WO2021032013A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2021032013A1
WO2021032013A1 PCT/CN2020/109306 CN2020109306W WO2021032013A1 WO 2021032013 A1 WO2021032013 A1 WO 2021032013A1 CN 2020109306 W CN2020109306 W CN 2020109306W WO 2021032013 A1 WO2021032013 A1 WO 2021032013A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
session
information
access network
service type
Prior art date
Application number
PCT/CN2020/109306
Other languages
English (en)
French (fr)
Inventor
应江威
谭仕勇
杨艳梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20854771.1A priority Critical patent/EP4016959B1/en
Publication of WO2021032013A1 publication Critical patent/WO2021032013A1/zh
Priority to US17/673,533 priority patent/US20220174553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5053Lease time; Renewal aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/148Migration or transfer of sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/103Mapping addresses of different types across network layers, e.g. resolution of network layer into physical layer addresses or address resolution protocol [ARP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5076Update or notification mechanisms, e.g. DynDNS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/58Caching of addresses or names
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • This private network can be understood as an independent 3GPP private network that only supports private network users’ access.
  • Such private networks can include terminals, private network access network elements, and private network core network elements.
  • the terminal session can be routed through the private network access network element, or through the private network core network element.
  • the terminal needs to switch from the currently accessed source access network network element to the destination access network network element, how to handle or switch the session of the terminal is a technical problem to be solved.
  • the embodiments of the present application provide a communication method and device, so as to effectively process or switch the session of the terminal during the terminal switching process.
  • this application provides a communication method, which is applied to a handover scenario of a terminal from a source access network network element to a destination access network network element.
  • the method includes: the first network element obtains session information of a first session of the terminal ,
  • the session information includes first service type information, the first network element obtains the first information, and the first information is used to indicate the service type information of the local offload supported by the target access network network element.
  • the first information and the session information determine that the target access network element supports local offloading of the service corresponding to the first service type information, then the first network element determines that the target access network element handles the first Conversation.
  • the session information of the first session may be a complete set or a subset of the context information of the first session.
  • the first network element determines that the destination access network element supports local offloading of services corresponding to the first service type information
  • the session can be handed over to the destination access network element for processing or the session is switched when it is ensured that the session is a session that the destination access network element can handle
  • errors in session processing or switching can be avoided, and the success rate of session switching can be improved.
  • the first network element is a target access network element
  • the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • Processing the first session by the network element of the destination access network can achieve the purpose of offloading with the network element of the core network, which can not only reduce the end-to-end delay of the data service, but also reduce the network pressure.
  • the following is a design based on the first scenario.
  • obtaining the session information of the first session of the terminal by the destination access network element includes: the destination access network element receives the session information from the source access network element or the core network element.
  • the target access network element obtains the first information, including: the target access network element obtains the pre-configured first information locally; or, the target access network element receives the first information from the core network element The first information.
  • the method for obtaining the first information can be flexibly selected for different application scenarios.
  • the session information of the first session may also be updated.
  • updating the session information of the first session by the target access network element includes: allocating a new internet protocol (IP) address for the first session, updating the session information according to the new IP address, and notifying the source access network The new IP address of the network element or terminal or core network element.
  • IP internet protocol
  • the destination access network element determines that the IP address of the first session is unchanged, it can update the address resolution protocol (ARP) route of the IP address of the first session to reuse the IP address.
  • ARP address resolution protocol
  • the destination access network element After the destination access network element processes the first session, it can continue to use the old IP address of the session, or assign a new IP to the session, and can flexibly process the IP address of the session according to different application scenarios, and it can be used for the session. After the new IP address is assigned, it can be notified to the relevant network elements in time to avoid subsequent communication errors.
  • the target access network element may also send a first indication to the source access network element, where the first indication is used to indicate that a new IP address has been allocated for the first session.
  • the source access network element can learn that the destination access network element has allocated a new IP address for the session, and can notify the terminal of the validity time of the old IP address accordingly, and can release the old IP address in time after the old IP address expires. IP address.
  • the first network element is a core network element
  • the first session is a session controlled by the source access network element before the terminal is switched.
  • the following is a design based on the second scenario.
  • the core network element acquiring the session information of the first session of the terminal includes: the core network element receiving the session information from the source access network element.
  • the method further includes: the core network element sends the session information to the target access network element.
  • the core network element sends the session information to the target access network element. Switching the session corresponding to the service that the destination access network element supports local offloading to the destination access network element can achieve the purpose of offloading with the core network element, which not only reduces the end-to-end delay of data services, but also reduces Small network pressure.
  • the first network element is the source access network element
  • the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • the following is a design based on the third scenario.
  • the method further includes: the source access network element sends the session information to the destination access network element.
  • the source access network element sends the session information to the destination access network element. Switching the session corresponding to the service that the destination access network element supports local offloading to the destination access network element can achieve the purpose of offloading with the core network element, which not only reduces the end-to-end delay of data services, but also reduces Small network pressure.
  • the first network element is a core network element
  • the first session is a session controlled by the core network element before the terminal is switched.
  • the following is a design based on the fourth scenario.
  • the method further includes: the core network element sends the session information to the target access network element.
  • the core network element switches the session corresponding to the service that the destination access network element supports local offloading to the destination access network element, which can achieve the purpose of offloading with the core network element, not only can reduce the end-to-end delay of data services , Can also reduce network pressure.
  • the core network element can also receive a path conversion request from the target access network element. Based on this design, the core network element sends session information to the target access network element, including: The core network element sends a path conversion request confirmation message to the destination access network element, and the path conversion request confirmation message includes session information.
  • the core network element sends session information to the target access network element, including: The core network element sends a path conversion request confirmation message to the destination access network element, and the path conversion request confirmation message includes session information.
  • the core network element can also receive a handover request message from the source access network element.
  • the handover request message includes the identity of the target access network element.
  • the handover request message is used to request The terminal switches to the target access network element.
  • the core network element sends session information to the target access network element, including: the core network element sends a handover request message to the target access network element, and a handover request message Includes session information.
  • the core network element can also send the core network tunnel information of other sessions to the destination access network element, the other sessions are sessions other than the first session, and the service type information corresponding to the other sessions corresponds to the service
  • the network element of the destination access network does not support services that perform local offloading.
  • the core network tunnel information of the other session can be carried in a handover request message or a path switch request confirmation message sent by the core network element to the target access network element, or it can of course also be carried in other existing messages. Can also be carried in new messages.
  • obtaining the first information by the first network element includes: the first network element obtains the first information preconfigured locally; or, the first network element receives the first information from the network element of the destination access network .
  • the first network element receives the new IP address of the first session from the network element of the destination access network; the first network element sends the new IP address of the first session to the terminal.
  • the first network element receives a first instruction from a network element of the destination access network, and the first instruction is used to indicate that a new IP address has been allocated for the first session; The valid time of the old IP address for sending the first session.
  • the new IP addresses can be synchronized between each network element in time.
  • the following is a design based on the first scenario to the fourth scenario.
  • the first information and the first service type information may respectively include at least one of the following service type identification information: network slice selection assistance information (NSSAI), data network name (data network name) , DNN) or application identification (App-ID).
  • NSSAI network slice selection assistance information
  • Data network name data network name
  • DNN data network name
  • App-ID application identification
  • the first information further includes a local support indication, which is used to indicate that the target access network network element supports local offloading of services corresponding to the service type identification information.
  • a local support indication which is used to indicate that the target access network network element supports local offloading of services corresponding to the service type identification information.
  • the first network element determines, based on the first information and the session information, that the destination access network network element supports local offloading of services corresponding to the first service type information, including: One information indicates that the service type information of the local offload supported by the destination access network element matches, then the first network element determines that the destination access network element supports local offloading of the service corresponding to the first service type information, and the first network element It is determined that the network element of the destination access network processes the first session.
  • the first information and the first service type information respectively include NSSAI and DNN.
  • the first network element determines that the destination access network network element handles the first session, including: if the first service type The NSSAI and DNN included in the information respectively match the NSSAI and DNN included in the first information, then the first network element determines that the destination access network element supports local offloading of services corresponding to the first service type information, and the first network element determines that The network element of the destination access network processes the first session.
  • the first information and the first service type information respectively include NSSAI, DNN, and APP ID.
  • the first network element determines that the network element of the destination access network will process the first session, including: The NSSAI, DNN, and APP ID included in the service type information respectively match the NSSAI, DNN, and APP ID included in the first information, and the first network element determines that the destination access network element supports the service corresponding to the first service type information. For local offloading, the first network element determines that the target access network network element handles the first session.
  • the present application provides a communication method, which is applied to a handover scenario of a terminal from a source access network element to a destination access network element.
  • the method includes: the destination access network element receives a message from the first network element
  • the session information of the first session of the terminal, the session information includes the first service type information
  • the destination access network network element supports local offloading of the service corresponding to the first service type information
  • the destination access network network element updates the ⁇ session information.
  • the session information of the first session may be a complete set or a subset of the context information of the first session.
  • the session information corresponding to the locally offloaded service supported by the destination access network element can be sent to the destination access network.
  • the target access network element processes the session, which can be understood as switching the session to the target access network element, and the target access network element processes the first session to achieve the purpose of offloading with the core network element , Not only can reduce the end-to-end delay of data services, but also reduce network pressure.
  • the first network element is a core network element
  • the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • the first network element is the source access network element
  • the first session is the session managed and controlled by the source access network element before the terminal is switched.
  • the first network element is a core network element
  • the first session is a session controlled by the core network element before the terminal is switched.
  • the following is a design based on the first scenario to the third scenario.
  • the network element of the destination access network updates the session information, including: the network element of the destination access network allocates a new IP address for the first session, updates the session information according to the new IP address, and sends it to the first network element or terminal Send the new IP address.
  • the network element of the destination access network sends a first instruction to the first network element, and the first instruction is used to indicate that a new IP address has been allocated for the first session, so that the first network element sends the first instruction The effective time of the old IP address of the first session sent by the terminal.
  • the destination access network element when the destination access network element determines that the IP address of the first session is unchanged, it can also perform an ARP routing update on the IP address of the first session to reuse the IP address.
  • the following is a design based on the third scenario.
  • the target access network element may send a path conversion request to the core network element. Based on this design, the target access network element receives the session information of the first session from the first network element, including: The network element of the destination access network receives a path conversion request confirmation message from the core network element, and the path conversion request confirmation message includes the session information.
  • the destination access network element receives the session information of the first session from the core network element, including: the destination access network element receives the handover request message from the core network element, and the handover request message Includes session information.
  • the destination access network element can also receive core network tunnel information from other sessions of the core network element, and the service corresponding to the service type information corresponding to other sessions is the destination access network element that does not support Locally diverted business.
  • the core network tunnel information of the other session can be carried in a handover request message or a path switch request confirmation message sent by the core network element to the target access network element, or it can of course also be carried in other existing messages. Can also be carried in new messages.
  • this application provides a communication method, which is applied to a handover scenario of a terminal from a source access network network element to a destination access network network element.
  • the method includes: a first network element obtains session information of a first session of the terminal ,
  • the session information includes first service type information, the first network element obtains the first information, and the first information is used to indicate the local offload service type information supported by the target access network network element; if the first network element is based on the first Information and the session information, if it is determined that the target access network element does not support local offloading of the service corresponding to the first service type information, the first network element determines that the core network element handles the session.
  • the session information of the first session may be a complete set or a subset of the context information of the first session.
  • the first network element determines that the destination access network element does not support local services corresponding to the first service type information. When offloading, it is determined that the core network element handles the first session or switches the first session to the core network element. In this way, the problem of switching errors when the session is switched to the destination access network element that cannot handle the session can be avoided. Can improve the handover success rate.
  • the first network element is a target access network element
  • the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • the following is a design based on the first scenario.
  • obtaining the session information of the first session of the terminal by the target access network element includes: the target access network element receives the session information from the source access network element.
  • the method further includes: the target access network element sends the session information and the access of the first session to the core network element. Network access tunnel information. So that the first session is switched to the core network element in time.
  • the target access network element receives the core network tunnel information of the first session from the core network element. To complete the switching of the first session.
  • the target access network element obtains the first information, including: the target access network element obtains the pre-configured first information locally; or, the target access network element receives the first information from the core network element The first information.
  • the first network element is a core network element
  • the first session is a session controlled by the source access network element before the terminal is switched.
  • the following is a design based on the second scenario.
  • the core network element acquiring the session information of the first session of the terminal includes: the core network element receiving the session information from the source access network element.
  • the core network element updates the session information after receiving the session information.
  • updating the session information by the core network element includes: the core network element allocates a new IP address for the first session, updates the session information according to the new IP address, and sends the new IP address to the source access network element or terminal.
  • the core network element may also send a first indication to the source access network element, where the first indication is used to indicate that a new IP address has been allocated for the first session. So that the source access network element sends the valid time of the old IP address of the first session to the terminal according to the first instruction.
  • the core network element may also perform an ARP routing update on the IP address of the first session to reuse the IP address.
  • the core network element may also send the core network tunnel information of the first session to the target access network element.
  • the target access network element can establish a data transmission channel between the terminal, the access network element and the core network element for the first session according to the core network tunnel information of the first session.
  • the core network element may also receive the access network tunnel information of the first session from the target access network element. In this way, the core network element establishes a data transmission channel between the target access network element and the core network element for the first session according to the access network tunnel information of the first session, thereby completing the handover of the first session.
  • the first network element is the source access network element
  • the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • the following is a design based on the third scenario.
  • the source access network element may also send the session information to the core network element.
  • the following is a design based on the second scenario and the third scenario.
  • obtaining the first information by the first network element includes: the first network element obtains the first information preconfigured locally; or, the first network element receives the first information from the network element of the destination access network .
  • the following is a design based on the first scenario and the third scenario.
  • the first network element receives the new IP address of the first session from the core network element; the first network element sends the new IP address of the first session to the terminal.
  • the first network element receives a first instruction from the core network element, the first instruction is used to indicate that a new IP address has been allocated for the first session; the first network element sends the first instruction to the terminal according to the first instruction The valid time of the old IP address of a session.
  • the following is a design based on the first scenario to the third scenario.
  • the first information and the first service type information may respectively include at least one of the following service type identification information: NSSAI; DNN; or App ID.
  • the first information further includes a local support indication, and the local support indication is used to indicate that the target access network element supports local offloading of the service corresponding to the service type identification information.
  • the first network element determines, based on the first information and the session information, that the target access network network element does not support local offloading of services corresponding to the first service type information, including: if the first service type information is If the service type information of the local offload supported by the destination access network element indicated by the first information does not match, the first network element determines that the destination access network element does not support local offloading of the service corresponding to the first service type information.
  • a network element determines that the core network element handles the first session.
  • the first information and the first service type information respectively include NSSAI and DNN.
  • the first network element determines that the core network element handles the first session, including: if the first service type information includes If the NSSAI and DNN do not match the NSSAI and DNN included in the first information, the first network element determines that the destination access network element does not support local offloading of the service corresponding to the first service type information, and the first network element determines The core network element processes the first session.
  • the first information and the first service type information include NSSAI, DNN, and APP ID respectively.
  • the first network element determines that the core network element handles the first session, including: if the first service If the NSSAI, DNN, and APP ID included in the type information do not match the NSSAI, DNN, and APP ID included in the first information, the first network element determines that the destination access network network element does not support performing services corresponding to the first service type information. For local offloading, the first network element determines that the core network element handles the first session.
  • the present application provides a communication method, which is applied to a handover scenario of a terminal from a source access network element to a target access network element, and the method includes: the core network element receives information from the target access network element The session information of the first session of the terminal and the access network tunnel information of the first session, the session information includes the first service type information, and the first session is the session managed and controlled by the source access network element before the terminal handover,
  • the target access network network element does not support local offloading of the service corresponding to the first service type information
  • the core network network element sends the core network tunnel information of the first session to the target access network network element.
  • the session corresponding to the service that the destination access network element does not support local offloading can be switched to the core network element. Avoid processing errors when switching a session to a network element that cannot handle the session, and improve the success rate of session switching.
  • the present application provides a communication method, which is applied to a handover scenario of a terminal from a source access network element to a target access network element.
  • the method includes: the target access network element receives a network element from a core network element The core network tunnel information of the first session of the terminal.
  • the first session is the session managed and controlled by the source access network element before the terminal handover.
  • the session information of the first session includes the first service type information, and the destination access network element does not support it.
  • the service corresponding to the first service type information is locally offloaded; the target access network network element sends the access network tunnel information of the first session to the core network network element.
  • the session corresponding to the service that the destination access network element does not support local offloading can be switched to the core network element. Avoid processing errors when switching a session to a network element that cannot handle the session, and improve the success rate of session switching.
  • the present application provides a communication method, which is applied to a handover scenario of a terminal from a source access network element to a destination access network element.
  • the method includes: the core network element receives information from the source access network element The session information of the first session of the terminal.
  • the session information includes the first service type information.
  • the first session is the session managed and controlled by the source access network element before the terminal is switched.
  • the destination access network element does not support the first service type information.
  • Corresponding services are distributed locally; the core network element updates the session information.
  • the session corresponding to the service that the destination access network element does not support local offloading can be switched to the core network element. Avoid processing errors when switching a session to a network element that cannot handle the session, and improve the success rate of session switching.
  • the core network element updates the session information, including: the core network element allocates a new IP address for the first session, updates the session information according to the new IP address, and sends the new IP address to the source access network element or terminal IP address.
  • the core network element may also send a first indication to the source access network element, where the first indication is used to indicate that a new IP address has been allocated for the first session. So that the source access network element sends the valid time of the old IP address of the first session to the terminal according to the first instruction.
  • the core network element may also perform an ARP routing update on the IP address of the first session to reuse the IP address.
  • the present application provides a device, which may be a network element of a destination access network or a chip.
  • the device has the function of implementing the above-mentioned first aspect, second aspect, third aspect, or fifth aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a device that includes: at least one processor and a memory; the memory is used to store instructions, and when the device is running, at least one processor executes the instructions stored in the memory to make the device execute
  • the memory may be integrated in at least one processor, or may be independent of at least one processor.
  • the present application provides a device that includes at least one processor, and at least one processor is configured to couple with a memory, read instructions in the memory, and execute any of the first aspect or the first aspect according to the instructions.
  • this application provides a device, which may be a source access network network element or a chip.
  • the device has the function of realizing each embodiment of the first aspect or the third aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a device including: at least one processor and a memory; the memory is used to store instructions, and when the device is running, the at least one processor executes the instructions stored in the memory to enable the The device executes the foregoing first aspect or any implementation method of the first aspect, the third aspect or any implementation method of the third aspect.
  • the memory may be integrated in at least one processor, or may be independent of at least one processor.
  • the present application provides a device that includes at least one processor, and the at least one processor is configured to be coupled with a memory, read instructions in the memory, and execute any of the first aspect or any of the first aspects according to the instructions.
  • this application provides a device, which may be a core network element or a chip.
  • the device has the function of implementing the above-mentioned first aspect, third aspect, fourth aspect, or sixth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a device, including: at least one processor and a memory; the memory is used to store instructions.
  • the at least one processor executes the instructions stored in the memory to make the device Perform any of the foregoing first aspect or any one of the implementation methods of the first aspect, any one of the third or third aspects, any one of the fourth or fourth aspects, and any of the sixth or sixth aspects One implementation method.
  • the memory may be integrated in at least one processor, or may be independent of at least one processor.
  • the present application provides a device that includes at least one processor, and the at least one processor is configured to couple with a memory, read instructions in the memory, and execute any of the first aspect or the first aspect according to the instructions.
  • the present application also provides a computer storage medium in which a program or instruction is stored, and when it runs on a computer, any communication method in the above aspects is executed.
  • this application also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute any communication method in the above-mentioned aspects.
  • this application also provides a communication system, the communication system including a first network element, the first network element is used to implement the first aspect or any implementation method of the first aspect, and/or The second aspect or any implementation method of the second aspect.
  • the communication system may further include a destination access network element and/or a core network network element.
  • the communication system may further include a source access network element and/or a core network network element.
  • the communication system may further include a source access network element and/or a destination access network element.
  • this application also provides a communication system including a first network element, and the first network element is used to implement: the foregoing third aspect or any one of the implementation methods of the third aspect, the fourth At least one of the aspect or any implementation method of the fourth aspect, any implementation method of the fifth aspect or the fifth aspect, or any implementation method of the sixth aspect or the sixth aspect.
  • the communication system may further include a destination access network element and/or a core network network element.
  • the communication system may further include a source access network element and/or a core network network element.
  • the communication system may further include a source access network element and/or a destination access network element.
  • Figure 1a is a schematic diagram of a possible network architecture to which an embodiment of this application is applicable;
  • FIG. 1b is a schematic diagram of another possible network architecture applicable to an embodiment of this application.
  • FIG. 2 is a schematic diagram of a communication method provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of another communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 15 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 17 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 18 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of yet another communication method provided by an embodiment of this application.
  • FIG. 20 is a schematic diagram of a network element structure provided by an embodiment of this application.
  • FIG. 21 is a schematic diagram of the structure of an access network network element provided by an embodiment of this application.
  • FIG. 22 is a schematic diagram of a core network element structure provided by an embodiment of this application.
  • the private network is a concept proposed to distinguish it from the public network.
  • a private network can be understood as a private network, such as an internal network built by a company, school, or factory. Terminals that have not signed a contract with the private network are not allowed to access the private network.
  • the public network is generally a network operated by operators that meets the requirements of the 3rd generation partnership project (3rd generation partnership project, 3GPP) standard, referred to as 3GPP network.
  • 3rd generation partnership project 3rd generation partnership project
  • 3GPP networks include but are not limited to the 5th generation mobile communication technology (the 5th generation, 5G) network, fourth-generation mobile communication technology (4th-generation, 4G) network, third-generation mobile communication technology (3rd-generation, 3G) network or second-generation wireless telephone technology (2-generation wireless telephone technology, 2G) Network etc.
  • the private network can also be constructed based on the 3GPP standard requirements. It is understood that the private network can also be a 3GPP network.
  • the method provided in the embodiments of this application can be applied to both private networks and public networks. In this application, the application of the method to private networks is mainly used as an example for description.
  • FIG. 1a is a schematic diagram of a network architecture to which an embodiment of the application is applicable. The following describes each part involved in the network architecture shown in FIG. 1a.
  • Terminal 110 It can include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of terminals, mobile stations (mobile stations, MS ), terminal (terminal), user equipment (UE), soft terminal, etc. For example, water meters, electricity meters, sensors, etc.
  • (Radio access network, (R)AN) network element 120 used to provide network access functions for authorized terminals in a specific area, and can use different quality transmissions according to the level of the terminal and service requirements tunnel.
  • (R)AN network elements can manage wireless resources, provide access services for terminals, and then complete the forwarding of control signals and terminal data between the terminal and the core network.
  • (R)AN network elements can also be understood as base stations in traditional networks .
  • User plane network element 130 used for packet routing and forwarding and quality of service (QoS) processing of user plane data, etc.
  • the user plane network element may be a user plane function (UPF) network element.
  • the user plane network element may still be a UPF network element, or may also have other names, which is not limited in this application.
  • Data network element 140 used to provide a network for transmitting data.
  • the data network element may be a data network (DN) network element.
  • the data network network element may still be a DN network element, or may also have other names, which is not limited in this application.
  • Access management network element 150 Mainly used for mobility management and access management, etc., and can be used to implement other functions other than session management in the mobility management entity (mobility management entity, MME) function, for example, legal Monitoring and access authorization/authentication functions.
  • the access management network element may be an access management function (access and mobility management function, AMF) network element.
  • AMF access management function
  • the access management network element may still be an AMF network element, or may also have other names, which is not limited in this application.
  • Session management network element 160 Mainly used for session management, terminal Internet Protocol (IP) address allocation and management, selection of end points that can manage user plane functions, policy control and charging function interfaces, and downlink data Notification etc.
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element may still be an SMF network element, or may also have other names, which is not limited in this application.
  • Policy control network element 170 a unified policy framework used to guide network behavior, and provide policy rule information for control plane function network elements (such as AMF, SMF network elements, etc.).
  • the policy control network element may be a policy and charging rules function (PCRF) network element.
  • the policy control network element may be a policy control function (PCF) network element.
  • PCF policy control function
  • the policy control network element may still be a PCF network element, or may also have other names, which is not limited in this application.
  • binding support network element 180 used to find the PCF associated with the session.
  • the binding support network element may be a binding support function (binding support function, BSF) network element.
  • BSF binding support function
  • the binding support network element may still be a BSF network element, or may have other names, which is not limited in this application.
  • Authentication server 190 used for authentication services, generating keys to realize two-way authentication of the terminal, and supporting a unified authentication framework.
  • the authentication server may be an authentication server function (authentication server function, AUSF) network element.
  • the authentication server function network element may still be an AUSF network element, or may have other names, which is not limited by this application.
  • Data management network element 1100 used to process terminal identification, access authentication, registration, and mobility management.
  • the data management network element may be a unified data management (UDM) network element.
  • UDM unified data management
  • unified data management may still be UDM network elements, or may also have other names, which are not limited by this application.
  • Application network element 1110 used for data routing affected by applications, access to network open function network elements, and interaction with the policy framework for policy control.
  • the application network element may be an application function (AF) network element.
  • AF application function
  • the application network element may still be an AF network element, or may also have other names, which is not limited in this application.
  • Network storage network element 1120 used to maintain real-time information of all network function services in the network.
  • the network storage network element may be a network repository function (NRF) network element.
  • NRF network repository function
  • the network storage network element may still be an NRF network element, or may also have other names, which are not limited by this application.
  • network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • the source access network network element and the destination access network network element in this application may be the (wireless) access network network element in Fig. 1a 120.
  • the core network element may be the user plane network element 130 or the session management network element 160 or the policy control network element 170 in FIG. 1a.
  • FIG. 1b is a schematic diagram of a possible private network architecture applicable to this application.
  • the private network architecture includes UE, private network access network element (PNA) 1, PNA2, private network core network element (private network controller, PNC), and data network (data network, DN).
  • PNA private network access network element
  • PNC private network core network element
  • DN data network
  • the UE in the private network architecture shown in FIG. 1b mainly refers to the private network UE, that is, the UE that has contracted with the private network and can access the private network.
  • the private network UE refer to the related description of the terminal 110 in FIG. 1a, which is not repeated here.
  • the PNA and PNC may respectively include part or all of the functions of the network elements shown in Figure 1a.
  • the functions may also include functions that are not available in each network element shown in FIG. 1a.
  • the PNA involved in the embodiments of the present application may include all functions required for user access to the control plane and data routing except for the network management center.
  • PNA may include RAN functions, non-access stratum (NAS) termination functions, mobility management functions, P4 session management functions, and some subscription management functions.
  • NAS non-access stratum
  • PNA may also include other functions. Function, this application is not restricted.
  • a private network may include multiple PNAs, and a private network UE may switch between multiple PNAs. For example, when the private network UE roams from the PNA1 coverage area to the PNA2 coverage area, the private network UE can switch from PNA1 to PNA2.
  • the PNC involved in the embodiment of the present application is a core network network element that includes a network management function.
  • PNC can also implement functions such as mobility management, contract management, and P5 session management in order to solve business continuity problems in some medium or large-scale private network cross-region mobility management scenarios.
  • the PNC can manage and control multiple PNAs in the same private network.
  • the PNC can manage and control PNA1 and PNA2.
  • P1 is the 3GPP-based NAS interface, which realizes the signaling interaction between the UE and the network side non-access layer
  • P2 is the 3GPP-based Uu interface, which realizes the signaling and data interaction between the UE and the network side access layer
  • P3 is The interface between PNA and PNC, including network management, control plane and data plane functions
  • P4 is the interface from PNA to DN, used to route data packets transmitted from PNA
  • P5 is the interface from PNC to DN, used for routing Data packet transmitted from PNC.
  • the PNA such as PNA1 or PNA2
  • the PNC currently accessed by the UE can offload the service data, for example, for private
  • Certain services in the network that require high latency such as ultra-reliable and low-latency communications (URLLC) services
  • URLLC ultra-reliable and low-latency communications
  • the business can also be called the local business supported by PNA.
  • the data of the service can be locally offloaded by the PNA, and if the PNA does not support the service, the data of the service needs to be routed by the PNC.
  • the service data between the UE and the DN is carried by the session, if the service data is routed by the PNA, it can be understood that the session carrying the service data is routed by the PNA or controlled by the PNA, if the service data is routed by the PNC , It can be understood that the session carrying the service data is routed by or controlled by the PNC.
  • the UE switches between different PNAs the local services supported by different PNAs are not the same. Therefore, in the process of switching the UE from the source PNA to the destination PNA, there may be a situation where the source PNA is a local service but the destination PNA is not.
  • a type of service for local services and another type of service where the source PNA is a local service and the destination PNA is also a local service, and another type of service where the source PNA is a non-local service but the destination PNA is a local service , How to adjust the session anchor point of these services during the UE handover, that is, how to handle the UE session, there is no relevant solution at present.
  • the embodiments of the present application provide a communication method to effectively switch or process the session of the UE in a scenario where the UE switches from a source access network network element to a destination access network network element.
  • Fig. 2 is a flow chart of a communication method provided by an embodiment of this application.
  • the method can be applied to a handover scenario of a terminal from a source access network network element to a destination access network network element.
  • the method includes the following steps:
  • the first network element obtains session information of a first session of a terminal, where the session information includes first service type information.
  • the session may be a protocol data unit (protocol data unit, PDU) session.
  • the first service type information is used to indicate a first service type, and a service belonging to the first service type corresponds to the first session, where multiple services may belong to the same service type, and belong to one of the first service types.
  • One or more services correspond to the first session.
  • the service corresponding to the first session can be understood as the service data corresponding to the service carried in the first session for transmission.
  • the session information of the first session may be a complete set or a subset of the context information of the first session.
  • the complete set of context information includes the first session.
  • the context information of the first session includes information generated when establishing the first session and/or information used for establishing the first session.
  • the context information of the first session may include: terminal identification (UE ID), first session identification (session ID), network slice selection assistance information (NSSAI), data network name (data network name, DNN) , One or more of application identification (App-ID), quality of service (QoS) parameters (QoS parameters), and IP address.
  • the QoS parameters may include, for example, 5G QoS indicator (5G QoS identifier, 5QI), address resolution protocol (ARP), guaranteed flow bit rate (GFBR), and maximum flow bit rate (max flow bite rate, MFBR) and priority (priority level), etc.
  • the first service type information may be at least one of NSSAI, DNN, or App-ID included in the context information of the first session.
  • the first network element acquires first information, where the first information is used to indicate service type information of the local offload supported by the target access network element, or the first information is used to indicate that the target access network element supports local offload.
  • Service type information corresponding to the service type to which the service belongs.
  • the network element of the destination access network supports services that perform local offloading, which can also be described as a local service supported by the network element of the destination access network.
  • the local service supported by the target access network element may be locally routed by the target access network element, or the data of the service may be locally routed by the target access network element, or the bearer
  • the session of the service or the data of the service can be routed locally by the network element of the destination access network.
  • the first information may explicitly or implicitly indicate the service type information of the local offload supported by the network element of the destination access network.
  • the first information may include at least one of the following service type identification information: NSSAI, DNN or App-ID, using
  • NSSAI NSSAI
  • DNN DNN
  • App-ID App-ID
  • the first information when the first information explicitly indicates the service type information of the local offload supported by the network element of the destination access network, the first information may include the local support indication (local support indication) in addition to the service type identification information. indication), instructing the network element of the destination access network to support local offloading of the service identified by the service type identification information through a local support indication.
  • local support indication local support indication
  • the first network element may also pre-store all service type information of the terminal, and the first information may also be used to indicate that the target access network element does not support service type information for local offloading, for example, the first network element
  • One piece of information can be used to indicate that the target access network element does not support local offloading.
  • the service type information includes service type information 4, service type information 5, and service type information 6.
  • the first network element pre-stores all service type information of the terminal Including service type information 1-service type information 6, after obtaining the first information, the first network element can learn that the destination access network network element supports local offloading according to the first information and all stored service type information
  • the service type information includes service type information 1-service type information 3.
  • the first information is used to indicate the service type information of the local offload supported by the network element of the destination access network as an example for description.
  • the first information may be in the form of a list. Please refer to Table 1, Table 2 and Table 3 for the three possible first information schematic diagrams provided in the embodiments of this application.
  • the first information uses an implicit indication to indicate the local offload service type information supported by the destination access network element, and the first information indicates the local offload service type supported by the destination access network element
  • the quantity of information is 4 as an example, where service type information 1 includes NSSAI11, DNN11, and App-ID11, service type information 2 includes NSSAI22, DNN22, and App-ID22, and service type information 3 includes NSSAI33, DNN33, and App-ID33.
  • Service type information 4 includes NSSAI44, DNN44, and App-ID44, where each type of service information can indicate one type of service, and multiple services can belong to the same type of service, for example, service 1, service 2, and service to which service 3 belongs
  • the types can all be the service types indicated by the service type information 4.
  • the first information uses implicit indication to indicate the local offload service type information supported by the destination access network element, and the first information indicates the local offload service type supported by the destination access network element
  • the number of information is 4 as an example, where the service type information 11 includes NSSAI11 and DNN11, the service type information 22 includes NSSAI22 and DNN22, the service type information 33 includes NSSAI33 and DNN33, and the service type information 44 includes NSSAI44 and DNN44, where each The types of service type information may indicate one type of service, and multiple types of services may belong to the same type of service. For example, the service types to which service 11, service 22, and service 33 belong may all be the service types indicated by service type information 33.
  • the first information is used to indicate the service type information of the local offload supported by the target access network element in a display indication manner, and the first information is used to indicate the service type information of the local offload supported by the target access network element
  • the number is 4 as an example, where the service type information 111 includes NSSAI1, DNN1, and App-ID1, the service type information 222 includes NSSAI2, DNN2, and App-ID2, and the service type information 333 includes NSSAI3, DNN3, and App-ID3.
  • Type information 444 includes NSSAI4, DNN4, and App-ID4, where each type of service information can indicate one type of service, and multiple services can belong to the same type of service, for example, service 111, service 222, and service type to which service 333 belongs Both may be the service type indicated by the service type information 111.
  • NSSAI11 DNN11 NSSAI22 DNN22 NSSAI33 DNN33 NSSAI44 DNN44
  • S101 and S102 are not limited in the embodiment of the present application. For example, S101 can be executed first, then S102, or S102 can be executed first, and then S101, or S101 and S102 can be executed simultaneously.
  • a network element determines that the network element of the destination access network processes the first session.
  • the processing of the first session by the target access network element may include: the target access network element updates the session information of the first session. Updating the session information of the first session may include adding some session-related information stored locally to the session information, or using some session-related information stored locally to update the information included in the session information, or deleting the session Some information included in the information.
  • the first network element determines that the target access network element supports The service corresponding to the first service type information is locally offloaded, and the first network element determines that the target access network network element handles the first session.
  • the first service type information matches the service type information of the local offload supported by the destination access network element indicated by the first information, which can be understood as the local offload supported by the destination access network element indicated by the first information
  • the service type information includes the first service type information.
  • the first service type information indicates that the destination access network element supports multiple local offload service type information
  • the first service type information and the first information The indicated service type information is identical or matched, which can also be understood as the content contained in the first service type information and the content contained in at least one service type information of the local offload supported by the target access network element indicated by the first information
  • the first service type information is the service type information of the local offload supported by the network element of the destination access network.
  • the service corresponding to the service type indicated by the first service type information is the destination access Local offload services supported by network elements.
  • the first service type information matches the service type information of the local offload supported by the destination access network element indicated by the first information, which refers to the first service type information
  • the included NSSAI, DNN, and App-ID are exactly the same as the NSSAI, DNN, and App-ID included in a piece of service type information indicated by the first information. The following three examples are used to describe this realization in detail.
  • the first information is the first information shown in Table 1
  • the first service type information includes NSSAI44, DNN44, and App-ID44
  • the first network element is based on the first service type information and the first information shown in Table 1.
  • One information it is determined that the NSSAI44, DNN44, and App-ID44 included in the first service type information match the NSSAI44, DNN44, and App-ID44 included in the service type information 4 shown in Table 1, and the first network element determines the destination access
  • the network element supports local offloading of services corresponding to the first service type information (for example, service 1, service 2, and service 3), and then the first network element determines that the target access network element handles the first session. Processing the first session by the network element of the destination access network may include updating session information of the first session. How to update is described below.
  • the first information is the first information shown in Table 2, the first service type information includes NSSAI33 and DNN33, and the first network element is based on the first service type information and the first information shown in Table 2. It is determined that the NSSAI33 and DNN33 included in the first service type information respectively match the service type information 33 shown in Table 2 including NSSAI33 and DNN33, and the first network element determines that the target access network network element supports the corresponding information for the first service type Services (for example, service 11, service 22, and service 33) are locally offloaded, and then the first network element determines that the target access network network element handles the first session. Processing the first session by the network element of the destination access network may include updating session information of the first session. How to update is described below.
  • the first information is the first information shown in Table 3.
  • the first service type information includes NSSAI1, DNN1, and App-ID1.
  • the first network element is based on the first service type information and the information shown in Table 3.
  • the first information determines that the NSSAI1, DNN1, and App-ID1 included in the first service type information respectively match the service type information 111 shown in Table 3, including NSSAI1, DNN1, and App-ID1, and the first network element determines the destination access
  • the network element supports local offloading of services corresponding to the first service type information (for example, service 111, service 222, and service 333), and then the first network element determines that the target access network element handles the first session. Processing the first session by the network element of the destination access network may include updating session information of the first session. How to update is described below.
  • the first network element determines that the target access network network element handles the first session only when it is determined that the target access network network element supports local offloading of the service corresponding to the first service type information, which can be understood as Switch the first session to the target access network element, so that the target access network element can process the first session not only to reduce the transmission delay of service data, but also to offload the data of the core network element to reduce network pressure .
  • the first service type information which can be understood as Switch the first session to the target access network element, so that the target access network element can process the first session not only to reduce the transmission delay of service data, but also to offload the data of the core network element to reduce network pressure .
  • S104 If the first network element determines, according to the first information and the first service type information included in the session information of the first session, that the destination access network network element does not support local offloading of the service corresponding to the first service type information, then A network element determines that the core network element handles the first session.
  • the core network element processing the first session may include: the core network element updating the session information of the first session. Updating the session information of the first session may include adding some session-related information stored locally to the session information, or using some session-related information stored locally to update the information included in the session information, or deleting the session Some information included in the information. It should be noted that, in the embodiment of the present application, S103 and S104 can be executed alternatively or in parallel.
  • the session information of session 1 includes service type information a
  • the session information of session 2 includes service type information b. If the destination access network element supports If the service corresponding to service type information a and service type information b is locally offloaded, the terminal performs S103 when switching from the source access network element to the destination access network element; if the destination access network element supports the service type The service corresponding to information a is locally offloaded, and the destination access network element does not support local offloading of the service corresponding to service type information b.
  • the first network element determines that the destination access network element is not Supporting local offloading of the service corresponding to the first service type information, the first network element determines that the core network element handles the first session.
  • the first service type information does not match the service type information of the local offload supported by the target access network element indicated by the first information. It can be understood that the first information indicates the local branch supported by the target access network element.
  • the offloaded service type information does not include the first service type information.
  • the first service type information indicates that the destination access network element supports multiple local offload service type information
  • the first service type information and the first service type information Any item of service type information indicated by one piece of information is not the same or does not match.
  • the content contained in the first service type information corresponds to any one of the local offloads supported by the target access network element indicated by the first piece of information.
  • the content contained in the service type information is not completely the same.
  • the first service type information is not the service type information of the local offload supported by the destination access network element, and it can also be understood as the service type indicated by the first service type information.
  • the corresponding service is not a local offload service supported by the network element of the destination access network.
  • the first information is the first information shown in Table 1
  • the first service type information includes NSSAI77, DNN77, and App-ID77
  • the first network element is based on the first service type information and the first information shown in Table 1.
  • Information it is determined that the NSSAI77, DNN77, and App-ID77 included in the first service type information do not match the information included in the first information shown in Table 1, then the first network element determines that the target access network network element does not support the first
  • the service corresponding to the service type information is locally offloaded, and then the first network element determines that the core network element handles the first session. Processing the first session by the core network element may include updating session information of the first session. How to update is described below.
  • the first information is the first information shown in Table 2
  • the first service type information includes NSSAI88 and DNN88
  • the first network element is based on the first service type information and the first information shown in Table 2. If it is determined that the NSSAI88 and DNN88 included in the first service type information do not match the information included in the first information shown in Table 2, the first network element determines that the destination access network network element does not support performing services corresponding to the first service type information Local offload, and then the first network element determines that the core network element handles the first session. Processing the first session by the core network element may include updating session information of the first session. How to update is described below.
  • the first information is the first information shown in Table 3.
  • the first service type information includes NSSAI6, DNN6, and App-ID6.
  • the first network element is based on the first service type information and the information shown in Table 3.
  • the first information is to determine that the NSSAI6, DNN6, and App-ID6 included in the first service type information do not match the information included in the first information shown in Table 3.
  • the first network element determines that the target access network element does not support the A service corresponding to the service type information is locally offloaded, and then the first network element determines that the core network element handles the first session. Processing the first session by the core network element may include updating session information of the first session. How to update is described below.
  • the first network element determines that the core network element handles the first session when it is determined that the target access network element does not support local offloading of the service corresponding to the first service type information, which can be understood as Switching a session to the core network element can avoid switching the first session to the target access network element when the target access network element does not support local offloading of the service corresponding to the first service type information. Avoid session switching errors, improve the success rate of session switching, and ensure business continuity of communication data carried by the session.
  • the first network element may be different network elements.
  • different methods may be used to obtain the first information and the session information of the first session of the terminal, and for different After determining that the target access network network element or the core network network element processes the first session, different operations can be performed.
  • the first network element is used as an example of the access network element, the core network element serving the terminal, or the source access network element. The method is described in detail.
  • Application Scenario 1 In the handover scenario of the terminal from the source access network element to the destination access network element, the first network element shown in Figure 2 is the destination access network element, and the first network element in the method shown in Figure 2 A session is a session managed and controlled by the source access network element before the terminal is switched.
  • the session controlled by the source access network element can also be understood as a session routed locally from the source access network element, or can be understood as the service corresponding to the service type information included in the session information as the source access Local offloaded services or local services supported by the network elements.
  • the target access network network element may obtain the session information of the first session of the terminal in the following manner: the target access network network element receives the session information from the source access network network element or the core network network element.
  • the session information of the first session acquired by the network element of the destination access network includes not only the first service type information, but also the context information of the first session in addition to the first service type information.
  • the session information of the first session may also include one or more of the terminal identifier, the first session identifier, QoS parameters, and IP address.
  • the network element of the destination access network may obtain the first information in but not limited to the following ways:
  • Manner 1 The network element of the destination access network obtains the pre-configured first information locally.
  • the first information may be pre-configured or predefined by the core network element for the target access network element.
  • Manner 2 The network element of the destination access network receives the first information from the network element of the core network.
  • step S103 after determining that the target access network element processes the first session, the target access network element may process the first session in the following manner: update the first session The session information of the session.
  • updating the session information of the first session may include allocating a new IP address for the first session, updating the session information of the first session according to the new IP address, and notifying the source access network element or terminal or core network element of the first session.
  • the new IP address of a session In order to synchronize the new IP address allocated for the first session on each network element in time, the new IP address can be used to address the first session later.
  • the network element of the destination access network may use the new IP address to update the old IP address of the first session. For another example, if the session information of the first session does not include the old IP address of the first session, the network element of the destination access network may add the new IP address to the session information of the first session. Wherein, the network element of the destination access network may send the new IP address through the user plane or the signaling plane. For details, refer to the following specific examples. It should be noted that the method of updating the IP address in one scenario can also be applied in subsequent scenarios.
  • the destination access network element may also send the first session to the source access network element.
  • the first indication is used to indicate that a new IP address has been allocated for the first session.
  • the source access network element can learn that the destination access network element has allocated a new IP address for the first session, and can send the terminal the validity of the old IP address of the first session accordingly. Time, and the old IP address can be released after the effective time of the old IP address.
  • the destination access network element can also perform ARP routing update on the IP address of the first session to reuse the IP address. In this way, the old IP address can be used to address the first session. Conversation.
  • the destination access network network element may send the IP address to the surrounding network elements according to the protocol.
  • the surrounding network elements may include surrounding access network network elements, surrounding core network network elements, router nodes, etc. In this way, subsequent peripheral network elements can also address the first session according to the IP address.
  • the first session is switched from the source access network element to the destination access network element.
  • the destination access network element processes the first session to achieve the purpose of offloading with the core network element, not only Reducing the end-to-end delay of data services can also reduce network pressure.
  • step S104 after the target access network element determines that the core network element processes the first session, it may also send the core network element the information of the first session Session information and the access network tunnel information of the first session, so that the core network element can establish the target access network network element and the access network tunnel for the first session according to the session information of the first session and the access network tunnel information of the first session The data transmission channel between the core network elements, thereby completing the handover of the first session.
  • the access network tunnel information may be the fully qualified tunnel endpoint identifier (F-TEID) of the tunnel (GPRS tunneling protocol-U, GTP-U) protocol allocated to the terminal by the target access network element.
  • the target access network element may also receive information about the first session from the core network element Core network tunnel information, so that the target access network element can establish a data transmission channel between the terminal, the access network element, and the core network element for the first session according to the core network tunnel information of the first session, thereby completing Switch of the first session.
  • the core network tunnel information may be the F-TEID of the GTP-U protocol allocated by the core network element to the terminal.
  • switching the first session from the source access network element to the core network element can avoid The problem of handover errors when the session is switched to a network element that cannot handle the destination access network of the session can improve the handover success rate.
  • Application scenario 2 In the handover scenario of the terminal from the source access network element to the destination access network element, the first network element shown in Figure 2 refers to the core network element that provides services for the terminal, as shown in Figure 2.
  • the first session in the method is a session managed and controlled by the source access network network element before the terminal is switched.
  • the meaning of the session managed and controlled by the source access network element can refer to the description in scenario one above.
  • the core network element may, but is not limited to, obtain the session information of the first session of the terminal in the following manner: the core network element receives the session information from the source access network element.
  • the session information received by the core network element from the source access network element may be sent by the source access network element to the core network element after executing the method shown in FIG. 2.
  • the session information of the first session acquired by the core network element at this time may include not only the first service type information, but also information other than the first service type information in the context information of the first session.
  • the information other than the first service type information may include, for example, one or more of the terminal identifier, the first session identifier, the QoS parameter, and the IP address.
  • the session information of the following first session in the second scenario all refers to the session information including more content.
  • step S103 after the core network element determines that the target access network element processes the first session, it may also send the information of the first session to the target access network element. Session information.
  • the network element of the destination access network processes the first session after receiving the session information.
  • the first session is switched to the target access network element. In this way, the target access network element can process the first session not only to reduce the transmission delay of service data, but also to offload the data of the core network element. Reduce network pressure.
  • step S104 after the core network element determines that the first session is processed by itself, the core network element may process the first session in the following manner: update the session information of the first session.
  • updating the session information of the first session may include allocating a new IP address for the first session, updating the session information of the first session according to the new IP address, and notifying the source access network element or terminal of the new IP of the first session address.
  • the new IP address can be used to address the first session later.
  • the core network element may use the new IP address to update the old IP address of the first session. For another example, if the session information of the first session does not include the old IP address of the first session, the core network element may add the new IP address to the session information of the first session. Among them, the core network element may send the new IP address through the user plane or the signaling plane. For details, see the following specific examples. It should be noted that the method of updating the IP address in the second scenario can also be applied in subsequent scenarios.
  • the core network element may also send a first instruction to the source access network element.
  • An indication is used to indicate that a new IP address has been allocated for the first session.
  • the source access network element can learn that the core network element has allocated a new IP address for the first session, and can then send the valid time of the old IP address of the first session to the terminal accordingly.
  • the old IP address can be released after the effective time of the old IP address.
  • the core network element may also perform an ARP routing update on the IP address of the first session to reuse the IP address. In this way, the old IP address can continue to be used to address the first session later.
  • ARP routing update on the IP address of the first session refer to the method for the destination access network element to perform ARP routing update on the IP address of the first session in scenario 1.
  • the core network element determines that the first session is handled by itself, it can also send the core network tunnel information of the first session and the information of the first session to the destination access network element QoS parameters, so that the target access network element can establish a data transmission channel between the terminal, the access network element, and the core network element for the first session according to the core network tunnel information and QoS parameters of the first session.
  • the content of the QoS parameters can be found in the above description.
  • the core network element may also receive the access network of the first session from the target access network element Tunnel information, so that the core network element establishes a data transmission channel between the target access network element and the core network element for the first session according to the access network tunnel information of the first session, thereby completing the handover of the first session.
  • Application scenario 3 In the handover scenario of the terminal from the source access network element to the destination access network element, the first network element shown in Figure 2 is the source access network element, and the session in the method shown in Figure 2 It is a session controlled by the source access network element before the terminal is switched.
  • the meaning of the session managed and controlled by the source access network element can refer to the description in scenario one above.
  • step S103 after the source access network element determines that the destination access network element processes the first session, it may also send the first session to the destination access network element.
  • the session information of the session The network element of the destination access network processes the first session after receiving the session information.
  • the session information sent by the source access network network element to the destination access network network element includes not only the first service type information, but also the context information of the first session other than the first service.
  • the information other than the type information, the information other than the first service type information may include, for example, one or more of the terminal identifier, the first session identifier, the QoS parameter, and the IP address.
  • the conversation information of the first conversation in the following design refers to this meaning.
  • the first session is switched to the target access network element.
  • the target access network element can process the first session not only to reduce the transmission delay of service data, but also to offload the data of the core network element. Reduce network pressure.
  • step S104 after the source access network element determines that the core network element processes the first session, it may also send the core network element the information of the first session Session information.
  • the core network element processes the first session after receiving the session information.
  • For how to process the first session please refer to the related description in Scenario 2, which will not be repeated here.
  • Application scenario 4 In the handover scenario of the terminal from the source access network element to the destination access network element, the first network element shown in Figure 2 refers to the core network element serving the terminal, and the method shown in Figure 2
  • the session in is a session managed and controlled by the core network element before the terminal is switched.
  • the session controlled by the core network element can also be understood as a session routed from the core network element, or it can be understood as the first service corresponding to the session is that the source access network element does not support local offloading.
  • the service or the first service is a service supported by the core network element.
  • the core network element may also send the information of the first session to the target access network element. Session information.
  • the network element of the destination access network processes the first session after receiving the session information.
  • the session information sent by the core network element to the target access network element includes not only the first service type information, but also the context information of the first session except the first service type information.
  • the information other than the first service type information may include one or more of the terminal identifier, the first session identifier, the QoS parameter, and the IP address.
  • the conversation information of the first conversation in the following design refers to this meaning.
  • the core network element may use different methods to send the session information to the target access network element.
  • the terminal has successfully accessed the target access network element.
  • the core network element may also receive from the target access network element before sending the session information to the target access network element.
  • the session information is sent to the target access network element through the path conversion request confirmation message, which can be understood as including or carrying the session information in the path conversion request confirmation message.
  • the core network element may also carry core network tunnel information of other sessions in the path conversion request confirmation message, and the service corresponding to the service type information corresponding to the other session is the destination access network. Yuan does not support services for local diversion.
  • the source access network element decides to switch the terminal to the destination access network element, but the terminal has not yet connected to the destination access network element.
  • the core network element accesses the destination Before the network element sends the session information, it may also receive a handover request message from the source access network element.
  • the handover request message includes the identity of the target access network element, and the handover request message is used to request
  • the terminal switches to the target access network element, and the core network element may send the session information to the target access network element through a handover request message.
  • the core network element may also carry core network tunnel information of other sessions in the handover request message, and the service corresponding to the service type information corresponding to the other session is the target access network element. Support the business of local diversion.
  • the first network element may, but is not limited to, obtain the first information in the following manner:
  • the first network element obtains the pre-configured first information locally.
  • the first information may be pre-configured by the core network element for the first network element, or may be predefined.
  • Manner b The first network element receives the first information from the target access network network element.
  • step S103 in the first possible implementation manner, if the target access network element allocates a new IP address for the first session, the first network element may also receive access from the target The new IP address of the first session of the network element, and send the new IP address of the first session to the terminal. In this way, the new IP address allocated for the first session in the terminal and the target access network element is synchronized in time.
  • the first network element may also receive a first indication from the target access network element, the first indication is used to indicate that a new IP has been allocated for the first session Address, the first network element sends the valid time of the old IP address of the first session to the terminal according to the first instruction.
  • step S104 in the second possible implementation manner, if the core network element allocates a new IP address for the first session, the first network element may also receive data from the core network Yuan’s new IP address of the first session, and send the new IP address of the first session to the terminal. In this way, the new IP address allocated for the first session in the terminal and the core network element is synchronized in time.
  • the first network element may also receive a first indication from the core network element, the first indication is used to indicate that a new IP address has been allocated for the first session, The first network element sends the valid time of the old IP address of the first session to the terminal according to the first instruction.
  • the network element of the source access network determines that the network element of the destination access network will process the first session, and then can send the session information of the first session to The destination access network element, after receiving the session information, the destination access network element may further execute the method in scenario 1.
  • the destination access network element may execute Figure 2 again after receiving the session information
  • the method shown in this way is equivalent to S103 being executed twice, by determining the destination access network element twice to support local offloading of the service corresponding to the first service type information, which can improve the accuracy and can be processed more effectively. Or switch the first session.
  • the core network element served by the terminal can first execute the method shown in Figure 2. After S103 is executed, the core network element determines that the destination access network element handles the first session, and then can send the session information of the first session For the target access network network element, after the target access network network element receives the session information, it can further execute the method in scenario 1. For example, the target access network network element can execute the figure again after receiving the session information.
  • the method shown in 2 in this way, is equivalent to that S103 is executed twice, and the destination access network element is determined twice to support local offloading of the service corresponding to the first service type information, which can improve the accuracy and thus be more effective Process or switch the first session.
  • the core network element in the embodiment of the application can be the PNC in Figure 1b
  • the terminal can be the UE in Figure 1b
  • the source access network element can be PNA1 or PNA2 in Figure 1b
  • the destination access The network element of the network access may be PNA1 or PNA2 in FIG. 1b.
  • the source access network element of the UE is PNA1
  • the destination access network element is PNA2
  • the session is a PDU session.
  • FIG. 3 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA1 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • Step 101a During the establishment of the Xn interface connection between PNA1 and PNA2, PNA1 sends an Xn setup request (Xn setup request) message to PNA2.
  • the Xn establishment request message includes information 1, which is used to indicate the service type information of the local offload supported by PNA1.
  • the content contained in information 1 can be referred to the content contained in the first information above.
  • information 1 includes local support indications, NSSAIs, DNNs, and App-IDs as an example.
  • NSSAIs means the plural of NSSAI, which can be Represents multiple types of NSSAI. Other representations involving plural forms are similar.
  • DNNs represent multiple types of DNNs
  • App-IDs represent multiple types of App-IDs
  • the information 1 of the PNA1 may be configured by the PNC through the PNA configuration message, see step 100a in FIG. 3, or it may be predefined.
  • Step 101b During the establishment of the Xn interface connection between PNA1 and PNA2, PNA2 sends an Xn setup response (Xn setup response) message to PNA1.
  • the message includes information 2.
  • the meaning of information 2 is the same as the meaning of the first information above Similarly, it is used to indicate the service type information of the local offload supported by PNA2.
  • the content contained in information 2 can be referred to the content contained in the first information above.
  • information 2 includes local support instructions, NSSAIs, DNNs, and App-IDs as Examples indicate.
  • the information 2 of the PNA2 may be configured by the PNC through the PNA configuration message, see step 100b in FIG. 3, or it may be predefined.
  • Step 102 PNA1 determines to switch the UE to PNA2.
  • Step 103a PNA1 obtains the session information of the first PDU session of the UE.
  • the session information may be a complete set or a subset of the context information of the first PDU session, and the session information may include the first service type information, the first PDU session It is the session controlled by the PNA1 before the UE handover, that is, the first PDU session is the session locally routed from the PNA1 before the UE handover.
  • the order in which the PNA1 obtains the information 2 and obtains the session information of the first PDU session is not limited.
  • Step 103b Based on the received information 2 and the session information of the first PDU session, PNA1 determines whether PNA2 supports local offloading of the service corresponding to the first service type information, and then determines to perform Xn handover or N2 handover. If PNA1 determines that PNA2 supports local offloading of services corresponding to the first service type information based on information 2 and the session information, PNA1 determines that PNA2 will process the first PDU session, that is, perform Xn handover, corresponding to method 1 in Figure 3 , See step 104a-step 108a.
  • PNA1 determines that PNA2 does not support local offloading of services corresponding to the first service type information based on information 2 and the session information
  • PNA1 determines that PNC will handle the first PDU session, that is, perform N2 handover, corresponding to Figure 3
  • step 104b For the second method, refer to step 104b to step 1011b.
  • method one and method two can be executed alternatively or in parallel. For example, take the UE including two PDU sessions as an example, namely PDU session 1 and PDU session 2.
  • the session information of PDU session 1 includes service type information 1
  • the session information of PDU session 2 includes service type information 2.
  • PNA2 supports The services corresponding to service type information 1 and service type information 2 are locally offloaded, and the UE performs method 1 when switching from PNA1 to PNA2; or, if PNA2 supports local offloading of services corresponding to service type information 1, and PNA2 does not Supports local offloading of services corresponding to service type information 2, PNA1 can execute method one and method two in parallel; or, if PNA2 does not support local offloading of services corresponding to service type information 1 and service type information 2, PNA1 executes Method Two.
  • Step 104a When PNA1 determines that PNA2 supports local offloading of services corresponding to the first service type information, PNA1 sends a handover request (Xn HO request) to PNA2.
  • the handover request includes session information of the first PDU session.
  • the session information of the first PDU session may also include information other than the first service type information in the context information of the first PDU session. For example, it may also include one of UE identification, first PDU session identification, QoS parameters, and IP address. Item or multiple items etc.
  • Step 105a After receiving the session information of the first PDU session, the PNA2 may update the session information. PNA2 can also perform ARP routing update on the IP address of the first PDU session to reuse the IP address. The PNA2 can update the session information, for example, delete part of the information in the session information, or add parameters related to the PDU session to the session information, as described above for details.
  • PNA2 may also determine whether PNA2 supports local offloading of services corresponding to the first service type information based on the pre-acquired information 2 and the received session information of the first PDU session. When PNA2 supports local offloading of the service corresponding to the first service type information, PNA2 performs step 105a. Otherwise, when it is determined that PNA2 does not support local offloading of the service corresponding to the first service type information, PNA2 can share the first PDU session The session information is sent to PNC, and the processing flow of PNC is detailed in the example below. With this method, it is possible to repeatedly confirm whether the PNA2 supports local offloading of the service corresponding to the first service type information, which can improve the accuracy, and can more effectively process or switch the first PDU session.
  • Step 106a PNA2 sends a handover response (Xn HO response) to PNA1.
  • Step 107a The PNA1 sends a radio resource control (radio resource control, RRC) connection reconfiguration message (RRC connection reconfiguration) to the UE.
  • RRC radio resource control
  • Step 108a Perform other steps of the UE handover procedure.
  • the first PDU session can be switched from PNA1 To PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure.
  • Step 104b When PNA1 determines that PNA2 does not support local offloading of the service corresponding to the first service type information, PNA1 sends a handover request message (N2 HO required) to the PNC, and the handover request message includes session information of the first PDU session.
  • the session information of the first PDU session may also include information other than the first service type information in the context information of the first PDU session, for example, it may also include UE identification, first PDU session identification, QoS parameters and IP address. One or more of etc.
  • the PNA2 identifier can also be included in the handover request message.
  • Step 105b After receiving the session information of the first PDU session, the PNC can update the session information.
  • the PNC can also update the ARP routing of the IP address of the first PDU session to reuse the IP address, and can allocate core network tunnel information (CN tunnel info) for the first PDU session.
  • the content contained in the core network tunnel information is detailed above
  • the core network tunnel information may include the QoS parameters of the first PDU session.
  • Step 106b The PNC sends a handover request (N2 HO request) to the PNA2, and the handover request includes the core network tunnel information allocated for the first PDU session.
  • the PNC may also determine whether the PNA2 supports local service for the service corresponding to the first service type information based on the pre-acquired information 2 and the received session information of the first PDU session and the PNA2 identifier. Offloading. When it is determined that PNA2 does not support local offloading of the service corresponding to the first service type information, PNC executes step 105b. Otherwise, when it is determined that PNA2 supports local offloading of the service corresponding to the first service type information, PNC may perform the first The session information of a PDU session is sent to the PNA2. For example, the PNC can send the session information of the first PDU session to the PNA2 through the handover request in step 106b.
  • the processing flow of the PNA2 is described in detail above.
  • the session information of PDU session a includes service type information a
  • the session information of PDU session b includes service type information b.
  • PNC judges PNA2 It does not support local offloading of services corresponding to service type information a, and if it is determined that PNA2 supports local offloading of services corresponding to service type information b, then PNC can allocate core network tunnel information for PDU session a, and can perform step 106b
  • the handover request sent by the PNC to the PNA2 carries the core network tunnel information allocated for the PDU session a and the session information of the PDU session b.
  • Step 107b PNA2 allocates access network tunnel information (AN tunnel info) for the first PDU session, and the content contained in the access network tunnel information is detailed above.
  • AN tunnel info access network tunnel information
  • Step 108b PNA2 sends a handover request response message to the PNC, and the handover request response message includes the access network tunnel information.
  • Step 109b The PNC sends a handover command to PNA1.
  • Step 1010b PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 1011b Perform other steps of the UE handover procedure.
  • the first PDU session can be transferred from PNA1 Switching to PNC can avoid the problem of handover errors when the first PDU session is switched to PNA2 that cannot handle the session, and can improve the handover success rate.
  • FIG. 4 is a schematic diagram of another communication method provided by an embodiment of this application.
  • the method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA1 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 200a to step 203a in FIG. 4 are the same as step 100a to step 103a in FIG. 3, and the related description of step 200a to step 203a can be referred to the description in step 100a to step 103a, which will not be repeated here.
  • Step 203b According to the information 2 and the session information of the first PDU session, the PNA1 determines that the PNA2 supports local offloading of the service corresponding to the first service type information, and then determines to perform Xn handover.
  • Step 204 is the same as step 104a, and the related description of step 204 can refer to the description in step 104a, which will not be repeated here.
  • Step 205 After receiving the session information of the first PDU session, PNA2 may update the session information.
  • updating the session information may include updating an IP address.
  • the PNA2 may allocate a new IP address for the first PDU session, and update the session information according to the new IP address. For example, if the session information includes an old IP address, the new IP address can be used to update the old IP address, and if the session information does not include the old IP address, the new IP address can be updated to the Session information.
  • PNA2 may also determine whether PNA2 supports local offloading of services corresponding to the first service type information based on the pre-acquired information 2 and the received session information of the first PDU session. When PNA2 supports local offloading of the service corresponding to the first service type information, PNA2 performs step 205. Otherwise, when it is determined that PNA2 does not support local offloading of the service corresponding to the first service type information, PNA2 can share the first PDU session The session information is sent to the PNC, and the processing flow of the PNC is described above.
  • Step 206 PNA2 sends a handover response (Xn HO response) to PNA1.
  • the Xn HO response may carry a first indication, and the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • PNA1 can learn that PNA2 has allocated a new IP address for the first PDU session, and can notify the UE of the validity time of the old IP address of the first PDU session accordingly, and can release the old IP address in time after the old IP address becomes invalid.
  • Step 207 PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 208 Perform other steps of the UE handover procedure.
  • the other steps may include the UE sending an RRC connection reconfiguration complete message (RRC connection reconfiguration complete) to the PNA2.
  • RRC connection reconfiguration complete RRC connection reconfiguration complete
  • the UE accesses PNA2.
  • Step 209a PNA1 sends the valid time of the old IP address of the first PDU session to the UE.
  • the PNA1 may send a Router Advertisement 1 to the UE through the PNA2 to notify the UE of the validity time of the old IP address of the first PDU session.
  • PNA1 may send Router Advertisement1 to PNA2.
  • Router Advertisement1 includes the old IP address of the first PDU session and the valid time of the old IP address of the first PDU session.
  • PNA2 forwards Router Advertisement1 to the UE.
  • the old IP address of the first PDU session in this application refers to the IP address of the first PDU session before the UE handover.
  • Step 209b At the same time, the PNA2 sends Router Advertisement 2 to the UE, and Router Advertisement 2 includes the new IP address of the first PDU session to notify the UE of the new IP address of the first PDU session. So that the new IP address can be synchronized between the UE and PNA2 in time.
  • the first PDU session can be switched from PNA1 to PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure. Further, the PNA2 can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 5 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2. In the method shown in Figure 5, PNA1 is equivalent to the first in Figure 2.
  • Network element the method includes the following steps:
  • step 300a-step 303a in FIG. 5 are the same as step 100a-step 103a in FIG. 3, and related descriptions of 300a-step 303a can refer to the description in step 100a-step 103a, which will not be repeated here; step 303b and step 303b in FIG. Step 203b in FIG. 4 is the same.
  • step 303b please refer to the description in step 203b, which will not be repeated here.
  • Step 304 in FIG. 5 is the same as step 104a in FIG. 3.
  • step 305 in FIG. 5 is the same as step 205 in FIG. 4, and the related description of step 305 can refer to the description in step 205, which will not be repeated here.
  • Step 306 PNA2 sends a handover response (Xn HO response) to PNA1, and Xn HO response includes the new IP address assigned to the first PDU after the session is switched.
  • Step 307 PNA1 sends an RRC connection reconfiguration message to the UE, and the RRC connection reconfiguration message includes the new IP address.
  • Step 308 Perform other steps of the UE handover procedure.
  • the first PDU session can be switched from PNA1 to PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure. Further, the PNA2 can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 6 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA1 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 400a to step 403a in FIG. 6 are the same as step 100a to step 103a in FIG. 3, and the related description of step 400a to step 403a can be referred to the description in step 100a to step 103a, which will not be repeated here.
  • Step 403b Based on the information 2 and the session information of the first PDU session, the PNA1 determines that the PNA2 does not support local offloading of services corresponding to the first service type information, determines that the PNC handles the first PDU session, and performs N2 handover.
  • step 404 is the same as step 104b, and the related description of step 404 can refer to the description in step 104b, which will not be repeated here.
  • Step 405 After receiving the session information of the first PDU session, the PNC may update the session information.
  • updating the session information may include updating an IP address.
  • the PNC may allocate a new IP address for the first PDU session, and update the session information according to the new IP address. For example, if the session information includes an old IP address, the new IP address can be used to update the old IP address, and if the session information does not include the old IP address, the new IP address can be updated to the Session information.
  • the PNC may also allocate core network tunnel information (CN tunnel info) for the first PDU session.
  • the content of the core network tunnel information can be referred to the above description.
  • the core network tunnel information may include the QoS parameters of the first PDU session.
  • Step 406 to step 408 are the same as step 106b to step 108b.
  • step 406 to step 408 please refer to the description of step 106b to step 108b, which will not be repeated here.
  • the PNC may also determine whether the PNA2 supports the local service of the service corresponding to the first service type information based on the pre-acquired information 2 and the received session information of the first PDU session and the PNA2 identifier. Offloading. When it is determined that PNA2 does not support local offloading of the service corresponding to the first service type information, PNC executes step 405. Otherwise, when it is determined that PNA2 supports local offloading of the service corresponding to the first service type information, PNC can The session information of a PDU session is sent to the PNA2. For example, the PNC can send the session information of the first PDU session to the PNA2 through the handover request in step 406.
  • the processing flow of the PNA2 is described in detail above. For example, take the UE including two PDU sessions as an example, namely PDU session a and PDU session b.
  • the session information of PDU session a includes service type information a
  • the session information of PDU session b includes service type information b. If PNC judges PNA2 Does not support local offloading of services corresponding to service type information a, and if it is determined that PNA2 supports local offloading of services corresponding to service type information b, then PNC may carry it as a PDU session in the handover request sent by PNC to PNA2 in step 406 A assigned core network tunnel information and PDU session b session information. With this method, it is possible to repeatedly confirm whether the PNA2 supports local offloading of the service corresponding to the first service type information, which can improve the accuracy, and can more effectively process or switch the first PDU session.
  • Step 409 The PNC sends a handover command to PNA1.
  • the handover command carries a first indication, and the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • PNA1 can learn that PNA2 has allocated a new IP address for the first PDU session, and can notify the UE of the validity time of the old IP address of the first PDU session accordingly, and can release the old IP address in time after the old IP address becomes invalid.
  • Step 4010 PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 4011 Perform other steps of the UE handover procedure. After performing other steps of the UE handover procedure, the UE accesses PNA2.
  • Step 4012a PNA1 sends Router Advertisement1 to UE through PNC and PNA2 to notify the UE of the validity time of the old IP address of the first PDU session.
  • PNA1 may send Router Advertisement1 to PNC.
  • Router Advertisement1 includes the old IP address of the first PDU session and the validity time of the old IP address of the first PDU session.
  • PNA sends Router Advertisement1 to PNA2.
  • PNA2 forwards Router Advertisement1 to the UE.
  • the old IP address of the first PDU session in this example refers to the IP address of the first PDU session before the UE handover.
  • Step 4012b The PNC sends a Router Advertisement 2 to the UE through the PNA2, and the Router Advertisement 2 carries the new IP address of the first PDU session to notify the UE of the new IP address of the first PDU session.
  • the PNC may send Router Advertisement 2 to PNA2, and after PNA 2 receives the Router Advertisement 2, the PNA 2 forwards the Router Advertisement 2 to the UE.
  • the first PDU session can be switched from PNA1 To PNC, the problem of handover error when the first PDU session is switched to PNA2 that cannot handle the session can be avoided, and the handover success rate can be improved. Further, the PNC can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 7 a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA1 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 500a-step 503a in FIG. 7 are the same as step 100a-step 103a in FIG. 3.
  • step 500a-step 503a please refer to the description in step 100a-step 103a, which will not be repeated here;
  • step 503b in FIG. 7 It is the same as step 403b in FIG. 6, the description of step 503b can refer to the description in step 403b, which will not be repeated here;
  • step 504 in Figure 7 is the same as step 104b in Figure 3, and the related description of step 504 can refer to the description in step 104b. It is not repeated here;
  • step 505 in FIG. 7 is the same as step 405 in FIG.
  • step 505 can refer to the description in step 405, which will not be repeated here; steps 506-508 in FIG. 7 are the same as steps in FIG. 106b-step 108b are the same.
  • steps 506-step 508 please refer to the description of step 106b-step 108b, which will not be repeated here.
  • Step 509 The PNC sends a handover command to the PNA1.
  • the handover command includes the new IP address assigned to the first PDU after the session is switched.
  • Step 5010 PNA1 sends an RRC connection reconfiguration message to the UE, and the RRC connection reconfiguration message includes the new IP address. In order to synchronize the new IP address of the first PDU session between the PNC and the UE in time.
  • Step 5011 Perform other steps of the UE handover procedure.
  • the first PDU session can be switched from PNA1 To PNC, the problem of handover error when the first PDU session is switched to PNA2 that cannot handle the session can be avoided, and the handover success rate can be improved. Further, the PNC can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 8 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA2 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • PNA1 can carry information 1 in the Xn setup request (Xn setup request) message and send it to PNA2, and PNA2 can carry information 2 in the Xn setup response (Xn setup request).
  • the setup resporse) message is sent to PNA1.
  • the information 1 of the PNA1 may be configured by the PNC for it, see step 600a for details.
  • Step 602a PNA1 sends a handover request (Xn HO request) to PNA2.
  • the handover request includes session information of the first PDU session.
  • the session information of the first PDU session may be the full set or a subset of the context information of the first PDU session.
  • the session information of the first PDU session includes first service type information and information other than the first service type information in the context information of the first PDU session.
  • the information other than the first service type information may include UE Identification, one or more of the first PDU session identification, QoS parameters, and IP address, etc.
  • the first PDU session is a session managed by the PNA1 before the UE handover, that is, the first PDU session is a session locally routed from the PNA1 before the UE handover.
  • Step 602b PNA2 obtains information 2.
  • the information 2 may be configured by the PNC for the PNA2, see step 600b for details.
  • the information 2 may also be pre-defined.
  • the PNA 2 can obtain the information 2 locally. It should be noted that the sequence of performing step 602a and step 602b is not limited in this application.
  • PNA2 after PNA2 obtains the session information of the first PDU session and information 2, it can determine whether PNA2 supports local offloading of the service corresponding to the first service type information according to the information 2 and the session information of the first PDU session. If the PNA2 determines that it supports local offloading of the service corresponding to the first service type information according to the information 2 and the session information, it is determined that the PNA2 itself handles the first PDU session, which corresponds to method one in Figure 8, see step 603a-step 606a .
  • PNA2 determines that it does not support local offloading of the service corresponding to the first service type information based on the information 2 and the session information, then PNA2 determines that the PNC will process the first PDU session, which corresponds to method 2 in Figure 8, see step 603b -Step 606b.
  • method one and method two can be executed alternatively or in parallel. For example, take the UE including two PDU sessions as an example, namely PDU session 1 and PDU session 2.
  • the session information of PDU session 1 includes service type information 1
  • the session information of PDU session 2 includes service type information 2.
  • PNA2 supports The services corresponding to service type information 1 and service type information 2 are locally offloaded, and the UE performs method 1 when switching from PNA1 to PNA2; or, if PNA2 supports local offloading of services corresponding to service type information 1, and PNA2 does not Support local offloading of services corresponding to service type information 2, then PNA1 can execute method 1 and method 2 in parallel; or, if PNA2 does not support local offloading of services corresponding to service type information 1 and service type information 2, execute method two.
  • Step 603a PNA2 determines to support local offloading of the service corresponding to the first service type information according to the information 2 and the session information of the first PDU session.
  • PNA2 can update the session information. Please refer to the above description for how to update.
  • PNA2 can also Perform ARP routing update on the IP address of the first PDU session.
  • Step 604a PNA2 sends a handover response (Xn HO response) to PNA1.
  • Step 605a PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 606a The UE sends an RRC connection reconfiguration complete message to PNA2. It can be understood that after step 606a is performed, the UE accesses PNA2.
  • the session information of the first PDU session routed by PNA1 before the handover can be sent to PNA2, and PNA2 can then determine whether to support the first service of the first PDU session The service corresponding to the type information is locally offloaded.
  • the first PDU session can be switched from PNA1 to PNA2. In this way, PNA2 Processing the first PDU session can achieve the purpose of offloading with the PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure.
  • Step 603b Based on the information 2 and the session information of the first PDU session, PNA2 determines that it does not support local offloading of the service corresponding to the first service type information, and PNA2 determines that the PNC handles the first PDU session and can allocate the first PDU session Access network tunnel information (AN tunnel info), the content contained in the access network tunnel information can be referred to the above description.
  • PNA2 determines that it does not support local offloading of the service corresponding to the first service type information, and PNA2 determines that the PNC handles the first PDU session and can allocate the first PDU session Access network tunnel information (AN tunnel info), the content contained in the access network tunnel information can be referred to the above description.
  • AN tunnel info the content contained in the access network tunnel information
  • Step 604b PNA2 sends a path switch request (path switch request) message to the PNC.
  • the path switch request message includes session information of the first PDU session and the access network tunnel information.
  • the message may also include the identification of PNA2.
  • Step 605b PNC updates the session information, and performs ARP routing update on the IP address of the first PDU session, and allocates core network tunnel information (CN tunnel info) for the first PDU session. See above for the content contained in the core network tunnel information description.
  • CN tunnel info core network tunnel information
  • the PNC may also determine whether the PNA2 supports local service for the service corresponding to the first service type information based on the pre-acquired information 2 and the received session information of the first PDU session and the PNA2 identifier. Offloading. When it is determined that PNA2 does not support local offloading of the service corresponding to the first service type information, PNC executes step 605b. Otherwise, when it is determined that PNA2 supports local offloading of the service corresponding to the first service type information, PNC may perform the first The session information of a PDU session is sent to PNA2, and the processing flow of PNA2 is detailed above.
  • Step 606b The PNC sends a path switch request response (path switch request ack) message to the PNA2, where the path switch request response message includes the core network tunnel information.
  • the PNC can also perform other steps of the handover, which are not shown in Figure 8.
  • the session information of the first PDU session routed by PNA1 before the handover can be sent to PNA2, and PNA2 can then determine whether to support the first service for the first PDU session The service corresponding to the type information is locally offloaded.
  • PNA2 does not support local offloading of the service corresponding to the first service type information of the first PDU session
  • the first PDU session can be switched from PNA1 to PNC, which can avoid The problem of handover error when the first PDU session is switched to PNA2 that cannot handle the session can improve the handover success rate.
  • FIG. 9 is a schematic diagram of another communication method provided by an embodiment of this application.
  • the method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA2 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 700a to step 702b in FIG. 9 are the same as step 600a to step 602b in FIG. 8, and the related description of step 700a to step 702b can be referred to the description in step 600a to step 602b, which will not be repeated here.
  • PNA2 after PNA2 obtains the session information of the first PDU session and information 2, it can determine whether PNA2 supports local offloading of the service corresponding to the first service type information according to the information 2 and the session information of the first PDU session. If the PNA2 determines that it supports local offloading of the service corresponding to the first service type information, it is determined that the PNA2 itself handles the first PDU session, corresponding to the method 1 in FIG. 9, see step 703a to step 708a. Conversely, if the PNA2 determines that it does not support local offloading of the service corresponding to the first service type information, the PNA2 determines that the PNC handles the first PDU session, which corresponds to the second method in FIG.
  • step 703b-step 707b see step 703b-step 707b. It should be noted that in this example, method one and method two can be executed alternatively or in parallel. In which case, one can be selected for execution, and which case can be executed in parallel, please refer to the relevant description in Figure 8.
  • Step 703a Based on the information 2 and the session information of the first PDU session, PNA2 determines to support local offloading of the service corresponding to the first service type information. PNA2 may update the session information. For example, PNA2 may allocate a new session for the first PDU session. The session information is updated according to the new IP address. See the above description for details on how to update.
  • Step 704a PNA2 sends a handover response (XnHO response) to PNA1.
  • the Xn HO response may carry a first indication, and the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • step 705a to step 706a are the same as step 605a to step 606a in FIG. 8, and the related description of step 705a to step 706a can refer to the description of step 605a to step 606a above.
  • Step 707a to step 708a are the same as step 209a to step 209b, and the description of step 707a to step 708a can refer to the description of step 209a to step 209b.
  • the session information of the first PDU session routed by PNA1 before the handover can be sent to PNA2, and PNA2 can then determine whether to support the first service of the first PDU session The service corresponding to the type information is locally offloaded.
  • the first PDU session can be switched from PNA1 to PNA2.
  • PNA2 Processing the first PDU session can achieve the purpose of offloading with the PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure.
  • the PNA2 can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • step 703b to step 704b are the same as step 603b to step 604b, and the description of step 703b to step 704b can refer to the description of step 603b to step 604b.
  • Step 705b PNC updates the session information, for example, allocates a new IP address for the first PDU session, updates the session information according to the new IP address, see above for details on how to update, and allocates core network tunnel information for the first PDU session ( CN tunnel info).
  • the PNC may also determine whether the PNA2 supports local service for the service corresponding to the first service type information based on the pre-acquired information 2 and the received session information of the first PDU session and the PNA2 identifier. Offloading. When it is determined that PNA2 does not support local offloading of the service corresponding to the first service type information, PNC executes step 705b. Otherwise, when it is determined that PNA2 supports local offloading of the service corresponding to the first service type information, PNC can The session information of a PDU session is sent to PNA2, and the processing flow of PNA2 is detailed above.
  • step 706b is the same as step 606b, and the description of step 706b can refer to the description of step 606b.
  • Step 707b The PNC may send a Router Advertisement to the UE through the PNA2 to notify the UE of the new IP address.
  • the PNC sends a Router Advertisement carrying a new IP address to the PNA2, and the PNA2 receives the Router Advertisement and forwards the Router Advertisement to the UE.
  • the PNC can also perform other steps of handover, which are not shown in FIG. 9.
  • the session information of the first PDU session routed by PNA1 before the handover can be sent to PNA2, and PNA2 can then determine whether to support the first service for the first PDU session
  • the service corresponding to the type information is locally offloaded.
  • the first PDU session can be switched from PNA1 to PNC, which can avoid The problem of handover error when the first PDU session is switched to PNA2 that cannot handle the session can improve the handover success rate.
  • the PNC can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 10 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNA2 is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 800a to step 802b in FIG. 10 are the same as step 600a to step 602b in FIG. 8, and the related description of step 800a to step 802b can refer to the description in step 600a to step 602b, which will not be repeated here.
  • PNA2 after PNA2 obtains the session information of the first PDU session and information 2, it can determine whether PNA2 supports local offloading of the service corresponding to the first service type information according to the information 2 and the session information of the first PDU session. If the PNA2 determines that it supports local offloading of the service corresponding to the first service type information, it is determined that the PNA2 itself handles the first PDU session, corresponding to the method 1 in FIG. 10, see step 803a to step 806a. Conversely, if the PNA2 determines that it does not support local offloading of the service corresponding to the first service type information, the PNA2 determines that the PNC handles the first PDU session, which corresponds to the method 2 in FIG.
  • step 803b-step 807b see step 803b-step 807b. It should be noted that in this example, method one and method two can be executed alternatively or in parallel. In which case, one can be selected for execution, and which case can be executed in parallel, please refer to the relevant description in Figure 8.
  • step 803a is the same as step 703a, and the description of step 803a can refer to the description of step 703a.
  • Step 804a PNA2 sends Xn HO response to PNA1, and Xn HO response includes the new IP address assigned to the first PDU after session switching.
  • Step 805a PNA1 sends an RRC connection reconfiguration message to the UE, and the RRC connection reconfiguration message includes the new IP address.
  • Step 806a The UE sends an RRC connection reconfiguration complete message to PNA2. It can be understood that after step 806a is performed, the UE accesses PNA2.
  • the first PDU session can be switched from PNA1 To PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure. Further, the PNA2 can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • step 803b to step 804b are the same as step 603b to step 604b, and the description of step 803b to step 804b can refer to the description of step 603b to step 604b.
  • step 805b to step 806b are the same as step 705b to step 706b, and the description of step 805b to step 806b can refer to the description of step 705b to step 706b above.
  • Step 807b The PNC may send a NAS SM message carrying the new IP address to the UE through the PNA2 to notify the UE of the new IP address of the first PDU session. For example, the PNC sends a NAS SM message to the PNA2, and the PNA2 forwards the NAS SM message to the UE after receiving the NAS SM message.
  • the first PDU session can be transferred from PNA1 Switching to PNC can avoid the problem of handover errors when the first PDU session is switched to PNA2 that cannot handle the session, and can improve the handover success rate. Further, the PNC can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 11 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • the PNC can configure information 1 and information 2 for PNA1 and PNA2 respectively through a PNA configuration message. For details, see step 900a to step 900b.
  • PNA1 can carry information 1 in the Xn setup request (Xn setup request) message and send it to PNA2, and PNA2 can carry information 2 in the Xn setup response (Xn setup request).
  • the setup resporse) message is sent to PNA1, see step 900c-step 900d for details.
  • Step 901 PNA1 determines to switch the UE to PNA2.
  • Step 902a PNA1 sends a handover request message (N2 HO required) to the PNC.
  • the handover request message includes the session information of the first PDU session.
  • the session information of the first PDU session may be the complete set or subset of the context information of the first PDU session.
  • the session information of the first PDU session includes first service type information and information other than the first service type information in the context information of the first PDU session, for example, the information other than the first service type information may include UE Identification, one or more of the first PDU session identification, QoS parameters, and IP address, etc.
  • the first PDU session is the session controlled by PNA1 before the UE handover.
  • the N2 HO required may also include the PNA2 logo.
  • Step 902b PNC obtains information 2.
  • the PNC can obtain information 2 from PNA2, or it can be predefined. When information 2 is predefined information, PNC can obtain information 2 locally.
  • PNC after PNC obtains the session information of the first PDU session and information 2, it can determine whether PNA2 supports local offloading of the services corresponding to the first service type information based on the information 2 and the session information of the first PDU session. If the PNC determines that the PNA2 supports local offloading of the service corresponding to the first service type information, it determines that the PNA2 handles the first PDU session, which corresponds to the method 1 in FIG. 11, see step 903a to step 905a and step 907 to step 909.
  • PNC determines that PNA2 does not support local offloading of the service corresponding to the first service type information
  • PNC determines that it will handle the first PDU session by itself, which corresponds to method 2 in Figure 11, see step 903b-step 906b and step 907- Step 909.
  • method one and method two can be executed alternatively or in parallel. For example, take the UE including two PDU sessions as an example, namely PDU session 1 and PDU session 2.
  • the session information of PDU session 1 includes service type information 1
  • the session information of PDU session 2 includes service type information 2.
  • PNA2 supports If the service corresponding to service type information 1 and service type information 2 is locally offloaded, perform method one; or, if PNA2 supports local offloading of the service corresponding to service type information 1, and does not support the service corresponding to service type information 2 For local offloading, method one and method two can be performed in parallel; or, if PNA2 does not support local offloading of services corresponding to service type information 1 and service type information 2, then method two is performed.
  • Step 903a The PNC determines that the PNA2 supports local offloading of the service corresponding to the first service type information according to the information 2, the session information of the first PDU session, and the PNA2 identifier, and the PNC determines that the PNA2 handles the first PDU session.
  • Step 904a The PNC sends a handover request message to the PNA2, and the handover request message includes the session information of the first PDU session.
  • the processing procedure after the PNA2 receives the session information of the first PDU session can be referred to the above description, and will not be repeated.
  • Step 905a PNA2 sends a handover request response message to PNC.
  • other steps of switching can also be performed, which are not shown in FIG. 11.
  • the first PDU session can be switched to PNA2, so that PNA2 can process the first PDU session to achieve the purpose of offloading with the PNC, which not only reduces the end-to-end delay of data services, but also reduces network pressure .
  • Step 903b Based on the information 2, the session information of the first PDU session, and the PNA2 identifier, the PNC determines that PNA2 does not support local offloading of the service corresponding to the first service type information, and the PNC updates the session information and talks to the first PDU session.
  • ARP routing update is performed on the IP address of, and core network tunnel information (CN tunnel info) is allocated for the first PDU session.
  • CN tunnel info core network tunnel information
  • Step 904b PNC sends a handover request message to PNA2, and the handover request message includes the core network tunnel information.
  • the handover request message in step 904a and step 904b may be the same message.
  • Step 905b PNA2 allocates access network tunnel information (AN tunnel info) for the first PDU session.
  • Step 906b PNA2 sends a handover request response message to the PNC, and the handover request response message includes the AN tunnel info.
  • Step 907 PNC sends a handover command to PNA1.
  • Step 908 PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 909 Perform other steps of the UE handover procedure.
  • the first PDU session can be switched to the PNC, which can avoid the problem of handover errors when the first PDU session is switched to the PNA2 that cannot handle the session, and can improve the handover success rate.
  • FIG. 12 is a schematic diagram of another communication method provided by an embodiment of this application. The method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1000a to step 1002b in FIG. 12 are the same as step 900a to step 902b in FIG. 11, and related descriptions of step 1000a to step 1002b can be referred to the description in step 900a to step 902b, which will not be repeated here.
  • PNC after PNC obtains the session information of the first PDU session and information 2, it can determine whether PNA2 supports local offloading of the services corresponding to the first service type information based on the information 2 and the session information of the first PDU session. If PNC determines that PNA2 supports local offloading of the service corresponding to the first service type information, it determines that PNA2 handles the first PDU session, which corresponds to method one in Figure 12, and method one in Figure 12 performs the same as method one in Figure 11. For details, see the description above. Conversely, if the PNC determines that the PNA2 does not support local offloading of the service corresponding to the first service type information, the PNC determines to handle the first PDU session by itself, corresponding to the method 2 in FIG. 12, see step 1003b to step 1011b.
  • Method 2 of this example is as follows:
  • Step 1003b PNC determines that PNA2 does not support local offloading of services corresponding to the first service type information according to the information 2, the session information of the first PDU session, and the PNA2 identifier, PNC updates the session information, and PNC updates the session information For example, a new IP address is allocated for the first PDU session, the session information is updated according to the new IP address, and CN tunnel info is allocated for the first PDU session.
  • Step 1004b to step 1006b are the same as step 904b to step 906b, and the related description of step 1004b to step 1006b can refer to the description of step 904b to step 906b.
  • Step 1007b The PNC sends a handover command to PNA1.
  • the handover command carries a first indication, and the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • Step 1008b PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 1009b Perform other steps of the UE handover procedure.
  • the other steps may include the UE sending an RRC connection reconfiguration complete message to PNA2.
  • the UE accesses PNA2.
  • step 1010b to step 1011b are the same as step 4012a to step 4012b, and the description of step 1010b to step 1011b can refer to the description of step 4012a to step 4012b, which will not be repeated here.
  • the first PDU session can be switched to the PNC, which can avoid the problem of handover errors when the first PDU session is switched to the PNA2 that cannot handle the session, and can improve the handover success rate. Further, the PNC can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 13 is a schematic diagram of another communication method provided by an embodiment of this application. The method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1100a to step 1102b in FIG. 13 are the same as step 900a to step 902b in FIG. 11, and the related description of step 1100a to step 1102b can refer to the description of step 900a to step 902b in FIG. 11, which will not be repeated here.
  • PNC after PNC obtains the session information of the first PDU session and information 2, it can determine whether PNA2 supports local offloading of the services corresponding to the first service type information based on the information 2 and the session information of the first PDU session. If PNC determines that PNA2 supports local offloading of the service corresponding to the first service type information, it is determined that PNA2 will process the first PDU session, which corresponds to method one in Figure 13, and method one in Figure 13 performs the same as method one in Figure 11. For details, see the description above.
  • the PNC determines that the PNA2 does not support local offloading of the service corresponding to the first service type information, the PNC determines that it will handle the first PDU session by itself, which corresponds to the method 2 in FIG. 13, see step 1103b-step 1109b.
  • Method 2 of this example is as follows:
  • step 1103b to step 1106b are the same as step 1003b to step 1006b, and the description of step 1103b to step 1106b can refer to the description of step 1003b to step 1006b above.
  • Step 1107b The PNC sends a handover command to PNA1, and the handover command includes the new IP address of the first PDU session.
  • the handover command may also include a first indication, which is used to indicate that a new IP address has been allocated for the first PDU session.
  • Step 1108b PNA1 sends an RRC connection reconfiguration message to the UE.
  • the RRC connection reconfiguration message includes the new IP address of the first PDU session.
  • Step 1109b Perform other steps of the UE handover procedure.
  • the other steps may include the UE sending an RRC connection reconfiguration complete message to PNA2.
  • the PNC can allocate a new IP address for the first PDU session, avoiding the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG 14 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in Figure 2.
  • Network element the method includes the following steps:
  • the PNC can configure information 1 and information 2 for PNA1 and PNA2 respectively through the PNA configuration message, see step 1200a-step 1200b for details.
  • Step 1201 The UE successfully switches from PNA1 to PNA2.
  • Step 1202 PNA2 sends a path switch request (path switch request) message to the PNC, and the message may include the identity of PNA2.
  • Step 1203a PNC obtains information 2.
  • the predefined information 2 can be obtained locally, or the information 2 can be obtained from the PNA2, which is not limited.
  • Step 1203b The PNC obtains session information of the first PDU session.
  • the session information may include the first service type information.
  • the first PDU session is the session controlled by the PNC before the UE handover, that is, the first PDU session.
  • a PDU session is a session that is locally routed from the PNC before the UE handover.
  • the order of execution of step 1203a and step 1203b is not limited. It should be noted that the session information of the first PDU session in this example and the following examples may be a complete set or a subset of the context information of the first PDU session.
  • Step 1203c Based on the information 2 and the session information of the first PDU session, PNC determines that PNA2 supports local offloading of services corresponding to the first service type information. PNC determines that the first PDU session of PNA2 is used, and the data of the first PDU session can be transferred The anchor point is transferred to PNA2.
  • Step 1204 The PNC sends a path switch request response (path switch request ack) message to the PNA2.
  • the path switch request response message includes session information of the first PDU session.
  • the session information may include only one of the first service type information.
  • it may also include information other than the first service type information in the context information of the first PDU session.
  • the information other than the first service type information may include a terminal identifier, a first session identifier, QoS parameters, and an IP address. One or more of.
  • Step 1205 PNA2 stores and updates the session information of the first PDU session, and performs ARP routing update on the IP address of the first PDU session. See above for how to update the session information of the first PDU session.
  • the first PDU session can be switched from PNC to PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure.
  • FIG. 15 a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1300a to step 1304 in FIG. 15 are the same as step 1200a to step 1204 in FIG. 14, and the related description of step 1300a to step 1304 can refer to the description of step 1200a to step 1204 in FIG. 14, which will not be repeated here.
  • Step 1305 PNA2 stores and updates the session information of the first PDU session.
  • updating the session information includes updating the IP address of the first PDU session.
  • PNA2 may allocate a new IP address for the first PDU session according to the new IP
  • the PNA2 may also send a first indication to the PNC, where the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • the old IP address of the first PDU session in this example and the following examples refers to the IP address before the first PDU session is switched.
  • Step 1306 The PNC sends Router Advertisement1 to the UE through the PNA2 to notify the UE of the validity time of the old IP address of the first PDU session.
  • the PNC may send Router Advertisement1 to PNA2.
  • Router Advertisement1 carries the old IP address of the first PDU session and the valid time of the old IP address of the first PDU session.
  • PNA2 After receiving Router Advertisement1, PNA2 forwards Router Advertisement1 to the UE.
  • Step 1307 The PNA2 sends a Router Advertisement 2 to the UE, and the Router Advertisement 2 carries the new IP address of the first PDU session to notify the UE of the new IP address of the first PDU session.
  • the first PDU session can be switched from PNC to PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure. Further, the PNA2 can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 16 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1400a-step 1404 in FIG. 16 is the same as step 1200a-step 1204 in FIG. 14.
  • step 1400a-step 1404 please refer to the description of step 1200a-step 1204 in FIG. 14, which will not be repeated here;
  • Step 1405 is the same as step 1305 in FIG. 15.
  • step 1405 please refer to the description of step 1305, which will not be repeated.
  • Step 1406 PNA2 sends the new IP address allocated for the first PDU session to the UE through an RRC message to notify the UE of the new IP address of the first PDU session.
  • the PNA2 may send a first indication to the PNC indicating that a new IP address has been allocated for the first PDU session, so that the PNC sends the valid time of the old IP of the first PDU session to the UE.
  • the first PDU session can be switched from PNC to PNA2, in this way, the first PDU session processed by PNA2 can achieve the purpose of offloading with PNC, which can not only reduce the end-to-end delay of data services, but also reduce network pressure. Further, the PNA2 can allocate a new IP address for the first PDU session to avoid the situation that the first PDU session is unavailable due to the unavailability of the old IP address.
  • FIG. 17 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1500a to step 1500b in FIG. 17 are the same as step 1200a to step 1200b in FIG. 14, and the related description of step 1500a to step 1500b can refer to the description of step 1200a to step 1200b, which will not be repeated here.
  • Step 1501 PNA1 determines to switch the UE to PNA2.
  • Step 1502 PNA1 sends a handover request message (N2 HO required) to the PNC, and the handover request message carries the identity of PNA2.
  • step 1502a to step 1502b in FIG. 17 are the same as step 1203a to step 1203b in FIG. 14, and the description of step 1502a to step 1502b can refer to the description of step 1203a to step 1203b, which will not be repeated here.
  • PNC after PNC obtains information 2 and the session information of the first PDU session, it can determine whether PNA2 supports local offloading of services corresponding to the first service type information based on information 2 and the session information. If PNA2 does not To support local offloading of the service corresponding to the first service type information, the following method 1 is executed. If the PNA2 supports local offloading of the service corresponding to the first service type information, the following method 2 is executed.
  • Step 1503a Based on the information 2 and the session information of the first PDU session, the PNC determines that PNA2 does not support local offloading of the service corresponding to the first service type information, and the PNC determines to process the first PDU session locally and can be the first PDU session
  • the core network tunnel information is allocated, and the content contained in the core network tunnel information can be referred to above.
  • Step 1504a The PNC sends a handover request message (N2 HO request) to the PNA2, and the message may include the core network tunnel information.
  • N2 HO request a handover request message
  • Step 1505a PNA2 allocates access network tunnel information for the first PDU session.
  • Step 1506a The PNA2 sends a handover request response message (N2 HO request ack) to the PNC, and the message may include the access network tunnel information.
  • N2 HO request ack a handover request response message
  • Step 1503b According to the information 2 and the session information of the first PDU session, the PNC determines that the PNA2 supports local offloading of the service corresponding to the first service type information, and determines that the PNA2 handles the first PDU session.
  • Step 1504b The PNC sends a handover request message (N2 HO request) to the PNA2.
  • the handover request message includes the session information of the first PDU session.
  • the session information includes the first service type information and the first Information other than the first service type information in the context information of the PDU session, for example, the information other than the first service type information may include one or more of the terminal identifier, the first session identifier, QoS parameters, and IP address .
  • Step 1505b PNA2 stores and updates the session information of the first PDU session, and performs ARP routing update on the IP address of the first PDU session. See the above description for how to update the session information of the first PDU session.
  • Step 1506b PNA2 sends a handover request response message (N2 HO request ack) to the PNC.
  • Step 1507 The PNC sends a handover command to PNA1.
  • Step 1508 PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 1509 Perform other steps of the UE handover procedure.
  • FIG. 18 is a schematic diagram of another communication method provided by an embodiment of this application. The method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1600a-step 1600b in FIG. 18 is the same as step 1200a-step 1200b in FIG. 14.
  • step 1601- in FIG. Step 1602b is the same as step 1501 to step 1502b in FIG. 17, and the steps performed by method one in FIG. 18 are the same as those performed by method one in FIG. 17, refer to the related description in FIG. 17, and will not be repeated.
  • step 1603b to step 1604b are the same as step 1503b to step 1504b, and the description of step 1603b to step 1604b can refer to the description of step 1503b to step 1504b.
  • Step 1605b PNA2 stores the session information of the first PDU session, allocates a new IP address for the first PDU session, and updates the session information of the first PDU session according to the new IP address.
  • Step 1606b PNA2 sends a handover request response message (N2 HO request ack) to the PNC.
  • the message may include a first indication, and the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • Step 1607 PNC sends a handover command to PNA1.
  • Step 1608 PNA1 sends an RRC connection reconfiguration message to the UE.
  • Step 1609 Perform other steps of the UE handover procedure.
  • the other steps may include the UE sending an RRC connection reconfiguration complete message to PNA2.
  • the UE accesses PNA2.
  • Step 1610 The PNC sends Router Advertisement 1 to the UE through the PNA2 to notify the UE of the validity time of the old IP address of the first PDU session.
  • the PNC may send Router Advertisement1 to PNA2.
  • Router Advertisement1 carries the old IP address of the first PDU session and the valid time of the old IP address of the first PDU session.
  • PNA2 forwards Router Advertisement1 to the UE.
  • Step 1611 PNA2 sends Router Advertisement 2 to UE.
  • Router Advertisement 2 carries the new IP address of the first PDU session to notify the UE of the new IP address of the first PDU session.
  • FIG. 19 is a schematic diagram of another communication method provided by an embodiment of this application. This method is applied to a UE handover scenario from PNA1 to PNA2.
  • PNC is equivalent to the first in FIG. Network element, the method includes the following steps:
  • step 1700a-step 1700b in FIG. 19 is the same as step 1200a-step 1200b in FIG. 14.
  • step 1701- in FIG. 19 Step 1702b is the same as step 1501 to step 1502b in FIG. 17, and the steps performed by method one in FIG. 19 are the same as those performed by method one in FIG. 17, please refer to the related description in FIG. 17, and will not be repeated.
  • step 1703b to step 1704b are the same as step 1503b to step 1504b.
  • step 1703b to step 1704b refer to the description of step 1503b to step 1504b;
  • step 1705b is the same as step 1605b, and refer to the description of step 1605b.
  • Step 1706b PNA2 sends a handover request response message to the PNC, and the handover request response message includes the new IP address of the first PDU session.
  • the PNA2 may carry a first indication in the handover request response message sent to the PNC, and the first indication is used to indicate that a new IP address has been allocated for the first PDU session.
  • Step 1707b The PNC sends a handover command to PNA1, and the handover command includes the new IP address of the first PDU session.
  • Step 1708b PNA1 sends an RRC connection reconfiguration message to the UE.
  • the RRC connection reconfiguration message includes the new IP address of the first PDU session.
  • step 1709 may also be performed for method one and method two.
  • Step 1709 Perform other steps of the UE handover procedure.
  • the other steps may include the UE sending an RRC connection reconfiguration complete message to PNA2.
  • the source access network network element, the destination access network network element, and the core network network element include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application can divide functional units of the target access network network element, the source access network network element, and the core network network element according to the foregoing method examples.
  • each functional unit can be divided corresponding to each function, or two Or two or more functions are integrated in one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the embodiments of the present application also provide a device for implementing any of the above methods.
  • a device is provided that includes various steps performed by the target access network element in any of the above methods.
  • another device is also provided, including units (or means) for implementing each step performed by the source access network network element in any of the above methods.
  • another device is also provided, including a unit (or means) for implementing each step performed by the core network element in any of the above methods.
  • FIG. 20 is a schematic structural diagram of a network element 2000 provided by an embodiment of the application.
  • the network element 2000 may include an acquiring unit 2001 and a processing unit 2002.
  • the network element 2000 may further include a receiving unit 2003 and a sending unit 2004.
  • the network element 2000 can be applied to a first network element, and the first network element can be applied to a handover scenario of a terminal from a source access network network element to a destination access network network element.
  • the acquiring unit 2001 may be used to execute step S101 and step 102 in the above method example FIG. 2.
  • the processing unit 2002 may be used to execute step S103 in the example of the method in FIG. 2 above. The following describes the scenario and design based on this implementation.
  • the network element 2000 is the target access network network element
  • the first session is a session managed and controlled by the source access network network element before the terminal is switched.
  • the following is a design based on this scenario.
  • the receiving unit 2003 may be configured to receive the session information from the source access network network element or the core network network element.
  • the obtaining unit 2001 may also be used to obtain the pre-configured first information locally.
  • the receiving unit 2003 may also be used to receive the first information from a core network element.
  • the processing unit 2002 may also be used to update the session information of the first session.
  • the processing unit 2002 may be used to allocate a new IP address for the first session, and update the session information according to the new IP address; the sending unit 2004 may be used to notify the source access network element or the terminal Or the new IP address of the core network element.
  • the sending unit 2004 may also be configured to send a first indication to the source access network element, where the first indication is used to indicate that a new IP address has been allocated for the first session.
  • the processing unit 2002 may also be used to update the ARP route of the IP address of the first session.
  • the network element 2000 is a core network network element
  • the first session is a session managed and controlled by the source access network network element before the terminal handover.
  • the following is a design based on this scenario.
  • the receiving unit 2003 may be configured to receive the session information from the network element of the source access network.
  • the sending unit 2004 may be configured to send the session information to the destination access network network element after the processing unit 2002 determines that the destination access network network element processes the first session .
  • the network element 2000 is the source access network network element
  • the first session is a session managed and controlled by the source access network network element before the terminal is switched.
  • the following is a design based on this scenario.
  • the sending unit 2004 may be configured to send the session information to the destination access network network element after the processing unit 2002 determines that the destination access network network element processes the first session .
  • the network element 2000 is a core network element, and the first session is a session managed and controlled by the core network element before the terminal is switched.
  • the following is a design based on this scenario.
  • the sending unit 2004 may be configured to send the session information to the destination access network network element after the processing unit 2002 determines that the destination access network network element processes the first session .
  • the receiving unit 2003 can be used to receive a path conversion request from the target access network element; based on this design, the sending unit 2004 can send to the target access network element in the following manner
  • the receiving unit 2003 may also be configured to receive a handover request message from the source access network element, where the handover request message includes the identifier of the target access network element, and the handover The request message is used to request the terminal to be switched to the target access network element; based on this design, the sending unit 2004 may send the session information to the target access network element in the following manner: the sending unit 2004 Send a handover request message to the target access network element, where the handover request message includes the session information.
  • the following is a design based on the second possible scenario to the fourth possible scenario.
  • the obtaining unit 2001 may be used to obtain the pre-configured first information locally.
  • the receiving unit 2003 may be used to receive the first information from the network element of the destination access network.
  • the receiving unit 2003 may also be used to receive the new IP address of the first session from the network element of the destination access network; the sending unit 2004 may be used to send the new IP address of the first session to the terminal.
  • the receiving unit 2003 can also be used to receive a first indication from a network element of the destination access network, the first indication is used to indicate that a new IP address has been allocated for the first session; the sending unit 2004 can also be used to The first indication sends the valid time of the old IP address of the first session to the terminal.
  • the following is a design based on the first possible scenario to the fourth possible scenario.
  • the first information and the first service type information may respectively include at least one of the following service type identification information: NSSAI, DNN, or App-ID.
  • the first information further includes a local support indication, which is used to indicate that the target access network element supports local offloading of services corresponding to the service type identification information.
  • the processing unit 2002 may determine, based on the first information and the session information, that the destination access network element supports local offloading of the services corresponding to the first service type information: if the first service type information If it matches with the service type information of the local offload supported by the destination access network element indicated by the first information, it is determined that the destination access network element supports local offloading of the service corresponding to the first service type information, and then the destination access is determined The network element processes the first session.
  • the first information and the first service type information respectively include NSSAI and DNN.
  • the processing unit 2002 can determine that the network element of the destination access network will process the first session in the following manner: The NSSAI and DNN included in the service type information respectively match the NSSAI and DNN included in the first information, and then it is determined that the destination access network element supports local offloading of the service corresponding to the first service type information, and then the destination access network Meta handles the first conversation.
  • the first information and the first service type information include NSSAI, DNN, and APP ID, respectively.
  • the processing unit 2002 can determine that the target access network element handles the first session in the following manner: If the NSSAI, DNN, and APP ID included in the first service type information match the NSSAI, DNN, and APP ID included in the first information, respectively, it is determined that the destination access network element supports local offloading of the service corresponding to the first service type information , And then determine that the network element of the destination access network processes the first session.
  • the acquiring unit 2001 may be used to execute steps S101 and 102 in the above method example FIG. 2.
  • the processing unit 2002 may be used to execute step S104 in FIG. 2 of the above method example. The following describes the scenario and design based on this implementation.
  • the network element 2000 is the target access network network element
  • the first session is a session managed and controlled by the source access network network element before the terminal is switched.
  • the following is a design based on this scenario.
  • the receiving unit 2003 may be configured to receive the session information from the network element of the source access network.
  • the sending unit 2004 may be configured to send the session information and the first session to the core network element after the processing unit 2002 determines that the core network element processes the first session Access network tunnel information.
  • the receiving unit 2003 may also be configured to receive core network tunnel information of the first session from the core network element.
  • the obtaining unit 2001 may be used to obtain the pre-configured first information locally.
  • the receiving unit 2003 may also be used to receive the first information from a core network element.
  • the network element 2000 is the core network element, and the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • the following is a design based on this scenario.
  • the receiving unit 2003 may be configured to receive the session information from the network element of the source access network.
  • the processing unit 2002 may also be used to update the session information.
  • the processing unit 2002 may update the session information in the following manner: allocate a new IP address for the first session, and update the session information according to the new IP address; the sending unit 2004 may be used to connect to the source The network element or the terminal sends the new IP address.
  • the sending unit 2004 may also be configured to send a first indication to the source access network element, where the first indication is used to indicate that a new IP address has been allocated for the first session.
  • the processing unit 2002 may also be used to update the ARP route of the IP address of the first session.
  • the sending unit 2004 may also be configured to, after the processing unit 2002 determines that the core network element processes the first session, send the core of the first session to the target access network element. Network tunnel information.
  • the receiving unit 2003 may also be configured to receive the access network tunnel information of the first session from the target access network network element.
  • the network element 2000 is the source access network network element
  • the first session is a session managed and controlled by the source access network network element before the terminal is switched.
  • the following is a design based on this scenario.
  • the sending unit 2004 may be configured to send the session information to the core network element after the processing unit 2002 determines that the core network element processes the first session.
  • the following is a design based on the second possible scenario and the third possible scenario.
  • the obtaining unit 2001 may also be used to obtain the pre-configured first information locally.
  • the receiving unit 2003 may be configured to receive the first information from the network element of the destination access network.
  • the following is a design based on the first possible scenario and the third possible scenario.
  • the receiving unit 2003 may be used to receive the new IP address of the first session from the core network element; the sending unit 2004 may be used to send the new IP address of the first session to the terminal.
  • the receiving unit 2003 may be used to receive a first indication from a core network element, the first indication is used to indicate that a new IP address has been allocated for the first session; the sending unit 2004 may be used to send a The effective time of the old IP address of the first session sent by the terminal.
  • the following is a design based on the first possible scenario to the third possible scenario.
  • the first information and the first service type information may respectively include at least one of the following service type identification information: NSSAI; DNN; or App ID.
  • the first information further includes a local support indication, which is used to indicate that the target access network element supports local offloading of the service corresponding to the service type identification information.
  • the processing unit 2002 may determine, based on the first information and the session information, that the destination access network element does not support local offloading of the service corresponding to the first service type information: if the first service type If the information does not match the service type information of the local offload supported by the destination access network element indicated by the first information, it is determined that the destination access network element does not support local offloading of the service corresponding to the first service type information, and then it is determined by The core network element processes the first session.
  • the first information and the first service type information include NSSAI and DNN, respectively.
  • the processing unit 2002 can determine that the core network element handles the first session: if the first service type If the NSSAI and DNN included in the information do not match the NSSAI and DNN included in the first information, it is determined that the destination access network element does not support local offloading of the services corresponding to the first service type information, and then the core network element is determined to process it The first conversation.
  • the first information and the first service type information respectively include NSSAI, DNN, and APP ID.
  • the processing unit 2002 may determine that the core network element will process the first session in the following manner: If the NSSAI, DNN, and APP ID included in the service type information do not match the NSSAI, DNN, and APP ID included in the first information, it is determined that the destination access network element does not support local offloading of the service corresponding to the first service type information , And then determine that the core network element handles the first session.
  • the network element 2000 is the target access network network element.
  • the receiving unit 2003 may be configured to receive session information of a first session of the terminal from a first network element, where the session information includes first service type information, and the destination access network network element supports the first service type
  • the service corresponding to the information is locally distributed; the processing unit 2002 can be used to update the session information.
  • the first network element is a core network element
  • the first session is a session managed and controlled by the source access network element before the terminal is switched.
  • the first network element is the source access network network element
  • the first session is a session managed and controlled by the source access network network element before the terminal is switched.
  • the first network element is a core network element
  • the first session is a session managed and controlled by the core network element before the terminal is switched.
  • the processing unit 2002 may also be used to allocate a new IP address for the first session, and update the session information according to the new IP address; the sending unit 2004 may be used to send the first network element or The terminal sends the new IP address.
  • the sending unit 2004 may also be configured to send a first indication to the first network element, where the first indication is used to indicate that a new IP address has been allocated for the first session, so that the The first network element sends the valid time of the old IP address of the first session to the terminal according to the first instruction.
  • the processing unit 2002 may also be used to update the ARP route of the IP address of the first session.
  • the sending unit 2004 can also be used to send a path switch request to the core network element; based on this design, the receiving unit 2003 can receive the session information of the first session from the first network element in the following manner : Receive a path conversion request confirmation message from the core network element, where the path conversion request confirmation message includes the session information.
  • the receiving unit 2003 may receive the session information of the first session from the first network element in the following manner: receive a handover request message from the core network element, the handover request message includes all ⁇ session information.
  • the network element 2000 is the core network network element.
  • the receiving unit 2003 may be configured to receive session information of the first session of the terminal and access network tunnel information of the first session from the network element of the target access network, where the session information includes first service type information,
  • the first session is a session managed and controlled by the source access network element before the terminal is switched, and the destination access network element does not support local offloading of services corresponding to the first service type information; sending The unit 2004 may be used to send the core network tunnel information of the first session to the target access network network element.
  • the network element 2000 is the target access network network element.
  • the receiving unit 2003 may be configured to receive core network tunnel information of a first session of the terminal from a core network element, where the first session is a session that is managed and controlled by the source access network element before the terminal is switched.
  • the session information of the first session includes first service type information, and the destination access network network element does not support local offloading of the service corresponding to the first service type information; the sending unit 2004 may be used to transfer the service to the core The network element sends the access network tunnel information of the first session.
  • the network element 2000 is the core network network element.
  • the receiving unit 2003 may be configured to receive session information of a first session of the terminal from the source access network element, where the session information includes first service type information, and the first session is the first session of the terminal before handover.
  • the destination access network network element does not support local offloading of the service corresponding to the first service type information; the processing unit 2002 may be configured to update the session information.
  • the processing unit 2002 may be used to allocate a new IP address for the first session, and update the session information according to the new IP address; the sending unit 2004 may be used to send a network element to the source access network Or the terminal sends the new IP address.
  • the sending unit 2004 may also be configured to send a first indication to the source access network element, where the first indication is used to indicate that a new IP address has been allocated for the first session, so that The source access network element sends the valid time of the old IP address of the first session to the terminal according to the first instruction.
  • the processing unit 2002 may also be used to update the ARP route of the IP address of the first session.
  • each unit in the device can be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 21 is a schematic structural diagram of an access network network element provided by an embodiment of this application. It is used to implement the operations of the source access network network element or the destination access network network element in the above embodiment.
  • the network elements of the access network include: an antenna 2101, a radio frequency device 2102, and a baseband device 2103.
  • the antenna 2101 is connected to the radio frequency device 2102.
  • the radio frequency device 2102 receives the information sent by the terminal through the antenna 2101, and sends the information sent by the terminal to the baseband device 2103 for processing.
  • the baseband device 2103 processes the terminal information and sends it to the radio frequency device 2102
  • the radio frequency device 2102 processes the terminal information and sends it to the terminal via the antenna 2101.
  • the baseband device 2103 may include one or more processing elements 21031, for example, a main control CPU and other integrated circuits.
  • the baseband device 2103 may also include a storage element 21032 and an interface circuit 21033.
  • the storage element 21032 is used to store programs and data; the interface circuit 21033 is used to exchange information with the radio frequency device 2102.
  • the interface circuit is, for example, a common public wireless interface (common public radio interface, CPRI).
  • the above device applied to the access network network element may be located in the baseband device 2103.
  • the above device applied to the access network network element may be a chip on the baseband device 2103.
  • the chip includes at least one processing element and an interface circuit.
  • the element is used to perform the steps of any method performed by the above access network element, and the interface circuit is used to communicate with other devices.
  • the unit for the access network element to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • a device applied to the access network element includes a processing element and a storage element, and the processing element calls the storage
  • the program stored by the component is used to execute the method executed by the access network element in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the device applied to the access network element to implement each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device, where the processing elements may be It is an integrated circuit, for example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the access network element that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method .
  • At least one processing element and a storage element can be integrated in the chip, and the processing element calls the stored program of the storage element to implement the method executed by the above access network element; or, the chip can integrate at least one integrated circuit for The method implemented by the above access network elements is implemented; or, the above implementation manners can be combined.
  • the functions of some units are implemented in the form of processing element calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus applied to an access network element may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the access network element provided in the above method embodiments.
  • the processing element can execute part or all of the steps performed by the access network element in the first way: calling the program stored in the storage element; or in the second way: through the integrated logic of the hardware in the processor element
  • the circuit is combined with instructions to execute part or all of the steps performed by the access network element; of course, part or all of the steps performed by the access network element can also be combined with the first method and the second method.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 22 is a schematic structural diagram of a core network element provided by an embodiment of this application. It may be the core network element in the above embodiment, and is used to implement the operation of the core network element in the above embodiment.
  • the core network element includes: a processor 2210 and an interface 2230.
  • the number of processors 2210 may be multiple.
  • the processor 2210 can perform operations of the processing unit 2002 when the network element 2000 is a core network element, and the interface 2230 can perform operations of the receiving unit 2003 and/or the sending unit 2004 when the network element 2000 is a core network element.
  • the core network element may further include a memory 2220, and the memory 2220 is used to store programs and data.
  • the processor 2210 may be an integrated circuit with signal processing capability, such as a CPU. Or the functions of the above units can be realized by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • the embodiment of the present application also provides a computer-readable storage medium on which some instructions are stored. When these instructions are called and executed by a computer, the computer can complete the above method embodiments and method implementations. Examples of methods involved in any possible design.
  • the computer-readable storage medium is not limited. For example, it may be RAM (random-access memory, random access memory), ROM (read-only memory, read-only memory), etc.
  • the present application also provides a computer program product, which can complete the method embodiment and the method involved in any possible design of the above method embodiment when the computer program product is invoked and executed by a computer.
  • the present application further provides a chip, which is coupled with a transceiver, and is used to complete the foregoing method embodiment and the method involved in any one of the possible implementations of the method embodiment, wherein "Coupling” means that two components are directly or indirectly combined with each other. This combination can be fixed or movable. This combination can allow fluid, electricity, electrical signals or other types of signals to be connected between the two components. Communicate between.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be arranged in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法和装置,以期在终端切换的场景下有效处理终端的会话。该方法可应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:第一网元获取该终端的第一会话的会话信息,该会话信息包括第一业务类型信息,第一网元获取第一信息,第一信息用于指示目的接入网网元支持的本地分流的业务类型信息,若根据第一信息和会话信息,确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,则第一网元确定由目的接入网网元处理第一会话。

Description

一种通信方法和装置
相关申请的交叉引用
本申请要求在2019年08月16日提交中国专利局、申请号为201910760935.2、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法和装置。
背景技术
当前通信领域中提出一种类似于第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的私网,该私网可以理解为一个独立的仅支持私网用户接入的3GPP私有网络,在这类私网中可以包括终端、私网接入网网元以及私网核心网网元等。
在上述私网中,终端的会话可以通过私网接入网网元路由,也可以通过私网核心网网元路由。当终端需要从当前接入的源接入网网元切换至目的接入网网元时,如何处理或切换终端的会话是需要解决的技术问题。
发明内容
本申请实施例提供一种通信方法和装置,以期在终端切换的过程中有效处理或切换终端的会话。
第一方面,本申请提供一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:第一网元获取终端的第一会话的会话信息,所述会话信息包括第一业务类型信息,第一网元获取第一信息,第一信息用于指示目的接入网网元支持的本地分流的业务类型信息,若第一网元根据所述第一信息和所述会话信息,确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,则第一网元确定由目的接入网网元处理第一会话。本申请实施例中,所述第一会话的会话信息可以为第一会话的上下文信息的全集或子集。
采用上述方法,在源接入网网元将终端切换至目的接入网网元的场景下,第一网元在确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流时,才确定由目的接入网网元处理第一会话,这样可以在确保会话为目的接入网网元可以处理的会话时,才将会话交由目的接入网网元处理或者将会话切换至目的接入网网元,可避免会话处理或切换出错,可提升会话的切换成功率。
第一种场景中,第一网元为目的接入网网元,第一会话为终端切换前由源接入网网元管控的会话。由目的接入网网元处理第一会话可达到与核心网网元分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。以下为基于第一种场景的设计。
一种可能的设计中,目的接入网网元获取终端的第一会话的会话信息,包括:目的接入网网元接收来自源接入网网元或核心网网元的所述会话信息。
一种可能的设计中,目的接入网网元获取第一信息,包括:目的接入网网元从本地获取预先配置的第一信息;或,目的接入网网元接收来自核心网网元的第一信息。这样,针对不同的应用场景可灵活选取获取第一信息的方法。
一种可能的设计中,目的接入网网元确定由自身处理第一会话之后,还可以更新第一会话的会话信息。示例性地,目的接入网网元更新第一会话的会话信息,包括:为第一会话分配新网际协议(internet protocol,IP)地址,根据新IP地址更新会话信息,并通知源接入网网元或终端或核心网网元新IP地址。另一种可能的设计中,目的接入网网元若确定第一会话的IP地址不变,可以对第一会话的IP地址进行地址解析协议(address resolution protocol,ARP)路由更新以重用该IP地址。采用该方法,目的接入网网元在处理第一会话后,可以继续使用会话的老IP地址,也可以为会话分配新IP,可以根据不同的应用场景灵活处理会话的IP地址,且为会话分配了新IP地址后,可以及时通知给相关网元,避免后续通信出错。
一种可能的设计中,目的接入网网元还可以向源接入网网元发送第一指示,第一指示用于指示已为第一会话分配新IP地址。采用该方法,源接入网网元可以获知目的接入网网元为会话分配了新IP地址,进而可据此通知终端老IP地址的有效时间,并可在老IP地址失效后及时释放老IP地址。
第二种场景中,第一网元为核心网网元,第一会话为终端切换前由源接入网网元管控的会话。以下为基于第二种场景的设计。
一种可能的设计中,核心网网元获取终端的第一会话的会话信息,包括:核心网网元接收来自源接入网网元的所述会话信息。
一种可能的设计中,核心网网元确定由目的接入网网元处理第一会话之后,还包括:核心网网元向目的接入网网元发送所述会话信息。将目的接入网网元支持本地分流的业务对应的会话切换至目的接入网网元,可达到与核心网网元分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
第三种场景中,第一网元为源接入网网元,第一会话为终端切换前由源接入网网元管控的会话。以下为基于第三种场景的设计。
一种可能的设计中,源接入网网元确定由目的接入网网元处理第一会话之后,还包括:源接入网网元向目的接入网网元发送所述会话信息。将目的接入网网元支持本地分流的业务对应的会话切换至目的接入网网元,可达到与核心网网元分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
第四种场景中,第一网元为核心网网元,第一会话为终端切换前由核心网网元管控的会话。以下为基于第四种场景的设计。
一种可能的设计中,核心网网元确定由目的接入网网元处理第一会话之后,还包括:核心网网元向目的接入网网元发送所述会话信息。核心网网元将目的接入网网元支持本地分流的业务对应的会话切换至目的接入网网元,可达到与核心网网元分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
基于上述设计一种可能的设计中,核心网网元还可以接收来自目的接入网网元的路径转换请求,基于该设计,核心网网元向目的接入网网元发送会话信息,包括:核心网网元向目的接入网网元发送路径转换请求确认消息,路径转换请求确认消息中包括会话信息。采用该方法,可以利用现有的消息发送会话信息,无需使用新的消息发送会话信息,可节 省信令开销。
基于上述设计一种可能的设计中,核心网网元还可以接收来自源接入网网元的切换要求消息,切换要求消息中包括目的接入网网元的标识,切换要求消息用于请求将终端切换至目的接入网网元,基于该设计,核心网网元向目的接入网网元发送会话信息,包括:核心网网元向目的接入网网元发送切换请求消息,切换请求消息中包括会话信息。采用该方法,可以利用现有的消息发送会话信息,无需使用新的消息发送会话信息,可节省信令开销。
一种可能的设计中,核心网网元还可以向目的接入网网元发送其它会话的核心网隧道信息,其它会话为第一会话之外的会话,其它会话对应的业务类型信息对应的业务为目的接入网网元不支持进行本地分流的业务。可选的,所述其它会话的核心网隧道信息可以携带在核心网网元向目的接入网网元发送的切换请求消息或路径转换请求确认消息中,当然也可以携带在其它的现有消息中,还可以携带在新的消息中。
以下为基于第二种场景至第四种场景的设计。
一种可能的设计中,第一网元获取第一信息,包括:第一网元从本地获取预先配置的第一信息;或,第一网元接收来自目的接入网网元的第一信息。采用该方法,针对不同的应用场景,可灵活选取不同的方法获取第一信息。
一种可能的设计中,第一网元接收来自目的接入网网元的第一会话的新IP地址;第一网元向终端发送第一会话的新IP地址。
一种可能的设计中,第一网元接收来自目的接入网网元的第一指示,第一指示用于指示已为第一会话分配新IP地址;第一网元根据第一指示向终端发送第一会话的老IP地址的有效时间。采用该方法,可使得各个网元之间及时同步新IP地址。
以下为基于第一种场景至第四种场景的设计。
一种可能的设计中,第一信息和第一业务类型信息分别可包括如下至少一项业务类型标识信息:网络切片选择辅助信息(network slice selection assistance information,NSSAI)、数据网络名称(data network name,DNN)或应用标识(App-ID)。
一种可能的设计中,第一信息还包括本地支持指示,本地支持指示用于指示目的接入网网元支持对与业务类型标识信息对应的业务进行本地分流。采用该方法,可通过显式方式指示目的接入网网元支持对与业务类型标识信息对应的业务进行本地分流。
一种可能的设计中,第一网元根据第一信息和会话信息,确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,包括:若第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息匹配,则第一网元确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由目的接入网网元处理第一会话。
一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI和DNN,基于该设计,第一网元确定由目的接入网网元处理第一会话,包括:若第一业务类型信息包括的NSSAI和DNN分别与第一信息包括的NSSAI和DNN匹配,则第一网元确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由目的接入网网元处理第一会话。
一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI、DNN以及APP ID,基于该设计,第一网元确定由目的接入网网元处理第一会话,包括:若第一业务类型信息 包括的NSSAI、DNN以及APP ID分别与第一信息包括的NSSAI、DNN以及APP ID匹配,则第一网元确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由目的接入网网元处理第一会话。
第二方面,本申请提供一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:目的接入网网元接收来自第一网元的所述终端的第一会话的会话信息,会话信息包括第一业务类型信息,目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,目的接入网网元更新所述会话信息。本申请实施例中,所述第一会话的会话信息可以为第一会话的上下文信息的全集或子集。
采用上述方法,在终端从源接入网网元切换至目的接入网网元的场景下,可将目的接入网网元支持的本地分流的业务对应的会话信息发送给目的接入网网元,以使目的接入网网元处理该会话,可以理解为将该会话切换至目的接入网网元,由目的接入网网元处理第一会话可达到与核心网网元分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
第一种场景中,第一网元为核心网网元,第一会话为终端切换前由源接入网网元管控的会话。
第二种场景中,第一网元为源接入网网元,第一会话为终端切换前由源接入网网元管控的会话。
第三种场景中,第一网元为核心网网元,第一会话为终端切换前由核心网网元管控的会话。
以下为基于第一种场景至第三种场景的设计。
一种可能的设计中,目的接入网网元更新会话信息,包括:目的接入网网元为第一会话分配新IP地址,根据新IP地址更新会话信息,并向第一网元或终端发送新IP地址。
一种可能的设计中,目的接入网网元向第一网元发送第一指示,第一指示用于指示已为第一会话分配新IP地址,以使得第一网元根据第一指示向终端发送第一会话的老IP地址的有效时间。
一种可能的设计中,目的接入网网元确定第一会话的IP地址不变时,还可以对第一会话的IP地址进行ARP路由更新以重用该IP地址。
以下为基于第三种场景的设计。
一种可能的设计中,目的接入网网元可以向核心网网元发送路径转换请求,基于该设计,目的接入网网元接收来自第一网元的第一会话的会话信息,包括:目的接入网网元接收来自核心网网元的路径转换请求确认消息,路径转换请求确认消息中包括所述会话信息。
一种可能的设计中,目的接入网网元接收来自核心网网元的第一会话的会话信息,包括:目的接入网网元接收来自核心网网元的切换请求消息,切换请求消息中包括会话信息。
一种可能的设计中,目的接入网网元还可以接收来自核心网网元的其它会话的核心网隧道信息,其它会话对应的业务类型信息对应的业务为目的接入网网元不支持进行本地分流的业务。可选的,所述其它会话的核心网隧道信息可以携带在核心网网元向目的接入网网元发送的切换请求消息或路径转换请求确认消息中,当然也可以携带在其它的现有消息中,还可以携带在新的消息中。
第三方面,本申请提供一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:第一网元获取终端的第一会话的会话信息,会话信息包括第一 业务类型信息,第一网元获取第一信息,第一信息用于指示目的接入网网元支持的本地分流的业务类型信息;若第一网元根据所述第一信息和所述会话信息,确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,则第一网元确定由核心网网元处理会话。本申请实施例中,所述第一会话的会话信息可以为第一会话的上下文信息的全集或子集。
采用上述方法,在源接入网网元将终端切换至目的接入网网元的场景下,第一网元在确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流时,确定由核心网网元处理第一会话或者将第一会话切换至核心网网元,这样,可避免将会话切换至不能处理该会话的目的接入网网元时切换出错的问题,可提升切换成功率。
第一种场景中,第一网元为目的接入网网元,第一会话为终端切换前由源接入网网元管控的会话。以下为基于第一种场景的设计。
一种可能的设计中,目的接入网网元获取终端的第一会话的会话信息,包括:目的接入网网元接收来自源接入网网元的所述会话信息。
一种可能的设计中,目的接入网网元确定由核心网网元处理第一会话之后,还包括:目的接入网网元向核心网网元发送所述会话信息以及第一会话的接入网隧道信息。以使得将第一会话及时切换至核心网网元。
一种可能的设计中,目的接入网网元接收来自核心网网元的第一会话的核心网隧道信息。以完成第一会话的切换。
一种可能的设计中,目的接入网网元获取第一信息,包括:目的接入网网元从本地获取预先配置的第一信息;或,目的接入网网元接收来自核心网网元的第一信息。
第二种场景中,第一网元为核心网网元,第一会话为终端切换前由源接入网网元管控的会话。以下为基于第二种场景的设计。
一种可能的设计中,核心网网元获取终端的第一会话的会话信息,包括:核心网网元接收来自源接入网网元的所述会话信息。
一种可能的设计中,核心网网元接收到所述会话信息后更新所述会话信息。示例性地,核心网网元更新会话信息,包括:核心网网元为第一会话分配新IP地址,根据新IP地址更新会话信息,并向源接入网网元或终端发送新IP地址。
一种可能的设计中,核心网网元还可以向源接入网网元发送第一指示,第一指示用于指示已为第一会话分配新IP地址。以使得源接入网网元根据第一指示向终端发送第一会话的老IP地址的有效时间。
一种可能的设计中,核心网网元在确定第一会话的IP地址不变时,还可以对第一会话的IP地址进行ARP路由更新以重用该IP地址。
一种可能的设计中,核心网网元确定由自身处理第一会话之后,还可以向目的接入网网元发送第一会话的核心网隧道信息。以使得目的接入网网元可根据第一会话的核心网隧道信息为第一会话建立终端、接入网网元以及核心网网元之间的数据传输通道。
一种可能的设计中,核心网网元还可以接收来自目的接入网网元的第一会话的接入网隧道信息。以使得核心网网元根据第一会话的接入网隧道信息为第一会话建立目的接入网网元与核心网网元之间的数据传输通道,从而完成第一会话的切换。
第三种场景中,第一网元为源接入网网元,第一会话为终端切换前由源接入网网元管控的会话。以下为基于第三种场景的设计。
一种可能的设计中,源接入网网元确定由核心网网元处理第一会话之后,还可以向核心网网元发送所述会话信息。
以下为基于第二种场景和第三种场景的设计。
一种可能的设计中,第一网元获取第一信息,包括:第一网元从本地获取预先配置的第一信息;或,第一网元接收来自目的接入网网元的第一信息。
以下为基于第一种场景和第三种场景的设计。
一种可能的设计中,第一网元接收来自核心网网元的第一会话的新IP地址;第一网元向终端发送第一会话的新IP地址。
一种可能的设计中,第一网元接收来自核心网网元的第一指示,第一指示用于指示已为第一会话分配新IP地址;第一网元根据第一指示向终端发送第一会话的老IP地址的有效时间。
以下为基于第一种场景至第三种场景的设计。
一种可能的设计中,第一信息和第一业务类型信息分别可包括如下至少一项业务类型标识信息:NSSAI;DNN;或,App ID。
一种可能的设计中,第一信息还包括本地支持指示,本地支持指示用于指示目的接入网网元支持对与所述业务类型标识信息对应的业务进行本地分流。
一种可能的设计中,第一网元根据第一信息和会话信息,确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,包括:若第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由核心网网元处理第一会话。
一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI和DNN,基于该设计,第一网元确定由核心网网元处理第一会话,包括:若第一业务类型信息包括的NSSAI和DNN,与第一信息包括的NSSAI和DNN不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由核心网网元处理第一会话。
一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI、DNN以及APP ID,基于该设计,第一网元确定由核心网网元处理第一会话,包括:若第一业务类型信息包括的NSSAI、DNN以及APP ID,与第一信息包括的NSSAI、DNN以及APP ID不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由核心网网元处理第一会话。
第四方面,本申请提供一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:核心网网元接收来自目的接入网网元的所述终端的第一会话的会话信息以及第一会话的接入网隧道信息,会话信息包括第一业务类型信息,第一会话为终端切换前由源接入网网元管控的会话,所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,核心网网元向目的接入网网元发送第一会话的核心网隧道信息。
采用上述方法,在源接入网网元将终端切换至目的接入网网元的场景下,可将目的接入网网元不支持本地分流的业务对应的会话切换至核心网网元,可避免将会话切换至不能处理该会话的网元时处理出错的问题,提升会话的切换成功率。
第五方面,本申请提供一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:目的接入网网元接收来自核心网网元的终端的第一会话的核心网隧道信息,第一会话为终端切换前由源接入网网元管控的会话,第一会话的会话信息包括第一业务类型信息,目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流;目的接入网网元向核心网网元发送第一会话的接入网隧道信息。
采用上述方法,在源接入网网元将终端切换至目的接入网网元的场景下,可将目的接入网网元不支持本地分流的业务对应的会话切换至核心网网元,可避免将会话切换至不能处理该会话的网元时处理出错的问题,提升会话的切换成功率。
第六方面,本申请提供一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括:核心网网元接收来自源接入网网元的终端的第一会话的会话信息,会话信息包括第一业务类型信息,第一会话为终端切换前由源接入网网元管控的会话,目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流;核心网网元更新会话信息。
采用上述方法,在源接入网网元将终端切换至目的接入网网元的场景下,可将目的接入网网元不支持本地分流的业务对应的会话切换至核心网网元,可避免将会话切换至不能处理该会话的网元时处理出错的问题,提升会话的切换成功率。
一种可能的设计中,核心网网元更新会话信息,包括:核心网网元为第一会话分配新IP地址,根据新IP地址更新会话信息,并向源接入网网元或终端发送新IP地址。
一种可能的设计中,核心网网元还可以向源接入网网元发送第一指示,第一指示用于指示已为第一会话分配新IP地址。以使得源接入网网元根据第一指示向终端发送第一会话的老IP地址的有效时间。
一种可能的设计中,核心网网元在确定第一会话的IP地址不变时,还可以对第一会话的IP地址进行ARP路由更新以重用该IP地址。
第七方面,本申请提供一种装置,该装置可以是目的接入网网元,也可以是芯片。该装置具有实现上述第一方面或第二方面或第三方面或第五方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第八方面,本申请提供一种装置,包括:至少一个处理器和存储器;该存储器用于存储指令,当该装置运行时,至少一个处理器执行该存储器存储的该指令,以使该装置执行上述第一方面或第一方面的任一实现方法、第二方面或第二方面的任一实现方法、第三方面或第三方面的任一实现方法、第五方面或第五方面的任一实现方法。需要说明的是,该存储器可以集成于至少一个处理器中,也可以是独立于至少一个处理器之外。
第九方面,本申请提供一种装置,该装置包括至少一个处理器,至少一个处理器用于与存储器耦合,并读取存储器中的指令并根据指令执行上述第一方面或第一方面的任一实现方法、第二方面或第二方面的任一实现方法、第三方面或第三方面的任一实现方法、第五方面或第五方面的任一实现方法。
第十方面,本申请提供一种装置,该装置可以是源接入网网元,也可以是芯片。该装置具有实现上述第一方面或第三方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十一方面,本申请提供一种装置,包括:至少一个处理器和存储器;该存储器用于 存储指令,当该装置运行时,该至少一个处理器执行该存储器存储的该指令,以使该装置执行上述第一方面或第一方面的任一实现方法、第三方面或第三方面的任一实现方法。需要说明的是,该存储器可以集成于至少一个处理器中,也可以是独立于至少一个处理器之外。
第十二方面,本申请提供一种装置,该装置包括至少一个处理器,至少一个处理器用于与存储器耦合,并读取存储器中的指令并根据指令执行上述第一方面或第一方面的任一实现方法、第三方面或第三方面的任一实现方法。
第十三方面,本申请提供一种装置,该装置可以是核心网网元,也可以是芯片。该装置具有实现上述第一方面或第三方面或第四方面或第六方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十四方面,本申请提供一种装置,包括:至少一个处理器和存储器;该存储器用于存储指令,当该装置运行时,至少一个处理器执行该存储器存储的该指令,以使该装置执行上述第一方面或第一方面的任一实现方法、第三方面或第三方面的任一实现方法、第四方面或第四方面的任一实现方法、第六方面或第六方面的任一实现方法。需要说明的是,该存储器可以集成于至少一个处理器中,也可以是独立于至少一个处理器之外。
第十五方面,本申请提供一种装置,该装置包括至少一个处理器,至少一个处理器用于与存储器耦合,并读取存储器中的指令并根据指令执行上述第一方面或第一方面的任一实现方法、第三方面或第三方面的任一实现方法、第四方面或第四方面的任一实现方法、第六方面或第六方面的任一实现方法。
第十六方面,本申请还提供一种计算机存储介质,计算机存储介质中存储有程序或指令,当其在计算机上运行时,使得上述各方面的任意的通信方法被执行。
第十七方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面中的任意的通信方法。
第十八方面,本申请还提供了一种通信系统,该通信系统包括第一网元,所述第一网元用于实现上述第一方面或第一方面的任一实现方法,和/或第二方面或第二方面的任一实现方法。
在一种可能的实现方式中,当所述第一网元为源接入网元时,所述通信系统还可以包括目的接入网元和/或核心网网元。
在一种可能的实现方式中,当所述第一网元为目的接入网元时,所述通信系统还可以包括源接入网元和/或核心网网元。
在一种可能的实现方式中,当所述第一网元为核心网网元时,所述通信系统还可以包括源接入网元和/或目的接入网网元。
第十九方面,本申请还提供了一种通信系统,该通信系统包括第一网元,所述第一网元用于实现:上述第三方面或第三方面的任一实现方法、第四方面或第四方面的任一实现方法、第五方面或第五方面的任一实现方法,或,第六方面或第六方面的任一实现方法,中的至少一项。
在一种可能的实现方式中,当所述第一网元为源接入网元时,所述通信系统还可以包括目的接入网元和/或核心网网元。
在一种可能的实现方式中,当所述第一网元为目的接入网元时,所述通信系统还可以 包括源接入网元和/或核心网网元。
在一种可能的实现方式中,当所述第一网元为核心网网元时,所述通信系统还可以包括源接入网元和/或目的接入网网元。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1a为本申请实施例适用的一种可能的网络架构示意图;
图1b为本申请实施例适用的另一种可能的网络架构示意图;
图2为本申请实施例提供的一种通信方法的示意图;
图3为本申请实施例提供的另一种通信方法的示意图;
图4为本申请实施例提供的又一种通信方法的示意图;
图5为本申请实施例提供的又一种通信方法的示意图;
图6为本申请实施例提供的又一种通信方法的示意图;
图7为本申请实施例提供的又一种通信方法的示意图;
图8为本申请实施例提供的又一种通信方法的示意图;
图9为本申请实施例提供的又一种通信方法的示意图;
图10为本申请实施例提供的又一种通信方法的示意图;
图11为本申请实施例提供的又一种通信方法的示意图;
图12为本申请实施例提供的又一种通信方法的示意图;
图13为本申请实施例提供的又一种通信方法的示意图;
图14为本申请实施例提供的又一种通信方法的示意图;
图15为本申请实施例提供的又一种通信方法的示意图;
图16为本申请实施例提供的又一种通信方法的示意图;
图17为本申请实施例提供的又一种通信方法的示意图;
图18为本申请实施例提供的又一种通信方法的示意图;
图19为本申请实施例提供的又一种通信方法的示意图;
图20为本申请实施例提供的一种网元结构示意图;
图21为本申请实施例提供的一种接入网网元结构示意图;
图22为本申请实施例提供的一种核心网网元结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一项(at least one of).......”意味着后续关联对象中的一个或任 意组合,例如“A,B和C中的至少一项”包括A,B,C,AB,AC,BC,或ABC。另外,需要理解的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,通信领域中提出私网的概念,私网是为与公网区分而提出的一种概念。私网可以理解为私有的网络,例如公司、学校或者工厂搭建的内部网络,未与私网签约的终端不允许接入私网。公网一般为运营商运营的符合第三代合作伙伴项目(3rd generation partnership project,3GPP)标准要求的网络,简称3GPP网络,通常3GPP网络包括但不限于第五代移动通信技术(the 5th generation,5G)网络、第四代移动通信技术(4th-generation,4G)网络、第三代移动通信技术(3rd-generation,3G)网络或第二代无线电话技术(2-generation wireless telephone technology,2G)网络等。需要说明的是,私网也可以基于3GPP标准要求构建,可以理解私网也可以为一种3GPP网络。本申请实施例提供的方法即可适用于私网也可适用于公网,本申请中主要以将该方法应用于私网为例进行说明。
请参见图1a,其为本申请实施例所适用的一种网络架构示意图。下面对图1a所示的网络架构中涉及的各个部分分别进行说明。
1、终端110:可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台(mobile station,MS),终端(terminal),用户设备(user equipment,UE),软终端等等。例如,水表、电表、传感器等。
2、(无线)接入网络(radio access network,(R)AN)网元120:用于为特定区域的授权终端提供入网功能,并能够根据终端的级别,业务的需求等使用不同质量的传输隧道。(R)AN网元能够管理无线资源,为终端提供接入服务,进而完成控制信号和终端数据在终端和核心网之间的转发,(R)AN网元也可以理解为传统网络中的基站。
3、用户面网元130:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、数据网络网元140:用于提供传输数据的网络。在5G通信系统中,该数据网络网元可以是数据网络(data network,DN)网元。在未来通信系统中,数据网络网元仍可以是DN网元,或者,还可以有其它的名称,本申请不做限定。
5、接入管理网元150:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。在5G通信系统中,该接入管理网元可以是接入管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
6、会话管理网元160:主要用于会话管理、终端的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及 下行数据通知等。在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
7、策略控制网元170:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF网元等)提供策略规则信息等。在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
8、绑定功能网元180:用于查找会话所关联的PCF。在5G通信系统中,该绑定支持网元可以是绑定支持功能(binding support function,BSF)网元。在未来通信系统中,绑定支持网元仍可以是BSF网元,或者,还可以有其它的名称,本申请不做限定。
9、认证服务器190:用于鉴权服务、产生密钥实现对终端的双向鉴权,支持统一的鉴权框架。在5G通信系统中,该认证服务器可以是认证服务器功能(authentication server function,AUSF)网元。在未来通信系统中,认证服务器功能网元仍可以是AUSF网元,或者,还可以有其它的名称,本申请不做限定。
10、数据管理网元1100:用于处理终端标识,接入鉴权,注册以及移动性管理等。在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
11、应用网元1110:用于进行应用影响的数据路由,接入网络开放功能网元,与策略框架交互进行策略控制等。在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
12、网络存储网元1120:用于维护网络中所有网络功能服务的实时信息。在5G通信系统中,该网络存储网元可以是网络注册功能(network repository function,NRF)网元。在未来通信系统中,网络存储网元仍可以是NRF网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
当将本申请实施例的方法应用于图1a所示的网络架构时,本申请中的源接入网网元和目的接入网网元可以是图1a中的(无线)接入网网元120,核心网网元可以是图1a中的用户面网元130或会话管理网元160或策略控制网元170等核心网网元。
未来通信技术的应用场景中,垂直行业是一个十分重要的领域,例如,物联网(internet of things,IoT)、机器与机器对话(machine to machine,M2M)以及工业4.0等。这些领域存在大量的私有企业,这些私有企业提出使用更快速、更可靠的3GPP技术来实现企业园区的覆盖,且私有企业期望不依赖移动通信网络直接对其企业园区内的移动设备进行管理和控制。一种可能的解决方式是,基于3GPP技术为私有企业独立布署私网以实现企业园区的网络覆盖。若按图1a所示的架构部署私网,多网元、多接口的网络架构对于私网来说过于厚重,网管运维上的要求也超过私网用户的实际能力,因此一种基于3GPP技术的极简私网架构应运而生。参阅图1b所示,为本申请适用的一种可能的私网架构示意图。 该私网架构包括UE、私网接入网网元(private network access,PNA)1、PNA2、私网核心网网元(private network controller,PNC)以及数据网络(data network,DN)。图1b中各个网元的数量仅作为示意,各种网元的数量不予限制。
其中,图1b所示的私网架构中的UE主要是指私网UE,也就是与私网签约可接入私网的UE。私网UE的具体举例可参见图1a中关于终端110的相关描述,此处不再赘述。
需要说明的是,本申请对图1b所示的极简私网架构中的PNA和PNC的功能不做限定,例如,PNA和PNC分别可以包括图1a所示的各个网元的部分功能或全部功能,也可以包括图1a所示的各个网元不具备的功能。
例如,本申请实施例中所涉及的PNA可以包含除了网管中心以外的所有用户接入控制面和数据路由所需的全部功能。例如,PNA可以包含RAN的功能、非接入层(non access stratum,NAS)终结功能、移动性管理功能、P4会话管理功能以及部分签约管理功能等,当然PNA还可以包含除此之外的其它功能,本申请不予限制。可以理解,在一个私网中可以包括多个PNA,私网UE可以在多个PNA之间切换。例如,当私网UE从PNA1覆盖区域漫游至PNA2覆盖区域,则私网UE可从PNA1切换至PNA2。
例如,本申请实施例中所涉及的PNC是包含网管功能的核心网网元。PNC除包含网管功能之外,为解决一些中型或大型私网跨大区移动性管理的场景下业务连续性问题,PNC还可以实现移动性管理、签约管理以及P5会话管理等功能。需要说明的是,本申请中PNC可以对同一私网中的多个PNA进行管理和控制,例如,图1b中PNC可以对PNA1和PNA2进行管理和控制。
图1b中P1为基于3GPP的NAS接口,实现UE和网络侧非接入层的信令交互;P2为基于3GPP的Uu接口,实现UE和网络侧接入层的信令和数据交互;P3为PNA和PNC之间的接口,包括网络管理、控制面和数据面功能;P4为从PNA到DN的接口,用于路由从PNA传输的数据包;P5为从PNC到DN的接口,用于路由从PNC传输的数据包。
以图1b所示的私网架构为例,在UE与DN之间进行业务数据传输时,UE当前接入的PNA(例如PNA1或PNA2)与PNC可以对该业务数据进行分流,例如,对于私网中某些对于时延要求较高的业务(例如超高可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务),可以由PNA本地分流或本地路由,其中可由PNA本地分流的业务也可以称为PNA支持的本地业务。具体而言,对于UE的业务,若PNA支持所述业务,则该业务的数据可由PNA本地分流,若PNA不支持所述业务,则该业务的数据需由PNC路由。可以理解,当UE与DN之间的业务数据由会话承载时,若该业务数据由PNA路由,则可以理解为承载该业务数据的会话由PNA路由或由PNA管控,若该业务数据由PNC路由,则可以理解为承载该业务数据的会话由PNC路由或由PNC管控。当UE在不同PNA之间切换时,由于不同的PNA支持的本地业务不尽相同,故,将UE从源PNA切换到目的PNA的过程中,可能存在源PNA为本地业务但在目的PNA为非本地业务的一类业务,以及,在源PNA为本地业务且在目的PNA也为本地业务的另一类业务,以及,在源PNA为非本地业务但在目的PNA为本地业务的又一类业务,在UE切换的过程中如何调整这些业务的会话锚点,即,如何处理UE的会话,目前还没有相关的解决方案。
鉴于上述存在的问题,本申请实施例提供一种通信方法,以期在UE从源接入网网元切换至目的接入网网元的场景下有效切换或处理UE的会话。
请参见图2,其为本申请实施例提供的一种通信方法流程图,该方法可应用于终端从源接入网网元到目的接入网网元的切换场景,该方法包括如下步骤:
S101:第一网元获取终端的第一会话的会话信息,该会话信息包括第一业务类型信息。本申请中,会话可以是协议数据单元(protocol data unit,PDU)会话。第一业务类型信息用于指示第一业务类型,属于所述第一业务类型的业务对应所述第一会话,其中,多种业务可以属于同一种业务类型,属于所述第一业务类型的一种或多种业务均对应所述第一会话。业务对应第一会话可以理解为业务对应的业务数据承载在第一会话传输。
本申请中,第一会话的会话信息可以为第一会话的上下文信息的全集或子集,相应的,所述会话信息为第一会话的上下文信息的全集时,所述上下文信息的全集包括第一业务类型信息,或者,所述会话信息为第一会话的上下文信息的子集时,所述上下文信息的子集包括第一业务类型信息。第一会话的上下文信息包括为建立第一会话时生成的信息和/或为建立第一会话使用的信息。第一会话的上下文信息可以包括:终端标识(UE ID),第一会话标识(session ID),网络切片选择辅助信息(network slice selection assistance information,NSSAI),数据网络名称(data network name,DNN),应用标识(App-ID),服务质量(quality of service,QoS)参数(QoS parameters)以及IP地址中的一项或多项。其中,所述QoS参数例如又可以包括5G QoS指示(5G QoS identifier,5QI)、地址解析协议(address resolution protocol,ARP)、确保流比特率(guaranteed flow bite rate,GFBR)、最大流比特率(maximum flow bite rate,MFBR)以及优先级(priority level)等。其中,第一业务类型信息可以是第一会话的上下文信息中包括的NSSAI、DNN或App-ID中的至少一项。
S102:第一网元获取第一信息,第一信息用于指示目的接入网网元支持的本地分流的业务类型信息,或者第一信息用于指示目的接入网网元支持进行本地分流的业务所属的业务类型对应的业务类型信息。其中,目的接入网网元支持进行本地分流的业务,也可描述为目的接入网网元支持的本地业务。本申请中,目的接入网网元支持的本地业务,可以由目的接入网网元进行本地路由,或者,所述业务的数据可以由目的接入网网元进行本地路由,或者,承载所述业务或所述业务的数据的会话可以由目的接入网网元进行本地路由。
本申请实施例中,第一信息可以显式或隐式指示目的接入网网元支持的本地分流的业务类型信息。示例性地,当第一信息隐式指示目的接入网网元支持的本地分流的业务类型信息时,第一信息可以包括如下至少一项业务类型标识信息:NSSAI、DNN或App-ID,采用隐式指示的方式,第一网元获取到第一信息后,可获知第一信息包括的业务类型标识信息所标识的业务即为目的接入网网元支持的本地分流的业务。示例性地,当第一信息显式指示目的接入网网元支持的本地分流的业务类型信息时,第一信息除包括所述业务类型标识信息之外,还可以包括本地支持指示(local support indication),通过本地支持指示指示所述目的接入网网元支持对所述业务类型标识信息所标识的业务进行本地分流。
一种可能的实现方式中,第一网元还可以预先存储终端的全部业务类型信息,第一信息还可以用于指示目的接入网网元不支持进行本地分流的业务类型信息,例如,第一信息可以用于指示目的接入网网元不支持进行本地分流的业务类型信息包括业务类型信息4、业务类型信息5以及业务类型信息6,第一网元预先存储有终端的全部业务类型信息包括业务类型信息1-业务类型信息6,则第一网元获取到所述第一信息后,可以根据第一信息以及存储的全部业务类型信息,获知目的接入网网元支持进行本地分流的业务类型信息包括业务类型信息1-业务类型信息3。
本申请实施例下文中,均以第一信息用于指示目的接入网网元支持的本地分流的业务类型信息为例进行说明。其中,第一信息可以是列表的形式。请参见表1、表2和表3,为本申请实施例提供的三种可能的第一信息示意图。表1中,以第一信息采用隐式指示的方式指示目的接入网网元支持的本地分流的业务类型信息,且,以第一信息指示目的接入网网元支持的本地分流的业务类型信息的数量为4为例示意,其中,业务类型信息1包括NSSAI11、DNN11以及App-ID11,业务类型信息2包括NSSAI22、DNN22以及App-ID22,业务类型信息3包括NSSAI33、DNN33以及App-ID33,业务类型信息4包括NSSAI44、DNN44以及App-ID44,其中,每种业务类型信息可指示一种业务类型,多种业务可以属于同一种业务类型,例如,业务1、业务2以及业务3所属的业务类型均可以为业务类型信息4所指示的业务类型。表2中,以第一信息采用隐式指示的方式指示目的接入网网元支持的本地分流的业务类型信息,且,以第一信息指示目的接入网网元支持的本地分流的业务类型信息的数量为4为例示意,其中,业务类型信息11包括NSSAI11和DNN11,业务类型信息22包括NSSAI22和DNN22,业务类型信息33包括NSSAI33和DNN33,业务类型信息44包括NSSAI44和DNN44,其中,每种业务类型信息可指示一种业务类型,多种业务可以属于同一种业务类型,例如,业务11、业务22以及业务33所属的业务类型均可以为业务类型信息33所指示的业务类型。表3中,以第一信息采用显示指示的方式指示目的接入网网元支持的本地分流的业务类型信息,且,以第一信息指示目的接入网网元支持的本地分流的业务类型信息的数量为4为例示意,其中,业务类型信息111包括NSSAI1、DNN1以及App-ID1,业务类型信息222包括NSSAI2、DNN2以及App-ID2,业务类型信息333包括NSSAI3、DNN3以及App-ID3,业务类型信息444包括NSSAI4、DNN4以及App-ID4,其中,每种业务类型信息可指示一种业务类型,多种业务可以属于同一种业务类型,例如,业务111、业务222以及业务333所属的业务类型均可以为业务类型信息111所指示的业务类型。
表1
NSSAI11 DNN11 App-ID11
NSSAI22 DNN22 App-ID22
NSSAI33 DNN33 App-ID33
NSSAI44 DNN44 App-ID44
表2
NSSAI11 DNN11
NSSAI22 DNN22
NSSAI33 DNN33
NSSAI44 DNN44
表3
Figure PCTCN2020109306-appb-000001
需要说明的是,本申请实施例中对S101和S102执行的先后顺序不做限定。例如,可以先执行S101,后执行S102,也可以先执行S102,后执行S101,当然也可以同时执行 S101和S102。
S103:若第一网元根据第一信息和第一会话的会话信息中包括的第一业务类型信息,确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,则第一网元确定由目的接入网网元处理第一会话。其中,目的接入网网元处理第一会话可以包括:目的接入网网元更新第一会话的会话信息。更新第一会话的会话信息可以包括将本地存储的一些会话相关信息增加至所述会话信息,或者,使用本地存储的一些会话相关信息更新所述会话信息中包括的信息,或者,删除所述会话信息中包括的一些信息。
一种可能的实现方式中,若第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息匹配,则第一网元确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由目的接入网网元处理第一会话。本申请中,第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息匹配,可以理解为,第一信息指示的目的接入网网元支持的本地分流的业务类型信息包括第一业务类型信息,也可以理解为,若第一信息指示的目的接入网网元支持的本地分流的业务类型信息为多项,则第一业务类型信息与第一信息指示的某一项业务类型信息相同或匹配,也可以理解为,第一业务类型信息包含的内容与第一信息指示的目的接入网网元支持的本地分流的至少一个业务类型信息包含的内容完全相同,也可以理解为,第一业务类型信息为目的接入网网元支持的本地分流的业务类型信息,也可以理解为,第一业务类型信息指示的业务类型对应的业务为目的接入网网元支持的本地分流的业务。例如,当业务类型信息包括NSSAI、DNN以及App-ID时,第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息匹配,是指第一业务类型信息包括的NSSAI、DNN以及App-ID,与第一信息指示的一项业务类型信息包括的NSSAI、DNN以及App-ID完全相同。下面以三个实例对该种实现进行详细描述。
一个可能的实例中,第一信息为表1所示的第一信息,第一业务类型信息包括NSSAI44、DNN44以及App-ID44,第一网元根据第一业务类型信息以及表1所示的第一信息,确定第一业务类型信息包括的NSSAI44、DNN44以及App-ID44,分别与表1所示的业务类型信息4包括的NSSAI44、DNN44以及App-ID44匹配,则第一网元确定目的接入网网元支持对第一业务类型信息对应的业务(例如业务1、业务2以及业务3)进行本地分流,进而第一网元确定由目的接入网网元处理第一会话。目的接入网网元处理第一会话可以包括更新第一会话的会话信息。如何更新详见下文中描述。
另一个可能的实例中,第一信息为表2所示的第一信息,第一业务类型信息包括NSSAI33和DNN33,第一网元根据第一业务类型信息以及表2所示的第一信息,确定第一业务类型信息包括的NSSAI33和DNN33,分别与表2所示的业务类型信息33包括NSSAI33和DNN33匹配,则第一网元确定目的接入网网元支持对第一业务类型信息对应的业务(例如业务11、业务22以及业务33)进行本地分流,进而第一网元确定由目的接入网网元处理第一会话。目的接入网网元处理第一会话可以包括更新第一会话的会话信息。如何更新详见下文中描述。
又一个可能的实例中,第一信息为表3所示的第一信息,第一业务类型信息包括NSSAI1、DNN1以及App-ID1,第一网元根据第一业务类型信息以及表3所示的第一信息,确定第一业务类型信息包括的NSSAI1、DNN1以及App-ID1,分别与表3所示的业务类型信息111包括NSSAI1、DNN1以及App-ID1匹配,则第一网元确定目的接入网网元支持 对第一业务类型信息对应的业务(例如业务111、业务222以及业务333)进行本地分流,进而第一网元确定由目的接入网网元处理第一会话。目的接入网网元处理第一会话可以包括更新第一会话的会话信息。如何更新详见下文中描述。
采用上述方法,第一网元在确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流的情况下,才确定由目的接入网网元处理第一会话,可以理解为将第一会话切换至目的接入网网元,这样,由目的接入网网元处理第一会话不仅可以降低业务数据的传输时延,还可以分流核心网网元的数据以减小网络压力。
S104:若第一网元根据第一信息和第一会话的会话信息包括的第一业务类型信息,确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,则第一网元确定由核心网网元处理第一会话。其中,核心网网元处理第一会话可以包括:核心网网元更新第一会话的会话信息。更新第一会话的会话信息可以包括将本地存储的一些会话相关信息增加至所述会话信息,或者,使用本地存储的一些会话相关信息更新所述会话信息中包括的信息,或者,删除所述会话信息中包括的一些信息。需要说明的是,本申请实施例中,S103和S104可以择一执行,也可以并行执行。例如,以终端上的两个会话为例,分别为会话1和会话2,会话1的会话信息包括业务类型信息a,会话2的会话信息包括业务类型信息b,若目的接入网网元支持对业务类型信息a和业务类型信息b对应的业务进行本地分流,则终端在从源接入网网元切换至目的接入网网元时执行S103;若目的接入网网元支持对业务类型信息a对应的业务进行本地分流,且,目的接入网网元不支持对业务类型信息b对应的业务进行本地分流,则终端在从源接入网网元切换至目的接入网网元时可以并行执行S103和S104;若目的接入网网元不支持对业务类型信息a和业务类型信息b对应的业务进行本地分流,则终端在从源接入网网元切换至目的接入网网元时执行S104。
一种可能的实现方式中,若第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,第一网元确定由核心网网元处理第一会话。本申请中,第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息不匹配,可以理解为,第一信息指示的目的接入网网元支持的本地分流的业务类型信息不包括第一业务类型信息,也可以理解为,若第一信息指示的目的接入网网元支持的本地分流的业务类型信息为多项,则第一业务类型信息与第一信息指示的任一项业务类型信息都不相同或都不匹配,也可以理解为,第一业务类型信息包含的内容与第一信息指示的目的接入网网元支持的本地分流的任一业务类型信息包含的内容不完全相同,也可以理解为,第一业务类型信息不是目的接入网网元支持的本地分流的业务类型信息,也可以理解为,第一业务类型信息指示的业务类型对应的业务不是目的接入网网元支持的本地分流的业务。下面以三个实例对该种实现进行详细描述。
一个可能的实例中,第一信息为表1所示的第一信息,第一业务类型信息包括NSSAI77、DNN77以及App-ID77,第一网元根据第一业务类型信息以及表1所示的第一信息,确定第一业务类型信息包括的NSSAI77、DNN77以及App-ID77与表1所示的第一信息包括的信息不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,进而第一网元确定由核心网网元处理第一会话。核心网网元处理第一会话可以包括更新第一会话的会话信息。如何更新详见下文中描述。
另一个可能的实例中,第一信息为表2所示的第一信息,第一业务类型信息包括 NSSAI88和DNN88,第一网元根据第一业务类型信息以及表2所示的第一信息,确定第一业务类型信息包括的NSSAI88和DNN88与表2所示的第一信息包括的信息不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,进而第一网元确定由核心网网元处理第一会话。核心网网元处理第一会话可以包括更新第一会话的会话信息。如何更新详见下文中描述。
又一个可能的实例中,第一信息为表3所示的第一信息,第一业务类型信息包括NSSAI6、DNN6以及App-ID6,第一网元根据第一业务类型信息以及表3所示的第一信息,确定第一业务类型信息包括的NSSAI6、DNN6以及App-ID6与表3所示的第一信息包括的信息不匹配,则第一网元确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,进而第一网元确定由核心网网元处理第一会话。核心网网元处理第一会话可以包括更新第一会话的会话信息。如何更新详见下文中描述。
采用上述方法,第一网元在确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流的情况下,确定由核心网网元处理第一会话,可以理解为将第一会话切换至核心网网元,可避免在目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流的情况下而将第一会话切换至目的接入网网元,可避免会话切换出错,提升会话的切换成功率,保证会话承载的通信数据的业务连续性。
本申请实施例中,针对不同的应用场景,第一网元可以为不同的网元,针对不同的网元可以采用不同的方法获取第一信息以及终端的第一会话的会话信息,以及针对不同的网元,在确定由目的接入网网元或核心网网元处理第一会话之后可执行不同的操作。本申请下文中将针对不同的应用场景,分别以第一网元为目的接入网网元、为终端服务的核心网网元或源接入网网元为例,对本申请图2所示的方法进行详细说明。
应用场景一,终端从源接入网网元到目的接入网网元的切换场景下,图2所示的第一网元为目的接入网网元,图2所示的方法中的第一会话为终端切换前由源接入网网元管控的会话。其中,由源接入网网元管控的会话也可以理解为从源接入网网元本地路由的会话,也可以理解为所述会话的会话信息包括的业务类型信息对应的业务为源接入网网元支持的本地分流的业务或本地业务。
基于场景一,目的接入网网元可采用如下方式获取终端的第一会话的会话信息:目的接入网网元接收来自源接入网网元或核心网网元的所述会话信息。需要说明的是,此时目的接入网网元获取到的第一会话的会话信息除包括第一业务类型信息之外,还可包括第一会话的上下文信息中除第一业务类型信息之外的信息,例如第一会话的会话信息还可包括终端标识,第一会话标识,QoS参数以及IP地址中的一项或多项。
基于场景一,目的接入网网元可采用但不限于如下方式获取第一信息:
方式1:目的接入网网元从本地获取预先配置的所述第一信息。可选的,所述第一信息可以是核心网网元为目的接入网网元预先配置的或为预先定义的。
方式2:目的接入网网元接收来自核心网网元的第一信息。
基于场景一,第一种可能的实现方式中,在步骤S103中,确定由目的接入网网元处理第一会话之后,目的接入网网元可以采用如下方式处理第一会话:更新第一会话的会话信息。示例性地,更新第一会话的会话信息可以包括为第一会话分配新IP地址,根据新IP地址更新第一会话的会话信息,并通知源接入网网元或终端或核心网网元第一会话的新IP地址。以使得及时在各个网元上同步为第一会话分配的新IP地址,后续可以使用新IP地 址寻址第一会话。例如,若第一会话的会话信息中包括第一会话的老IP地址,则目的接入网网元可以采用所述新IP地址更新第一会话的老IP地址。又例如,若第一会话的会话信息中不包括第一会话的老IP地址,则目的接入网网元可以将所述新IP地址增加至第一会话的会话信息。其中,目的接入网网元可通过用户面或者信令面发送所述新IP地址,详见下文中具体实例。需要说明的是,场景一下更新IP地址的方式也可应用在后续的场景中。
基于场景一,在第一种可能的实现方式中,若目的接入网网元为第一会话分配了新IP地址,则目的接入网网元还可以向源接入网网元发送第一指示,该第一指示用于指示已为第一会话分配新IP地址。这样,源接入网网元在接收到第一指示后,可以获知目的接入网网元为第一会话分配了新IP地址,进而可据此向终端发送第一会话的老IP地址的有效时间,并可在老IP地址的有效时间之后释放该老IP地址。
基于场景一,在第一种可能的实现方式中,若目的接入网网元获取到的第一会话的会话信息中包括第一会话的IP地址,在IP地址不变的情况下,确定由目的接入网网元处理第一会话之后,目的接入网网元还可以对第一会话的IP地址进行ARP路由更新以重用该IP地址,这样,后续可以继续使用老IP地址寻址第一会话。示例性地,目的接入网网元可以根据协议,将所述IP地址发给周边网元,例如周边网元可以包括周边的接入网网元、周边的核心网网元、路由器节点等。这样,后续周边网元还可以根据该IP地址寻址第一会话。
采用上述方法,将第一会话由源接入网网元切换至目的接入网网元,这样,由目的接入网网元处理第一会话可达到与核心网网元分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
基于场景一,第二种可能的实现方式中,在步骤S104中,目的接入网网元确定由核心网网元处理第一会话之后,还可以向所述核心网网元发送第一会话的会话信息以及第一会话的接入网隧道信息,以使得核心网网元可以根据第一会话的会话信息以及第一会话的接入网隧道信息,为第一会话建立目的接入网网元与核心网网元之间的数据传输通道,从而完成第一会话的切换。其中,接入网隧道信息可以是目的接入网网元为终端分配的隧道(GPRS tunneling protocol-U,GTP-U)协议的隧道端点标识(fully qualified tunnel endpoint identifier,F-TEID)。进一步的,目的接入网网元向核心网网元发送所述会话信息以及所述接入网隧道信息之后,目的接入网网元还可以接收来自所述核心网网元的第一会话的核心网隧道信息,以使得目的接入网网元可根据第一会话的核心网隧道信息,为第一会话建立终端、接入网网元以及核心网网元之间的数据传输通道,从而完成第一会话的切换。其中,核心网隧道信息可以为核心网网元为终端分配的GTP-U协议的F-TEID。
采用上述方法,在确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流的情况下,将第一会话由源接入网网元切换至核心网网元,可避免将会话切换至不能处理该会话的目的接入网网元时切换出错的问题,可提升切换成功率。
应用场景二:终端从源接入网网元到目的接入网网元的切换场景下,图2所示的第一网元是指为终端提供服务的核心网网元,图2所示的方法中的第一会话为终端切换前由源接入网网元管控的会话。其中,由源接入网网元管控的会话的含义可参见上文场景一中的描述。
基于场景二,核心网网元可以但不限于采用如下方式获取所述终端的第一会话的会话信息:核心网网元接收来自源接入网网元的所述会话信息。可选的,核心网网元从源接入 网网元接收的所述会话信息,可以是源接入网网元在执行图2所示的方法之后向核心网网元发送的。需要说明的是,此时核心网网元获取到的第一会话的会话信息除包括第一业务类型信息之外,还可包括第一会话的上下文信息中除第一业务类型信息之外的信息,除第一业务类型信息之外的信息例如可包括终端标识,第一会话标识,QoS参数以及IP地址中的一项或多项。其中,场景二中以下第一会话的会话信息均是指所述包括更多内容的会话信息。
基于场景二,第一种可能的实现方式中,在步骤S103中,核心网网元确定由目的接入网网元处理第一会话之后,还可以向目的接入网网元发送第一会话的会话信息。目的接入网网元接收到所述会话信息后处理第一会话,如何处理可参见场景一中相关描述。采用该方法,将第一会话切换至目的接入网网元,这样,由目的接入网网元处理第一会话不仅可以降低业务数据的传输时延,还可以分流核心网网元的数据以减小网络压力。
基于场景二,第二种可能的实现方式中,在步骤S104中,核心网网元确定由自身处理第一会话之后,可采用如下方式处理第一会话:更新第一会话的会话信息。示例性地,更新第一会话的会话信息可以包括为第一会话分配新IP地址,根据新IP地址更新第一会话的会话信息,并通知源接入网网元或终端第一会话的新IP地址。以使得及时在各个网元上同步为第一会话分配的新IP地址,后续可以使用新IP地址寻址第一会话。例如,若第一会话的会话信息中包括第一会话的老IP地址,则核心网网元可以采用所述新IP地址更新第一会话的老IP地址。又例如,若第一会话的会话信息中不包括第一会话的老IP地址,则核心网网元可以将所述新IP地址增加至第一会话的会话信息。其中,核心网网元可通过用户面或者信令面发送所述新IP地址,详见下文中具体实例。需要说明的是,场景二下更新IP地址的方式也可应用在后续的场景中。
基于场景二,在第二种可能的实现方式中,若核心网网元为第一会话分配了新IP地址,则核心网网元还可以向源接入网网元发送第一指示,该第一指示用于指示已为第一会话分配新IP地址。这样,源接入网网元在接收到第一指示后,可以获知核心网网元为第一会话分配了新IP地址,进而可据此向终端发送第一会话的老IP地址的有效时间,并可在老IP地址的有效时间之后释放该老IP地址。
基于场景二,在第二种可能的实现方式中,若核心网网元获取到的第一会话的会话信息中包括第一会话的IP地址,在IP地址不变的情况下,确定由核心网网元处理第一会话之后,核心网网元还可以对第一会话的IP地址进行ARP路由更新以重用该IP地址。这样,后续可以继续使用老IP地址寻址第一会话。核心网网元如何对第一会话的IP地址进行ARP路由更新可参见场景一中目的接入网网元对第一会话的IP地址进行ARP路由更新的方法。
基于场景二,第二种可能的实现方式中,核心网网元确定由自身处理第一会话之后,还可以向目的接入网网元发送第一会话的核心网隧道信息,以及第一会话的QoS参数,以使得目的接入网网元可根据第一会话的核心网隧道信息以及QoS参数为第一会话建立终端、接入网网元以及核心网网元之间的数据传输通道。其中QoS参数包括的内容可参见上文中描述。进一步的,核心网网元向目的接入网网元发送第一会话的核心网隧道信息以及QoS参数后,核心网网元还可以接收来自目的接入网网元的第一会话的接入网隧道信息,以使得核心网网元根据第一会话的接入网隧道信息为第一会话建立目的接入网网元和核心网网元之间的数据传输通道,从而完成第一会话的切换。
应用场景三:终端从源接入网网元到目的接入网网元的切换场景下,图2所示的第一 网元为源接入网网元,图2所示的方法中的会话为终端切换前由源接入网网元管控的会话。其中,由源接入网网元管控的会话的含义可参见上文场景一中的描述。
基于场景三,第一种可能的实现方式中,在步骤S103中,源接入网网元确定由目的接入网网元处理第一会话之后,还可以向目的接入网网元发送第一会话的会话信息。目的接入网网元接收到所述会话信息后处理第一会话,如何处理可参见场景一中相关描述,此处不再赘述。需要说明的是,此时源接入网网元向目的接入网网元发送的所述会话信息除包括第一业务类型信息之外,还可包括第一会话的上下文信息中除第一业务类型信息之外的信息,除第一业务类型信息之外的信息例如可包括终端标识,第一会话标识,QoS参数以及IP地址中的一项或多项。场景三中以下设计中的第一会话的会话信息均是指该含义。
采用上述方法,将第一会话切换至目的接入网网元,这样,由目的接入网网元处理第一会话不仅可以降低业务数据的传输时延,还可以分流核心网网元的数据以减小网络压力。
基于场景三,第二种可能的实现方式中,在步骤S104中,源接入网网元确定由核心网网元处理第一会话之后,还可以向所述核心网网元发送第一会话的会话信息。核心网网元接收到所述会话信息后处理第一会话,如何处理可参见场景二中相关描述,此处不再赘述。
应用场景四:终端从源接入网网元到目的接入网网元的切换场景下,图2所示的第一网元是指为终端服务的核心网网元,图2所示的方法中的会话为终端切换前由所述核心网网元管控的会话。其中,由所述核心网网元管控的会话也可以理解为从所述核心网网元路由的会话,也可以理解为所述会话对应的第一业务是源接入网网元不支持本地分流的业务或所述第一业务是所述核心网网元支持的业务。
基于场景四,第一种可能的实现方式中,在步骤S103中,核心网网元确定由目的接入网网元处理第一会话之后,还可以向目的接入网网元发送第一会话的会话信息。目的接入网网元接收到所述会话信息后处理第一会话,如何处理可参见场景一中相关描述,此处不再赘述。需要说明的是,此时核心网网元向目的接入网网元发送的所述会话信息除包括第一业务类型信息之外,还可包括第一会话的上下文信息中除第一业务类型信息之外的信息,所述除第一业务类型信息之外的信息例如可包括终端标识,第一会话标识,QoS参数以及IP地址中的一项或多项。场景四中以下设计中的第一会话的会话信息均是指该含义。
在场景四下,针对不同的子场景,核心网网元可以采用不同的方法向目的接入网网元发送所述会话信息。
一种子场景下,终端已经成功接入目的接入网网元,在该场景下,核心网网元向目的接入网网元发送所述会话信息之前,还可以接收来自目的接入网网元的路径转换请求,通过路径转换请求确认消息向目的接入网网元发送所述会话信息,可以理解为在路径转换请求确认消息中包括或携带所述会话信息。可选的,在该场景下核心网网元还可在路径转换请求确认消息中携带其它会话的核心网隧道信息,所述其它会话对应的业务类型信息对应的业务为所述目的接入网网元不支持进行本地分流的业务。
另一种子场景下,源接入网网元决定将终端切换至目的接入网网元,但终端还未接入目的接入网网元,在该场景下,核心网网元向目的接入网网元发送所述会话信息之前,还可以接收来自源接入网网元的切换要求消息,所述切换要求消息中包括目的接入网网元的标识,所述切换要求消息用于请求将终端切换至目的接入网网元,核心网网元可通过切换请求消息向目的接入网网元发送所述会话信息。可选的,在该场景下核心网网元还可在切 换请求消息中携带其它会话的核心网隧道信息,所述其它会话对应的业务类型信息对应的业务为所述目的接入网网元不支持进行本地分流的业务。
基于场景二至场景四,第一网元可以但不限于采用如下方式获取第一信息:
方式a:第一网元从本地获取预先配置的所述第一信息。可选的,所述第一信息可以是核心网网元预先为第一网元配置的,也可以预定义的。
方式b:第一网元接收来自目的接入网网元的所述第一信息。
基于场景二至场景四,在步骤S103中,第一种可能的实现方式中,若目的接入网网元为第一会话分配了新IP地址,则第一网元还可以接收来自目的接入网网元的第一会话的新IP地址,并向终端发送第一会话的新IP地址。以使得及时同步终端和目的接入网网元中为第一会话分配的新IP地址。
基于场景二至场景四,在第一种可能的实现方式中,第一网元还可以接收来自目的接入网网元的第一指示,第一指示用于指示已为第一会话分配新IP地址,第一网元根据第一指示向终端发送第一会话的老IP地址的有效时间。
基于场景二至场景四,在步骤S104中,第二种可能的实现方式中,若核心网网元为第一会话分配了新IP地址,则第一网元还可以接收来自所述核心网网元的第一会话的新IP地址,并向终端发送第一会话的新IP地址。以使得及时同步终端和核心网网元中为第一会话分配的新IP地址。
基于场景二至场景四,在第二种可能的实现方式中,第一网元还可以接收来自核心网网元的第一指示,第一指示用于指示已为第一会话分配新IP地址,第一网元根据第一指示向终端发送第一会话的老IP地址的有效时间。
需要说明的是,本申请实施例中上述各种场景下的方法可以单独使用,也可以结合使用,本申请对此不做限定。本申请上文中已经对单独使用各种场景下的方法进行了说明,下面以几个实例对结合使用的情况进行说明。例如,以上述应用场景三和应用场景一下执行的方法结合使用为例说明,首先,在应用场景三中,终端从源接入网网元到目的接入网网元的切换场景下,源接入网网元可以先执行图2所示的方法,待执行完S103后,源接入网网元确定由目的接入网网元处理第一会话,进而可将第一会话的会话信息发送给目的接入网网元,目的接入网网元接收到所述会话信息后,可进一步执行场景一中的方法,例如,目的接入网网元接收到所述会话信息后可以再次执行图2所示的方法,这样,相当于S103被执行两次,通过两次确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,可提升准确性,进而可更有效的处理或切换第一会话。又例如,以上述应用场景四和应用场景一下执行的方法结合使用为例说明,首先,在应用场景四中,终端从源接入网网元到目的接入网网元的切换场景下,为终端服务的核心网网元可以先执行图2所示的方法,待执行完S103后,核心网网元确定由目的接入网网元处理第一会话,进而可将第一会话的会话信息发送给目的接入网网元,目的接入网网元接收到所述会话信息后,可进一步执行场景一中的方法,例如,目的接入网网元接收到所述会话信息后可以再次执行图2所示的方法,这样,相当于S103被执行两次,通过两次确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,可提升准确性,进而可更有效的处理或切换第一会话。下文具体实例中会详细说明各种场景下的方法结合使用的情况。
下面以图1b所示的网络架构为例,以几个实例对本申请实施例提供的通信方法进行详细说明。基于图1b所示的架构,本申请实施例中核心网网元可以为图1b中PNC,终端 可以为图1b中的UE,源接入网网元可以为图1b中PNA1或PNA2,目的接入网网元可以为图1b中PNA1或PNA2,下文中以UE的源接入网网元为PNA1、目的接入网网元为PNA2以及会话为PDU会话为例说明。
参阅图3所示,为本申请实施例提供的另一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图3所示的方法中PNA1相当于图2中的第一网元,该方法包括以下步骤:
步骤101a:在PNA1与PNA2之间的Xn接口连接建立过程中,PNA1向PNA2发送Xn建立请求(Xn setup request)消息。可选的,该Xn建立请求消息中包括信息1,信息1用于指示PNA1支持的本地分流的业务类型信息。信息1包含的内容可参见上文中第一信息包含的内容,图3中以信息1包括本地支持指示、NSSAIs、DNNs以及App-IDs为例示意,其中,本申请中NSSAIs表示NSSAI的复数,可以表示多类NSSAI,其它涉及复数形式的表示与之类似,例如,DNNs表示多类DNN,又例如,App-IDs表示多类App-ID。可选的,PNA1的信息1可以是PNC通过PNA配置消息为其配置的,参见图3中步骤100a,也可以是预先定义的。
步骤101b:在PNA1与PNA2之间的Xn接口连接建立过程中,PNA2向PNA1发送Xn建立响应(Xn setup resporse)消息,该消息中包括信息2,信息2的含义与上文中第一信息的含义相同,用于指示PNA2支持的本地分流的业务类型信息,信息2包含的内容可参见上文中第一信息包含的内容,图3中以信息2包括本地支持指示、NSSAIs、DNNs以及App-IDs为例示意。可选的,PNA2的信息2可以是PNC通过PNA配置消息为其配置的,参见图3中步骤100b,也可以是预先定义的。
步骤102:PNA1确定将UE切换至PNA2。
步骤103a:PNA1获取UE的第一PDU会话的会话信息,所述会话信息可以是第一PDU会话的上下文信息的全集或子集,所述会话信息可包括第一业务类型信息,第一PDU会话为UE切换前由PNA1管控的会话,即第一PDU会话为UE切换前从PNA1本地路由的会话。本申请中,PNA1获取信息2和获取第一PDU会话的会话信息的先后顺序不做限定。
步骤103b:PNA1根据接收到的信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,进而确定执行Xn切换或N2切换。若PNA1根据信息2和所述会话信息,确定PNA2支持对第一业务类型信息对应的业务进行本地分流,则PNA1确定由PNA2处理第一PDU会话,即执行Xn切换,对应图3中的方法一,参见步骤104a-步骤108a。反之,若PNA1根据信息2和所述会话信息,确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,则PNA1确定由PNC处理第一PDU会话,即执行N2切换,对应图3中的方法二,参见步骤104b-步骤1011b。需要说明的是,该实例中方法一和方法二可以择一执行,也可以并行执行。例如,以UE包括两个PDU会话为例,分别为PDU会话1和PDU会话2,PDU会话1的会话信息包括业务类型信息1,PDU会话2的会话信息包括业务类型信息2,若PNA2支持对业务类型信息1和业务类型信息2对应的业务进行本地分流,则UE在从PNA1切换至PNA2时执行方法一;或者,若PNA2支持对业务类型信息1对应的业务进行本地分流,且,PNA2不支持对业务类型信息2对应的业务进行本地分流,则PNA1可并行执行方法一和方法二;或者,若PNA2不支持对业务类型信息1和业务类型信息2对应的业务进行本地分流,则PNA1执行方法 二。
方法一如下:
步骤104a:当PNA1确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNA1向PNA2发送切换请求(Xn HO request),该切换请求中包括第一PDU会话的会话信息,该步骤中第一PDU会话的会话信息还可以包括第一PDU会话的上下文信息中除第一业务类型信息之外的信息,例如还可包括UE标识,第一PDU会话标识,QoS参数以及IP地址中的一项或多项等。
步骤105a:PNA2接收到第一PDU会话的会话信息后,可以更新所述会话信息。PNA2还可以对第一PDU会话的IP地址进行ARP路由更新以重用该IP地址。PNA2更新所述会话信息例如可以删除所述会话信息中的部分信息,或者向所述会话信息中新增与PDU会话相关的参数等,详见上文中描述。
可选的,在执行步骤105a之前,PNA2还可以根据预先获取的信息2以及接收到的第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,在确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNA2执行步骤105a,否则,在确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNA2可以将第一PDU会话的会话信息发送至PNC,PNC的处理流程详见下文中实例。采用该方法,可以重复确认PNA2是否支持对第一业务类型信息对应的业务进行本地分流,可提升准确性,进而可更有效的处理或切换第一PDU会话。
步骤106a:PNA2向PNA1发送切换响应(Xn HO response)。
步骤107a:PNA1向UE发送无线资源控制(radio resource control,RRC)连接重配置消息(RRC connection reconfiguration)。
步骤108a:执行UE切换流程的其它步骤。
采用上述方法一,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
方法二如下:
步骤104b:当PNA1确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNA1向PNC发送切换要求消息(N2 HO required),该切换要求消息中包括第一PDU会话的会话信息,该步骤中第一PDU会话的会话信息还可以包括第一PDU会话的上下文信息中除第一业务类型信息之外的信息,例如还可包括UE标识,第一PDU会话标识,QoS参数以及IP地址中的一项或多项等。此外,在该切换要求消息中还可包括PNA2的标识。
步骤105b:PNC接收到第一PDU会话的会话信息后,可以更新所述会话信息,如何更新详见上文描述。PNC还可以对第一PDU会话的IP地址进行ARP路由更新以重用该IP地址,并可为第一PDU会话分配核心网隧道信息(CN tunnel info),核心网隧道信息包含的内容详见上文,例如,核心网隧道信息可以包括第一PDU会话的QoS参数。
步骤106b:PNC向PNA2发送切换请求(N2 HO request),在切换请求中包括为第一PDU会话分配的核心网隧道信息。
可选的,在执行步骤105b之前,PNC还可以根据预先获取的信息2以及接收到的第 一PDU会话的会话信息和PNA2的标识,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,在确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNC执行步骤105b,否则,在确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNC可以将第一PDU会话的会话信息发送至PNA2,例如PNC可以通过步骤106b中的切换请求向PNA2发送第一PDU会话的会话信息,PNA2的处理流程详见上文中描述。例如,以UE包括两个PDU会话为例,分别为PDU会话a和PDU会话b,PDU会话a的会话信息包括业务类型信息a,PDU会话b的会话信息包括业务类型信息b,若PNC判断PNA2不支持对业务类型信息a对应的业务进行本地分流,且,判断PNA2支持对业务类型信息b对应的业务进行本地分流,则PNC可以为PDU会话a分配核心网隧道信息,并可在步骤106b中PNC向PNA2发送的切换请求中携带为PDU会话a分配的核心网隧道信息以及PDU会话b的会话信息。采用该方法,可以重复确认PNA2是否支持对第一业务类型信息对应的业务进行本地分流,可提升准确性,进而可更有效的处理或切换第一PDU会话。
步骤107b:PNA2为第一PDU会话分配接入网隧道信息(AN tunnel info),接入网隧道信息包含的内容详见上文。
步骤108b:PNA2向PNC发送切换请求应答消息,在切换请求应答消息中包括所述接入网隧道信息。
步骤109b:PNC向PNA1发送切换命令(handover command)。
步骤1010b:PNA1向UE发送RRC连接重配置消息。
步骤1011b:执行UE切换流程的其它步骤。
采用上述方法二,在UE从PNA1向PNA2切换的场景下,在确定PNA2不支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。
参阅图4所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图4所示的方法中PNA1相当于图2中的第一网元,该方法包括以下步骤:
其中,图4中步骤200a-步骤203a与图3中步骤100a-步骤103a相同,步骤200a-步骤203a的相关描述可参见步骤100a-步骤103a中描述,此处不再赘述。
步骤203b:PNA1根据信息2以及第一PDU会话的会话信息,确定PNA2支持对第一业务类型信息对应的业务进行本地分流,进而确定执行Xn切换。
步骤204与步骤104a相同,步骤204的相关描述可参见步骤104a中描述,此处不再赘述。
步骤205:PNA2接收到第一PDU会话的会话信息后,可以更新所述会话信息。示例性地,更新所述会话信息可包括更新IP地址,例如,PNA2可以为第一PDU会话分配新IP地址,根据新IP地址更新所述会话信息。例如,若所述会话信息中包括老IP地址,则可以使用所述新IP地址更新老IP地址,若所述会话信息中不包括老IP地址,则可以将所述新IP地址更新至所述会话信息。
可选的,在执行步骤205之前,PNA2还可以根据预先获取的信息2以及接收到的第 一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,在确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNA2执行步骤205,否则,在确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNA2可以将第一PDU会话的会话信息发送至PNC,PNC的处理流程详见上文中描述。
步骤206:PNA2向PNA1发送切换响应(Xn HO response)。可选的,所述Xn HO response中可以携带第一指示,第一指示用于指示已为第一PDU会话分配新IP地址。以使得PNA1可以获知PNA2为第一PDU会话分配了新IP地址,进而可据此通知UE第一PDU会话的老IP地址的有效时间,并可在老IP地址失效后及时释放老IP地址。
步骤207:PNA1向UE发送RRC连接重配置消息。
步骤208:执行UE切换流程的其它步骤。例如,所述其它步骤可包括UE向PNA2发送RRC连接重配置完成消息(RRC connection reconfiguration complete)。在该实例中,执行完UE切换流程的其它步骤后,UE接入PNA2。
步骤209a:PNA1向UE发送第一PDU会话的老IP地址的有效时间。例如,PNA1可以通过PNA2向UE发送路由器通告(Router Advertisement)1以通知UE第一PDU会话的老IP地址的有效时间。例如,PNA1可以向PNA2发送Router Advertisement1,Router Advertisement1中包括第一PDU会话的老IP地址,以及第一PDU会话的老IP地址的有效时间,PNA2接收到Router Advertisement1后,向UE转发Router Advertisement1。需要说明的是,本申请中第一PDU会话的老IP地址是指UE切换前,第一PDU会话的IP地址。
步骤209b:同时,PNA2向UE发送Router Advertisement2,Router Advertisement2中包括第一PDU会话的新IP地址,以通知UE第一PDU会话的新IP地址。以使得UE和PNA2之间及时同步新IP地址。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。进一步的,PNA2可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图5所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图5所示的方法中PNA1相当于图2中的第一网元,该方法包括以下步骤:
其中,图5中步骤300a-步骤303a与图3中步骤100a-步骤103a相同,300a-步骤303a的相关描述可参见步骤100a-步骤103a中描述,此处不再赘述;图5中步骤303b与图4中步骤203b相同,步骤303b的相关描述可参见步骤203b中的描述,此处不再赘述;图5中步骤304与图3中步骤104a相同,步骤304的相关描述可参见步骤104a中描述,此处不再赘述;图5中步骤305与图4中步骤205相同,步骤305的相关描述可参见步骤205中描述,此处不再赘述。
步骤306:PNA2向PNA1发送切换响应(Xn HO response),Xn HO response中包括第一PDU会话切换后为其分配的新IP地址。
步骤307:PNA1向UE发送RRC连接重配置消息,RRC连接重配置消息中包括所述新IP地址。
步骤308:执行UE切换流程的其它步骤。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。进一步的,PNA2可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图6所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图6所示的方法中PNA1相当于图2中的第一网元,该方法包括以下步骤:
其中,图6中步骤400a-步骤403a与图3中步骤100a-步骤103a相同,步骤400a-步骤403a的相关描述可参见步骤100a-步骤103a中描述,此处不再赘述。
步骤403b:PNA1根据信息2以及第一PDU会话的会话信息,确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,确定由PNC处理第一PDU会话,执行N2切换。
其中,步骤404与步骤104b相同,步骤404的相关描述可参见步骤104b中描述,此处不再赘述。
步骤405:PNC接收到第一PDU会话的会话信息后,可以更新所述会话信息。示例性地,更新所述会话信息可包括更新IP地址,例如,PNC可以为第一PDU会话分配新IP地址,根据新IP地址更新所述会话信息。例如,若所述会话信息中包括老IP地址,则可以使用所述新IP地址更新老IP地址,若所述会话信息中不包括老IP地址,则可以将所述新IP地址更新至所述会话信息。PNC还可以为第一PDU会话分配核心网隧道信息(CN tunnel info),核心网隧道信息包括的内容可参见上文中描述,例如,核心网隧道信息可以包括第一PDU会话的QoS参数。
步骤406-步骤408与步骤106b-步骤108b相同,步骤406-步骤408的相关描述可参见步骤106b-步骤108b中描述,此处不再赘述。
可选的,在执行步骤405之前,PNC还可以根据预先获取的信息2以及接收到的第一PDU会话的会话信息和PNA2的标识,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,在确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNC执行步骤405,否则,在确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNC可以将第一PDU会话的会话信息发送至PNA2,例如PNC可以通过步骤406中的切换请求向PNA2发送第一PDU会话的会话信息,PNA2的处理流程详见上文中描述。例如,以UE包括两个PDU会话为例,分别为PDU会话a和PDU会话b,PDU会话a的会话信息包括业务类型信息a,PDU会话b的会话信息包括业务类型信息b,若PNC判断PNA2不支持对业务类型信息a对应的业务进行本地分流,且,判断PNA2支持对业务类型信息b对应的业务进行本地分流,则PNC可在步骤406中PNC向PNA2发送的切换请求中携带为PDU会话a分配的核心网隧道信息以及PDU会话b的会话信息。采用该方法,可以重复确认PNA2是否支持对第一业务类型信息对应的业务进行本地分流,可提升准确性,进而可更有效的处理或切换第一PDU会话。
步骤409:PNC向PNA1发送切换命令(handover command)。可选的,所述切换命令 中携带第一指示,所述第一指示用于指示已为第一PDU会话分配新IP地址。以使得PNA1可以获知PNA2为第一PDU会话分配了新IP地址,进而可据此通知UE第一PDU会话的老IP地址的有效时间,并可在老IP地址失效后及时释放老IP地址。
步骤4010:PNA1向UE发送RRC连接重配置消息。
步骤4011:执行UE切换流程的其它步骤。执行完UE切换流程的其它步骤后,UE接入PNA2。
步骤4012a:PNA1通过PNC和PNA2向UE发送Router Advertisement1以通知UE第一PDU会话的老IP地址的有效时间。具体的,PNA1可以向PNC发送Router Advertisement1,Router Advertisement1中包括第一PDU会话的老IP地址,以及第一PDU会话的老IP地址的有效时间,PNC接收到Router Advertisement1后,向PNA2发送Router Advertisement1,由PNA2向UE转发Router Advertisement1。需要说明的是,在该实例中第一PDU会话的老IP地址是指UE切换前,第一PDU会话的IP地址。
步骤4012b:PNC通过PNA2向UE发送Router Advertisement2,所述Router Advertisement2携带所述第一PDU会话的新IP地址,以通知UE所述第一PDU会话的新IP地址。具体的,PNC可以向PNA2发送Router Advertisement2,PNA2接收到所述Router Advertisement2后,由PNA2向UE转发所述Router Advertisement2。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2不支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。进一步的,PNC可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图7所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图7所示的方法中PNA1相当于图2中的第一网元,该方法包括以下步骤:
其中,图7中步骤500a-步骤503a与图3中步骤100a-步骤103a相同,步骤500a-步骤503a的相关描述可参见步骤100a-步骤103a中描述,此处不再赘述;图7中步骤503b与图6中步骤403b相同,步骤503b的描述可参见步骤403b中描述,此处不再赘述;图7中步骤504与图3中步骤104b相同,步骤504的相关描述可参见步骤104b中描述,此处不再赘述;图7中步骤505与图6中步骤405相同,步骤505的相关描述可参见步骤405中描述,此处不再赘述;图7中步骤506-步骤508与图3中步骤106b-步骤108b相同,步骤506-步骤508的相关描述可参见步骤106b-步骤108b中描述,此处不再赘述。
步骤509:PNC向PNA1发送切换命令(handover command),该切换命令中包括第一PDU会话切换后为其分配的新IP地址。
步骤5010:PNA1向UE发送RRC连接重配置消息,RRC连接重配置消息中包括所述新IP地址。以使得及时同步PNC与UE之间的第一PDU会话的新IP地址。
步骤5011:执行UE切换流程的其它步骤。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2不支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的 问题,可提升切换成功率。进一步的,PNC可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图8所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图8所示的方法中PNA2相当于图2中的第一网元,该方法包括以下步骤:
可选的,在PNA1与PNA2之间的Xn接口连接建立过程中,PNA1可以将信息1携带于Xn建立请求(Xn setup request)消息发送至PNA2,PNA2可以将信息2携带于Xn建立响应(Xn setup resporse)消息发送至PNA1。详见步骤600c-步骤600d,本文中出现的信息1和信息2的含义均与上文中描述一致。可选的,PNA1的信息1可以是PNC为其配置的,详见步骤600a。
步骤602a:PNA1向PNA2发送切换请求(Xn HO request),该切换请求中包括第一PDU会话的会话信息,第一PDU会话的会话信息可以是第一PDU会话的上下文信息的全集或子集,该步骤中第一PDU会话的会话信息包括第一业务类型信息以及第一PDU会话的上下文信息中除第一业务类型信息之外的信息,例如除第一业务类型信息之外的信息可包括UE标识,第一PDU会话标识,QoS参数以及IP地址中的一项或多项等。在该实例中,第一PDU会话为UE切换前由PNA1管控的会话,即第一PDU会话为UE切换前从PNA1本地路由的会话。
步骤602b:PNA2获取信息2。例如,所述信息2可以是PNC为PNA2配置的,详见步骤600b。所述信息2也可以是预先定义的,当信息2为预先定义的信息时,PNA2可以从本地获取信息2。需要说明的是,本申请中对步骤602a与步骤602b执行的先后顺序不做限定。
在该实例中,PNA2获取到第一PDU会话的会话信息以及信息2后,可根据信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNA2根据信息2和所述会话信息确定支持对第一业务类型信息对应的业务进行本地分流,则确定由PNA2自身处理第一PDU会话,对应图8中的方法一,参见步骤603a-步骤606a。反之,若PNA2根据信息2和所述会话信息确定不支持对第一业务类型信息对应的业务进行本地分流,则PNA2确定由PNC处理第一PDU会话,对应图8中的方法二,参见步骤603b-步骤606b。需要说明的是,该实例中方法一和方法二可以择一执行,也可以并行执行。例如,以UE包括两个PDU会话为例,分别为PDU会话1和PDU会话2,PDU会话1的会话信息包括业务类型信息1,PDU会话2的会话信息包括业务类型信息2,若PNA2支持对业务类型信息1和业务类型信息2对应的业务进行本地分流,则UE在从PNA1切换至PNA2时执行方法一;或者,若PNA2支持对业务类型信息1对应的业务进行本地分流,且,PNA2不支持对业务类型信息2对应的业务进行本地分流,则PNA1可并行执行方法一和方法二;或者,若PNA2不支持对业务类型信息1和业务类型信息2对应的业务进行本地分流,则执行方法二。
方法一如下:
步骤603a:PNA2根据信息2和第一PDU会话的会话信息,确定支持对第一业务类型信息对应的业务进行本地分流,PNA2可以更新所述会话信息,如何更新可参见上文中描述,PNA2还可以对第一PDU会话的IP地址进行ARP路由更新。
步骤604a:PNA2向PNA1发送切换响应(Xn HO response)。
步骤605a:PNA1向UE发送RRC连接重配置消息。
步骤606a:UE向PNA2发送RRC连接重配置完成消息。可以理解为执行步骤606a后,UE接入PNA2。
采用上述方法一,在UE从PNA1向PNA2切换的场景下,可将切换前由PNA1路由的第一PDU会话的会话信息发送至PNA2,进而由PNA2判断是否支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
方法二如下:
步骤603b:PNA2根据信息2和第一PDU会话的会话信息,确定不支持对第一业务类型信息对应的业务进行本地分流,PNA2确定由PNC处理第一PDU会话,并可为第一PDU会话分配接入网隧道信息(AN tunnel info),接入网隧道信息包含的内容可参见上文描述。
步骤604b:PNA2向PNC发送路径转换请求(path switch request)消息,路径转换请求消息中包括第一PDU会话的会话信息以及所述接入网隧道信息。此外,该消息中还可包括PNA2的标识。
步骤605b:PNC更新所述会话信息,并对第一PDU会话的IP地址进行ARP路由更新,为第一PDU会话分配核心网隧道信息(CN tunnel info),核心网隧道信息包含的内容参见上文描述。
可选的,在执行步骤605b之前,PNC还可以根据预先获取的信息2以及接收到的第一PDU会话的会话信息和PNA2的标识,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,在确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNC执行步骤605b,否则,在确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNC可以将第一PDU会话的会话信息发送至PNA2,PNA2的处理流程详见上文。
步骤606b:PNC向PNA2发送路径转换请求应答(path switch request ack)消息,所述路径转换请求应答消息中包括所述核心网隧道信息。此外,PNC还可执行切换的其它步骤,图8中未示出。
采用上述方法二,在UE从PNA1向PNA2切换的场景下,可将切换前由PNA1路由的第一PDU会话的会话信息发送至PNA2,进而由PNA2判断是否支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流,在确定PNA2不支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。
参阅图9所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图9所示的方法中PNA2相当于图2中的第一网元,该方法包括以下步骤:
其中,图9中步骤700a-步骤702b与图8中步骤600a-步骤602b相同,步骤700a-步骤702b的相关描述可参见步骤600a-步骤602b中描述,此处不再赘述。
在该实例中,PNA2获取到第一PDU会话的会话信息以及信息2后,可根据信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNA2确定支持对第一业务类型信息对应的业务进行本地分流,则确定由PNA2自身处理第一PDU会话,对应图9中的方法一,参见步骤703a-步骤708a。反之,若PNA2确定不支持对第一业务类型信息对应的业务进行本地分流,则PNA2确定由PNC处理第一PDU会话,对应图9中的方法二,参见步骤703b-步骤707b。需要说明的是,该实例中方法一和方法二可以择一执行,也可以并行执行。何种情况可以择一执行,何种情况可以并行执行,请参见图8中相关描述。
方法一如下:
步骤703a:PNA2根据信息2和第一PDU会话的会话信息,确定支持对第一业务类型信息对应的业务进行本地分流,PNA2可以更新所述会话信息,例如,PNA2可以为第一PDU会话分配新的IP地址,根据新的IP地址更新所述会话信息,如何更新详见上文描述。
步骤704a:PNA2向PNA1发送切换响应(Xn HO response)。可选的,所述Xn HO response中可以携带第一指示,第一指示用于指示已为第一PDU会话分配新IP地址。
其中,步骤705a-步骤706a与图8中步骤605a-步骤606a相同,步骤705a-步骤706a的相关描述可参见上文步骤605a-步骤606a的描述。步骤707a-步骤708a与步骤209a-步骤209b相同,步骤707a-步骤708a的描述可参见步骤209a-步骤209b的描述。
采用上述方法一,在UE从PNA1向PNA2切换的场景下,可将切换前由PNA1路由的第一PDU会话的会话信息发送至PNA2,进而由PNA2判断是否支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。进一步的,PNA2可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
方法二如下:
其中,步骤703b-步骤704b与步骤603b-步骤604b相同,步骤703b-步骤704b的描述可参见步骤603b-步骤604b的描述。
步骤705b:PNC更新所述会话信息,例如为第一PDU会话分配新IP地址,根据新IP地址更新所述会话信息,如何更新详见上文,并为第一PDU会话分配核心网隧道信息(CN tunnel info)。
可选的,在执行步骤705b之前,PNC还可以根据预先获取的信息2以及接收到的第一PDU会话的会话信息和PNA2的标识,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,在确定PNA2不支持对第一业务类型信息对应的业务进行本地分流时,PNC执行步骤705b,否则,在确定PNA2支持对第一业务类型信息对应的业务进行本地分流时,PNC可以将第一PDU会话的会话信息发送至PNA2,PNA2的处理流程详见上文。
其中,步骤706b与步骤606b相同,步骤706b的描述可参见步骤606b的描述。
步骤707b:PNC可通过PNA2向UE发送Router Advertisement,以通知UE所述新IP 地址。例如,PNC向PNA2发送携带新IP地址的Router Advertisement,PNA2接收到Router Advertisement后向UE转发Router Advertisement。此外,PNC还可执行切换的其它步骤,图9中未示出。
采用上述方法二,在UE从PNA1向PNA2切换的场景下,可将切换前由PNA1路由的第一PDU会话的会话信息发送至PNA2,进而由PNA2判断是否支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流,在确定PNA2不支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。进一步的,PNC可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图10所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图10所示的方法中PNA2相当于图2中的第一网元,该方法包括以下步骤:
其中,图10中步骤800a-步骤802b与图8中步骤600a-步骤602b相同,步骤800a-步骤802b的相关描述可参见步骤600a-步骤602b中描述,此处不再赘述。
在该实例中,PNA2获取到第一PDU会话的会话信息以及信息2后,可根据信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNA2确定支持对第一业务类型信息对应的业务进行本地分流,则确定由PNA2自身处理第一PDU会话,对应图10中的方法一,参见步骤803a-步骤806a。反之,若PNA2确定不支持对第一业务类型信息对应的业务进行本地分流,则PNA2确定由PNC处理第一PDU会话,对应图10中的方法二,参见步骤803b-步骤807b。需要说明的是,该实例中方法一和方法二可以择一执行,也可以并行执行。何种情况可以择一执行,何种情况可以并行执行,请参见图8中相关描述。
方法一如下:
其中,步骤803a与步骤703a相同,步骤803a的描述可参见步骤703a的描述。
步骤804a:PNA2向PNA1发送Xn HO response,Xn HO response中包括第一PDU会话切换后为其分配的新IP地址。
步骤805a:PNA1向UE发送RRC连接重配置消息,RRC连接重配置消息中包括所述新IP地址。
步骤806a:UE向PNA2发送RRC连接重配置完成消息。可以理解为执行步骤806a后,UE接入PNA2。
采用上述方法一,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。进一步的,PNA2可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
方法二如下:
其中,步骤803b-步骤804b与步骤603b-步骤604b相同,步骤803b-步骤804b的描述 可参见步骤603b-步骤604b的描述。步骤805b-步骤806b与步骤705b-步骤706b相同,步骤805b-步骤806b的描述可参见上文中步骤705b-步骤706b的描述。
步骤807b:PNC可通过PNA2向UE发送携带所述新IP地址的NAS SM消息,以通知UE第一PDU会话的新IP地址。例如,PNC向PNA2发送NAS SM消息,PNA2接收到NAS SM消息后向UE转发所述NAS SM消息。
采用上述方法二,在UE从PNA1向PNA2切换的场景下,在确定PNA2不支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNA1切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。进一步的,PNC可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图11所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图11所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
可选的,PNC可以通过PNA配置消息分别为PNA1和PNA2配置信息1和信息2,详见步骤900a-步骤900b。
可选的,在PNA1与PNA2之间的Xn接口连接建立过程中,PNA1可以将信息1携带于Xn建立请求(Xn setup request)消息发送至PNA2,PNA2可以将信息2携带于Xn建立响应(Xn setup resporse)消息发送至PNA1,详见步骤900c-步骤900d。
步骤901:PNA1确定将UE切换至PNA2。
步骤902a:PNA1向PNC发送切换要求消息(N2 HO required),该切换要求消息中包括第一PDU会话的会话信息,第一PDU会话的会话信息可以是第一PDU会话的上下文信息的全集或子集,该第一PDU会话的会话信息包括第一业务类型信息以及第一PDU会话的上下文信息中除第一业务类型信息之外的信息,例除第一业务类型信息之外的信息可包括UE标识,第一PDU会话标识,QoS参数以及IP地址中的一项或多项等。在该实例中,第一PDU会话为UE切换前由PNA1管控的会话。此外,在N2 HO required中还可包括PNA2的标识。
步骤902b:PNC获取信息2。例如,PNC可以从PNA2获取信息2,也可以预先定义,当信息2为预先定义的信息时,PNC可以从本地获取信息2。
在该实例中,PNC获取到第一PDU会话的会话信息以及信息2后,可根据信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNC确定PNA2支持对第一业务类型信息对应的业务进行本地分流,则确定由PNA2处理第一PDU会话,对应图11中的方法一,参见步骤903a-步骤905a以及步骤907-步骤909。反之,若PNC确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,则PNC确定由自身处理第一PDU会话,对应图11中的方法二,参见步骤903b-步骤906b以及步骤907-步骤909。需要说明的是,该实例中方法一和方法二可以择一执行,也可以并行执行。例如,以UE包括两个PDU会话为例,分别为PDU会话1和PDU会话2,PDU会话1的会话信息包括业务类型信息1,PDU会话2的会话信息包括业务类型信息2,若PNA2支持对业务类型信息1和业务类型信息2对应的业务进行本地分流,则执行方法一;或者,若PNA2支持对业务类型信息1对应的业务进行本地分流,且,不支持 对业务类型信息2对应的业务进行本地分流,则可并行执行方法一和方法二;或者,若PNA2不支持对业务类型信息1和业务类型信息2对应的业务进行本地分流,则执行方法二。
方法一如下:
步骤903a:PNC根据信息2、第一PDU会话的会话信息以及PNA2的标识,确定PNA2支持对第一业务类型信息对应的业务进行本地分流,PNC确定由PNA2处理第一PDU会话。
步骤904a:PNC向PNA2发送切换请求消息,在切换请求消息中包括第一PDU会话的会话信息。PNA2接收到第一PDU会话的会话信息后的处理流程可参见上文中描述,不再赘述。
步骤905a:PNA2向PNC发送切换请求应答消息。此外,还可执行切换的其它步骤,图11中未示出。
采用上述方法一,可将第一PDU会话切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
方法二如下:
步骤903b:PNC根据信息2、第一PDU会话的会话信息以及PNA2的标识,确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,PNC更新所述会话信息,并对第一PDU会话的IP地址进行ARP路由更新,为第一PDU会话分配核心网隧道信息(CN tunnel info),核心网隧道信息包含的内容可参见上文描述。
步骤904b:PNC向PNA2发送切换请求消息,在切换请求消息中包括所述核心网隧道信息。步骤904a和步骤904b中的切换请求消息可以是同一条消息。
步骤905b:PNA2为第一PDU会话分配接入网隧道信息(AN tunnel info)。
步骤906b:PNA2向PNC发送切换请求应答消息,在切换请求应答消息中包括所述AN tunnel info。
在该实例中,以下步骤对于方法一和方法二均适用。
步骤907:PNC向PNA1发送切换命令(handover command)。
步骤908:PNA1向UE发送RRC连接重配置消息。
步骤909:执行UE切换流程的其它步骤。
采用上述方法二,可将第一PDU会话切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。
参阅图12所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图12所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
其中,图12中步骤1000a-步骤1002b与图11中步骤900a-步骤902b相同,步骤1000a-步骤1002b的相关描述可参见步骤900a-步骤902b中描述,此处不再赘述。
在该实例中,PNC获取到第一PDU会话的会话信息以及信息2后,可根据信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNC确定PNA2支持对第一业务类型信息对应的业务进行本地分流,则确定 由PNA2处理第一PDU会话,对应图12中的方法一,图12的方法一和图11中方法一执行相同的步骤,详见上文描述。反之,若PNC确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,则PNC确定由自身处理第一PDU会话,对应图12中的方法二,参见步骤1003b-步骤1011b。
该实例的方法二如下:
步骤1003b:PNC根据信息2、第一PDU会话的会话信息以及PNA2的标识,确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,PNC更新所述会话信息,PNC更新所述会话信息,例如为第一PDU会话分配新IP地址,根据新IP地址更新所述会话信息,并为第一PDU会话分配CN tunnel info。
步骤1004b-步骤1006b与步骤904b-步骤906b相同,步骤1004b-步骤1006b的相关描述可参见步骤904b-步骤906b的描述。
步骤1007b:PNC向PNA1发送切换命令,切换命令中携带第一指示,第一指示用于指示已为第一PDU会话分配新IP地址。
步骤1008b:PNA1向UE发送RRC连接重配置消息。
步骤1009b:执行UE切换流程的其它步骤。例如,所述其它步骤可包括UE向PNA2发送RRC连接重配置完成消息。执行完UE切换流程的其它步骤后,UE接入PNA2。
其中,步骤1010b-步骤1011b与步骤4012a-步骤4012b相同,步骤1010b-步骤1011b的描述可参见步骤4012a-步骤4012b的描述,此处不再赘述。
采用上述方法二,可将第一PDU会话切换至PNC,可避免将第一PDU会话切换至不能处理该会话的PNA2时切换出错的问题,可提升切换成功率。进一步的,PNC可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图13所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图13所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
其中,图13中步骤1100a-步骤1102b与图11中步骤900a-步骤902b相同,步骤1100a-步骤1102b的相关描述可参见图11中步骤900a-步骤902b描述,此处不再赘述。
在该实例中,PNC获取到第一PDU会话的会话信息以及信息2后,可根据信息2以及第一PDU会话的会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNC确定PNA2支持对第一业务类型信息对应的业务进行本地分流,则确定由PNA2处理第一PDU会话,对应图13中的方法一,图13的方法一和图11中方法一执行相同的步骤,详见上文描述。反之,若PNC确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,则PNC确定由自身处理第一PDU会话,对应图13中的方法二,参见步骤1103b-步骤1109b。
该实例的方法二如下:
其中,步骤1103b-步骤1106b与步骤1003b-步骤1006b相同,步骤1103b-步骤1106b的描述可参见上文中步骤1003b-步骤1006b的描述。
步骤1107b:PNC向PNA1发送切换命令,切换命令中包括第一PDU会话的新IP地址。可选的,切换命令中还可以包括第一指示,第一指示用于指示已为第一PDU会话分 配新IP地址。
步骤1108b:PNA1向UE发送RRC连接重配置消息,所述RRC连接重配置消息中包括第一PDU会话的新IP地址。
步骤1109b:执行UE切换流程的其它步骤。例如,所述其它步骤可包括UE向PNA2发送RRC连接重配置完成消息。采用该方法,PNC可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图14所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图14所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
可选的,PNC可以通过PNA配置消息分别为PNA1和PNA2配置信息1和信息2,详见步骤1200a-步骤1200b。
步骤1201:UE成功从PNA1切换至PNA2。
步骤1202:PNA2向PNC发送路径转换请求(path switch request)消息,该消息中可包括PNA2的标识。
步骤1203a:PNC获取信息2。例如,可以从本地获取预定义的信息2,也可以从PNA2获取信息2,不做限定。
步骤1203b:PNC获取第一PDU会话的会话信息,所述会话信息可包括第一业务类型信息,在该实例以及下文中的实例中第一PDU会话为UE切换前由PNC管控的会话,即第一PDU会话为UE切换前从PNC本地路由的会话。步骤1203a和步骤1203b执行的先后顺序不做限定。需要说明的是,该实例以及下述实例中第一PDU会话的会话信息可以为第一PDU会话的上下文信息的全集或子集。
步骤1203c:PNC根据信息2以及第一PDU会话的会话信息,确定PNA2支持对第一业务类型信息对应的业务进行本地分流,PNC确定由PNA2第一PDU会话,则可将第一PDU会话的数据锚点转移到PNA2。
步骤1204:PNC向PNA2发送路径转换请求应答(path switch request ack)消息,该路径转换请求应答消息中包括第一PDU会话的会话信息,此时所述会话信息除可包括第一业务类型信息之外,还可包括第一PDU会话的上下文信息中除第一业务类型信息之外的信息,例如除第一业务类型信息之外的信息可包括终端标识,第一会话标识,QoS参数以及IP地址中的一项或多项。
步骤1205:PNA2存储并更新第一PDU会话的会话信息,并对第一PDU会话的IP地址进行ARP路由更新。如何更新第一PDU会话的会话信息参见上文。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNC切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。
参阅图15所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图15所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
其中,图15中步骤1300a-步骤1304与图14中步骤1200a-步骤1204相同,步骤1300a-步骤1304的相关描述可参见图14中步骤1200a-步骤1204描述,此处不再赘述。
以下描述该实例不同于上述实例之处。
步骤1305:PNA2存储并更新第一PDU会话的会话信息,示例性地更新所述会话信息包括更新第一PDU会话的IP地址,例如,PNA2可以为第一PDU会话分配新IP地址,根据新IP地址更新所述会话信息,如何更新参见上文。
可选的,PNA2为第一PDU会话分配新IP地址之后,还可以向PNC发送第一指示,第一指示用于指示已为第一PDU会话分配新IP地址。以使得PNC据此向UE发送第一PDU会话的老IP地址的有效时间,该实例以及下述实例中第一PDU会话的老IP地址是指第一PDU会话切换之前的IP地址。
步骤1306:PNC通过PNA2向UE发送Router Advertisement1,以通知UE第一PDU会话的老IP地址的有效时间。例如,PNC可以向PNA2发送Router Advertisement1,Router Advertisement1携带第一PDU会话的老IP地址,以及第一PDU会话的老IP地址的有效时间,PNA2接收到Router Advertisement1后,向UE转发Router Advertisement1。
步骤1307:PNA2向UE发送Router Advertisement2,所述Router Advertisement2中携带所述第一PDU会话的新IP地址,以通知UE所述第一PDU会话的新IP地址。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNC切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。进一步的,PNA2可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图16所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图16所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
其中,图16中步骤1400a-步骤1404与图14中步骤1200a-步骤1204相同,步骤1400a-步骤1404的相关描述可参见图14中步骤1200a-步骤1204描述,此处不再赘述;图16中步骤1405与图15中步骤1305相同,步骤1405的相关描述可参见步骤1305描述,不再赘述。
以下描述该实例中不同于上述实例之处。
步骤1406:PNA2通过RRC消息向UE发送为第一PDU会话分配的新IP地址,以通知UE第一PDU会话的新IP地址。此外,PNA2可以向PNC发送第一指示,指示已为第一PDU会话分配新IP地址,以使得PNC向UE发送第一PDU会话的老IP的有效时间。
采用上述方法,在UE从PNA1向PNA2切换的场景下,在确定PNA2支持对第一PDU会话的第一业务类型信息对应的业务进行本地分流的情况下,可将第一PDU会话由PNC切换至PNA2,这样,由PNA2处理第一PDU会话可达到与PNC分流得目的,不仅可以降低数据业务的端到端时延,还可以减小网络压力。进一步的,PNA2可为第一PDU会话分配新的IP地址,避免由于老IP地址不可用导致第一PDU会话不可用的情况发生。
参阅图17所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE 从PNA1到PNA2的切换场景,图17所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
其中,图17中步骤1500a-步骤1500b与图14中步骤1200a-步骤1200b相同,步骤1500a-步骤1500b的相关描述可参见步骤1200a-步骤1200b描述,此处不再赘述。
以下描述该实例中不同于上述实例之处。
步骤1501:PNA1确定将UE切换至PNA2。
步骤1502:PNA1向PNC发送切换要求消息(N2 HO required),切换要求消息中携带PNA2的标识。
其中,图17中步骤1502a-步骤1502b与图14中步骤1203a-步骤1203b相同,步骤1502a-步骤1502b的描述可参见步骤1203a-步骤1203b描述,此处不再赘述。
在该实例中,PNC获取到信息2以及第一PDU会话的会话信息之后,可根据信息2以及所述会话信息,判断PNA2是否支持对第一业务类型信息对应的业务进行本地分流,若PNA2不支持对第一业务类型信息对应的业务进行本地分流,则执行如下方法一,若PNA2支持对第一业务类型信息对应的业务进行本地分流,则执行如下方法二。
方法一:
步骤1503a:PNC根据信息2以及第一PDU会话的会话信息,确定PNA2不支持对第一业务类型信息对应的业务进行本地分流,PNC确定在本地处理第一PDU会话,并可为第一PDU会话分配核心网隧道信息,核心网隧道信息包含的内容可参见上文。
步骤1504a:PNC向PNA2发送切换请求消息(N2 HO request),该消息可包括所述核心网隧道信息。
步骤1505a:PNA2为第一PDU会话分配接入网隧道信息。
步骤1506a:PNA2向PNC发送切换请求应答消息(N2 HO request ack),该消息中可包括所述接入网隧道信息。
方法二:
步骤1503b:PNC根据信息2以及第一PDU会话的会话信息,确定PNA2支持对第一业务类型信息对应的业务进行本地分流,确定由PNA2处理第一PDU会话。
步骤1504b:PNC向PNA2发送切换请求消息(N2 HO request),切换请求消息中包括第一PDU会话的会话信息,此时所述会话信息除包括第一业务类型信息之外,还可包括第一PDU会话的上下文信息中除第一业务类型信息之外的信息,例如除第一业务类型信息之外的信息可包括终端标识,第一会话标识,QoS参数以及IP地址中的一项或多项。
步骤1505b:PNA2存储并更新第一PDU会话的会话信息,并对第一PDU会话的IP地址进行ARP路由更新。如何更新第一PDU会话的会话信息参见上文描述。
步骤1506b:PNA2向PNC发送切换请求应答消息(N2 HO request ack)。
在该实例中,以下步骤对于方法一和方法二均适用。
步骤1507:PNC向PNA1发送切换命令(handover command)。
步骤1508:PNA1向UE发送RRC连接重配置消息。
步骤1509:执行UE切换流程的其它步骤。
参阅图18所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图18所示的方法中PNC相当于图2中的第一网元,该方 法包括以下步骤:
其中,图18中步骤1600a-步骤1600b与图14中步骤1200a-步骤1200b相同,步骤1600a-步骤1600b的相关描述可参见步骤1200a-步骤1200b描述,此处不再赘述;图18中步骤1601-步骤1602b与图17中步骤1501-步骤1502b相同,图18中方法一与图17中方法一执行的步骤相同,可参见图17中相关描述,不再赘述。
以下描述该实例中不同于上述实例之处。
方法二:
其中,步骤1603b-步骤1604b与步骤1503b-步骤1504b相同,步骤1603b-步骤1604b的描述可参见步骤1503b-步骤1504b的描述。
步骤1605b:PNA2存储第一PDU会话的会话信息,为第一PDU会话分配新IP地址,根据所述新IP地址更新第一PDU会话的会话信息。
步骤1606b:PNA2向PNC发送切换请求应答消息(N2 HO request ack)。可选的,所述消息中可包括第一指示,第一指示用于指示已为第一PDU会话分配新IP地址。
在该实例中,以下步骤对于方法一和方法二均适用。
步骤1607:PNC向PNA1发送切换命令。
步骤1608:PNA1向UE发送RRC连接重配置消息。
步骤1609:执行UE切换流程的其它步骤。例如,所述其它步骤可包括UE向PNA2发送RRC连接重配置完成消息。执行完UE切换流程的其它步骤后,UE接入PNA2。
步骤1610:PNC通过PNA2向UE发送Router Advertisement1,以通知UE第一PDU会话的老IP地址的有效时间。例如,PNC可以向PNA2发送Router Advertisement1,Router Advertisement1携带第一PDU会话的老IP地址,以及第一PDU会话的老IP地址的有效时间,PNA2接收到Router Advertisement1后,向UE转发Router Advertisement1。
步骤1611:PNA2向UE发送Router Advertisement2,Router Advertisement2携带第一PDU会话的新IP地址,以通知UE第一PDU会话的新IP地址。
参阅图19所示,为本申请实施例提供的又一种通信方法的示意图,该方法应用于UE从PNA1到PNA2的切换场景,图19所示的方法中PNC相当于图2中的第一网元,该方法包括以下步骤:
其中,图19中步骤1700a-步骤1700b与图14中步骤1200a-步骤1200b相同,步骤1700a-步骤1700b的相关描述可参见步骤1200a-步骤1200b描述,此处不再赘述;图19中步骤1701-步骤1702b与图17中步骤1501-步骤1502b相同,图19中方法一与图17中方法一执行的步骤相同,可参见图17中相关描述,不再赘述。
以下描述该实例中不同于上述实例之处。
方法二:
其中,步骤1703b-步骤1704b与步骤1503b-步骤1504b相同,步骤1703b-步骤1704b的描述可参见步骤1503b-步骤1504b的描述;步骤1705b与步骤1605b相同,可参见步骤1605b的描述。
步骤1706b:PNA2向PNC发送切换请求应答消息,切换请求应答消息中包括第一PDU会话的新IP地址。可选的,PNA2可以在向PNC发送的切换请求应答消息中携带第一指示,第一指示用于指示已为第一PDU会话分配新IP地址。
步骤1707b:PNC向PNA1发送切换命令,切换命令中包括第一PDU会话的新IP地址。
步骤1708b:PNA1向UE发送RRC连接重配置消息,RRC连接重配置消息中包括第一PDU会话的新IP地址。
在该实例中,针对方法一和方法二还可执行步骤1709。
步骤1709:执行UE切换流程的其它步骤。例如,所述其它步骤可包括UE向PNA2发送RRC连接重配置完成消息。
上述主要从目的接入网网元、源接入网网元以及核心网网元交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,源接入网网元、目的接入网网元以及核心网网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对目的接入网网元、源接入网网元以及核心网网元进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于相同的发明构思,本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中目的接入网网元所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中源接入网网元所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中核心网网元所执行的各个步骤的单元(或手段)。
本申请实施例提供一种网元2000。图20所示为本申请实施例提供的一种网元2000的结构示意图,参阅图20所示,该网元2000可包括获取单元2001和处理单元2002。在实施中,网元2000还可包括接收单元2003和发送单元2004。
其中,该网元2000可以应用于第一网元,第一网元可应用于终端从源接入网网元到目的接入网网元的切换场景。
一种可能的实施方式中,获取单元2001可用于执行上文方法示例图2中步骤S101以及步骤102。处理单元2002可用于执行上文方法示例图2中步骤S103。以下介绍基于该实施方式的场景以及设计。
第一种可能的场景中,网元2000为所述目的接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,接收单元2003可用于接收来自所述源接入网网元或核心网网元的所述会话信息。
在一种可能的设计中,获取单元2001还可用于从本地获取预先配置的所述第一信息。
在一种可能的设计中,接收单元2003还可用于接收来自核心网网元的所述第一信息。
在一种可能的设计中,处理单元2002确定由所述目的接入网网元处理所述第一会话 之后,还可用于更新所述第一会话的所述会话信息。示例性地,处理单元2002可用于为所述第一会话分配新IP地址,根据所述新IP地址更新所述会话信息;发送单元2004可用于通知所述源接入网网元或所述终端或核心网网元所述新IP地址。
在一种可能的设计中,发送单元2004还可用于向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址。
在一种可能的设计中,处理单元2002还可用于对所述第一会话的IP地址进行ARP路由更新。
第二种可能的场景中,网元2000为核心网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,接收单元2003可用于接收来自所述源接入网网元的所述会话信息。
在一种可能的设计中,发送单元2004可用于,在处理单元2002确定由所述目的接入网网元处理所述第一会话之后,向所述目的接入网网元发送所述会话信息。
第三种可能的场景中,网元2000为所述源接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,发送单元2004可用于,在处理单元2002确定由所述目的接入网网元处理所述第一会话之后,向所述目的接入网网元发送所述会话信息。
第四种可能的场景中,网元2000为核心网网元,所述第一会话为所述终端切换前由所述核心网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,发送单元2004可用于,在处理单元2002确定由所述目的接入网网元处理所述第一会话之后,向所述目的接入网网元发送所述会话信息。
在一种可能的设计中,接收单元2003可用于接收来自所述目的接入网网元的路径转换请求;基于该种设计,发送单元2004可采用如下方式向所述目的接入网网元发送所述会话信息:发送单元2004向所述目的接入网网元发送路径转换请求确认消息,所述路径转换请求确认消息中包括所述会话信息。
在一种可能的设计中,接收单元2003还可用于接收来自所述源接入网网元的切换要求消息,所述切换要求消息中包括所述目的接入网网元的标识,所述切换要求消息用于请求将所述终端切换至所述目的接入网网元;基于该种设计,发送单元2004可采用如下方式向所述目的接入网网元发送所述会话信息:发送单元2004向所述目的接入网网元发送切换请求消息,所述切换请求消息中包括所述会话信息。
以下为基于第二种可能的场景至第四种可能的场景的设计。
在一种可能的设计中,获取单元2001可用于从本地获取预先配置的第一信息。
在一种可能的设计中,接收单元2003可用于接收来自目的接入网网元的第一信息。
在一种可能的设计中,接收单元2003还可用于接收来自目的接入网网元的第一会话的新IP地址;发送单元2004可用于向终端发送第一会话的新IP地址。
在一种可能的设计中,接收单元2003还可用于接收来自目的接入网网元的第一指示,第一指示用于指示已为第一会话分配新IP地址;发送单元2004还可用于根据第一指示向终端发送第一会话的老IP地址的有效时间。
以下为基于第一种可能的场景至第四种可能的场景的设计。
在一种可能的设计中,第一信息和第一业务类型信息分别可包括如下至少一项业务类 型标识信息:NSSAI、DNN或App-ID。
在一种可能的设计中,第一信息还包括本地支持指示,本地支持指示用于指示目的接入网网元支持对与业务类型标识信息对应的业务进行本地分流。
在一种可能的设计中,处理单元2002可采用如下方式根据第一信息和会话信息,确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流:若第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息匹配,则确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,进而确定由目的接入网网元处理第一会话。
在一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI和DNN,基于该设计,处理单元2002可采用如下方式确定由目的接入网网元处理第一会话:若第一业务类型信息包括的NSSAI和DNN分别与第一信息包括的NSSAI和DNN匹配,则确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,进而确定由目的接入网网元处理第一会话。
在一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI、DNN以及APP ID,基于该设计,处理单元2002可采用如下方式确定由目的接入网网元处理第一会话:若第一业务类型信息包括的NSSAI、DNN以及APP ID分别与第一信息包括的NSSAI、DNN以及APP ID匹配,则确定目的接入网网元支持对第一业务类型信息对应的业务进行本地分流,进而确定由目的接入网网元处理第一会话。
另一种可能的实施方式中,获取单元2001可用于执行上文方法示例图2中步骤S101以及步骤102等步骤。处理单元2002可用于执行上文方法示例图2中步骤S104。以下介绍基于该实施方式的场景以及设计。
第一种可能的场景中,网元2000为所述目的接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,接收单元2003可用于接收来自所述源接入网网元的所述会话信息。
在一种可能的设计中,发送单元2004可用于,在处理单元2002确定由核心网网元处理所述第一会话之后,向所述核心网网元发送所述会话信息以及所述第一会话的接入网隧道信息。
在一种可能的设计中,接收单元2003还可用于接收来自所述核心网网元的所述第一会话的核心网隧道信息。
在一种可能的设计中,获取单元2001可用于从本地获取预先配置的所述第一信息。
在一种可能的设计中,接收单元2003还可用于接收来自核心网网元的所述第一信息。
第二种可能的场景中,网元2000为所述核心网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,接收单元2003可用于接收来自所述源接入网网元的所述会话信息。
在一种可能的设计中,处理单元2002还可用于更新所述会话信息。示例性地,处理单元2002可采用如下方式更新所述会话信息:为所述第一会话分配新IP地址,根据所述新IP地址更新所述会话信息;发送单元2004可用于向所述源接入网网元或所述终端发送 所述新IP地址。
在一种可能的设计中,发送单元2004还可用于向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址。
在一种可能的设计中,处理单元2002还可用于对所述第一会话的IP地址进行ARP路由更新。
在一种可能的设计中,发送单元2004还可用于,在处理单元2002确定由核心网网元处理所述第一会话之后,向所述目的接入网网元发送所述第一会话的核心网隧道信息。
在一种可能的设计中,接收单元2003还可用于接收来自所述目的接入网网元的所述第一会话的接入网隧道信息。
第三种可能的场景中,网元2000为所述源接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。以下为基于该场景的设计。
在一种可能的设计中,发送单元2004可用于,在处理单元2002确定由核心网网元处理所述第一会话之后,向所述核心网网元发送所述会话信息。
以下为基于第二种可能的场景和第三种可能的场景的设计。
在一种可能的设计中,获取单元2001还可用于从本地获取预先配置的所述第一信息。
在一种可能的设计中,接收单元2003可用于接收来自所述目的接入网网元的所述第一信息。
以下为基于第一种可能的场景和第三种可能的场景的设计。
在一种可能的设计中,接收单元2003可用于接收来自核心网网元的第一会话的新IP地址;发送单元2004可用于向终端发送第一会话的新IP地址。
在一种可能的设计中,接收单元2003可用于接收来自核心网网元的第一指示,第一指示用于指示已为第一会话分配新IP地址;发送单元2004可用于根据第一指示向终端发送第一会话的老IP地址的有效时间。
以下为基于第一种可能的场景至第三种可能的场景的设计。
在一种可能的设计中,第一信息和第一业务类型信息分别可包括如下至少一项业务类型标识信息:NSSAI;DNN;或,App ID。
在一种可能的设计中,第一信息还包括本地支持指示,本地支持指示用于指示目的接入网网元支持对与所述业务类型标识信息对应的业务进行本地分流。
在一种可能的设计中,处理单元2002可采用如下方式根据第一信息和会话信息,确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流:若第一业务类型信息与第一信息指示的目的接入网网元支持的本地分流的业务类型信息不匹配,则确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,进而确定由核心网网元处理第一会话。
在一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI和DNN,基于该设计,处理单元2002可采用如下方式确定由核心网网元处理第一会话:若第一业务类型信息包括的NSSAI和DNN,与第一信息包括的NSSAI和DNN不匹配,则确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,进而确定由核心网网元处理第一会话。
在一种可能的设计中,第一信息和第一业务类型信息分别包括NSSAI、DNN以及APP ID,基于该设计,处理单元2002可采用如下方式确定由核心网网元处理第一会话:若第 一业务类型信息包括的NSSAI、DNN以及APP ID,与第一信息包括的NSSAI、DNN以及APP ID不匹配,则确定目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流,进而确定由核心网网元处理第一会话。
又一种可能的实施方式中,所述网元2000为所述目的接入网网元。接收单元2003可用于接收来自第一网元的所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息,所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流;处理单元2002可用于更新所述会话信息。以下介绍基于该实施方式的场景以及设计。
在一种可能的设计中,所述第一网元为核心网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
在一种可能的设计中,所述第一网元为所述源接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
在一种可能的设计中,所述第一网元为核心网网元,所述第一会话为所述终端切换前由所述核心网网元管控的会话。
在一种可能的设计中,处理单元2002还可用于为所述第一会话分配新IP地址,根据所述新IP地址更新所述会话信息;发送单元2004可用于向所述第一网元或所述终端发送所述新IP地址。
在一种可能的设计中,发送单元2004还可用于向所述第一网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址,以使得所述第一网元根据所述第一指示向所述终端发送所述第一会话的老IP地址的有效时间。
在一种可能的设计中,处理单元2002还可用于对所述第一会话的IP地址进行ARP路由更新。
在一种可能的设计中,发送单元2004还可用于向所述核心网网元发送路径转换请求;基于该设计,接收单元2003可采用如下方式接收来自第一网元的第一会话的会话信息:接收来自所述核心网网元的路径转换请求确认消息,所述路径转换请求确认消息中包括所述会话信息。
在一种可能的设计中,接收单元2003可采用如下方式接收来自第一网元的第一会话的会话信息:接收来自所述核心网网元的切换请求消息,所述切换请求消息中包括所述会话信息。
又一种可能的实施方式中,所述网元2000为所述核心网网元。接收单元2003可用于接收来自所述目的接入网网元的所述终端的第一会话的会话信息以及所述第一会话的接入网隧道信息,所述会话信息包括第一业务类型信息,所述第一会话为所述终端切换前由所述源接入网网元管控的会话,所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流;发送单元2004可用于向所述目的接入网网元发送所述第一会话的核心网隧道信息。
又一种可能的实施方式中,所述网元2000为所述目的接入网网元。接收单元2003可用于接收来自核心网网元的所述终端的第一会话的核心网隧道信息,所述第一会话为所述终端切换前由所述源接入网网元管控的会话,所述第一会话的会话信息包括第一业务类型信息,所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流;发送单元2004可用于向所述所述核心网网元发送所述第一会话的接入网隧道信息。
又一种可能的实施方式中,所述网元2000为所述核心网网元。接收单元2003可用于接收来自所述源接入网网元的所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息,所述第一会话为所述终端切换前由所述源接入网网元管控的会话,所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流;处理单元2002可用于更新所述会话信息。以下介绍基于该实施方式的可能的设计。
在一种可能的设计中,处理单元2002可用于为所述第一会话分配新IP地址,根据所述新IP地址更新所述会话信息;发送单元2004可用于向所述源接入网网元或所述终端发送所述新IP地址。
在一种可能的设计中,发送单元2004还可用于向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址,以使得所述源接入网网元根据所述第一指示向所述终端发送所述第一会话的老IP地址的有效时间。
在一种可能的设计中,处理单元2002还可用于对所述第一会话的IP地址进行ARP路由更新。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图21,其为本申请实施例提供的一种接入网网元的结构示意图。用于实现以上实施例中源接入网网元或目的接入网网元的操作。如图21所示,该接入网网元包括:天线2101、射频装置2102、基带装置2103。天线2101与射频装置2102连接。在上行方向上,射频装置2102通过天线2101接收终端发送的信息,将终端发送的信息发送给基带装置2103进行处理。在下行方向上,基带装置2103对终端的信息进行处理,并发送给射频装置2102,射频装置2102对终端的信息进行处理后经过天线2101发送给终端。
基带装置2103可以包括一个或多个处理元件21031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置2103还可以包括存储元件21032和接口电路21033,存储元件21032用于存储程序和数据;接口电路21033用于与射频装置2102交互信息,该接口电路例如为通用公共无线接口(common public radio interface,CPRI)。以上应用于接入网网元的装置可以位于基带装置2103,例如,以上应用于接入网网元的装置可以为基带装置2103上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上接入网网元执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,接入网网元实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于接入网网元的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中接入网网元执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,应用于接入网网元的装置实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
接入网网元实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上接入网网元执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上接入网网元执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于接入网网元的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种接入网网元执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行接入网网元执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行接入网网元执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上接入网网元执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图22,其为本申请实施例提供的一种核心网网元的结构示意图。其可以为以上实施例中的核心网网元,用于实现以上实施例中核心网网元的操作。如图22所示,该核心网网元包括:处理器2210和接口2230。处理器2210的数量可以为多个。所述处理器2210可以执行上述网元2000为核心网网元时处理单元2002的操作,接口2230可以执行上述网元2000为核心网网元时接收单元2003和/或发送单元2004的操作。可选的,该核心网网元还可包括存储器2220,存储器2220用于存储程序和数据。所述处理器2210可以是一种具有信号的处理能力的集成电路,例如CPU。或者以上各个单元的功能可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或 多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
基于与上述方法实施例相同构思,本申请实施例还提供了一种计算机可读存储介质,其上存储有一些指令,这些指令被计算机调用执行时,可以使得计算机完成上述方法实施例、方法实施例的任意一种可能的设计中所涉及的方法。本申请实施例中,对计算机可读存储介质不做限定,例如,可以是RAM(random-access memory,随机存取存储器)、ROM(read-only memory,只读存储器)等。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,该计算机程序产品在被计算机调用执行时可以完成方法实施例以及上述方法实施例任意可能的设计中所涉及的方法。
基于与上述方法实施例相同构思,本申请还提供一种芯片,该芯片与收发器耦合,用于完成上述方法实施例、方法实施例的任意一种可能的实现方式中所涉及的方法,其中,“耦合”是指两个部件彼此直接或间接地结合,这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (105)

  1. 一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    第一网元获取所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息;
    所述第一网元获取第一信息,所述第一信息用于指示所述目的接入网网元支持的本地分流的业务类型信息;
    根据所述第一信息和所述会话信息,确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述目的接入网网元处理所述第一会话。
  2. 一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    第一网元获取所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息;
    所述第一网元获取第一信息,所述第一信息用于指示所述目的接入网网元支持的本地分流的业务类型信息;
    根据所述第一信息和所述会话信息,确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由核心网网元处理所述第一会话。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网元为所述目的接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
  4. 根据权利要求3所述的方法,其特征在于,所述目的接入网网元获取所述终端的第一会话的会话信息,包括:
    所述目的接入网网元接收来自所述源接入网网元或核心网网元的所述会话信息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述目的接入网网元获取第一信息,包括:
    所述目的接入网网元从本地获取预先配置的所述第一信息;或,
    所述目的接入网网元接收来自核心网网元的所述第一信息。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述目的接入网网元确定由所述目的接入网网元处理所述第一会话之后,还包括:
    所述目的接入网网元更新所述第一会话的所述会话信息。
  7. 根据权利要求6所述的方法,其特征在于,所述目的接入网网元更新所述第一会话的所述会话信息,包括:
    所述目的接入网网元为所述第一会话分配新网际协议IP地址,根据所述新IP地址更新所述会话信息;
    所述目的接入网网元向所述源接入网网元或所述终端或核心网网元发送所述新IP地址。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    所述目的接入网网元向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址。
  9. 根据权利要求3-6任一项所述的方法,其特征在于,还包括:
    所述目的接入网网元对所述第一会话的IP地址进行地址解析协议ARP路由更新。
  10. 根据权利要求3-5任一项所述的方法,其特征在于,所述目的接入网网元确定由核心网网元处理所述第一会话之后,还包括:
    所述目的接入网网元向所述核心网网元发送所述会话信息以及所述第一会话的接入网隧道信息。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    所述目的接入网网元接收来自所述核心网网元的所述第一会话的核心网隧道信息。
  12. 根据权利要求1或2所述的方法,其特征在于,所述第一网元为核心网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
  13. 根据权利要求12所述的方法,其特征在于,所述核心网网元获取所述终端的第一会话的会话信息,包括:
    所述核心网网元接收来自所述源接入网网元的所述会话信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述核心网网元确定由所述目的接入网网元处理所述第一会话之后,还包括:
    所述核心网网元向所述目的接入网网元发送所述会话信息。
  15. 根据权利要求12或13所述的方法,其特征在于,还包括:
    所述核心网网元更新所述会话信息。
  16. 根据权利要求15所述的方法,其特征在于,所述核心网网元更新所述会话信息,包括:
    所述核心网网元为所述第一会话分配新网际协议IP地址,根据所述新IP地址更新所述会话信息;
    所述核心网网元向所述源接入网网元或所述终端发送所述新IP地址。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    所述核心网网元向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址。
  18. 根据权利要求12或13或15所述的方法,其特征在于,还包括:
    所述核心网网元对所述第一会话的IP地址进行地址解析协议ARP路由更新。
  19. 根据权利要求12或13或15-18任一项所述的方法,其特征在于,确定由核心网网元处理所述第一会话之后,还包括:
    所述核心网网元向所述目的接入网网元发送所述第一会话的核心网隧道信息。
  20. 根据权利要求19所述的方法,其特征在于,还包括:
    所述核心网网元接收来自所述目的接入网网元的所述第一会话的接入网隧道信息。
  21. 根据权利要求1或2所述的方法,其特征在于,所述第一网元为所述源接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
  22. 根据权利要求21所述的方法,其特征在于,所述源接入网网元确定由所述目的接入网网元处理所述第一会话之后,还包括:
    所述源接入网网元向所述目的接入网网元发送所述会话信息。
  23. 根据权利要求21所述的方法,其特征在于,所述源接入网网元确定由核心网网元处理所述第一会话之后,还包括:
    所述源接入网网元向所述核心网网元发送所述会话信息。
  24. 根据权利要求1所述的方法,其特征在于,所述第一网元为核心网网元,所述第 一会话为所述终端切换前由所述核心网网元管控的会话。
  25. 根据权利要求24所述的方法,其特征在于,所述核心网网元确定由所述目的接入网网元处理所述第一会话之后,还包括:
    所述核心网网元向所述目的接入网网元发送所述会话信息。
  26. 根据权利要求25所述的方法,其特征在于,还包括:
    所述核心网网元接收来自所述目的接入网网元的路径转换请求;
    所述核心网网元向所述目的接入网网元发送所述会话信息,包括:
    所述核心网网元向所述目的接入网网元发送路径转换请求确认消息,所述路径转换请求确认消息中包括所述会话信息。
  27. 根据权利要求25所述的方法,其特征在于,还包括:
    所述核心网网元接收来自所述源接入网网元的切换要求消息,所述切换要求消息中包括所述目的接入网网元的标识,所述切换要求消息用于请求将所述终端切换至所述目的接入网网元;
    所述核心网网元向所述目的接入网网元发送所述会话信息,包括:
    所述核心网网元向所述目的接入网网元发送切换请求消息,所述切换请求消息中包括所述会话信息。
  28. 根据权利要求12-27任一项所述的方法,其特征在于,所述第一网元获取第一信息,包括:
    所述第一网元从本地获取预先配置的所述第一信息;或,
    所述第一网元接收来自所述目的接入网网元的所述第一信息。
  29. 根据权利要求12-28任一项所述的方法,其特征在于,还包括:
    所述第一网元接收来自所述目的接入网网元的所述第一会话的新IP地址;
    所述第一网元向所述终端发送所述第一会话的新IP地址。
  30. 根据权利要求29所述的方法,其特征在于,还包括:
    所述第一网元接收来自所述目的接入网网元的第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址;
    所述第一网元根据所述第一指示向所述终端发送所述第一会话的老IP地址的有效时间。
  31. 根据权利要求2-5任一项或10或11或21或23或28所述的方法,其特征在于,还包括:
    所述第一网元接收来自所述核心网网元的所述第一会话的新网际协议IP地址;
    所述第一网元向所述终端发送所述第一会话的新IP地址。
  32. 根据权利要求31所述的方法,其特征在于,还包括:
    所述第一网元接收来自所述核心网网元的第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址;
    所述第一网元根据所述第一指示向所述终端发送所述第一会话的老IP地址的有效时间。
  33. 根据权利要求1-32任一项所述的方法,其特征在于,所述第一信息和所述第一业务类型信息分别包括如下至少一项业务类型标识信息:
    网络切片选择辅助信息NSSAI;
    数据网络名称DNN;或,
    应用标识App ID。
  34. 根据权利要求33所述的方法,其特征在于,所述第一信息还包括本地支持指示,所述本地支持指示用于指示所述目的接入网网元支持对与所述业务类型标识信息对应的业务进行本地分流。
  35. 根据权利要求33或34所述的方法,其特征在于,根据所述第一信息和所述会话信息,确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,包括:
    若所述第一业务类型信息与所述第一信息指示的所述目的接入网网元支持的本地分流的业务类型信息匹配,则所述第一网元确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述目的接入网网元处理所述第一会话。
  36. 根据权利要求33-35任一项所述的方法,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI和DNN;
    所述第一网元确定由所述目的接入网网元处理所述第一会话,包括:
    若所述第一业务类型信息包括的NSSAI和DNN分别与所述第一信息包括的NSSAI和DNN匹配,则所述第一网元确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述目的接入网网元处理所述第一会话。
  37. 根据权利要求33-35任一项所述的方法,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI、DNN以及APP ID;
    所述第一网元确定由所述目的接入网网元处理所述第一会话,包括:
    若所述第一业务类型信息包括的NSSAI、DNN以及APP ID分别与所述第一信息包括的NSSAI、DNN以及APP ID匹配,则所述第一网元确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述目的接入网网元处理所述第一会话。
  38. 根据权利要求33或34所述的方法,其特征在于,根据所述第一信息和所述会话信息,确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,包括:
    若所述第一业务类型信息与所述第一信息指示的所述目的接入网网元支持的本地分流的业务类型信息不匹配,则所述第一网元确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述核心网网元处理所述第一会话。
  39. 根据权利要求33或34或38所述的方法,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI和DNN;
    所述第一网元确定由核心网网元处理所述第一会话,包括:
    若所述第一业务类型信息包括的NSSAI和DNN,与所述第一信息包括的NSSAI和DNN不匹配,则所述第一网元确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述核心网网元处理所述第一会话。
  40. 根据权利要求33或34或38所述的方法,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI、DNN以及APP ID;
    所述第一网元确定由核心网网元处理所述第一会话,包括:
    若所述第一业务类型信息包括的NSSAI、DNN以及APP ID,与所述第一信息包括的NSSAI、DNN以及APP ID不匹配,则所述第一网元确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述核心网网元处理所述第一会话。
  41. 一种通信装置,所述装置应用于第一网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理单元;
    所述处理单元,用于获取所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息;
    所述处理单元,还用于获取第一信息,所述第一信息用于指示所述目的接入网网元支持的本地分流的业务类型信息;
    所述处理单元,还用于根据所述第一信息和所述会话信息,确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由所述目的接入网网元处理所述第一会话。
  42. 一种通信装置,所述装置应用于第一网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理单元;
    所述处理单元,用于获取所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息;
    所述处理单元,还用于获取第一信息,所述第一信息用于指示所述目的接入网网元支持的本地分流的业务类型信息;
    所述处理单元,还用于根据所述第一信息和所述会话信息,确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,所述第一网元确定由核心网网元处理所述第一会话。
  43. 根据权利要求41或42所述的装置,其特征在于,所述第一网元为所述目的接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
  44. 根据权利要求43所述的装置,其特征在于,所述装置还包括接收单元;
    所述接收单元,用于接收来自所述源接入网网元或核心网网元的所述会话信息。
  45. 根据权利要求43或44所述的装置,其特征在于,所述处理单元具体用于:从本地获取预先配置的所述第一信息;或者,
    所述接收单元,还用于接收来自核心网网元的所述第一信息。
  46. 根据权利要求43-45任一项所述的装置,其特征在于,所述处理单元还用于:
    更新所述第一会话的所述会话信息。
  47. 根据权利要求46所述的装置,其特征在于,所述处理单元具体用于:
    为所述第一会话分配新网际协议IP地址,根据所述新IP地址更新所述会话信息;
    所述装置还包括发送单元,所述发送单元用于向所述源接入网网元或所述终端或核心网网元发送所述新IP地址。
  48. 根据权利要求47所述的装置,其特征在于,所述发送单元还用于:
    向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址。
  49. 根据权利要求43-46任一项所述的装置,其特征在于,所述处理单元还用于:
    对所述第一会话的IP地址进行地址解析协议ARP路由更新。
  50. 根据权利要求43-45任一项所述的装置,其特征在于,所述装置还包括发送单元,
    所述发送单元,用于向所述核心网网元发送所述会话信息以及所述第一会话的接入网隧道信息。
  51. 根据权利要求50所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述核心网网元的所述第一会话的核心网隧道信息。
  52. 根据权利要求41或42所述的装置,其特征在于,所述第一网元为核心网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
  53. 根据权利要求52所述的装置,其特征在于,所述装置还包括接收单元;
    所述接收单元,用于接收来自所述源接入网网元的所述会话信息。
  54. 根据权利要求52或53所述的装置,其特征在于,所述装置还包括发送单元;
    所述发送单元,用于向所述目的接入网网元发送所述会话信息。
  55. 根据权利要求52或53所述的装置,其特征在于,所述处理单元还用于:
    更新所述会话信息。
  56. 根据权利要求55所述的装置,其特征在于,所述处理单元具体用于:
    为所述第一会话分配新网际协议IP地址,根据所述新IP地址更新所述会话信息;
    所述装置还包括发送单元,所述发送单元用于向所述源接入网网元或所述终端发送所述新IP地址。
  57. 根据权利要求56所述的装置,其特征在于,所述发送单元还用于:
    向所述源接入网网元发送第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址。
  58. 根据权利要求52或53或55任一项所述的装置,其特征在于,所述处理单元还用于:
    对所述第一会话的IP地址进行地址解析协议ARP路由更新。
  59. 根据权利要求52或53或55-58任一项所述的装置,其特征在于,所述发送单元,还用于向所述目的接入网网元发送所述第一会话的核心网隧道信息。
  60. 根据权利要求59所述的装置,其特征在于,所述接收单元,还用于接收来自所述目的接入网网元的所述第一会话的接入网隧道信息。
  61. 根据权利要求41或42所述的装置,其特征在于,所述第一网元为所述源接入网网元,所述第一会话为所述终端切换前由所述源接入网网元管控的会话。
  62. 根据权利要求61所述的装置,其特征在于,所述装置还包括发送单元;
    所述发送单元,用于向所述目的接入网网元发送所述会话信息。
  63. 根据权利要求61所述的装置,其特征在于,所述装置还包括发送单元;
    所述发送单元,用于向所述核心网网元发送所述会话信息。
  64. 根据权利要求41所述的装置,其特征在于,所述第一网元为核心网网元,所述第一会话为所述终端切换前由所述核心网网元管控的会话。
  65. 根据权利要求64所述的装置,其特征在于,所述装置还包括发送单元;
    所述发送单元,用于向所述目的接入网网元发送所述会话信息。
  66. 根据权利要求65所述的装置,其特征在于,所述装置还包括接收单元;
    所述接收单元,用于接收来自所述目的接入网网元的路径转换请求;
    所述发送单元具体用于:
    向所述目的接入网网元发送路径转换请求确认消息,所述路径转换请求确认消息中包括所述会话信息。
  67. 根据权利要求65所述的装置,其特征在于,所述装置还包括接收单元;
    所述接收单元,用于接收来自所述源接入网网元的切换要求消息,所述切换要求消息中包括所述目的接入网网元的标识,所述切换要求消息用于请求将所述终端切换至所述目的接入网网元;
    所述发送单元具体用于:
    向所述目的接入网网元发送切换请求消息,所述切换请求消息中包括所述会话信息。
  68. 根据权利要求52-67任一项所述的装置,其特征在于,所述处理单元具体用于:
    从本地获取预先配置的所述第一信息;或,
    所述接收单元还用于接收来自所述目的接入网网元的所述第一信息。
  69. 根据权利要求52-68任一项所述的装置,其特征在于,所述接收单元还用于,接收来自所述目的接入网网元的所述第一会话的新IP地址;
    所述发送单元还用于,向所述终端发送所述第一会话的新IP地址。
  70. 根据权利要求69所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述目的接入网网元的第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址;
    所述发送单元,还用于根据所述第一指示向所述终端发送所述第一会话的老IP地址的有效时间。
  71. 根据权利要求42-45任一项或50或51或61或63或68所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述核心网网元的所述第一会话的新网际协议IP地址;
    所述发送单元还用于:向所述终端发送所述第一会话的新IP地址。
  72. 根据权利要求71所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述核心网网元的第一指示,所述第一指示用于指示已为所述第一会话分配新IP地址;
    所述发送单元还用于:
    根据所述第一指示向所述终端发送所述第一会话的老IP地址的有效时间。
  73. 根据权利要求41-72任一项所述的装置,其特征在于,所述第一信息和所述第一业务类型信息分别包括如下至少一项业务类型标识信息:
    网络切片选择辅助信息NSSAI;
    数据网络名称DNN;或,
    应用标识App ID。
  74. 根据权利要求73所述的装置,其特征在于,所述第一信息还包括本地支持指示,所述本地支持指示用于指示所述目的接入网网元支持对与所述业务类型标识信息对应的业务进行本地分流。
  75. 根据权利要求73或74所述的装置,其特征在于,所述处理单元具体用于:
    若所述第一业务类型信息与所述第一信息指示的所述目的接入网网元支持的本地分流的业务类型信息匹配,则确定所述目的接入网网元支持对所述第一业务类型信息对应的 业务进行本地分流,确定由所述目的接入网网元处理所述第一会话。
  76. 根据权利要求73-75任一项所述的装置,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI和DNN;
    所述处理单元具体用于:
    若所述第一业务类型信息包括的NSSAI和DNN分别与所述第一信息包括的NSSAI和DNN匹配,则确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,确定由所述目的接入网网元处理所述第一会话。
  77. 根据权利要求73-75任一项所述的装置,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI、DNN以及APP ID;
    所述处理单元具体用于:
    若所述第一业务类型信息包括的NSSAI、DNN以及APP ID分别与所述第一信息包括的NSSAI、DNN以及APP ID匹配,则确定所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流,确定由所述目的接入网网元处理所述第一会话。
  78. 根据权利要求73或74所述的装置,其特征在于,所述处理单元具体用于:
    若所述第一业务类型信息与所述第一信息指示的所述目的接入网网元支持的本地分流的业务类型信息不匹配,则确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,确定由所述核心网网元处理所述第一会话。
  79. 根据权利要求73或74或78所述的装置,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI和DNN;
    所述处理单元具体用于:
    若所述第一业务类型信息包括的NSSAI和DNN,与所述第一信息包括的NSSAI和DNN不匹配,则确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,确定由所述核心网网元处理所述第一会话。
  80. 根据权利要求73或74或78所述的装置,其特征在于,所述第一信息和所述第一业务类型信息分别包括NSSAI、DNN以及APP ID;
    所述处理单元具体用于:
    若所述第一业务类型信息包括的NSSAI、DNN以及APP ID,与所述第一信息包括的NSSAI、DNN以及APP ID不匹配,则确定所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流,确定由所述核心网网元处理所述第一会话。
  81. 一种通信系统,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括用于执行如权利要求1-40任一项所述的方法的第一网元。
  82. 根据权利要求81所述的系统,其特征在于,当所述第一网元为所述目的接入网网元时,所述系统还包括所述源接入网网元和/或核心网网元。
  83. 根据权利要求81所述的系统,其特征在于,当所述第一网元为所述源接入网网元时,所述系统还包括所述目的接入网网元和/或核心网网元。
  84. 根据权利要求81所述的系统,其特征在于,当所述第一网元为核心网网元时,所述系统还包括所述目的接入网网元和/或所述源接入网网元。
  85. 一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    目的接入网网元接收来自第一网元的所述终端的第一会话的会话信息,所述会话信息 包括第一业务类型信息;所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流;
    所述目的接入网网元更新所述会话信息。
  86. 一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    核心网网元接收来自目的接入网网元的所述终端的第一会话的会话信息以及第一会话的接入网隧道信息,所述会话信息包括第一业务类型信息,所述第一会话为终端切换前由源接入网网元管控的会话,所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流;
    所述核心网网元向目的接入网网元发送第一会话的核心网隧道信息。
  87. 一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    目的接入网网元接收来自核心网网元的终端的第一会话的核心网隧道信息,所述第一会话为终端切换前由源接入网网元管控的会话,所述第一会话的会话信息包括第一业务类型信息,所述目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流;
    所述目的接入网网元向核心网网元发送第一会话的接入网隧道信息。
  88. 一种通信方法,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    核心网网元接收来自源接入网网元的终端的第一会话的会话信息,所述会话信息包括第一业务类型信息,所述第一会话为终端切换前由源接入网网元管控的会话,目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流;
    所述核心网网元更新会话信息。
  89. 一种通信装置,所述装置应用于目的接入网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    接收单元,用于接收来自第一网元的所述终端的第一会话的会话信息,所述会话信息包括第一业务类型信息;所述目的接入网网元支持对所述第一业务类型信息对应的业务进行本地分流;
    处理单元,用于更新所述会话信息。
  90. 一种通信装置,所述装置应用于核心网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    接收单元,用于接收来自目的接入网网元的所述终端的第一会话的会话信息以及第一会话的接入网隧道信息,所述会话信息包括第一业务类型信息,所述第一会话为终端切换前由源接入网网元管控的会话,所述目的接入网网元不支持对所述第一业务类型信息对应的业务进行本地分流;
    发送单元,用于向目的接入网网元发送第一会话的核心网隧道信息。
  91. 一种通信装置,所述装置应用于目的接入网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    接收单元,用于接收来自核心网网元的终端的第一会话的核心网隧道信息,所述第一会话为终端切换前由源接入网网元管控的会话,所述第一会话的会话信息包括第一业务类型信息,所述目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流;
    发送单元,用于向核心网网元发送第一会话的接入网隧道信息。
  92. 一种通信装置,所述装置应用于核心网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:
    接收单元,用于接收来自源接入网网元的终端的第一会话的会话信息,所述会话信息包括第一业务类型信息,所述第一会话为终端切换前由源接入网网元管控的会话,目的接入网网元不支持对第一业务类型信息对应的业务进行本地分流;
    处理单元,用于更新会话信息。
  93. 一种通信装置,所述装置应用于第一网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理器;
    所述处理器,用于执行上述权利要求1-40任一项所述的方法。
  94. 一种通信装置,所述装置应用于目的接入网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理器;
    所述处理器,用于执行上述权利要求85所述的方法。
  95. 一种通信装置,所述装置应用于核心网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理器;
    所述处理器,用于执行上述权利要求86所述的方法。
  96. 一种通信装置,所述装置应用于目的接入网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理器;
    所述处理器,用于执行上述权利要求87所述的方法。
  97. 一种通信装置,所述装置应用于核心网网元,应用于终端从源接入网网元到目的接入网网元的切换场景,其特征在于,包括:处理器;
    所述处理器,用于执行上述权利要求88所述的方法。
  98. 一种装置,其特征在于,用于执行权利要求1-40任一项所述的方法。
  99. 一种装置,其特征在于,用于执行权利要求85所述的方法。
  100. 一种装置,其特征在于,用于执行权利要求86所述的方法。
  101. 一种装置,其特征在于,用于执行权利要求87所述的方法。
  102. 一种装置,其特征在于,用于执行权利要求88所述的方法。
  103. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-40任一所述的方法,或执行如权利要求85所述的方法,或执行如权利要求86所述的方法,或执行如权利要求87所述的方法,或执行如权利要求88所述的方法。
  104. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得计算机执行如权利要求1-40任一所述的方法,或执行如权利要求85所述的方法,或执行如权利要求86所述的方法,或执行如权利要求87所述的方法,或执行如权利要求88所述的方法。
  105. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-40、85-88任一项所述的方法。
PCT/CN2020/109306 2019-08-16 2020-08-14 一种通信方法和装置 WO2021032013A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20854771.1A EP4016959B1 (en) 2019-08-16 2020-08-14 Communication method and apparatus
US17/673,533 US20220174553A1 (en) 2019-08-16 2022-02-16 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760935.2A CN112398891B (zh) 2019-08-16 2019-08-16 一种通信方法和装置
CN201910760935.2 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/673,533 Continuation US20220174553A1 (en) 2019-08-16 2022-02-16 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021032013A1 true WO2021032013A1 (zh) 2021-02-25

Family

ID=74603161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109306 WO2021032013A1 (zh) 2019-08-16 2020-08-14 一种通信方法和装置

Country Status (4)

Country Link
US (1) US20220174553A1 (zh)
EP (1) EP4016959B1 (zh)
CN (1) CN112398891B (zh)
WO (1) WO2021032013A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023043728A1 (en) * 2021-09-14 2023-03-23 Ofinno, Llc Base station selection for timing resiliency service

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125608A (zh) * 2013-04-25 2014-10-29 华为技术有限公司 一种网络控制分流的方法和系统及其网络设备
CN106604329A (zh) * 2015-10-15 2017-04-26 大唐移动通信设备有限公司 一种网络切换方法及设备
CN108377459A (zh) * 2016-10-11 2018-08-07 中国移动通信有限公司研究院 一种连接管理方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101629312B1 (ko) * 2009-06-09 2016-06-21 엘지전자 주식회사 메시지 교환 방법 및 싱크 디바이스
US8976657B2 (en) * 2011-03-08 2015-03-10 Medium Access Systems Private Ltd. Method and system for data offloading in mobile communications
US10952176B2 (en) * 2017-03-17 2021-03-16 Samsung Electronics Co., Ltd. AF influenced PDU session management and subscription procedures
US11122470B2 (en) * 2017-05-04 2021-09-14 Ofinno, Llc Network slice information for handover procedure
CN109168180B (zh) * 2017-08-11 2020-03-10 华为技术有限公司 通信方法及源基站、目标基站、核心网设备、终端设备
CN109673060B (zh) * 2017-10-17 2021-08-20 华为技术有限公司 一种通信方法及装置
US10383046B2 (en) * 2017-10-20 2019-08-13 Verizon Patent And Licensing Inc. RAN-core pairing service
CN109951824B (zh) * 2018-04-09 2022-04-05 华为技术有限公司 通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125608A (zh) * 2013-04-25 2014-10-29 华为技术有限公司 一种网络控制分流的方法和系统及其网络设备
CN106604329A (zh) * 2015-10-15 2017-04-26 大唐移动通信设备有限公司 一种网络切换方法及设备
CN108377459A (zh) * 2016-10-11 2018-08-07 中国移动通信有限公司研究院 一种连接管理方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL, NEC: "Update of user plane security policy for TS 38.413", 3GPP DRAFT; R3-182370_SECUPOLICY_413, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Sanya, China; 20180416 - 20180420, 20 April 2018 (2018-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051430486 *
See also references of EP4016959A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023043728A1 (en) * 2021-09-14 2023-03-23 Ofinno, Llc Base station selection for timing resiliency service

Also Published As

Publication number Publication date
EP4016959B1 (en) 2024-10-09
CN112398891B (zh) 2023-04-18
EP4016959A4 (en) 2022-10-26
US20220174553A1 (en) 2022-06-02
CN112398891A (zh) 2021-02-23
EP4016959A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
JP6561204B2 (ja) Ip層におけるデュアルコネクティビティおよびキャリアアグリゲーション
US20200067689A1 (en) Method and apparatus for configuring aggregate maximum bit rate
EP2608457B1 (en) System and method for resource management for operator services and internet
EP2608617B1 (en) System and method for resource management for operator services and internet
US9674850B2 (en) Method of establishing radio bearer, access point apparatus, user equipment and system
US20100309881A1 (en) Mobile communication system and tunnel management method thereof
WO2020200254A1 (zh) 一种通信方法及装置
WO2022033558A1 (zh) 一种中继管理方法及通信装置
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
CN113068204B (zh) 一种支持pdn链路优化的5g核心网系统及方法
WO2016141545A1 (zh) 业务流分流的方法和装置
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2021032013A1 (zh) 一种通信方法和装置
WO2012126331A1 (zh) 数据传递方法及系统
WO2011023125A1 (zh) 释放连接的方法、装置及系统
CN101296172B (zh) 一种分布式会话边缘控制装置、系统及方法
CN101262415B (zh) 一种分布式集中混合控制的装置、系统及方法
WO2018120246A1 (zh) 一种数据传输方法及相关网元
WO2014183276A1 (zh) 一种无线网络的分流方法及设备
CN102131302B (zh) 维护x2连接承载通道的方法、装置
Cao et al. Traffic Offloading Technology Based on DNN and UL CL in 5G-Adv Network
US11778523B1 (en) Methods and systems for communicating between base stations of two different wireless communication networks
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
JP6645677B2 (ja) リンク確立方法およびデバイス
WO2012129997A1 (zh) 本地访问连接的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854771

Country of ref document: EP

Effective date: 20220316