WO2021031919A1 - 资源分配方法、控制器和反射器 - Google Patents

资源分配方法、控制器和反射器 Download PDF

Info

Publication number
WO2021031919A1
WO2021031919A1 PCT/CN2020/108341 CN2020108341W WO2021031919A1 WO 2021031919 A1 WO2021031919 A1 WO 2021031919A1 CN 2020108341 W CN2020108341 W CN 2020108341W WO 2021031919 A1 WO2021031919 A1 WO 2021031919A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
capability
frequency
controller
sideband
Prior art date
Application number
PCT/CN2020/108341
Other languages
English (en)
French (fr)
Inventor
黄煌
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021031919A1 publication Critical patent/WO2021031919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • This application relates to the field of communication technology, and in particular to a resource allocation method, controller and reflector.
  • Reflective communication is a very low-power, low-cost passive communication technology that does not require a dedicated RF excitation source and is suitable for IoT applications.
  • a typical reflector uses double-sideband modulation.
  • single-sideband communication is adopted, which can directly indicate the location of a section of available frequency resources.
  • the way of indicating the position of the frequency resource is to indicate the position of the starting frequency resource block and the number of consecutive resource blocks.
  • Double-sideband modulation or single-sideband modulation may be used.
  • the required frequency resources are different. If the frequency resource location is indicated by direct indication, the allocated resources may be redundant. Cause a waste of resources.
  • the embodiment of the present application provides a resource allocation method, which is used in a reflective communication system, which can reduce waste of frequency resources.
  • the first aspect of the embodiments of the present application provides a resource allocation method.
  • the method includes: a controller determines the capability of a reflector, and the capability of the reflector includes at least one of a single double sideband capability, a harmonic suppression capability, and a spectrum shift capability One; the controller determines the available frequency resource of the reflector according to the capability of the reflector; the controller sends a scheduling instruction to the reflector, and the scheduling instruction is used to indicate the information of the available frequency resource .
  • a reflection communication system usually consists of three nodes: exciter, reflector, and receiver.
  • the exciter and receiver can also be combined into a transceiver. Whether in a two-node system or a three-node system, there is always a reflector configuration
  • the available frequency resource and the control-side device that sends scheduling instructions is called a controller in this embodiment of the application.
  • the controller may be an exciter, a receiver, or a transceiver, which is not limited here.
  • the controller can acquire the capability of the reflector in a variety of ways, including at least one of single double-sideband capability, harmonic suppression capability, and spectrum shift capability, and then determine the available frequency resources allocated to the reflector according to the capability of the reflector, and then , The controller may send a scheduling instruction to the reflector to indicate the available frequency resource.
  • the controller determines at least one of the single double sideband capability, the harmonic suppression capability, and the spectrum shifting capability sent by the reflector, and then according to the single double sideband capability, the harmonic suppression capability, and the spectrum shifting capability At least one of determines the available frequency resource of the reflector, and sends a scheduling indication to the reflector to indicate the available frequency resource.
  • the resource allocation method provided in the embodiments of the present application can reduce waste of frequency resources. For example, for a reflector with double-sideband modulation capability, since the required frequency resource is a non-contiguous multi-band frequency resource, it directly indicates one segment compared with the prior art. Frequency resource location, this method indicates the available frequency resource according to the capability of the reflector, which can reduce the waste of frequency resource.
  • the single double-sideband capability of the reflector includes: double-sideband modulation capability
  • the available frequency resource includes a first frequency resource and a second frequency resource, and the first frequency resource It is symmetrical with the second frequency resource about the target frequency, and the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; or, if the reflector is single
  • the double-sideband capabilities include: single-sideband modulation capabilities, and the available frequency resources include single-sideband frequency resources.
  • the resource allocation method provided by the embodiments of this application can allocate frequency resources according to the single-sideband capability of the reflector. For reflectors with single-sideband modulation capability, single-sideband frequency resources can be directly allocated, and for reflectors with double-sideband modulation
  • the controller assigns symmetrical double-sideband frequency resources to the reflector with the ability to cover the frequency position of the image signal.
  • the controller allocates appropriate and sufficient resources to the reflector, which can not only reduce resource waste, but also avoid signal interference caused by allocating the frequency position of the mirror signal to other terminals.
  • the scheduling indication includes: a first scheduling indication, and the first scheduling indication is used to indicate the first Frequency resource information, or the first scheduling indication is used to indicate the information of the first frequency resource and the target frequency, or the first scheduling indication is used to indicate the information of the first frequency resource and the second frequency resource
  • the scheduling indication includes: a second scheduling indication, and the second scheduling indication is used to indicate the frequency resource information of the single-sideband.
  • a reflector with single-sideband modulation capability can directly send a scheduling instruction to indicate frequency resource information of the single-sideband.
  • frequency resources symmetric based on the target frequency are available by default, which can reduce the indication overhead; directly indicate all available frequency resources, and the indication overhead is as large as the traditional method , But it can ensure that the double-sideband modulated reflector can work normally and reduce the waste of resources.
  • the harmonic suppression capability of the reflector includes: harmonics less than or equal to the Nth harmonic cannot meet the preset requirements, or the N+1th harmonic meets the preset requirements.
  • the requirement, or the Nth harmonic cannot meet the preset requirement the N is a positive integer greater than 1, and the available frequency resource includes the frequency position of the Nth harmonic less than or equal to.
  • the controller can determine the frequency resources that the reflector needs to occupy and the interference to other users according to the harmonic suppression capability of the reflector, and can allocate appropriate and sufficient resources accordingly.
  • the waste of resources can be reduced, and the signal interference caused by allocating the frequency position of the harmonic signal that cannot be suppressed to other terminals can also be avoided.
  • the spectrum movement capability of the reflector includes: spectrum movement capability, and the movement range is the first frequency range, the starting position or center position of the available frequency resource is based on The first frequency range is determined.
  • the controller can determine the starting position or the center position of the allocated frequency resource according to the spectrum movement capability of the reflector, ensuring that the allocated frequency resource is within the capability range of the reflector, and also increases Flexibility in resource allocation.
  • the method further includes: the controller receives a reflected signal, or a random access message, or data sent by the reflector; the controller determines the ability of the reflector to include: The controller determines the capability of the reflector by detecting the reflected signal, the signal carrying the random access information, or the frequency spectrum for transmitting the data.
  • the controller can implicitly report the capability of the reflector by detecting the transmission frequency band of various signals sent by the reflector, and does not require additional communication resources.
  • the controller receives the reflected signal, or random access message, or data sent by the reflector; the controller determining the capability of the reflector includes: the controller detects the The reflected signal, the signal carrying the random access information, or the frequency spectrum for transmitting the data, determines the single double sideband capability and/or harmonic suppression capability of the reflector.
  • the method further includes: the controller receives the first random access message sent by the reflector; the controller determining the capability of the reflector includes: the controller according to the first random access message; The random access message determines the capability of the reflector, and the sequence group to which the sequence carrying the first random access message belongs corresponds to the capability of the reflector.
  • the controller since the controller originally needs to detect the sequence group to which the sequence carrying the first random access message belongs, the detection complexity of the controller is low, and the capability of the reflector can be obtained earlier.
  • the first random access message includes: random access message 1 or random access message A, and random access message A includes random access message 1.
  • the controller receives the second random access message; the controller determining the capability of the reflector includes: the controller guides according to the data transmitted by the second random access message The frequency or scrambled signal determines the capability of the reflector.
  • the data or the pilot signal or the scrambled signal transmitted by the second random access message can carry the spectrum movement capability, occupy less resources, and have high resource utilization.
  • the second random access message includes: random access message 3, or random access message A, and random access message A includes random access message 3.
  • the spectrum transfer capability of the reflector is carried by the second random access message.
  • the method further includes: the controller receiving the reflector's capability information sent by the reflector through a data transmission channel.
  • the data sent by the reflector through the data transmission channel carries at least one of single double-sideband capability, harmonic suppression capability, and spectrum shift capability.
  • the amount of information that can be carried through data transmission is large and the method is simple. .
  • the method further includes: the controller receives the capability type information sent by the reflector; the controller determining the capability of the reflector includes: the controller determines the capability type information according to the capability type information. The capability of the reflector; wherein the capability type information corresponds to the capability set of the reflector.
  • the resource allocation method provided by the embodiment of the present application is simple and easy to implement, can define and report the capabilities of a typical reflector, and can reduce the reporting overhead.
  • the second aspect of the embodiments of the present application provides a resource allocation method, which is characterized in that it includes: the reflector sends information about the capability of the reflector to the controller, and the capability of the reflector includes: single double sideband capability, harmonic suppression At least one of a capability and a spectrum transfer capability; the reflector receives a scheduling instruction sent by the controller, and the scheduling instruction is used to indicate information about the available frequency resource of the reflector, where the available frequency resource is determined by the controller according to the The capacity of the reflector is determined.
  • the reflector sends the information of the reflector's capability to the controller, and the controller determines at least one of the single double sideband capability, the harmonic suppression capability, and the spectrum shift capability sent by the reflector, and then according to At least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability determines the available frequency resource of the reflector, and sends a scheduling instruction to the reflector to indicate the available frequency resource.
  • the resource allocation method provided by the embodiments of the present application can reduce waste of frequency resources. For example, for a reflector with double-sideband capability, since the required frequency resources are non-contiguous multiple frequency resources, it directly indicates a frequency resource compared to the prior art. Location, this method indicates the available frequency resources according to the capability of the reflector, which can reduce waste of frequency resources.
  • the single double-sideband capability of the reflector includes: double-sideband modulation capability
  • the available frequency resource includes a first frequency resource and a second frequency resource, and the first frequency resource and The second frequency resource is symmetrical with respect to the target frequency.
  • the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; or, if the reflector has both sides
  • Band capabilities include: single-sideband modulation capabilities, and the available frequency resources include single-sideband frequency resources.
  • the resource allocation method provided by the embodiments of the present application can allocate frequency resources according to the single-sideband capability of the reflector. For reflectors with single-sideband modulation capability, it can receive scheduling instructions for directly allocating single-sideband frequency resources. For the reflector with double-sideband modulation capability, the controller allocates symmetrical double-sideband frequency resources to it, covering the frequency position of the image signal. The controller allocates appropriate and sufficient resources to the reflector, which can not only reduce resource waste, but also avoid signal interference caused by allocating the frequency position of the mirror signal to other terminals.
  • the scheduling indication includes a first scheduling indication, and the first scheduling indication is used to indicate the first frequency Resource information, or the first scheduling indication is used to indicate the information of the first frequency resource and the target frequency, or the first scheduling indication is used to indicate the information of the first frequency resource and the information of the second frequency resource;
  • the scheduling indication includes a first scheduling indication, the second scheduling indication, and the second scheduling indication is used to indicate the frequency resource of the single sideband.
  • the scheduling instruction directly indicates unilateral frequency resources, and for a reflector with double-sideband modulation capability, the scheduling instruction may indicate unilateral Frequency resources, symmetrical frequency resources based on the target frequency are available by default, which can reduce the instruction overhead; scheduling instructions can also directly indicate all the available frequency resources of the double-sideband, the instruction overhead is the same as the traditional method, but it can ensure the double-sideband modulation reflection The device can work normally, reducing resource waste.
  • receiving, by the reflector, the scheduling instruction sent by the controller includes:
  • harmonic suppression capability of the reflector includes:
  • the harmonics less than or equal to the Nth harmonic cannot meet the preset requirements, or the N+1th harmonics meet the preset requirements, or the Nth harmonic cannot meet the preset requirements, and the N is a positive integer greater than 1.
  • the available frequency resources include frequency positions of harmonics less than or equal to the Nth harmonic.
  • the available frequency resources indicated in the scheduling instructions are allocated by the controller according to the harmonic suppression capability of the reflector, taking into account the interference of harmonics to other users, and can allocate appropriate and sufficient resources accordingly.
  • the resources can not only reduce the waste of resources, but also avoid signal interference caused by allocating the frequency position of the harmonic signal that cannot be suppressed to other terminals.
  • the spectrum movement capability of the reflector includes: spectrum movement capability, and the movement range is the first frequency range, the start position or center position of the available frequency resource is based on The first frequency range is determined.
  • the starting position or the center position of the available frequency resource indicated in the scheduling instruction is determined by the controller according to the reflector's spectrum movement capability to ensure that the allocated frequency resource is within the capability of the reflector , It also increases the flexibility of resource allocation.
  • the reflector sending information about the capability of the reflector to the controller includes: the reflector sending a reflection signal, a random access message or data to the controller, the reflection signal , The transmission spectrum of the random access message or the data is used to indicate the capability of the reflector.
  • the reflector can implicitly report the capability of the reflector through the transmission spectrum of various signals sent by the reflector, and no additional communication resources are required.
  • the reflector sending information about the capability of the reflector to the controller includes: the reflector sending a reflection signal, a random access message or data to the controller, the reflection signal
  • the transmission spectrum of the random access message or the data is used to indicate the single double-sideband capability and/or the harmonic suppression capability of the reflector.
  • the reflector sending the reflector’s capability information to the controller includes: the reflector sending a first random access message to the controller, carrying the The sequence group to which the sequence of the first random access message belongs corresponds to the capability of the reflector.
  • the reflector reports the capability of the reflector through the sequence group to which the sequence carrying the first random access message belongs, because the controller originally needs to detect different sequence groups of the first random access message , The detection complexity of the controller is low, and the ability of the reflector can be obtained earlier.
  • the first random access message includes: random access message 1 or random access message A, and random access message A includes random access message 1.
  • the reflector sending the reflector capability information to the controller includes: the reflector sends a second random access message to the controller, and the second random access
  • the data, pilot or scrambled signal transmitted by the message is used to determine the capability of the reflector.
  • the second random access message carries the spectrum movement capability, the amount of information that can be transmitted is large, and the resource utilization rate is high.
  • the second random access message includes: random access message 3, or random access message A, where random access message A includes random access message 3.
  • the random access message 3 or the random access message A carries the spectrum movement capability, the amount of information that can be transmitted is large, and the resource utilization rate is high.
  • the spectrum movement capability of the reflector is carried by the second random access message.
  • the reflector sending the information of the reflector's capability to the controller includes: the reflector sends data to the controller through a data transmission channel, the data carrying the reflector Ability information.
  • the data sent by the reflector through the data transmission channel carries at least one of single double-sideband capability, harmonic suppression capability, and spectrum shift capability.
  • the amount of information that can be carried through data transmission is large and the method is simple. .
  • the reflector sending the reflector's capability information to the controller includes: the reflector sending the reflector's capability type information to the controller, where the capability type The information corresponds to the set of capabilities of the reflector.
  • the resource allocation method provided by the embodiment of the present application is simple and easy to implement, can define and report the capabilities of a typical reflector, and can reduce the reporting overhead.
  • a third aspect of the embodiments of the present application provides a controller, including: a determining unit for determining the capability of the reflector, the capability of the reflector including: at least one of a single double sideband capability, a harmonic suppression capability, and a spectrum shift capability One; the determining unit is further configured to determine the available frequency resource of the reflector according to the capability of the reflector; the sending unit is configured to send a scheduling instruction to the reflector, and the scheduling instruction is used to indicate the information of the available frequency resource.
  • the single double-sideband capability of the reflector includes: double-sideband modulation capability
  • the available frequency resource includes a first frequency resource and a second frequency resource, and the first frequency resource It is symmetrical with the second frequency resource about the target frequency, and the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; or, if the reflector is single
  • the double-sideband capabilities include: single-sideband modulation capabilities, and the available frequency resources include single-sideband frequency resources.
  • the scheduling indication includes: a first scheduling indication, and the first scheduling indication is used to indicate the first Frequency resource information, or the first scheduling indication is used to indicate the information of the first frequency resource and the target frequency, or the first scheduling indication is used to indicate the information of the first frequency resource and the information of the second frequency resource
  • the scheduling indication includes: a second scheduling indication, and the second scheduling indication is used to indicate the frequency resource information of the single-sideband.
  • the harmonic suppression capability of the reflector includes: the harmonics less than or equal to the Nth order cannot meet the preset requirements, or the N+1th harmonics meet the preset requirements.
  • the requirement, or the Nth harmonic cannot meet the preset requirement, the N is a positive integer greater than 1, and the available frequency resource includes the frequency position of the Nth harmonic less than or equal to.
  • the spectrum movement capability of the reflector includes: spectrum movement capability and the movement range is the first frequency range
  • the starting position or the center position of the available frequency resource is based on The first frequency range is determined.
  • the controller further includes: a receiving unit, configured to receive the reflected signal, or random access message, or data sent by the reflector; the determining unit, specifically configured to pass Detect the reflected signal, the signal carrying the random access information, or the frequency spectrum for transmitting the data, and determine the capability of the reflector.
  • the controller further includes: a receiving unit, configured to receive a first random access message sent by the reflector; and the determining unit, specifically configured to receive a first random access message according to the first random access The message determines the capability of the reflector, and the sequence group to which the sequence carrying the first random access message belongs corresponds to the capability of the reflector.
  • the first random access message includes: random access message 1 or random access message A, and random access message A includes random access message 1.
  • the controller further includes: a receiving unit, configured to receive a second random access message; and the determining unit, specifically configured to transmit data according to the second random access message ,
  • the pilot or scrambled signal determines the capability of the reflector.
  • the second random access message includes: random access message 3, or random access message A, where random access message A includes random access message 3.
  • the controller further includes: a receiving unit configured to receive the reflector's capability information sent by the reflector through the data transmission channel.
  • the controller further includes: a receiving unit, configured to receive capability type information sent by the reflector; and the determining unit, specifically configured to determine the reflector according to the capability type information The capability; where the capability type information corresponds to the capability set of the reflector.
  • the fourth aspect of the embodiments of the present application provides a reflector, including: a sending unit for sending information about the capability of the reflector to a controller.
  • the capability of the reflector includes: single double sideband capability, harmonic suppression capability, and At least one of the spectrum movement capabilities; a receiving unit, configured to receive a scheduling indication sent by the controller, the scheduling indication is used to indicate information about the available frequency resource of the reflector, where the available frequency resource is based on the controller according to the The capacity of the reflector is determined.
  • the single double-sideband capability of the reflector includes: double-sideband modulation capability
  • the available frequency resource includes a first frequency resource and a second frequency resource, and the first frequency resource and The second frequency resource is symmetrical with respect to the target frequency.
  • the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; or, if the reflector has both sides
  • Band capabilities include: single-sideband modulation capabilities, and the available frequency resources include single-sideband frequency resources.
  • the scheduling indication includes a first scheduling indication, and the first scheduling indication is used to indicate the first frequency Resource information, or the first scheduling indication is used to indicate the information of the first frequency resource and the target frequency, or the first scheduling indication is used to indicate the information of the first frequency resource and the information of the second frequency resource;
  • the scheduling indication includes a first scheduling indication, the second scheduling indication, and the second scheduling indication is used to indicate the frequency resource of the single sideband.
  • the harmonic suppression capability of the reflector includes: the harmonics less than or equal to the Nth order cannot meet the preset requirements, or the N+1th harmonics meet the preset requirements.
  • the requirement, or the Nth harmonic cannot meet the preset requirement, the N is a positive integer greater than 1, and the available frequency resource includes the frequency position of the Nth harmonic less than or equal to.
  • the spectrum movement capability of the reflector includes: spectrum movement capability, and the movement range is the first frequency range, the start position or the center position of the available frequency resource is based on The first frequency range is determined.
  • the sending unit is specifically configured to send a reflection signal, a random access message or data to the controller, and a transmission spectrum of the reflection signal, the random access message or the data Used to indicate the capability of the reflector.
  • the sending unit is specifically configured to send a first random access message to the controller, the sequence group to which the sequence carrying the first random access message belongs and the reflector The ability to correspond.
  • the first random access message includes: random access message 1 or random access message A, and random access message A includes random access message 1.
  • the sending unit is specifically configured to send a second random access message to the controller, and the data, pilot or scrambling signal transmitted by the second random access message is used for To determine the ability of the reflector.
  • the second random access message includes: random access message 3, or random access message A, and random access message A includes random access message 3.
  • the sending unit is specifically configured to send data to the controller through a data transmission channel, the data carrying information about the capability of the reflector.
  • the sending unit is specifically configured to send the capability type information of the reflector to the controller, where the capability type information corresponds to the capability set of the reflector.
  • a fifth aspect of the embodiments of the present application provides a controller, including a memory, configured to store instructions, and a processor, configured to execute instructions in the memory, so that the processor executes the resource allocation method in the first aspect.
  • a sixth aspect of the embodiments of the present application provides a reflector, including: a memory, configured to store instructions; and a processor, configured to execute instructions in the memory, so that the processor executes the resource allocation method in the foregoing first aspect.
  • a seventh aspect of the embodiments of the present application provides a reflection communication system, which includes the controller provided in the foregoing third aspect and the reflector provided in the foregoing fourth aspect.
  • the eighth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product includes an instruction.
  • the instruction runs on a computer, the computer executes the first aspect, the second aspect, and the implementation manners thereof. method.
  • the ninth aspect of the embodiments of the present application provides a computer-readable storage medium that stores instructions.
  • the instructions When the instructions are run on a computer, the first and second aspects of the foregoing embodiments of the present application are implemented. The methods provided by each implementation.
  • a tenth aspect of the embodiments of the present application provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in any possible implementation manner of any of the foregoing aspects.
  • the chip should include a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • the controller determines at least one of the single double-sideband capability, harmonic suppression capability, and spectrum shift capability of the reflector, and then according to the single double-sideband capability, harmonic suppression capability, and At least one of the spectrum movement capabilities determines the available frequency resource of the reflector; and sends a scheduling instruction to the reflector, instructing the reflector to send a reflected signal at the available frequency resource location.
  • the resource allocation method provided in the embodiment of the present application indicates the available frequency resources according to at least one of the single double-sideband capability, harmonic suppression capability, and spectrum shift capability of the reflector, which can reduce Waste of frequency resources.
  • this method determines the multi-band frequency resources allocated to the reflector according to the single double-sideband capability of the reflector, which can reduce Frequency resources are wasted.
  • Figure 1 is a schematic diagram of a reflective communication network
  • FIG. 2 is a schematic diagram of a reflection communication network architecture in an embodiment of the application
  • FIG. 3 is a schematic diagram of a reflection communication application scenario in an embodiment of the application.
  • Figure 4 is a schematic diagram of the signal spectrum of the double-sideband modulation of the reflector
  • Figure 5 is a schematic diagram of reflector single sideband modulation and double sideband modulation
  • Fig. 6 is a schematic diagram of an embodiment of a resource allocation method in an embodiment of the application.
  • Fig. 7 is a schematic diagram of an embodiment of the attenuation of each harmonic power
  • FIG. 8 is a schematic diagram of an embodiment of indicating a set of frequency resources
  • FIG. 9 is an interactive flowchart of the resource allocation method in an embodiment of this application.
  • FIG. 10 is another interaction flowchart of the resource allocation method in an embodiment of this application.
  • FIG. 11 is another interaction flowchart of the resource allocation method in an embodiment of this application.
  • FIG. 12 is a schematic diagram of an embodiment of a controller in an embodiment of the application.
  • FIG. 13 is a schematic diagram of an embodiment of the reflector in the embodiment of the application.
  • FIG. 14 is a schematic diagram of another embodiment of a controller in an embodiment of this application.
  • FIG. 15 is a schematic diagram of another embodiment of the reflector in the embodiment of the application.
  • Reflective communication is also called: passive communication, passive communication, and ambient communication. It is a kind of very low power consumption, suitable for IoT applications without a dedicated RF excitation source. Low-cost passive communication technology.
  • the ability of double-sideband modulation means that the reflector can perform double-sideband modulation.
  • the frequency domain signal of the double-sideband modulation signal takes the carrier frequency as the center frequency.
  • the two sideband signals Each of the sidebands completely carries all the information of the modulated signal.
  • the single-side single-modulation capability means that the reflector can perform single-sideband modulation, and the single-sideband modulated signal has only one sideband signal relative to the carrier frequency.
  • Harmonic refers to the components that are greater than integer multiples of the fundamental frequency obtained by Fourier series decomposition of periodic non-sinusoidal alternating currents, usually called higher harmonics.
  • the frequency of the harmonic must be equal to an integer multiple of the frequency of the fundamental wave.
  • a wave with 3 times the fundamental frequency is called the third harmonic, a wave with 5 times the fundamental frequency is called the fifth harmonic, and so on.
  • a typical reflection communication consists of three nodes: exciter, reflector, and receiver.
  • the exciter sends a wireless signal s, and the reflector receives the wireless signal from the exciter, that is, the wireless signal h2*s convolved with the channel h2, and reflects the number.
  • the reflector will carry its own signal on the reflected signal, that is, modulate the received signal h2*s according to the function f; the receiver receives the wireless signal h3*f(h2* s), and demodulate the data carried on the reflected signal.
  • the exciter sends the wireless signal s, and the receiver can receive the wireless signal h1*s convolved with the channel h1, which is not limited here.
  • the exciter and receiver can also be combined into one node, so that reflection communication evolves into communication between two nodes.
  • FIG. 2 is a schematic diagram of a reflection communication network architecture in an embodiment of the application.
  • Reflection communication network architecture includes: exciter, reflector and receiver.
  • the exciter sends the excitation signal, the reflector carries its own signal on the reflected signal for modulation, sends the reflected signal on the available frequency resources, and the receiver receives the reflected signal.
  • the exciter and the receiver can also be combined into one node, and the reflection communication network architecture includes: a transceiver and a reflector.
  • the transceiver sends an excitation signal, the reflector carries its own signal on the reflected signal for modulation, reflects the reflected signal on the available frequency resources, and the transceiver receives the reflected signal.
  • the helper can be an interrogator, a reader, or user equipment (UE), a network device, a user terminal, or a dedicated exciter.
  • UE user equipment
  • a reflector is a device that transmits information by reflecting the received signal, also known as a reflection terminal, passive device, semi-passive device, and ambient signal device , Such as reflective tags (Tag), etc.
  • the receiver can be a network device, a user terminal, or a dedicated receiver.
  • the transceiver can be a user terminal, a network device, or a dedicated transceiver.
  • the network equipment is the network side equipment of the cellular network, such as base stations, access points, etc.;
  • the user terminal is the terminal equipment in the cellular network, such as mobile phones, tablets, etc.;
  • the dedicated receiver is a dedicated device for receiving reflected signals, and The network equipment is connected, or it can be directly connected to the cellular network;
  • the dedicated exciter is a dedicated device for transmitting excitation signals;
  • the dedicated transceiver is a dedicated device for transmitting excitation signals and receiving reflected signals.
  • the control side device of the entire system is called the controller in the embodiment of this application, which can be used to configure available frequency resources for the reflector and send scheduling instructions.
  • the controller can be an exciter, a receiver, or The transceiver is not limited here.
  • FIG. 3 is a schematic diagram of a reflection communication application scenario in an embodiment of the application. Examples show several possible reflection communication application scenarios.
  • the transceiver sends the excitation signal and receives the reflected signal.
  • Figure 4 is a schematic diagram of the signal spectrum of the double-sideband modulation of the reflector.
  • the exciter sends the wireless signal s, and the reflector receives the wireless signal from the exciter, that is, the wireless signal h2*s convolved with the channel h2, and reflects the number.
  • the reflector When reflecting, the reflector will carry its own signal on the reflected signal, that is, modulate the received signal h2*s according to the function f;
  • a typical reflector can only perform a limited number of amplitude and or phase modulations on the received excitation signal, that is, change the amplitude and/or phase of the received signal x through the function f(x).
  • PSK phase-shift keying
  • the spectrum of the reflected signal is symmetrical about the excitation signal frequency fc.
  • the frequency resource position indication method is to indicate the starting frequency resource block position and the number of consecutive resource blocks.
  • NB-IoT narrowband Internet of things
  • the indicated frequency resource positions are all segments of continuous frequency resources. Since the reflector usually performs double-sideband modulation, the reflected signal is a discontinuous multi-segment frequency resource segment symmetrical about the frequency of the excitation signal. Please refer to Figure 5.
  • the embodiment of the present application provides a resource allocation method for indicating the available frequency resource location of the reflector, which can reduce the waste of frequency resources.
  • FIG. 6 is a schematic diagram of an embodiment of a resource allocation method in an embodiment of this application.
  • the controller determines at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability of the reflector.
  • the controller is the control side device of the reflection communication system.
  • the controller can be any of an exciter, a receiver or a transceiver, and can be used to determine the capability of the reflector and send scheduling instructions to the reflector.
  • the specific type of controller is not limited here.
  • the single-sideband capability is used to determine whether the reflector performs single-sideband modulation or double-sideband modulation.
  • the specific type of the single double sideband capability of the reflector is not limited here.
  • Harmonic suppression ability is the ability of the reflector to suppress each harmonic.
  • the controller can reduce it to a reflector with strong harmonic suppression ability according to the harmonic suppression ability of the reflector.
  • Harmonic suppression ability can be embodied in various forms.
  • the X-order harmonic suppression started to meet the ability of the standard.
  • X is a positive integer, which can be selected from ⁇ 3, 5, 7, ... ⁇ odd harmonics or ⁇ 2, 4, 6, ... ⁇ even harmonics.
  • the controller needs to allocate third harmonic resources.
  • each harmonic can be fed back on the basis of the number of the feedback harmonics, for example, the power attenuation of each harmonic relative to the desired signal.
  • the power can be reported directly attenuation value, or can be reported in a differential way.
  • FIG. 7 is a schematic diagram of an embodiment of the power attenuation of each harmonic.
  • the attenuation of the ⁇ 3, 5 ⁇ th harmonic needs to be reported as ⁇ 5, 10 ⁇ dB, respectively.
  • Directly reporting the attenuation value means reporting ⁇ 5, 10 ⁇ dB.
  • the difference is to report the power attenuation of the 3rd harmonic relative to the expected signal ⁇ 5 ⁇ dB, and the difference between the 5th and the 3rd is ⁇ 5 ⁇ dB.
  • the spectrum shift capability is used to determine the frequency offset of the reflector's reflected signal relative to the excitation signal.
  • the granularity of feedback is optional sub-carrier, physical resource block (PRB), bandwidth part (BWP), carrier, hertz (Hz), kilohertz (KHz), megahertz (MHz), gigahertz Hertz (GHz) equivalent.
  • PRB physical resource block
  • BWP bandwidth part
  • carrier hertz
  • KHz kilohertz
  • MHz megahertz
  • GHz gigahertz Hertz
  • the reflector can be reported in the form of default values. When the default value is met, it is not reported, and when the default value is not met, it is reported. For example, if the reflector satisfies the preset harmonic suppression requirements for each sub-harmonic, it is not reported by default, and the single double-sideband capability and the spectrum shift capability can be reported.
  • the controller can determine the capability of the reflector in a variety of ways, including at least one of single double sideband capability, harmonic suppression capability, and spectrum shift capability.
  • the controller receives the reflected signal sent by the reflector, and can implicitly obtain the capability of the reflector by detecting the transmission frequency band of the reflected signal, including single double sideband capability and/or harmonic suppression capability.
  • the controller can determine whether the reflector has the ability to move the spectrum, but cannot specifically determine the size of the moving range.
  • the controller can also implicitly obtain the single double-sideband capability and/or harmonic suppression capability of the reflector by detecting the transmission frequency band of the data or random access message sent through the data channel.
  • the information granularity of the transmission frequency band resource can be of the order of subcarrier, PRB, BWP, carrier, Hz, KHz, MHz, GHz, etc. There is no limitation here.
  • the ability of the controller to receive the reflector and report the reflector through a data transmission channel between the controller and the controller includes at least one of a single double sideband capability, a harmonic suppression capability, and a spectrum shift capability.
  • the data transmission channel may be an uplink shared channel or an uplink control channel, which is not limited here.
  • the ability of the controller to receive the reflector carried by the reflector through the random access message includes at least one of a single double-sideband capability, a harmonic suppression capability, and a spectrum shift capability.
  • the random access message can be random access message 1 or random access message 3 in the 4-step random access process, or random access message A in the 2-step random access process.
  • the sequence sent by the random access message 1 is grouped, and the reflector determines the sequence group sent by the random access message 1 according to its own capability, and the sequence group corresponds to a preset capability set.
  • the receiver presets the corresponding relationship between the sequence grouping and the capability set, and the capability set includes at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability.
  • sequence groupings which can be pseudo-random sequences or random sequences, such as ZC sequences, m sequences, or gold sequences.
  • the sequence is divided into group A and group B, the modulation capability corresponding to group A is single-sideband modulation; the modulation capability corresponding to group B is double-sideband modulation.
  • the first group represents single-sideband modulation without harmonic suppression
  • the second group represents double-sideband modulation but without harmonic suppression
  • the third group represents single-sideband modulation with harmonic suppression.
  • the fourth group represents double-sideband modulation and harmonic suppression.
  • the data transmitted through the random access message 3 carries at least one of the reflector's single double-sideband capability, harmonic suppression capability, and spectrum shift capability. For example, carrying the spectrum transfer capability.
  • the pilot signal transmitted through the random access message 3 carries at least one of the reflector's single double-sideband capability, harmonic suppression capability, and spectrum shift capability. For example, carrying the spectrum transfer capability.
  • the scrambled signal transmitted through the random access message 3 carries at least one of the reflector's single double-sideband capability, harmonic suppression capability, and spectrum shift capability. For example, carrying the spectrum transfer capability.
  • the controller receives the capability type sent by the reflector and determines the corresponding specific modulation capability.
  • the controller presets the corresponding relationship between the capability type and the capability set.
  • the capability set includes at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability. It is understandable that the reflector can also adopt a default value mode. For reflectors that meet the default modulation capability, no report is performed, such as the default modulation capability A, and the modulation capability type is reported for reflectors that do not meet the default modulation capability.
  • the modulation capability A represents the capability that single-sideband modulation, the 5th and lower harmonic suppression cannot meet the requirements of the standard, and the spectrum transfer capability is between [-1MHz, 1MHz].
  • Modulation capability B means that double-sideband modulation, the ⁇ 2, 4 ⁇ th harmonic suppression cannot meet the standard requirements, and the spectrum shift capability is between [-1MHz, 1MHz].
  • the specific manner for the receiver to obtain at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability is not limited here.
  • the controller determines the available frequency resource of the reflector according to at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum movement capability of the reflector.
  • the controller After the controller obtains at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability of the reflector, it determines the available frequency resources of the reflector according to the above capabilities. It is understandable that the part that is not reported by the reflector Ability, the controller can take the preset default value. Exemplarily, the controller only obtains the single double-sideband capability of the reflector as double-sideband modulation, and the controller can determine that the harmonic suppression capability is 3rd and below the 3rd harmonic suppression can not meet the standard requirements according to the preset default value, and No spectrum transfer capability.
  • the controller determines the available frequency resource allocated to the reflector, and the available frequency resource includes the first frequency resource and the symmetrical frequency resource.
  • the second frequency resource, the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; for example, the controller determines the original signal frequency position of the reflector and the mirror signal
  • the frequency location is the available frequency resource of the reflector.
  • the original signal frequency position and the image signal frequency position are symmetrical about the target frequency.
  • the controller may allocate available single-sideband frequency resources to the reflector, and the available frequency resources include single-sideband frequency resources. Specifically, the controller determines that the original signal frequency position of the reflector is the available frequency resource of the reflector, including the bandwidth of the frequency band, and the starting position or the center position of the frequency band.
  • the controller determines that the harmonic suppression capability of the reflector is less than or equal to the Nth harmonic and cannot meet the preset requirements, or the N+1th harmonic meets the preset requirements, or the Nth harmonic cannot When the preset requirement is met, and the N is a positive integer greater than 1, the controller determines the available frequency resource allocated to the reflector, and the available frequency resource includes frequency positions of harmonics less than or equal to the Nth harmonic. For example, the controller determines the frequency position of the original signal and the frequency position of the harmonic less than or equal to the Nth order as the available frequency resource of the reflector.
  • the preset requirements can be standard requirements or preset harmonic suppression requirements, which are not limited here.
  • the harmonics less than or equal to the Nth order cannot meet the preset requirements, that is, the suppression of the Nth and lower harmonics cannot meet the preset requirements, or the harmonics greater than the Nth order start to meet the preset requirements.
  • the harmonic orders are all even numbers, and N can be a value in the set of positive even numbers ⁇ 2, 4, 6, ... ⁇ ; optionally, the harmonic orders are all odd numbers, and N can be an odd set of greater than 2 ⁇ 3,5,7,... ⁇ . Since the controller allocates the original signal frequency position and the frequency position of the Nth and below harmonics to the reflector, the signal interference caused by the allocation of the harmonic position to other terminals can be avoided.
  • the controller determines that the harmonic suppression capability of the reflector is less than or equal to the Nth harmonic and cannot meet the preset requirements, and the single double sideband capability of the reflector is the single sideband modulation capability, Then the controller determines that the original signal frequency position and the frequency position less than or equal to the Nth harmonic are all available frequency resources.
  • the controller determines that the harmonic suppression capability of the reflector is less than or equal to the Nth harmonic and cannot meet the preset requirements, and the single double sideband capability of the reflector is the double sideband modulation capability, the controller determines the original signal
  • the frequency position, the frequency position of the Nth and lower harmonics, and the frequency position of the mirror signal are all available frequency resources.
  • the controller may determine the starting position or the center position of the available frequency resource according to the first frequency range; examples sexually, the frequency start position of the original signal band can be determined.
  • the controller can determine the start position or center position of any frequency band in the available frequency resources as the default position, which is the position specified by the agreement or according to A location determined by a target signal characteristic, where the target signal characteristic is a reflected signal or a frequency characteristic of random access message or data transmission.
  • the controller sends a scheduling instruction to the reflector according to the available frequency resource.
  • the controller After the controller determines the available frequency resource of the reflector, it can send a scheduling instruction to the reflector.
  • the scheduling instruction is used to indicate that the reflector is at the available frequency resource location.
  • the reflector After the reflector receives the scheduling instruction, it can send a scheduling instruction to the reflector.
  • the reflected signal can be transmitted at the available frequency resource location.
  • controller send scheduling instructions to the reflector:
  • the controller directly indicates all available frequency resources, the controller sends first frequency resource set information to the reflector, and the first frequency resource set information indicates all the available frequency resources.
  • the controller sends the second frequency resource set information to the reflector due to the symmetry of the frequency occupied by the reflected signal.
  • the second frequency resource set information is used to indicate that the second frequency resource set and the third frequency resource set symmetric about the target frequency of the second frequency resource set are the available frequency resources, and the second frequency resource set information includes the second frequency band bandwidth and The second frequency position, the second frequency position is the center position or the starting position of the second frequency band.
  • the target frequency is the frequency of the excitation signal, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency. Since only unilateral resources need to be indicated, the indication overhead can be reduced.
  • the frequency resource allocated by the controller to the reflector includes the original signal frequency position and the mirror signal frequency position
  • the frequency resource is symmetrical about the target frequency
  • the scheduling instruction may indicate the frequency resource of one sideband in the double-sideband frequency resource
  • Resource locations that are symmetric about the target frequency are available by default. For example, it indicates the frequency position of the original signal, and the frequency position of the image signal symmetrical about the target frequency is available by default.
  • the frequency resource of one sideband in the double-sideband frequency resource includes the frequency band bandwidth and the frequency position of the frequency band, and the frequency position of the frequency band includes the center position or the starting position of the frequency band.
  • the second frequency resource set information indicates an offset frequency resource index set based on the target frequency, and symmetrical frequency resources are available by default.
  • FIG. 8 is a schematic diagram of an embodiment indicating a set of frequency resources.
  • the excitation signal is subcarrier 3
  • the allocated frequency resources are subcarriers 0, 1, 5, 6, which directly indicate all subcarriers (0, 1, 5, 6) OK.
  • the excitation signal is subcarrier 3, and the indicated subcarrier (5, 6) is available by default with subcarriers (0, 1) symmetrical about the excitation signal.
  • the excitation signal is sub-carrier 3, indicating the sub-carrier offset (2, 3), which represents the sub-carrier (5, 6), and the sub-carrier (0, 1) symmetric about the excitation signal is available by default.
  • the controller may allocate available frequency resources of the single-sideband to the reflector, and the controller sends a fourth signal to the reflector.
  • Frequency resource set information the fourth frequency resource information is used to indicate that the fourth frequency resource set is the available frequency resource
  • the fourth frequency resource set information includes a fourth frequency band bandwidth and a fourth frequency position
  • the fourth frequency position is the first The center or starting position of the quad-band.
  • the controller determines that the harmonic suppression capability of the reflector is the Nth and below the Nth harmonic and cannot meet the preset requirements, and if N is a positive integer greater than 1, the controller will report to the reflector Sending fifth frequency resource set information, where the fifth frequency resource set information is used to indicate that the fifth frequency resource set is the available frequency resource, and the fifth frequency resource set includes frequency positions of the Nth and lower harmonics.
  • the bandwidth of the multiple harmonics is the same as the bandwidth of the main signal by default, and no additional instructions are required.
  • the frequency position of the multiple harmonics can be indicated or not, and there is no limitation here.
  • the controller may indicate the frequency position of the Nth and lower harmonics, such as the center position or the starting position of the frequency band of the Nth and lower harmonics.
  • the controller determines that the harmonic suppression capability of the reflector is the Nth and lower harmonics that cannot meet the preset requirements, and the single double sideband capability of the reflector is the single sideband modulation capability.
  • the controller determines that the original signal, the frequency bands of the Nth and the harmonics below the Nth are all available frequency resources, and the scheduling instructions can indicate the frequency band and frequency position of the original signal, the Nth and the harmonics below the Nth. If the controller determines that the harmonic suppression capability of the reflector is the Nth and lower harmonics that cannot meet the preset requirements, and the single double-sideband capability of the reflector is the double-sideband modulation capability, the controller determines the single-sideband modulation capability.
  • the frequency position of the original signal of the sideband, Nth and below harmonics, and the frequency position of each image signal of the single sideband signal are all available frequency resources.
  • the scheduling indication can indicate the frequency band and frequency position of the original signal, Nth and below harmonics, and the frequency position symmetrical about the target frequency is available by default.
  • the controller determines that the reflector's spectrum transfer capability is a spectrum transfer capability, and the transfer range is the first frequency range, the controller sends the sixth frequency resource set information to the reflector, and the sixth The frequency resource set information is used to indicate that the sixth frequency resource set is the available frequency resource, the sixth frequency resource set information includes a sixth frequency band bandwidth and a sixth frequency position, and the sixth frequency position is determined according to the first frequency range The starting position or center position of the sixth frequency band;
  • the controller sends seventh frequency resource set information to the reflector, and the seventh frequency resource set information is used to indicate the seventh frequency
  • the resource set is the available frequency resource
  • the information of the seventh frequency resource set includes the seventh frequency band bandwidth and the seventh frequency position
  • the seventh frequency position is the default position
  • the default position is the position specified by the agreement or the position determined according to the characteristics of the target signal
  • the target signal characteristic is the frequency characteristic of the reflected signal or random access message or data transmission
  • the seventh frequency position is the start position or the center position of the seventh frequency band.
  • the controller determines at least one of the single double sideband capability, the harmonic suppression capability, and the spectrum shifting capability sent by the reflector, and then according to the single double sideband capability, the harmonic suppression capability, and the spectrum shifting capability At least one of determines the available frequency resource of the reflector, and sends a scheduling indication to the reflector to indicate the available frequency resource.
  • the resource allocation method provided in the embodiments of the present application can reduce waste of frequency resources. For example, for a reflector with double-sideband modulation capability, since the required frequency resource is a non-contiguous multi-band frequency resource, it directly indicates one segment compared with the prior art. Frequency resource location, this method indicates the available frequency resource according to the capability of the reflector, which can reduce the waste of frequency resource.
  • the reflection communication system in the embodiment of the present application may include an exciter, a reflector, and a receiver, and may also include a transceiver and a reflector.
  • the control side of the reflection communication can be the exciter or the receiver, that is, the controller can be the exciter or the receiver.
  • the controller is a transceiver.
  • the controller is a receiver.
  • FIG. 9 is an interaction flowchart of the resource allocation method in the embodiment of the application.
  • the resource allocation method includes:
  • the receiver determines at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability of the reflector.
  • the receiver determines available frequency resources.
  • the receiver sends a scheduling instruction to the reflector.
  • the operations performed by the receiver in steps 901 to 903 are similar to the operations performed by the controller in steps 601 to 603 in the embodiment corresponding to FIG. 6, and details are not described herein again.
  • the scheduling instruction sent by the receiver to the reflector can be directly sent by the receiver to the reflector, referring to step 903; or after being sent by the receiver to the exciter, the exciter forwards to the reflector.
  • the method for the receiver to send the scheduling indication to the reflector is not specifically limited here. Please refer to steps 904 to 905.
  • the receiver sends a scheduling instruction to the exciter.
  • the receiver After the receiver allocates available frequency resources to the reflector, it can send a scheduling indication to the exciter, where the scheduling indication is used to indicate the location of the reflector's available frequency resources.
  • step 903 For the specific information carried in the scheduling instruction sent by the receiver, refer to step 903, which will not be repeated here.
  • the exciter sends a scheduling instruction to the transmitting terminal.
  • the exciter may forward the scheduling instruction to the reflector.
  • step 903 and steps 904 to 905 are optional steps. Step 903 can be performed without performing steps 904 to 905; steps 904 to 905 can also be performed without step 903, which is not limited here.
  • the controller determines at least one of the single double sideband capability, the harmonic suppression capability, and the spectrum shifting capability sent by the reflector, and then according to the single double sideband capability, the harmonic suppression capability, and the spectrum shifting capability At least one of determines the available frequency resource of the reflector, and sends a scheduling indication to the reflector to indicate the available frequency resource.
  • this method indicates the available frequency resource according to the capability of the reflector. The waste of frequency resources can be reduced.
  • the controller is an exciter.
  • FIG. 10 is another interaction flowchart of the resource allocation method in the embodiment of the present application.
  • the exciter determines at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability of the reflector.
  • step 901 The manner in which the reflector reports at least one of the single double-sideband capability, the harmonic suppression capability, and the spectrum shift capability is similar to step 901 in the embodiment corresponding to FIG. 9, and will not be repeated here.
  • the reflector sends at least one of the single double sideband capability, harmonic suppression capability, and spectrum shifting capability to the receiver, and the receiver forwards at least one of the single double sideband capability, harmonic suppression capability, and spectrum shifting capability Give the exciter.
  • the exciter determines available frequency resources.
  • the specific method for the exciter to determine the available frequency resource of the reflector is similar to the method for the receiver to determine the available frequency resource of the reflector in step 902 of the embodiment corresponding to FIG. 9, and will not be repeated here.
  • the exciter sends a scheduling instruction to the reflector.
  • the exciter allocates available frequency resources according to the capabilities of the reflector, and sends a scheduling instruction to the reflector to indicate the location of the reflector's available frequency resources.
  • a scheduling instruction to the reflector to indicate the location of the reflector's available frequency resources.
  • the exciter can determine the capability of the reflector through the transmit signal sent by the reflector, and then send a scheduling instruction to the reflector according to the capability of the reflector to indicate available frequency resources.
  • a scheduling instruction to the reflector according to the capability of the reflector to indicate available frequency resources.
  • this method indicates the available frequency resource according to the capability of the reflector. The waste of frequency resources can be reduced.
  • the controller is a transceiver.
  • FIG. 11 is another interaction flowchart of the resource allocation method in the embodiment of this application.
  • the transceiver determines at least one of the single double sideband capability, the harmonic suppression capability, and the spectrum shift capability of the reflector.
  • the transceiver determines available frequency resources.
  • the transceiver sends a scheduling instruction to the reflector.
  • the controller is a transceiver, and the operations performed by the transceiver in steps 1101 to 1103 are similar to those performed by the controller in steps 901 to 903 in the embodiment corresponding to FIG. 9, and will not be repeated here.
  • the transceiver can determine the capability of the reflector through the transmit signal sent by the reflector, and then send a scheduling instruction to the reflector according to the capability of the reflector to indicate available frequency resources.
  • a scheduling instruction to the reflector according to the capability of the reflector to indicate available frequency resources.
  • this method indicates the available frequency resource according to the capability of the reflector. The waste of frequency resources can be reduced.
  • FIG. 12 is a schematic diagram of an embodiment of the controller in the embodiment of the application.
  • the determining unit 1201 is used to determine the capability of the reflector, and the capability of the reflector includes at least one of a single double sideband capability, a harmonic suppression capability, and a spectrum shift capability;
  • the determining unit 1201 is further configured to determine the available frequency resource of the reflector according to the capability of the reflector;
  • the sending unit 1202 is configured to send a scheduling indication to the reflector, where the scheduling indication is used to indicate the information of the available frequency resource.
  • the single double-sideband capability of the reflector includes: double-sideband modulation capability
  • the available frequency resource includes a first frequency resource and a second frequency resource
  • the first frequency resource and the second frequency resource are related to the target frequency.
  • the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; or,
  • the available frequency resources include single-sideband frequency resources.
  • the scheduling indication includes: a first scheduling indication, and the first scheduling indication is used to indicate the information of the first frequency resource, or the first The scheduling indication is used to indicate the information of the first frequency resource and the target frequency, or the first scheduling indication is used to indicate the information of the first frequency resource and the information of the second frequency resource;
  • the scheduling indication includes: a second scheduling indication, and the second scheduling indication is used to indicate the frequency resource information of the single-sideband.
  • the harmonic suppression capability of the reflector includes: harmonics less than or equal to the Nth harmonic cannot meet the preset requirements, or the N+1th harmonic meets the preset requirements, or the Nth harmonic
  • the wave cannot meet the preset requirement
  • the N is a positive integer greater than 1
  • the available frequency resource includes frequency positions of harmonics less than or equal to the Nth harmonic.
  • the spectrum transfer capability of the reflector includes: a spectrum transfer capability, and the transfer range is a first frequency range, the starting position or center position of the available frequency resource is determined according to the first frequency range.
  • controller further includes:
  • the receiving unit 1203 is configured to receive the reflected signal, or random access message, or data sent by the reflector;
  • the determining unit 1201 is specifically configured to determine the capability of the reflector by detecting the reflected signal, the signal carrying the random access information, or the frequency spectrum for transmitting the data.
  • controller further includes:
  • the receiving unit 1203 is configured to receive the first random access message sent by the reflector
  • the determining unit 1201 is specifically configured to determine the capability of the reflector according to the first random access message, and the sequence group to which the sequence carrying the first random access message belongs corresponds to the capability of the reflector.
  • the first random access message includes: random access message 1 or random access message A, and random access message A includes random access message 1.
  • controller further includes:
  • the receiving unit 1203 is configured to receive the second random access message
  • the determining unit 1201 is specifically configured to determine the capability of the reflector according to the data, the pilot or the scrambled signal transmitted by the second random access message.
  • the second random access message includes: random access message 3, or random access message A, and random access message A includes random access message 3.
  • controller further includes:
  • the receiving unit 1203 is configured to receive information about the capability of the reflector sent by the reflector through the data transmission channel.
  • controller further includes:
  • the receiving unit 1203 is configured to receive the capability type information sent by the reflector
  • the determining unit 1201 is specifically configured to determine the capability of the reflector according to the capability type information; wherein the capability type information corresponds to the capability set of the reflector.
  • FIG. 13 is a schematic diagram of an embodiment of the reflector in the embodiment of the application.
  • the sending unit 1301 is configured to send information about the capability of the reflector to the controller, where the capability of the reflector includes at least one of a single double-sideband capability, a harmonic suppression capability, and a spectrum shift capability;
  • the receiving unit 1302 is configured to receive a scheduling instruction sent by the controller, where the scheduling instruction is used to indicate information about the available frequency resource of the reflector, where the available frequency resource is determined by the controller according to the capability of the reflector.
  • the single double-sideband capability of the reflector includes: double-sideband modulation capability
  • the available frequency resource includes a first frequency resource and a second frequency resource
  • the first frequency resource and the second frequency resource are symmetrical about the target frequency
  • the target frequency is the excitation signal frequency, or the center frequency of the excitation signal, or the frequency indicated by the controller, or the preset system default frequency; or,
  • the available frequency resources include single-sideband frequency resources.
  • the scheduling indication includes a first scheduling indication, and the first scheduling indication is used to indicate the information of the first frequency resource, or the first scheduling Indicating information used to indicate the first frequency resource and the target frequency, or the first scheduling indication used to indicate information of the first frequency resource and information of the second frequency resource;
  • the scheduling indication includes a first scheduling indication, the second scheduling indication, and the second scheduling indication is used to indicate the frequency resource of the single sideband.
  • the harmonic suppression capability of the reflector includes: harmonics less than or equal to the Nth harmonic cannot meet the preset requirements, or the N+1th harmonic meets the preset requirements, or the Nth harmonic
  • the wave cannot meet the preset requirement
  • the N is a positive integer greater than 1
  • the available frequency resource includes frequency positions of harmonics less than or equal to the Nth harmonic.
  • the spectrum transfer capability of the reflector includes: a spectrum transfer capability, and the transfer range is a first frequency range, the starting position or center position of the available frequency resource is determined according to the first frequency range.
  • the sending unit 1301 is specifically configured to: send a reflection signal, a random access message or data to the controller, and the transmission spectrum of the reflection signal, the random access message or the data is used to indicate the capability of the reflector .
  • the sending unit 1301 is specifically configured to send a first random access message to the controller, and the sequence group to which the sequence carrying the first random access message belongs corresponds to the capability of the reflector.
  • the first random access message includes: random access message 1 or random access message A, and random access message A includes random access message 1.
  • the sending unit 1301 is specifically configured to send a second random access message to the controller, and the data, pilot, or scrambling signal transmitted by the second random access message is used to determine the capability of the reflector.
  • the second random access message includes: random access message 3, or random access message A, and random access message A includes random access message 3.
  • the sending unit 1301 is specifically configured to send data to the controller through a data transmission channel, the data carrying information about the capability of the reflector.
  • the sending unit 1301 is specifically configured to send the capability type information of the reflector to the controller, where the capability type information corresponds to the capability set of the reflector.
  • FIG. 14 is a schematic diagram of another embodiment of the controller in the embodiment of the present application.
  • the controller 1400 may have relatively large differences due to different configurations or performances, and may include one or more processors 1401 and a memory 1405, and the memory 1405 stores programs or data.
  • the memory 1405 may be volatile storage or non-volatile storage.
  • the processor 1401 may communicate with the memory 1405, and execute a series of instructions in the memory 1405 on the controller 1400.
  • the controller 1400 may also include one or more power supplies 1402, one or more wired or wireless network interfaces 1403, and one or more input and output interfaces 1404.
  • FIG. 15 is a schematic diagram of another embodiment of the reflector in the embodiment of the present application.
  • the reflector 1500 may have relatively large differences due to different configurations or performances, and may include one or more processors 1501.
  • the reflector 1500 also includes a modulator 1502 for modulating the signal.
  • the reflector 1500 also includes an antenna 1503 for transmitting and receiving signals.
  • the reflector 1500 may also include components such as a power supply and a memory, which are not limited here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种资源分配方法,用于反射通信系统,可以减少频率资源浪费。本申请实施例方法包括:控制器确定反射器的能力,所述反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;所述控制器根据所述反射器的能力确定所述反射器的可用频率资源;所述控制器向所述反射器发送调度指示,所述调度指示用于指示所述可用频率资源的信息。

Description

资源分配方法、控制器和反射器
本申请要求于2019年8月16日提交中国专利局、申请号为201910760066.3、发明名称为“资源分配方法、控制器和反射器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种资源分配方法、控制器和反射器。
背景技术
反射通信是一种不需要专用的射频激励源,适用于物联网应用的极低功耗、低成本的被动式通信技术。反射通信中,典型的反射器采用双边带调制。
传统的蜂窝通信系统中,采用的是单边带通信,可以直接指示一段可用的频率资源位置。在LTE和NR中,指示频率资源位置的方式为指示起始频率资源块位置和连续的资源块数目。
反射通信中,不同的反射器调制能力不同,可能采用双边带调制或单边带调制,所需频率资源不同,若都通过直接指示的方式指示频率资源位置,分配的资源可能存在冗余,将造成资源浪费。
发明内容
本申请实施例提供了一种资源分配方法,用于反射通信系统,可以减少频率资源浪费。
本申请实施例第一方面提供了一种资源分配方法,该方法包括:控制器确定反射器的能力,该反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;所述控制器根据所述反射器的能力确定所述反射器的可用频率资源;所述控制器向所述反射器发送调度指示,所述调度指示用于指示所述可用频率资源的信息。
反射通信系统通常由激励器、反射器、接收器三个节点组成,其中,激励器和接收器也可以合并为收发器,无论在两节点系统还是三节点系统,总是存在可以对反射器配置可用的频率资源并发送调度指示的控制侧设备,本申请实施例中称之为控制器,控制器可以是激励器、接收器或收发器,此处不做限定。控制器可以通过多种方式获取反射器的能力,包括单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,进而根据反射器的能力确定分配给该反射器的可用频率资源,然后,控制器可以向反射器发送调度指示,以指示该可用频率资源。
本申请实施例提供的资源分配方法,控制器确定反射器发送的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,进而根据单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个确定该反射器的可用频率资源,并向该反射器发送调度指示,用于指示可用的频率资源。本申请实施例提供的资源分配方法可以减少频率资源浪费,例如,对于具有双边带调制的能力的反射器,由于其需要的频率资源为非连续的多段频率资源,相较现有技术直接指示一段频率资源位置,本方法根据反射器的能力指示可用的频率资源,可以减少频率资源浪费。
在第一方面的一种可能的实现方式中,如果该反射器的单双边带能力包括:双边带调制 的能力,该可用频率资源包括第一频率资源和第二频率资源,该第一频率资源和该第二频率资源关于目标频率对称,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;或者,如果该反射器的单双边带能力包括:单边带调制的能力,该可用频率资源包括单边带的频率资源。
本申请实施例提供的资源分配方法,可以根据反射器的单双边带能力分配频率资源,对于具有单边带调制的能力的反射器可以直接分配单边带的频率资源,而对于具有双边带调制的能力的反射器,控制器为其分配对称的双边带频率资源,覆盖镜像信号的频率位置。控制器为反射器分配合适的、足够的资源,既可以减少资源浪费,还可以避免将镜像信号所在的频率位置分配给其他终端造成的信号干扰。
在第一方面的一种可能的实现方式中,如果该反射器单双边带能力包括:双边带调制的能力,该调度指示包括:第一调度指示,该第一调度指示用于指示该第一频率资源的信息,或该第一调度指示用于指示所述第一频率资源的信息和所述目标频率,或该第一调度指示用于指示该第一频率资源的信息和该第二频率资源的信息;或者,如果该反射器的单双边带能力包括:单边带调制,该调度指示包括:第二调度指示,该第二调度指示用于指示该单边带的频率资源的信息。
本申请实施例提供的资源分配方法,对于具有单边带调制的能力的反射器可以直接发送调度指示,指示单边带的频率资源信息。对于具有双边带调制的能力的反射器,通过直接指示单边的频率资源,默认基于目标频率对称的频率资源可用,可以降低指示的开销;直接指示所有可用频率资源,指示开销和传统方法一样大,但可以保证双边带调制反射器能正常工作,减少资源浪费。
在第一方面的一种可能的实现方式中,如果该反射器的谐波抑制能力包括:小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,该可用频率资源包括小于或等于第N次的谐波的频率位置。
本申请实施例提供的资源分配方法,控制器可以根据反射器的谐波抑制能力判断反射器需要占用的频率资源,以及对其他用户的干扰情况,可以据此分配合适的、足够的资源,既可以减少资源浪费,还可以避免将不能抑制的谐波信号所在的频率位置分配给其他终端造成的信号干扰。
在第一方面的一种可能的实现方式中,如果该反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,该可用频率资源的起始位置或中心位置是根据该第一频率范围确定的。
本申请实施例提供的资源分配方法,控制器可以根据反射器的频谱搬移能力决定分配的频率资源的起始位置或中心位置,确保分配的频率资源在反射器的能力范围之内,还增加了资源分配的灵活性。
在第一方面的一种可能的实现方式中,该方法还包括:该控制器接收该反射器发送的反射信号,或随机接入消息,或数据;该控制器确定反射器的能力包括:该控制器通过检测该反射信号,承载该随机接入信息的信号,或传输该数据的频谱,确定该反射器的能力。
本申请实施例提供的资源分配方法,控制器通过检测反射器发送的各种信号的发送频段, 可以隐含上报反射器的能力,不需要额外占用通信资源。
在第一方面的一种可能的实现方式中,该控制器接收该反射器发送的反射信号,或随机接入消息,或数据;该控制器确定反射器的能力包括:该控制器通过检测该反射信号,承载该随机接入信息的信号,或传输该数据的频谱,确定该反射器的单双边带能力和/或谐波抑制能力。
在第一方面的一种可能的实现方式中,该方法还包括:该控制器接收该反射器发送第一随机接入消息;该控制器确定反射器的能力包括:该控制器根据该第一随机接入消息确定该反射器的能力,承载该第一随机接入消息的序列所属的序列分组与该反射器的能力对应。
本申请实施例提供的资源分配方法,由于控制器本来就需要检测承载该第一随机接入消息的序列所属的序列分组,控制器的检测复杂度低,还可以更早获取反射器的能力。
在第一方面的一种可能的实现方式中,该第一随机接入消息包括:随机接入消息1,或者随机接入消息A,该随机接入消息A中包括随机接入消息1。
在第一方面的一种可能的实现方式中,该控制器接收第二随机接入消息;该控制器确定反射器的能力包括:该控制器根据该第二随机接入消息传输的数据,导频或加扰信号确定反射器的能力。
本申请实施例提供的资源分配方法,可以通过第二随机接入消息传输的数据或导频信号或加扰信号携带频谱搬移能力,占用资源少,资源利用率高。
在第一方面的一种可能的实现方式中,该第二随机接入消息包括:随机接入消息3,或者随机接入消息A,该随机接入消息A中包括随机接入消息3。
在第一方面的一种可能的实现方式中,通过第二随机接入消息携带该反射器的频谱搬移能力。
在第一方面的一种可能的实现方式中,该方法还包括:该控制器接收该反射器通过数据传输通道发送的该反射器的能力的信息。
本申请实施例提供的资源分配方法,反射器通过数据传输通道发送的数据携带单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,通过数据传输可携带的信息量大,方法简单。
在第一方面的一种可能的实现方式中,该方法还包括:该控制器接收该反射器发送的能力类型信息;控制器确定反射器的能力包括:该控制器根据该能力类型信息确定该反射器的能力;其中,该能力类型信息与该反射器的能力集合对应。
本申请实施例提供的资源分配方法简单易实现,能对典型的反射器的能力进行定义并进行上报,可以降低上报开销。
本申请实施例第二方面提供了一种资源分配方法,其特征在于,包括:反射器向控制器发送该反射器的能力的信息,该反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;该反射器接收该控制器发送的调度指示,该调度指示用于指示该反射器的可用频率资源的信息,其中,该可用频率资源是该控制器根据该反射器的能力确定的。
本申请实施例提供的资源分配方法,反射器向控制器发送反射器的能力的信息,控制器确定反射器发送的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,进而根据单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个确定该反射器的可用频率资源,并 向该反射器发送调度指示,用于指示可用的频率资源。本申请实施例提供的资源分配方法可以减少频率资源浪费,例如,对于具有双边带能力的反射器,由于其需要的频率资源为非连续的多段频率资源,相较现有技术直接指示一段频率资源位置,本方法根据反射器的能力指示可用的频率资源,可以减少频率资源浪费。
在第二方面的一种可能的实现方式中,如果该反射器单双边带能力包括:双边带调制的能力,该可用频率资源包括第一频率资源和第二频率资源,该第一频率资源和该第二频率资源关于目标频率对称,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;或者,如果该反射器的单双边带能力包括:单边带调制的能力,该可用频率资源包括单边带的频率资源。
本申请实施例提供的资源分配方法,可以根据反射器的单双边带能力分配频率资源,对于具有单边带调制的能力的反射器可以接收直接分配单边带的频率资源的调度指示,而对于具有双边带调制的能力的反射器,控制器为其分配对称的双边带频率资源,覆盖镜像信号的频率位置。控制器为反射器分配合适的、足够的资源,既可以减少资源浪费,还可以避免将镜像信号所在的频率位置分配给其他终端造成的信号干扰。
在第二方面的一种可能的实现方式中,如果该反射器单双边带能力包括:双边带调制的能力,该调度指示包括第一调度指示,该第一调度指示用于指示该第一频率资源的信息,或该第一调度指示用于指示该第一频率资源的信息和该目标频率,或该第一调度指示用于指示该第一频率资源的信息和该第二频率资源的信息;或者,如果该反射器的单双边带能力包括:单边带调制,该调度指示包括第一调度指示,该第二调度指示,该第二调度指示用于指示该单边带的频率资源。
本申请实施例提供的资源分配方法,对于具有单边带调制的能力的反射器,调度指示直接指示单边的频率资源,对于具有双边带调制的能力的反射器,调度指示可以指示单边的频率资源,默认基于目标频率对称的频率资源可用,这样可以降低指示的开销;调度指示还可以直接指示所有的双边带的可用频率资源,指示开销和传统方法一样大,但可以保证双边带调制反射器能正常工作,减少资源浪费。
在第二方面的一种可能的实现方式中,该反射器接收该控制器发送的调度指示包括:
如果该反射器的谐波抑制能力包括:
小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,该可用频率资源包括小于或等于第N次的谐波的频率位置。
本申请实施例提供的资源分配方法,调度指示中指示的可用频率资源为控制器根据反射器的谐波抑制能力分配,考虑了谐波对其他用户的干扰情况,可以据此分配合适的、足够的资源,既可以减少资源浪费,还可以避免将不能抑制的谐波信号所在的频率位置分配给其他终端造成的信号干扰。
在第二方面的一种可能的实现方式中,如果该反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,该可用频率资源的起始位置或中心位置是根据该第一频率范围确定的。
本申请实施例提供的资源分配方法,调度指示中指示的可用频率资源的起始位置或中心 位置为控制器根据反射器的频谱搬移能力决定,确保分配的频率资源在反射器的能力范围之内,还增加了资源分配的灵活性。
在第二方面的一种可能的实现方式中,该反射器向控制器发送该反射器的能力的信息包括:该反射器向该控制器发送反射信号、随机接入消息或数据,该反射信号、该随机接入消息或该数据的发送频谱用于指示该反射器的能力。
本申请实施例提供的资源分配方法,反射器通过发送的各种信号的发送频谱,可以隐含上报反射器的能力,不需要额外占用通信资源。
在第二方面的一种可能的实现方式中,该反射器向控制器发送该反射器的能力的信息包括:该反射器向该控制器发送反射信号、随机接入消息或数据,该反射信号、该随机接入消息或该数据的发送频谱用于指示该反射器的单双边带能力和/或谐波抑制能力。
在第二方面的一种可能的实现方式中,其特征在于,该反射器向控制器发送该反射器的能力的信息包括:该反射器向该控制器发送第一随机接入消息,承载该第一随机接入消息的序列所属的序列分组与该反射器的能力对应。
本申请实施例提供的资源分配方法,反射器通过承载该第一随机接入消息的序列所属的序列分组上报反射器的能力,由于控制器本来就需要检测第一随机接入消息的不同序列分组,控制器的检测复杂度低,还可以更早获取反射器的能力。
在第一方面的一种可能的实现方式中,该第一随机接入消息包括:随机接入消息1,或者随机接入消息A,该随机接入消息A中包括随机接入消息1。
在第二方面的一种可能的实现方式中,该反射器向控制器发送该反射器的能力的信息包括:该反射器向该控制器发送第二随机接入消息,该第二随机接入消息传输的数据、导频或加扰信号用于确定反射器的能力。
本申请实施例提供的资源分配方法,通过第二随机接入消息携带频谱搬移能力,可以传输的信息量大,资源利用率高。
在第二方面的一种可能的实现方式中,第二随机接入消息包括:随机接入消息3,或者随机接入消息A,该随机接入消息A中包括随机接入消息3。
本申请实施例提供的资源分配方法,通过随机接入消息3或随机接入消息A携带频谱搬移能力,可以传输的信息量大,资源利用率高。
在第二方面的一种可能的实现方式中,通过第二随机接入消息携带该反射器的频谱搬移能力。
在第二方面的一种可能的实现方式中,该反射器向控制器发送该反射器的能力的信息包括:该反射器通过数据传输通道向该控制器发送数据,该数据携带该反射器的能力的信息。
本申请实施例提供的资源分配方法,反射器通过数据传输通道发送的数据携带单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,通过数据传输可携带的信息量大,方法简单。
在第二方面的一种可能的实现方式中,该反射器向控制器发送该反射器的能力的信息包括:该反射器向该控制器发送该反射器的能力类型信息,其中,该能力类型信息与该反射器的能力集合对应。
本申请实施例提供的资源分配方法简单易实现,能对典型的反射器的能力进行定义并进 行上报,可以降低上报开销。
本申请实施例第三方面提供了一种控制器,包括:确定单元,用于确定反射器的能力,该反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;该确定单元,还用于根据该反射器的能力确定该反射器的可用频率资源;发送单元,用于向该反射器发送调度指示,该调度指示用于指示该可用频率资源的信息。
在第三方面的一种可能的实现方式中,如果该反射器的单双边带能力包括:双边带调制的能力,该可用频率资源包括第一频率资源和第二频率资源,该第一频率资源和该第二频率资源关于目标频率对称,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;或者,如果该反射器的单双边带能力包括:单边带调制的能力,该可用频率资源包括单边带的频率资源。
在第三方面的一种可能的实现方式中,如果该反射器单双边带能力包括:双边带调制的能力,该调度指示包括:第一调度指示,该第一调度指示用于指示该第一频率资源的信息,或该第一调度指示用于指示该第一频率资源的信息和该目标频率,或该第一调度指示用于指示该第一频率资源的信息和该第二频率资源的信息;或者,如果该反射器的单双边带能力包括:单边带调制,该调度指示包括:第二调度指示,该第二调度指示用于指示该单边带的频率资源的信息。
在第三方面的一种可能的实现方式中,如果该反射器的谐波抑制能力包括:小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,该可用频率资源包括小于或等于第N次的谐波的频率位置。
在第三方面的一种可能的实现方式中,如果该反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,该可用频率资源的起始位置或中心位置是根据该第一频率范围确定的。
在第三方面的一种可能的实现方式中,该控制器还包括:接收单元,用于接收该反射器发送的反射信号,或随机接入消息,或数据;该确定单元,具体用于通过检测该反射信号,承载该随机接入信息的信号,或传输该数据的频谱,确定该反射器的能力。
在第三方面的一种可能的实现方式中,该控制器还包括:接收单元,用于接收该反射器发送第一随机接入消息;该确定单元,具体用于根据该第一随机接入消息确定该反射器的能力,承载该第一随机接入消息的序列所属的序列分组与该反射器的能力对应。
在第三方面的一种可能的实现方式中,该第一随机接入消息包括:随机接入消息1,或者随机接入消息A,该随机接入消息A中包括随机接入消息1。
在第三方面的一种可能的实现方式中,该控制器还包括:接收单元,用于接收第二随机接入消息;该确定单元,具体用于根据该第二随机接入消息传输的数据,导频或加扰信号确定反射器的能力。
在第三方面的一种可能的实现方式中,第二随机接入消息包括:随机接入消息3,或者随机接入消息A,该随机接入消息A中包括随机接入消息3。
在第三方面的一种可能的实现方式中,该控制器还包括:接收单元,用于接收该反射器通过数据传输通道发送的该反射器的能力的信息。
在第三方面的一种可能的实现方式中,该控制器还包括:接收单元,用于接收该反射器发送的能力类型信息;该确定单元,具体用于根据该能力类型信息确定该反射器的能力;其中,该能力类型信息与该反射器的能力集合对应。
本申请实施例第四方面提供了一种反射器,包括:发送单元,用于向控制器发送该反射器的能力的信息,该反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;接收单元,用于接收该控制器发送的调度指示,该调度指示用于指示该反射器的可用频率资源的信息,其中,该可用频率资源是该控制器根据该反射器的能力确定的。
在第四方面的一种可能的实现方式中,如果该反射器单双边带能力包括:双边带调制的能力,该可用频率资源包括第一频率资源和第二频率资源,该第一频率资源和该第二频率资源关于目标频率对称,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;或者,如果该反射器的单双边带能力包括:单边带调制的能力,该可用频率资源包括单边带的频率资源。
在第四方面的一种可能的实现方式中,如果该反射器单双边带能力包括:双边带调制的能力,该调度指示包括第一调度指示,该第一调度指示用于指示该第一频率资源的信息,或该第一调度指示用于指示该第一频率资源的信息和该目标频率,或该第一调度指示用于指示该第一频率资源的信息和该第二频率资源的信息;或者,如果该反射器的单双边带能力包括:单边带调制,该调度指示包括第一调度指示,该第二调度指示,该第二调度指示用于指示该单边带的频率资源。
在第四方面的一种可能的实现方式中,如果该反射器的谐波抑制能力包括:小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,该可用频率资源包括小于或等于第N次的谐波的频率位置。
在第四方面的一种可能的实现方式中,如果该反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,该可用频率资源的起始位置或中心位置是根据该第一频率范围确定的。
在第四方面的一种可能的实现方式中,该发送单元具体用于:向该控制器发送反射信号、随机接入消息或数据,该反射信号、该随机接入消息或该数据的发送频谱用于指示该反射器的能力。
在第四方面的一种可能的实现方式中,该发送单元具体用于:向该控制器发送第一随机接入消息,承载该第一随机接入消息的序列所属的序列分组与该反射器的能力对应。
在第四方面的一种可能的实现方式中,该第一随机接入消息包括:随机接入消息1,或者随机接入消息A,该随机接入消息A中包括随机接入消息1。
在第四方面的一种可能的实现方式中,该发送单元具体用于:向该控制器发送第二随机接入消息,该第二随机接入消息传输的数据、导频或加扰信号用于确定反射器的能力。
在第四方面的一种可能的实现方式中,该第二随机接入消息包括:随机接入消息3,或者随机接入消息A,该随机接入消息A中包括随机接入消息3。
在第四方面的一种可能的实现方式中,该发送单元具体用于:通过数据传输通道向该控制器发送数据,该数据携带该反射器的能力的信息。
在第四方面的一种可能的实现方式中,该发送单元具体用于:向该控制器发送该反射器的能力类型信息,其中,该能力类型信息与该反射器的能力集合对应。
本申请实施例第五方面提供了一种控制器,包括:存储器,用于存储指令;处理器,用于执行该存储器中的指令,使得该处理器执行上述第一方面中的资源分配方法。
本申请实施例第六方面提供了一种反射器,包括:存储器,用于存储指令;处理器,用于执行该存储器中的指令,使得该处理器执行上述第而方面中的资源分配方法。
本申请实施例第七方面提供了一种反射通信系统,该反射通信系统包括上述第三方面提供的控制器和上述第四方面提供的反射器。
本申请实施例第八方面提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令在计算机上运行时,使得该计算机执行上述第一方面和第二方面及其各实现方式中的方法。
本申请实施例第九方面提供了一种计算机可读储存介质,该计算机可读存储介质存储指令,当该指令在计算机上运行时,实现前述本申请实施例第一方面和第二方面及其各实现方式提供的方法。
本申请实施例第十方面提供了一种一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行上述任一方面任意可能的实现方式中的方法。可选地,该芯片该包括存储器,该存储器与该处理器通过电路或电线与存储器连接。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例提供的资源分配方法,控制器确定反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,进而根据该反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个确定该反射器的可用频率资源;并向该反射器发送调度指示,指示该反射器在该可用频率资源位置发送反射信号。相较现有技术直接指示一段频率资源位置,本申请实施例提供的资源分配方法根据反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个指示可用的频率资源,可以减少频率资源浪费,例如,对于双边带调制的反射器,由于其需要的频率资源为非连续的多段频率资源,本方法根据反射器的单双边带能力确定分配给反射器的多段频率资源,可以减少频率资源浪费。
附图说明
图1为反射通信网络示意图;
图2为本申请实施例中反射通信网络架构示意图;
图3为本申请实施例中反射通信应用场景示意图;
图4为反射器双边带调制的信号频谱示意图;
图5为反射器单边带调制和双边带调制的示意图;
图6为本申请实施例中资源分配方法的一个实施例示意图;
图7为各次谐波功率衰减量的一个实施例示意图;
图8为指示频率资源集合的一个实施例示意图;
图9为本申请实施例中资源分配方法的一个交互流程图;
图10为本申请实施例中资源分配方法的另一个交互流程图;
图11为本申请实施例中资源分配方法的另一个交互流程图;
图12为本申请实施例中控制器的一个实施例示意图;
图13为本申请实施例中反射器的一个实施例示意图;
图14为本申请实施例中控制器的另一个实施例示意图;
图15为本申请实施例中反射器的另一个实施例示意图。
具体实施方式
反射通信(backscatter communication)又称为:被动通信(passive communication),无源通信,散射通信(ambient communication),是一种不需要专用的射频激励源,适用于物联网应用的极低功耗、低成本的被动式通信技术。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
双边带调制的能力是指反射器可进行双边带调制,双边带调制信号的频域信号以载波频率为中心频点,在载波频率两边有对称的两个边带信号,该两个边带信号的每一个边带都完整携带调制信号的全部信息。
单边单调制的能力是指反射器可进行单边带调制,单边带调制出的信号相对于载波频率只有一个边带的信号。
谐波是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量,通常称为高次谐波。谐波的频率必然等于基波的频率的整数倍,基波频率3倍的波称之为三次谐波,基波频率5倍的波称之为五次谐波,以此类推。
请参阅图1,典型反射通信由三个节点组成:激励器、反射器、接收器。
激励器发送无线信号s,反射器接收来自激励器的无线信号,即与信道h2卷积后的无线信号h2*s,并将该号反射。在反射时,反射器会将自身信号承载于反射信号上,也就是对接收的信号h2*s根据函数f进行调制;接收器接收到和信道h3卷积后的无线信号h3*f(h2*s),并解调出承载于反射信号上的数据。此外,激励器发送无线信号s,接收器可以接收到与信道h1卷积后的无线信号h1*s,此处不做限定。
激励器和接收器也可以合并为一个节点,这样,反射通信演变为2个节点之间的通信。
请参阅图2,为本申请实施例中反射通信网络架构示意图。
(1)反射通信网络架构中包括:激励器、反射器和接收器。
激励器发送激励信号,反射器将自身信号承载在反射信号上进行调制,在可用的频率资源上发送反射信号,接收器接收该反射信号。
(2)激励器和接收器也可以合并为一个节点,反射通信网络架构中包括:收发器和反射器。
收发器发送激励信号,反射器将将自身信号承载在反射信号上进行调制,在可用的频率资源上将反射信号反射,收发器接收该反射信号。
激励器(Helper),可以是询问器(interrogator)、读写器(reader)或用户设备(user equipment,UE)、网络设备、用户终端或专用激励器。
反射器(backscatter terminal)是通过反射接收的信号传送信息的设备,又称为反射终端,无源设备(passive device),半有源设备(semi-passive device),散射信号设备(ambient signal device),例如反射标签(Tag)等。
接收器可以是网络设备、用户终端或专用接收器。
收发器可以是用户终端、网络设备、或者专用的收发器。
其中,网络设备是蜂窝网络的网络侧设备,例如基站,接入点等;用户终端是蜂窝网络中的终端设备,例如手机,平板电脑等;专用接收器是专用接收反射信号的设备,可以和网络设备相连,也可以直接连入蜂窝网络中;专用激励器是专用的发射激励信号的设备;专用收发器是专用的发射激励信号和接收反射信号的设备。
在反射通信的网络架构中,本申请实施例中将整个系统的控制侧设备称为控制器,可用于为反射器配置可用的频率资源并发送调度指示,控制器可以是激励器、接收器或收发器,此处不做限定。
为便于更好的理解和实施本申请实施例的方案,下面通过举例一些具体的应用场景进行说明。请参阅图3,为本申请实施例中反射通信应用场景示意图。举例示出了几种可能的反射通信应用场景。
(a)、用户终端发送激励信号,基站接收反射信号;
(b)、专用激励器发送激励信号,用户终端接收反射信号;
(c)、收发器发送激励信号并接收反射信号。
可以理解的是,图3中仅示出了部分应用场景,此处对应反射通信的应用场景不做具体限定。
在图1提供的反射通信网络的基础上,请参阅图4,为反射器双边带调制的信号频谱示意图。
激励器发送无线信号s,反射器接收激励器的无线信号,即与信道h2卷积后的无线信号h2*s,并将该号反射。在反射时,反射器会将自身信号承载于反射信号上,也就是对接收的信号h2*s根据函数f进行调制;
典型的反射器只能对接收的激励信号进行有限个数的幅度和或相位调制,也就是通过函数f(x)改变接收信号x的幅度和/或相位。
示例性的:例如激励信号为频率fc的单音信号,即图4(b)中频率为fc的线频谱,反射器进行相移按键法(phase-shift keying,PSK)调制,即f(x)=x或者f(x)=-x。相当于对接收信号x叠加了一个周期为T的方波信号,参见图4(a)所示。反射信号就是一个双边带调制的信号,其中,双边带信号中每个单边带信号的带宽中心频点相对于中心频率的偏移大小为Δf,Δf=1/T,反射信号频谱参见图4(b)所示。可以看出反射信号频谱关于激励信号频率fc对称。此外,还存在镜像信号的干扰,以及多个奇数次谐波的干扰,如图所示包括3次谐波和5次谐波。而单边带调制中,则不存在镜像信号和谐波信号的干扰。
由于在长期演进(long term evolution,LTE)和新空口(new radio,NR)系统中,频率资源位置指示的方式为指示起始频率资源块位置和连续的资源块数目。此外,在窄带物联网(narrow band internet of things,NB-IoT)系统当中,还支持直接指示所有的可用的子载波索引。上述频率资源位置的指示方法,指示的频率资源位置均为一段连续的频率资源,由于反射器通常进行双边带调制,反射信号为关于激励信号频率对称的不连续的多段频率资源段。请参阅图5,对于进行双边带调制的反射器,若通过直接指示的方式指示频率资源位置,一段频率资源位置需覆盖原始信号和镜像信号,分配的资源中间部分,如图5(b)中2Δf区间将存在冗余,造成资源浪费。
本申请实施例提供了一种资源分配方法,用于指示反射器的可用频率资源位置,可以减少频率资源浪费。
请参阅图6,为本申请实施例中资源分配方法的一个实施例示意图。
601、控制器确定反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。
控制器是反射通信系统的控制侧设备,控制器可以是激励器、接收器或收发器中任意一种,均可用于确定反射器的能力并向反射器发送调度指示。此处对于控制器的具体类型不做限定。
单双边带能力用于确定该反射器进行单边带调制或双边带调制。反射器的单双边带能力的具体类型此处不做限定。
谐波抑制能力为反射器对各次谐波的抑制能力,例如,对于谐波抑制能力强的反射器,控制器可以根据反射器的谐波抑制能力,减少为谐波抑制能力强的反射器分配的资源。谐波抑制能力可通过多种形式体现,可选的,上报第X次谐波抑制不能满足标准规定的能力,或者上报第X次及其以下谐波抑制不能满足标准规定的能力,或者上报第X次谐波抑制开始能满足标准规定的能力。其中,X为正整数,可以是从{3,5,7,……}奇数次谐波或者{2,4,6,……}偶数次谐波中选择。示例性的,若第3次及以下谐波抑制不能满足标准规定,则控制器需要分配三次谐波资源。
进一步的,可以在反馈的谐波次数的基础上反馈各次谐波的抑制能力,例如各次谐波相对于期望信号的功率衰减量。功率可以直接上报衰减值,也可以通过差分的方式进行上报。
示例性的,请参阅图7,为各次谐波功率衰减量的一个实施例示意图,例如需要上报第{3,5}次谐波的衰减量分别为{5,10}dB。
1)、直接上报衰减值即为上报{5,10}dB。
2)、通过差分的方式为上报第3次谐波相对于期望信号的功率衰减量{5}dB,和第5次相 对于第3次的差为{5}dB。
频谱搬移能力用于确定该反射器的反射信号相对于激励信号的频率偏移。反馈的粒度为可选的子载波、物理资源块(physical resource block,PRB),部分带宽(bandwidth part,BWP),载波,赫兹(Hz),千赫兹(KHz),兆赫兹(MHz),吉赫兹(GHz)等量级。粒度越大,在有限的反馈比特数下,可支持的范围越大。
需要说明的是,反射器可以采用默认值的方式上报,满足默认值时不上报,不满足默认值时,则进行上报。例如,反射器满足预设的各次谐波抑制要求,默认不上报,上报单双边带能力和频谱搬移能力即可。
控制器可以通过多种方式确定反射器的能力,包括单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。
可选的,控制器接收反射器发送反射信号,通过检测反射信号的发送频段可以隐含获取反射器的能力,包括单双边带能力和/或谐波抑制能力。通过检测反射信号,控制器可以确定该反射器是否具有频谱搬移能力,但无法具体确定搬移范围大小。类似地,控制器还可以通过检测通过数据通道发送的数据或随机接入消息的发送频段隐含获取反射器的单双边带能力和/或谐波抑制能力。发送频段资源的信息粒度可以为子载波、PRB,BWP,载波,Hz,KHz,MHz,GHz等量级。此处不做限定。
可选的,控制器接收反射器通过与控制器之间的数据传输通道上报反射器的能力,包括单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。该数据传输信道可以是上行共享信道或者为上行控制信道,此处不做限定。
可选的,控制器接收反射器通过随机接入消息携带的反射器的能力,包括单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。随机接入消息上可以是4步随机接入过程中的随机接入消息1或随机接入消息3,也可以是2步随机接入过程中的随机接入消息A。
进一步的,通过随机接入消息上报能力的方式有多种:
(1)对随机接入消息1发送的序列进行分组,反射器根据自身的能力确定随机接入消息1发送的序列分组,序列分组对应预设的能力集合。
接收器预置序列分组与能力集合的对应关系,能力集合包括该单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。
序列分组有多种类型,可以是伪随机序列或者随机序列,例如为ZC序列,m序列或者gold序列。
示例性的,将序列分为A组和B组,A组对应的调制能力是单边带调制;B组对应的调制能力是双边带调制。或者将序列分为四组,第一组代表单边带调制但是没有谐波抑制能力,第二组表示双边带调制但是没有谐波抑制能力,第三组表示单边带调制而且有谐波抑制能力,第四组表示双边带调制而且有谐波抑制能力。
(2)通过随机接入消息3传输的数据携带反射器单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。例如,携带频谱搬移能力。
(3)通过随机接入消息3传输的导频信号携带反射器单双边带能力、谐波抑制能力和频 谱搬移能力中的至少一个。例如,携带频谱搬移能力。
(4)通过随机接入消息3传输的加扰信号携带反射器单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。例如,携带频谱搬移能力。
(5)通过随机接入消息A中的消息1上报,具体方式与随机接入消息1上报调制单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个的方式类似,此处不再赘述。
(6)通过随机接入消息A中的消息3上报,具体方式与随机接入消息3上报单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个的方式类似,此处不再赘述。
可选的,控制器接收反射器发送的能力类型,确定对应的具体调制能力。控制器预置能力类型与能力集合的对应关系,能力集合包括该单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。可以理解的是,反射器还可以采用默认值的方式,对于满足默认调制能力的反射器,不进行上报,例如默认调制能力A,对于不满足默认调制能力的反射器上报调制能力类型。
示例性的,调制能力A,代表单边带调制、第5次及其以下谐波抑制不能满足标准规定的能力,且频谱搬移能力在[-1MHz,1MHz]之间。调制能力B,代表双边带调制、第{2,4}次谐波抑制不能满足标准规定的能力,且频谱搬移能力在[-1MHz,1MHz]之间。
此处对于接收器获取单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个的具体方式不做限定。
602、控制器根据该反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个确定该反射器的可用频率资源。
控制器获取反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个后,并根据上述能力确定该反射器的可用频率资源,可以理解的是,对于反射器未上报的部分能力,控制器可以取预设的默认值。示例性的,控制器仅获取反射器的单双边带能力为双边带调制,控制器可以根据预设的默认值确定谐波抑制能力为3次以及3次以下谐波抑制不能满足标准要求,且无频谱搬移能力。
若控制器确定该反射器的该单双边带能力为双边带调制的能力,该控制器确定为该反射器分配的该可用频率资源,该可用频率资源包括第一频率资源和关于目标频率对称的第二频率资源,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;例如,控制器确定反射器原始信号频率位置及镜像信号频率位置为该反射器的可用频率资源。原始信号频率位置和镜像信号频率位置关于目标频率对称。
若该控制器确定该反射器的该单双边带能力为单边带调制的能力,则控制器可以为反射器分配单边带的可用频率资源,该可用频率资源包括单边带的频率资源。具体的,控制器确定反射器原始信号频率位置为该反射器的可用频率资源,包括频带带宽,以及频带起始位置或频带中心位置。
若该控制器确定该反射器的谐波抑制能力为小于或等于第N次谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,则该控制器确定为该反射器分配的该可用频率资源,该可用频率资源包括小于或等于第N次的谐波的频率位置。例如,控制器确定原始信号频率位置、小于或等于第N次的谐波的 频率位置为反射器的可用频率资源。预设要求可以是标准规定,也可以是预设的谐波抑制要求,此处不做限定。小于或等于第N次谐波不能满足预设要求即第N次及其以下谐波抑制不能满足预设要求,或大于第N次谐波开始满足预设要求。可选的,谐波次数均为偶数,N可以为正偶数集合{2,4,6,…}中的数值;可选的,谐波次数均为奇数,N可以是大于2的奇数集合{3,5,7,…}中的数值。由于控制器将原始信号频率位置和N次及N次以下谐波的频率位置均配置给该反射器,可以避免将谐波位置配置给其他终端而造成的信号干扰。
可以理解的是,若控制器确定该反射器的谐波抑制能力为小于或等于第N次谐波不能满足预设要求,且该反射器的该单双边带能力为单边带调制的能力,则控制器确定原始信号频率位置、小于或等于第N次谐波的频率位置均为可用频率资源。
若控制器确定该反射器的谐波抑制能力为小于或等于第N次谐波不能满足预设要求,且该反射器的该单双边带能力为双边带调制的能力,则控制器确定原始信号频率位置、第N次及N次以下谐波的频率位置,以及其镜像信号频率位置均为可用频率资源。
若该控制器确定该反射器的频谱搬移能力为有频谱搬移能力,且搬移范围为第一频率范围,控制器可以根据该第一频率范围确定的可用频率资源的起始位置或中心位置;示例性的,可以确定原始信号频段的频率起始位置。
若该控制器确定该反射器的频谱搬移能力为无频谱搬移能力,则控制器可以确定可用频率资源中任一频带的起始位置或中心位置为默认位置,该默认位置为协议规定位置或根据目标信号特征确定的位置,该目标信号特征为反射信号或随机接入消息或数据发送的频率特征。
603、控制器根据该可用频率资源向该反射器发送调度指示。
控制器确定该反射器的可用频率资源后,可以向该反射器发送调度指示,调度指示用于指示该反射器在该可用频率资源位置,反射器接收调度指示后,可以根据该调度指示在该可用频率资源位置发送反射信号。
控制器向该反射器发送调度指示的方式有多种:
可选的,控制器直接指示所有可用频率资源,该控制器向该反射器发送第一频率资源集合信息,该第一频率资源集合信息指示所有该可用频率资源。
可选的,若该控制器确定该反射器的该单双边带能力为双边带调制的能力,由于其反射信号占用频率具有对称性,控制器向该反射器发送第二频率资源集合信息,该第二频率资源集合信息用于指示第二频率资源集合和该第二频率资源集合关于目标频率对称的第三频率资源集合为该可用频率资源,该第二频率资源集合信息包括第二频带带宽和第二频率位置,该第二频率位置为第二频带的中心位置或起始位置。目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率。由于只需要指示单边资源,因此可以降低指示的开销。
具体的,控制器为该反射器分配的频率资源包括原始信号频率位置及镜像信号频率位置,该频率资源关于目标频率对称,调度指示可以指示双边带频率资源中的一个边带的频率资源,并默认关于目标频率对称的资源位置可用。例如指示原始信号频率位置,默认关于目标频率对称的镜像信号频率位置可用。双边带频率资源中的一个边带的频率资源包括频带带宽和频带的频率位置,频带的频率位置包括频带的中心位置或起始位置。可选的,第二频率资源集 合信息指示基于目标频率的偏移频率资源索引集合,默认对称的频率资源可用。
示例性的:
(1)直接指示所有可用频率资源。
请参阅图8,为指示频率资源集合的一个实施例示意图,激励信号为子载波3,分配的频率资源为子载波0,1,5,6,直接指示所有子载波(0,1,5,6)即可。
(2)指示单边的可用频率资源,默认基于目标频率对称的频率资源可用。
激励信号为子载波3,指示子载波(5,6)则默认关于激励信号对称的子载波(0,1)可用。
(3)指示基于目标频率的偏移频率资源索引集合,默认对称的频率资源可用。
激励信号为子载波3,指示子载波偏移(2,3),则代表子载波(5,6),且默认关于激励信号对称的子载波(0,1)可用。
可选的,若该控制器确定该反射器的该单双边带能力为单边带调制的能力,则可以为反射器分配单边带的可用频率资源,该控制器向该反射器发送第四频率资源集合信息,该第四频率资源信息用于指示第四频率资源集合为该可用频率资源,该第四频率资源集合信息包括第四频带带宽和第四频率位置,该第四频率位置为第四频带的中心位置或起始位置。
可选的,若该控制器确定该反射器的谐波抑制能力为第N次及N次以下谐波不能满足预设要求,该N为大于1的正整数,则该控制器向该反射器发送第五频率资源集合信息,该第五频率资源集合信息用于指示第五频率资源集合为该可用频率资源,该第五频率资源集合包括第N次及N次以下谐波的频率位置。需要说明的是,多次谐波的带宽默认与主信号的带宽一致,不需额外指示,多次谐波的频率位置可以指示,也可以不指示,此处不做限定。控制器可以指示第N次及N次以下谐波的频率位置,例如N次及N次以下谐波的频带的中心位置或起始位置。
可选的,若控制器确定该反射器的谐波抑制能力为第N次及N次以下谐波不能满足预设要求,且该反射器的该单双边带能力为单边带调制的能力,控制器确定原始信号、N次及N次以下谐波的频段均为可用频率资源,调度指示可以指示原始信号、N次及N次以下谐波的频段和频率位置。若控制器确定该反射器的谐波抑制能力为第N次及N次以下谐波不能满足预设要求,且该反射器的该单双边带能力为双边带调制的能力,则控制器确定单边带的原始信号频率位置、N次及N次以下谐波,以及单边带信号的各镜像信号的频率位置均为可用频率资源。调度指示可以指示原始信号、N次及N次以下谐波的频段和频率位置,默认关于目标频率对称的频率位置可用。
可选的,若该控制器确定该反射器的频谱搬移能力为有频谱搬移能力,且搬移范围为第一频率范围,则该控制器向该反射器发送第六频率资源集合信息,该第六频率资源集合信息用于指示第六频率资源集合为该可用频率资源,该第六频率资源集合信息包括第六频带带宽和第六频率位置,该第六频率位置为根据该第一频率范围确定的第六频带的起始位置或中心位置;
可选的,若该控制器确定该反射器的频谱搬移能力为无频谱搬移能力,则该控制器向反射器发送第七频率资源集合信息,该第七频率资源集合信息用于指示第七频率资源集合为该 可用频率资源,该第七频率资源集合信息包括第七频带带宽和第七频率位置,该第七频率位置为默认位置,该默认位置为协议规定位置或根据目标信号特征确定的位置,该目标信号特征为反射信号或随机接入消息或数据发送的频率特征,该第七频率位置为第七频带的起始位置或中心位置。
本申请实施例提供的资源分配方法,控制器确定反射器发送的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,进而根据单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个确定该反射器的可用频率资源,并向该反射器发送调度指示,用于指示可用的频率资源。本申请实施例提供的资源分配方法可以减少频率资源浪费,例如,对于具有双边带调制的能力的反射器,由于其需要的频率资源为非连续的多段频率资源,相较现有技术直接指示一段频率资源位置,本方法根据反射器的能力指示可用的频率资源,可以减少频率资源浪费。
基于图2所示的系统架构可知,本申请实施例中的反射通信系统,可以包括激励器、反射器和接收器,也可以包括收发器和反射器。
当反射通信系统包括激励器、反射器和接收器时,反射通信的控制侧可以是激励器,也可以是接收器,即控制器可以是激励器或接收器。
当反射通信系统包括收发器和反射器时,控制器为收发器。
下面,基于不同的反射通信架构和控制器类型,分别介绍本申请实施例的资源分配方法:
一、控制器为接收器。
基于图2所示的系统架构,请参阅图9,为本申请实施例中资源分配方法的一个交互流程图。该资源分配方法包括:
901、接收器确定反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。
902、接收器确定可用频率资源。
903、接收器向反射器发送调度指示。
步骤901至903中接收器执行的操作与图6对应的实施例中步骤601至603控制器执行的操作类似,此处不再赘述。
接收器向反射器发送调度指示可以由接收器直接发送给反射器,参考步骤903;也可以由接收器发送给激励器后,由激励器转发给反射器。此处对于接收器向反射器发送调度指示的方法具体不做限定。请参考步骤904至905。
904、接收器向激励器发送调度指示。
接收器为反射器分配可用的频率资源后,可以向激励器发送调度指示,调度指示用于指示反射器可用频率资源位置。
接收器发送调度指示携带的具体信息可参考步骤903,此处不再赘述。
905、激励器向发射终端发送调度指示。
激励器接收接收器发送的调度指示后,可以向反射器转发该调度指示。
需要说明的是,步骤903和步骤904至905为可选步骤,可以执行步骤903,不执行步骤904至905;也可以执行步骤904至905,不执行步骤903,此处不做限定。
本申请实施例提供的资源分配方法,控制器确定反射器发送的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,进而根据单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个确定该反射器的可用频率资源,并向该反射器发送调度指示,用于指示可用的频率资源。对于具有双边带调制的能力的反射器,由于其需要的频率资源为非连续的多段频率资源,相较现有技术直接指示一段频率资源位置,本方法根据反射器的能力指示可用的频率资源,可以减少频率资源浪费。
二、控制器为激励器。
基于图2所示的系统架构,请参阅图10,为本申请实施例中资源分配方法的另一个交互流程图。
1001、激励器确定反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。
反射器上报单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个的方式与图9对应的实施例中的步骤901类似,此处不再赘述。
需要说明的是,反射器向接收器发送单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个,接收器将单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个转发给激励器。
1002、激励器确定可用频率资源。
激励器确定该反射器的可用频率资源的具体方式与图9对应的实施例步骤902中接收器确定反射器的可用频率资源的方法类似,此处不再赘述。
1003、激励器向反射器发送调度指示。
激励器根据反射器的能力分配可用的频率资源,并向反射器发送调度指示,以指示该反射器可用频率资源位置。激励器发送调度指示的具体方式可参考图9对应的实施例中的步骤903,与接收器向反射器发送调度指示的方式类似,此处不再赘述。
本申请实施例提供的资源分配方法,激励器可以通过反射器发送的发射信号确定反射器的能力,进而根据反射器的能力向该反射器发送调度指示,用于指示可用的频率资源。对于具有双边带调制的能力的反射器,由于其需要的频率资源为非连续的多段频率资源,相较现有技术直接指示一段频率资源位置,本方法根据反射器的能力指示可用的频率资源,可以减少频率资源浪费。
三、控制器为收发器。
基于图2所示的系统架构,请参阅图11,为本申请实施例中资源分配方法的另一个交互流程图。
1101、收发器确定反射器的单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个。
1102、收发器确定可用频率资源。
1103、收发器向反射器发送调度指示。
本实施例中,控制器为收发器,步骤1101至1103中收发器执行的操作与图9对应的实施例中步骤901至步骤903控制器执行的操作类似,此处不再赘述。
本申请实施例提供的资源分配方法,收发器可以通过反射器发送的发射信号确定反射器 的能力,进而根据反射器的能力向该反射器发送调度指示,用于指示可用的频率资源。对于具有双边带调制的能力的反射器,由于其需要的频率资源为非连续的多段频率资源,相较现有技术直接指示一段频率资源位置,本方法根据反射器的能力指示可用的频率资源,可以减少频率资源浪费。
上面介绍了本申请实施例中资源分配方法,下面对实现资源分配方法的设备进行介绍。
请参阅图12,为本申请实施例中控制器的一个实施例示意图;
本申请实施例提供的控制器,包括:
确定单元1201,用于确定反射器的能力,该反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;
该确定单元1201,还用于根据该反射器的能力确定该反射器的可用频率资源;
发送单元1202,用于向该反射器发送调度指示,该调度指示用于指示该可用频率资源的信息。
可选地,如果该反射器的单双边带能力包括:双边带调制的能力,该可用频率资源包括第一频率资源和第二频率资源,该第一频率资源和该第二频率资源关于目标频率对称,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;或者,
如果该反射器的单双边带能力包括:单边带调制的能力,该可用频率资源包括单边带的频率资源。
可选地,如果该反射器单双边带能力包括:双边带调制的能力,该调度指示包括:第一调度指示,该第一调度指示用于指示该第一频率资源的信息,或该第一调度指示用于指示该第一频率资源的信息和该目标频率,或该第一调度指示用于指示该第一频率资源的信息和该第二频率资源的信息;
或者,如果该反射器的单双边带能力包括:单边带调制,该调度指示包括:第二调度指示,该第二调度指示用于指示该单边带的频率资源的信息。
可选地,如果该反射器的谐波抑制能力包括:小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,该可用频率资源包括小于或等于第N次的谐波的频率位置。
可选地,如果该反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,该可用频率资源的起始位置或中心位置是根据该第一频率范围确定的。
可选地,该控制器还包括:
接收单元1203,用于接收该反射器发送的反射信号,或随机接入消息,或数据;
该确定单元1201,具体用于通过检测该反射信号,承载该随机接入信息的信号,或传输该数据的频谱,确定该反射器的能力。
可选地,该控制器还包括:
接收单元1203,用于接收该反射器发送第一随机接入消息;
该确定单元1201,具体用于根据该第一随机接入消息确定该反射器的能力,承载该第一随机接入消息的序列所属的序列分组与该反射器的能力对应。
可选地,该第一随机接入消息包括:随机接入消息1,或者随机接入消息A,该随机接入消息A中包括随机接入消息1。
可选地,该控制器还包括:
接收单元1203,用于接收第二随机接入消息;
该确定单元1201,具体用于根据该第二随机接入消息传输的数据,导频或加扰信号确定反射器的能力。
可选地,第二随机接入消息包括:随机接入消息3,或者随机接入消息A,该随机接入消息A中包括随机接入消息3。
可选地,该控制器还包括:
接收单元1203,用于接收该反射器通过数据传输通道发送的该反射器的能力的信息。
可选地,该控制器还包括:
接收单元1203,用于接收该反射器发送的能力类型信息;
该确定单元1201,具体用于根据该能力类型信息确定该反射器的能力;其中,该能力类型信息与该反射器的能力集合对应。
请参阅图13,为本申请实施例中反射器的一个实施例示意图;
本申请实施例提供的反射器,包括:
发送单元1301,用于向控制器发送该反射器的能力的信息,该反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;
接收单元1302,用于接收该控制器发送的调度指示,该调度指示用于指示该反射器的可用频率资源的信息,其中,该可用频率资源是该控制器根据该反射器的能力确定的。
可选地,如果该反射器单双边带能力包括:双边带调制的能力,该可用频率资源包括第一频率资源和第二频率资源,该第一频率资源和该第二频率资源关于目标频率对称,该目标频率为激励信号频率,或激励信号的中心频率,或该控制器指示的频率,或预设的系统默认频率;或者,
可选地,如果该反射器的单双边带能力包括:单边带调制的能力,该可用频率资源包括单边带的频率资源。
可选地,如果该反射器单双边带能力包括:双边带调制的能力,该调度指示包括第一调度指示,该第一调度指示用于指示该第一频率资源的信息,或该第一调度指示用于指示该第一频率资源的信息和该目标频率,或该第一调度指示用于指示该第一频率资源的信息和该第二频率资源的信息;
或者,如果该反射器的单双边带能力包括:单边带调制,该调度指示包括第一调度指示,该第二调度指示,该第二调度指示用于指示该单边带的频率资源。
可选地,如果该反射器的谐波抑制能力包括:小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,该N为大于1的正整数,该可用频率资源包括小于或等于第N次的谐波的频率位置。
可选地,如果该反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,该可用频率资源的起始位置或中心位置是根据该第一频率范围确定的。
可选地,该发送单元1301具体用于:向该控制器发送反射信号、随机接入消息或数据,该反射信号、该随机接入消息或该数据的发送频谱用于指示该反射器的能力。
可选地,该发送单元1301具体用于:向该控制器发送第一随机接入消息,承载该第一随机接入消息的序列所属的序列分组与该反射器的能力对应。
可选地,该第一随机接入消息包括:随机接入消息1,或者随机接入消息A,该随机接入消息A中包括随机接入消息1。
可选地,该发送单元1301具体用于:向该控制器发送第二随机接入消息,该第二随机接入消息传输的数据、导频或加扰信号用于确定反射器的能力。
可选地,第二随机接入消息包括:随机接入消息3,或者随机接入消息A,该随机接入消息A中包括随机接入消息3。
可选地,该发送单元1301具体用于:通过数据传输通道向该控制器发送数据,该数据携带该反射器的能力的信息。
可选地,该发送单元1301具体用于:向该控制器发送该反射器的能力类型信息,其中,该能力类型信息与该反射器的能力集合对应。
请参阅图14,本申请实施例中控制器的另一个实施例示意图。
该控制器1400可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器1401和存储器1405,该存储器1405中存储有程序或数据。
其中,存储器1405可以是易失性存储或非易失性存储。处理器1401可以与存储器1405通信,在控制器1400上执行存储器1405中的一系列指令。
控制器1400还可以包括一个或一个以上电源1402,一个或一个以上有线或无线网络接口1403,一个或一个以上输入输出接口1404。
本实施例中控制器1400中的处理器1401所执行的流程可以参考前述方法实施例中描述的方法流程,此处不加赘述。
请参阅图15,本申请实施例中反射器的另一个实施例示意图。
该反射器1500可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器1501。
反射器1500还包括调制器1502,用于对信号进行调制。
反射器1500还包括天线1503,用于收发信号。
此外,反射器1500还可以包括电源、存储器等部件,此处不做限定。
本实施例中反射器1500中的处理器1501所执行的流程可以参考前述方法实施例中描述的方法流程,此处不加赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过 其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (45)

  1. 一种资源分配方法,其特征在于,包括:
    控制器确定反射器的能力,所述反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;
    所述控制器根据所述反射器的能力确定所述反射器的可用频率资源;
    所述控制器向所述反射器发送调度指示,所述调度指示用于指示所述可用频率资源的信息。
  2. 根据权利要求1所述的方法,其特征在于,如果所述反射器的单双边带能力包括:双边带调制的能力,所述可用频率资源包括第一频率资源和第二频率资源,所述第一频率资源和所述第二频率资源关于目标频率对称,所述目标频率为激励信号频率,或激励信号的中心频率,或所述控制器指示的频率,或预设的系统默认频率;或者,
    如果所述反射器的单双边带能力包括:单边带调制的能力,所述可用频率资源包括单边带的频率资源。
  3. 根据权利要求2所述的方法,其特征在于,
    如果所述反射器单双边带能力包括:双边带调制的能力,所述调度指示包括:第一调度指示,所述第一调度指示用于指示所述第一频率资源的信息,所述第一调度指示用于指示所述第一频率资源的信息和所述目标频率,或所述第一调度指示用于指示所述第一频率资源的信息和所述第二频率资源的信息;
    或者,如果所述反射器的单双边带能力包括:单边带调制,所述调度指示包括:第二调度指示,所述第二调度指示用于指示所述单边带的频率资源的信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,如果所述反射器的谐波抑制能力包括:
    小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,所述N为大于1的正整数,所述可用频率资源包括小于或等于第N次的谐波的频率位置。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,如果所述反射器的频谱搬移能力包括:
    有频谱搬移能力,且搬移范围为第一频率范围,所述可用频率资源的起始位置或中心位置是根据所述第一频率范围确定的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:所述控制器接收所述反射器发送的反射信号,或随机接入消息,或数据;
    所述控制器确定反射器的能力包括:
    所述控制器通过检测所述反射信号,承载所述随机接入信息的信号,或传输所述数据的频谱,确定所述反射器的能力。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:所述控制器接收所述反射器发送第一随机接入消息;
    所述控制器确定反射器的能力包括:
    所述控制器根据所述第一随机接入消息确定所述反射器的能力,承载所述第一随机接入 消息的序列所属的序列分组与所述反射器的能力对应。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制器接收第二随机接入消息;
    所述控制器确定反射器的能力包括:
    所述控制器根据所述第二随机接入消息传输的数据,导频或加扰信号确定反射器的能力。
  9. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:所述控制器接收所述反射器通过数据传输通道发送的所述反射器的能力的信息。
  10. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制器接收所述反射器发送的能力类型信息;
    控制器确定反射器的能力包括:
    所述控制器根据所述能力类型信息确定所述反射器的能力;其中,所述能力类型信息与所述反射器的能力集合对应。
  11. 一种资源分配方法,其特征在于,包括:
    反射器向控制器发送所述反射器的能力的信息,所述反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;
    所述反射器接收所述控制器发送的调度指示,所述调度指示用于指示所述反射器的可用频率资源的信息,其中,所述可用频率资源是所述控制器根据所述反射器的能力确定的。
  12. 根据权利要求11所述的方法,其特征在于,
    如果所述反射器单双边带能力包括:双边带调制的能力,所述可用频率资源包括第一频率资源和第二频率资源,所述第一频率资源和所述第二频率资源关于目标频率对称,所述目标频率为激励信号频率,或激励信号的中心频率,或所述控制器指示的频率,或预设的系统默认频率;或者,
    如果所述反射器的单双边带能力包括:单边带调制的能力,所述可用频率资源包括单边带的频率资源。
  13. 根据权利要求12所述的方法,其特征在于,如果所述反射器单双边带能力包括:双边带调制的能力,所述调度指示包括第一调度指示,所述第一调度指示用于指示所述第一频率资源的信息,所述第一调度指示用于指示所述第一频率资源的信息和所述目标频率,或所述第一调度指示用于指示所述第一频率资源的信息和所述第二频率资源的信息;
    或者,如果所述反射器的单双边带能力包括:单边带调制,所述调度指示包括第一调度指示,所述第二调度指示,所述第二调度指示用于指示所述单边带的频率资源。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,如果所述反射器的谐波抑制能力包括:
    小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,所述N为大于1的正整数,所述可用频率资源包括小于或等于第N次的谐波的频率位置。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,如果所述反射器的频谱搬移能力包括:
    有频谱搬移能力,且搬移范围为第一频率范围,所述可用频率资源的起始位置或中心位 置是根据所述第一频率范围确定的。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述反射器向控制器发送所述反射器的能力的信息包括:
    所述反射器向所述控制器发送反射信号、随机接入消息或数据,所述反射信号、所述随机接入消息或所述数据的发送频谱用于指示所述反射器的能力。
  17. 根据权利要求11至15中任一项所述的方法,其特征在于,所述反射器向控制器发送所述反射器的能力的信息包括:
    所述反射器向所述控制器发送第一随机接入消息,承载所述第一随机接入消息的序列所属的序列分组与所述反射器的能力对应。
  18. 根据权利要求11至15中任一项所述的方法,其特征在于,所述反射器向控制器发送所述反射器的能力的信息包括:
    所述反射器向所述控制器发送第二随机接入消息,所述第二随机接入消息传输的数据、导频或加扰信号用于确定反射器的能力。
  19. 根据权利要求11至15中任一项所述的方法,其特征在于,所述反射器向控制器发送所述反射器的能力的信息包括:
    所述反射器通过数据传输通道向所述控制器发送数据,所述数据携带所述反射器的能力的信息。
  20. 根据权利要求11至15中任一项所述的方法,其特征在于,所述反射器向控制器发送所述反射器的能力的信息包括:
    所述反射器向所述控制器发送所述反射器的能力类型信息,其中,所述能力类型信息与所述反射器的能力集合对应。
  21. 一种控制器,其特征在于,包括:
    确定单元,用于确定反射器的能力,所述反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;
    所述确定单元,还用于根据所述反射器的能力确定所述反射器的可用频率资源;
    发送单元,用于向所述反射器发送调度指示,所述调度指示用于指示所述可用频率资源的信息。
  22. 根据权利要求21所述的控制器,其特征在于,如果所述反射器的单双边带能力包括:双边带调制的能力,所述可用频率资源包括第一频率资源和第二频率资源,所述第一频率资源和所述第二频率资源关于目标频率对称,所述目标频率为激励信号频率,或激励信号的中心频率,或所述控制器指示的频率,或预设的系统默认频率;或者,
    如果所述反射器的单双边带能力包括:单边带调制的能力,所述可用频率资源包括单边带的频率资源。
  23. 根据权利要求22所述的控制器,其特征在于,如果所述反射器单双边带能力包括:双边带调制的能力,所述调度指示包括:第一调度指示,所述第一调度指示用于指示所述第一频率资源的信息,所述第一调度指示用于指示所述第一频率资源的信息和所述目标频率或所述第一调度指示用于指示所述第一频率资源的信息和所述第二频率资源的信息;
    或者,如果所述反射器的单双边带能力包括:单边带调制,所述调度指示包括:第二调 度指示,所述第二调度指示用于指示所述单边带的频率资源的信息。
  24. 根据权利要求21至23中任一项所述的控制器,其特征在于,如果所述反射器的谐波抑制能力包括:小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,所述N为大于1的正整数,所述可用频率资源包括小于或等于第N次的谐波的频率位置。
  25. 根据权利要求21至24中任一项所述的控制器,其特征在于,如果所述确定单元,所述反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,所述可用频率资源的起始位置或中心位置是根据所述第一频率范围确定的。
  26. 根据权利要求21至25中任一项所述的控制器,其特征在于,所述控制器还包括:
    接收单元,用于接收所述反射器发送的反射信号,或随机接入消息,或数据;
    所述确定单元,具体用于通过检测所述反射信号,承载所述随机接入信息的信号,或传输所述数据的频谱,确定所述反射器的能力。
  27. 根据权利要求21至25中任一项所述的控制器,其特征在于,所述控制器还包括:
    接收单元,用于接收所述反射器发送第一随机接入消息;
    所述确定单元,具体用于根据所述第一随机接入消息确定所述反射器的能力,承载所述第一随机接入消息的序列所属的序列分组与所述反射器的能力对应。
  28. 根据权利要求21至25中任一项所述的控制器,其特征在于,所述控制器还包括:
    接收单元,用于接收第二随机接入消息;
    所述确定单元,具体用于根据所述第二随机接入消息传输的数据,导频或加扰信号确定反射器的能力。
  29. 根据权利要求21至25中任一项所述的控制器,其特征在于,所述控制器还包括:
    接收单元,用于接收所述反射器通过数据传输通道发送的所述反射器的能力的信息。
  30. 根据权利要求21至25中任一项所述的控制器,其特征在于,所述控制器还包括:
    接收单元,用于接收所述反射器发送的能力类型信息;
    所述确定单元,具体用于根据所述能力类型信息确定所述反射器的能力;其中,所述能力类型信息与所述反射器的能力集合对应。
  31. 一种反射器,其特征在于,包括:
    发送单元,用于向控制器发送所述反射器的能力的信息,所述反射器的能力包括:单双边带能力、谐波抑制能力和频谱搬移能力中的至少一个;
    接收单元,用于接收所述控制器发送的调度指示,所述调度指示用于指示所述反射器的可用频率资源的信息,其中,所述可用频率资源是所述控制器根据所述反射器的能力确定的。
  32. 根据权利要求31所述的反射器,其特征在于,
    如果所述反射器单双边带能力包括:双边带调制的能力,所述可用频率资源包括第一频率资源和第二频率资源,所述第一频率资源和所述第二频率资源关于目标频率对称,所述目标频率为激励信号频率,或激励信号的中心频率,或所述控制器指示的频率,或预设的系统默认频率;或者,
    如果所述反射器的单双边带能力包括:单边带调制的能力,所述可用频率资源包括单边带的频率资源。
  33. 根据权利要求32所述的反射器,其特征在于:
    如果所述反射器单双边带能力包括:双边带调制的能力,所述调度指示包括第一调度指示,所述第一调度指示用于指示所述第一频率资源的信息,所述第一调度指示用于指示所述第一频率资源的信息和所述目标频率,或所述第一调度指示用于指示所述第一频率资源的信息和所述第二频率资源的信息;
    或者,如果所述反射器的单双边带能力包括:单边带调制,所述调度指示包括第一调度指示,所述第二调度指示,所述第二调度指示用于指示所述单边带的频率资源。
  34. 根据权利要求31至33中任一项所述的反射器,其特征在于,如果所述反射器的谐波抑制能力包括:
    小于或等于第N次的谐波不能满足预设要求,或第N+1次的谐波满足预设要求,或第N次的谐波不能满足预设要求,所述N为大于1的正整数,所述可用频率资源包括小于或等于第N次的谐波的频率位置。
  35. 根据权利要求31至34中任一项所述的反射器,其特征在于,如果所述反射器的频谱搬移能力包括:有频谱搬移能力,且搬移范围为第一频率范围,所述可用频率资源的起始位置或中心位置是根据所述第一频率范围确定的。
  36. 根据权利要求31至35中任一项所述的反射器,其特征在于,所述发送单元具体用于:
    向所述控制器发送反射信号、随机接入消息或数据,所述反射信号、所述随机接入消息或所述数据的发送频谱用于指示所述反射器的能力。
  37. 根据权利要求31至35中任一项所述的反射器,其特征在于,所述发送单元具体用于:
    向所述控制器发送第一随机接入消息,承载所述第一随机接入消息的序列所属的序列分组与所述反射器的能力对应。
  38. 根据权利要求31至35中任一项所述的反射器,其特征在于,所述发送单元具体用于:
    向所述控制器发送第二随机接入消息,所述第二随机接入消息传输的数据、导频或加扰信号用于确定反射器的能力。
  39. 根据权利要求31至35中任一项所述的反射器,其特征在于,所述发送单元具体用于:
    通过数据传输通道向所述控制器发送数据,所述数据携带所述反射器的能力的信息。
  40. 根据权利要求31至35中任一项所述的反射器,其特征在于,所述发送单元具体用于:
    向所述控制器发送所述反射器的能力类型信息,其中,所述能力类型信息与所述反射器的能力集合对应。
  41. 一种控制器,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于执行所述存储器中的指令,使得所述控制器执行权利要求1至10中任一项所述的方法。
  42. 一种反射器,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于执行所述存储器中的指令,使得所述反射器执行权利要求11至20中任一项所述的方法。
  43. 一种反射通信系统,其特征在于,包括权利要求21至30中任一项所述的控制器,和权利要求31至40中任一项所述的反射器。
  44. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1至20中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1至20中任一项所述的方法。
PCT/CN2020/108341 2019-08-16 2020-08-11 资源分配方法、控制器和反射器 WO2021031919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760066.3 2019-08-16
CN201910760066.3A CN112399582B (zh) 2019-08-16 2019-08-16 资源分配方法、控制器和反射器

Publications (1)

Publication Number Publication Date
WO2021031919A1 true WO2021031919A1 (zh) 2021-02-25

Family

ID=74602840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108341 WO2021031919A1 (zh) 2019-08-16 2020-08-11 资源分配方法、控制器和反射器

Country Status (2)

Country Link
CN (1) CN112399582B (zh)
WO (1) WO2021031919A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213560A4 (en) * 2020-10-27 2023-11-15 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
WO2023230951A1 (en) * 2022-06-01 2023-12-07 Qualcomm Incorporated Techniques for baseband frequency shifting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117616849A (zh) * 2021-07-12 2024-02-27 Oppo广东移动通信有限公司 无线通信方法、终端设备和通信设备
CN113891356B (zh) * 2021-09-29 2024-06-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867878A (zh) * 2009-04-15 2010-10-20 宏达国际电子股份有限公司 处理关于量测能力的方法及其相关通讯装置
CN109150254A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 波束训练的配置参数的获取方法及装置
CN109194364A (zh) * 2018-09-25 2019-01-11 河南科技大学 基于BackFi的环境反向散射通信多跳传输方法
US20190115951A1 (en) * 2018-11-30 2019-04-18 Intel Corporation Single side band transmission over a waveguide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218354A (en) * 1989-06-23 1993-06-08 Motorola, Inc. Communication system with improved resource assignment
CN106376085A (zh) * 2015-09-01 2017-02-01 北京智谷技术服务有限公司 资源分配方法、传输方法、及其装置
US10574377B2 (en) * 2015-12-18 2020-02-25 Huawei Technologies Co., Ltd. Interference suppression method, apparatus, and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867878A (zh) * 2009-04-15 2010-10-20 宏达国际电子股份有限公司 处理关于量测能力的方法及其相关通讯装置
CN109150254A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 波束训练的配置参数的获取方法及装置
CN109194364A (zh) * 2018-09-25 2019-01-11 河南科技大学 基于BackFi的环境反向散射通信多跳传输方法
US20190115951A1 (en) * 2018-11-30 2019-04-18 Intel Corporation Single side band transmission over a waveguide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AGILENT TECHNOLOGIES: "MIMO OTA Simulation using SystemVue", 3GPP TSG RAN WG4 #63; R4-123143, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 14 May 2012 (2012-05-14), Prague, Czech Republic; 20120521 - 20120525cioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050614493 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213560A4 (en) * 2020-10-27 2023-11-15 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
WO2023230951A1 (en) * 2022-06-01 2023-12-07 Qualcomm Incorporated Techniques for baseband frequency shifting

Also Published As

Publication number Publication date
CN112399582A (zh) 2021-02-23
CN112399582B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2021031919A1 (zh) 资源分配方法、控制器和反射器
US11758492B2 (en) Method and apparatus of initial access in next generation cellular networks
RU2732508C1 (ru) Способ и устройство для передачи сигналов
CN113922937B (zh) 一种无线信号传输方法和设备
KR102272818B1 (ko) 무선 통신 시스템에서 효율적인 ptrs 운영 및 지시에 관한 장치 및 방법
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
CN102282881B (zh) 利用汇聚载波通信的方法、接入网设备及终端
JP5784697B2 (ja) マルチキャリア通信システムにおけるアップリンク送信のタイミング
US10959254B2 (en) Radio communications method, base station, and terminal
KR102225238B1 (ko) 데이터 송신 방법, 단말기, 및 기지국
US10841052B2 (en) Multi-numerology based data transmitting and receiving method and apparatus capable of frequency hopping in OFDM system
CN113315729A (zh) 一种通信方法及装置
CN115486175A (zh) 用于发送和接收下行链路(dl)带宽部分(bwp)的信道状态信息(csi)报告的装置和方法
CN111132339B (zh) 用于确定资源的方法和设备以及存储介质
CN108989008A (zh) 参考信号的传输方法、装置和设备
JP2022509681A (ja) ガード・バンド指示方法及び装置
KR20230056028A (ko) 통신 방법 및 통신 장치
CN105393634A (zh) 一种数据通信方法、设备及系统
US11374708B2 (en) Communication method and communications apparatus
CN111699710B (zh) 一种信息指示方法及相关设备
KR102449701B1 (ko) 직교 주파수 분할 다중 접속 시스템에서 주파수 도약이 가능한 다중-뉴머롤로지 데이터 송수신 방법 및 장치
WO2023103783A1 (zh) 资源分配方法、装置和通信设备
US20130223368A1 (en) Method for transmitting data using variable clock
KR20210004782A (ko) 무선통신시스템에서 설정된 자원의 확인 방법 및 장치
CN105790908B (zh) 数据传输、数据处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853925

Country of ref document: EP

Kind code of ref document: A1