WO2021031606A1 - 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法 - Google Patents

一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法 Download PDF

Info

Publication number
WO2021031606A1
WO2021031606A1 PCT/CN2020/087573 CN2020087573W WO2021031606A1 WO 2021031606 A1 WO2021031606 A1 WO 2021031606A1 CN 2020087573 W CN2020087573 W CN 2020087573W WO 2021031606 A1 WO2021031606 A1 WO 2021031606A1
Authority
WO
WIPO (PCT)
Prior art keywords
soot
optical engine
laser
beam splitter
iccd camera
Prior art date
Application number
PCT/CN2020/087573
Other languages
English (en)
French (fr)
Inventor
钟汶君
相启龙
何志霞
袁起飞
姜鹏
刘庆
颜飞斌
王谦
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2021031606A1 publication Critical patent/WO2021031606A1/zh
Priority to ZA2021/08520A priority Critical patent/ZA202108520B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating or supervising devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence

Definitions

  • the invention relates to the technical field of engine combustion performance testing, in particular to a device and method for jointly measuring soot precursors and soot based on an optical engine.
  • soot is one of the important indicators to evaluate the pollutant emission characteristics of power machinery.
  • the country has formulated strict emission regulations to restrict soot emissions, and research on the generation and development of soot precursors and soot during the combustion process of power machinery is of great significance for reducing soot emissions from power machinery.
  • soot precursors and soot generation characteristics during combustion have important guiding significance for exploring soot generation and development mechanisms; in addition, through the optical engine system, the development history and carbon soot precursors can be obtained closer to the actual operating conditions of the engine.
  • the development process of smoke generation provides experimental data support for in-depth understanding of the formation of soot pollutants from power machinery.
  • soot precursors and soot produced in the combustion process of an engine the engine combustion has large fluctuations per cycle and the combustion process is an unsteady and strongly turbulent process.
  • the soot generation and development characteristics during the combustion process require joint measurement of soot precursors and soot, and at the same time obtain the corresponding soot precursor and soot development characteristics during a combustion process.
  • the present invention provides a device and method for joint measurement of soot precursors and soot based on an optical engine, ensuring the accuracy of the test and testing, and better studying the combustion and emission characteristics of power machinery.
  • the simultaneous measurement of the spatial distribution of soot precursors and soot can be achieved.
  • a device for jointly measuring soot precursors and soot based on an optical engine which is characterized in that it mainly includes a laser system, an optical engine main body, a fuel supply system, an air supply system, a signal synchronizer, and an image acquisition system.
  • the fuel supply system and the gas supply system provide fuel and gas for the optical engine body respectively;
  • the laser system includes a first YAG laser and a second YAG laser
  • the image acquisition system includes a first beam splitter, a second beam splitter, a 450 band pass filter, a 410 nm band pass filter, a first ICCD camera, a second ICCD camera, and a computer;
  • the coating side of the first beam splitter facing the first ICCD camera and the second ICCD camera is tilted at a tilt angle of 45°; the coating side of the second beam splitter is tilted facing the first YAG laser and the second YAG laser, The inclination angle is 45°;
  • the sheet light system is placed on one side of the window of the optical engine body, the second beam splitter is placed obliquely on the extension line of the sheet light system and the center point of the window, and the first beam splitter is placed obliquely on the other side.
  • the geometric centers of the sheet light system, the second beam splitter, and the first beam splitter are located on the same straight line;
  • the 450nm bandpass filter and the 410nm bandpass filter are respectively placed between the first ICCD camera, the second ICCD camera and the first beam splitter;
  • the line connecting the center point of the first ICCD camera and the first beam splitter is in a vertical relationship with the line connecting the center point of the second ICCD camera and the second beam splitter;
  • One side of the second beam splitter is provided with a first YAG laser, and the other side is provided with a second YAG laser;
  • the signal synchronizer is connected with the laser system, fuel supply system and image acquisition system, and controls the signal acquisition and delay between the laser system, fuel supply system and image acquisition system.
  • it further includes a circulating water jacket arranged around the upper piston body of the optical engine, and the circulating water jacket is communicated with the heating water tank through a temperature control switch.
  • an electric heating wire and a temperature sensor are arranged in the air inlet of the optical engine, and the electric heating wire and the temperature sensor are connected with a temperature control switch.
  • a reflector is placed at the lower end of the optical engine.
  • the fuel supply system includes a high-pressure fuel pump, a high-pressure common rail pipe, and a fuel injector; the high-pressure fuel pump is connected to the high-pressure common rail pipe through a fuel pipe, and the high-pressure common rail pipe is connected to the fuel injector; the fuel injector is located in the optical engine The upper end of the main body.
  • the signal synchronizer is a BNC signal synchronizer.
  • the main body of the optical engine is a single-cylinder four-stroke optical engine.
  • Step 1 The synchronization control system adjusts the valve phase and lift through the valve phase mechanism to match the fuel injection timing of the fuel supply system.
  • the computer controls the fuel supply system control signal, controls the fuel injection of the injector, and then the injector sends Signal to the signal synchronizer;
  • Step 2 The signal synchronizer controls the laser with a wavelength of 532nm emitted by the first YAG laser, and at the same time controls the first ICCD camera to take pictures; at this time, the 532nm laser passes through the beam splitter 1 and then passes through the sheet light system to be converted into a laser sheet The light is irradiated into the optical engine and irradiated vertically on the combustion flame. After passing through the first spectroscope, it is filtered by the 450nm band-pass filter and then taken by the first ICCD camera to obtain the excited laser-induced incandescent light signal. Measurement of the spatial distribution of soot during combustion;
  • Step 3 Subsequently, the signal synchronizer controls the laser with a wavelength of 355nm emitted by the second YAG laser, and at the same time controls the second ICCD camera to take pictures; at this time, the 355nm laser passes through the first beam splitter and then passes through the optical system to transform into a A beam of laser light is then injected into the optical engine and irradiated vertically on the fuel spray flame. After passing through the first beam splitter and passing through the 410nm bandpass filter, the second ICCD camera obtains the laser-induced fluorescence signal. Measurement of PAH group of soot precursor product.
  • the shooting gate width of the first ICCD camera and the second ICCD camera are set to 200 ns and 20 ns, respectively.
  • the device and method for jointly measuring soot precursors and soot based on the optical engine disclosed in the present invention utilizes laser excitation with a wavelength of 355nm to induce PAH-based fluorescence signals and a laser-induced incandescent signal with a wavelength of 532nm to measure carbon under combustion
  • Precursor and soot are difficult to distinguish and measure in space.
  • This method realizes the simultaneous measurement of the initial development and diffusion of soot during a fuel spray combustion process, solves the problem of difficulty in obtaining soot precursors and soot at the same time during the combustion process, and helps to deepen the soot generation of power machinery Understand the mechanism and propose an optimization plan from the source.
  • Fig. 1 is a schematic diagram of the structure of the device for joint measurement of soot precursors and soot based on the optical engine of the present invention.
  • the device for joint measurement of soot precursors and soot based on the optical engine of the present invention mainly includes a laser system, an optical engine body 5, a fuel supply system, an air supply system, a signal synchronizer 3, and an image Acquisition System.
  • the fuel supply system and the gas supply system provide fuel and gas for the optical engine main body 5 respectively.
  • the computer 2 of the image acquisition system is connected to the laser system, the fuel supply system and the image acquisition system through the signal synchronizer 3, and controls the signal acquisition and delay between the laser system, the fuel supply system and the image acquisition system.
  • the laser system includes a first YAG laser 1 and a second YAG laser 4; the image acquisition system includes a first beam splitter 6, a second beam splitter 15, a 450 band pass filter 7, and a 410 nm band pass filter 9. ,
  • the coating side of the dichroic mirror 15 faces the first YAG laser 1 and the second YAG laser 4 at an angle of 45°; the 450nm band pass filter 7 and the 410nm band pass filter 9 are placed in the first ICCD camera 8, the front of the second ICCD camera 10; the line between the center point of the first ICCD camera 8 and the first beam splitter 6 is perpendicular to the line between the front of the second ICCD camera 10 and the center point of the second beam splitter 6 Relationship; the optical engine main body 5 is placed
  • the light excited by the combustion chamber of the optical engine 5 is introduced into the first ICCD camera 8 and the second ICCD camera through the 450nm bandpass filter 7 and the 410nm bandpass filter 9 respectively through the optical path arrangement of the first beam splitter 6 Before 10, the first ICCD camera 8 and the second ICCD camera 10 were used to capture the spatial distribution of soot and the PAH-based soot precursor respectively; the two cameras were connected to the computer 2 through the signal synchronizer 3 and controlled by the computer 2.
  • the present invention uses the laser with a wavelength of 532nm emitted by the first YAG laser 1 to perform laser-induced incandescence measurement to obtain the volume fraction and spatial distribution of soot under combustion, and at the same time uses the second YAG laser 4 to emit a laser with a wavelength of 355nm to treat the soot
  • the nascent precursor PAH-based fluorescence signal is captured.
  • the signal synchronizer 3 is a BNC signal synchronizer, and the interface of the BNC signal synchronizer can transmit radio frequency signals and reduce the mutual interference between various signals.
  • the fuel supply system includes a high-pressure fuel pump 14, a high-pressure common rail pipe 11, and a fuel injector 12.
  • the high-pressure fuel pump 14 is connected to the high-pressure common rail pipe 11 through a fuel pipe, and the high-pressure common rail pipe is then connected to the fuel injector 12.
  • the device 12 is located at the upper end of the optical engine body 5.
  • the fuel supply system sends the fuel from the fuel tank to the high-pressure fuel pump 14 through the low-pressure fuel pump.
  • the high-pressure fuel pump 14 converts the low-pressure oil into high-pressure oil and sends it to the high-pressure common rail pipe 11 and the high-pressure common rail pipe 11 through the high-pressure fuel pipe.
  • the computer 2 Realize the precise control of the oil pressure in the oil pipe, so that the oil pipe pressure has nothing to do with the engine speed, which can greatly reduce the change of the oil supply pressure of the optical engine with the engine speed, thus reducing the instability of the optical engine.
  • the optical engine main body 5 is a single-cylinder four-stroke optical engine.
  • the operating condition of the optical engine is controlled at a low speed, and the operating condition of the optical engine is reversed to 1200r/min through the AC power dynamometer, and it works intermittently.
  • the continuous operation time is generally less than 10 minutes.
  • an external control system is required to provide circulating hot water and hot air to realize the thermal engine of the optical engine 5 in the simulated optical engine system. It can promote the atomization and evaporation of fuel and tracer at the same time.
  • a circulating water jacket is arranged around the upper piston body of the optical engine 5 in the optical engine system, and hot water is provided to the circulating water jacket through a heating water tank, and a temperature control switch for controlling is provided.
  • the circulating cooling water ensures that the temperature of the engine block is 80°C.
  • an electric heating wire and a temperature sensor are arranged in the intake of the optical engine 5.
  • the electric heating wire and the temperature sensor are connected with a temperature control switch, and the heating electric heating wire realizes heating of the air in the intake pipe and is detected by the temperature sensor in real time
  • the temperature control switch turns on and off the electric heating wire to ensure that the air temperature of the intake pipe is controlled at about 353K. And configure different oxygen concentration environments through the gas supply system.
  • the synchronization control system adjusts the valve phase and lift through the valve phase mechanism to achieve the timing matching of the fuel injector. It adopts the synchronizer 3 pairs of YAG-laser I1 signal, YAG-laser II4 signal, ICD camera I8 signal and ICCD
  • the synchronization control of the camera I10 signal is to set the YAG-laser I1, YAG-laser II4, ICCD camera I8 and ICD camera I10 to output the synchronization signal only when the fuel injection signal of the fuel injector 12 is triggered to realize the laser diagnosis of the combustion status in the cylinder.
  • a reflector 13 is placed at the lower end of the optical engine, and the fuel injection combustion situation in the combustion chamber and the arrangement of the entire optical path system can be grasped in real time by observing the reflector.
  • the fuel injector 12 is directly above the reflector.
  • the testing process based on the optical engine to jointly measure soot precursors and soot devices includes the following steps:
  • Step 1 The computer 2 signals the fuel supply system to control the injector 12 to inject fuel, and then the injector 12 sends a signal to the BNC signal synchronizer 3; the synchronizer 3 signals the first YAG laser 1 and the second YAG laser 4 respectively 1.
  • the first ICCD camera 8 and the first ICCD camera 10 synchronize the laser trigger and camera acquisition timing, and control all systems to run synchronously through the computer 2.
  • Step 2 The 532nm laser beam emitted by the first YAG laser 1 passes through the first beam splitter 15 and then passes through the sheet light system 16 to be converted into a beam of laser sheet light, which is irradiated into the optical engine 5 and irradiated vertically on the combustion flame , After passing through the first beam splitter 6, the 450nm bandpass filter 7 is filtered, and the excited laser-induced incandescent signal is obtained by the first ICCD camera 8 to measure the spatial distribution of soot during combustion;
  • Step 3 The laser light with a wavelength of 355nm emitted by the second YAG laser 4 passes through the first beam splitter 15 and then passes through the sheet light system 16 to be converted into a beam of laser sheet light, then enters the optical engine 5 and irradiates the fuel spray vertically On the flame, after passing through the first beam splitter 6, after passing through the 410nm bandpass filter 9, the second ICCD camera 10 finally obtains the laser-induced fluorescence signal to realize the measurement of the PAH group of the precursor product of soot.
  • the shooting gate widths of the first ICCD camera 8 and the second ICCD camera 10 are set to 200 ns and 20 ns, respectively, to adapt to the radiation intensity of the PAH group and soot, and to ensure the timing and duration of signal capture. Sex.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法,利用波长为355nm的激光激发诱导PAH基的荧光信号以及波长为532nm的激光诱导炽光信号来测量燃烧情况下碳烟前驱物和碳烟空间分布,通过PAH与碳烟出现的时序差异以及信号的衰减速率,通过控制拍摄策略,成功获得一次喷雾燃烧过程中的PAH和碳烟图像,实现了对动力机械系统燃烧条件下碳烟的前驱发展及碳烟空间分布的联合测量。装置由光学发动机系统、激光系统、燃油供给系统、信号同步系统、数据采集系统组成。装置能够同时开展光学发动机喷雾燃烧条件下碳烟的PAH基团、碳烟体积分数及其空间分布的试验研究。

Description

一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法 技术领域
本发明涉及发动机燃烧性能测试技术领域,尤其是一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法。
背景技术
在动力机械的工作循环过程中,碳烟是评价动力机械污染物排放特性的重要指标之一。为此,国家制定了严格的排放法规来约束碳烟排放,开展动力机械燃烧过程中碳烟前驱物和碳烟的生成发展过程研究对于减少动力机械的碳烟排放具有重要意义。
在前人研究中,科研工作者主要聚焦于碳烟的最终排放,对于碳烟前驱物、燃烧中碳烟生成发展历程以及碳烟的定量研究较少,这使得对碳烟的生成机理理解不是非常清晰,而要从根本上减少碳烟的排放需要追本溯源。碳烟前驱物以及燃烧中碳烟生成特性对于探索碳烟生成及发展机理具有重要指导意义;此外,通过光学发动机系统,可以更接近于真实发动机实际运行工况获得碳烟前驱物发展历程和碳烟生成发展历程,为深入了解动力机械碳烟污染物形成提供试验数据支撑。
然而研究发动机燃烧过程中产生的碳烟前驱物和碳烟有如下难点:发动机燃烧每循环波动性大且燃烧过程是非稳态、强湍动过程,为了获得一次燃烧过程中对应碳烟前驱物和燃烧过程中碳烟生成发展特性,需要对碳烟前驱物和碳烟进行联合测量,同时获得一次燃烧过程中对应碳烟前驱物和碳烟的发展特性。
发明内容
针对现有技术中存在不足,本发明提供了一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法,保证试验测试准确性,更好的研究动力机械燃烧排放特性。在燃烧情况下实现对碳烟前驱物和碳烟在空间分布同时测量。
为实现以上目的,本发明采用的实施方案如下:
一种基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于,主要包括激光系统、光学发动机主体、燃油供给系统、供气系统、信号同步器、图像采集系统,
燃油供给系统、供气系统分别为光学发动机主体提供燃油和气体;
所述激光系统包括第一YAG激光器和第二YAG激光器;
所述图像采集系统包括第一分光镜、第二分光镜、450带通滤光片、410nm带通滤光片、第一ICCD相机、第二ICCD相机及计算机;
所述第一分光镜镀膜一侧面向第一ICCD相机和第二ICCD相机倾斜设置,倾斜角为45°;所述第二分光镜镀膜一侧面向第一YAG激光器和第二YAG激光器倾斜设置,倾斜角为45°;
片光系统放置在所述光学发动机主体的视窗一侧,片光系统与视窗中心点延长线上倾斜放置第二分光镜,另一侧倾斜放置第一分光镜,所述光学发动机主体的视窗、片光系统、第二分光镜、第一分光镜的几何中心位于同一条直线上;
所述450nm带通滤光片、410nm带通滤光片分别置于第一ICCD相机、第二ICCD相机与第一分光镜之间;
所述第一ICCD相机和第一分光镜的中心点的连线与第二ICCD相机和第二分光镜中心点的连线成垂直关系;
所述第二分光镜的一侧设有第一YAG激光器,另一侧设有第二YAG激光器;
信号同步器与激光系统、燃油供给系统以及图像采集系统相连,并控制激光系统、燃油供给系统和图像采集系统之间的信号采集与延迟。
进一步地,还包括循环水套,所述循环水套布置在光学发动机的活塞上体周围,所述循环水套通过温控开关与加热水箱相连通。
进一步地,在光学发动机的进气道内布置电加热丝和温度传感器,电加热丝和温度传感器外连温控开关。
进一步地,所述供气系统包括氧气供气装置,并能够控制所供气体中的氧含量。
进一步地,所述光学发动机的下端放置有反光镜。
进一步地,所述燃油供给系统包括高压油泵、高压共轨管和喷油器;高压油泵通过油管与高压共轨管相连,高压共轨管与喷油器连接;所述喷油器位于光学发动机主体上端。
进一步地,所述信号同步器为BNC信号同步器。
进一步地,所述光学发动机主体为单缸四冲程光学发动机。
基于光学发动机联合测量碳烟前驱物和碳烟的装置的测量方法,其特征在于,包括以下步骤:
步骤1:同步控制系统通过配气相位机构调整配气相位和升程以实现燃油供给系统喷油的正时匹配,计算机控制燃油供给系统控制信号,控制喷油器喷油,随后喷油器发送信号给信号同步器;
步骤2:信号同步器控制第一YAG激光器发出的波长为532nm的激光,同时控制第一ICCD相机进行拍照;此时,532nm的激光经分光镜1后穿过片光系统转化为一束激光片光, 照入光学发动机内,并垂直照射在燃烧火焰上,后经第一分光镜,通过450nm带通滤光片的过滤后由第一ICCD相机拍摄获得激发后的激光诱导炽光信号,进行燃烧情况下碳烟空间分布的测量;
步骤3:随后,信号同步器控制第二YAG激光器发出的波长为355nm的激光,同时控制第二ICCD相机进行拍照;此时,355nm的激光通过第一分光镜后穿过片光系统转化为一束激光片光,然后射入光学发动机内,并垂直照射在燃油喷雾火焰上,后经第一分光镜,通过410nm带通滤光片后,最后由第二ICCD相机获得激光诱导荧光信号,实现对碳烟前驱产物PAH基的测量。
进一步地,所述第一ICCD相机和第二ICCD相机的拍摄门宽分别设置为200ns和20ns。
本发明的优点及显著效果:
本发明公开的基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法,利用波长为355nm的激光激发诱导PAH基的荧光信号以及波长为532nm的激光诱导炽光信号来测量燃烧情况下碳烟前驱物和碳烟空间分布,通过PAH与碳烟出现的时序差异以及信号的衰减速率,通过控制拍摄策略,成功获得一次喷雾燃烧过程中的PAH和碳烟图像,有效解决燃烧条件下碳烟前驱物和碳烟在空间难以分辨和测量的问题。该方法实现了对燃油一次喷雾燃烧过程碳烟初生发展及扩散过程的同步测量,解决了燃烧过程中碳烟前驱物及碳烟难以同时获得的难题,有助于加深对动力机械的碳烟生成机理的理解并从源头上提出优化方案。
附图说明
图1是本发明所述基于光学发动机联合测量碳烟前驱物和碳烟的装置的结构示意图。
图中:1-第一YAG激光器,2-计算机,3-信号同步器,4-第二YAG激光器,5-光学发动机主体,6-第一分光镜,7-450nm带通滤光片,8-第一ICCD相机,9-410nm带通滤光片,10-第二ICCD相机,11-高压共轨管,12-喷油器,13-反光镜,14-高压油泵,15-第二分光镜,16-片光系统。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,本发明所述的基于光学发动机联合测量碳烟前驱物和碳烟的装置,主要包括激光系统、光学发动机主体5、燃油供给系统、供气系统、信号同步器3、图像采集系统。燃油供给系统、供气系统分别为光学发动机主体5提供燃油和气体。图像采集系统的计算机2通过信号同步器3与激光系统、燃油供给系统以及图像采集系统相连,并控制激光系统、 燃油供给系统和图像采集系统之间的信号采集与延迟。
所述激光系统包括第一YAG激光器1和第二YAG激光器4;所述图像采集系统包括第一分光镜6、第二分光镜15、450带通滤光片7、410nm带通滤光片9、第一ICCD相机8、第二ICCD相机10及计算机2;所述第一分光镜6镀膜一侧面向第一ICCD相机8和第二ICCD相机10倾斜设置,倾斜角为45°;所述第二分光镜15镀膜一侧面向第一YAG激光器1和第二YAG激光器4倾斜设置,倾斜角为45°;所述450nm带通滤光片7、410nm带通滤光片9分别置于第一ICCD相机8、第二ICCD相机10前;所述第一ICCD相机8和第一分光镜6的中心点的连线与第二ICCD相机10前和第二分光镜6中心点的连线成垂直关系;所述光学发动机主体5的视窗一侧放置片光系统16,片光系统16与视窗中心点延长线上倾斜放置第二分光镜15,另一侧倾斜放置第一分光镜6,所述光学发动机主体5的视窗、片光系统16、第二分光镜15、第一分光镜6的几何中心位于同一条直线上;所述第二分光镜15的一侧设有第一YAG激光器1,另一侧设有第二YAG激光器4,片光系统16的位置要能保证两侧的激光能够合束。
由光学发动机5燃烧室内激发出的光线借由第一分光镜6的光路布置分别通过450nm带通滤光片7和410nm带通滤光片9分别引入到第一ICCD相机8和第二ICCD相机10前,由第一ICCD相机8和第二ICCD相机10分别进行碳烟空间分布和碳烟前驱物PAH基的拍摄;两台相机通过信号同步器3与计算机2相连,并由计算机2控制。
本发明利用第一YAG激光器1发出的532nm波长的激光进行激光诱导炽光的测量,获得燃烧情况下的碳烟体积分数及空间分布,同时利用第二YAG激光器4发出355nm波长的激光对碳烟初生的前驱物PAH基的荧光信号进行捕捉。
所述信号同步器3为BNC信号同步器,BNC信号同步器的接口能够传输射频信号,并且使各个信号之间的互相干扰变小。
所述燃油供给系统包括高压油泵14、高压共轨管11和喷油器12;高压油泵14通过油管与高压共轨管11相连,高压共轨管再与喷油器12连接,所述喷油器12位于光学发动机主体5上端。燃油供给系统通过低压油泵将油箱的燃油泵出送给高压油泵14,高压油泵14在电机带动下,将低压油转换成高压油并通过高压油管送给高压共轨管11,高压共轨管11与喷油器12相连,通过计算机2控制高压共轨管11的轨压、喷油器12的喷油脉宽、喷油时刻。实现对油管内的油压实现精确控制,使油管压力大小与发动机的转速无关,可以大幅度减小光学发动机供油压力随发动机转速的变化,因此也就减少了光学发动机的不稳定性。
所述光学发动机主体5为单缸四冲程光学发动机,在测量时,光学发动机工况被控制在 低转速下,通过交流电力测功机反拖光学发动机工况至1200r/min转速,间歇工作,连续运转时间一般少于10分钟。为了解决因为压缩比小,不易着火,燃烧不完全又会污染石英玻璃的问题,需要外控制系统提供循环热水和热空气,以实现模拟光学发动机系统中的光学发动机5处于其工作时的热机状态,同时能够促进燃油和示踪剂的雾化和蒸发。循环热水方面,在光学发动机系统中的光学发动机5的活塞上体周围布置有循环水套,通过加热水箱向循环水套提供热水,并设置有进行控制的温控开关,可控温度的循环冷却水保证发动机缸体温度为80℃。热空气方面,在光学发动机5的进气道内布置电加热丝和温度传感器,电加热丝和温度传感器外连温控开关,加热电加热丝实现对进气管的空气加热,并由温度传感器实时检测进气管的空气温度,温控开关则对电加热丝进行通断以保证进气管空气温度控制在353K左右。并通过供气系统配置不同氧浓度环境。
同步控制系统通过配气相位机构调整配气相位和升程以实现喷油器喷油的正时匹配,采用同步器3对YAG-激光器I1信号、YAG-激光器II4信号、ICCD相机I8信号和ICCD相机I10信号的同步控制,设置YAG-激光器I1,YAG-激光器II4、ICCD相机I8和ICCD相机I10同步信号为仅有喷油器12喷油信号触发时输出,实现激光诊断缸内燃烧状况。
所述光学发动机的下端放置有反光镜13,可以通过观察反光镜,来实时掌握燃烧室内的喷油燃烧情况以及整个光路系统的布置,反光镜的正上方就是喷油器12。
基于所述光学发动机联合测量碳烟前驱物和碳烟装置的测试过程,包括以下步骤:
步骤1:计算机2给燃油供给系统信号,控制喷油器12喷油,随后喷油器12发送信号给BNC信号同步器3;同步器3分别给信号第一YAG激光器1,第二YAG激光器4、第一ICCD相机8和第一ICCD相机10,使激光触发和相机采集时序同步,并通过计算机2控制所有系统同步运行。
步骤2:第一YAG激光器1发出的波长为532nm的激光经第一分光镜15后穿过片光系统16转化为一束激光片光,照入光学发动机5内,并垂直照射在燃烧火焰上,后经第一分光镜6,通过450nm带通滤光片7的过滤后由第一ICCD相机8获得激发后的激光诱导炽光信号,进行燃烧情况下碳烟空间分布的测量;
步骤3:第二YAG激光器4发出的波长为355nm的激光通过第一分光镜15后穿过片光系统16转化为一束激光片光,然后射入光学发动机5内,并垂直照射在燃油喷雾火焰上,后经第一分光镜6,通过410nm带通滤光片9后,最后由第二ICCD相机10获得激光诱导荧光信号,实现对碳烟前驱产物PAH基的测量。
优选的,所述第一ICCD相机8和第二ICCD相机10的拍摄门宽分别设置为200ns和20ns, 以适应PAH基团及碳烟的辐射强度,保证信号捕获的时序性与持续时间的准确性。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于,主要包括激光系统、光学发动机主体(5)、燃油供给系统、供气系统、信号同步系统、图像采集系统,
    信号同步系统包括计算机(2)和信号同步器(3),计算机(2)用于控制燃油供给系统、供气系统分别为光学发动机主体(5)提供燃油和气体;控制信号同步器(3)控制激光系统、燃油供给系统和图像采集系统之间的信号采集与延迟;
    所述激光系统包括第一YAG激光器(1)和第二YAG激光器(4);
    所述图像采集系统包括第一分光镜(6)、第二分光镜(15)、450带通滤光片(7)、410nm带通滤光片(9)、第一ICCD相机(8)、第二ICCD相机(10);
    所述第一分光镜(6)镀膜一侧面向第一ICCD相机(8)和第二ICCD相机(10)倾斜设置,倾斜角为45°;所述第二分光镜(15)镀膜一侧面向第一YAG激光器(1)和第二YAG激光器(4)倾斜设置,倾斜角为45°;
    片光系统(16)放置在所述光学发动机主体(5)的视窗一侧,片光系统(16)与视窗中心点延长线上倾斜放置第二分光镜(15),另一侧倾斜放置第一分光镜(6),所述光学发动机主体(5)的视窗、片光系统(16)、第二分光镜(15)、第一分光镜(6)的几何中心位于同一条直线上;
    所述450nm带通滤光片(7)、410nm带通滤光片(9)分别置于第一ICCD相机(8)、第二ICCD相机(10)与第一分光镜(6)之间;
    所述第一ICCD相机(8)和第一分光镜(6)的中心点的连线与第二ICCD相机(10)和第二分光镜(6)中心点的连线成垂直关系;
    所述第二分光镜(15)的一侧设有第一YAG激光器(1),另一侧设有第二YAG激光器(4)。
  2. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:还包括循环水套,所述循环水套布置在光学发动机(5)的活塞上体周围,所述循环水套通过温控开关与加热水箱相连通。
  3. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:在光学发动机(5)的进气道内布置电加热丝和温度传感器,电加热丝和温度传感器外连温控开关。
  4. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:所述供气系统包括氧气供气装置,并能够控制所供气体的氧含量。
  5. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:所述光学发动机的下端放置有反光镜(13)。
  6. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:所述燃油供给系统包括高压油泵(14)、高压共轨管(11)和喷油器(12);高压油泵(14)通过油管与高压共轨管(11)相连,高压共轨管与喷油器(12)连接;所述喷油器(12)位于光学发动机主体(5)上端。
  7. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:所述信号同步器(3)为BNC信号同步器。
  8. 根据权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置,其特征在于:所述光学发动机主体(5)为单缸四冲程光学发动机。
  9. 权利要求1所述基于光学发动机联合测量碳烟前驱物和碳烟的装置的测量方法,其特征在于,包括以下步骤:
    步骤1:同步控制系统通过配气相位机构调整配气相位和升程以实现燃油供给系统喷油的正时匹配,计算机(2)控制燃油供给系统控制信号,控制喷油器(12)喷油,随后喷油器(12)发送信号给信号同步器(3);
    步骤2:信号同步器(3)控制第一YAG激光器(1)发出的波长为532nm的激光,同时控制第一ICCD相机(8)进行拍照;此时,532nm的激光经分光镜1(5)后穿过片光系统(16)转化为一束激光片光,照入光学发动机(5)内,并垂直照射在燃烧火焰上,后经第一分光镜(6),通过450nm带通滤光片(7)的过滤后由第一ICCD相机(8)拍摄获得激发后的激光诱导炽光信号,进行燃烧情况下碳烟空间分布的测量;
    步骤3:随后,信号同步器(3)控制第二YAG激光器(4)发出的波长为355nm的激光,同时控制第二ICCD相机(10)进行拍照;此时,355nm的激光通过第一分光镜(15)后穿过片光系统(16)转化为一束激光片光,然后射入光学发动机(5)内,并垂直照射在燃油喷雾火焰上,后经第一分光镜(6),通过410nm带通滤光片(9)后,最后由第二ICCD相机(10)获得激光诱导荧光信号,实现对碳烟前驱产物PAH基的测量。
  10. 根据权利要求9所述测试方法,其特征在于:所述第一ICCD相机(8)和第二ICCD相机(10)的拍摄门宽分别设置为200ns和20ns。
PCT/CN2020/087573 2019-08-22 2020-04-28 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法 WO2021031606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/08520A ZA202108520B (en) 2019-08-22 2021-11-02 Apparatus and method for jointly measuring soot precursor and soot on basis of optical engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910778649.9A CN110632036A (zh) 2019-08-22 2019-08-22 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法
CN201910778649.9 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021031606A1 true WO2021031606A1 (zh) 2021-02-25

Family

ID=68970741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087573 WO2021031606A1 (zh) 2019-08-22 2020-04-28 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法

Country Status (3)

Country Link
CN (1) CN110632036A (zh)
WO (1) WO2021031606A1 (zh)
ZA (1) ZA202108520B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088662A (zh) * 2021-12-07 2022-02-25 上海交通大学 一种固体推进剂燃烧特性测量及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632036A (zh) * 2019-08-22 2019-12-31 江苏大学 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法
CN111487228A (zh) * 2020-03-20 2020-08-04 江苏大学 一种同步测量燃烧中间产物及主要组分的装置
CN112255213B (zh) * 2020-10-15 2021-07-06 哈尔滨工业大学 一种燃烧场双组分同步激发的测量装置及测量方法
CN116008243A (zh) * 2023-01-13 2023-04-25 北京建筑大学 一种柴油燃烧的可视化激光测试系统及其工作方法
CN117269008B (zh) * 2023-09-22 2024-05-03 哈尔滨工业大学 一种基于激光预热的高浓度碳烟体积分数测量装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020029622A1 (en) * 2000-07-28 2002-03-14 Didier Ambrazas Optical test engine, in particular for combustion parameters measurements
CN200946525Y (zh) * 2006-09-11 2007-09-12 天津内燃机研究所 高速小缸径光学发动机装置
CN101846008A (zh) * 2010-04-07 2010-09-29 吉林大学 光学发动机
CN104833665A (zh) * 2015-03-30 2015-08-12 天津大学 一种光学发动机缸内燃烧过程中多组分同时测量装置
CN106404410A (zh) * 2016-12-02 2017-02-15 江苏大学 一种同时测量柴油喷雾结构及燃烧特性的装置及方法
CN109856085A (zh) * 2018-11-30 2019-06-07 江苏大学 一种同步测量瞬态燃油喷雾及燃烧过程的装置及方法
CN110632036A (zh) * 2019-08-22 2019-12-31 江苏大学 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124235B4 (de) * 2001-05-18 2004-08-12 Esytec Energie- Und Systemtechnik Gmbh Verfahren und Vorrichtung zur umfassenden Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung
CN203745204U (zh) * 2013-07-12 2014-07-30 江苏大学 一种柴油机缸内喷雾与燃烧动态可视化测试装置
CN104865227A (zh) * 2015-03-30 2015-08-26 天津大学 一种光学发动机缸内燃烧过程碳烟体积分数定量测量装置
CN108627478B (zh) * 2018-05-08 2020-03-31 江苏大学 一种结合消光法和辐射光的稳态火焰中碳烟测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020029622A1 (en) * 2000-07-28 2002-03-14 Didier Ambrazas Optical test engine, in particular for combustion parameters measurements
CN200946525Y (zh) * 2006-09-11 2007-09-12 天津内燃机研究所 高速小缸径光学发动机装置
CN101846008A (zh) * 2010-04-07 2010-09-29 吉林大学 光学发动机
CN104833665A (zh) * 2015-03-30 2015-08-12 天津大学 一种光学发动机缸内燃烧过程中多组分同时测量装置
CN106404410A (zh) * 2016-12-02 2017-02-15 江苏大学 一种同时测量柴油喷雾结构及燃烧特性的装置及方法
CN109856085A (zh) * 2018-11-30 2019-06-07 江苏大学 一种同步测量瞬态燃油喷雾及燃烧过程的装置及方法
CN110632036A (zh) * 2019-08-22 2019-12-31 江苏大学 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088662A (zh) * 2021-12-07 2022-02-25 上海交通大学 一种固体推进剂燃烧特性测量及方法
CN114088662B (zh) * 2021-12-07 2024-04-19 上海交通大学 一种固体推进剂燃烧特性测量及方法

Also Published As

Publication number Publication date
CN110632036A (zh) 2019-12-31
ZA202108520B (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2021031606A1 (zh) 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法
CN106404410B (zh) 一种同时测量柴油喷雾结构及燃烧特性的装置及方法
Manin et al. Two-color diffused back-illumination imaging as a diagnostic for time-resolved soot measurements in reacting sprays
CN109856085B (zh) 一种同步测量瞬态燃油喷雾及燃烧过程的装置及方法
Zheng et al. An optical study on liquid-phase penetration, flame lift-off location and soot volume fraction distribution of gasoline–diesel blends in a constant volume vessel
Pastor et al. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion
Skeen et al. Extinction-based imaging of soot processes over a range of diesel operating conditions
US20180066969A1 (en) In-cylinder flow measuring method in an internal combustion engine and system thereof
de Francqueville et al. Soot volume fraction measurements in a gasoline direct injection engine by combined laser induced incandescence and laser extinction method
Meijer et al. High-speed characterization of ECN spray A using various diagnostic techniques
CN108120385B (zh) Gdi喷雾撞壁附壁油膜厚度和质量的测量系统及方法
Gallo et al. A study of in-cylinder soot oxidation by laser extinction measurements during an EGR-sweep in an optical diesel engine
Nyrenstedt et al. A comparative study of isobaric combustion and conventional diesel combustion in both metal and optical engines
CN109724981A (zh) 一种利用辐射光的火焰中碳烟定量测试装置及方法
Hildenbrand et al. Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines
Nakagawa et al. NO measurement in diesel spray flame using laser induced fluorescence
Aronsson et al. Analysis of the correlation between engine-out particulates and local φ in the lift-off region of a heavy duty diesel engine using raman spectroscopy
Chartier et al. Analysis of smokeless spray combustion in a heavy-duty diesel engine by combined simultaneous optical diagnostics
Won et al. 2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique
Johansen et al. Comparison of E10 and E85 spark ignited stratified combustion and soot formation
Payri et al. Measurement of soot concentration in a prototype multi-hole diesel injector by high-speed color diffused back illumination technique
Kim et al. Effect of injection condition and swirl on DI diesel combustion in a transparent engine system
Svensson et al. Improved Method for Studying MCCI Flame Interactions with an Engine Combustion Chamber
Klein et al. Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine
Fujikawa et al. A study on higher thermal efficiency and lower cooling loss in diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853746

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20853746

Country of ref document: EP

Kind code of ref document: A1