WO2021031538A1 - 一种主客观一体式精准验光装置及验光方法 - Google Patents

一种主客观一体式精准验光装置及验光方法 Download PDF

Info

Publication number
WO2021031538A1
WO2021031538A1 PCT/CN2020/075652 CN2020075652W WO2021031538A1 WO 2021031538 A1 WO2021031538 A1 WO 2021031538A1 CN 2020075652 W CN2020075652 W CN 2020075652W WO 2021031538 A1 WO2021031538 A1 WO 2021031538A1
Authority
WO
WIPO (PCT)
Prior art keywords
human eye
subjective
optometry
objective
beam splitter
Prior art date
Application number
PCT/CN2020/075652
Other languages
English (en)
French (fr)
Inventor
何良义
Original Assignee
长兴爱之瞳医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910777661.8A external-priority patent/CN110367924B/zh
Priority claimed from CN201910777914.1A external-priority patent/CN110367925B/zh
Application filed by 长兴爱之瞳医疗科技有限公司 filed Critical 长兴爱之瞳医疗科技有限公司
Priority to US17/753,157 priority Critical patent/US12285218B2/en
Publication of WO2021031538A1 publication Critical patent/WO2021031538A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/18Arrangement of plural eye-testing or -examining apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0083Apparatus for testing the eyes; Instruments for examining the eyes provided with means for patient positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0091Fixation targets for viewing direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • A61B3/1035Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes for measuring astigmatism

Definitions

  • the invention relates to the technical field of optical measurement, in particular to a subjective and objective integrated precise optometry device and a optometry method.
  • Uncorrected refractive errors including myopia, hyperopia, and astigmatism
  • untreated cataracts are the two most important causes of visual impairment (see reference [J].Ophthalmology2016; 123(5): 1036-1042).
  • Accurate measurement of the degree of refractive error of the human eye and determination of the best correction prescription are the key to correct refractive errors for patients.
  • the optometry process includes two steps: objective optometry and subjective optometry.
  • the methods of objective optometry include retinoscopy optometry and the use of professional equipment such as computer refractors, human eye aberrations, etc. to objectively measure the patient's refractive error.
  • trial frame inserts or comprehensive refractometer for subjective refraction. Since objective optometry does not include subjective feedback from subjects, the test results are often for reference only.
  • the accuracy and repeatability of subjective refraction largely depend on the degree of cooperation of the examinee, the level of the examiner, and clinical experience, making the quality of corrective prescriptions obtained based on the existing subjective refraction methods vary.
  • the existing trial frame inserts or comprehensive refractometers use discrete degree (step length 0.25D) trial lenses for subjective refraction, there are rounding errors, and it is impossible to achieve continuous and accurate testing of human refractive errors. Light.
  • a visual acuity chart is used clinically for visual inspection, which can only give the result of normal visual acuity, and it is impossible to judge whether it is caused by refractive error or other eye diseases, which is not convenient for clinical triage of ophthalmology.
  • the present invention proposes a subjective and objective integrated precision optometry device and optometry method, which can simultaneously measure binocular refraction, continuous subjective refraction, interpupillary distance measurement and visual function measurement (including but not limited to vision, Stereoscopic vision), realizing both subjective and objective integrated accurate optometry; at the same time, it has the functions of rapid screening of human eye refractive error and preliminary screening of human eye disease (except refractive error), which can be used for human eye refractive error Incorrect screening, refractive data monitoring and clinical triage of ophthalmology.
  • the technical problem solved by the present invention is to provide a subjective and objective integrated precise optometry device and optometry method, which solves the problem of subjective and objective separation of existing optometry methods (using different equipment), subjective refraction is greatly affected by human factors, and the degree of trial lenses is not continuous There is the problem of rounding errors and meets the needs of rapid screening, refractive error monitoring and ophthalmological clinical triage for people with refractive errors.
  • the present invention first proposes a subjective and objective integrated precision optometry device, which is composed of left and right eye optical paths; the monocular optical path includes human eye refractive objective measurement subsystem, human eye refractive correction subsystem, and eyeball positioning subsystem , And subjective visual function test subsystem; human eye refractive objective measurement subsystem, used for objective measurement of human eye refractive; human eye refractive correction subsystem, used to correct human eye defocus and astigmatism; eyeball positioning subsystem , Used for eyeball positioning; and subjective visual function test subsystem, used for visual function test during subjective refraction.
  • the monocular optical path further includes a visual function diagnosis subsystem, which is used to collect subjective test information of the subject and provide a diagnosis result.
  • a visual function diagnosis subsystem which is used to collect subjective test information of the subject and provide a diagnosis result.
  • the human eye refractive objective measurement subsystem can be selected from wavefront measurement technology, retinoscopy refraction technology, grid focusing refraction technology, Scheiner disc refraction technology and knife edge measurement refraction technology.
  • the wavefront measurement technology can be selected from a Hartmann wavefront sensor based on a microlens array, a Hartmann wavefront sensor based on a microprism array, a curvature wavefront sensor, and a pyramid wavefront sensor.
  • the human eye refractive objective measurement subsystem includes a near-infrared beacon light source (9), a collimating objective lens (10), a reflector (12), a second beam splitter (13), and a first beam splitter ( 5)
  • the human eye refractive correction subsystem includes a first relay telescope (3) and a cylindrical mirror Pair (4)
  • the eyeball positioning subsystem includes a pupil imaging device (2)
  • the subjective visual function test subsystem includes an optotype display device (8) and an optotype objective lens (11); a pair of cylindrical mirrors (4) Set at the conjugate position of the pupil of the human eye (1), the light emitted by the near-infrared beacon light source (9) is collimated by the collimating objective lens (10), and passes through the second beam splitter (13) and the first beam splitter ( 5) Reflection, enter the human eye (1) through the cylindrical mirror pair (4), the first relay telescope (3), and the pupil imaging device (2); the
  • the cylindrical lens pair (4) can be selected from plano-concave/plano-convex cylindrical lens pairs, plano-concave/plano-concave cylindrical lens pairs, plano-convex/plano-convex cylindrical lens pairs with the same or different refractive powers. Mirror alignment selection.
  • the target display device (8) can be selected from CRT displays, commercial projectors, liquid crystal displays, plasma displays, electroluminescence displays, organic light emitting displays, projection display devices, and printed eye charts.
  • the first relay telescope (3) is replaced by an internal focusing device (30), and the internal focusing device (30) includes a first reflector (14), a first lens (15), and a A second mirror (16), a third mirror (17), a second lens (18) and a fourth mirror (19).
  • the present invention also proposes a optometry method based on the aforementioned subjective and objective integrated precise optometry device, which includes the following steps:
  • the near-infrared beacon light source (9) emits light, which is collimated by the collimating objective lens (10), and reflected by the second beam splitter (13) and the first beam splitter (5) , Through the cylindrical mirror pair (4) and the first relay telescope (3) to enter the human eye (1);
  • the telescope (6) enters the wavefront sensor (7) to objectively measure the refractive error of the human eye;
  • the distance between the two lenses of the first relay telescope (3) along the optical axis is changed to compensate the human eye defocus;
  • the measured human eye Refractive error through the human eye astigmatism correction formula, rotate the cylindrical lens pair (4) around the optical axis to compensate the human eye astigmatism;
  • the optotype display device (8) displays a specific type of optotype, and the human eye passes through the first relay telescope (3), the cylindrical mirror pair (4), and the first beam splitter (5)
  • the second beam splitter (13), the reflecting mirror (12) and the optotype objective lens (11) observe and judge the specific optotype displayed on the optotype display device (8);
  • the present invention also proposes a optometry method based on the aforementioned subjective and objective integrated precise optometry device, which includes the following steps:
  • the near-infrared beacon light source (9) emits light, which is collimated by the collimating objective lens (10), and reflected by the second beam splitter (13) and the first beam splitter (5) , Through the cylindrical mirror pair (4) and the first relay telescope (3) to enter the human eye (1);
  • the telescope (6) enters the wavefront sensor (7) to objectively measure the refractive error of the human eye;
  • the distance between the two lenses of the first relay telescope (3) along the optical axis is changed to compensate the human eye defocus;
  • the measured human eye Refractive error through the human eye astigmatism correction formula, rotate the cylindrical lens pair (4) around the optical axis to compensate the human eye astigmatism;
  • the optotype display device (8) displays a specific type of optotype, and the human eye passes through the first relay telescope (3), the cylindrical mirror pair (4), and the first beam splitter (5)
  • the second beam splitter (13), the reflecting mirror (12) and the optotype objective lens (11) observe and judge the specific optotype displayed on the optotype display device (8);
  • the visual function diagnosis subsystem performs diagnosis based on the judgment of the examinee. If the judgment of the examinee is correct, it is considered that there is only refractive error in the examined eye and gives a measurement value of refractive error; if the judgment of the examinee is wrong, then It is believed that in addition to refractive errors, other eye diseases may exist in the examined eye, which needs to be clarified with other eye examinations.
  • the present invention has the advantages: for the first time, a subjective and objective integrated precise refraction device and a refraction method are proposed, and objective refractive measurement technology is adopted to objectively measure the refractive power of the human eye, thereby guiding the first relay telescope and rotating Cylindrical lens realizes the compensation of defocus and astigmatism of the human eye respectively.
  • the examinee can fine-tune the amount of defocus and the size and axis of the astigmatism according to the subjective visual experience to achieve subjective accurate optometry.
  • the red-green and binocular adjustment and balance process will finally give the best accurate refractive correction prescription; at the same time, it has the functions of rapid screening of human eye refractive error and preliminary screening of human eye disease (except refractive error). It is used for optometry, screening and monitoring of population refractive errors, and clinical triage of ophthalmology.
  • FIG. 1 is a schematic diagram of Embodiment 1 of the subjective and objective integrated precision optometry device of the present invention.
  • Embodiment 2 is a schematic diagram of Embodiment 2 of the subjective and objective integrated precision optometry device of the present invention.
  • Fig. 3 is a schematic diagram of Embodiment 3 of the subjective and objective integrated precision optometry device of the present invention.
  • Embodiment 4 is a schematic diagram of Embodiment 4 of the subjective and objective integrated precision optometry device of the present invention.
  • a subjective and objective integrated precision refraction device is composed of left and right eye optical paths;
  • the single-eye optical path includes human eye refractive objective measurement subsystem, human eye refractive correction subsystem, eyeball positioning subsystem, and subjective visual function test Subsystem;
  • Human eye refractive objective measurement subsystem used for objective measurement of human eye refractive
  • Human eye refractive correction subsystem used to correct human eye defocus and astigmatism
  • Eyeball positioning subsystem used for eyeball positioning
  • subjective visual function test subsystem used for visual function test during subjective refraction.
  • the realization of the human eye refractive objective measurement subsystem can be selected from wavefront measurement technology, retinoscopy refraction technology, grid focusing refraction technology, Scheiner disc refraction technology and knife edge measurement refraction technology.
  • the wavefront measurement technology is preferred in the present invention.
  • the wavefront measurement technology can be selected from the Hartmann wavefront sensor based on the microlens array, the Hartmann wavefront sensor based on the microprism array, the curvature wavefront sensor, and the pyramid wavefront sensor.
  • the human eye refractive objective measurement subsystem includes a near-infrared beacon light source 9, a collimating objective lens 10, a reflector 12, a second beam splitter 13, a first beam splitter 5, a first relay telescope 3,
  • the second relay telescope 6 and the wavefront sensor 7, the human eye refractive correction subsystem includes the first relay telescope 3 and the cylindrical mirror pair 4,
  • the eyeball positioning subsystem includes the pupil imaging device 2
  • the subjective visual function test subsystem includes An optotype display device 8 and an optotype objective lens 11. It should be noted that the human eye refractive objective measurement subsystem and the human eye refractive correction subsystem share the first relay telescope 3.
  • the cylindrical mirror pair 4 is set at the conjugate position of the pupil of the human eye 1.
  • the light emitted by the near-infrared beacon light source 9 is collimated by the collimating objective lens 10, reflected by the second beam splitter 13 and the first beam splitter 5, and transmits Passing through the cylindrical mirror pair 4, the first relay telescope 3, and the pupil imaging device 2 enter the human eye 1.
  • the light reflected from the fundus of the human eye 1 passes through the pupil imaging device 2, the first relay telescope 3, and the cylindrical mirror pair 4 ,
  • the first beam splitter 5 and the second relay telescope 6 enter the wavefront sensor 7 to objectively measure the refractive error of the human eye (defocus, astigmatism and astigmatism axis); according to the measured refractive error of the human eye, change the first middle Following the distance between the two lenses of the telescope 3 along the optical axis to compensate for the defocus of the human eye, rotating the cylindrical lens around the optical axis to compensate for the astigmatism of the human eye.
  • the optotype display device 8 displays a specific type of The visual target, the human eye 1 observes the display on the visual target display device 8 through the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5, the second beam splitter 13, the reflector 12 and the target objective lens 11. As the standard.
  • the cylindrical lens pair 4 can be selected from a plano-concave/plano-convex cylindrical lens pair, a plano-concave/plano-concave cylindrical lens pair, and a plano-convex/plano-convex cylindrical lens pair with the same or different refractive powers.
  • the visual target display device 8 can be selected from a CRT display, a commercial projector, a liquid crystal display, a plasma display, an electroluminescence display, an organic light emitting display, a projection display device, and a printed eye chart.
  • the present invention also provides a optometry method, which includes the following steps:
  • the near-infrared beacon light source 9 the light emitted by the near-infrared beacon light source 9 is collimated by the collimating objective lens 10, reflected by the second beam splitter 13 and the first beam splitter 5, and passes through the pair of cylindrical mirrors 3 and A relay telescope 3 enters the human eye 1;
  • the light reflected from the fundus of the human eye 1 passes through the pupil imaging device 2, the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5 and the second relay telescope 6 and enters the wavefront sensor 7 for objective measurement Human eye refractive error;
  • the distance between the two lenses of the first relay telescope 3 along the optical axis is changed to compensate the human eye defocus;
  • the measured human eye refractive error Error through the human eye astigmatism correction formula, rotate the cylindrical lens pair 4 of the cylindrical lens around the optical axis to compensate the human eye astigmatism;
  • the optotype display device 8 displays a specific type of optotype, and the human eye passes through the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5, and the second beam splitter. 13.
  • the reflecting mirror 12 and the optotype objective lens 11 observe and judge the specific optotype displayed on the optotype display device 8;
  • Defocus compensation is achieved by moving the part of the double-dot chain line frame in Figure 1 as a whole for internal focusing.
  • the human eye defocus correction formula is as follows:
  • D is the correctable defocus
  • f 1 and f 2 are the focal lengths of the two lenses in the first relay telescope 3
  • d is the distance between the two lenses in the first relay telescope 3 in the direction of the optical axis
  • is determined by the focal lengths of the two lenses in the first relay telescope 3.
  • the human eye astigmatism correction formula is as follows:
  • C and ⁇ are the correctable astigmatism size and axis respectively
  • F c is the astigmatism size of a single cylindrical mirror in the cylindrical mirror pair 4
  • a 1 and a 2 are the astigmatism axes of the two cylindrical mirrors.
  • the structure of the subjective and objective integrated precision optometry device of this embodiment is the same as that of Embodiment 1, except that the first relay telescope 3 is replaced by an internal focusing device 30, which includes The first reflecting mirror 14, the first lens 15, the second reflecting mirror 16, the third reflecting mirror 17, the second lens 18 and the fourth reflecting mirror 19 are composed, and its structure is shown in the dotted frame part in FIG.
  • the present invention also protects a optometry method, which is the same as the optometry method of Embodiment 1.
  • Example 2 the way of correcting human eye astigmatism is the same as in Example 1.
  • the difference between human eye defocus correction and embodiment 1 is that in formula (1), f 1 , f 2 , and d are the focal lengths of the first lens 15 and the second lens 18 and the distance between them.
  • the second mirror 16 and the third mirror 17 change the distance between the first lens 15 and the second lens 18 along the optical axis to compensate for the defocusing of the human eye.
  • the structure of the subjective and objective integrated precision optometry device of this embodiment is the same as that of Embodiment 1.
  • the difference is that the monocular optical path in this embodiment also includes a visual function diagnosis subsystem 20.
  • the sub-system 20 is used to collect subjective test information of the examinee and give the diagnosis result.
  • the present invention also protects an optometry method, which includes the following steps:
  • the near-infrared beacon light source 9 the light emitted by the near-infrared beacon light source 9 is collimated by the collimating objective lens 10, reflected by the second beam splitter 13 and the first beam splitter 5, and passes through the pair of cylindrical mirrors 3 and A relay telescope 3 enters the human eye 1;
  • the light reflected from the fundus of the human eye 1 passes through the pupil imaging device 2, the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5 and the second relay telescope 6 and enters the wavefront sensor 7 for objective measurement Human eye refractive error;
  • the distance between the two lenses of the first relay telescope 3 along the optical axis is changed to compensate the human eye defocus;
  • the measured human eye refractive error Error through the human eye astigmatism correction formula, rotate the cylindrical lens pair 4 of the cylindrical lens around the optical axis to compensate the human eye astigmatism;
  • the optotype display device 8 displays a specific type of optotype, and the human eye passes through the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5, and the second beam splitter. 13.
  • the reflecting mirror 12 and the optotype objective lens 11 observe and judge the specific optotype displayed on the optotype display device 8;
  • the visual function diagnosis subsystem 20 performs a diagnosis based on the judgment of the examinee. If the examinee's judgment is correct, it is considered that there is only refractive error in the examined eye and a measurement value of refractive error is given; if the judgment of the examinee is wrong, It is believed that in addition to refractive errors, other eye diseases may exist in the examined eye, and other ophthalmological examinations (such as fundus photography, etc.) are required for clarification.
  • the structure of the subjective and objective integrated precision optometry device of this embodiment is the same as that of Embodiment 2.
  • the difference is that the monocular optical path in this embodiment also includes a visual function diagnosis subsystem 20.
  • the sub-system 20 is used to collect subjective test information of the examinee and give the diagnosis result.
  • the present invention also protects an optometry method, which includes the following steps:
  • the near-infrared beacon light source 9 the light emitted by the near-infrared beacon light source 9 is collimated by the collimating objective lens 10, reflected by the second beam splitter 13 and the first beam splitter 5, and passes through the pair of cylindrical mirrors 3 and A relay telescope 3 enters the human eye 1;
  • the light reflected from the fundus of the human eye 1 passes through the pupil imaging device 2, the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5 and the second relay telescope 6 and enters the wavefront sensor 7 for objective measurement Human eye refractive error;
  • the distance between the first lens 15 and the second lens 18 along the optical axis is changed by moving the second mirror 16 and the third mirror 17 as a whole Compensate the defocus of the human eye;
  • the human eye astigmatism correction formula rotate the cylindrical lens pair 4 in the single cylindrical lens around the optical axis to compensate the human eye astigmatism;
  • the optotype display device 8 displays a specific type of optotype, and the human eye passes through the first relay telescope 3, the cylindrical mirror pair 4, the first beam splitter 5, and the second beam splitter. 13.
  • the reflecting mirror 12 and the optotype objective lens 11 observe and judge the specific optotype displayed on the optotype display device 8;
  • the visual function diagnosis subsystem 20 performs a diagnosis based on the judgment of the examinee. If the examinee's judgment is correct, it is considered that there is only refractive error in the examined eye and a measurement value of refractive error is given; if the judgment of the examinee is wrong, It is believed that in addition to refractive errors, other eye diseases may exist in the examined eye, and other ophthalmological examinations (such as fundus photography, etc.) are required for clarification.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种主客观一体式精准验光装置及验光方法,装置由左右眼光路组成;单眼光路包括人眼屈光客观测量子系统,人眼屈光矫正子系统,眼球定位子系统,以及主观视功能测试子系统。装置同时具备单双眼屈光客观测量、连续主觉验光、瞳距测量及单双眼视功能测量(包括但不限于视力、立体视)等功能,可以实现单眼和双眼主客观一体式精准验光;同时具备人眼屈光快速测量、筛查及对人眼是否患病(屈光不正除外)进行初步筛查的功能,可以用于验光配镜、眼科临床分诊、人群屈光不正筛查和监测等。

Description

一种主客观一体式精准验光装置及验光方法 技术领域
本发明涉及光学测量技术领域,特别是涉及一种主客观一体式精准验光装置及验光方法。
背景技术
未矫正的屈光不正(包括近视、远视和散光)、未经手术治疗的白内障是导致视力损害的两个最主要原因(见文献[J].Ophthalmology2016;123(5):1036-1042)。准确测量人眼屈光不正的程度、确定最佳矫正处方是为患者进行屈光矫正的关键所在。
目前,验光流程包括客观验光和主觉验光两个步骤。客观验光的方法有检影验光和借助专业设备比如电脑验光仪、人眼像差仪等对患者的屈光不正进行客观测量。在此基础上,再利用试镜架插片或综合验光仪进行主觉验光。由于客观验光不包含受试者的主观反馈,其检测结果往往仅供参考。而主觉验光的准确度和重复性在很大程度上依赖于被检者的配合程度、检查者的水平与临床经验,使得基于现有主觉验光方法获得的矫正处方质量参差不齐。更为重要的是,现有试镜架插片或综合验光仪采用离散度数(步长0.25D)的试镜片进行主觉验光,存在化整误差,无法实现对人眼屈光不正的连续精准化验光。
在2018年,世界卫生组织的一项研究报告显示,中国近视患者达6亿,青少年的近视率已居世界第一,且仍然不断呈上升趋势。按照目前近视的发展趋势,大多数青少年是早发性近视,必须要及早发现和及时处理,所以孩子从小的视力筛查及屈光数据监测非常重要。眼睛不舒服,到医院就诊,临床医生需要通过检查才能做出诊断。眼病的主要症状之一是视力下降,所以视力检查是眼科临床的常规检查。现在临床上采用视力表进行视力检查,只能给出视力是否正常的结果,无法判断是屈光不正引起还是其他眼病引起,不便于眼科临床分诊。
针对现有验光手段主客观分离(采用不同的设备),主觉验光人为因素 影响大、试镜片度数不连续存在化整误差的问题和青少年近视人群视力快速筛查、屈光不正监测和眼科临床视力筛查分诊的需求,本发明提出一种主客观一体式精准验光装置和验光方法,能够同时测量双眼屈光、连续主觉验光、瞳距测量及视功能测量(包括但不限于视力、立体视),实现双眼主客观一体式精准验光;同时具备人眼屈光不正快速筛查及对人眼是否患病(屈光不正除外)进行初步筛查的功能,可以用于人眼屈光不正筛查、屈光数据监测及眼科临床分诊。
发明内容
本发明解决的技术问题是:提供一种主客观一体式精准验光装置及验光方法,解决现有验光手段主客观分离(采用不同的设备),主觉验光人为因素影响大、试镜片度数不连续存在化整误差的问题并满足屈光不正人群快速筛查、屈光不正监测和眼科临床分诊的需求,能够同时客观测量双眼屈光、连续主觉验光、瞳距测量及视功能测量(包括但不限于视力、立体视),实现双眼主客观一体式精准验光;同时具备人眼屈光不正快速筛查及对人眼是否患病(屈光不正除外)进行初步筛查的功能,可以用于验光配镜、人眼屈光不正筛查、屈光数据监测及眼科临床分诊。
为此,本发明首先提出一种主客观一体式精准验光装置,该装置由左右眼光路组成;单眼光路包括人眼屈光客观测量子系统,人眼屈光矫正子系统,眼球定位子系统,以及主观视功能测试子系统;人眼屈光客观测量子系统,用于人眼屈光的客观测量;人眼屈光矫正子系统,用于矫正人眼离焦和散光;眼球定位子系统,用于眼球定位;以及主观视功能测试子系统,用于主觉验光时的视功能测试。
优选地,所述单眼光路还包括视功能诊断子系统,视功能诊断子系统用于收集被检者主观测试信息,给出诊断结果。
进一步优选地,所述人眼屈光客观测量子系统可以从波前测量技术、检影验光技术、条栅聚焦验光技术、Scheiner盘验光技术和刀刃测量验光技术中选择。
进一步优选地,所述波前测量技术可以从基于微透镜阵列的哈特曼波前传感器、基于微棱镜阵列的哈特曼波前传感器、曲率波前传感器、角锥波前传感器中选择。
进一步优选地,所述人眼屈光客观测量子系统包括近红外信标光源(9)、准直物镜(10)、反射镜(12)、第二分光镜(13)、第一分光镜(5)、第一中继望远镜(3)、第二中继望远镜(6)和波前传感器(7),所述人眼屈光矫正子系统包括第一中继望远镜(3)和柱面镜对(4),所述眼球定位子系统包括瞳孔成像装置(2),所述主观视功能测试子系统包括视标显示装置(8)和视标物镜(11);柱面镜对(4)设置在人眼(1)瞳孔的共轭位置处,近红外信标光源(9)发出的光,由准直物镜(10)准直,经第二分光镜(13)和第一分光镜(5)反射,透过柱面镜对(4)、第一中继望远镜(3)、瞳孔成像装置(2)进人眼(1);人眼(1)眼底反射的光,透过瞳孔成像装置(2)、第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)和第二中继望远镜(6)进入波前传感器(7)客观测量人眼屈光误差;根据测得的人眼屈光误差,改变第一中继望远镜(3)两个透镜间沿光轴的距离补偿人眼离焦,绕光轴旋转柱面镜对(4)补偿人眼散光,人眼屈光误差补偿完成后,视标显示装置(8)显示特定类型的视标,人眼(1)通过第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)、第二分光镜(13)、反射镜(12)和视标物镜(11)观察显示在视标显示装置(8)上的视标。
进一步优选地,所述柱面镜对(4)可以从光焦度大小相同或不同的平凹/平凸柱面镜对、平凹/平凹柱面镜对、平凸/平凸柱面镜对中选择。
进一步优选地,所述视标显示装置(8)可以从CRT显示器、商用投影仪、液晶显示器、等离子体显示器、场致发光显示器、有机发光显示器、投影式显示装置、印刷视力表中选择。
进一步优选地,所述第一中继望远镜(3)采用内调焦装置(30)代替,所述内调焦装置(30)包括第一反射镜(14)、第一透镜(15)、第二反射镜(16)、第三反射镜(17)、第二透镜(18)和第四反射镜(19)。
本发明还提出基于前述一种主客观一体式精准验光装置的验光方法,包含以下步骤:
S1.开启近红外信标光源(9),近红外信标光源(9)发出光,由准直物镜(10)准直,经第二分光镜(13)和第一分光镜(5)反射,透过柱面镜对(4)和第一中继望远镜(3)后进人眼(1);
S2.人眼(1)眼底反射的光,透过瞳孔成像装置(2)、第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)和第二中继望远镜(6)进入波 前传感器(7),客观测量人眼屈光误差;
S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,改变第一中继望远镜(3)两个透镜间沿光轴的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对(4)中的单片柱面镜补偿人眼散光;
S4.在人眼屈光误差补偿完成后,视标显示装置(8)显示特定类型的视标,人眼通过第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)、第二分光镜(13)、反射镜(12)和视标物镜(11)观察显示在视标显示装置(8)上的特定视标并进行判断;
S5.根据主观视觉感受微调离焦大小,旋转柱面镜对4相对角度微调合成散光大小和轴向,直至获得主观最佳的矫正视觉质量,完成单眼主觉验光;
S6.左右眼主觉验光完成后,沿垂直光轴方向整体移动左右眼光路进行瞳距调节,进行红绿和双眼调节平衡流程,最终给出双眼最佳精准屈光矫正处方。
本发明还提出基于前述一种主客观一体式精准验光装置的验光方法,包含以下步骤:
S1.开启近红外信标光源(9),近红外信标光源(9)发出光,由准直物镜(10)准直,经第二分光镜(13)和第一分光镜(5)反射,透过柱面镜对(4)和第一中继望远镜(3)后进人眼(1);
S2.人眼(1)眼底反射的光,透过瞳孔成像装置(2)、第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)和第二中继望远镜(6)进入波前传感器(7),客观测量人眼屈光误差;
S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,改变第一中继望远镜(3)两个透镜间沿光轴的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对(4)中的单片柱面镜补偿人眼散光;
S4.在人眼屈光误差补偿完成后,视标显示装置(8)显示特定类型的视标,人眼通过第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)、第二分光镜(13)、反射镜(12)和视标物镜(11)观察显示在视标显示装置(8)上的特定视标并进行判断;
S5.视功能诊断子系统根据被检者的判断进行诊断,如果被检者判断正 确,则认为被检眼仅存在屈光不正并给出屈光不正测量值;如果被检者判断错误,则认为被检眼除了屈光不正之外,可能存在其他眼病,需要配合其他眼科检查进行明确。
本发明与现有技术相比所具有的优点:首次提出一种主客观一体式精准验光装置和验光方法,采用客观屈光测量技术客观测量人眼屈光度,以此引导第一中继望远镜和旋转柱面镜对分别实现对人眼离焦和散光的补偿,通过观察内置视标,被检者根据主观视觉感受微调离焦量及散光大小和轴向实现主觉精准验光,在此基础上进行红绿和双眼调节平衡流程,最终给出最佳精准屈光矫正处方;同时具备人眼屈光不正快速筛查及对人眼是否患病(屈光不正除外)进行初步筛查的功能,可以用于验光配镜、人群屈光不正筛查和监测及眼科临床分诊。
附图说明
图1为本发明的主客观一体式精准验光装置的实施例1原理图。
图2为本发明的主客观一体式精准验光装置的实施例2原理图。
图3为本发明的主客观一体式精准验光装置的实施例3原理图。
图4为本发明的主客观一体式精准验光装置的实施例4原理图。
具体实施方式
下面结合具体实施方式并对照附图对本发明作进一步详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明提出的一种主客观一体式精准验光装置由左右眼光路组成;单眼光路包括人眼屈光客观测量子系统,人眼屈光矫正子系统,眼球定位子系统,以及主观视功能测试子系统;人眼屈光客观测量子系统,用于人眼屈光的客观测量;人眼屈光矫正子系统,用于矫正人眼离焦和散光;眼球定位子系统,用于眼球定位;以及主观视功能测试子系统,用于主觉验光时的视功能测试。
人眼屈光客观测量子系统的实现可以从波前测量技术、检影验光技术、条栅聚焦验光技术、Scheiner盘验光技术和刀刃测量验光技术中选择,本发明优先选择波前测量技术。波前测量技术可以从基于微透镜阵列的哈特曼 波前传感器、基于微棱镜阵列的哈特曼波前传感器、曲率波前传感器、角锥波前传感器中选择。
下面,将通过不同实施例对本发明的主客观一体式精准验光装置进行详细说明。
实施例1
如图1所示,人眼屈光客观测量子系统包括近红外信标光源9、准直物镜10、反射镜12、第二分光镜13、第一分光镜5、第一中继望远镜3、第二中继望远镜6和波前传感器7,人眼屈光矫正子系统包括第一中继望远镜3和柱面镜对4,眼球定位子系统包括瞳孔成像装置2,主观视功能测试子系统包括视标显示装置8和视标物镜11。需要注意,人眼屈光客观测量子系统和人眼屈光矫正子系统共用第一中继望远镜3。
柱面镜对4设置在人眼1瞳孔的共轭位置处,近红外信标光源9发出的光,由准直物镜10准直,经第二分光镜13和第一分光镜5反射,透过柱面镜对4、第一中继望远镜3、瞳孔成像装置2进人眼1;人眼1眼底反射的光,透过瞳孔成像装置2、第一中继望远镜3、柱面镜对4、第一分光镜5和第二中继望远镜6进入波前传感器7客观测量人眼屈光误差(离焦、散光和散光轴向);根据测得的人眼屈光误差,改变第一中继望远镜3两个透镜间沿光轴的距离补偿人眼离焦,绕光轴旋转柱面镜对4补偿人眼散光,人眼屈光误差补偿完成后,视标显示装置8显示特定类型的视标,人眼1通过第一中继望远镜3、柱面镜对4、第一分光镜5、第二分光镜13、反射镜12和视标物镜11观察显示在视标显示装置8上的视标。
在本实施例中,柱面镜对4可以从光焦度大小相同或不同的平凹/平凸柱面镜对、平凹/平凹柱面镜对、平凸/平凸柱面镜对中选择。视标显示装置8可以从CRT显示器、商用投影仪、液晶显示器、等离子体显示器、场致发光显示器、有机发光显示器、投影式显示装置、印刷视力表中选择。
基于该实施例的主客观一体式精准验光装置,本发明还提供一种验光方法,其包括以下步骤:
S1.开启近红外信标光源9,近红外信标光源9发出光,由准直物镜10准直,经第二分光镜13和第一分光镜5反射,透过柱面镜对3和第一中继望远镜3后进人眼1;
S2.人眼1眼底反射的光,透过瞳孔成像装置2、第一中继望远镜3、柱 面镜对4、第一分光镜5和第二中继望远镜6进入波前传感器7,客观测量人眼屈光误差;
S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,改变第一中继望远镜3两个透镜间沿光轴的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对4中的单片柱面镜补偿人眼散光;
S4.在人眼屈光误差补偿完成后,视标显示装置8显示特定类型的视标,人眼通过第一中继望远镜3、柱面镜对4、第一分光镜5、第二分光镜13、反射镜12和视标物镜11观察显示在视标显示装置8上的特定视标并进行判断;
S5.根据主观视觉感受微调离焦大小,旋转柱面镜对4相对角度微调合成散光大小和轴向,直至获得主观最佳的矫正视觉质量,完成单眼主觉验光;
S6.左右眼主觉验光完成后,沿垂直光轴方向整体移动左右眼光路进行瞳距调节,进行红绿和双眼调节平衡流程,最终给出双眼最佳精准屈光矫正处方。
离焦补偿通过整体移动图1中双点划线框部分进行内调焦来完成。
在本实施例中,人眼离焦矫正公式如下:
D=[d-(f 1+f 2)]Φ   (1)
其中,D为可矫正的离焦,f 1、f 2分别为第一中继望远镜3中两个透镜的焦距,d为第一中继望远镜3中两个透镜在光轴方向上的距离,Φ由第一中继望远镜3中两个透镜的焦距确定。由公式1可知,通过改变第一中继望远镜3中两个透镜在光轴上的距离,可以实现对人眼离焦的连续矫正。
人眼散光矫正公式如下:
Figure PCTCN2020075652-appb-000001
其中,C和φ分别为可矫正的散光大小和轴向,F c为柱面镜对4中单个柱面镜的散光大小,a 1和a 2是两个柱面镜的散光轴向。由公式(2)可知,通过分别旋转柱面镜对4中的单片柱面镜,可以实现对人眼散光的连续矫正。
实施例2
如图2所示,该实施例的主客观一体式精准验光装置的结构与实施例1相同,不同之处在于,第一中继望远镜3采用内调焦装置30代替,内调焦 装置30包括第一反射镜14、第一透镜15、第二反射镜16、第三反射镜17、第二透镜18和第四反射镜19组成,其结构如图2中虚线框部分所示。
同时,本发明也保护一种验光方法,该验光方法与实施例1的验光方法相同。
在实施例2中,人眼散光矫正的方式和实施例1相同。人眼离焦的矫正,与实施例1的区别在于,公式(1)中f 1、f 2、d分别为第一透镜15和第二透镜18的焦距以及它们之间的距离,通过整体移动第二反射镜16和第三反射镜17改变第一透镜15和第二透镜18沿光轴方向的距离补偿人眼离焦。
实施例3
如图3所示,该实施例的主客观一体式精准验光装置的结构与实施例1相同,不同之处在于,该实施例中的单眼光路还包括视功能诊断子系统20,视功能诊断子系统20用于收集被检者主观测试信息,给出诊断结果。
同时,本发明也保护一种验光方法,该验光方法包含以下步骤:
S1.开启近红外信标光源9,近红外信标光源9发出光,由准直物镜10准直,经第二分光镜13和第一分光镜5反射,透过柱面镜对3和第一中继望远镜3后进人眼1;
S2.人眼1眼底反射的光,透过瞳孔成像装置2、第一中继望远镜3、柱面镜对4、第一分光镜5和第二中继望远镜6进入波前传感器7,客观测量人眼屈光误差;
S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,改变第一中继望远镜3两个透镜间沿光轴的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对4中的单片柱面镜补偿人眼散光;
S4.在人眼屈光误差补偿完成后,视标显示装置8显示特定类型的视标,人眼通过第一中继望远镜3、柱面镜对4、第一分光镜5、第二分光镜13、反射镜12和视标物镜11观察显示在视标显示装置8上的特定视标并进行判断;
S5.视功能诊断子系统20根据被检者的判断进行诊断,如果被检者判断正确,则认为被检眼仅存在屈光不正并给出屈光不正测量值;如果被检者判断错误,则认为被检眼除了屈光不正之外,可能存在其他眼病,需要配合其他眼科检查(如眼底照相等)进行明确。
实施例4
如图4所示,该实施例的主客观一体式精准验光装置的结构与实施例2相同,不同之处在于,该实施例中的单眼光路还包括视功能诊断子系统20,视功能诊断子系统20用于收集被检者主观测试信息,给出诊断结果。
同时,本发明也保护一种验光方法,其包含以下步骤:
S1.开启近红外信标光源9,近红外信标光源9发出光,由准直物镜10准直,经第二分光镜13和第一分光镜5反射,透过柱面镜对3和第一中继望远镜3后进人眼1;
S2.人眼1眼底反射的光,透过瞳孔成像装置2、第一中继望远镜3、柱面镜对4、第一分光镜5和第二中继望远镜6进入波前传感器7,客观测量人眼屈光误差;
S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,通过整体移动第二反射镜16和第三反射镜17改变第一透镜15和第二透镜18沿光轴方向的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对4中的单片柱面镜补偿人眼散光;
S4.在人眼屈光误差补偿完成后,视标显示装置8显示特定类型的视标,人眼通过第一中继望远镜3、柱面镜对4、第一分光镜5、第二分光镜13、反射镜12和视标物镜11观察显示在视标显示装置8上的特定视标并进行判断;
S5.视功能诊断子系统20根据被检者的判断进行诊断,如果被检者判断正确,则认为被检眼仅存在屈光不正并给出屈光不正测量值;如果被检者判断错误,则认为被检眼除了屈光不正之外,可能存在其他眼病,需要配合其他眼科检查(如眼底照相等)进行明确。
至此,已经结合优选实施例对本发明进行了描述。应该理解,本领域技术人员在不脱离本发明的精神和范围的情况下,可以进行各种其它的改变、替换和添加。因此,本发明的范围不局限于上述特定实施例,而应由所附权利要求所限定。

Claims (10)

  1. 一种主客观一体式精准验光装置,其特征在于:该装置由左右眼光路组成;单眼光路包括人眼屈光客观测量子系统,人眼屈光矫正子系统,眼球定位子系统,以及主观视功能测试子系统;人眼屈光客观测量子系统,用于人眼屈光的客观测量;人眼屈光矫正子系统,用于矫正人眼离焦和散光;眼球定位子系统,用于眼球定位;以及主观视功能测试子系统,用于主觉验光时的视功能测试。
  2. 根据权利要求1所述的一种主客观一体式精准验光装置,其特征在于:所述单眼光路还包括视功能诊断子系统,视功能诊断子系统用于收集被检者主观测试信息,给出诊断结果。
  3. 根据权利要求1或2所述的一种主客观一体式精准验光装置,其特征在于:所述人眼屈光客观测量子系统的实现可以从波前测量技术、检影验光技术、条栅聚焦验光技术、Scheiner盘验光技术和刀刃测量验光技术中选择。
  4. 根据权利要求3所述的一种主客观一体式精准验光装置,其特征在于:所述波前测量技术可以从基于微透镜阵列的哈特曼波前传感器、基于微棱镜阵列的哈特曼波前传感器、曲率波前传感器、角锥波前传感器中选择。
  5. 根据权利要求4所述的一种主客观一体式精准验光装置,其特征在于:所述人眼屈光客观测量子系统包括近红外信标光源(9)、准直物镜(10)、反射镜(12)、第二分光镜(13)、第一分光镜(5)、第一中继望远镜(3)、第二中继望远镜(6)和波前传感器(7),所述人眼屈光矫正子系统包括第一中继望远镜(3)和柱面镜对(4),所述眼球定位子系统包括瞳孔成像装置(2),所述主观视功能测试子系统包括视标显示装置(8)和视标物镜(11);
    柱面镜对(4)设置在人眼(1)瞳孔的共轭位置处,近红外信标光源(9)发出的光,由准直物镜(10)准直,经第二分光镜(13)和第一分光镜(5)反射,透过柱面镜对(4)、第一中继望远镜(3)、瞳孔成像装置(2)进人眼(1);人眼(1)眼底反射的光,透过瞳孔成像装置(2)、第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)和第二中继望远镜(6)进入波前传感器(7)客观测量人眼屈光误差;根据测得的人眼屈光误差,改变第一中继望远镜(3)两个透镜间沿光轴的距离补偿人眼离焦,绕光轴旋转柱面镜对(4)补偿人眼散光,人眼屈光误差补偿完成后,视标显示装置(8) 显示特定类型的视标,人眼(1)通过第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)、第二分光镜(13)、反射镜(12)和视标物镜(11)观察显示在视标显示装置(8)上的视标。
  6. 根据权利要求5所述的一种主客观一体式精准验光装置,其特征在于:所述柱面镜对(4)可以从光焦度大小相同或不同的平凹/平凸柱面镜对、平凹/平凹柱面镜对、平凸/平凸柱面镜对中选择。
  7. 根据权利要求5所述的一种主客观一体式精准验光装置,其特征在于:所述视标显示装置(8)可以从CRT显示器、商用投影仪、液晶显示器、等离子体显示器、场致发光显示器、有机发光显示器、投影式显示装置、印刷视力表中选择。
  8. 根据权利要求5所述的一种主客观一体式精准验光装置,其特征在于:所述第一中继望远镜(3)采用内调焦装置(30)代替,所述内调焦装置(30)包括第一反射镜(14)、第一透镜(15)、第二反射镜(16)、第三反射镜(17)、第二透镜(18)和第四反射镜(19)。
  9. 基于权利要求8所述的一种主客观一体式精准验光装置的验光方法,其特征在于:包含以下步骤:
    S1.开启近红外信标光源(9),近红外信标光源(9)发出光,由准直物镜(10)准直,经第二分光镜(13)和第一分光镜(5)反射,透过柱面镜对(4)和第一中继望远镜(3)后进人眼(1);
    S2.人眼(1)眼底反射的光,透过瞳孔成像装置(2)、第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)和第二中继望远镜(6)进入波前传感器(7),客观测量人眼屈光误差;
    S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,改变第一中继望远镜(3)两个透镜间沿光轴的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对(4)中的单片柱面镜补偿人眼散光;
    S4.在人眼屈光误差补偿完成后,视标显示装置(8)显示特定类型的视标,人眼通过第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)、第二分光镜(13)、反射镜(12)和视标物镜(11)观察显示在视标显示装置(8)上的特定视标并进行判断;
    S5.根据主观视觉感受微调离焦大小,旋转柱面镜对(4)相对角度微调 合成散光大小和轴向,直至获得主观最佳的矫正视觉质量,完成单眼主觉验光;
    S6.左右眼主觉验光完成后,沿垂直光轴方向整体移动左右眼光路进行瞳距调节,进行红绿和双眼调节平衡流程,最终给出双眼最佳精准屈光矫正处方。
  10. 基于权利要求8所述的一种主客观一体式精准验光装置的验光方法,其特征在于:包含以下步骤:
    S1.开启近红外信标光源(9),近红外信标光源(9)发出光,由准直物镜(10)准直,经第二分光镜(13)和第一分光镜(5)反射,透过柱面镜对(4)和第一中继望远镜(3)后进人眼(1);
    S2.人眼(1)眼底反射的光,透过瞳孔成像装置(2)、第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)和第二中继望远镜(6)进入波前传感器(7),客观测量人眼屈光误差;
    S3.根据测得的人眼屈光误差,通过人眼离焦矫正公式,改变第一中继望远镜(3)两个透镜间沿光轴的距离补偿人眼离焦;根据测得的人眼屈光误差,通过人眼散光矫正公式,绕光轴分别旋转柱面镜对(4)中的单片柱面镜补偿人眼散光;
    S4.在人眼屈光误差补偿完成后,视标显示装置(8)显示特定类型的视标,人眼通过第一中继望远镜(3)、柱面镜对(4)、第一分光镜(5)、第二分光镜(13)、反射镜(12)和视标物镜(11)观察显示在视标显示装置(8)上的特定视标并进行判断;
    S5.视功能诊断子系统根据被检者的判断给出诊断结果,如果被检者判断正确,则认为被检眼仅存在屈光不正并给出屈光不正测量值;如果被检者判断错误,则认为被检眼除了屈光不正之外,可能存在其他眼病,需要配合其他眼科检查进行明确。
PCT/CN2020/075652 2019-08-22 2020-02-18 一种主客观一体式精准验光装置及验光方法 WO2021031538A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/753,157 US12285218B2 (en) 2019-08-22 2020-02-18 Subjective and objective integrated precise optometry device, and optometry method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910777661.8A CN110367924B (zh) 2019-08-22 2019-08-22 一种主客观一体式精准验光装置及验光方法
CN201910777914.1A CN110367925B (zh) 2019-08-22 2019-08-22 主客观一体式诊断性验光装置及验光方法
CN201910777661.8 2019-08-22
CN201910777914.1 2019-08-22

Publications (1)

Publication Number Publication Date
WO2021031538A1 true WO2021031538A1 (zh) 2021-02-25

Family

ID=74660384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075652 WO2021031538A1 (zh) 2019-08-22 2020-02-18 一种主客观一体式精准验光装置及验光方法

Country Status (2)

Country Link
US (1) US12285218B2 (zh)
WO (1) WO2021031538A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275883A1 (en) * 2021-06-27 2023-01-05 Srinivasan Maheswari An unmanned wearable apparatus for measuring the refractive error of an eye

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116211238A (zh) * 2023-04-19 2023-06-06 浙江大学 一种网络化的客观验光仪及客观验光方法
CN119632495A (zh) * 2024-12-11 2025-03-18 北京高维元宇医疗科技有限公司 人工智能红外偏心摄影验光仪、验光系统和验光方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194131A (zh) * 1998-03-30 1998-09-30 华北工学院 一种客观验光仪的光学系统
CN102525399A (zh) * 2010-12-27 2012-07-04 尼德克株式会社 眼测定装置
JP2018143554A (ja) * 2017-03-07 2018-09-20 株式会社ニデック 自覚式検眼装置
CN109561823A (zh) * 2016-06-14 2019-04-02 普恩奥蒂卡公司 基于可调透镜的屈光检查
CN109893081A (zh) * 2019-03-10 2019-06-18 长兴爱之瞳医疗科技有限公司 一种双眼主观精准验光装置及验光方法
CN110367924A (zh) * 2019-08-22 2019-10-25 长兴爱之瞳医疗科技有限公司 一种主客观一体式精准验光装置及验光方法
CN110367925A (zh) * 2019-08-22 2019-10-25 长兴爱之瞳医疗科技有限公司 主客观一体式诊断性验光装置及验光方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503655B2 (en) * 2003-11-19 2009-03-17 Vision Crc Limited Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
EP3269296A1 (en) 2008-12-01 2018-01-17 Perfect Vision Technology (HK) Ltd. Methods and devices for refractive correction of eyes
CN102188231B (zh) 2011-05-23 2012-10-03 中国科学院光电技术研究所 一种变焦多通道人眼视网膜显微成像系统
JP6238551B2 (ja) * 2013-04-17 2017-11-29 キヤノン株式会社 眼科装置、眼科装置の制御方法、プログラム
WO2016001757A2 (en) 2014-06-30 2016-01-07 Guo Tong Medical Development Co., Ltd. Visual problem diagnosis using refractive parameters measured with a retinal camera
DE102014116665B4 (de) 2014-09-22 2024-07-25 Carl Zeiss Ag Verfahren und Vorrichtungen zur Bestimmung der Augenrefraktion
JP6515478B2 (ja) * 2014-10-07 2019-05-22 株式会社ニデック 眼科装置、および、眼科測定プログラム
JP2016220880A (ja) 2015-05-29 2016-12-28 株式会社トプコン 検眼装置
CN105105707B (zh) 2015-09-15 2017-03-29 中国科学院光电技术研究所 共路干涉自适应光学oct视网膜成像仪
CN106963335B (zh) 2015-11-13 2022-01-04 尼德克株式会社 主观式检眼装置
US20170325682A1 (en) 2016-05-11 2017-11-16 Perfect Vision Technology (Hk) Ltd. Methods and Systems for Determining Refractive Corrections of Human Eyes for Eyeglasses
CN206273246U (zh) 2016-08-30 2017-06-23 湖州美科沃华医疗技术有限公司 一种青光眼检测与治疗一体化装置
JP6830378B2 (ja) 2017-03-07 2021-02-17 株式会社トプコン 検眼装置
US20200245860A1 (en) * 2019-02-04 2020-08-06 Nidek Co., Ltd. Ophthalmologic apparatus
CN109770844A (zh) 2019-03-01 2019-05-21 中北大学 一种人眼屈光度检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194131A (zh) * 1998-03-30 1998-09-30 华北工学院 一种客观验光仪的光学系统
CN102525399A (zh) * 2010-12-27 2012-07-04 尼德克株式会社 眼测定装置
CN109561823A (zh) * 2016-06-14 2019-04-02 普恩奥蒂卡公司 基于可调透镜的屈光检查
JP2018143554A (ja) * 2017-03-07 2018-09-20 株式会社ニデック 自覚式検眼装置
CN109893081A (zh) * 2019-03-10 2019-06-18 长兴爱之瞳医疗科技有限公司 一种双眼主观精准验光装置及验光方法
CN110367924A (zh) * 2019-08-22 2019-10-25 长兴爱之瞳医疗科技有限公司 一种主客观一体式精准验光装置及验光方法
CN110367925A (zh) * 2019-08-22 2019-10-25 长兴爱之瞳医疗科技有限公司 主客观一体式诊断性验光装置及验光方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275883A1 (en) * 2021-06-27 2023-01-05 Srinivasan Maheswari An unmanned wearable apparatus for measuring the refractive error of an eye

Also Published As

Publication number Publication date
US20220330820A1 (en) 2022-10-20
US12285218B2 (en) 2025-04-29

Similar Documents

Publication Publication Date Title
Berrio et al. Optical aberrations and alignment of the eye with age
US8684526B2 (en) Compact binocular adaptive optics phoropter
US7513620B2 (en) Correction of presbyopia using adaptive optics and associated methods
US9055890B2 (en) Eyeglass prescription method
CN110367925B (zh) 主客观一体式诊断性验光装置及验光方法
CN110367924B (zh) 一种主客观一体式精准验光装置及验光方法
US20140176904A1 (en) Ophthalmic Aberrometer Capable of Subjective Refraction
US7976161B2 (en) Method and system to assess objectively visual characteristics
CN111110184B (zh) 基于Hartmann–Shack波前像差测量仪周边视网膜像差光学测量系统
KR20140108657A (ko) 복수의 시선 방향에 따른 피검자의 적어도 하나의 객관적인 시각굴절 매개변수를 결정하기 위한 장치와 방법
JP7572150B2 (ja) 眼を検査する方法及び視力検査システム
WO2021031538A1 (zh) 一种主客观一体式精准验光装置及验光方法
US8985768B2 (en) Integrated refractor
Sinha et al. iTrace–A ray tracing aberrometer
US8272740B2 (en) Device and method for calibrating retinoscopes
Miller et al. Ophthalmic instrumentation
CN215584104U (zh) 一种具有消杂光机构的主客观一体式精准验光装置
CN113208554A (zh) 一种具备离焦和散光精准矫正功能的验光装置及验光方法
US8272739B2 (en) Device and method for calibrating retinoscopes
Yakar et al. Comparison between wavefront-derived refraction and auto-refraction
Maa SECTION II: OCULAR TELEHEALTH EQUIPMENT FOR NON-POSTERIOR SEGMENT EXAMINATION—VISION, REFRACTION, PUPILS, IOP, AND FUNCTIONAL TESTING
Vicente Optical Instruments and Machines
Lee Refraction and Glasses Exam
Kaur et al. Wavefront Analysis Systems
CN120112209A (zh) 用于诊断人眼白内障、光散射和屈光不正的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855574

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20855574

Country of ref document: EP

Kind code of ref document: A1

WWG Wipo information: grant in national office

Ref document number: 17753157

Country of ref document: US