCH is used to schedule the previous transmission of the Sidelink data.
  • the previous transmission may be the initial transmission (initial transmission) of the Sidelink data, or the second or third transmission of the Sidelink data.
  • the previous transmission occurred before the aforementioned HARQ feedback opportunity, which is relative to the retransmission of the Sidelink data after the aforementioned HARQ feedback opportunity.
  • the period of time starting from the start time of the DRX cycle can refer to the "On Duration" of the DRX cycle, or it can be the extended “On Duration” formed after the drx-InactivityTimer is turned on.
  • the extension of "On Duration” please refer to the related description in Figure 2B. That is, the start time of the period of time is the start time of the DRX cycle, and the duration of the period of time is equal to or greater than the duration of "On Duration".
  • the Sidelink data involved in this application may be media access control (media access control, MAC) layer data, such as a MAC protocol data unit (protocol data unit, PDU).
  • media access control media access control
  • PDU protocol data unit
  • the TX UE may be referred to as the first terminal, and the RX UE may be referred to as the second terminal.
  • the first terminal maintains two timers for each Sidelink HARQ process: the first timer and the second timer.
  • Timer the first timer may be named as drx-HARQ-RTT-TimerSL; the second timer may be named as drx-RetransmissionTimerSL.
  • the first terminal monitors the PDCCH.
  • the naming of the first timer and the second timer may also be other, which is not limited in this application.
  • FIG. 3 shows the specific process of the discontinuous receiving method provided in the first embodiment. Expand below:
  • S101 Establish an RRC connection between the first terminal and the network device.
  • the first terminal After the RRC connection is established, the first terminal enters the RRC connected state.
  • S102 Establish a Sidelink between the first terminal and the second terminal.
  • the first terminal transmits data to the second terminal through the Sidelink.
  • S103 The network device configures a DRX cycle for the first terminal in the RRC connected state.
  • DRX cycle is composed of "On Duration” and "Opportunity for DRX": In “On Duration”, the first terminal monitors and receives PDCCH (active state); in “Opportunity for DRX", the first terminal does not receive downlink channel information Data to save power consumption (sleep state).
  • the network device configures timers for the first terminal in the RRC connected state: drx-InactivityTimer, drx-HARQ-RTT-TimerSL, drx-RetransmissionTimerSL.
  • drx-HARQ-RTT-TimerSL may be referred to as the first timer
  • drx-RetransmissionTimerSL may be referred to as the second timer. How to maintain these timers will be introduced in the following content, so I won't expand it here.
  • stage 1 it is not limited to that shown in FIG. 3, and S102 can also be executed before S101.
  • this application does not limit it.
  • the first terminal may also send a resource scheduling request to the network device to request the network device to schedule transmission resources for Sidelink data transmission.
  • the resource scheduling request may carry a buffer status report (BufferStatusReport) to indicate how much Sidelink data the first terminal has to send on the Sidelink.
  • the network device can transmit scheduling resources for Sidelink, and deliver the scheduled resources in the PDCCH.
  • the first terminal can learn the resources scheduled by the network device by monitoring the PDCCH.
  • the first terminal may monitor and receive the PDCCH 1 issued by the network device.
  • the PDCCH 1 may indicate the resource scheduled for the ith transmission of a certain Sidelink HARQ process (for example, Sidelink HARQ process a), that is, the PDCCH 1 can be used to schedule the ith transmission of the Sidelink HARQ process a.
  • Sidelink HARQ process a can be associated with data a.
  • the Sidelink HARQ process a can be used by the first terminal to transmit data a to the second terminal on the Sidelink established in S102.
  • Sidelink HARQ process a can maintain two state variables: CURRENT_SL_TX_NB and SL_HARQ_FEEDBACK.
  • CURRENT_SL_TX_NB can indicate the number of transmissions of data a
  • CURRENT_SL_TX_NB can be initialized to 0.
  • SL_HARQ_FEEDBACK may indicate HARQ feedback of data a.
  • PDCCH 1 can carry the following information: SL grant 1, NDI, Sidelink HARQ process a ID.
  • SL grant 1 may indicate that the network device is the resource scheduled for the i-th transmission of the Sidelink HARQ process a.
  • the NDI may indicate whether the i-th transmission of the Sidelink HARQ process a scheduled by the PDCCH 1 is an initial transmission (initial transmission) or a retransmission (retransmission).
  • the first terminal may start the timer drx-InactivityTimer (ie, timer 1 in FIG. 3) when it monitors and receives the PDCCH 1.
  • the timer drx-InactivityTimer ie, timer 1 in FIG. 3
  • the first terminal is in the active state and monitors the PDCCH. In this way, the "On Duration" of the DRX cycle can be extended to extend the time that the first terminal is in the active state.
  • the first terminal can determine whether the i-th transmission of Sidelink HARQ process a is the initial transmission or retransmission through whether the NDI in PDCCH 1 is toggled: if the value of NDI in PDCCH 1 is the same as the previous one
  • the NDI in the PDCCH of the scheduled Sidelink HARQ process a is reversed, which means that the i-th transmission of Sidelink HARQ process a is the initial transmission; otherwise, it means that the i-th transmission of Sidelink HARQ process a is a retransmission.
  • the so-called NDI inversion can mean that the value of NDI changes from 0 to 1, or from 1 to 0.
  • the first terminal may transmit data a to the second terminal through the Sidelink HARQ process a on the resource indicated by the PDCCH 1, that is, perform the i-th transmission of the data a.
  • the second terminal may receive the data a sent by the first terminal on the resource indicated by the PDCCH 1.
  • the second terminal can learn which resources the first terminal will transmit data a on by monitoring the PSCCH. This is because after receiving the PDCCH 1, the first terminal can send side link control information (Sidelink control information, SCI) on the PSCCH. The second terminal can receive the SCI by monitoring the PSCCH. The SCI is used to indicate the resource for the first terminal to transmit data a.
  • side link control information SCI
  • SCI Sidelink control information
  • the first terminal may send HARQ feedback to the second terminal.
  • the HARQ feedback is used to indicate whether the second terminal successfully receives data a. If the HARQ feedback is ACK, it means that the second terminal successfully receives data a; if the HARQ feedback is NACK, it means that the second terminal has not successfully received data a.
  • the unsuccessful reception of the data a by the second terminal may include but is not limited to the following situations: the second terminal fails to decode the data a, and the second terminal does not receive the data a sent by the first terminal on the resource indicated by the PDCCH 1.
  • the first terminal determines the HARQ feedback of the Sidelink HARQ process a.
  • the HARQ feedback of the sidelink HARQ process a is used to indicate whether the reception of the i-th transmission of data a is successful or not. How to determine whether the reception of the i-th transmission of data a is successful or not will be described later.
  • the first terminal may send the HARQ feedback of the Sidelink HARQ process a to the network device at the HARQ feedback timing of the Sidelink HARQ process a.
  • the network device may receive the HARQ feedback of the Sidelink HARQ process a sent by the first terminal at the HARQ feedback opportunity.
  • the network device can schedule resources for the retransmission of the Sidelink HARQ process a (that is, the i+1th transmission of data a).
  • the state variable CURRENT_SL_TX_NB associated with the Sidelink HARQ process a indicates that the number of transmissions of the Sidelink HARQ process a exceeds the maximum number of transmissions.
  • the network device may no longer schedule resources for the retransmission of the Sidelink HARQ process a.
  • the TX UE can close the Sidelink HARQ process a, or associate the Sidelink HARQ process a with new Sidelink data, such as data b.
  • the first terminal transmits other data instead of the HARQ feedback of the Sidelink HARQ process a.
  • the first terminal may transmit uplink data to the network device at this HARQ feedback opportunity.
  • the first terminal may transmit Sidelink data to the second terminal or other terminals at this HARQ feedback opportunity.
  • the first terminal in the first time unit after the HARQ feedback opportunity of the Sidelink HARQ process a, can maintain two timers: drx-HARQ-RTT-TimerSL (ie timer 2 in Figure 3), drx-RetransmissionTimerSL( That is, the timer 3) in Figure 3. Both of these timers are associated with the Sidelink HARQ process a.
  • the time unit can be a symbol, a time slot, and so on.
  • the timing units of these two timers can be symbols, time slots or absolute time units (such as milliseconds).
  • the first terminal may first turn on drx-HARQ-RTT-TimerSL.
  • the first terminal can turn on the drx-RetransmissionTimerSL.
  • the first terminal monitors the PDCCH.
  • the first terminal may receive PDCCH2.
  • the resource indicated by the PDCCH 2 may be the resource scheduled by the network device for the i+1 transmission of the Sidelink HARQ process a, that is, the PDCCH 2 may be used to schedule the i+1 transmission of the Sidelink HARQ process a.
  • PDCCH 2 can carry the following information: SL grant 2, NDI, Sidelink HARQ process a ID.
  • SL grant 2 is the resource scheduled by the network device for the i+1th transmission of the Sidelink HARQ process a.
  • the NDI may indicate whether the i+1th transmission of the Sidelink HARQ process a scheduled by the PDCCH 1 is an initial transmission (initial transmission) or a retransmission (retransmission).
  • the i+1th transmission is a retransmission relative to the i-th transmission, and the i-th transmission is the previous transmission of the i+1th transmission.
  • the first terminal may stop the drx-RetransmissionTimerSL.
  • the resource indicated by the PDCCH 2 may be the resource scheduled by the network device for the initial transmission of the Sidelink HARQ process a.
  • the Sidelink HARQ process a is associated with new data, such as data b. That is, the Sidelink HARQ process a has been used for the first terminal to transmit new data instead of data a.
  • this possible situation may occur when the transmission of data a has reached the maximum number of transmissions (for example, 5 times).
  • the first terminal can also stop drx-RetransmissionTimerSL.
  • the first terminal may transmit data a to the second terminal through the Sidelink HARQ process a on the resource indicated by the PDCCH 2, that is, perform the i+1th transmission of the data a.
  • the second terminal can receive the data a sent by the first terminal on the resource indicated by the PDCCH 2.
  • the first terminal in the first time unit after the HARQ feedback timing of the Sidelink HARQ process a, can turn on drx-HARQ-RTT-TimerSL, and when the drx-HARQ-RTT-TimerSL times out Turn on drx-RetransmissionTimerSL.
  • the first terminal after the HARQ feedback opportunity, during the operation of drx-RetransmissionTimerSL, the first terminal is in the active state, and can monitor and receive the PDCCH issued by the network device during this period to schedule the retransmission of Sidelink HARQ process a. .
  • the retransmission efficiency of the Sidelink HARQ process a can be improved, and the delay of the sidelink data retransmission can be avoided.
  • the following describes how the first terminal determines the HARQ feedback of the Sidelink HARQ process a in S109.
  • the first terminal can determine that the HARQ feedback of Sidelink HARQ process a is NACK, and can determine that the reception of the previous transmission of Sidelink HARQ process a is unsuccessful:
  • the HARQ feedback is used to indicate whether the previous transmission of data associated with the Sidelink HARQ process a was successfully received by the second terminal.
  • the HARQ feedback is NACK, it may indicate that the second terminal has not successfully received the data associated with the Sidelink HARQ process a.
  • the reason why the second terminal fails to receive the data associated with the Sidelink HARQ process a may include but is not limited to: the second terminal fails to decode the data.
  • the first resource is a resource scheduled by the network device for the previous transmission of the Sidelink HARQ process a.
  • Case 2 The first terminal does not receive the HARQ feedback sent by the second terminal.
  • Case 3 The first terminal does not transmit the Sidelink data to the second terminal on the first resource.
  • the first resource is a resource scheduled by the network device for the previous transmission of the Sidelink HARQ process a.
  • the cause of case 3 may be resource conflict, that is, the first terminal transmits other data on the first resource instead of data a.
  • the first terminal can determine that the HARQ feedback of Sidelink HARQ process a is ACK, and can determine that the reception of the previous transmission of Sidelink HARQ process a is successful:
  • the HARQ feedback sent by the second terminal received by the first terminal is ACK.
  • the HARQ feedback is ACK, it may indicate that the second terminal successfully receives the data associated with the Sidelink HARQ process a.
  • the following describes several implementation ways for the first terminal to maintain the two timers, drx-HARQ-RTT-TimerSL and drx-RetransmissionTimerSL.
  • the first terminal can turn on drx-HARQ-RTT-TimerSL. If the HARQ feedback of the Sidelink HARQ process a is NACK, when the drx-HARQ-RTT-TimerSL times out, the first terminal can turn on the drx-RetransmissionTimerSL. During the operation of drx-RetransmissionTimerSL, the first terminal monitors the PDCCH.
  • the first terminal can turn on drx-HARQ-RTT-TimerSL.
  • the first terminal can turn on the drx-RetransmissionTimerSL.
  • the first terminal monitors the PDCCH.
  • the mode 1 and mode 2 will be described below with reference to FIGS. 4A-4B and 5A-5B.
  • FIG. 4A-4B exemplarily show the timer maintenance process of the above-mentioned way 1.
  • Figures 5A-5B exemplarily show the timer maintenance process of the above method 2.
  • Fig. 4A and Fig. 5A exemplarily show a situation where the reception of the initial transmission of the Sidelink HARQ process a is unsuccessful.
  • Fig. 4B and Fig. 5B exemplarily show the successful reception of the initial transmission of the Sidelink HARQ process a.
  • the first terminal can monitor the PDCCH during the "On Duration" of the DRX cycle, and can receive an authorization for scheduling the initial transmission of the Sidelink HARQ process a (grant for initial transmission).
  • the TX UE can start the timer drx-InactivityTimer.
  • the TX UE monitors the PDCCH.
  • TX UE can be in the first time unit (such as the first symbol) after the HARQ feedback timing of Sidelink HARQ process a , Both enable drx-HARQ-RTT-TimerSL. If the reception of the initial transmission of the Sidelink HARQ process a is unsuccessful, for example, the RX UE fails to decode, the TX UE can turn on drx-RetransmissionTimerSL when the HARQ-RTT-TimerSL times out. If the reception of the initial transmission of the Sidelink HARQ process a is successful, the TX UE does not turn on the drx-RetransmissionTimerSL when the HARQ-RTT-TimerSL times out.
  • the TX UE can Sidelink the first time unit after the HARQ feedback opportunity of HARQ process a (e.g. 1 symbol), turn on drx-HARQ-RTT-TimerSL, and when HARQ-RTT-TimerSL times out, TX UE turns on drx-RetransmissionTimerSL. If the reception of the first transmission of the Sidelink HARQ process a is successful, the TX UE does not turn on drx-HARQ-RTT-TimerSL, nor does it turn on drx-RetransmissionTimerSL.
  • the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a can also be used to indicate whether the reception of the previous transmission of the Sidelink HARQ process a is successful or not.
  • the first terminal may also maintain the two timers drx-HARQ-RTT-TimerSL and drx-RetransmissionTimerSL according to the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a is NACK, the first terminal can turn on HARQ-RTT-TimerSL at the first time unit after the HARQ feedback opportunity of the Sidelink HARQ process a. If the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a is NACK, when the HARQ-RTT-TimerSL times out, the first terminal can turn on the drx-RetransmissionTimerSL.
  • the first terminal maintains a timer for each Sidelink HARQ process. During the running of the timer, the first terminal monitors the PDCCH. This timer may be referred to as a third timer.
  • FIG. 6 shows the specific flow of the discontinuous receiving method provided in the first embodiment. Expand below:
  • S201 Establish an RRC connection between the first terminal and the network device.
  • S202 Establish a Sidelink between the first terminal and the second terminal.
  • S203 The network device configures a DRX cycle for the first terminal in the RRC connected state.
  • the network device configures timers for the first terminal in the RRC connected state: drx-InactivityTimer, drx-RetransmissionTimerSL.
  • drx-RetransmissionTimerSL may be referred to as the third timer. How to maintain these timers will be introduced in the following content, so I won't expand it here.
  • stage 1 of the second embodiment please refer to stage 1 of the first embodiment, which will not be repeated here.
  • the first terminal may monitor and receive the PDCCH 1 issued by the network device.
  • the PDCCH 1 may indicate the resource scheduled for the ith transmission of a certain Sidelink HARQ process (for example, Sidelink HARQ process a), that is, the PDCCH 1 can be used to schedule the ith transmission of the Sidelink HARQ process a.
  • Sidelink HARQ process a can be associated with data a.
  • the Sidelink HARQ process a can be used by the first terminal to transmit data a to the second terminal on the Sidelink established in S202.
  • Sidelink HARQ process a can maintain two state variables: CURRENT_SL_TX_NB and SL_HARQ_FEEDBACK.
  • CURRENT_SL_TX_NB can indicate the number of transmissions of data a
  • CURRENT_SL_TX_NB can be initialized to 0.
  • SL_HARQ_FEEDBACK may indicate HARQ feedback of data a.
  • PDCCH 1 can carry the following information: SL grant 1, NDI, Sidelink HARQ process a ID.
  • SL grant 1 may indicate that the network device is the resource scheduled for the i-th transmission of the Sidelink HARQ process a.
  • the NDI may indicate whether the i-th transmission of the Sidelink HARQ process a scheduled by the PDCCH 1 is an initial transmission (initial transmission) or a retransmission (retransmission).
  • the first terminal may start the timer drx-InactivityTimer (ie, timer 1 in FIG. 6) when it monitors and receives the PDCCH 1.
  • the timer drx-InactivityTimer ie, timer 1 in FIG. 6
  • the first terminal is in the active state and monitors the PDCCH. In this way, the "On Duration" of the DRX cycle can be extended to extend the time that the first terminal is in the active state.
  • the first terminal may transmit data a to the second terminal through the Sidelink HARQ process a on the resource indicated by PDCCH 1, that is, perform the i-th transmission of data a.
  • the second terminal may receive the data a sent by the first terminal on the resource indicated by the PDCCH 1.
  • the first terminal may send HARQ feedback to the second terminal.
  • the HARQ feedback is used to indicate whether the second terminal successfully receives data a. If the HARQ feedback is ACK, it means that the second terminal successfully receives data a; if the HARQ feedback is NACK, it means that the second terminal has not successfully received data a.
  • stage 2 of the second embodiment please refer to the stage 2 of the first embodiment, which will not be repeated here.
  • the first terminal determines the HARQ feedback of the Sidelink HARQ process a.
  • the HARQ feedback of the sidelink HARQ process a is used to indicate whether the reception of the i-th transmission of data a is successful or not.
  • Regarding how to determine the HARQ feedback of the Sidelink HARQ process a please refer to the related content in the first embodiment, which will not be repeated here.
  • the first terminal may send the HARQ feedback of the Sidelink HARQ process a to the network device at the HARQ feedback timing of the Sidelink HARQ process a.
  • the network device may receive the HARQ feedback of the Sidelink HARQ process a sent by the first terminal at the HARQ feedback opportunity.
  • the first terminal may maintain a third timer: drx-RetransmissionTimerSL (that is, timer 4 in FIG. 6).
  • the third timer is associated with the Sidelink HARQ process a.
  • the time unit can be a symbol or a time slot.
  • the timing unit of the third timer can be a symbol, a time slot, or an absolute time unit (such as milliseconds).
  • the first terminal may turn on the drx-RetransmissionTimerSL. During the operation of drx-RetransmissionTimerSL, the first terminal monitors the PDCCH.
  • stage 3 of the second embodiment please refer to the stage 3 of the first embodiment, which will not be repeated here.
  • the first terminal may receive PDCCH2.
  • the resource indicated by the PDCCH 2 may be the resource scheduled by the network device for the i+1 transmission of the Sidelink HARQ process a, that is, the PDCCH 2 may be used to schedule the i+1 transmission of the Sidelink HARQ process a.
  • the first terminal may stop drx-RetransmissionTimerSL.
  • the first terminal may transmit data a to the second terminal through the Sidelink HARQ process a on the resource indicated by the PDCCH 2, that is, perform the i+1th transmission of the data a.
  • the second terminal can receive the data a sent by the first terminal on the resource indicated by the PDCCH 2.
  • stage 4 of the second embodiment please refer to stage 4 of the first embodiment, which will not be repeated here.
  • the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a can also be used to indicate whether the reception of the previous transmission of the Sidelink HARQ process a is successful or not.
  • the first terminal may also maintain the drx-RetransmissionTimerSL according to the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a is NACK, then at the first time unit after the HARQ feedback timing of the Sidelink HARQ process a, the first terminal can turn on drx-RetransmissionTimerSL.
  • FIG. 7A exemplarily shows a situation where the reception of the initial transmission of the Sidelink HARQ process a is unsuccessful.
  • FIG. 7B exemplarily shows the successful reception of the initial transmission of the Sidelink HARQ process a.
  • the first terminal can monitor the PDCCH during the "On Duration" period of the DRX cycle, and can receive the grant for initial transmission of the Sidelink HARQ process a (grant for initial transmission). ).
  • the TX UE can start the timer drx-InactivityTimer.
  • the TX UE monitors the PDCCH.
  • the TX UE can be turned on at the first time unit after the HARQ feedback timing of Sidelink HARQ process a drx-RetransmissionTimerSL. If the reception of the first transmission of the Sidelink HARQ process a is successful, the TX UE may not turn on drx-RetransmissionTimerSL.
  • the first terminal in the first time unit after the HARQ feedback timing of the Sidelink HARQ process a, can turn on the drx-RetransmissionTimerSL.
  • the first terminal monitors the PDCCH.
  • the first terminal starts from the first time unit after the HARQ feedback opportunity, the first terminal is in the active state and can monitor the PDCCH issued by the network device for scheduling the retransmission of the Sidelink HARQ process a. In this way, the retransmission efficiency of the Sidelink HARQ process a can be improved, and the delay of the sidelink data retransmission can be avoided.
  • the third embodiment can refer to the second embodiment. That is, in the third embodiment, for each Sidelink HARQ process configured as a HARQ retransmission mechanism based on sidelink HARQ feedback, the first terminal maintains a timer for each Sidelink HARQ process. During the running of the timer, the first terminal monitors the PDCCH.
  • the timer is drx-InactivityTimer. That is, if the reception of the previous transmission of the Sidelink HARQ process a is not successful, the drx-InactivityTimer can be turned on or restarted.
  • the first terminal monitors the PDCCH.
  • FIG. 8 shows the specific flow of the discontinuous receiving method provided in the first embodiment. Expand below:
  • S301 Establish an RRC connection between the first terminal and the network device.
  • S302 Establish a Sidelink between the first terminal and the second terminal.
  • S303 The network device configures a DRX cycle for the first terminal in the RRC connected state.
  • S304 The network device configures a timer: drx-InactivityTimer for the first terminal in the RRC connected state.
  • stage 1 of the fourth embodiment please refer to stage 1 of the first embodiment, which will not be repeated here.
  • the first terminal may monitor and receive the PDCCH 1 issued by the network device.
  • the PDCCH 1 may indicate the resource scheduled for the ith transmission of a certain Sidelink HARQ process (for example, Sidelink HARQ process a), that is, the PDCCH 1 can be used to schedule the ith transmission of the Sidelink HARQ process a.
  • Sidelink HARQ process a Sidelink HARQ process a
  • the first terminal may start the timer drx-InactivityTimer (ie, the timer 1 in FIG. 8) when it monitors and receives the PDCCH 1.
  • the timer drx-InactivityTimer ie, the timer 1 in FIG. 8
  • the first terminal is in the active state and monitors the PDCCH. In this way, the "On Duration" of the DRX cycle can be extended to extend the time that the first terminal is in the active state.
  • the first terminal may transmit data a to the second terminal through the Sidelink HARQ process a on the resource indicated by the PDCCH 1, that is, perform the i-th transmission of the data a.
  • the second terminal may receive the data a sent by the first terminal on the resource indicated by the PDCCH 1.
  • the first terminal may send HARQ feedback to the second terminal.
  • the HARQ feedback is used to indicate whether the second terminal successfully receives data a. If the HARQ feedback is ACK, it means that the second terminal successfully receives data a; if the HARQ feedback is NACK, it means that the second terminal has not successfully received data a.
  • stage 2 of the fourth embodiment please refer to the stage 2 of the first embodiment, which will not be repeated here.
  • the first terminal determines the HARQ feedback of the Sidelink HARQ process a.
  • the HARQ feedback of the sidelink HARQ process a is used to indicate whether the reception of the i-th transmission of data a is successful or not.
  • the first terminal may send the HARQ feedback of the Sidelink HARQ process a to the network device at the HARQ feedback timing of the Sidelink HARQ process a.
  • the network device may receive the HARQ feedback of the Sidelink HARQ process a sent by the first terminal at the HARQ feedback opportunity.
  • the first terminal may start to monitor the PDCCH at the first time unit after the HARQ feedback opportunity of the Sidelink HARQ process a.
  • the time unit can be a symbol, a time slot, or an absolute time unit (such as milliseconds).
  • stage 3 of the fourth embodiment please refer to the related content in the first embodiment, which will not be repeated here.
  • the first terminal may receive PDCCH2.
  • the resource indicated by the PDCCH 2 may be the resource scheduled by the network device for the i+1 transmission of the Sidelink HARQ process a, that is, the PDCCH 2 may be used to schedule the i+1 transmission of the Sidelink HARQ process a.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first terminal sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first terminal has received the response message for non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the first terminal may transmit data a to the second terminal through the Sidelink HARQ process a on the resource indicated by the PDCCH 2, that is, perform the i+1th transmission of the data a.
  • the second terminal can receive the data a sent by the first terminal on the resource indicated by the PDCCH 2.
  • stage 4 of the fourth embodiment reference may be made to the related content in the first embodiment, which will not be repeated here.
  • the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a can also be used to indicate whether the reception of the previous transmission of the Sidelink HARQ process a is successful or not.
  • the first terminal may also monitor the PDCCH according to the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a.
  • the specific implementation can be as follows: if the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a is NACK, then at the first time unit after the HARQ feedback opportunity of the Sidelink HARQ process a, the first terminal can start to monitor the PDCCH.
  • the first terminal can monitor the PDCCH.
  • the first terminal may stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first terminal sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first terminal has received the response message for non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • the state variable SL_HARQ_FEEDBACK associated with Sidelink HARQ process a is NACK, but the state variable CURRENT_SL_TX_NB associated with Sidelink HARQ process a indicates that the number of transmissions of data a has reached the maximum number of transmissions. In this case, and the following conditions are not met, the first terminal may stop monitoring the PDCCH.
  • Condition 1 One or more of the following timers are running: drx-onDurationTimer; drx-InactivityTimer; drx-RetransmissionTimerDL; drx-RetransmissionTimerUL, ra-ContentionResolutionTimer;
  • Condition 2 The first terminal sends a scheduling request on PUCCH, and the scheduling request is still pending;
  • Condition 3 The first terminal has received the response message for non-contention random access, but has not received the newly transmitted PDCCH that is scrambled by the C-RNTI.
  • Fig. 9 exemplarily shows a situation where the reception of the initial transmission of the Sidelink HARQ process a is unsuccessful.
  • the first terminal can monitor the PDCCH during the "On Duration" of the DRX cycle, and can receive the grant for initial transmission of the Sidelink HARQ process a (grant for initial transmission).
  • the TX UE can start the timer drx-InactivityTimer.
  • the TX UE monitors the PDCCH.
  • the TX UE can start monitoring the PDCCH in the first time unit after the HARQ feedback opportunity of Sidelink HARQ process a.
  • the first terminal may start to monitor the PDCCH at the first time unit after the HARQ feedback timing of the Sidelink HARQ process a. That is to say, if the reception of the previous transmission of Sidelink HARQ process a is unsuccessful, after the HARQ feedback opportunity, the first terminal is in the active state, and can monitor and receive the information sent by the network device for scheduling the Sidelink HARQ process a PDCCH retransmitted. In this way, the retransmission efficiency of the Sidelink HARQ process a can be improved, and the delay of the sidelink data retransmission can be avoided.
  • the initial value of the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a can be set to ACK.
  • SL_HARQ_FEEDBACK is ACK, it can indicate that the reception of the previous transmission of Sidelink HARQ process a is successful.
  • SL_HARQ_FEEDBACK is NACK, it may indicate that the reception of the previous transmission of the Sidelink HARQ process a is successful.
  • the following describes how the first terminal maintains the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a.
  • the first terminal can set SL_HARQ_FEEDBACK to ACK.
  • Case 1 The first terminal receives the HARQ feedback sent by the second terminal as ACK.
  • Case 2 The first terminal monitors and receives the PDCCH used to schedule the transmission (including initial transmission and retransmission) of the Sidelink HARQ process a.
  • the first terminal can set SL_HARQ_FEEDBACK to NACK.
  • Case 2 The first terminal does not receive the HARQ feedback sent by the second terminal.
  • the first terminal did not receive the HARQ feedback sent by the second terminal, which specifically may mean that the first terminal did not receive the HARQ feedback sent by the second terminal at the feedback timing of the HARQ feedback.
  • Case 3 The first terminal does not transmit data a associated with the Sidelink HARQ process a to the second terminal on the transmission resources allocated to the Sidelink HARQ process a.
  • the transmission resources allocated to the Sidelink HARQ process a can be used for the initial transmission or retransmission of the Sidelink HARQ process a.
  • the cause of case 3 may be resource conflict, that is, the first terminal transmits other data on the transmission resource allocated to Sidelink HARQ process a instead of data a.
  • the initial value of the state variable CURRENT_SL_TX_NB associated with the Sidelink HARQ process a can be set to 0.
  • the first terminal monitors and receives the PDCCH used to schedule the transmission (including initial transmission and retransmission) of the Sidelink HARQ process a
  • the first terminal may increase the CURRENT_SL_TX_NB associated with the Sidelink HARQ process a by 1.
  • the PDCCH used to schedule the transmission of the Sidelink HARQ process a may indicate the transmission resources allocated by the network device to the Sidelink HARQ process a.
  • the length of the symbol and the time slot may depend on the Numerology of the BWP parameter set of the bandwidth part of the Sidelink used to transmit the first data, such as subcarrier space (SCS).
  • the length of the symbol and time slot may also depend on the Numerology of the BWP parameter set of the uplink bandwidth part of the HARQ feedback sent by the first terminal to the network device, such as SCS.
  • the Sidelink HARQ process a may be referred to as the first Sidelink HARQ process, and the data a may be referred to as the first data.
  • PDCCH 2 may be called the first PDCCH
  • PDCCH 1 may be called the second PDCCH.
  • the HARQ feedback sent by the second terminal to the first terminal may be referred to as the first feedback.
  • FIG. 10 shows a terminal 300 provided by some embodiments of the present application.
  • the terminal 300 may be implemented as the first terminal mentioned in the foregoing method embodiment, or may be implemented as the second terminal mentioned in the foregoing method embodiment. Specifically, it may be the terminal 103 in the wireless communication system 100 shown in FIG. Such as vehicle terminal).
  • the terminal 300 may include: an input and output module (including an audio input and output module 318, a key input module 316, a display 320, etc.), a user interface 302, one or more terminal processors 304, a transmitter 306, and a receiver 308, coupler 310, antenna 314, and memory 312. These components can be connected via a bus or in other ways.
  • Fig. 10 uses a bus connection as an example. among them:
  • the antenna 314 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 310 is used to divide the mobile communication signal received by the antenna 314 into multiple channels and distribute them to multiple receivers 308.
  • the transmitter 306 may be used to transmit and process the signal output by the terminal processor 304, such as signal modulation.
  • the receiver 308 may be used to perform receiving processing on the mobile communication signal received by the antenna 314, such as signal demodulation.
  • the transmitter 306 and the receiver 308 can be regarded as one wireless modem.
  • the number of the transmitter 306 and the receiver 308 may each be one or more.
  • the communication functions of the transmitter 306 and the receiver 308 can be applied to one or more of the following communication systems: Global System for Mobile Communication (GSM) (2G), Wideband Code Division Multiple Access, WCDMA) (3G), and Long Term Evolution (LTE) (4G), 5G or future new air interfaces.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the terminal 300 may also include other communication components, such as a GPS module, a Bluetooth (Bluetooth) module, a wireless high-fidelity (Wireless Fidelity, Wi-Fi) module, etc. Not limited to the above-mentioned wireless communication signals, the terminal 300 may also support other wireless communication signals, such as satellite signals, shortwave signals, and so on. Not limited to wireless communication, the terminal 300 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement the interaction between the terminal 300 and the user/external environment, and can mainly include an audio input and output module 318, a key input module 316, a display 320, and so on.
  • the input/output module may also include a camera, a touch screen, a sensor, and so on.
  • the input and output modules all communicate with the terminal processor 304 through the user interface 302.
  • the memory 312 is coupled with the terminal processor 304, and is used to store various software programs and/or multiple sets of instructions.
  • the memory 312 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 312 may store an operating system (hereinafter referred to as system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • system such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 312 may also store a network communication program, and the network communication program may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 312 can also store a user interface program, which can vividly display the content of the application program through a graphical operation interface, and receive user control operations on the application program through input controls such as menus
  • the memory 312 may be used to store the discontinuous reception method provided by one or more embodiments of the present application.
  • the first terminal side implementation program In the case where the terminal 300 is implemented as the second terminal mentioned in the foregoing method embodiment, the memory 312 may be used to store the implementation program of the discontinuous reception method provided by one or more embodiments of the present application on the second terminal side.
  • the discontinuous reception method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • the terminal processor 304 can be used to read and execute computer-readable instructions. Specifically, the terminal processor 304 may be used to call a program stored in the memory 312, such as an implementation program of the discontinuous reception method provided in one or more embodiments of the present application, and execute instructions contained in the program.
  • the terminal processor 304 may be a modem (Modem) processor, which is a module that implements the main functions in wireless communication standards such as 3GPP and ETSI. Modem can be used as a separate chip, or it can be combined with other chips or circuits to form a system-level chip or integrated circuit. These chips or integrated circuits can be applied to all devices that implement wireless communication functions, including: vehicle terminals, mobile phones, computers, notebooks, tablets, routers, wearable devices, home appliances, etc. It should be noted that, in different implementation manners, the terminal processor 304 processor can be used as a separate chip, coupled with the off-chip memory, that is, the chip does not contain memory; or the terminal processor 304 processor is coupled with the on-chip memory. Integrated in the chip, that is, the chip contains memory.
  • the terminal 300 may be implemented as the terminal 103 in the wireless communication system 100 shown in FIG. 1.
  • the terminal 300 shown in FIG. 10 is only an implementation manner of the present application. In actual applications, the terminal 300 may also include more or fewer components, which is not limited here.
  • FIG. 11 shows a network device 400 provided by some embodiments of the present application.
  • the network device 400 may include: one or more network device processors 401, a transmitter 407, a receiver 409, a coupler 411, an antenna 413, and a memory 405. These components can be connected through a bus or in other ways.
  • FIG. 11 uses a bus connection as an example. among them:
  • the antenna 413 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 411 can be used to divide the mobile communication signal into multiple channels and distribute them to multiple receivers 409.
  • the transmitter 407 may be used to transmit the signal output by the network device processor 401, such as signal modulation.
  • the receiver 409 may be used for receiving and processing the mobile communication signal received by the antenna 413, such as signal demodulation.
  • the transmitter 407 and the receiver 409 can be regarded as a wireless modem.
  • the number of the transmitter 407 and the receiver 409 may each be one or more.
  • the communication function of the transmitter 407 and the receiver 409 can be applied to one or more of the following communication systems: Global System for Mobile Communication (GSM) (2G), Wideband Code Division Multiple Access (Wideband Code Division) Multiple Access, WCDMA) (3G), and Long Term Evolution (LTE) (4G), 5G or future new air interfaces.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the memory 405 is coupled with the network device processor 401, and is used to store various software programs and/or multiple sets of instructions.
  • the memory 405 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 405 may store an operating system (hereinafter referred to as the system), such as embedded operating systems such as uCOS, VxWorks, RTLinux, etc.
  • the memory 405 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the network device processor 401 may be used to perform wireless channel management, implement call and communication link establishment and teardown, and control the handover of user equipment in the control area.
  • the network device processor 401 may include: management/communication module (Administration Module/Communication Module, AM/CM) (for voice channel exchange and information exchange center), basic module (Basic Module, BM) (use To complete call processing, signaling processing, radio resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexer (Transcoder and SubMultiplexer, TCSM) (used to complete multiplexing, demultiplexing and code conversion Function) and so on.
  • management/communication module administering Module/Communication Module, AM/CM
  • Basic Module Basic Module
  • TCSM code conversion and submultiplexer
  • the network device processor 401 may be used to read and execute computer-readable instructions. Specifically, the network device processor 401 may be used to call a program stored in the memory 405, such as the implementation program of the discontinuous reception method provided by one or more embodiments of the present application on the network device 400 side, and execute the program included in the program. instruction.
  • the network device processor 401 may be a modem (Modem) processor, and is a module that implements main functions in wireless communication standards such as 3GPP and ETSI. Modem can be used as a separate chip, or it can be combined with other chips or circuits to form a system-level chip or integrated circuit. These chips or integrated circuits can be applied to all network-side devices that implement wireless communication functions. For example, in LTE networks, they are called evolved NodeBs (evolved NodeBs, eNBs or eNodeBs). In the 3rd Generation, 3G In a network, it is called a Node B (Node B), etc. In a 5G network, it is called a 5G base station (NR NodeB, gNB).
  • eNB evolved NodeBs
  • the network device processor 401 may be used as a separate chip and coupled with off-chip memory, that is, the chip does not contain memory; or the network device processor 401 may be coupled with the on-chip memory. Integrated in the chip, that is, the chip contains memory.
  • the network device 400 may be the network device 101 in the wireless communication system 100 shown in FIG. 1.
  • the network device 400 shown in FIG. 11 is only an implementation manner of the present application. In actual applications, the network device 400 may also include more or fewer components, which is not limited here.
  • FIG. 12 is a wireless communication system 10 provided by an embodiment of the present application, and a terminal 500, a terminal 600, and a network device 700 in the wireless communication system 10.
  • the network device 700 may be the network device in the foregoing method embodiment, and the terminal 500 and the terminal 600 may be the first terminal (TX UE) and the second terminal (RX UE) in the foregoing method embodiment, respectively.
  • the terminal 500 and the terminal 600 may establish a Sidelink connection based on the PC5 interface.
  • the terminal 500 and the network device 700 may establish an RRC connection before, and the terminal 500 may be in an RRC connection state.
  • the terminal 600 may also establish an RRC connection with the network device 700 before.
  • the terminal 600 may also be outside the communication coverage area of the network device 700.
  • the terminal 500 may include: a processing unit 501 and a communication unit 503.
  • each functional unit may be as follows:
  • the processing unit 501 may be configured to start the first timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the processing unit 501 may also be configured to start the second timer if the first timer expires and the HARQ feedback is NACK. NACK indicates that the reception of the previous transmission of the first Sidelink HARQ process was not successful;
  • the communication unit 503 can be used to monitor the PDCCH during the running of the second timer;
  • the first timer and the second timer are associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process is associated with the first data.
  • the first Sidelink HARQ process is used for the terminal 500 to send the first data to the terminal 600.
  • the HARQ feedback occasion is used by the terminal 500 to send the HARQ feedback of the first Sidelink HARQ process to the network device.
  • HARQ feedback is used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the processing unit 501 may be specifically configured to start the first timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • the following describes several implementation manners for the processing unit 501 to maintain the first timer and the second timer.
  • the processing unit 501 may turn on drx-HARQ-RTT-TimerSL. If the HARQ feedback of the first Sidelink HARQ process is NACK, when the drx-HARQ-RTT-TimerSL times out, the processing unit 501 can turn on the drx-RetransmissionTimerSL. During the operation of drx-RetransmissionTimerSL, the communication unit 503 can monitor the PDCCH.
  • the processing unit 501 may start the first timer at the first time unit after the HARQ feedback timing of the first Sidelink HARQ process.
  • the processing unit 501 may start the second timer.
  • the communication unit 503 monitors the PDCCH.
  • the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process can also be used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the processing unit 501 is not limited to the foregoing manner 1 and manner 2, and the processing unit 501 may also maintain the first timer and the second timer according to the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process.
  • the specific implementation may be as follows: if the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, the processing unit 501 may start the first timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process. If the state variable SL_HARQ_FEEDBACK associated with the first Sidelink HARQ process is NACK, the processing unit 501 may start the second timer when the first timer expires.
  • each functional unit may be as follows:
  • the processing unit 501 may be configured to start a third timer at the first time unit after the HARQ feedback opportunity of the first sidelink hybrid automatic repeat request Sidelink HARQ process.
  • the communication unit 502 can be used to monitor the PDCCH during the running of the third timer.
  • the third timer is associated with the first Sidelink HARQ process.
  • the processing unit 501 may be specifically configured to start the third timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback is NACK.
  • the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a can also be used to indicate whether the reception of the previous transmission of the Sidelink HARQ process a is successful or not.
  • the first terminal may also maintain the third timer according to the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a.
  • the specific implementation may be as follows: if the state variable SL_HARQ_FEEDBACK associated with the Sidelink HARQ process a is NACK, the first terminal may start the third timer at the first time unit after the HARQ feedback opportunity of the Sidelink HARQ process a.
  • each functional unit may be as follows:
  • the processing unit 501 may be used to determine the HARQ feedback of the first Sidelink HARQ process.
  • the communication unit 503 can be used to start monitoring the PDCCH at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process if the HARQ feedback of the first Sidelink HARQ process is NACK;
  • the communication unit 503 may also be used to stop monitoring the PDCCH when the first PDCCH is monitored; the first PDCCH is used to schedule the transmission resources of the first side uplink HARQ process.
  • the processing unit 501 may be specifically configured to determine that the HARQ feedback of the first Sidelink HARQ process is NACK in any of the following situations, that is, to determine that the reception of the previous transmission of the first Sidelink HARQ process is not successful:
  • Case 1 The terminal 500 receives the HARQ feedback sent by the terminal 600 as NACK.
  • the HARQ feedback is used to indicate whether the previous transmission of data associated with the first Sidelink HARQ process was successfully received by the terminal 600.
  • the HARQ feedback is NACK, it may indicate that the terminal 600 has not successfully received the data associated with the first Sidelink HARQ process.
  • the terminal 600 did not successfully receive the data associated with the first Sidelink HARQ process.
  • the reasons may include but are not limited to: the terminal 600 did not successfully decode the data, and the terminal 600 did not receive the data on the first resource.
  • the first resource is a resource scheduled by the network device for the previous transmission of the first Sidelink HARQ process.
  • Case 2 The terminal 500 does not receive the HARQ feedback sent by the terminal 600.
  • the terminal 500 did not receive the HARQ feedback sent by the terminal 600, which specifically may mean that the terminal 500 did not receive the HARQ feedback sent by the terminal 600 at the feedback timing of the first Sidelink HARQ process.
  • the feedback timing of the first Sidelink HARQ process can be configured by the network device.
  • Case 3 The terminal 500 does not transmit the Sidelink data to the terminal 600 on the first resource.
  • the first resource is a resource scheduled by the network device for the previous transmission of the first Sidelink HARQ process.
  • the cause of case 3 may be resource conflict, that is, the terminal 500 transmits other data on the first resource instead of data a.
  • the processing unit 501 may be specifically configured to determine that the HARQ feedback of the first Sidelink HARQ process is ACK in the following cases, and then determine that the reception of the previous transmission of the first Sidelink HARQ process is successful: the terminal 500 receives the HARQ sent by the terminal 600 The feedback is ACK.
  • the HARQ feedback is ACK, it may indicate that the terminal 600 successfully receives the data associated with the first Sidelink HARQ process.
  • the network device 700 may include: a processing unit 701 and a communication unit 703. among them:
  • the processing unit 701 may be used to allocate resources for transmission (including initial transmission and retransmission) of the first Sidelink HARQ process.
  • the processing unit 701 may also be used for the terminal 500 in the RRC connected state to configure DRX cycle and timers: drx-InactivityTimer, drx-HARQ-RTT-TimerSL, drx-RetransmissionTimerSL.
  • the communication unit 701 can be used to issue a resource grant on the PDCCH, and the resource grant can be carried in the downlink control information DCI.
  • the resource authorization may indicate resources allocated by the network device 700 for transmission (including initial transmission and retransmission) of the first Sidelink HARQ process.
  • the terminal 600 may include: a processing unit 601 and a communication unit 603. among them:
  • the communication unit 603 may be used to receive the first data sent by the terminal 500.
  • the processing unit 601 may be used to decode the received first data.
  • the communication unit 603 may also be used to send HARQ feedback to the terminal 500 to indicate whether the terminal 600 successfully receives the first data.
  • each functional unit included in the terminal 500, the terminal 600, and the network device 700 may refer to the foregoing method embodiments, and details are not described herein again.
  • an embodiment of the present invention also provides a wireless communication system.
  • the wireless communication system may be the wireless communication system 100 shown in FIG. 1 or the wireless communication system 10 shown in FIG. 12, which may include: Terminal, second terminal and network equipment.
  • the first terminal may be the first terminal in the foregoing embodiment
  • the second terminal may be the second terminal in the foregoing embodiment
  • the network device may be the network device in the foregoing embodiment.
  • the first terminal may be the terminal 300 shown in FIG. 10
  • the second terminal may be the terminal 300 shown in FIG. 10
  • the network device may be the network device 400 shown in FIG. 10.
  • the following uses the first embodiment of the foregoing method as an example to describe the specific implementation of the first terminal, the second terminal, and the network device in the wireless communication system.
  • the terminal processor 304 is configured to call instructions stored in the memory 312 to control the transmitter 306 to send and to control the receiver 308 to receive.
  • the transmitter 306 is used to support the terminal to perform a process of transmitting data and/or signaling.
  • the receiver 308 is used to support the terminal to perform a process of receiving data and/or signaling.
  • the memory 312 is used to store program codes and data of the terminal.
  • the terminal processor 304 may be configured to, if the HARQ feedback is NACK, start the first timer at the first time unit after the HARQ feedback opportunity of the first Sidelink HARQ process.
  • the terminal processor 304 may also be configured to start the second timer if the first timer expires and the HARQ feedback is NACK. NACK indicates that the reception of the previous transmission of the first Sidelink HARQ process was unsuccessful.
  • the receiver 308 can be used to monitor the PDCCH during the running of the second timer.
  • the first timer and the second timer are associated with the first Sidelink HARQ process.
  • the first Sidelink HARQ process associates the first data.
  • the first Sidelink HARQ process is used for the terminal 500 to send the first data to the terminal 600.
  • the HARQ feedback occasion is used by the terminal 500 to send the HARQ feedback of the first Sidelink HARQ process to the network device.
  • HARQ feedback is used to indicate whether the reception of the previous transmission of the first Sidelink HARQ process is successful or not.
  • the first terminal is in the active state and can monitor and receive the PDCCH issued by the network device during this period for scheduling the retransmission of the Sidelink HARQ process a.
  • the retransmission efficiency of the Sidelink HARQ process a can be improved, and the delay of the sidelink data retransmission can be avoided.
  • the terminal processor 304 is used to call the instructions stored in the memory 312 to control the transmitter 306 to send and to control the receiver 308 to receive.
  • the transmitter 306 is used to support the terminal to perform a process of transmitting data and/or signaling.
  • the receiver 308 is used to support the terminal to perform a process of receiving data and/or signaling.
  • the memory 312 is used to store program codes and data of the terminal.
  • the receiver 308 may be used to receive the first data sent by the first terminal.
  • the terminal processor 304 may be used to decode the received first data.
  • the transmitter 306 may be used to send HARQ feedback to the first terminal to indicate whether the first data is successfully received.
  • the network device processor 401 is used to call the instructions stored in the memory 405 to control the transmitter 407 to send and to control the receiver 409 to receive.
  • the transmitter 407 is used to support the network device to perform the process of transmitting data and/or signaling.
  • the receiver 409 is used to support the network device to perform a process of receiving data and/or signaling.
  • the memory 405 is used to store program codes and data of the terminal.
  • the network device processor 401 may be used to allocate resources for the transmission (including initial transmission and retransmission) of the first Sidelink HARQ process.
  • the network device processor 401 may also be used to configure the DRX cycle for the first terminal in the RRC connected state, and configure the timers: drx-InactivityTimer, drx-HARQ-RTT-TimerSL, drx-RetransmissionTimerSL.
  • the transmitter 407 can be used to issue a resource grant on the PDCCH, and the resource grant can be carried in the downlink control information DCI.
  • the resource authorization may indicate the resources allocated by the network device for the transmission (including initial transmission and retransmission) of the first Sidelink HARQ process.
  • the device may include: a processor, and a memory coupled to the processor. among them:
  • the processor can be used to read and execute computer readable instructions.
  • the processor may mainly include a controller, arithmetic unit, and registers.
  • the controller is mainly responsible for instruction decoding, and sends out control signals for the operation corresponding to the instruction.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logical operations, etc., and can also perform address operations and conversions.
  • the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor may be an Application Specific Integrated Circuits (ASIC) architecture, MIPS architecture, ARM architecture, or NP architecture, etc.
  • the processor can be single-core or multi-core.
  • the memory can be used to store computer readable instructions.
  • the memory may include high-speed random access memory, solid-state storage devices, and so on.
  • the instruction stored in the memory may be an implementation program of the discontinuous receiving method provided in the foregoing method embodiments.
  • the processor may also be coupled with one or more interfaces.
  • the interface can be a General Purpose Input Output (GPIO) interface, which can be connected to multiple peripheral devices (such as radio frequency modules, etc.).
  • GPIO General Purpose Input Output
  • the interface may also include multiple independent interfaces, such as an Ethernet interface, a mobile communication interface (such as an X1 interface), etc., which are respectively responsible for the communication between different peripheral devices and the processor.
  • the processor can be used to read and execute computer readable instructions stored in the memory. Specifically, the processor may be used to call and execute instructions stored in the memory, so that the device executes the discontinuous reception methods provided in the foregoing various method embodiments.
  • the interface can be used to output the execution result of the processor.
  • the device may be implemented as the first terminal in the foregoing method embodiment, may also be implemented as the second terminal in the foregoing method embodiment, and may also be implemented as the network device in the foregoing method embodiment. It should be noted that the function of the device can be realized by hardware design, can also be realized by software design, and can also be realized by a combination of software and hardware, which is not limited here.
  • the first terminal may also be referred to as the first device
  • the second terminal may also be referred to as the second device.
  • the steps of the method or algorithm described in combination with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the transceiver or relay device.
  • the processor and the storage medium may also exist as discrete components in the wireless access network device or terminal device.
  • Computer readable media include computer storage media and communication media, where communication media includes any media that facilitates the transfer of computer programs from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请涉及非连续接收方法,在侧行链路混合自动重传请求进程的HARQ反馈时机后的第一个时间单元,如第1个符号,第一终端可开启drx-HARQ-RTT-TimerSL,并在drx-HARQ-RTT-TimerSL超时时开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一终端监听物理下行控制信道。这样,可提高Sidelink重传的效率,避免增加Sidelink重传的延迟,更好支持基于Sidelink的应用,如无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联驾驶、智能网联驾驶、汽车共享等人工智能领域。

Description

非连续接收方法、相关装置及系统
本申请要求于2019年08月16日提交中国专利局、申请号为201910772053.8、申请名称为“非连续接收方法、相关装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种非连续接收方法、相关装置及系统。
背景技术
在长期演进(long term evolved,LTE)系统或新空口(new radio,NR)系统中,用户设备(user equipment,UE)和基站(eNB/gNB)之间的通信接口称为Uu口,UE和UE之间的通信接口称为PC5口。Uu接口上UE发送数据给基站的链路称为上行链路(Uplink),而UE接收基站发送的数据的链路称为下行链路(Downlink)。PC5口上的UE和UE之间传输数据的链路称为侧行链路(Sidelink)。PC5口一般用于车辆到一切(vehicle to everything,V2X),或者设备到设备(device to device,D2D)等可以在设备间进行直联通信的场景。
Sidelink的资源分配方式有两种。一种是UE在资源池中自主选择资源的分配方式,即由UE自己在网络通过系统消息或者专用信令配置或者预配置的资源池中自己选择资源来传输Sidelink的数据。另一种是基于基站调度的资源分配方式,即由基站为传输用户设备TXUE调度Sidelink资源来传输Sidelink的数据。在基站调度这种Sidelink的资源分配方式中,基站在物理下行控制信道(physical downlink control channel,PDCCH)下发下行控制信息(downlink control information,DCI)来动态的分配资源,TXUE需要监听PDCCH以获得基站下发的授权(grant)。
在Uu接口上,为了降低UE一直监听PDCCH所造成的功率消耗,目前3GPP所采用的一种方式是非连续接收(discontinous reception,DRX)机制。但是,在Sidelink重传场景下,当基站下发用于调度Sidelink数据的重传的PDCCH时,现有的DRX机制可能会导致TX UE已进入休眠状态,不再监听PDCCH,从而导致TXUE在Sidelink上的数据重传被延迟。
发明内容
本申请提供了一种非连续接收方法、相关装置及系统,可提高Sidelink上的数据重传的效率,避免增加Sidelink数据重传的延迟。
第一方面,本申请提供了一种非连续接收方法,该方法可包括:在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元(例如第一个符号),第一装置可以启动drx-HARQ-RTT-TimerSL。如果drx-HARQ-RTT-TimerSL超时,且第一SidelinkHARQ进程的HARQfeedback为不确认NACK,第一装置启动drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一装置监听下行物理控制信道PDCCH。
其中,第一装置可以是终端设备,例如手机、可穿戴设备、车辆等用户设备,或者可以设置于终端设备上的芯片。
其中,第一Sidelink HARQ进程关联第一数据。drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL与第一Sidelink HARQ进程关联。
其中,第一Sidelink HARQ进程可用于第一装置(TX UE)向第二装置(RX UE)发送第一数据。HARQ反馈时机occasion可用于第一装置向网络设备发送第一Sidelink HARQ进程的HARQ反馈feedback。HARQ feedback可用于指示第一Sidelink HARQ进程的前一次传输的接收成功与否。HARQ feedback为NACK时,可指示第一Sidelink HARQ进程的前一次传输的接收未成功。
第一方面中,时间单元可以是符号或者时隙。符号和时隙的长度可以取决于用于传输所述数据的Sidelink的带宽部分BWP的参数集Numerology。符号和时隙的长度也可以取决于第一装置向所述网络设备发送所述HARQ feedback的上行链路带宽部分BWP的参数集Numerology。
第一方面中,第一装置和网络设备之间建立了RRC连接。第一装置处于RRC连接态。第一装置与第二装置之间建立Sidelink。网络设备为处于RRC连接态的第一装置配置DRX cycle。DRX cycle由“On Duration”和“Opportunity for DRX”组成:在“On Duration”内,第一装置监听并接收PDCCH(激活态);在“Opportunity for DRX”内,第一装置不接收下行信道的数据以节省功耗(休眠态)。
第一方面中,网络设备为处于RRC连接态的第一装置配置计时器:drx-InactivityTimer、drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL。drx-HARQ-RTT-TimerSL可称为第一计时器,drx-RetransmissionTimerSL可称为第二计时器。
第一方面中,第一装置还可以向网络设备发送资源调度请求,以请求网络设备为第一数据传输调度传输资源。相应的,在接收到该资源调度请求之后,网络设备可以为Sidelink传输调度资源,并在PDCCH中下发所调度的资源。第一装置可以通过监听PDCCH来获知网络设备调度的资源。
实施第一方面提供的方法,在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可开启drx-HARQ-RTT-TimerSL,并在drx-HARQ-RTT-TimerSL超时时开启drx-RetransmissionTimerSL。也即是说,在HARQ反馈时机后,在drx-RetransmissionTimerSL运行期间,第一装置处于active态,能够监听并接收到网络设备在此期间下发的用于调度第一Sidelink HARQ进程的重传的PDCCH。这样,可提高第一Sidelink HARQ进程的重传的效率,避免增加Sidelink数据重传的延迟。
结合第一方面,在一些实施例中,第一装置启动第一计时器的具体实现可包括:如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,第一装置启动所述第一计时器。
结合第一方面,在一些实施例中,当所述第一装置监听到第一PDCCH时,所述第一装置可以停止所述第二定时器。所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
结合第一方面,在一些实施例中,在第一Sidelink HARQ进程的HARQ反馈时机之前,所述第一装置还可监听到第二PDCCH。所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
结合第一方面,在一些实施例中,第一装置可以通过下述方式确定第一Sidelink HARQ进程的HARQ反馈:
(1)在以下任一情况下,第一装置可确定第一Sidelink HARQ进程的HARQ反馈为NACK,即可确定第一Sidelink HARQ进程的前一次传输的接收未成功:
情况1:第一装置接收到第二装置发送的HARQ反馈为NACK。
该HARQ反馈用于指示第一Sidelink HARQ进程关联的数据的前一次传输是否被第二装置成功接收。HARQ反馈为NACK时,可指示第二装置未成功接收第一Sidelink HARQ进程关联的数据。第二装置未成功接收第一Sidelink HARQ进程关联的数据,其原因可包括但不限于:第二装置未成功解码该数据。这里,第一资源是网络设备为第一Sidelink HARQ进程的前一次传输所调度的资源。
情况2:第一装置没有接收到第二装置发送的HARQ反馈。
情况2发生时,图3中的S108不存在。第一装置没有接收到第二装置发送的HARQ反馈,具体可以是指,第一装置在第一Sidelink HARQ进程的反馈时机没有收到第二装置发送的HARQ反馈。第一Sidelink HARQ进程的反馈时机可由网络设备配置。
情况3:第一装置在第一资源上未向第二装置传输该Sidelink数据。
情况3发生时,图3中的S107不存在,S108也相应不存在。这里,第一资源是网络设备为第一Sidelink HARQ进程的前一次传输所调度的资源。情况3出现的原因可以为资源冲突,即第一装置在第一资源上传输其他数据,而非数据a。
(2)在以下情况下,第一装置可确定第一Sidelink HARQ进程的HARQ反馈为ACK,即可确定第一Sidelink HARQ进程的前一次传输的接收成功:
第一装置接收到第二装置发送的HARQ反馈为ACK。该HARQ反馈为ACK时,可指示第二装置成功接收第一Sidelink HARQ进程关联的数据。
结合第一方面,在一些实施例中,第一装置可以通过下述方式维护drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL这两个计时器的几种实现方式。
方式1
在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,第一装置可开启drx-HARQ-RTT-TimerSL。如果第一Sidelink HARQ进程的HARQ反馈为NACK,则当drx-HARQ-RTT-TimerSL超时时,第一装置可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一装置监听PDCCH。
方式2
如果Sidelink HARQ进程的HARQ反馈为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,第一装置可开启drx-HARQ-RTT-TimerSL。当drx-HARQ-RTT-TimerSL超时时,第一装置可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一装置监听PDCCH。
不限于第一Sidelink HARQ进程的HARQ反馈,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK也可用来指示第一Sidelink HARQ进程的前一次传输的接收成功与否。状态变量SL_HARQ_FEEDBACK可以称为第一变量。
不限于上述方式1、方式2,第一装置也可以根据第一Sidelink HARQ进程关联的状态 变量SL_HARQ_FEEDBACK,来维护drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL这两个计时器。具体实现可如下:如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可以开启HARQ-RTT-TimerSL。如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在HARQ-RTT-TimerSL超时时,第一装置可以开启drx-RetransmissionTimerSL。
结合第一方面,在一些实施例中,drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL这两个计时器的时间单位有如下几种实现方式:
方式1:drx-HARQ-RTT-TimerSL的单位可以为符号(symbol),drx-RetransmissionTimerSL的单位可以为时隙(slot)。符号和时隙的长度可以取决于用于传输所述数据的Sidelink的带宽部分BWP的参数集Numerology。
方式2:drx-HARQ-RTT-TimerSL的单位可以为符号(symbol),drx-RetransmissionTimerSL的单位可以为时隙(slot)。符号和时隙的长度也可以取决于第一装置向所述网络设备发送所述HARQ feedback的上行链路带宽部分BWP的参数集Numerology。
方式3:这两个计时器的单位可以为绝对时间长度,例如毫秒ms。
第二方面,本申请提供了一种装置,该装置可以是第一方面中的第一装置。该装置可以包括多个功能单元,以实现上述第一方面描述的方法。该装置可包括:处理单元和通信单元,其中,处理单元可以为处理器,或由一个或多个具有处理能力的模块组成的单元;通信单元可以为收发器,或由一个或多个具有收发功能的模块组成的单元。
处理单元,可用于在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,启动第一计时器。处理单元,还可用于如果第一计时器超时,且所述HARQfeedback为NACK,启动所述第二计时器。
通信单元,可用于在所述第二计时器运行期间,监听PDCCH。
其中,所述第一计时器、所述第二计时器与所述第一Sidelink HARQ进程关联。所述第一Sidelink HARQ进程关联第一数据。所述第一Sidelink HARQ进程用于所述第一装置向第二装置发送所述第一数据。所述HARQ反馈时机occasion用于所述第一装置向网络设备发送所述第一Sidelink HARQ进程的HARQfeedback。所述HARQ feedback用于指示所述第一Sidelink HARQ进程的前一次传输的接收成功与否。
结合第二方面,在一些实施例中,处理单元具体可用于如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第一计时器。
结合第二方面,在一些实施例中,处理单元如何确定所述第一Sidelink HARQ进程的HARQfeedback为NACK,可参考第一方面中的相关内容,这里不再赘述。
结合第二方面,在一些实施例中,第一Sidelink HARQ进程与第一变量关联,所述第一变量用于记录所述第一Sidelink HARQ进程的前一次传输的接收成功与否。当所述第一变量为NACK时,表示所述第一Sidelink HARQ进程的前一次传输不成功。
结合第二方面,在一些实施例中,处理单元具体可用于如果所述第一变量为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第一计时器。
结合第二方面,在一些实施例中,处理单元具体可用于如果第一计时器超时,且所述第一变量为NACK,启动所述第二计时器。
结合第二方面,在一些实施例中,处理单元具体还可用于当所述第一装置监听到第一PDCCH时,停止所述第二定时器;所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
结合第二方面,在一些实施例中,通信单元还可用于在第一Sidelink HARQ进程的HARQ反馈时机之前,监听到第二PDCCH,所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
结合第二方面,在一些实施例中,通信单元还可用于:在所述HARQ反馈时机,向所述网络设备发送所述第一Sidelink HARQ进程的HARQfeedback;或者,在所述HARQ反馈时机,传输第二数据,所述第二数据不是所述第一Sidelink HARQ进程的HARQfeedback。
第二方面中未提及的一些细节,可参考第一方面,这里不再赘述。
第三方面,提供了一种装置,该装置可以是第一方面中的第一装置,可用于执行第一方面描述的非连续接收方法。该装置可以称为第一装置。第一装置可包括:存储器以及与存储器耦合的处理器、发射器和接收器,其中:发射器用于与向另一无线通信设备发送信号,接收器用于接收另一无线通信设备发送的信号,存储器用于存储第一方面描述的非连续接收方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面可能的实施方式中的任意一种所描述的非连续接收方法。
具体的,处理器可用于在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,启动第一计时器。处理器还可用于如果第一计时器超时,且所述HARQfeedback为NACK,启动所述第二计时器。
具体的,接收器可用于在所述第二计时器运行期间,监听PDCCH。
具体的,发射器可用于通过第一Sidelink HARQ进程向第二装置传输第一数据。
其中,所述第一计时器、所述第二计时器与所述第一Sidelink HARQ进程关联。所述第一Sidelink HARQ进程关联第一数据。所述第一Sidelink HARQ进程用于所述第一装置向第二装置发送所述第一数据。所述HARQ反馈时机occasion用于所述第一装置向网络设备发送所述第一Sidelink HARQ进程的HARQfeedback。所述HARQ feedback用于指示所述第一Sidelink HARQ进程的前一次传输的接收成功与否。
结合第三方面,在一些实施例中,处理器具体可用于如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第一计时器。
结合第三方面,在一些实施例中,处理器处理单元如何确定所述第一Sidelink HARQ进程的HARQfeedback为NACK,可参考第一方面中的相关内容,这里不再赘述。
结合第三方面,在一些实施例中,第一Sidelink HARQ进程与第一变量关联,所述第 一变量用于记录所述第一Sidelink HARQ进程的前一次传输的接收成功与否。当所述第一变量为NACK时,表示所述第一Sidelink HARQ进程的前一次传输不成功。
结合第三方面,在一些实施例中,处理器具体可用于如果所述第一变量为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第一计时器。
结合第三方面,在一些实施例中,处理器具体可用于如果第一计时器超时,且所述第一变量为NACK,启动所述第二计时器。
结合第三方面,在一些实施例中,处理器具体还可用于当所述第一装置监听到第一PDCCH时,停止所述第二定时器;所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
结合第三方面,在一些实施例中,接收器还可用于在第一Sidelink HARQ进程的HARQ反馈时机之前,监听到第二PDCCH,所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
结合第三方面,在一些实施例中,发射器还可用于:在所述HARQ反馈时机,向所述网络设备发送所述第一Sidelink HARQ进程的HARQfeedback;或者,在所述HARQ反馈时机,传输第二数据,所述第二数据不是所述第一Sidelink HARQ进程的HARQfeedback。
第三方面中未提及的一些细节,可参考第一方面,这里不再赘述。
第四方面,本申请提供了一种非连续接收方法,该方法可包括:在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元(例如第一个符号),第一装置可以启动drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一装置监听下行物理控制信道PDCCH。
其中,第一Sidelink HARQ进程关联第一数据。drx-RetransmissionTimerSL与第一Sidelink HARQ进程关联。
其中,第一Sidelink HARQ进程可用于第一装置(TX UE)向第二装置(RX UE)发送第一数据。HARQ反馈时机occasion可用于第一装置向网络设备发送第一Sidelink HARQ进程的HARQ反馈feedback。HARQ feedback可用于指示第一Sidelink HARQ进程的前一次传输的接收成功与否。HARQ feedback为NACK时,可指示第一Sidelink HARQ进程的前一次传输的接收未成功。
其中,第一装置可以是终端设备,例如手机、可穿戴设备、车辆等用户设备,或者可以设置于终端设备上的芯片。
第四方面中,时间单元可以是符号或者时隙。符号和时隙的长度可以取决于用于传输所述数据的Sidelink的带宽部分BWP的参数集Numerology。符号和时隙的长度也可以取决于第一装置向所述网络设备发送所述HARQ feedback的上行链路带宽部分BWP的参数集Numerology。
第四方面中,第一装置和网络设备之间建立了RRC连接。第一装置处于RRC连接态。第一装置与第二装置之间建立Sidelink。网络设备为处于RRC连接态的第一装置配置DRX cycle。DRX cycle由“On Duration”和“Opportunity for DRX”组成:在“On Duration”内, 第一装置监听并接收PDCCH(激活态);在“Opportunity for DRX”内,第一装置不接收下行信道的数据以节省功耗(休眠态)。
第四方面中,网络设备为处于RRC连接态的第一装置配置计时器:drx-InactivityTimer、drx-RetransmissionTimerSL。drx-RetransmissionTimerSL可称为第三计时器。
第四方面中,第一装置还可以向网络设备发送资源调度请求,以请求网络设备为第一数据传输调度传输资源。相应的,在接收到该资源调度请求之后,网络设备可以为Sidelink传输调度资源,并在PDCCH中下发所调度的资源。第一装置可以通过监听PDCCH来获知网络设备调度的资源。
实施第四方面提供的方法,在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一装置监听PDCCH。也即是说,从HARQ反馈时机后的第一个时间单元开始,第一装置处于active态,能够监听到网络设备下发的用于调度第一Sidelink HARQ进程的重传的PDCCH。这样,可提高第一Sidelink HARQ进程的重传的效率,避免增加Sidelink数据重传的延迟。
结合第四方面,在一些实施例中,第一装置启动第一计时器的具体实现可包括:如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,第一装置启动所述第三计时器。
结合第四方面,在一些实施例中,当所述第一装置监听到第一PDCCH时,所述第一装置可以停止所述第三定时器。所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
结合第四方面,在一些实施例中,在第一Sidelink HARQ进程的HARQ反馈时机之前,所述第一装置还可监听到第二PDCCH。所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
第四方面中,第一装置确定第一Sidelink HARQ进程的HARQ反馈的实现方式,可以参考第一方面中的相关内容,这里不再赘述。
不限于第一Sidelink HARQ进程的HARQ反馈,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK也可用来指示第一Sidelink HARQ进程的前一次传输的接收成功与否。
不限于根据第一Sidelink HARQ进程的HARQ反馈维护drx-RetransmissionTimerSL,第一装置也可以根据第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK来维护drx-RetransmissionTimerSL。具体实现可如下:如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可以开启drx-RetransmissionTimerSL
结合第四方面,在一些实施例中,drx-RetransmissionTimerSL这个计时器的时间单位有如下几种实现方式:
方式1:drx-RetransmissionTimerSL的单位可以为时隙(slot)。时隙的长度可以取决于用于传输所述数据的Sidelink的带宽部分BWP的参数集Numerology。
方式2:drx-RetransmissionTimerSL的单位可以为时隙(slot)。时隙的长度也可以取 决于第一装置向所述网络设备发送所述HARQ feedback的上行链路带宽部分BWP的参数集Numerology。
方式3:这个计时器的单位可以为绝对时间长度,例如毫秒ms。
第五方面,本申请提供了一种装置,该装置可以是第四方面中的第一装置。该装置可以包括多个功能单元,以实现上述第四方面描述的方法。该装置可包括:处理单元和通信单元,其中,处理单元可以为处理器,或由一个或多个具有处理能力的模块组成的单元;通信单元可以为收发器,或由一个或多个具有收发功能的模块组成的单元。
处理单元,可用于在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,启动第三计时器。
通信单元,可用于在所述第三计时器运行期间,监听PDCCH。
其中,所述三计时器与所述第一Sidelink HARQ进程关联。所述第一Sidelink HARQ进程关联第一数据。所述第一Sidelink HARQ进程用于所述第一装置向第二装置发送所述第一数据。所述HARQ反馈时机occasion用于所述第一装置向网络设备发送所述第一Sidelink HARQ进程的HARQfeedback。所述HARQ feedback用于指示所述第一Sidelink HARQ进程的前一次传输的接收成功与否。
结合第五方面,在一些实施例中,处理单元具体可用于如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第三计时器。
结合第五方面,在一些实施例中,处理单元具体可用于如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第三计时器。
结合第五方面,在一些实施例中,处理单元如何确定所述第一Sidelink HARQ进程的HARQfeedback为NACK,可参考第一方面中的相关内容,这里不再赘述。结合第五方面,在一些实施例中,第一Sidelink HARQ进程与第一变量关联,所述第一变量用于记录所述第一Sidelink HARQ进程的前一次传输的接收成功与否。当所述第一变量为NACK时,表示所述第一Sidelink HARQ进程的前一次传输不成功。
结合第五方面,在一些实施例中,处理单元可具体用于如果所述第一变量为NACK,则在第一Sidelink HARQ process的HARQ反馈时机之后的第一个时间单元,启动所述第三计时器。
结合第五方面,在一些实施例中,处理单元具体还可用于当所述第一装置监听到第一PDCCH时,停止所述第三定时器;所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
结合第五方面,在一些实施例中,通信单元还可用于在第一Sidelink HARQ进程的HARQ反馈时机之前,监听到第二PDCCH,所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
结合第五方面,在一些实施例中,通信单元还可用于:在所述HARQ反馈时机,向所述网络设备发送所述第一Sidelink HARQ进程的HARQfeedback;或者,在所述HARQ反 馈时机,传输第二数据,所述第二数据不是所述第一Sidelink HARQ进程的HARQfeedback。
第五方面中未提及的一些细节,可参考第四方面,这里不再赘述。
第六方面,提供了一种装置,该装置可以是第四方面中的第一装置,可用于执行第四方面描述的非连续接收方法。该装置可以称为第一装置。第一装置可包括:存储器以及与存储器耦合的处理器、发射器和接收器,其中:发射器用于与向另一无线通信设备发送信号,接收器用于接收另一无线通信设备发送的信号,存储器用于存储第四方面描述的非连续接收方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第四方面可能的实施方式中的任意一种所描述的非连续接收方法。
具体的,处理器可用于在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,启动第三计时器。
具体的,接收器可用于在所述第三计时器运行期间,监听PDCCH。
具体的,发射器可用于通过第一Sidelink HARQ进程向第二装置传输第一数据。
其中,所述第三计时器与所述第一Sidelink HARQ进程关联。所述第一Sidelink HARQ进程关联第一数据。所述第一Sidelink HARQ进程用于所述第一装置向第二装置发送所述第一数据。所述HARQ反馈时机occasion用于所述第一装置向网络设备发送所述第一Sidelink HARQ进程的HARQfeedback。所述HARQ feedback用于指示所述第一Sidelink HARQ进程的前一次传输的接收成功与否。
结合第六方面,在一些实施例中,处理器具体可用于如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第三计时器。
结合第六方面,在一些实施例中,处理器具体可用于如果所述HARQfeedback为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第三计时器。
结合第六方面,在一些实施例中,处理器如何确定所述第一Sidelink HARQ进程的HARQfeedback为NACK,可参考第一方面中的相关内容,这里不再赘述。
结合第六方面,在一些实施例中,第一Sidelink HARQ进程与第一变量关联,所述第一变量用于记录所述第一Sidelink HARQ进程的前一次传输的接收成功与否。当所述第一变量为NACK时,表示所述第一Sidelink HARQ进程的前一次传输不成功。
结合第六方面,在一些实施例中,处理器可具体用于如果所述第一变量为NACK,则在第一Sidelink HARQ process的HARQ反馈时机之后的第一个时间单元,启动所述第三计时器。
结合第六方面,在一些实施例中,处理器具体还可用于当监听到第一PDCCH时,停止所述第三定时器;所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
结合第六方面,在一些实施例中,接收器还可用于在第一Sidelink HARQ进程的HARQ反馈时机之前,监听到第二PDCCH,所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
结合第六方面,在一些实施例中,发射器还可用于:在所述HARQ反馈时机,向所述 网络设备发送所述第一Sidelink HARQ进程的HARQfeedback;或者,在所述HARQ反馈时机,传输第二数据,所述第二数据不是所述第一Sidelink HARQ进程的HARQfeedback。
第六方面中未提及的一些细节,可参考第四方面,这里不再赘述。
第七方面,本申请提供了一种非连续接收方法,该方法可包括:如果第一Sidelink HARQ process的前一次传输的接收未成功,则在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元(例如第一个符号),第一装置可以开始监听下行物理控制信道PDCCH。当所述第一装置监听到第一PDCCH时,且下述条件都不满足时,所述第一装置停止监听PDCCH:
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
其中,所述第一PDCCH用于调度所述第一侧行链路HARQ process的传输资源。
其中,第一Sidelink HARQ进程关联第一数据。drx-RetransmissionTimerSL与第一Sidelink HARQ进程关联。第一Sidelink HARQ进程可用于第一装置(TX UE)向第二装置(RX UE)发送第一数据。HARQ反馈时机occasion可用于第一装置向网络设备发送第一Sidelink HARQ进程的HARQ反馈feedback。HARQ feedback可用于指示第一Sidelink HARQ进程的前一次传输的接收成功与否。HARQ feedback为NACK时,可指示第一Sidelink HARQ进程的前一次传输的接收未成功。
其中,第一装置可以是终端设备,例如手机、可穿戴设备、车辆等用户设备,或者可以设置于终端设备上的芯片。
第七方面中,时间单元可以是符号或者时隙。符号和时隙的长度可以取决于用于传输所述数据的Sidelink的带宽部分BWP的参数集Numerology。符号和时隙的长度也可以取决于第一装置向所述网络设备发送所述HARQ feedback的上行链路带宽部分BWP的参数集Numerology。
第七方面中,第一装置和网络设备之间建立了RRC连接。第一装置处于RRC连接态。第一装置与第二装置之间建立Sidelink。网络设备为处于RRC连接态的第一装置配置DRX cycle。DRX cycle由“On Duration”和“Opportunity for DRX”组成:在“On Duration”内,第一装置监听并接收PDCCH(激活态);在“Opportunity for DRX”内,第一装置不接收下行信道的数据以节省功耗(休眠态)。
第七方面中,网络设备为处于RRC连接态的第一装置配置计时器:drx-InactivityTimer、drx-RetransmissionTimerSL。drx-RetransmissionTimerSL可称为第三计时器。
第七方面中,第一装置还可以向网络设备发送资源调度请求,以请求网络设备为第一数据传输调度传输资源。相应的,在接收到该资源调度请求之后,网络设备可以为Sidelink传输调度资源,并在PDCCH中下发所调度的资源。第一装置可以通过监听PDCCH来获知网络设备调度的资源。
实施第七方面提供的方法,如果第一Sidelink HARQ进程的前一次传输的接收未成功,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可开始监听PDCCH。也即是说,如果第一Sidelink HARQ进程的前一次传输的接收未成功,在HARQ反馈时机后,第一装置处于active态,能够监听并接收到网络设备下发的用于调度第一Sidelink HARQ进程的重传的PDCCH。这样,可提高第一Sidelink HARQ进程的重传的效率,避免增加Sidelink数据重传的延迟。
结合第七方面,在一些实施例中,第一Sidelink HARQ process的前一次传输的接收未成功与否,可以从以下两个方面确定:
第一Sidelink HARQ process的HARQ反馈;
第一Sidelink HARQ process关联的状态变量SL_HARQ_FEEDBACK。
其中,当第一Sidelink HARQ process的HARQ反馈为NACK时,可指示第一Sidelink HARQ process的前一次传输的接收未成功;当第一Sidelink HARQ process的HARQ反馈为ACK时,可指示第一Sidelink HARQ process的前一次传输的接收成功。
其中,当第一Sidelink HARQ process关联的状态变量SL_HARQ_FEEDBACK的取值为NACK时,可指示第一Sidelink HARQ process的前一次传输的接收未成功;当第一Sidelink HARQ process关联的状态变量SL_HARQ_FEEDBACK的取值为ACK时,可指示第一Sidelink HARQ process的前一次传输的接收成功。
第七方面中,第一装置确定第一Sidelink HARQ process的HARQ反馈的具体实现,可参考第一方面中的相关内容,这里不再赘述。
第七方面中,第一装置可以根据第一Sidelink HARQ进程的HARQ反馈监听PDCCH。具体实现可如下:如果第一Sidelink HARQ进程的HARQ反馈为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可以开始监听PDCCH。
第七方面中,第一装置也可以根据第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK来监听PDCCH。具体实现可如下:如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置可以开始监听PDCCH。
结合第七方面,在一些实施例中,如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为ACK,且下述条件都不满足时,则第一装置可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
结合第七方面,在一些实施例中,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,但第一Sidelink HARQ进程关联的状态变量CURRENT_SL_TX_NB指示数据a的传输次数已达到最大传输次数。在该情况下,且下述条件都不满足时,则第一装置可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer; drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
第八方面,本申请提供了一种装置,该装置可以是第七方面中的第一装置。该装置可以包括多个功能单元,以实现上述第七方面描述的方法。该装置可包括:处理单元和通信单元,其中,处理单元可以为处理器,或由一个或多个具有处理能力的模块组成的单元;通信单元可以为收发器,或由一个或多个具有收发功能的模块组成的单元。
处理单元,可用于确定第一Sidelink HARQ process的前一次传输的接收成功与否。
通信单元,可用于如果第一Sidelink HARQ process的前一次传输的接收未成功,则在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元(例如第一个符号),开始监听下行物理控制信道PDCCH。
通信单元,还可用于当所述第一装置监听到第一PDCCH时,且下述条件都不满足时,停止监听PDCCH:
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
结合第八方面,在一些实施例中,第一Sidelink HARQ process的前一次传输的接收未成功与否,处理单元可以从以下两个方面确定:
1.第一Sidelink HARQ process的HARQ反馈;
2.第一Sidelink HARQ process关联的状态变量SL_HARQ_FEEDBACK。
其中,当第一Sidelink HARQ process的HARQ反馈为NACK时,可指示第一Sidelink HARQ process的前一次传输的接收未成功;当第一Sidelink HARQ process的HARQ反馈为ACK时,可指示第一Sidelink HARQ process的前一次传输的接收成功。
其中,当第一Sidelink HARQ process关联的状态变量SL_HARQ_FEEDBACK的取值为NACK时,可指示第一Sidelink HARQ process的前一次传输的接收未成功;当第一Sidelink HARQ process关联的状态变量SL_HARQ_FEEDBACK的取值为ACK时,可指示第一Sidelink HARQ process的前一次传输的接收成功。
第八方面中,处理单元确定第一Sidelink HARQ process的HARQ反馈的具体实现,可参考第一方面中的相关内容,这里不再赘述。
第八方面中,处理单元可以根据第一Sidelink HARQ进程的HARQ反馈监听PDCCH。具体实现可如下:如果第一Sidelink HARQ进程的HARQ反馈为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,通信单元可以开始监听PDCCH。
第八方面中,通信单元也可以根据第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK来监听PDCCH。具体实现可如下:如果第一Sidelink HARQ进程 关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,通信单元可以开始监听PDCCH。
结合第八方面,在一些实施例中,如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为ACK,且下述条件都不满足时,则通信单元可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
结合第八方面,在一些实施例中,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,但第一Sidelink HARQ进程关联的状态变量CURRENT_SL_TX_NB指示数据a的传输次数已达到最大传输次数。在该情况下,且下述条件都不满足时,则通信单元可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
第八方面中未提及的一些细节,可参考第七方面,这里不再赘述。
第九方面,提供了一种装置,该装置可以是第七方面中的第一装置,可用于执行第七方面描述的非连续接收方法。该装置可以称为第一装置。第一装置可包括:存储器以及与存储器耦合的处理器、发射器和接收器,其中:发射器用于与向另一无线通信设备发送信号,接收器用于接收另一无线通信设备发送的信号,存储器用于存储第七方面描述的非连续接收方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第七方面可能的实施方式中的任意一种所描述的非连续接收方法。
具体的,处理器可用于确定第一Sidelink HARQ process的前一次传输的接收成功与否。
具体的,接收器可用于如果第一Sidelink HARQ process的前一次传输的接收未成功,则在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元(例如第一个符号),开始监听下行物理控制信道PDCCH。
具体的,接收器还可用于当所述第一装置监听到第一PDCCH时,且下述条件都不满足时,停止监听PDCCH:
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
结合第九方面,在一些实施例中,接收器可以根据第一Sidelink HARQ进程的HARQ 反馈监听PDCCH。具体实现可如下:如果第一Sidelink HARQ进程的HARQ反馈为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,接收器可以开始监听PDCCH。
结合第九方面,在一些实施例中,接收器可以根据第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK来监听PDCCH。具体实现可如下:如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,接收器可以开始监听PDCCH。
结合第九方面,在一些实施例中,如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为ACK,且下述条件都不满足时,则接收器可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
结合第九方面,在一些实施例中,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,但第一Sidelink HARQ进程关联的状态变量CURRENT_SL_TX_NB指示数据a的传输次数已达到最大传输次数。在该情况下,且下述条件都不满足时,则接收器可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一装置在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一装置接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
第九方面中未提及的一些细节,可参考第七方面,这里不再赘述。
下面说明上述第一方面、第四方面、第七方面所涉及的(1)-(3)几个方面。
(1)第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK
结合第一方面、第四方面、第七方面,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK的初始值可设为ACK。当SL_HARQ_FEEDBACK为ACK时,可指示第一Sidelink HARQ进程的前一次传输的接收成功。当SL_HARQ_FEEDBACK为NACK时,可指示第一Sidelink HARQ进程的前一次传输的接收成功。
下面说明第一装置如何维护第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK。
1.在以下任一情况发生时,第一装置可将SL_HARQ_FEEDBACK设为ACK。
情况1:第一装置接收到第二装置发送的HARQ反馈为ACK。
情况2:第一装置监听并接收到用于调度第一Sidelink HARQ进程的传输(包括初传、重传)的PDCCH。
2.在以下任一情况发生时,第一装置可将SL_HARQ_FEEDBACK设为NACK。
情况1:第一装置接收到第二装置发送的HARQ反馈为NACK。
情况2:第一装置没有接收到第二装置发送的HARQ反馈。
第一装置没有接收到第二装置发送的HARQ反馈,具体可以是指,第一装置在HARQ反馈的反馈时机没有收到第二装置发送的HARQ反馈。
情况3:第一装置在分配给第一Sidelink HARQ进程的传输资源上未向第二装置传输第一Sidelink HARQ进程关联的数据a。
这里,分配给第一Sidelink HARQ进程的传输资源可用于第一Sidelink HARQ进程的初传或重传。情况3出现的原因可以为资源冲突,即第一装置在分配给第一Sidelink HARQ进程的传输资源上传输其他数据,而非数据a。
(2)第一Sidelink HARQ进程关联的状态变量CURRENT_SL_TX_NB
结合第一方面、第四方面、第七方面,第一Sidelink HARQ进程关联的状态变量CURRENT_SL_TX_NB的初始值可设为0。每当第一装置监听并接收到用于调度第一Sidelink HARQ进程的传输(包括初传、重传)的PDCCH时,第一装置可以将第一Sidelink HARQ进程关联的CURRENT_SL_TX_NB加1。用于调度第一Sidelink HARQ进程的传输的PDCCH可指示网络设备分配给第一Sidelink HARQ进程的传输资源。
(3)符号、时隙的长度
结合第一方面、第四方面、第七方面,符号、时隙的长度可以取决于用于传输第一数据的Sidelink的带宽部分BWP的参数集Numerology,如子载波间隔(subcarrier space,SCS)。不限于此,符号、时隙的长度也可以取决于第一装置向网络设备发送HARQ反馈的上行链路带宽部分BWP的参数集Numerology,如SCS。
第十方面,提供了一种装置,该装置可包括处理器和存储器,所述处理器耦合于所述存储器,所述存储器中存储指令,所述处理器用于调用所述存储器中的所述指令,使得该装置执行第一方面、第四方面或第七方面描述的非连续接收方法。
第十一方面,提供了另一种计算机可读存储介质,可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行第一方面、第四方面或第七方面描述的非连续接收方法。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面、第四方面或第七方面描述的非连续接收方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请提供的一种无线通信系统的架构示意图;
图2A是现有的DRX cycle的示意图;
图2B是引入计时器drx-InactivityTimer的DRX cycle的示意图;
图2C是现有的sidelinkDRX cycle的示意图;
图3是本申请的一个实施例提供的非连续接收方法的流程示意图;
图4A-图4B是图3实施例的一种计时器维护过程的示意图;
图5A-图5B是图3实施例的另一种计时器维护过程的示意图;
图6是本申请的另一个实施例提供的非连续接收方法的流程示意图;
图7A-图7B是图6实施例的计时器维护过程的示意图;
图8是本申请的再一个实施例提供的非连续接收方法的流程示意图;
图9是图8实施例的PDCCH监听过程的示意图;
图10是本申请的一个实施例提供的终端的硬件架构示意图;
图11是本申请的一个实施例提供的网络设备的硬件架构示意图;
图12是本申请的提供的无线通信系统,相关装置的功能框图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1示出了本申请涉及的无线通信系统100。无线通信系统100可以是长期演进(LTE)系统、第五代移动通信(5G)系统、新空口(NR)系统,还可以是机器与机器通信(machine to machine,M2M)系统、未来演进的第六代通信系统等。如图1所示,无线通信系统100可包括:一个或多个网络设备101,两个或两个以上用户设备103以及核心网(未示出)。其中:
网络设备101可用于在网络设备控制器(未示出),如基站控制器(base station controller,BSC),的控制下,通过Uu接口105与用户设备103通信。在Uu接口105上,用户设备103向网络设备101发送数据的链路称为上行链路(Uplink),而用户设备103接收网络设备100发送的数据的链路称为下行链路(Downlink)。在一些实施例中,网络设备控制器可以是核心网的一部分,也可以集成到网络设备101中。
网络设备101还可用于通过回程(blackhaul)接口,如S1接口,向核心网传输控制信息或者用户数据。
网络设备101与网络设备101之间也可以通过回程(blackhaul)接口,如X2接口,直接地或者间接地相互通信。
用户设备103与用户设备103之间的通信接口107称为PC5接口。在PC5接口107上,用户设备103和用户设备103之间传输数据的链路称为侧行链路(Sidelink)。用户设备103处于演进的通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)覆盖区内时,可以在蜂窝网络的控制下使用Uu接口105。无论是否处于E-UTRAN覆盖区内,用户设备103都可以采用PC5接口107进行Sidelink通信。Sidelink通信可以是两个用户设备103之间的点对点通信,也可以是一组两个以上的用户设备103进行的组播通信。
网络设备101可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站等。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一 些或所有功能。
用户设备103可以是车载终端、智能手机、路边单元(road side unit,RSU)、物联网终端设备,机器类型通信(Machine Type Communication,MTC)终端等无线通信设备。用户设备还可以包括一个或多个具有部分UE功能的基站,如微基站。用户设备可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。
需要说明的,图1示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
Sidelink通信一般可用于V2X等设备间直联通信的场景。V2X是指把车联到网或者把车联成网,共有4种不同类型的应用,分别是汽车对汽车(vehicle to vehicle,V2V)、汽车对基础设施(vehicle to infrastructure,V2I)、汽车对网络(vehicle to network,V2N)、汽车对行人(vehicle to pedestrian,V2P)。通过这4种应用,车辆、路边的基础设施、应用服务器和行人收集、处理和分享周边车辆和环境的状态信息,以提供更智能化的服务,如无人驾驶(unmanned driving)、自动驾驶(automated driving/ADS)、辅助驾驶(driver assistance/ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(intelligent network driving)、汽车共享(car sharing)等。
如图1所示,在V2V场景中,用户设备103可以是车载终端。在PC5接口107上,车载终端与车载终端之间可以通过Sidelink交互数据,如车辆位置、车辆速度、行驶方向等等指示车辆动态的数据。例如,车载终端A可以通过Sidelink向另一个车载终端B发送数据,该数据用于指示车载终端A所处的车辆的驾驶动态。在这次Sidelink通信中,车载终端A是TX UE,车载终端B是RX UE。接收到该数据后,车载终端B可以显示用户界面20。用户界面20中可以显示该数据所表达的内容21,如后方车辆的车牌号码(“FAF787”)、后方车辆正在执行的驾驶操作(“后方车辆FAF787正在执行超车操作”)、后方车辆的当前车速(“80km/h”),等等。这样,可以降低交通事故发生率,增强驾驶安全。
目前,Sidelink通信的一种主要资源分配方式为基于基站调度的资源分配方式。在这种Sidelink的资源分配方式中,基站在PDCCH下发下行控制信息DCI来动态的分配资源,TXUE需要监听PDCCH以获得基站下发的授权(grant)。
在Uu接口105上,为了降低UE一直监听PDCCH所造成的功率消耗,目前3GPP所采用的一种解决方式为DRX机制。下面说明现有的DRX机制。
(1)DRX机制的基本工作原理
如图2A所示,在LTE或NR系统中,DRX机制是网络设备为处于无线资源控制(radio control resource,RRC)连接态的UE配置一个DRX周期(DRX cycle)。DRX cycle由“On Duration”和“Opportunity for DRX”这两个时间段组成。“On Duration”可称为持续期,“Opportunity for DRX”可称为DRX机会。在“On Duration”内,UE监听并接收PDCCH。在“Opportunity for DRX”内,UE不监听PDCCH以减少功耗。“On Duration”的值(如10ms)指定了,从DRX Cycle的起始位置开始,UE需要监听PDCCH的时间。“On Duration”可以大于1ms,也可以小于1ms。在“On Duration”内,UE处于激活态,即UE监听PDCCH。在“Opportunity for DRX”内,UE处于休眠态,即UE不监听PDCCH。这里,休眠态仅是针 对监听PDCCH而言,表示UE不监听PDCCH。处于休眠态的UE依然处于RRC连接态,能够在Uu接口105上通过物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)等传输上行数据或通过物理下行共享信道(physicaldownlink shared channel,PDSCH)接收基站发送的下行数据,还能够在PC5接口107上通过物理侧行链路共享信道(physicalSidelink shared channel,PSSCH)、物理侧行链路控制信道(physicalSidelink control channel,PSCCH)等传输Sidelink数据。
(2)引入drx-InactivityTimer
在大多数情况下,UE在某个PDCCH时机(Occasion)被调度来接收或发送数据后,很可能在接下来的几个子帧(subframe)内也被继续调度,以完成一份较大字节的数据的接收或发送。如果该UE已经进入休眠态,则该UE要等到下一个DRX cycle再监听PDCCH获取资源调度来接收或发送后续数据。这会增加数据传输的时延。为了降低这类延迟,DRX机制引入了一个定时器:drx-InactivityTimer。如图2B所示,当UE监听并接收到一个用于调度新数据的PDCCH时,UE会开启(或重启)定时器drx-InactivityTimer。UE会在drx-InactivityTimer运行期间的每一个子帧都监听PDCCH,直到该定时器超时。新数据的指示信息会携带在PDCCH中,占1bit。可以看出,drx-InactivityTimer的引入,可确保UE在drx-InactivityTimer运行期间处于激活态,接收接下来基站的调度,相当于对“On Duration”进行了扩展。如果UE连续接收到用于调度不同新数据的PDCCH,则UE会相继开启(或重启)多个drx-InactivityTimer,可能会使得UE在整个DRX cycle都处于激活态,即“On Duration”可能扩展至整个DRX cycle。
(3)DRX
在LTE系统中,如图2C所示,针对Sidelink,对Uu接口105上的DRX机制有如下增强:当TXUE接收到基站发送的PDCCH,并且该PDCCH调度了Sidelink上用于新数据传输的SLgrant时,TXUE会开启或重启drx-InactivityTimer。这样可以保证TXUE能够处于激活态,接收接下来基站调度的SLgrant。
在NR系统中,如果基站为TXUE配置了基于Sidelink的混合自动重传请求(hybrid automatic repeat request,HARQ)反馈的重传机制后,那么对于基于基站调度的资源分配方式,一种可能的HARQ工作方式是:基站根据Sidelink数据传输的HARQ反馈(feedback)来为TXUE调度重传资源。HARQ反馈可以是不确认(not acknowledgment,NACK)或确认(acknowledgment,ACK)。如图2C所示,如果数据a的HARQ反馈为NACK,则基站在接收到NACK之后,为数据a的重传调度资源,并在PDCCH下发用于数据a的重传的SL grant。
但是,如图2C所示,当Tx UE向基站发送的数据a的HARQ确认为NACK时,Tx UE之后需要接收基站下发的用于调度数据a重传的PDCCH,以进行数据a的重传。但是,基于目前的DRX机制,在基站下发该PDCCH时,TX UE可能已经进入DRX状态,不再监听PDCCH。TX UE需要等到下一个DRX cycle的“On Duration”才会监听PDCCH,才能接收到基站下发的用于调度数据a重传的PDCCH,然后进行数据a的重传。这会导致TxUE在Sidelink上的数据重传被延迟,导致Sidelink上传输的业务的QoS要求无法被满足。
为了解决现有的技术问题,基于基站调度的资源分配方式,本申请提供了一种非连续接收方法,有利于降低Sidelink数据的传输时延。
本申请提供的非连续接收方法中,如果确定某个Sidelink数据的前一次传输的接收未成功,则在该Sidelink数据关联的Sidelink HARQ进程的HARQ反馈时机(feedback occasion)之后,在网络设备下发用于调度该Sidelink数据的重传的PDCCH时,TX UE可处于激活态,使得TX UE能够监听到用于调度该Sidelink数据的重传的PDCCH,无需等到下一个DRX cycle的“On Duration”,可避免增加Sidelink数据重传的延迟。
在本申请提供的非连续接收方法中,TX UE可以针对每一个Sidelink数据,如TX UE向RX UE传输的MAC PDU,设置一个Sidelink HARQ进程。即一个Sidelink HARQ进程关联的一个Sidelink数据,该Sidelink数据可存储在该Sidelink HARQ进程关联的Sidelink HARQ buffer中。一个Sidelink HARQ进程可维护一个状态变量CURRENT_SL_TX_NB,该状态变量用于指示该Sidelink HARQ进程关联的Sidelink数据的传输次数。CURRENT_SL_TX_NB可以被初始化为0。该Sidelink HARQ进程还可维护一个状态变量SL_HARQ_FEEDBACK,该状态变量用于指示该Sidelink HARQ进程关联的Sidelink数据的HARQ反馈。
CURRENT_SL_TX_NB可以称为第一变量,SL_HARQ_FEEDBACK可以称为第二变量。不限于CURRENT_SL_TX_NB、SL_HARQ_FEEDBACK,第一变量、第二变量的命名还可以不同,本申请对此不做限制。
其中,一个Sidelink数据关联的Sidelink HARQ进程的HARQ反馈时机,可用于TX UE向网络设备发送Sidelink HARQ进程的HARQ反馈。该HARQ反馈时机为时间资源,可用于承载TX UE向网络设备发送HARQ反馈。该HARQ反馈可用于指示该Sidelink HARQ进程的前一次传输的接收成功与否,即该Sidelink HARQ进程关联的Sidelink数据的前一次传输的接收成功与否。如果HARQ反馈为ACK,则可指示该Sidelink HARQ进程的前一次传输的接收成功;如果HARQ反馈为NACK,则可指示该Sidelink HARQ进程的前一次传输的接收未成功。关于如何确定Sidelink HARQ进程的前一次传输的接收成功与否,后面内容会说明,这里先不展开。HARQ反馈时机可以是一个符号(symbol),或者多个连续符号组成的时间段。HARQ反馈时机也可以是一个时隙(slot),或者多个连续时隙组成的时间段。
其中,TX UE处于RRC连接态,并被配置了DRX cycle。从DRX cycle的起始时间开始的一段时间内,TX UE处于激活态,可监听并接收到一个PDCCH。该PDCCH用于调度该Sidelink数据的前一次传输。该前一次传输可以是该Sidelink数据的初始传输(initial transmission),也可以是该Sidelink数据的第二次、第三次传输等等。该前一次传输发生在前述HARQ反馈时机之前,是相对于前述HARQ反馈时机之后该Sidelink数据的重传而言的。
这里,从DRX cycle的起始时间开始的一段时间,可以是指DRX cycle的“On Duration”,也可以为开启drx-InactivityTimer后形成的扩展的“On Duration”。关于“On Duration”的扩展,可参考前面图2B的相关描述。即,该一段时间的起始时间为DRX cycle的起始时间,该一段时间的持续时长等于或大于“On Duration”的持续时长。
本申请中涉及的Sidelink数据可以是媒体接入控制(media access control,MAC)层的数据,例如MAC协议数据单元(protocol data unit,PDU)。
本申请提供的非连续接收方法中,TX UE可以称为第一终端,RX UE可以称为第二终端。
下面通过多个实施例详细说明本申请提供的技术方案。
(一)实施例一
本实施例中,针对每个被配置为基于侧行链路的HARQ反馈的HARQ重传机制的SidelinkHARQ process,第一终端为每个Sidelink HARQ进程维护两个计时器:第一计时器和第二计时器。其中,第一计时器可以命名为:drx-HARQ-RTT-TimerSL;第二计时器可以命名为drx-RetransmissionTimerSL。在第二计时器运行期间,第一终端监听PDCCH。第一计时器、第二计时器的命名还可以为其他,本申请对此不做限制。
图3示出了实施例一提供的非连续接收方法的具体流程。下面展开:
阶段1.在Sidelink HARQ进程a的第i次传输之前(S101-S104)
S101,第一终端和网络设备之间建立RRC连接。
RRC连接建立后,第一终端进入RRC连接态。
S102,第一终端与第二终端之间建立Sidelink。
该Sidelink建立后,第一终端通过该Sidelink向第二终端传输数据。
S103,网络设备为处于RRC连接态的第一终端配置DRX cycle。
DRX cycle由“On Duration”和“Opportunity for DRX”组成:在“On Duration”内,第一终端监听并接收PDCCH(激活态);在“Opportunity for DRX”内,第一终端不接收下行信道的数据以节省功耗(休眠态)。
S104,网络设备为处于RRC连接态的第一终端配置计时器:drx-InactivityTimer、drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL。本实施例中,drx-HARQ-RTT-TimerSL可称为第一计时器,drx-RetransmissionTimerSL可称为第二计时器。关于如何维护这些计时器,后面内容中会介绍,这里先不展开。
阶段1中,不限于图3所示,S102也可以在S101之前被执行。关于S102与S101、S103、S104的时序,本申请不做限制。
在阶段1中,第一终端还可以向网络设备发送资源调度请求,以请求网络设备为Sidelink数据传输调度传输资源。通常,资源调度请求可携带缓存状态报告(BufferStatusReport),以指示第一终端在Sidelink上有多少Sidelink数据要发送。相应的,在接收到该资源调度请求之后,网络设备可以为Sidelink传输调度资源,并在PDCCH中下发所调度的资源。第一终端可以通过监听PDCCH来获知网络设备调度的资源。
阶段2.Sidelink HARQ进程a的第i次传输(S105-S108)
S105,第一终端可监听并接收到网络设备下发的PDCCH 1。PDCCH 1可指示网络设备为某个Sidelink HARQ进程(如Sidelink HARQ进程a)的第i次传输所调度的资源,即PDCCH 1可用于调度Sidelink HARQ进程a的第i次传输。
Sidelink HARQ进程a可关联数据a。Sidelink HARQ进程a可用于第一终端在S102建 立的Sidelink上向第二终端传输数据a。Sidelink HARQ进程a可维护两个状态变量:CURRENT_SL_TX_NB,SL_HARQ_FEEDBACK。其中,CURRENT_SL_TX_NB可指示数据a的传输次数,CURRENT_SL_TX_NB可以被初始化为0。SL_HARQ_FEEDBACK可指示数据a的HARQ反馈。
PDCCH 1可携带以下信息:SL grant 1、NDI、Sidelink HARQ进程a的ID。其中,SL grant 1可指示网络设备为Sidelink HARQ进程a的第i次传输所调度的资源。NDI可指示PDCCH 1所调度的Sidelink HARQ进程a的第i次传输是初传(initial transmission)还是重传(retransmission)。
S106,如果Sidelink HARQ进程a的第i次传输为初传,那第一终端可以在监听并接收到PDCCH 1时,开启计时器drx-InactivityTimer(即图3中的timer 1)。在drx-InactivityTimer运行期间,第一终端处于active态,监听PDCCH。这样,可对DRX cycle的“On Duration”进行扩展,以延长第一终端处于激活态的时间。
具体的,第一终端可以通过PDCCH 1中的NDI是否发生反转(toggled)来判断Sidelink HARQ进程a的第i次传输是初传还是重传:如果PDCCH 1中的NDI的值,与上一次调度给的Sidelink HARQ进程a的PDCCH中的NDI相比发生了反转,则表示Sidelink HARQ进程a的第i次传输为初传;否则,表示Sidelink HARQ进程a的第i次传输为重传。所谓NDI反转,可以是指NDI的值从0变成1,或者从1变成0。
S107,在接收到PDCCH 1之后,第一终端可以在PDCCH 1指示的资源上通过Sidelink HARQ进程a向第二终端传输数据a,即进行数据a的第i次传输。相应的,第二终端可以在PDCCH 1指示的资源上接收第一终端发送的数据a。
具体的,第二终端可以通过监听PSCCH来获知第一终端会在哪些资源上传输数据a。因为,在接收到PDCCH 1之后,第一终端可以在PSCCH上发送侧行链路控制信息(Sidelink control information,SCI)。第二终端可以通过监听PSCCH来接收该SCI。该SCI用于指示第一终端传输数据a的资源。
S108,第一终端可以向第二终端发送HARQ反馈。该HARQ反馈用于指示第二终端是否成功接收数据a。如果该HARQ反馈为ACK,则表示第二终端成功接收数据a;如果该HARQ反馈为NACK,则表示第二终端未成功接收数据a。
第二终端未成功接收数据a可包括但不限于以下情况:第二终端解码数据a失败、第二终端在PDCCH 1指示的资源上未接收到第一终端发送的数据a。
阶段3.维护Sidelink HARQ进程a关联的两个计时器(S109-S111)
S109,第一终端确定Sidelink HARQ进程a的HARQ反馈。Sidelink HARQ进程a的HARQ反馈用于指示数据a的第i次传输的接收成功与否。关于如何确定数据a的第i次传输的接收成功与否,后面内容会介绍。
S110,第一终端可以在Sidelink HARQ进程a的HARQ反馈时机向网络设备发送Sidelink HARQ进程a的HARQ反馈。相应的,网络设备可以在该HARQ反馈时机接收第一终端发送的Sidelink HARQ进程a的HARQ反馈。
如果该HARQ反馈为NACK,则网络设备可以为Sidelink HARQ进程a的重传(即数据a的第i+1次传输)调度资源。在一种可能的情况下,Sidelink HARQ进程a关联的状态 变量CURRENT_SL_TX_NB指示Sidelink HARQ进程a的传输次数超过最大传输次数。在该可能的情况下,网络设备可以不再为Sidelink HARQ进程a的重传调度资源。此时,TX UE可以关闭Sidelink HARQ进程a,或者将Sidelink HARQ进程a关联新的Sidelink数据,如数据b。
在一种可能的情况下,在Sidelink HARQ进程a的HARQ反馈时机,第一终端传输其他数据,而非Sidelink HARQ进程a的HARQ反馈。例如,第一终端可以在该HARQ反馈时机,向网络设备传输上行数据。又例如,第一终端可以在该HARQ反馈时机,向第二终端或其他终端传输Sidelink数据。
S111,在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,第一终端可维护两个计时器:drx-HARQ-RTT-TimerSL(即图3中的timer 2)、drx-RetransmissionTimerSL(即图3中的timer 3)。这两个计时器都与Sidelink HARQ进程a关联。其中,时间单元可以是符号、时隙等。这两个计时器的计时单位可以是符号、时隙或者绝对时间单位(如毫秒)。
具体的,第一终端可先开启drx-HARQ-RTT-TimerSL。当drx-HARQ-RTT-TimerSL超时时,第一终端可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一终端监听PDCCH。
关于如何维护drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL,后面内容中会详细说明,这里先不展开。
阶段4.Sidelink HARQ进程a的第i+1次传输(S112-S114)
S112,第一终端可接收到PDCCH2。PDCCH 2指示的资源可以是网络设备为Sidelink HARQ进程a的第i+1次传输所调度的资源,即PDCCH 2可用于调度Sidelink HARQ进程a的第i+1次传输。
PDCCH 2可携带以下信息:SL grant 2、NDI、Sidelink HARQ进程a的ID。其中,SL grant 2即网络设备为Sidelink HARQ进程a的第i+1次传输所所调度的资源。NDI可指示PDCCH 1所调度的Sidelink HARQ进程a的第i+1次传输是初传(initial transmission)还是重传(retransmission)。
第i+1次传输相对于第i次传输为重传,第i次传输为第i+1次传输的前一次传输。
S113,在监听并接收到PDCCH 2时,第一终端可停止drx-RetransmissionTimerSL。
在一种可能的情况下,PDCCH 2指示的资源可以是网络设备为Sidelink HARQ进程a的初始传输所调度的资源。此时,Sidelink HARQ进程a关联新的数据,如数据b。即Sidelink HARQ进程a已用于第一终端传输新的数据,而不再是数据a。通常,这种可能的情况可发生在数据a的传输已达到最大传输次数(如5次)时。此该情况下,第一终端也可停止drx-RetransmissionTimerSL。
S114,在接收到PDCCH 2之后,第一终端可以在PDCCH 2指示的资源上通过Sidelink HARQ进程a向第二终端传输数据a,即进行数据a的第i+1次传输。相应的,第二终端可以在PDCCH 2指示的资源上接收第一终端发送的数据a。
可以看出,实施例一中,在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可开启drx-HARQ-RTT-TimerSL,并在drx-HARQ-RTT-TimerSL超时时开启 drx-RetransmissionTimerSL。也即是说,在HARQ反馈时机后,在drx-RetransmissionTimerSL运行期间,第一终端处于active态,能够监听并接收到网络设备在此期间下发的用于调度Sidelink HARQ进程a的重传的PDCCH。这样,可提高Sidelink HARQ进程a的重传的效率,避免增加Sidelink数据重传的延迟。
下面说明S109中第一终端如何确定Sidelink HARQ进程a的HARQ反馈。
(1)在以下任一情况下,第一终端可确定Sidelink HARQ进程a的HARQ反馈为NACK,即可确定Sidelink HARQ进程a的前一次传输的接收未成功:
情况1:第一终端接收到第二终端发送的HARQ反馈为NACK。
该HARQ反馈用于指示Sidelink HARQ进程a关联的数据的前一次传输是否被第二终端成功接收。HARQ反馈为NACK时,可指示第二终端未成功接收Sidelink HARQ进程a关联的数据。第二终端未成功接收Sidelink HARQ进程a关联的数据,其原因可包括但不限于:第二终端未成功解码该数据。这里,第一资源是网络设备为Sidelink HARQ进程a的前一次传输所调度的资源。
情况2:第一终端没有接收到第二终端发送的HARQ反馈。
情况2发生时,图3中的S108不存在。第一终端没有接收到第二终端发送的HARQ反馈,具体可以是指,第一终端在Sidelink HARQ进程a的反馈时机没有收到第二终端发送的HARQ反馈。Sidelink HARQ进程a的反馈时机可由网络设备配置。
情况3:第一终端在第一资源上未向第二终端传输该Sidelink数据。
情况3发生时,图3中的S107不存在,S108也相应不存在。这里,第一资源是网络设备为Sidelink HARQ进程a的前一次传输所调度的资源。情况3出现的原因可以为资源冲突,即第一终端在第一资源上传输其他数据,而非数据a。
(2)在以下情况下,第一终端可确定Sidelink HARQ进程a的HARQ反馈为ACK,即可确定Sidelink HARQ进程a的前一次传输的接收成功:
第一终端接收到第二终端发送的HARQ反馈为ACK。该HARQ反馈为ACK时,可指示第二终端成功接收Sidelink HARQ进程a关联的数据。
下面说明第一终端维护drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL这两个计时器的几种实现方式。
方式1
在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,第一终端可开启drx-HARQ-RTT-TimerSL。如果Sidelink HARQ进程a的HARQ反馈为NACK,则当drx-HARQ-RTT-TimerSL超时时,第一终端可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一终端监听PDCCH。
方式2
如果Sidelink HARQ进程的HARQ反馈为NACK,则在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,第一终端可开启drx-HARQ-RTT-TimerSL。当drx-HARQ-RTT-TimerSL超时时,第一终端可开启drx-RetransmissionTimerSL。在 drx-RetransmissionTimerSL运行期间,第一终端监听PDCCH。
以数据a的初传、重传为例,下面结合图4A-图4B、图5A-图5B说明方式1、方式2。
图4A-图4B示例性示出了上述方式1的计时器维护过程。图5A-图5B示例性示出了上述方式2的计时器维护过程。图4A、图5A示例性示出了Sidelink HARQ进程a的初传的接收未成功的情况。图4B、图5B示例性示出了Sidelink HARQ进程a的初传的接收成功的情况。
其中,第一终端(TX UE)可以在DRX cycle的“On Duration”期间监听PDCCH,并可以接收到用于调度Sidelink HARQ进程a的初传的授权(grant for initial transmission)。在接收到该用于调度初传的授权时,TX UE可以开启计时器drx-InactivityTimer。在drx-InactivityTimer的运行期间,TX UE监听PDCCH。
如图4A-图4B所示,不论Sidelink HARQ进程a的初传的接收成功与否,TX UE都可以在Sidelink HARQ进程a的HARQ反馈时机后的第1个时间单元(如第1个符号),都开启drx-HARQ-RTT-TimerSL。如果Sidelink HARQ进程a的初传的接收未成功,例如RX UE解码失败,则TX UE可以在HARQ-RTT-TimerSL超时时,开启drx-RetransmissionTimerSL。如果Sidelink HARQ进程a的初传的接收成功,则TX UE在HARQ-RTT-TimerSL超时时不开启drx-RetransmissionTimerSL。
如图5A-图5B所示,如果Sidelink HARQ进程a的初传的接收未成功,例如RX UE解码失败,则TX UE可以Sidelink HARQ进程a的HARQ反馈时机后的第1个时间单元(如第1个符号),开启drx-HARQ-RTT-TimerSL,并在HARQ-RTT-TimerSL超时时,TX UE开启drx-RetransmissionTimerSL。如果Sidelink HARQ进程a的初传的接收成功,则TX UE不开启drx-HARQ-RTT-TimerSL,也不开启drx-RetransmissionTimerSL。
不限于Sidelink HARQ进程a的HARQ反馈,Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK也可用来指示Sidelink HARQ进程a的前一次传输的接收成功与否。
不限于上述方式1、方式2,第一终端也可以根据Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK,来维护drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL这两个计时器。具体实现可如下:如果Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为NACK,则在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可以开启HARQ-RTT-TimerSL。如果Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为NACK,则在HARQ-RTT-TimerSL超时时,第一终端可以开启drx-RetransmissionTimerSL。
(二)实施例二
本实施例中,针对每个被配置为基于侧行链路的HARQ反馈的HARQ重传机制的SidelinkHARQ process,第一终端为每个Sidelink HARQ进程维护一个计时器。在该计时器运行期间,第一终端监听PDCCH。该计时器可以称为第三计时器。
图6示出了实施例一提供的非连续接收方法的具体流程。下面展开:
阶段1.在Sidelink HARQ进程a的第i次传输之前(S201-S204)
S201,第一终端和网络设备之间建立RRC连接。
S202,第一终端与第二终端之间建立Sidelink。
S203,网络设备为处于RRC连接态的第一终端配置DRX cycle。
S204,网络设备为处于RRC连接态的第一终端配置计时器:drx-InactivityTimer、drx-RetransmissionTimerSL。本实施例中,drx-RetransmissionTimerSL可称为第三计时器。关于如何维护这些计时器,后面内容中会介绍,这里先不展开。
关于实施例二的阶段1的具体细节,可参考实施例一的阶段1,这里不再赘述。
阶段2.Sidelink HARQ进程a的第i次传输(S205-S208)
S205,第一终端可监听并接收到网络设备下发的PDCCH 1。PDCCH 1可指示网络设备为某个Sidelink HARQ进程(如Sidelink HARQ进程a)的第i次传输所调度的资源,即PDCCH 1可用于调度Sidelink HARQ进程a的第i次传输。
Sidelink HARQ进程a可关联数据a。Sidelink HARQ进程a可用于第一终端在S202建立的Sidelink上向第二终端传输数据a。Sidelink HARQ进程a可维护两个状态变量:CURRENT_SL_TX_NB,SL_HARQ_FEEDBACK。其中,CURRENT_SL_TX_NB可指示数据a的传输次数,CURRENT_SL_TX_NB可以被初始化为0。SL_HARQ_FEEDBACK可指示数据a的HARQ反馈。
PDCCH 1可携带以下信息:SL grant 1、NDI、Sidelink HARQ进程a的ID。其中,SL grant 1可指示网络设备为Sidelink HARQ进程a的第i次传输所调度的资源。NDI可指示PDCCH 1所调度的Sidelink HARQ进程a的第i次传输是初传(initial transmission)还是重传(retransmission)。
S206,如果Sidelink HARQ进程a的第i次传输为初传,那第一终端可以在监听并接收到PDCCH 1时,开启计时器drx-InactivityTimer(即图6中的timer 1)。在drx-InactivityTimer运行期间,第一终端处于active态,监听PDCCH。这样,可对DRX cycle的“On Duration”进行扩展,以延长第一终端处于激活态的时间。
S207,在接收到PDCCH 1之后,第一终端可以在PDCCH 1指示的资源上通过SidelinkHARQ进程a向第二终端传输数据a,即进行数据a的第i次传输。相应的,第二终端可以在PDCCH 1指示的资源上接收第一终端发送的数据a。
S208,第一终端可以向第二终端发送HARQ反馈。该HARQ反馈用于指示第二终端是否成功接收数据a。如果该HARQ反馈为ACK,则表示第二终端成功接收数据a;如果该HARQ反馈为NACK,则表示第二终端未成功接收数据a。
关于实施例二的阶段2的具体细节,可参考实施例一的阶段2,这里不再赘述。
阶段3.维护Sidelink HARQ进程a关联的第三计时器(S209-S211)
S209,第一终端确定Sidelink HARQ进程a的HARQ反馈。Sidelink HARQ进程a的HARQ反馈用于指示数据a的第i次传输的接收成功与否。关于如何确定Sidelink HARQ进程a的HARQ反馈,可参考实施例一中的相关内容,这里不再赘述。
S210,第一终端可以在Sidelink HARQ进程a的HARQ反馈时机向网络设备发送Sidelink HARQ进程a的HARQ反馈。相应的,网络设备可以在该HARQ反馈时机接收第一终端发送的Sidelink HARQ进程a的HARQ反馈。
S211,在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,第一终端 可维护第三计时器:drx-RetransmissionTimerSL(即图6中的timer 4)。第三计时器与Sidelink HARQ进程a关联。其中,时间单元可以是符号或者时隙。第三计时器的计时单位可以是符号、时隙或者绝对时间单位(如毫秒)。
具体的,如果确定Sidelink HARQ进程a的HARQ反馈为NACK,则在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,第一终端可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,第一终端监听PDCCH。
关于实施例二的阶段3的具体细节,可参考实施例一的阶段3,这里不再赘述。
阶段4.Sidelink HARQ进程a的第i+1次传输(S212-S214)
S212,第一终端可接收到PDCCH2。PDCCH 2指示的资源可以是网络设备为Sidelink HARQ进程a的第i+1次传输所调度的资源,即PDCCH 2可用于调度Sidelink HARQ进程a的第i+1次传输。
S213,在监听并接收到PDCCH 2时,第一终端可停止drx-RetransmissionTimerSL。
S214,在接收到PDCCH 2之后,第一终端可以在PDCCH 2指示的资源上通过Sidelink HARQ进程a向第二终端传输数据a,即进行数据a的第i+1次传输。相应的,第二终端可以在PDCCH 2指示的资源上接收第一终端发送的数据a。
关于实施例二的阶段4的具体细节,可参考实施例一的阶段4,这里不再赘述。
实施例二中,关于如何确定Sidelink HARQ进程a的HARQ反馈,可参考实施例一中的相关内容,这里不再赘述。
不限于Sidelink HARQ进程a的HARQ反馈,Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK也可用来指示Sidelink HARQ进程a的前一次传输的接收成功与否。
不限于上述阶段3描述的根据Sidelink HARQ进程a的HARQ反馈维护drx-RetransmissionTimerSL,第一终端也可以根据Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK来维护drx-RetransmissionTimerSL。具体实现可如下:如果Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为NACK,则在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可以开启drx-RetransmissionTimerSL。
以数据a的初传、重传为例,下面结合图7A-图7B说明第三计时器维护过程。图7A示例性示出了Sidelink HARQ进程a的初传的接收未成功的情况。图7B示例性示出了Sidelink HARQ进程a的初传的接收成功的情况。
如图7A-图7B所示,第一终端(TX UE)可以在DRX cycle的“On Duration”期间监听PDCCH,并可以接收到用于调度Sidelink HARQ进程a的初传的授权(grant for initial transmission)。在接收到该用于调度初传的授权时,TX UE可以开启计时器drx-InactivityTimer。在drx-InactivityTimer的运行期间,TX UE监听PDCCH。
如图7A-图7B所示,如果Sidelink HARQ进程a的初传的接收未成功,例如RX UE解码失败,则在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,TX UE可开启drx-RetransmissionTimerSL。如果Sidelink HARQ进程a的初传的接收成功,则TX UE可不开启drx-RetransmissionTimerSL。
可以看出,实施例二中,在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间, 第一终端监听PDCCH。也即是说,从HARQ反馈时机后的第一个时间单元开始,第一终端处于active态,能够监听到网络设备下发的用于调度Sidelink HARQ进程a的重传的PDCCH。这样,可提高Sidelink HARQ进程a的重传的效率,避免增加Sidelink数据重传的延迟。
(三)实施例三
实施例三可参考实施例二。即实施例三中,针对每个被配置为基于侧行链路的HARQ反馈的HARQ重传机制的SidelinkHARQ process,第一终端为每个Sidelink HARQ进程维护一个计时器。在该计时器运行期间,第一终端监听PDCCH。和实施例二的区别在于,该计时器为drx-InactivityTimer。即,如果Sidelink HARQ进程a的前一次传输的接收未成功,则可以开启或重启drx-InactivityTimer。
(四)实施例四
本实施例中,针对每个被配置为基于侧行链路的HARQ反馈的HARQ重传机制的SidelinkHARQ process,如果确定Sidelink HARQ进程a的前一次传输未成功,第一终端就监听PDCCH。
图8示出了实施例一提供的非连续接收方法的具体流程。下面展开:
阶段1.在Sidelink HARQ进程a的第i次传输之前(S301-S304)
S301,第一终端和网络设备之间建立RRC连接。
S302,第一终端与第二终端之间建立Sidelink。
S303,网络设备为处于RRC连接态的第一终端配置DRX cycle。
S304,网络设备为处于RRC连接态的第一终端配置计时器:drx-InactivityTimer。
关于实施例四的阶段1的具体细节,可参考实施例一的阶段1,这里不再赘述。
阶段2.Sidelink HARQ进程a的第i次传输(S305-S308)
S305,第一终端可监听并接收到网络设备下发的PDCCH 1。PDCCH 1可指示网络设备为某个Sidelink HARQ进程(如Sidelink HARQ进程a)的第i次传输所调度的资源,即PDCCH 1可用于调度Sidelink HARQ进程a的第i次传输。
S306,如果Sidelink HARQ进程a的第i次传输为初传,那第一终端可以在监听并接收到PDCCH 1时,开启计时器drx-InactivityTimer(即图8中的timer 1)。在drx-InactivityTimer运行期间,第一终端处于active态,监听PDCCH。这样,可对DRX cycle的“On Duration”进行扩展,以延长第一终端处于激活态的时间。
S307,在接收到PDCCH 1之后,第一终端可以在PDCCH 1指示的资源上通过Sidelink HARQ进程a向第二终端传输数据a,即进行数据a的第i次传输。相应的,第二终端可以在PDCCH 1指示的资源上接收第一终端发送的数据a。
S308,第一终端可以向第二终端发送HARQ反馈。该HARQ反馈用于指示第二终端是否成功接收数据a。如果该HARQ反馈为ACK,则表示第二终端成功接收数据a;如果该HARQ反馈为NACK,则表示第二终端未成功接收数据a。
关于实施例四的阶段2的具体细节,可参考实施例一的阶段2,这里不再赘述。
阶段3.根据Sidelink HARQ进程a的HARQ反馈,监听PDCCH(S309-S311)
S309,第一终端确定Sidelink HARQ进程a的HARQ反馈。Sidelink HARQ进程a的HARQ反馈用于指示数据a的第i次传输的接收成功与否。
S310,第一终端可以在Sidelink HARQ进程a的HARQ反馈时机向网络设备发送Sidelink HARQ进程a的HARQ反馈。相应的,网络设备可以在该HARQ反馈时机接收第一终端发送的Sidelink HARQ进程a的HARQ反馈。
S311,如果Sidelink HARQ进程a的HARQ反馈为NACK,则在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,第一终端可开始监听PDCCH。时间单元可以为符号、时隙或者绝对时间单位(如毫秒)。
关于这里未涉及的实施例四的阶段3的具体细节,可参考实施例一中的相关内容,这里不再赘述。
阶段4.Sidelink HARQ进程a的第i+1次传输(S312-S314)
S312,第一终端可接收到PDCCH2。PDCCH 2指示的资源可以是网络设备为Sidelink HARQ进程a的第i+1次传输所调度的资源,即PDCCH 2可用于调度Sidelink HARQ进程a的第i+1次传输。
S313,在监听并接收到PDCCH 2时,并且下述条件都不满足时,第一终端可停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一终端在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一终端接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
S314,在接收到PDCCH 2之后,第一终端可以在PDCCH 2指示的资源上通过Sidelink HARQ进程a向第二终端传输数据a,即进行数据a的第i+1次传输。相应的,第二终端可以在PDCCH 2指示的资源上接收第一终端发送的数据a。
关于这里未涉及的实施例四的阶段4的具体细节,可参考实施例一中的相关内容,这里不再赘述。
实施例四中,关于如何确定Sidelink HARQ进程a的HARQ反馈,可参考实施例一中的相关内容,这里不再赘述。
不限于Sidelink HARQ进程a的HARQ反馈,Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK也可用来指示Sidelink HARQ进程a的前一次传输的接收成功与否。
不限于上述阶段3描述的根据Sidelink HARQ进程a的HARQ反馈监听PDCCH,第一终端也可以根据Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK来监听PDCCH。具体实现可如下:如果Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为NACK,则在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可以开始监听PDCCH。
在一种实现方式中,只要第一终端维护的任意一个Sidelink HARQ进程关联的SL_HARQ_Feedback为NACK,第一终端就可监听PDCCH。
如果Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为ACK,且下述条件都不满足时,则第一终端可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一终端在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一终端接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
在一种可能的情况下,Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为NACK,但Sidelink HARQ进程a关联的状态变量CURRENT_SL_TX_NB指示数据a的传输次数已达到最大传输次数。在该情况下,且下述条件都不满足时,则第一终端可以停止监听PDCCH。
条件1:如下一个或多个计时器在运行:drx-onDurationTimer;drx-InactivityTimer;drx-RetransmissionTimerDL;drx-RetransmissionTimerUL,ra-ContentionResolutionTimer;
条件2:第一终端在PUCCH上发送了调度请求,并且调度请求还在挂起状态;
条件3:第一终端接收到了非竞争的随机接入的响应消息,但是还没有接收到通过C-RNTI加扰的指示新传的PDCCH。
以数据a的初传、重传为例,下面结合图9说明TX UE如何开始监听PDCCH。图9示例性示出了Sidelink HARQ进程a的初传的接收未成功的情况。
如图9所示,第一终端(TX UE)可以在DRX cycle的“On Duration”期间监听PDCCH,并可以接收到用于调度Sidelink HARQ进程a的初传的授权(grant for initial transmission)。在接收到该用于调度初传的授权时,TX UE可以开启计时器drx-InactivityTimer。在drx-InactivityTimer的运行期间,TX UE监听PDCCH。
如图9所示,如果Sidelink HARQ进程a的初传的接收未成功,例如RX UE解码失败,则在Sidelink HARQ进程a的HARQ反馈时机之后的第一个时间单元,TX UE可开始监听PDCCH。
可以看出,实施例四中,如果Sidelink HARQ进程a的前一次传输的接收未成功,则在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可开始监听PDCCH。也即是说,如果Sidelink HARQ进程a的前一次传输的接收未成功,在HARQ反馈时机后,第一终端处于active态,能够监听并接收到网络设备下发的用于调度Sidelink HARQ进程a的重传的PDCCH。这样,可提高Sidelink HARQ进程a的重传的效率,避免增加Sidelink数据重传的延迟。
下面说明上述实施例一至实施例四所涉及的(1)-(3)几个方面。
(1)Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK
在上述实施例一至实施例四中,Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK的初始值可设为ACK。当SL_HARQ_FEEDBACK为ACK时,可指示Sidelink HARQ进程a的前一次传输的接收成功。当SL_HARQ_FEEDBACK为NACK时,可指示Sidelink HARQ进程a的前一次传输的接收成功。
下面说明第一终端如何维护Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK。
1.在以下任一情况发生时,第一终端可将SL_HARQ_FEEDBACK设为ACK。
情况1:第一终端接收到第二终端发送的HARQ反馈为ACK。
情况2:第一终端监听并接收到用于调度Sidelink HARQ进程a的传输(包括初传、重传)的PDCCH。
2.在以下任一情况发生时,第一终端可将SL_HARQ_FEEDBACK设为NACK。
情况1:第一终端接收到第二终端发送的HARQ反馈为NACK。
情况2:第一终端没有接收到第二终端发送的HARQ反馈。
第一终端没有接收到第二终端发送的HARQ反馈,具体可以是指,第一终端在HARQ反馈的反馈时机没有收到第二终端发送的HARQ反馈。
情况3:第一终端在分配给Sidelink HARQ进程a的传输资源上未向第二终端传输Sidelink HARQ进程a关联的数据a。
这里,分配给Sidelink HARQ进程a的传输资源可用于Sidelink HARQ进程a的初传或重传。情况3出现的原因可以为资源冲突,即第一终端在分配给Sidelink HARQ进程a的传输资源上传输其他数据,而非数据a。
(2)Sidelink HARQ进程a关联的状态变量CURRENT_SL_TX_NB
在上述实施例一至实施例四中,Sidelink HARQ进程a关联的状态变量CURRENT_SL_TX_NB的初始值可设为0。每当第一终端监听并接收到用于调度Sidelink HARQ进程a的传输(包括初传、重传)的PDCCH时,第一终端可以将Sidelink HARQ进程a关联的CURRENT_SL_TX_NB加1。用于调度Sidelink HARQ进程a的传输的PDCCH可指示网络设备分配给Sidelink HARQ进程a的传输资源。
(3)符号、时隙的长度
在上述实施例一至实施例四中,符号、时隙的长度可以取决于用于传输第一数据的Sidelink的带宽部分BWP的参数集Numerology,如子载波间隔(subcarrier space,SCS)。不限于此,符号、时隙的长度也可以取决于第一终端向网络设备发送HARQ反馈的上行链路带宽部分BWP的参数集Numerology,如SCS。
在上述实施例一至实施例四中,实施例二中,Sidelink HARQ进程a可以称为第一Sidelink HARQ进程,数据a可以称为第一数据。PDCCH 2可以称为第一PDCCH,PDCCH 1可以称为第二PDCCH。第二终端向第一终端发送的HARQ反馈可以称为第一反馈。
参考图10,图10示出了本申请的一些实施例提供的终端300。终端300可以实现为上述方法实施例中提及的第一终端,也可以实现为上述方法实施例中提及的第二终端,具体可如图1示出的无线通信系统100中的终端103(如车载终端)。如图10所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其他方式连接,图10以通过总线连接 为例。其中:
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理,例如信号调制。接收器308可用于对天线314接收的移动通信信号进行接收处理,例如信号解调。在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
发射器306、接收器308所具有的通信功能能够适用下述一种或多种通信系统:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G),以及长期演进(Long Term Evolution,LTE)(4G)、5G或者未来新空口。
除了图10所示的发射器306和接收器308,终端300还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
输入输出模块可用于实现终端300和用户/外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体实现中,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块均通过用户接口302与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,在终端300实现为上述方法实施例中提及的第一终端的情况下,存储器312可用于存储本申请的一个或多个实施例提供的非连续接收方法在第一终端侧的实现程序。在终端300实现为上述方法实施例中提及的第二终端的情况下,存储器312可用于存储本申请的一个或多个实施例提供的非连续接收方法在第二终端侧的实现程序。关于本申请的一个或多个实施例提供的非连续接收方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的非连续接收方法的实现程序,并执行该程序包含的指令。
终端处理器304可以为调制解调器(Modem)处理器,是实现3GPP、ETSI等无线通 信标准中主要功能的模块。Modem可以作为单独的芯片,也可以与其他芯片或电路在一起形成系统级芯片或集成电路。这些芯片或集成电路可应用于所有实现无线通信功能的设备,包括:车载终端、手机、电脑、笔记本、平板、路由器、可穿戴设备、家电设备等。需要说明的是,在不同的实施方式中,终端处理器304处理器可以作为单独的芯片,与片外存储器耦合,即芯片内不包含存储器;或者终端处理器304处理器与片内存储器耦合并集成于芯片中,即芯片内包含存储器。
可以理解的,终端300可以实现为图1示出的无线通信系统100中的终端103。
需要说明的,图10所示的终端300仅仅是本申请的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图11,图11示出了本申请的一些实施例提供的网络设备400。如图11所示,网络设备400可包括:一个或多个网络设备处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其他方式连接,图11以通过总线连接为例。其中:
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对网络设备处理器401输出的信号进行发射处理,例如信号调制。接收器409可用于对天线413接收的移动通信信号进行接收处理,例如信号解调。在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在网络设备400中,发射器407和接收器409的数量均可以是一个或者多个。
发射器407、接收器409所具有的通信功能能够适用下述一种或多种通信系统:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G),以及长期演进(Long Term Evolution,LTE)(4G)、5G或者未来新空口。
存储器405与网络设备处理器401耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体实现中,网络设备处理器401可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请中,网络设备处理器401可用于读取和执行计算机可读指令。具体的,网络设 备处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的非连续接收方法在网络设备400侧的实现程序,并执行该程序包含的指令。
网络设备处理器401可以为调制解调器(Modem)处理器,是实现3GPP、ETSI等无线通信标准中主要功能的模块。Modem可以作为单独的芯片,也可以与其他芯片或电路在一起形成系统级芯片或集成电路。这些芯片或集成电路可应用于所有实现无线通信功能的网络侧设备,例如,在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(Node B)等,在5G网络中,称为5G基站(NR NodeB,gNB)。需要说明的是,在不同的实施方式中,网络设备处理器401可以作为单独的芯片,与片外存储器耦合,即芯片内不包含存储器;或者网络设备处理器401处理器与片内存储器耦合并集成于芯片中,即芯片内包含存储器。
可以理解的,网络设备400可以是图1示出的无线通信系统100中的网络设备101。
需要说明的,图11所示的网络设备400仅仅是本申请的一种实现方式,实际应用中,网络设备400还可以包括更多或更少的部件,这里不作限制。
参见图12,图12是本申请的一个实施例提供的无线通信系统10,以及无线通信系统10中的终端500、终端600以及网络设备700。网络设备700可以是前述方法实施例中的网络设备,终端500、终端600可以分别是前述方法实施例中的第一终端(TX UE)、第二终端(RX UE)。终端500、终端600可基于PC5接口建立有Sidelink连接。终端500与网络设备700之前可建立RRC连接,终端500可处于RRC连接态。终端600也可以和网络设备700之前可建立RRC连接。终端600也可以处于网络设备700的通信覆盖区域外。
如图12所示,终端500可包括:处理单元501和通信单元503。
当终端500实现前述实施例一描述的非连续接收方法时,各功能单元的实现可如下:
处理单元501,可用于在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元,启动第一计时器。
处理单元501,还可用于如果第一计时器超时,且HARQfeedback为NACK,启动第二计时器。NACK指示第一Sidelink HARQ进程的前一次传输的接收未成功;
通信单元503,可用于在第二计时器运行期间,监听PDCCH;
其中,第一计时器、第二计时器与第一Sidelink HARQ process关联。
其中,第一Sidelink HARQ process关联第一数据。第一SidelinkHARQ process用于终端500向终端600发送第一数据。HARQ反馈时机occasion用于终端500向网络设备发送第一Sidelink HARQ process的HARQfeedback。HARQ feedback用于指示第一Sidelink HARQ进程的前一次传输的接收成功与否。
处理单元501,可具体用于如果HARQfeedback为NACK,则在第一Sidelink HARQ process的HARQ反馈时机之后的第一个时间单元,启动第一计时器。
下面说明处理单元501维护第一计时器、第二计时器这两个计时器的几种实现方式。
方式1
在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,处理单元501可开启drx-HARQ-RTT-TimerSL。如果第一Sidelink HARQ进程的HARQ反馈为NACK, 则当drx-HARQ-RTT-TimerSL超时时,处理单元501可开启drx-RetransmissionTimerSL。在drx-RetransmissionTimerSL运行期间,通信单元503可监听PDCCH。
方式2
如果Sidelink HARQ进程的HARQ反馈为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,处理单元501可开启第一计时器。当drx-HARQ-RTT-TimerSL超时时,处理单元501可开启第二计时器。在第二计时器运行期间,通信单元503监听PDCCH。
不限于第一Sidelink HARQ进程的HARQ反馈,第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK也可用来指示第一Sidelink HARQ进程的前一次传输的接收成功与否。
不限于上述方式1、方式2,处理单元501也可以根据第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK,来维护第一计时器、第二计时器这两个计时器。具体实现可如下:如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,处理单元501可以开启第一计时器。如果第一Sidelink HARQ进程关联的状态变量SL_HARQ_FEEDBACK为NACK,则在第一计时器超时时,处理单元501可以开启第二计时器。
当终端500实现前述实施例二描述的非连续接收方法时,各功能单元的实现可如下:
处理单元501,可用于在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,启动第三计时器。
通信单元502,可用于在第三计时器运行期间,监听PDCCH。
其中,第三计时器与第一Sidelink HARQ process关联。
处理单元501,可具体用于如果HARQfeedback为NACK,则在第一Sidelink HARQ process的HARQ反馈时机之后的第一个时间单元,启动第三计时器。
不限于Sidelink HARQ进程a的HARQ反馈,Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK也可用来指示Sidelink HARQ进程a的前一次传输的接收成功与否。
不限于根据Sidelink HARQ进程a的HARQ反馈维护第三计时器,第一终端也可以根据Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK来维护第三计时器。具体实现可如下:如果Sidelink HARQ进程a关联的状态变量SL_HARQ_FEEDBACK为NACK,则在Sidelink HARQ进程a的HARQ反馈时机后的第一个时间单元,第一终端可以开启第三计时器。
当终端500实现前述实施例四描述的非连续接收方法时,各功能单元的实现可如下:
处理单元501,可用于确定第一Sidelink HARQ process的HARQfeedback。
通信单元503,可用于如果第一Sidelink HARQ process的HARQfeedback为NACK,则在第一Sidelink HARQ process的HARQ反馈时机后的第一个时间单元,开始监听PDCCH;
通信单元503,还可用于当监听到第一PDCCH时,停止监听PDCCH;第一PDCCH用于调度第一侧行链路HARQ process的传输资源。
处理单元501,可具体用于在以下任一情况下,确定第一Sidelink HARQ进程的HARQ反馈为NACK,即可确定第一Sidelink HARQ进程的前一次传输的接收未成功:
情况1:终端500接收到终端600发送的HARQ反馈为NACK。
该HARQ反馈用于指示第一Sidelink HARQ进程关联的数据的前一次传输是否被终端600成功接收。HARQ反馈为NACK时,可指示终端600未成功接收第一Sidelink HARQ进程关联的数据。终端600未成功接收第一Sidelink HARQ进程关联的数据,其原因可包括但不限于:终端600未成功解码该数据、终端600在第一资源上未接收到该数据。这里,第一资源是网络设备为第一Sidelink HARQ进程的前一次传输所调度的资源。
情况2:终端500没有接收到终端600发送的HARQ反馈。
终端500没有接收到终端600发送的HARQ反馈,具体可以是指,终端500在第一Sidelink HARQ进程的反馈时机没有收到终端600发送的HARQ反馈。第一Sidelink HARQ进程的反馈时机可由网络设备配置。
情况3:终端500在第一资源上未向终端600传输该Sidelink数据。
这里,第一资源是网络设备为第一Sidelink HARQ进程的前一次传输所调度的资源。情况3出现的原因可以为资源冲突,即终端500在第一资源上传输其他数据,而非数据a。
处理单元501,可具体用于在以下情况下,确定第一Sidelink HARQ进程的HARQ反馈为ACK,即可确定第一Sidelink HARQ进程的前一次传输的接收成功:终端500接收到终端600发送的HARQ反馈为ACK。该HARQ反馈为ACK时,可指示终端600成功接收第一Sidelink HARQ进程关联的数据。
如图12所示,网络设备700可包括:处理单元701和通信单元703。其中:
处理单元701,可用于为第一Sidelink HARQ进程的传输(包括初传、重传)分配资源。
处理单元701,还可用于处于RRC连接态的终端500配置DRX cycle,以及计时器:drx-InactivityTimer、drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL。
通信单元701,可用于在PDCCH下发资源授权,资源授权可携带在下行控制信息DCI中。该资源授权可指示为网络设备700为第一Sidelink HARQ进程的传输(包括初传、重传)分配的资源。
如图12所示,终端600可包括:处理单元601和通信单元603。其中:
通信单元603,可用于接收终端500发送的第一数据。
处理单元601,可用于对接收到的第一数据进行解码。
通信单元603,还可用于向终端500发送HARQ反馈,以指示终端600是否成功接收第一数据。
可以理解的,终端500、终端600以及网络设备700各自包括的各个功能单元的具体实现可参考前述各个方法实施例,这里不再赘述。
另外,本发明实施例还提供了一种无线通信系统,所述无线通信系统可以是图1所示的无线通信系统100,也可以是图12所示的无线通信系统10,可包括:第一终端、第二终端和网络设备。其中,该第一终端可以是前述实施例中的第一终端,该第二终端可以是前述实施例中的第二终端,网络设备可以是前述实施例中的网络设备。具体的,该第一终端可以是图10所示的终端300,该第二终端可以是图10所示的终端300,网络设备可以是图10所示的网络设备400。
下面以前述方法实施例一为例,说明无线通信系统中的第一终端、第二终端和网络设备的具体实现。
以图10所示的终端是第一终端为例,终端处理器304用于调用存储于所述存储器312中的指令来控制发射器306在进行发送以及控制接收器308进行接收。发射器306用于支持终端执行对数据和/或信令进行发射的过程。接收器308用于支持终端执行对数据和/或信令进行接收的过程。存储器312用于存储终端的程序代码和数据。
终端处理器304可用于如果HARQfeedback为NACK,则在第一SidelinkHARQ进程的HARQ反馈时机后的第一个时间单元,启动第一计时器。终端处理器304还可用于如果第一计时器超时,且HARQfeedback为NACK,启动第二计时器。NACK指示第一Sidelink HARQ进程的前一次传输的接收未成功。
接收器308,可用于在第二计时器运行期间,监听PDCCH。
其中,第一计时器、第二计时器与第一Sidelink HARQ process关联。第一Sidelink HARQ process关联第一数据。第一SidelinkHARQ process用于终端500向终端600发送第一数据。HARQ反馈时机occasion用于终端500向网络设备发送第一Sidelink HARQ process的HARQfeedback。HARQ feedback用于指示第一Sidelink HARQ进程的前一次传输的接收成功与否。
这样,在HARQ反馈时机后,在第二计时器运行期间,第一终端处于active态,能够监听并接收到网络设备在此期间下发的用于调度Sidelink HARQ进程a的重传的PDCCH。从而使得,可提高Sidelink HARQ进程a的重传的效率,避免增加Sidelink数据重传的延迟。
关于第一终端中各部件的具体实现,可参考图前述方法实施例,这里不再赘述。
以图10所示的终端是第二终端为例,终端处理器304用于调用存储于所述存储器312中的指令来控制发射器306在进行发送以及控制接收器308进行接收。发射器306用于支持终端执行对数据和/或信令进行发射的过程。接收器308用于支持终端执行对数据和/或信令进行接收的过程。存储器312用于存储终端的程序代码和数据。
接收器308,可用于接收第一终端发送的第一数据。
终端处理器304可用于对接收到的第一数据进行解码。
发射器306,可用于向第一终端发送HARQ反馈,以指示是否成功接收第一数据。
关于第二终端中各部件的具体实现,可参考图前述方法实施例,这里不再赘述。
以图11所示的网络设备是第二终端为例,网络设备处理器401用于调用存储于所述存储器405中的指令来控制发射器407在进行发送以及控制接收器409进行接收。发射器407用于支持网络设备执行对数据和/或信令进行发射的过程。接收器409用于支持网络设备执行对数据和/或信令进行接收的过程。存储器405用于存储终端的程序代码和数据。
网络设备处理器401可用于为第一Sidelink HARQ进程的传输(包括初传、重传)分配资源。网络设备处理器401还可用于处于RRC连接态的第一终端配置DRX cycle,以及配置计时器:drx-InactivityTimer、drx-HARQ-RTT-TimerSL、drx-RetransmissionTimerSL。
发射器407,可用于在PDCCH下发资源授权,资源授权可携带在下行控制信息DCI中。该资源授权可指示为网络设备为第一Sidelink HARQ进程的传输(包括初传、重传)分配的资源。
关于网络设备中各部件的具体实现,可参考图前述方法实施例,这里不再赘述。
另外,本申请还提供了一种装置。该装置可包括:处理器,以及耦合于处理器的存储器。其中:
处理器可用于读取和执行计算机可读指令。具体实现中,处理器可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器的硬件架构可以是专用集成电路(Application Specific Integrated Circuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器可以是单核的,也可以是多核的。
存储器可用于存储计算机可读指令。具体实现中,存储器可包括高速随机存取的存储器、固态存储设备等。存储器中存储的指令可以是前述各个方法实施例提供的非连续接收方法的实现程序。
处理器还可耦合一个或多个接口。接口可以是通用输入输出(General Purpose Input Output,GPIO)接口,可以和多个外围设备(如射频模块等等)连接。接口还可以包括多个独立的接口,例如以太网接口、移动通信接口(如X1接口)等,分别负责不同外围设备和处理器之间的通信。
处理器可用于读取和执行存储于存储器中的计算机可读指令。具体的,处理器可用于调用并执行存储于存储器中的指令,使得该装置执行前述各个方法实施例提供的非连续接收方法。接口可用于输出处理器的执行结果。
该装置可实现为前述方法实施例中第一终端,也可以实现为前述方法实施例中第二终端,还可以实现为前述方法实施例中的网络设备。需要说明的,该装置的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请中,第一终端也可以称为第一装置,第二终端也可以称为第二装置。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其他形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于收发机或中继设备中。当然,处理器和存储介质也可以作为分立组件存在于无线接入网设备或终端设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传 输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (31)

  1. 一种非连续接收方法,其特征在于,包括:
    在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,第一装置启动第一计时器;
    如果所述第一计时器超时,且所述第一Sidelink HARQ进程的HARQ反馈为不确认NACK,所述第一装置启动所述第二计时器;所述HARQ反馈为NACK时,指示所述第一Sidelink HARQ进程的前一次传输的接收未成功;
    在所述第二计时器运行期间,所述第一装置监听下行物理控制信道PDCCH;
    其中,所述第一Sidelink HARQ进程用于所述第一装置向第二装置发送所述第一数据;所述HARQ反馈时机occasion用于所述第一装置向网络设备发送所述第一Sidelink HARQ进程的HARQ反馈;所述HARQ反馈用于指示所述第一Sidelink HARQ进程的前一次传输的接收成功与否;所述第一计时器、所述第二计时器与所述第一Sidelink HARQ进程关联。
  2. 如权利要求1所述的方法,其特征在于,在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,所述第一装置启动所述第一计时器,具体包括:
    如果所述HARQ反馈为NACK,则所述第一装置在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,所述第一装置启动所述第一计时器。
  3. 如权利要求1-2中任一项所述的方法,其特征在于,还包括:在以下任一种条件下,所述第一装置确定所述第一Sidelink HARQ进程的HARQ反馈为NACK:
    所述第一装置接收到所述第二装置发送的第一反馈为NACK;所述第一反馈用于指示所述第一Sidelink HARQ进程的前一次传输是否被所述第二装置成功接收;
    或者,
    所述第一装置没有接收到第二装置发送的所述第一反馈;
    或者,
    所述第一装置在第一资源上没有向所述第二装置传输所述第一数据;所述第一资源为所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述第一Sidelink HARQ进程与第一变量关联,所述第一变量用于记录所述第一Sidelink HARQ进程的前一次传输的接收成功与否;当所述第一变量为NACK时,表示所述第一Sidelink HARQ进程的前一次传输不成功。
  5. 如权利要求4所述的方法,其特征在于,在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,所述第一装置启动所述第一计时器,具体包括:
    如果所述第一变量为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,所述第一装置启动所述第一计时器。
  6. 如权利要求4所述的方法,其特征在于,所述如果第一计时器超时,且所述HARQ反馈为NACK,所述第一装置启动所述第二计时器,具体包括:
    如果第一计时器超时,且所述第一变量为NACK,所述第一装置启动所述第二计时器。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述时间单元,包括:符号或时隙。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述第一计时器的时间单位为符号,所述第二计时器的时间单位为时隙。
  9. 如权利要求7或8所述的方法,其特征在于,所述符号、所述时隙的长度取决于用于传输所述第一数据的Sidelink的带宽部分BWP的参数集Numerology;
    或者,所述符号、所述时隙的长度取决于所述第一装置向所述网络设备发送所述HARQ反馈的上行链路带宽部分BWP的参数集Numerology。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,还包括:当所述第一装置监听到第一PDCCH时,所述第一装置停止所述第二定时器;所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
  11. 如权利要求1-10中任一项所述的方法,其特征在于,所述第一装置为终端设备或可设置于所述终端设备上的芯片。
  12. 如权利要求1-11中任一项所述的方法,其特征在于,所述第一装置和所述网络设备之间建立了无线资源控制RRC连接;所述第一装置处于RRC连接态。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,所述第一装置与所述第二装置之间建立侧行链路Sidelink。
  14. 如权利要求1-13中任一项所述的方法,其特征在于,还包括:在所述第一Sidelink HARQ进程的HARQ反馈时机之前,所述第一装置还监听到第二PDCCH,所述第二PDCCH用于指示所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
  15. 如权利要求1-14中任一项所述的方法,其特征在于,还包括:所述第一装置向所述网络设备发送资源调度请求,以请求所述网络设备为第一数据传输调度传输资源,所述网络设备为Sidelink传输调度的资源指示在PDCCH中。
  16. 如权利要求1-15中任一项所述的方法,其特征在于,还包括:在以下情况下,所 述第一装置确定所述第一Sidelink HARQ进程的HARQ反馈为ACK:所述第一装置接收到所述第二装置发送的第一反馈为ACK,所述第一反馈为ACK时,指示所述第二装置成功接收第一Sidelink HARQ进程关联的数据。
  17. 一种装置,所述装置为第一装置,其特征在于,包括:
    处理器,用于在第一侧行链路混合自动重传请求Sidelink HARQ进程的HARQ反馈时机后的第一个时间单元,启动第一计时器;
    所述处理器,还用于如果所述第一计时器超时,且所述第一Sidelink HARQ进程的HARQ反馈为NACK,启动所述第二计时器;所述HARQ反馈为NACK时,指示所述第一Sidelink HARQ进程的前一次传输的接收未成功;
    收发器,用于在所述第二计时器运行期间,监听PDCCH;
    其中,所述第一Sidelink HARQ进程用于所述第一装置向第二装置发送所述第一数据;所述HARQ反馈时机occasion用于所述第一装置向网络设备发送所述第一Sidelink HARQ进程的HARQ反馈;所述HARQ反馈用于指示所述第一Sidelink HARQ进程的前一次传输的接收成功与否;所述第一计时器、所述第二计时器与所述第一Sidelink HARQ进程关联。
  18. 如权利要求17所述的装置,其特征在于,所述处理器,具体用于如果所述HARQ反馈为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第一计时器。
  19. 如权利要求17-18中任一项所述的装置,其特征在于,所述处理器还用于在以下任一种条件下,确定所述第一Sidelink HARQ进程的HARQ反馈为NACK:
    所述第一装置接收到所述第二装置发送的第一反馈为NACK;所述第一反馈用于指示所述第一Sidelink HARQ进程的前一次传输是否被所述第二装置成功接收;
    或者,
    所述第一装置没有接收到第二装置发送的所述第一反馈;
    或者,
    所述第一装置在第一资源上没有向所述第二装置传输所述第一数据;所述第一资源为所述网络设备为所述第一Sidelink HARQ进程的前一次传输所调度的资源。
  20. 如权利要求17-19中任一项所述的装置,其特征在于,所述第一Sidelink HARQ进程与第一变量关联,所述第一变量用于记录所述第一Sidelink HARQ进程的前一次传输的接收成功与否;当所述第一变量为NACK时,表示所述第一Sidelink HARQ进程的前一次传输不成功。
  21. 如权利要求20所述的装置,其特征在于,所述处理器具体用于如果所述第一变量为NACK,则在第一Sidelink HARQ进程的HARQ反馈时机之后的第一个时间单元,启动所述第一计时器。
  22. 如权利要求21所述的装置,其特征在于,所述处理器具体用于如果第一计时器超时,且所述第一变量为NACK,启动所述第二计时器。
  23. 如权利要求17-22中任一项所述的装置,其特征在于,所述时间单元,包括:符号或时隙。
  24. 如权利要求17-18中任一项所述的装置,其特征在于,所述第一计时器的时间单位为符号,所述第二计时器的时间单位为时隙。
  25. 如权利要求23或24所述的装置,其特征在于,所述符号、所述时隙的长度取决于用于传输所述第一数据的Sidelink的带宽部分BWP的参数集Numerology;
    或者,所述符号、所述时隙的长度取决于所述第一装置向所述网络设备发送所述HARQ反馈的上行链路带宽部分BWP的参数集Numerology。
  26. 如权利要求17-25中任一项所述的装置,其特征在于,所述处理器具体还用于当所述第一装置监听到第一PDCCH时,停止所述第二定时器;所述第一PDCCH用于调度所述第一侧行链路HARQ进程的传输资源。
  27. 如权利要求17-26中任一项所述的装置,其特征在于,所述第一装置为终端设备或可设置于所述终端设备上的芯片。
  28. 一种装置,其特征在于,包括处理器和存储器,所述处理器耦合于所述存储器,所述存储器中存储指令,所述处理器用于调用所述存储器中的所述指令,执行权利要求1-16中任一项所述的方法。
  29. 一种存储介质计算机可读存储介质,包括指令,其特征在于,当所述指令在装置上运行时,使得所述装置执行如权利要求1-16中任一项所述的方法。
  30. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在装置上运行时,使得所述装置执行如权利要求1-16中任一项所述的方法。
  31. 一种装置,其特征在于,包括:发射器、接收器、存储器和处理器,所述发射器、所述接收器、所述存储器耦合于所述处理器,所述存储器用于存储可由所述处理器执行的指令,所述处理器用于调用所述存储器中的所述指令,并配合所述发射器、所述接收器,使得所述装置执行权利要求1-16中任一项所述的方法。
PCT/CN2020/109378 2019-08-16 2020-08-14 非连续接收方法、相关装置及系统 WO2021032026A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022509717A JP7241237B2 (ja) 2019-08-16 2020-08-14 間欠受信方法、関連する装置及びシステム
EP23205730.7A EP4358633A3 (en) 2019-08-16 2020-08-14 Discontinuous reception method, related device, and system
US17/635,654 US12063533B2 (en) 2019-08-16 2020-08-14 Discontinuous reception method, related apparatus and system
KR1020227008565A KR20220048009A (ko) 2019-08-16 2020-08-14 불연속 수신 방법, 관련된 장치 및 시스템
EP20853647.4A EP4017211B1 (en) 2019-08-16 2020-08-14 Discontinuous reception method, related device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910772053.8A CN112399644B (zh) 2019-08-16 2019-08-16 非连续接收方法、相关装置及系统
CN201910772053.8 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021032026A1 true WO2021032026A1 (zh) 2021-02-25

Family

ID=74603654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109378 WO2021032026A1 (zh) 2019-08-16 2020-08-14 非连续接收方法、相关装置及系统

Country Status (6)

Country Link
US (1) US12063533B2 (zh)
EP (2) EP4017211B1 (zh)
JP (1) JP7241237B2 (zh)
KR (1) KR20220048009A (zh)
CN (3) CN112399644B (zh)
WO (1) WO2021032026A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087140A (zh) * 2021-03-11 2022-09-20 华为技术有限公司 通信方法和通信装置
JP2023536668A (ja) * 2021-03-26 2023-08-28 エルジー エレクトロニクス インコーポレイティド Nr v2xでsl harqフィードバックを送信する方法及び装置
EP4280798A4 (en) * 2021-03-31 2024-03-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. TIMER CONTROL METHOD AND APPARATUS AND TERMINAL APPARATUS
EP4311356A4 (en) * 2021-04-01 2024-06-12 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SIDELINK TRANSMISSION
EP4287759A4 (en) * 2021-03-17 2024-07-03 Vivo Mobile Communication Co Ltd METHOD, DEVICE AND TERMINAL FOR DISCONTINUOUS RECEIPT

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800893B (zh) * 2019-08-22 2022-06-17 维沃移动通信有限公司 边链路非连续发送、接收方法与装置及终端设备
WO2021080240A1 (ko) * 2019-10-24 2021-04-29 주식회사 케이티 사이드링크 통신을 제어하는 방법 및 그 장치
US11985514B2 (en) * 2020-08-13 2024-05-14 Qualcomm Incorporated Discontinuous reception configuration in sidelink communication deployments
US12009932B2 (en) * 2020-09-25 2024-06-11 Qualcomm Incorporated Type 3 hybrid automatic repeat request codebook for sidelink
WO2022077395A1 (zh) * 2020-10-15 2022-04-21 Oppo广东移动通信有限公司 侧行链路的传输方法和终端
EP4304277A1 (en) * 2021-03-03 2024-01-10 LG Electronics Inc. Ue operation method related to psfch and pucch transmission in sidelink in wireless communication system
WO2022188698A1 (zh) * 2021-03-11 2022-09-15 华为技术有限公司 通信方法和通信装置
CN113517961B (zh) * 2021-03-11 2022-11-11 中国信息通信研究院 一种非连续接收反馈定时方法和设备
BR112023018380A2 (pt) * 2021-03-12 2023-10-31 Beijing Xiaomi Mobile Software Co Ltd Método e aparelho para processar uma recepção descontínua, dispositivo terminal, e, meio de armazenamento legível por computador
CN115119182B (zh) * 2021-03-17 2024-10-15 维沃移动通信有限公司 定时器控制方法、装置及终端
CN115190439B (zh) * 2021-04-01 2024-06-14 华为技术有限公司 侧行链路通信方法及装置
WO2022205445A1 (zh) * 2021-04-02 2022-10-06 Oppo广东移动通信有限公司 一种数据重传方法及相关设备
US20240188181A1 (en) * 2021-04-11 2024-06-06 Lenovo (Beijing) Limited Methods and apparatuses for sidelink communication
CN116458267A (zh) * 2021-04-13 2023-07-18 Oppo广东移动通信有限公司 非连续接收方法及相关装置
US20220377831A1 (en) * 2021-05-24 2022-11-24 Qualcomm Incorporated Timer operations for directional sidelink discontinuous reception
US11824662B2 (en) 2022-04-22 2023-11-21 Asus Technology Licensing Inc. Method and apparatus for discontinuous reception regarding PUCCH transmission in a wireless communication system
US12089283B2 (en) 2022-12-23 2024-09-10 Asus Technology Licensing Inc. Method and apparatus for downlink discontinuous reception regarding sidelink transmission in a wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592984A (zh) * 2015-05-07 2018-01-16 Lg电子株式会社 在无线通信系统中根据基于竞争的调度请求执行副链路传输的方法和设备
WO2018061759A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 通信制御方法
WO2019101146A1 (en) * 2017-11-22 2019-05-31 Fg Innovation Ip Company Limited Discontinuous reception operations among multiple bandwidth parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041276A1 (zh) 2015-09-10 2017-03-16 华为技术有限公司 一种数据传输方法、终端及ran设备
KR20210118542A (ko) * 2020-03-23 2021-10-01 주식회사 아이티엘 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치
CN113677020A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 通信方法、装置及系统
US20230247550A1 (en) * 2020-05-21 2023-08-03 FG Innovation Company Limited Method and user equipment for performing sidelink communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592984A (zh) * 2015-05-07 2018-01-16 Lg电子株式会社 在无线通信系统中根据基于竞争的调度请求执行副链路传输的方法和设备
WO2018061759A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 通信制御方法
WO2019101146A1 (en) * 2017-11-22 2019-05-31 Fg Innovation Ip Company Limited Discontinuous reception operations among multiple bandwidth parts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Draft CR on TS 38.321 on the remaining MAC Open issues for 5G V2X with NR SL", 3GPP DRAFT; R2-2003556, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051871481 *
LG ELECTRONICS INC., NOKIA, NEC: "Reconsideration on drx-InactivityTimer for NB-IoT", 3GPP DRAFT; R2-164202 RECONSIDERATION ON DRX-INACTIVITYTIMER FOR NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Nanjing, China; 20160523 - 20160527, 22 May 2016 (2016-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051105485 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087140A (zh) * 2021-03-11 2022-09-20 华为技术有限公司 通信方法和通信装置
EP4287759A4 (en) * 2021-03-17 2024-07-03 Vivo Mobile Communication Co Ltd METHOD, DEVICE AND TERMINAL FOR DISCONTINUOUS RECEIPT
JP2023536668A (ja) * 2021-03-26 2023-08-28 エルジー エレクトロニクス インコーポレイティド Nr v2xでsl harqフィードバックを送信する方法及び装置
JP7551897B2 (ja) 2021-03-26 2024-09-17 エルジー エレクトロニクス インコーポレイティド Nr v2xでsl harqフィードバックを送信する方法及び装置
EP4280798A4 (en) * 2021-03-31 2024-03-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. TIMER CONTROL METHOD AND APPARATUS AND TERMINAL APPARATUS
EP4311356A4 (en) * 2021-04-01 2024-06-12 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SIDELINK TRANSMISSION

Also Published As

Publication number Publication date
KR20220048009A (ko) 2022-04-19
EP4017211A1 (en) 2022-06-22
CN112399644B (zh) 2023-01-13
JP7241237B2 (ja) 2023-03-16
CN116566554A (zh) 2023-08-08
EP4017211A4 (en) 2022-10-19
JP2022543907A (ja) 2022-10-14
CN116056254A (zh) 2023-05-02
EP4358633A2 (en) 2024-04-24
CN112399644A (zh) 2021-02-23
US20220312241A1 (en) 2022-09-29
EP4017211B1 (en) 2023-11-22
US12063533B2 (en) 2024-08-13
EP4358633A3 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
WO2021032026A1 (zh) 非连续接收方法、相关装置及系统
CN113708898B (zh) 一种通信方法及装置
US20230209644A1 (en) Method and apparatus for sidelink drx operation
US20230224813A1 (en) Signaling and information exchange for drx on sidelink communication
CN114286310A (zh) 一种通信方法、装置及系统
JP2024507760A (ja) サイドリンク通信方法および装置
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
US20240039680A1 (en) Feedback Procedures for SL Power Saving UEs
EP4211980A1 (en) Consideration of active reception status in resource selection for d2d communication
WO2022206925A1 (zh) 一种侧行链路的传输方法及装置
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
WO2022142337A1 (zh) 无线通信的方法和终端设备
WO2022205095A1 (zh) 无线通信的方法及终端设备
EP4316166A1 (en) Sidelink discontinuous reception procedures
CN116458259A (zh) 一种通信方法、装置及系统
WO2021138907A1 (en) Method and apparatus for geo-based sidelink communication
WO2022205365A1 (zh) 激活时间的确定方法、装置、设备及存储介质
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
WO2022205174A1 (zh) 一种控制定时器的方法及装置、终端设备
US20240224372A1 (en) Method for preconfigured resource-based small data transmission and terminal device
WO2023004637A1 (en) Methods and apparatuses for maintaining an uu interface associated timer with a sl drx scheme
WO2022041138A1 (zh) 一种通信的方法及装置
CN116368756A (zh) 无线通信的方法和装置
JP2024150434A (ja) D2d通信用の複数のdrx設定
AU2021437226A1 (en) Method and apparatus for drx operation for multicast and broadcast services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227008565

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020853647

Country of ref document: EP

Effective date: 20220315