WO2021031032A1 - 一种pdcch配置方法及装置 - Google Patents

一种pdcch配置方法及装置 Download PDF

Info

Publication number
WO2021031032A1
WO2021031032A1 PCT/CN2019/101208 CN2019101208W WO2021031032A1 WO 2021031032 A1 WO2021031032 A1 WO 2021031032A1 CN 2019101208 W CN2019101208 W CN 2019101208W WO 2021031032 A1 WO2021031032 A1 WO 2021031032A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
pdcch candidate
value
cces
cfi
Prior art date
Application number
PCT/CN2019/101208
Other languages
English (en)
French (fr)
Inventor
杨洪建
邵家枫
官磊
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/101208 priority Critical patent/WO2021031032A1/zh
Priority to PCT/CN2019/111339 priority patent/WO2021031317A1/zh
Priority to CN201980099208.4A priority patent/CN114208375B/zh
Publication of WO2021031032A1 publication Critical patent/WO2021031032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a PDCCH configuration method and device.
  • Physical Downlink Control Channel can be sent in downlink subframes to transmit downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the area used for PDCCH transmission is called the control area, and the control area occupies one downlink The first N Orthogonal Frequency Division Multiplexing (OFDM) symbols of the subframe.
  • the transmission of the PDCCH channel is organized in the form of CCE.
  • the PDCCH can be transmitted on logically continuous M control channel elements (Control Channel Elements, CCE), called aggregation level (Aggregation Level, AL), aggregation level and CCE There is a corresponding relationship between the number M.
  • CCE Control Channel Elements
  • the terminal performs blind PDCCH detection and searches for whether there is a PDCCH sent for the terminal.
  • the terminal detects the PCFICH to obtain the Control Format Indicator (CFI) information, determines the number of symbols occupied by the PDCCH in the time domain, and determines the control area for transmitting the PDCCH according to the determined number of symbols occupied by the PDCCH in the time domain.
  • the number of M in the control area is determined according to the search space and the aggregation level of the PDCCH, so as to perform blind PDCCH detection in M CCEs.
  • search for whether there is a PDCCH sent for the terminal in the public search space or user-specific search space Only when the PDCCH is detected can information such as DCI be detected.
  • the current CCE aggregation level of the usual terminal is 8, and the terminal can only blindly detect the PDCCH whose aggregation level does not exceed 8. If the aggregation level of the PDCCH sent by the base station exceeds 8, such as 16 or 24, then the current maximum A terminal that supports CCE aggregation level 8 cannot blindly detect the PDCCH sent by the base station, and therefore cannot detect information such as DCI.
  • the embodiments of the application provide a PDCCH configuration method and device, so that when the aggregation level of the PDCCH sent by the network device is greater than the aggregation level supported by the first UE, the first UE can detect the PDDCH through the combination of CCEs, thereby improving the PDCCH The success rate of the test.
  • a PDCCH configuration method which includes the following processes: a network device sends a signal for the UE to access to a user terminal UE on a broadcast dedicated carrier; the first user terminal UE accesses the broadcast dedicated carrier; The first UE detects at least one first PDCCH candidate in the PDCCH candidate set on the broadcast dedicated carrier.
  • the first PDCCH candidate is composed of N*L control channel elements CCEs, where the N*L In the CCE, the first (N/2)*L CCEs and the last (N/2)*L CCEs have the same starting position for coded bit collection, L is an integer greater than or equal to 8, and N is an even number greater than 0.
  • the signal sent by the network device for the first UE to access may also be used to indicate the first capability of the first UE, and/or to indicate that the first UE is At least one first PDCCH candidate is detected.
  • the first UE refers to a higher-version UE, that is, a UE that supports a protocol of version 16 and above.
  • the first UE is also called a new UE.
  • the aggregation capability of the first UE is 4 or 8, 16 or higher.
  • the first capability includes at least one of the following:
  • the first UE supports detection of a first PDCCH candidate composed of 16 CCEs, that is, the aggregation capability of the first UE is 16;
  • the first UE supports the 16 version of the protocol
  • the first UE supports the feature of version 16 broadcast or multicast.
  • the first PDCCH candidate can be regarded as consisting of two second PDCCH candidates.
  • the process of sending PDDCH candidates by the network device is similar. , I won’t repeat it here.
  • the network device sends two second PDCCH candidates to the UE on a broadcast dedicated carrier.
  • the UE includes a first UE and a second UE.
  • the first UE determines to detect the first PDCCH candidate, after the first UE receives two second PDCCH candidates, the two second PDCCH candidates form a first PDCCH candidate.
  • a UE detects the first PDCCH candidate.
  • the first UE For the first UE, if the first UE determines not to detect the first PDCCH candidate, after receiving the two second PDCCH candidates, the first UE detects the two second PDCCH candidates separately.
  • the second UE After receiving the two second PDCCH candidates, the second UE detects the two second PDCCH candidates separately.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs have the same starting position for coded bit collection.
  • the CCE index (such as CCE logic code) Sort from small to large, the first CCE to the (N/2)*Lth CCE is the first (N/2)*L CCE, and the (N/2)*L+1th CCE
  • the last CCE is the last (N/2)*L CCEs.
  • CCE index 0 to CCE index (N/2)*L-1 is the first (N/2)*L CCE, and CCE index (N/2)*L to the last CCE is the last (N/2) )*L CCE.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs that make up the first PDCCH candidate are collected at the same starting position, referring to the first (N/2)*L CCEs
  • At least one bit index is the same.
  • the first UE accesses the broadcast dedicated carrier, and detects at least one first PDCCH candidate in the PDCCH candidate set on the broadcast dedicated carrier.
  • the first PDCCH candidate is composed of N*L CCEs
  • the first PDCCH candidate is composed of N*L CCEs.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs have the same starting position for coded bit collection.
  • the first UE can check the first PDCCH candidate composed of N*L CCEs. Detection is performed.
  • the first UE can detect the PDDCH by combining CCEs, thereby improving the success rate of PDCCH detection.
  • the first PDCCH candidate is composed of N*L consecutive CCEs starting from a first starting CCE, and the first starting CCE is CCE index 0.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs respectively constitute two second PDCCH candidate detections.
  • the two second PDCCHs are independent of each other and the start position of the CCE coded bit collection is the same. Therefore, for the second UE, the two second PDCCHs can also be decoded independently.
  • the second UE refers to a UE of a low version, that is, a UE that does not support a protocol of version 16 and above, that is to say, the second UE only supports a UE of a protocol below a version 16, and the second UE is also called an old UE.
  • the first PDCCH candidate is in a common search space.
  • the first PDCCH candidate belongs to the common search space. That is to say, the first UE monitors the first PDCCH candidate in the common search space.
  • the detecting at least one first PDCCH candidate in the PDCCH candidate set includes:
  • the first UE If the first UE receives the instruction to detect the first PDCCH candidate sent by the network device, the first UE detects at least one of the first PDCCH candidates in the PDCCH candidate set; or
  • the first UE If the first UE supports the detection of the first PDCCH candidate, the first UE detects at least one of the first PDCCH candidates in the PDCCH candidate set.
  • the network device sends an instruction to detect the first PDCCH candidate to the first UE, and the first UE may receive the instruction to detect the first PDCCH candidate sent by the network device.
  • the indication of detecting the first PDCCH candidate is indicated by the MBMS master information block carried by the PBCH.
  • the MBMS master information block includes one of the master information block (MIB), MIB-MBMS, SIB1, and SI.
  • MIB master information block
  • SIB1 SI-MBMS
  • a PDCCH detection method which includes the following processes: a network device sends a signal for the UE to access to a user terminal UE on a broadcast dedicated carrier; the network device sends a signal to a user terminal UE on the broadcast dedicated carrier; The UE sends at least one first PDCCH candidate in the PDCCH candidate set, where the first PDCCH candidate is composed of N*L control channel elements CCEs, where the N*L CCEs, the former (N/2)* The start position of the coded bit collection of L CCEs and the next (N/2)*L CCEs is the same, L is an integer greater than or equal to 8, and N is an even number greater than 0; the UE responds to the at least one first PDCCH candidate Perform testing.
  • the PDCCH candidate is composed of N*L consecutive CCEs starting from the first starting CCE, and the first starting CCE is CCE index 0.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs respectively constitute two second PDCCH candidate detections.
  • the first PDCCH candidate is in a common search space.
  • the network device sends an indication of detecting the first PDCCH candidate to the first UE.
  • the indication of detecting the first PDCCH candidate is at least one piece of information in the MBMS master information block carried by the physical broadcast channel PBCH.
  • the network device is indicated by at least one piece of information in the MBMS master information block.
  • the network device uses at least one piece of information in the MBMS master information block to indicate the bit state value indication, and pre-appoints the correspondence relationship with the aggregation level used by the PDCCH with the first UE.
  • a method for configuring a control format indicating CFI including the following process: a user terminal UE determines a CFI, the CFI is used to indicate the number of symbols occupied by PDCCH transmission in a subframe, and the CFI is composed of the following At least one of the methods is determined:
  • the UE determines the CFI according to the received third information
  • the UE determines the CFI according to a predefined definition
  • the UE determines the CFI according to the first correspondence and fourth information
  • the third information and/or fourth information is information carried in the physical broadcast channel PBCH;
  • the UE detects the downlink control information PDCCH according to the CFI.
  • the UE may or may not determine the CFI by detecting the PCFICH, and the UE can determine the value of the CFI in either the connected state or the idle state, thereby improving the success rate of blind PDCCH detection.
  • the third information and/or the fourth information are carried in the MBMS main information block.
  • the third information uses 1 bit to indicate the value of the CFI, including one of the following situations:
  • the third information uses 2 bits to indicate the value of the CFI, including one of the following situations:
  • the UE determines the value of the CFI according to a predefined definition, and the value of the CFI includes one of 1, 2, 3, and 4.
  • the UE determines the CFI according to the first correspondence and fourth information, where the fourth information is used to indicate the system bandwidth or the number of resource block RBs;
  • the first correspondence includes the correspondence between the value of the system bandwidth and the value of CFI, or the correspondence between the number of RBs and the value of CFI.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 4;
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 4;
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • a method for configuring a control format indicating CFI including the following process: a network device sends a third message and/or a fourth message to a user terminal UE, where the third message and the fourth message are used to indicate the CFI , The CFI is used to indicate the number of symbols occupied by PDCCH transmission in a subframe;
  • the third information and/or fourth information is information carried in the physical broadcast channel PBCH.
  • the third information and/or the fourth information are carried in the MBMS main information block.
  • the third information indicates the value of the CFI by 1 bit, including one of the following situations:
  • the third information uses 2 bits to indicate the value of the CFI, including one of the following situations:
  • the fourth information is used to indicate the system bandwidth or the number of resource block RBs.
  • a PDCCH detection device has the function of implementing the UE or network equipment in the above method, and it includes means for executing the steps or functions described in the above method.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the UE or the network device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the first aspect, the second aspect, and the first aspect Any one of the possible implementation manners, or the method completed by the UE or the network device in any one of the possible implementation manners of the second aspect.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the UE or the network device in the foregoing method.
  • the device may further include one or more memories, where the memories are configured to be coupled with the processor, and store necessary program instructions and/or data for network devices or satellites.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the apparatus may be located in a UE or a network equipment, or a UE or a network equipment star.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store computer programs
  • the processor is used to run the computer programs in the memory so that the device executes the first aspect, the second aspect, and the first aspect. Any possible implementation manner, or a method completed by the UE or a network device in any possible implementation manner in the second aspect.
  • a CFI configuration device has the function of implementing the UE or network equipment in the above method, and it includes means for executing the steps or functions described in the above method.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the UE or the network device in the foregoing method.
  • the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the third aspect, the fourth aspect, and the third aspect In any one of the possible implementation manners, or the method completed by the UE or the network device in any one of the possible implementation manners in the fourth aspect.
  • the foregoing device includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform corresponding functions of the UE or the network device in the foregoing method.
  • the apparatus may further include one or more memories, where the memories are configured to be coupled with the processor, and store necessary program instructions and/or data for the network equipment or the satellite.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the apparatus may be located in a UE or a network equipment, or a UE or a network equipment star.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store computer programs
  • the processor is used to run the computer programs in the memory so that the device executes the third, fourth, and third aspects. Any possible implementation manner or a method completed by the UE or a network device in any possible implementation manner in the fourth aspect.
  • a computer-readable storage medium for storing a computer program.
  • the computer program includes a computer program for executing the first aspect, the second aspect, the third aspect, the fourth aspect, or the first, second The instruction of the method in any one of the possible implementation modes of the aspect, the third aspect, and the fourth aspect.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer executes the first, second, and third aspects described above , The fourth aspect, or the method in any one of the possible implementation manners of the first, second, third, and fourth aspects.
  • Figure 1 is a schematic diagram of a unicast communication system and a broadcast communication system
  • Figure 2 is a schematic diagram of a control region used for PDCCH transmission
  • FIG. 3 is a schematic diagram of a PDCCH detection process applicable to an embodiment of this application.
  • FIG. 4 is a schematic diagram of a CCE combination applicable to an embodiment of this application.
  • FIG. 5 is a schematic diagram of another CEE combination applicable to the embodiments of this application.
  • FIG. 6 is a schematic flow chart of a combination of CFI configuration and PDCCH detection applicable to an embodiment of this application;
  • FIG. 7 is a structural diagram of a PDCCH detection device applicable to an embodiment of this application.
  • FIG. 8 is a structural diagram of a PDCCH detection device applicable to an embodiment of this application.
  • FIG. 9 is a structural diagram of a CFI configuration device applicable to an embodiment of this application.
  • FIG. 10 is a structural diagram of a CFI configuration device applicable to an embodiment of this application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as the fourth generation (4th Generation, 4G), the 4G system includes the long term evolution (LTE) system, and the worldwide interconnection for microwave access (worldwide interoperability).
  • 4G fourth generation
  • WiMAX long term evolution
  • 5G future 5th Generation
  • NR new radio access technology
  • 6G future communication systems
  • one entity needs to send a signal
  • another entity needs to receive the signal
  • the size of the signal transmission block needs to be determined.
  • the entity can be understood as a communication device in the communication system.
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • Terminals also known as user equipment/user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment/user equipment
  • MS mobile station
  • MT mobile terminal
  • terminals are to provide users with voice and/or data connectivity device of.
  • handheld devices with wireless connectivity vehicle-mounted devices, etc.
  • some examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • a network device is a device in a wireless network.
  • a network device may be a radio access network (RAN) node (or device) that connects a terminal to the wireless network, and may also be called a base station.
  • RAN nodes are: continuously evolving node B (gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, home evolved NodeB, or home Node B, HNB) , Base band unit (BBU), or wireless fidelity (wireless fidelity, Wifi) access point (AP), etc.
  • gNB continuously evolving node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • HNB Base Station
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node separates the protocol layer of the eNB in the long term evolution (LTE) system.
  • LTE long term evolution
  • Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are left.
  • the CU centrally controls the DU.
  • a network device may be a core network (CN) device that provides service support for the terminal.
  • CN core network
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the AMF entity may be responsible for terminal access management and mobility management
  • the SMF entity may be responsible for session management, such as user session establishment, etc.
  • the UPF entity may be a functional entity of the user plane, mainly responsible for connecting to external The internet.
  • the base station can be a high-tower, high-power base station with a high sky position, large transmitting power, and long coverage, or a low-tower, low-power base station with a low sky position, low transmit power, and close coverage.
  • the wireless communication system is mainly divided into three data transmission modes: Unicast, Broadcast and Multicast/Multicast.
  • a cell also called a cell, is an area covered by a base station or a part of a base station (generally referred to as an area covered by a wireless signal), and terminals located in the cell can communicate with the base station through a wireless channel.
  • the upper layer also called the upper layer protocol layer, is at least one protocol layer in each protocol layer above the physical layer.
  • the high-level protocol layer may specifically be at least one of the following protocol layers: medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (packet data convergence) Protocol, PDCP) layer, radio resource control (RRC) layer and non-access stratum (NAS). It is understandable that high-level signaling can generally also be equivalent to configuration information.
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • NAS non-access stratum
  • the broadcast dedicated carrier includes a carrier used to carry data information and/or control information in a MBMS-dedicated cell, or a multimedia broadcast multicast service/unicast hybrid (MBMS-dedicated) cell /Unicast-mixed) A carrier used to carry data information and/or control information in a cell, or a further enhanced multimedia broadcast multicast service/Unicast-mixed (FeMBMS/Unicast-mixed) cell used to carry data information and/or Carrier of control information.
  • MBMS-dedicated multimedia broadcast multicast service/unicast hybrid
  • FeMBMS/Unicast-mixed further enhanced multimedia broadcast multicast service/Unicast-mixed
  • the UE accesses the broadcast dedicated carrier, and the UE's access to the broadcast dedicated carrier includes at least the UE detecting the synchronization signal and the UE acquiring the master information block (such as master information block (MIB)) And other information.
  • the UE detects a primary synchronization signal (Primary Synchronization Signa, PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS) sent by a network device, the UE obtains time and frequency synchronization with the cell corresponding to the network device, and the UE Determine the physical cell identity and the cell identity group number to which the physical cell identity belongs.
  • the cell is a cell to which data information and/or control information carried on a broadcast dedicated carrier belong.
  • the UE decodes the physical broadcast channel PBCH, and obtains information such as the master information block MIB and the system message block SIB1 of the cell.
  • the main information block MIB also includes the MIB-MBMS sent by the multimedia broadcast multicast service (MBMS-dedicated) dedicated cell, including the downlink system bandwidth, the wireless system frame number SFN and other information;
  • the system message block SIB1 also includes the multimedia broadcast multicast
  • the SIB1-MBMS sent by the MBMS-dedicated dedicated cell contains the scheduling information of the system (SI) message.
  • the processing procedure of the downlink control information DCI The PDCCH carries the downlink control information DCI.
  • the processing procedure of the DCI mainly includes CRC addition, channel coding, and rate matching.
  • the transmission block that is, the bit sequence of the payload is a 0 , a 1 , a 2 , a 3 ,..., a A-1
  • the parity bit sequence is p 0 , p 1 , p 2 , p 3 ,. ..,p L-1 , where A is the number of payload bits and L is the number of parity bits.
  • the CRC bit sequence is scrambled by the corresponding RNTI sequence to form a bit sequence c 0 , c 1 , c 2 , c 3 ,..., c B-1 .
  • the bit sequence of the coding block of the input channel coding is c 0 , c 1 , c 2 , c 3 ,..., c K-1 , where K is the number of bits to be coded.
  • DCI rate matching includes 3 bit streams with Interleaving, bit collection and circular buffer generation.
  • the bit sequence input to the block interleaver is expressed as The bits after sub-block interleaving are expressed as D is the number of bits.
  • E is the number of bits transmitted by the physical channel, which is related to the aggregation level of the PDCCH candidate.
  • QPSK Quadrature Phase Shift Keying
  • the start position of the coded bit collection of the CCE is the bit of the sequence w before the bit collection corresponding to the first bit in the sequence e k after the bit collection carried on the CCE or the bit of the sequence w before the bit collection index.
  • a PDCCH candidate with an aggregation level of 8 consists of 8 CCEs, where the first bit after the collection of coded bits of the first CCE is e 0 , and the code corresponding to the first bit e 0 after the collection of coded bits The bit before the bit collection is w 0 , then the start position of the coded bit collection of the first CCE is w 0 or 0; if the first bit after the coded bit collection of the second CCE is e 71 , the code The first bit e 71 after the bit collection corresponds to the coded bit bit before the collection is w 71 , then the start position of the coded bit collection of the first CCE is w 71 or 71; the coded bit of the first CCE
  • system and “network” in the embodiments of this application can be used interchangeably.
  • Multiple refers to two or more, and other measure words are similar.
  • And/or describes the association relationship of the associated object, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • a and/or B which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • elements in the singular form "a”, “an” and “the” unless the context clearly dictates otherwise, it does not mean “one or only one", but means “one or more At one".
  • a device means to one or more such devices.
  • At least one (at least one of)" means one or any combination of subsequent associated objects, for example, at least one of a, b, or c, which can mean : A, b, c, ab, ac, bc or abc, where a, b, c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first data packet and the second data packet are only for distinguishing different data packets, but do not indicate the difference in content, priority, sending order, or importance of the two data packets.
  • MBMS Multimedia Broadcast Multicast Service
  • the wireless communication system is mainly divided into three data transmission modes: Unicast, Broadcast and Multicast/Multicast. Different from unicast point-to-single point delivery, in a broadcast or multicast communication system, a data signal can be received by multiple terminals.
  • the base station (Base station, BS) and UE1 ⁇ UE2 form a unicast communication system, and the BS sends different data signals (signal 1 and signal 2 in Figure 1(1)) respectively
  • the BS and UE1 to UE2 form a broadcast communication system, and the BS sends the same data signal (signal 1 in Figure 1 (2)) to UE1 to UE2 at the same time.
  • MBMS services use Multimedia Broadcast Multicast Service Single Frequency Network (MBSFN) to jointly send MBMS signals on the same time, frequency and space resources through multiple cells synchronized with each other, and then form naturally in the air
  • MMSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • SINR signal-to-interference plus noise ratio
  • MBMS cells are divided into the following three types according to the data transmitted: MBMS-dedicated cells, MBMS/Unicast-mixed cells, and Further enhanced Multimedia Broadcast Multicast Service (FeMBMS)/unicast hybrid cell, where MBMS dedicated cell only transmits MBMS service, MBMS/unicast hybrid cell transmits both MBMS service and unicast service , FeMBMS/unicast hybrid cell is a special MBMS/unicast-hybrid cell, which also transmits both MBMS services and unicast services.
  • FeMBMS Multimedia Broadcast Multicast Multicast Service
  • FeMBMS/unicast hybrid cells also meet at least one of the following conditions: Subframe 4 is configured with MBSFN subframes, or subframe 9 is configured with MBSFN subframes, or both subframes 4 and 9 are configured as MBSFN subframes, and there are no unicast control areas in the FeMBMS/unicast hybrid cell Subframe, MBSFN subframe is a subframe used to transmit MBMS services.
  • MBMS-dedicated cells there will be at least one non-MBSFN subframe every 40ms, which is used to transmit Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (Physical Broadcast Channel, PBCH), Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel (PDSCH), etc.
  • This subframe is called a Cell Acquisition Subframe (CAS).
  • the physical channels or signals in the CAS subframe cannot be combined with multi-cell signals, resulting in that the SINR of the physical channel received by the UE in the CAS subframe is lower than the SINR of the PMCH signal in the MBSFN subframe.
  • the SINR of the physical channel (such as PDCCH) in the CAS subframe received by the UE is lower than the demodulation threshold, and the blind detection of the PDCCH is unsuccessful, resulting in the UE not being able to receive the system information carried in the PDSCH normally (System Information , SI), the PMCH data signal cannot be received.
  • SI System Information
  • the PDCCH is introduced below.
  • the Physical Downlink Control Channel (PDCCH) can be sent in the downlink subframe for the transmission of Downlink Control Information (Downlink Control Information). , DCI).
  • the area used for PDCCH transmission is the control area, which occupies the first N Orthogonal Frequency Division Multiplexing (OFDM) symbols of a downlink subframe, where N may be 1, 2, 3, 4 , And time-domain interleaving will be performed on different OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Figure 2 is a schematic diagram of the control area. The control area in Figure 2 occupies 3 consecutive OFDM symbols.
  • the transmission of the PDCCH channel is organized in the form of a control channel element (Control Channel Element, CCE), and a CCE includes 9 resource element groups (REG).
  • the control region of each subframe is composed of a series of control channel elements CCE, the number of the control channel elements CCE ranges from 0 to N CCE,k -1, where N CCE,k is the total number of CCEs in the control region on the subframe k.
  • the PDCCH can be transmitted on logically continuous M CCEs, where the possible values of M are 1, 2, 4, and 8, which are called aggregation levels (AL).
  • the starting CCE index of the PDCCH candidate also referred to as the first CCE index, refers to the lowest or smallest index of the CCEs constituting the PDCCH candidate.
  • a series of PDCCH candidates in the search space constitute a PDCCH candidate set.
  • the UE performs blind PDCCH detection in the control region, and searches for whether there is a PDCCH sent for it.
  • the process of blind PDCCH detection is that the UE uses its corresponding Radio Network Temporary Identifier (RNTI) in the PDCCH search space of the control region of the downlink subframe to perform different CCE aggregation levels and DCI formats for PDCCHs.
  • RNTI Radio Network Temporary Identifier
  • the candidate tries to decode, and if the decoding is correct, the UE receives the DCI sent for it.
  • the search space of the UE is divided into a common search space (Common Search Space) and a user-specific search space (UE-specific Search Space).
  • the public search space is mainly used to transmit cell-specific control information, such as paging messages, system information, multicast control information, etc.; the user-specific search space is mainly used to transmit control information related to uplink and downlink data channel scheduling.
  • the UE only detects the PDCCH in the common search space in the CAS subframe.
  • the common search space starts from CCE index 0, occupies 16 logically continuous CCEs, and only supports 4 and 8 aggregation levels, as shown in Table 1, where Search space represents the search space of the cell, and Type represents the search space of the cell UE-specific means the user-specific search space, Common means the public search space, Aggregation level means the aggregation level, Size[in CCEs] means the size of CCEs (ie the number of CCEs), Number of PDCCH Candidates means the number of PDCCH candidates, Specifically, in the user-specific search space, the aggregation level is 1, the number of CCEs is 6, the number of PDCCH candidates is 6, the aggregation level is 2, the number of CCEs is 12, the number of PDCCH candidates is 6, and the aggregation level is 4.
  • the number of CCEs is 8, the number of PDCCH candidates is 2, the aggregation level is 8, the number of CCEs is 16, the number of PDCCH candidates is 2; in the common search space, the aggregation level is 4, the number of CCEs is 16, and the number of PDCCH candidates is The number is 4, the aggregation level is 8, the number of CCEs is 16, and the number of PDCCH candidates is 2.
  • the Control Format Indicator is introduced below.
  • the Physical Control Format Indicator Channel (PCFICH) carries CFI information, which is used to indicate the size of the control area on each subframe, that is Say that the PDCCH on each subframe occupies several symbols in the time domain. Table 2 lists the number of symbols that may be occupied by the PDCCH on each subframe.
  • the subframes include: 1, subframes 1 and 6 of frame structure type 2, or frame structure type 3 with the same duration of DwPTS configured for special subframes For a subframe, if the number of downlink resource blocks (Resource Block, RB) is greater than 10, the number of symbols occupied by the PDCCH on the subframe is 1 or 2.
  • Resource Block Resource Block
  • the number of downlink RBs is less than or equal to 10, the number of symbols occupied by the PDCCH on the subframe The number is 2; 2, the subcarrier spacing is 15kHz and the MBSFN subframe is configured with 1 or 2 cell-specific antenna ports. If the number of RBs is greater than 10, the number of symbols occupied by the PDCCH on the subframe is 1 or 2. The number of downlink RBs is less than or equal to 10, and the number of symbols occupied by the PDCCH on the subframe is 2; 3. The MBSFN subframe with a subcarrier spacing of 15kHz and 4 cell-specific antenna ports is configured. If the number of RBs is greater than 10, the PDCCH The number of symbols occupied on the subframe is 2.
  • the number of downlink RBs is less than or equal to 10, the number of symbols occupied by the PDCCH on the subframe is 2; 4. MBSFN subframes with a subcarrier spacing of 7.5kHz or 1.25kHz, If the number of RBs is greater than 10, the number of symbols occupied by the PDCCH in the subframe is 0. If the number of downlink RBs is less than or equal to 10, the number of symbols occupied by the PDCCH in the subframe is 0; 5. MBSFN subframe (except subframe 6 of subframe structure type 2), if the number of RBs is greater than 10, the number of symbols occupied by the PDCCH on the subframe is 1 or 2 or 3.
  • the PDCCH The number of symbols occupied on the subframe is 2 or 3; 6. In other cases, if the number of RBs is greater than 10, the number of symbols occupied by the PDCCH on the subframe is 1 or 2 or 3, if the number of downlink RBs is less than or equal to 10 , The number of symbols occupied by the PDCCH in the subframe is 2 or 3 or 4.
  • the UE detects the CFI information in the PCFICH, determines the number of symbols occupied by the PDCCH in the time domain, and then performs blind detection on the determined PDCCH to obtain DCI and other information. That is to say, the UE needs both PCFICH and PDCCH to be detected successfully to get DCI information.
  • an enhanced physical downlink control channel (EPDCCH) carries scheduling information and is transmitted by one or several aggregated enhanced control channel elements (ECCE).
  • ECCE enhanced control channel elements
  • Table 3 The number of ECCEs used by EPDCCH in different formats is shown in Table 3. According to the number of ECCEs used, it can be seen that the maximum aggregation level supported by EPDCCH is 32. Specifically, the format of EPDCCH is 0. Under Case A, localized transmission (Localized transmission) When the number of ECCEs used by EPDCCH is 2, in Case A, the number of ECCEs used by EPDCCH is 2, and in Case B, the number of ECCEs used by EPDCCH is 1.
  • the number of ECCEs used by EPDCCH is 1; the format of EPDCCH is 1, in Case A, the number of ECCEs used in EPDCCH is 4 in partial transmission, and distributed transmission in Case A
  • the number of ECCEs used by EPDCCH is 4, under Case B, the number of ECCEs used by EPDCCH is 2 for partial transmission, and when distributed transmission under Case B, the number of ECCEs used by EPDCCH is 2; EPDCCH format It is 2, under Case A, the number of ECCEs used by EPDCCH is 8 for partial transmission, and under Case A, the number of ECCEs used by EPDCCH is 8.
  • the number of ECCEs used by EPDCCH is 8 for partial transmission
  • the number of ECCEs used by EPDCCH is 4.
  • the number of ECCEs used by EPDCCH is 4.
  • the format of EPDCCH is 3.
  • the number of ECCEs used by EPDCCH is 16.
  • the number of ECCEs used by EPDCCH is 16, in Case B, the number of ECCEs used by EPDCCH is 8, and in Case B, the number of ECCEs used by EPDCCH
  • the format of EPDCCH is 4.
  • the number of ECCEs used by EPDCCH is not configured for partial transmission.
  • the number of ECCEs used by EPDCCH is 32.
  • Case B During partial transmission, the number of ECCEs used by EPDCCH is not configured.
  • the number of ECCEs used by EPDCCH is 16.
  • the number of ECCEs used by the MTC physical downlink control channel (MPDCCH) of different formats is shown in Table 4. According to the number of ECCEs used, the maximum aggregation level supported by MPDCCH is 24. Specifically, MPDCCH The format is 0. When the number of Enhanced Resource Element Groups (EREG) contained in an ECCE is 4, the number of ECCEs used by MPDCCH is 2 in the case of localized transmission.
  • EREG Enhanced Resource Element Groups
  • the number of ECCEs used by MPDCCH is 2 for distributed transmission (Distributed transmission), and when the number of EREGs included in one ECCE is 8, the ECCE used by MPDCCH for partial transmission
  • the number of EREGs included in an ECCE is 8
  • the number of ECCEs used by MPDCCH is 1 in distributed transmission; the format of MPDCCH is 1, and the number of EREGs included in an ECCE is 4
  • the number of ECCEs used by MPDCCH is 4.
  • the number of ECCEs used by MPDCCH in distributed transmission is 4, and the number of EREGs contained in one ECCE is In the case of 8, the number of ECCEs used by MPDCCH during partial transmission is 2. In the case where the number of EREGs contained in an ECCE is 8, the number of ECCEs used by MPDCCH during distributed transmission is 2; the format of MPDCCH is 3, When the number of EREGs contained in ECCE is 4, the number of ECCEs used by MPDCCH during partial transmission is 8.
  • the number of ECCEs used by MPDCCH during distributed transmission is 8
  • the number of ECCEs used by MPDCCH during partial transmission is 4.
  • the number of ECCEs used by MPDCCH during distributed transmission is 4;
  • the format of MPDCCH is 3.
  • the number of EREGs contained in one ECCE is 4, the number of ECCEs used by MPDCCH during partial transmission is 16.
  • the number of EREGs contained in one ECCE is 4, distributed The number of ECCEs used by MPDCCH during transmission is 16.
  • the number of EREGs contained in an ECCE When the number of EREGs contained in an ECCE is 8, the number of ECCEs used by MPDCCH during partial transmission is 8.
  • the ER contained in an ECCE When the number of EGs is 8, the number of ECCEs used by MPDCCH during distributed transmission is 8; the format of MPDCCH is 1, and when the number of EREGs contained in an ECCE is 4, the number of ECCEs used by MPDCCH during partial transmission Not configured, when the number of EREGs contained in one ECCE is 4, the number of ECCEs used by MPDCCH in distributed transmission is not configured, and when the number of EREGs contained in one ECCE is 8, the ECCE used by MPDCCH in partial transmission The number of EREGs is not configured.
  • the number of EREGs contained in an ECCE is 8, the number of ECCEs used by MPDCCH in distributed transmission is not configured; the format of MPDCCH is 5, and the number of EREGs contained in an ECCE is 4 ,
  • the number of ECCEs used by MPDCCH during partial transmission is 24, when the number of EREGs contained in one ECCE is 4, the number of ECCEs used by MPDCCH during distributed transmission is 24, and the number of EREGs contained in one ECCE is 8
  • the number of ECCEs used by the MPDCCH is 12, and when the number of EREGs contained in one ECCE is 8, the number of ECCEs used by the MPDCCH in distributed transmission is 12.
  • the current CCE aggregation level of the usual UE is up to 8.
  • the UE can only blindly detect the PDCCH whose aggregation level does not exceed 8. If the aggregation level of the PDCCH sent by the base station exceeds 8, such as 16 or 24, then the maximum A UE that only supports CCE aggregation level 8 cannot blindly detect the PDCCH sent by the base station, and cannot detect information such as DCI.
  • an embodiment of the application proposes a PDCCH The detection method.
  • the first UE accesses the broadcast dedicated carrier, and detects at least one first PDCCH candidate in the PDCCH candidate set on the broadcast dedicated carrier, where the first PDCCH candidate is composed of N*L CCEs, And among the N*L CCEs, the first (N/2)*L CCEs and the last (N/2)*L CCEs have the same starting position for coded bit collection, and the first UE is able to control the N*L The first PDCCH candidate composed of CCEs is detected.
  • the first UE can detect the PDDCH by combining the CCEs, thereby improving the PDCCH detection performance Success rate.
  • the process includes:
  • Step 301 The network device sends a signal for the UE to access to the UE on the broadcast dedicated carrier.
  • the UE in this step 301 may include the first UE and the second UE in the embodiment of the present application.
  • the information sent by the network device for the UE to access includes the synchronization signal and the MBMS master information block carried by the physical broadcast channel PBCH.
  • the broadcast dedicated carrier includes a carrier used to carry data information and/or control information in a multimedia broadcast multicast service dedicated (MBMS-dedicated) cell, or a multimedia broadcast multicast service/unicast hybrid (MBMS/Unicast- mixed)
  • the UE accessing the broadcast dedicated carrier, and the UE accessing the broadcast dedicated carrier includes at least the UE detecting the synchronization signal and the UE acquiring the master information block and other information.
  • the UE detects the primary synchronization signal PSS and the secondary synchronization signal SSS sent by the network device, the UE obtains time and frequency synchronization with the cell corresponding to the network device, and the UE determines the physical cell identity and the cell identity to which the physical cell identity belongs Group number.
  • the cell is a cell to which data information and/or control information carried on a broadcast dedicated carrier belong.
  • the UE decodes the physical broadcast channel PBCH to obtain information such as the master information block MIB and the system message block SIB1 of the cell.
  • the main information block MIB also includes the MIB-MBMS sent by the multimedia broadcast multicast service (MBMS-dedicated) dedicated cell, including the downlink system bandwidth, the wireless system frame number SFN and other information; the system message block SIB1 also includes the multimedia broadcast multicast The SIB1-MBMS sent by the MBMS-dedicated dedicated cell contains the scheduling information of the system (SI) message.
  • SI system
  • the signal sent by the network device for the first UE to access may also be used to indicate the first capability of the first UE, and/or to indicate that the first UE is At least one first PDCCH candidate is detected.
  • Step 302 The first UE receives the signal for the UE to access, and accesses the broadcast dedicated carrier.
  • the UE that accesses the broadcast dedicated carrier is the UE that receives broadcast and/or multicast service data. It can be judged whether the UE is a broadcast UE in one or more of the following ways: the UE works in an MBMS-related cell, MBMS-related cells include one or more of MBMS/unicast hybrid cells, FeMBMS/unicast hybrid cells, and MBMS dedicated cells; and the UE detects that the cyclic redundancy check (CRC) has been M- RNTI scrambling.
  • CRC cyclic redundancy check
  • the first UE refers to a higher version UE, that is, a UE that supports a protocol of version 16 and above, and the first UE is also called a new UE.
  • the aggregation capability of the first UE is 4 or 8, 16 or higher.
  • the first UE may be a UE that supports the PDCCH detection method in the embodiment of the present application.
  • the first UE can acquire the first capability of the first UE, and the first capability of the first UE may be used to indicate the aggregation capability of the first UE.
  • the first capability includes at least one of the following:
  • the first UE supports detection of a first PDCCH candidate composed of 16 CCEs, that is, the aggregation capability of the first UE is 16;
  • the first UE supports the 16 version of the protocol
  • the first UE supports the feature of version 16 broadcast or multicast.
  • the first capability of the first UE may be a pre-appointed capability, or may be the first capability indicated by the network device.
  • the second UE refers to a UE of a lower version, that is, a UE that does not support the protocol of version 16 and above. That is to say, the second UE only supports UEs with a version less than 16 protocol, and the second UE is also called an old UE.
  • the aggregation capability of the second UE is 4 or 8, etc. More specifically, the second UE may be a UE that does not support the PDCCH detection method in the embodiment of the present application.
  • the network device after the network device confirms that the first UE has access to the broadcast dedicated carrier, the network device sends indication information to the first UE on the broadcast dedicated carrier to indicate the first capability of the first UE (for example, the aggregation capability of the first UE) ), and/or used to instruct the first UE to detect at least one first PDCCH candidate.
  • the network device sends indication information to the first UE on the broadcast dedicated carrier to indicate the first capability of the first UE (for example, the aggregation capability of the first UE) ), and/or used to instruct the first UE to detect at least one first PDCCH candidate.
  • Step 303 The first UE detects at least one first PDCCH candidate in the PDCCH candidate set on the broadcast dedicated carrier.
  • the first PDCCH candidate is composed of N*L CCEs, which respectively form the first PDCCH candidate.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs of the PDCCH candidates have the same starting position of coded bit collection, L is an integer greater than or equal to 8, and N is an even number greater than 0.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs have the same starting position for coded bit collection.
  • it can be a CCE index (such as CCE logic Encoding) Sort from smallest to largest, the first CCE to the (N/2)*Lth CCE is the first (N/2)*L CCE, and the (N/2)*L+1th CCE to the last One CCE is the last (N/2)*L CCEs.
  • CCE index 0 to CCE index (N/2)*L-1 is the first (N/2)*L CCE
  • CCE index (N/2)*L to the last CCE is the last (N/2) )*L CCE.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs respectively constitute two second PDCCH candidate detections.
  • the network device transmits the PDCCH candidate on the broadcast dedicated carrier.
  • the first PDCCH candidate can be regarded as composed of two second PDCCH candidates.
  • the process for the network device to send PDDCH candidates is similar, and will not be repeated here.
  • the network device sends two second PDCCH candidates to the UE on a broadcast dedicated carrier.
  • the UE includes a first UE and a second UE.
  • the first UE determines to detect the first PDCCH candidate, after the first UE receives two second PDCCH candidates, the two second PDCCH candidates are regarded as one first PDCCH candidate, A UE detects the first PDCCH candidate. In this way, compared with the second UE, the aggregation level capability supported by the first UE is higher, or the first UE can jointly decode two repeated second candidates, which improves the UE's decoding capability.
  • the first UE For the first UE, if the first UE determines not to detect the first PDCCH candidate, after receiving the two second PDCCH candidates, the first UE detects the two second PDCCH candidates separately.
  • the first UE's determination of whether to detect the first PDCCH candidate will be described in detail in the following content.
  • the second UE After receiving the two second PDCCH candidates, the second UE detects the two second PDCCH candidates separately. In this way, the aggregation level of N*L is split into two independent parts (that is, two second PDCCHs).
  • the two second PDCCHs are independent of each other and the start position of the CCE coded bit collection is the same. Therefore, for the first For the two UEs, the two second PDCCHs can also be decoded independently.
  • the third PDCCH candidate is composed of N*L CCEs, which respectively form the first (N/2)*L CCEs and the rear (N/2) of the third PDCCH candidate. ) *L CCE coded bits are collected at different starting positions.
  • the second UE can only detect the first (N/2)*L CCEs, and cannot detect the last (N/2)*L CCEs.
  • the second UE receiving a third PDCCH candidate can only detect one CCE with a length of (N/2)*L. The decoding of the second UE Ability is reduced.
  • the aggregation level of the third PDCCH candidate is 16, and the coded bits of the first 8 CCEs and the last 8 CCEs that make up the third PDCCH candidate have different starting positions, such as the first 8 CCs.
  • the start position of the coded bit collection of the CCE is 0, and the start position of the coded bit collection of the last 8 CCEs is 8.
  • the second UE can only detect the first 8 CCEs after receiving the third PDCCH candidate.
  • the last 8 CCEs are detected, and the first 8 CCEs and the last 8 CCEs can be understood as the aggregation level of 8 PDCCH candidates.
  • the network device transmits a first PDCCH candidate to the UE on a broadcast dedicated carrier.
  • the network device sends at least one first PDCCH candidate in the PDCCH candidate set to the UE on the broadcast dedicated carrier, where the first PDCCH candidate is composed of N*L control channel elements CCEs, where the N*L CCEs, the first (N/2)*L CCEs and the last (N/2)*L CCEs are collected at the same starting position, L is an integer greater than or equal to 8, and N is greater than 0 The even number.
  • the first UE detects a received first PDCCH candidate.
  • the second UE due to the limited capability of the second UE, the second UE cannot detect the first PDCCH candidate.
  • the PDCCH candidate set includes at least one second PDCCH candidate.
  • the number of second PDCCH candidates included in the PDCCH candidate set can be found in Table 1.
  • a UE with an aggregation level of 8 corresponds to two second PDCCH candidates.
  • the aggregation level of the second PDCCH candidate is 8, and the number of second PDCCH candidates included in the PDCCH candidate set is 2.
  • Each combined first PDCCH candidate is composed of N*L CCEs, and L is an integer greater than or equal to 8.
  • L may be the aggregation capability level corresponding to the second PDCCH candidate before the combination.
  • the first PDCCH candidate is composed of 2*8 CEEs, that is, composed of 16 CCEs, and the first PDCCH can be regarded as composed of 2 second PDCCH candidates with aggregation level 8. composition.
  • N and L are other values, refer to L to be 8, and N to be 2, which will not be repeated in the embodiment of the present application.
  • the CCE indexes of the two second PDCCH candidates with an aggregation level of 8 are 0 to 7 and 8 to 15, respectively, and the CCE indexes are from 0 to 7.
  • Compose the first coded bit, the CCE index from 8 to 15 composes the second coded bit, compose the two second PDCCH candidates into a first PDCCH candidate with aggregation level 16, and the CEE logical number from 0 to 15 compose the first PDCCH Candidate encoding bits.
  • the CCE indexes of the two second PDCCH candidates with an aggregation level of 8 are 0 to 7 and 8 to 15 respectively, and the CCE indexes form the first PDCCH candidate from 0 to 7
  • One code bit, the CCE index from 8 to 15 forms the second code bit, and the two second PDCCH candidates are formed into one first PDCCH candidate.
  • the coded bits of the first (N/2)*L CCEs and the last (N/2)*L CCEs respectively constituting the first PDCCH candidate are collected at the same starting position, L is an integer greater than or equal to 8, and N It is an even number greater than 0.
  • the start position of the coded bit collection of the CCE is the bit of the sequence w before the bit collection corresponding to the first bit in the sequence e k after the bit collection carried on the CCE or the bit of the sequence w before the bit collection index.
  • L is 8 and N is 2, the aggregation level of the first PDCCH candidate is 16, the first (N/2)*L CCEs, that is, the first 8 CCEs, and the CCE index is 0 to 7.
  • the first bit after collection of the coded bits of CCE index 0 is e 0
  • the first bit after collection of coded bits is e 0.
  • the bit before collection is w 0
  • the coded bits of the first 8 CCEs are collected
  • the starting position of is the starting position of coded bit collection on CCE index 0, which is w 0 or 0.
  • the last (N/2)*L CCEs that is, the last 8 CCEs, the CCE index is 8 to 15, the first bit after the collection of the coded bits of CCE index 8 is e 0 , the first bit after the collection of the coded bits The bit before collection of coded bits corresponding to e 0 is w 0 , and the start position of coded bit collection of the next 8 CCEs is the start position of coded bit collection on CCE index 0, which is w 0 or 0.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs that make up the first PDCCH candidate have the same starting position for the collection of coded bits, referring to the front (N/2)*
  • the first bit in the sequence after the coded bits corresponding to the first CCE in the next (N/2)*L CCEs are collected, the corresponding coded bit is collected, or the corresponding coded bit is collected At least one bit index in the previous sequence is the same.
  • the first PDCCH candidate is composed of N*L consecutive CCEs starting from a first starting CCE, and the first starting CCE is CCE index 0.
  • the CCE indexes of the two candidate PDCCHs are continuous and are 0 to 7 and 8 to 15 respectively.
  • the first PDCCH candidate is in the common search space. It can also be said that the first PDCCH candidate belongs to the common search space. That is to say, the first UE monitors the first PDCCH candidate in the common search space.
  • the DCI information and/or redundancy information carried in each second PDCCH candidate are the same.
  • the first UE determines to detect the first PDCCH candidate, which may be determined to detect at least one PDCCH candidate when it is determined that one or more of the following conditions are satisfied:
  • the first UE If the first UE receives the instruction to detect the first PDCCH candidate sent by the network device, the first UE detects at least one of the first PDCCH candidates in the PDCCH candidate set; or
  • the first UE If the first UE supports the detection of the first PDCCH candidate, the first UE detects at least one of the first PDCCH candidates in the PDCCH candidate set.
  • the network device sends an instruction to detect the first PDCCH candidate to the first UE, and the first UE may receive the instruction to detect the first PDCCH candidate sent by the network device.
  • the indication of detecting the first PDCCH candidate is indicated by the MBMS master information block carried by the PBCH.
  • the MBMS master information block includes one of the master information block (MIB), MIB-MBMS, SIB1, and SI.
  • the indication for detecting the first PDCCH candidate is at least one piece of information in the MBMS master information block carried by the PBCH, that is, at least one piece of information in the MBMS master information block carried by the PBCH is used to instruct the (first) UE to detect the first PDCCH candidate.
  • the first UE Taking the indication of detecting the first PDCCH candidate sent by the network device as an example, if the first UE receives the indication of detecting the first PDDCH candidate sent by the network device, the first UE responds to the two received second PDCCH candidates with an aggregation level of 8. Combine reception to improve the success rate of blind detection. If the first UE does not receive the indication sent by the network device to detect the first PDCCH candidate, the first UE performs separate operations on the two received second PDCCH candidates with aggregation level 8. Blind detection, no differential combination.
  • the network device uses at least one information indication in the MBMS master information block, such as indication by 3bit (bit), 3bit respectively indicates whether the first UE supports aggregation level 4/8/16, such as indication by 2bit, and 2bit respectively Indicates whether the first UE supports aggregation level 4/8.
  • indication by 3bit bit
  • 3bit respectively indicates whether the first UE supports aggregation level 4/8/16
  • indication by 2bit such as indication by 2bit
  • 2bit respectively Indicates whether the first UE supports aggregation level 4/8.
  • the network device indicates the bit state value through at least one piece of information in the MBMS master information block, and pre-appoints a correspondence relationship with the aggregation level used by the PDCCH with the first UE. For example, as shown in Table 5, the bit state value 00/01/10 corresponds to the PDCCH aggregation level 4/8/16, and the bit state value 11 has no corresponding PDCCH aggregation level.
  • the PDCCH aggregation level corresponding to the bit state value may indicate that the aggregation level supported by the first UE is one or more of 4/8/16.
  • the bit state value is the only aggregation level supported by the first UE.
  • the bit state value is 01
  • the corresponding aggregation level is 8
  • the first UE can only use the aggregation level 8 to detect the first PDDCH candidate.
  • the PDCCH aggregation level corresponding to the bit state value may be the minimum aggregation level supported by the first UE.
  • the bit state value is 01
  • the corresponding aggregation level is 8
  • the first UE can use aggregation levels 4 and 8 to detect the first PDCCH candidate.
  • it may be the maximum aggregation level supported by the first UE.
  • the bit state value is 01
  • the corresponding aggregation level is 8
  • the first UE can use aggregation levels 8 and 16 to detect the first PDCCH candidate.
  • the second UE does not support receiving the MBMS master information block to obtain the aggregation level supported by the PDCCH, and the second UE cannot obtain the aggregation level information in the MBMS master information block, or in the MBMS master information block
  • the obtained bit value is empty.
  • the first UE determines that the first PDCCH candidate is pre-appointed, and then determines to support the detection of the first PDCCH candidate, where the first UE and the network device (such as a base station) pre-appoint the first PDCCH candidate.
  • the first UE Taking the first UE pre-appointed with the first PDCCH candidate as an example, if the first UE determines that it is the UE that receives the MBMS service, the first UE checks the two second PDCCH candidates with the aggregation level 8 detected in the common search space. Perform a combined reception.
  • the first UE determines to support the detection of the first PDCCH candidate according to its own first capability. For the first capability of the first UE, refer to step 301.
  • the first UE can treat multiple second PDCCH candidates as the first PDCCH candidates with a higher aggregation level, thereby improving the success rate of blind PDCCH detection, while the second UE can directly check the received second PDCCH candidates. Perform blind detection.
  • the UE can determine the control format indication CFI by receiving high-level parameters, but CFI can be obtained through FCFICH. Specifically, if the UE is configured with high-level parameters semiStaticCFI-SlotSubslotNonMBSFN or semiStaticCFI-SubframeNonMBSFN, for non-MBSFN subframes, the CFI value Equal to the high-level parameter. If the UE is configured with a high-level parameter semiStaticCFI-SlotSubslotMBSFN or semiStaticCFI-SubframeMBSFN, for the MBSFN subframe, the CFI value is equal to the high-level parameter.
  • the embodiment of the present application also provides a CFI configuration method, in which the PDCCH blind detection success rate is indirectly improved by statically configuring the CFI.
  • the CFI configuration method can be used in combination with the above-mentioned PDCCH detection method, thereby further improving the success rate of blind PDCCH detection.
  • the CFI configuration method is only applied to a new UE, that is, the first UE in the PDCCH detection method in the first embodiment.
  • the UE determines the CFI, where the CFI is used to indicate the number of symbols occupied by PDCCH transmission in a subframe, and the CFI is determined by at least one of the following methods:
  • the UE determines the CFI according to the received third information
  • the UE determines the CFI according to a predefined definition
  • the UE determines the CFI according to the first correspondence and fourth information
  • the third information and/or fourth information is information carried in the physical broadcast channel PBCH;
  • the UE detects the downlink control information PDCCH according to the CFI.
  • the third information and/or the fourth information are carried in the MBMS main information block.
  • the MBMS master information block includes one of a master information block (MIB), MIB-MBMS, SIB1, and SI.
  • the network device may send the third information and/or the fourth information to the UE.
  • the network device may send the first information and/or the fourth bearer in the MBMS master information block to the UE.
  • the third information indicates the value of CFI by using 1 bit or 2 bits.
  • the third information indicates the value of CFI by 1 bit, including one of the following situations:
  • the corresponding two CFI values can be ⁇ 1,2 ⁇ , ⁇ 1,3 ⁇ , ⁇ 1,4 ⁇ , ⁇ 2,3 ⁇ , ⁇ 2,4 ⁇ and ⁇ 3,4 ⁇ .
  • the 1-bit ⁇ 0,1 ⁇ and the CFI value ⁇ 1,2 ⁇ correspond one-to-one, that is, if the bit of the information is 0, the CFI is 1, and the bit is 1 that the CFI is 2.
  • the third information indicates the value of the CFI through 2 bits, including one of the following situations:
  • bit 00 means CFI is 1
  • bit 01 means CFI is 2.
  • a bit of 10 indicates that the CFI is 3, and a bit of 11 indicates that the CFI is 4.
  • the network device determines the 1-bit value or the 2-bit value corresponding to the value of the CFI indicated by the UE, and carries the 1 in the third information.
  • Bit-bit value or 2-bit value The UE receives the third information, and can determine the CFI value corresponding to the 1-bit value or the CFI corresponding to the 2-bit value through the 1-bit value or the 2-bit value carried in the third information Therefore, the UE determines the CFI value indicated by the network device for the UE.
  • the UE determines the value of the CFI according to a predefined definition, and the value of the CFI includes one of 1, 2, 3, and 4.
  • the UE directly determines the value of the predefined CFI.
  • the UE determines the CFI according to the first correspondence and fourth information, where the fourth information is used to indicate the system bandwidth or the number of resource block RBs, and the first correspondence includes the system The corresponding relationship between the value of the bandwidth and the value of CFI, or the corresponding relationship between the number of RBs and the value of CFI.
  • the network device determines the value of the CFI to be indicated for the UE, it is determined that the value of the CFI indicated by the UE corresponds to the value of the CFI indicated by the UE according to the corresponding relationship between the value of the system bandwidth and the value of the CFI included in the first correspondence.
  • the value of the system bandwidth the fourth message carries the value of the system bandwidth.
  • the UE receives the fourth information, uses the value of the system bandwidth carried in the fourth information, and the first correspondence to determine the value of the CFI corresponding to the value of the system bandwidth in the first correspondence, so that the UE determines that the network device indicates the UE The value of the CFI.
  • the network device determines the value of the CFI to be indicated for the UE, it determines the number of system RBs corresponding to the value of the CFI indicated by the UE through the correspondence between the value of the system bandwidth included in the first correspondence and the value of the CFI , The number of RBs in the system is carried in the fourth information.
  • the UE receives the fourth information, and determines the CFI value corresponding to the number of system RBs in the first corresponding relationship through the number of system RBs carried in the fourth information and the first corresponding relationship, so that the UE determines that the network device indicates the UE The value of the CFI.
  • the first correspondence includes the correspondence between the value of the system bandwidth and the value of CFI, or the correspondence between the number of RBs and the value of CFI, including:
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 4;
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 4;
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the corresponding first value and second value can be one of the following ⁇ 1.4,3 ⁇ , ⁇ 1.4,5 ⁇ , ⁇ 1.4,10 ⁇ , ⁇ 1.4,15 ⁇ , ⁇ 1.4,20 ⁇ , ⁇ 3,5 ⁇ , ⁇ 3,10 ⁇ , ⁇ 3,15 ⁇ , ⁇ 3,20 ⁇ , ⁇ 5,10 ⁇ , ⁇ 5,15 ⁇ , ⁇ 5,20 ⁇ , ⁇ 10,15 ⁇ , ⁇ 10,20 ⁇ , ⁇ 15,20 ⁇ .
  • the corresponding first numerical value, second numerical value and third numerical value can be one of the following ⁇ 1.4,3,5 ⁇ , ⁇ 1.4,3,10 ⁇ , ⁇ 1.4,3,15 ⁇ , ⁇ 1.4,3, 20 ⁇ , ⁇ 1.4,5,10 ⁇ , ⁇ 1.4,5,15 ⁇ , ⁇ 1.4,5,20 ⁇ , ⁇ 1.4,10,15 ⁇ , ⁇ 1.4,10,20 ⁇ , ⁇ 1.4,15,20 ⁇ , ⁇ 3,5,10 ⁇ , ⁇ 3,5,15 ⁇ , ⁇ 3,5,20 ⁇ , ⁇ 3,10,15 ⁇ , ⁇ 3,10,20 ⁇ , ⁇ 3,15,20 ⁇ , ⁇ 5,10,15 ⁇ , ⁇ 5,10,20 ⁇ , ⁇ 5,15,20 ⁇ , ⁇ 10,15,20 ⁇ .
  • the corresponding first value and second value can be one of the following ⁇ 6,15 ⁇ , ⁇ 6,25 ⁇ , ⁇ 6,50 ⁇ , ⁇ 6,75 ⁇ , ⁇ 6,100 ⁇ , ⁇ 15,25 ⁇ , ⁇ 15,50 ⁇ , ⁇ 15,75 ⁇ , ⁇ 15,100 ⁇ , ⁇ 25,50 ⁇ , ⁇ 25,75 ⁇ , ⁇ 25,100 ⁇ , ⁇ 50,75 ⁇ , ⁇ 50,100 ⁇ , ⁇ 75,100 ⁇ .
  • the corresponding first value, second value, and third value can be one of the following ⁇ 6,15,25 ⁇ , ⁇ 6,15,50 ⁇ , ⁇ 6,15,75 ⁇ , ⁇ 6,15,100 ⁇ , ⁇ 6,25,50 ⁇ , ⁇ 6,25,75 ⁇ , ⁇ 6,25,100 ⁇ , ⁇ 6,50,75 ⁇ , ⁇ 6,50,100 ⁇ , ⁇ 6,75,100 ⁇ , ⁇ 15,25,50 ⁇ , ⁇ 15,25,75 ⁇ , ⁇ 15,25,100 ⁇ , ⁇ 15,50,75 ⁇ , ⁇ 15,50,100 ⁇ , ⁇ 15,75,100 ⁇ , ⁇ 25,50,75 ⁇ , ⁇ 25,50,100 ⁇ , ⁇ 25,75,100 ⁇ , ⁇ 50,75,100 ⁇ .
  • the first correspondence in Table 6 includes the correspondence between the value of the system bandwidth and the value of the CFI, where Channel bandwidth BW represents the value of the system bandwidth, in megahertz (MHz), and the value of CFI is represented by Number of OFDM symbols for PDCCH , That is, the number of OFDM symbols occupied by the PDCCH.
  • Channel bandwidth BW represents the value of the system bandwidth, in megahertz (MHz)
  • the value of CFI is represented by Number of OFDM symbols for PDCCH , That is, the number of OFDM symbols occupied by the PDCCH.
  • the first correspondence in Table 7 includes the correspondence between the value of the system bandwidth and the value of the CFI, where Channel bandwidth BW represents the value of the system bandwidth, in megahertz (MHz), and the value of CFI is represented by Number of OFDM symbols for PDCCH , That is, the number of OFDM symbols occupied by the PDCCH.
  • the specific system bandwidth value is greater than X2
  • the corresponding CFI value is 1.
  • the system bandwidth value is less than or equal to X2 and the system bandwidth value is greater than X1
  • the corresponding CFI value is 2
  • the system bandwidth value is less than or equal to For X1, the corresponding CFI value is 3.
  • the first correspondence in Table 8 includes the correspondence between the value of the system bandwidth and the value of the CFI, where Channel bandwidth BW represents the value of the system bandwidth, in megahertz (MHz), and the value of CFI is represented by Number of OFDM symbols for PDCCH , That is, the number of OFDM symbols occupied by the PDCCH.
  • the specific system bandwidth value is greater than or equal to X3
  • the corresponding CFI value is 1.
  • the system bandwidth value is less than X3 and the system bandwidth value is greater than or equal to X2
  • the corresponding CFI value is 2
  • the system bandwidth value is less than
  • the corresponding CFI value is 3.
  • the first correspondence in Table 9 includes the correspondence between the value of the system bandwidth and the value of the CFI, where Channel bandwidth BW represents the value of the system bandwidth, in megahertz (MHz), and the value of CFI is represented by Number of OFDM symbols for PDCCH , That is, the number of OFDM symbols occupied by the PDCCH.
  • the specific system bandwidth value is greater than X3
  • the corresponding CFI value is 1.
  • the system bandwidth value is less than or equal to X3 and the system bandwidth value is greater than X2
  • the corresponding CFI value is 2
  • the system bandwidth value is less than or equal to
  • the corresponding CFI value is 3.
  • the value of the system bandwidth is less than or equal to X1
  • the corresponding CFI value is 4.
  • the first correspondence in Table 10 includes the correspondence between the number of RBs and the value of CFI, where Transmission bandwidth configuration N RB represents the number of RBs, that is, the number of RBs configured in the transmission bandwidth, and the value of CFI uses Number of OFDM symbols for PDCCH Indicates the number of OFDM symbols occupied by the PDCCH.
  • N RB represents the number of RBs, that is, the number of RBs configured in the transmission bandwidth
  • CFI uses Number of OFDM symbols for PDCCH Indicates the number of OFDM symbols occupied by the PDCCH.
  • the corresponding CFI value is 1.
  • the corresponding CFI value is 2, and when the number of RBs is less than X1, the corresponding The value of CFI is 3.
  • the first correspondence in Table 11 includes the correspondence between the number of RBs and the value of CFI, where Transmission bandwidth configuration N RB represents the number of RBs, that is, the number of RBs configured in the transmission bandwidth, and the value of CFI uses Number of OFDM symbols for PDCCH Indicates the number of OFDM symbols occupied by the PDCCH.
  • N RB represents the number of RBs, that is, the number of RBs configured in the transmission bandwidth
  • CFI uses Number of OFDM symbols for PDCCH Indicates the number of OFDM symbols occupied by the PDCCH.
  • the specific number of RBs is greater than X2
  • the corresponding CFI value is 1.
  • the corresponding CFI value is 2, and when the number of RBs is less than or equal to X1, the corresponding The value of CFI is 3.
  • the first correspondence in Table 12 includes the correspondence between the number of RBs and the value of CFI, where Transmission bandwidth configuration N RB represents the number of RBs, that is, the number of RBs configured in the transmission bandwidth, and the value of CFI uses Number of OFDM symbols for PDCCH Indicates the number of OFDM symbols occupied by the PDCCH. When the number of specific RBs is greater than or equal to X3, the corresponding CFI value is 1.
  • the corresponding CFI value is 2
  • the number of RBs is less than X2 and the value of RB
  • the corresponding CFI value is 3
  • the corresponding CFI value is 4.
  • the first correspondence in Table 12 includes the correspondence between the number of RBs and the value of CFI, where Transmission bandwidth configuration N RB represents the number of RBs, that is, the number of RBs configured in the transmission bandwidth, and the value of CFI uses Number of OFDM symbols for PDCCH Indicates the number of OFDM symbols occupied by the PDCCH. When the specific number of RBs is greater than X3, the corresponding CFI value is 1.
  • the corresponding CFI value is 2
  • the number of RBs is less than or equal to X2 and the value of RB
  • the corresponding CFI value is 3
  • the number of RBs is less than or equal to X1
  • the corresponding CFI value is 4.
  • the UE determines the CFI value by receiving the CFI indication information in the MIB, or by the correspondence between the agreed CFI and the bandwidth (or the number of RBs), and does not need to detect the PCFICH to determine the CFI, which ultimately improves the blind detection success rate of the PDCCH.
  • the UE may or may not determine the CFI by detecting the PCFICH, and the UE can determine the value of the CFI in the connected state or in the idle state, thereby improving the success rate of blind PDCCH detection .
  • the embodiment of the present application also provides a method for CFI configuration and PDCCH detection. More specifically, it can be understood that on the basis of the CFI configuration method provided in the second embodiment, combined with the PDCCH provided in the first embodiment The detection method is used to realize the detection of the PDCCH, thereby further improving the success rate of blind detection of the PDCCH.
  • the UE involved in the embodiment of the present application mainly refers to a new UE, that is, the first UE in the above-mentioned PDCCH detection method.
  • the UE does not need to detect the PCFICH to determine the CFI.
  • the UE can determine the value of the CFI regardless of the state, which has improved the blind detection success rate of the PDCCH, and the UE has passed the determination Detect at least one first PDCCH in the PDCCH candidate set on the broadcast dedicated carrier.
  • the aggregation level of the PDCCH sent by the network device is greater than or equal to the aggregation level supported by the first UE, the first UE combines the CCE It can realize the detection of PDDCH and further improve the success rate of PDCCH detection.
  • Step 601 The first UE accesses the broadcast dedicated carrier.
  • the first UE may receive the signal sent by the network device for the UE to access, and access the broadcast dedicated carrier.
  • step 601 For the execution process of step 601, please refer to the specific description of step 301 and step 302 in FIG. 3, which will not be repeated here.
  • Step 602 The first UE determines the CFI.
  • step 602 refers to the specific description in the second embodiment above, which is not repeated here.
  • Step 603 The network device sends at least one first PDCCH candidate in the PDCCH candidate set to the first UE on the broadcast dedicated carrier.
  • the first PDCCH candidate is composed of N*L CCEs, which respectively form the first PDCCH candidate.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs of a PDCCH candidate are collected at the same starting position, L is an integer greater than or equal to 8, and N is an even number greater than 0 .
  • the network device sends (at least one) first PDCCH composed of (at least) two second PDCCH candidates, instead of (at least) two independent second PDCCHs.
  • step 603 For the execution process of step 603, refer to the specific description of step 303 in FIG. 3, which is not repeated here.
  • Step 604 The first UE detects at least one first PDCCH candidate in the PDCCH candidate set on the broadcast dedicated carrier.
  • step 604 refers to the specific description of step 303 in FIG. 3, which will not be repeated here.
  • FIG. 6 is only an example of the combined use of Embodiment 1 and Embodiment 2 to improve the success rate of PDCCH detection, instead of the other combined use of Embodiment 1 and Embodiment 2 limited.
  • the PDCCH detection method of the embodiment of the present application is described in detail above with reference to FIGS. 3 to 5. Based on the same inventive concept as the above-mentioned PDCCH detection method, an embodiment of the present application also provides a PDCCH detection device, as shown in FIG. 7
  • the PDCCH detection apparatus 700 includes a processing unit 701 and a transceiver unit 702.
  • the apparatus 700 can be used to implement the method described in the above method applied to a UE or a network device.
  • the UE includes a first UE and/or a second UE. , The first UE is mainly described here.
  • the apparatus 700 is applied to the first UE.
  • the processing unit 701 is configured to access a broadcast dedicated carrier
  • the transceiver unit 702 is configured to receive at least one first PDCCH candidate in the PDCCH candidate set on the broadcast dedicated carrier, where the first PDCCH candidate is composed of N*L control channel elements CCEs, where the N*L In CCEs, the first (N/2)*L CCEs and the last (N/2)*L CCEs have the same starting position for coded bit collection, L is an integer greater than or equal to 8, and N is an even number greater than 0 ;
  • the processing unit 701 is further configured to detect the at least one first PDCCH candidate.
  • the first PDCCH candidate is composed of N*L consecutive CCEs starting from a first starting CCE, and the first starting CCE is CCE index 0.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs respectively constitute two second PDCCH candidate detections.
  • the first PDCCH candidate is in a common search space.
  • the processing unit 701 is specifically configured to: if the first UE receives an instruction to detect the first PDCCH candidate sent by a network device, the first UE performs a check on at least one of the PDCCH candidate set One of the first PDCCH candidates is detected; or if the first UE supports the detection of the first PDCCH candidate, the first UE detects at least one of the first PDCCH candidates in the PDCCH candidate set .
  • the indication of detecting the first PDCCH candidate is indicated by the MBMS master information block carried by the physical broadcast channel PBCH.
  • the apparatus 700 is applied to a network device.
  • the transceiver unit 702 is configured to send a signal for the UE to access to the user terminal UE on the broadcast dedicated carrier;
  • the processing unit 701 is configured to determine at least one PDCCH candidate in a PDCCH candidate set, where the first PDCCH candidate is composed of N*L control channel elements CCEs, where the N*L CCEs are first (N/2) *L CCEs and the next (N/2)*L CCEs have the same starting position for coded bit collection, L is an integer greater than or equal to 8, and N is an even number greater than 0;
  • the transceiving unit 702 is further configured to send the at least one first PDCCH candidate to the UE on the broadcast dedicated carrier.
  • the first PDCCH candidate is composed of N*L consecutive CCEs starting from a first starting CCE, and the first starting CCE is CCE index 0.
  • the first (N/2)*L CCEs and the last (N/2)*L CCEs respectively constitute two second PDCCH candidates.
  • the first PDCCH candidate is in a common search space.
  • the transceiver unit 702 is further configured to send an instruction to detect the first PDCCH candidate to the first UE.
  • the indication of detecting the first PDCCH candidate is at least one piece of information in the MBMS master information block carried by the physical broadcast channel PBCH.
  • each functional unit in each embodiment of this application It can be integrated in one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a schematic structural diagram of a PDCCH detection apparatus 800.
  • the apparatus 800 may be used to implement the method described in the foregoing method embodiment of the UE or network device, and reference may be made to the description in the foregoing method embodiment.
  • the UE includes a first UE and/or a second UE.
  • the apparatus 800 may be in a UE or a network device or be a UE or a network device.
  • the device 800 includes one or more processors 801.
  • the processor 801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 800 includes one or more of the processors 801, and the one or more processors 801 can implement the method of the UE or the network device in the embodiment shown above.
  • the processor 801 may implement other functions in addition to implementing the methods of the above-mentioned embodiments.
  • the processor 801 may execute instructions to make the device 800 execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 803, or may be stored in the memory 802 coupled to the processor in whole or in part, such as the instruction 804, or the instructions 803 and 804 may be used together to make The apparatus 800 executes the method described in the foregoing method embodiment.
  • the communication device 800 may also include a circuit, and the circuit may implement the function of the UE or network device in the foregoing method embodiment.
  • the device 800 may include one or more memories 802, on which instructions 804 are stored, and the instructions may be executed on the processor, so that the device 800 executes the above method The method described in the examples.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 802 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the device 800 may further include a transceiver 805 and an antenna 806.
  • the processor 801 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiver 805 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 806.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the PDCCH detection method described in any method embodiment applied to a UE or a network device is implemented .
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the PDCCH detection method described in any method embodiment applied to a UE or a network device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the PDCCH detection method described in any method embodiment applied to a UE or a network device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the embodiment of the present application also provides a CFI configuration device, as shown in FIG. 9
  • the device 900 for configuring CFI includes a processing unit 901 and a transceiver unit 902.
  • the device 900 can be used to implement the method described in the above-mentioned method applied to a UE or a network device.
  • the UE includes a first UE and/or a second UE. , The first UE is mainly described here.
  • the apparatus 900 is applied to a UE.
  • the processing unit 901 is configured to determine CFI, where the CFI is used to indicate the number of symbols occupied by PDCCH transmission in a subframe, and the CFI is determined by at least one of the following methods:
  • the UE determines the CFI according to the received third information
  • the UE determines the CFI according to a predefined definition
  • the UE determines the CFI according to the first correspondence and fourth information.
  • the transceiver unit 902 is configured to receive downlink control information PDCCH;
  • the processing unit is further configured to detect the PDCCH according to the CFI.
  • the third information and/or the fourth information are carried in the MBMS main information block.
  • the third information indicates the value of the CFI by 1 bit, including one of the following situations:
  • the third information indicates the value of the CFI through 2 bits, including one of the following situations:
  • the processing unit is specifically configured to determine the value of the CFI according to a predefined definition, and the value of the CFI includes one of 1, 2, 3, and 4.
  • the processing unit is specifically configured to determine the CFI according to the first correspondence and fourth information, and the fourth information is used to indicate the system bandwidth or the number of resource block RBs; the first correspondence The relationship includes the corresponding relationship between the value of the system bandwidth and the value of CFI, or the corresponding relationship between the number of RBs and the value of CFI.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 4;
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the first correspondence relationship includes the correspondence relationship between the value of the system bandwidth and the value of CFI, or the correspondence relationship between the number of RBs and the value of CFI, including:
  • the value of the CFI is 4;
  • the value of the CFI is 3;
  • the value of the CFI is 2;
  • the value of the CFI is 1.
  • the apparatus 900 is applied to network equipment.
  • the processing unit 901 is configured to determine a third message and/or a fourth message, where the third message and the fourth message are used to indicate CFI, and the CFI is used to indicate the number of symbols occupied by PDCCH transmission in a subframe;
  • the transceiver unit 902 is configured to send the third message and/or the fourth message to the user terminal UE, where the third information and/or the fourth information are information carried in the physical broadcast channel PBCH.
  • the third information and/or the fourth information are carried in the MBMS main information block.
  • the third information indicates the value of the CFI by 1 bit, including one of the following situations:
  • the third information indicates the value of the CFI through 2 bits, including one of the following situations:
  • the fourth information is used to indicate the system bandwidth or the number of resource block RBs.
  • each functional unit in each embodiment of this application It can be integrated into one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a schematic structural diagram of a CFI configuration apparatus 1000.
  • the apparatus 1000 may be used to implement the method described in the foregoing method embodiment of the UE or network device, and reference may be made to the description in the foregoing method embodiment.
  • the UE includes a first UE and/or a second UE.
  • the apparatus 1000 may be in a UE or a network device or be a UE or a network device.
  • the device 1000 includes one or more processors 1001.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1000 includes one or more of the processors 1001, and the one or more processors 1001 can implement the method of the UE or the network device in the embodiment shown above.
  • processor 1001 may also implement other functions in addition to implementing the methods in the above-mentioned embodiments.
  • the processor 1001 may execute instructions to make the apparatus 1000 execute the method described in the foregoing method embodiment.
  • the instructions may be stored in whole or in part in the processor, such as instruction 1003, or may be stored in whole or in part in the memory 1002 coupled with the processor, such as instruction 1004, or the instructions 1003 and 1004 can be used together to make The apparatus 1000 executes the method described in the foregoing method embodiment.
  • the communication device 1000 may also include a circuit, and the circuit may implement the function of the UE or network device in the foregoing method embodiment.
  • the device 1000 may include one or more memories 1002, on which instructions 1004 are stored, and the instructions may be executed on the processor, so that the device 1000 executes the above method The method described in the examples.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1002 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the device 1000 may further include a transceiver 1005 and an antenna 1006.
  • the processor 1001 may be referred to as a processing unit, which controls a device (terminal or base station).
  • the transceiver 1005 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1006.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the method for configuring the CFI described in any method embodiment applied to a UE or a network device is implemented .
  • the embodiments of the present application also provide a computer program product that, when executed by a computer, implements the CFI configuration method described in any method embodiment applied to a UE or a network device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the CFI configuration method described in any method embodiment applied to a UE or a network device.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • Computer readable media include computer storage media and communication media, where communication media includes any media that facilitates the transfer of computer programs from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • Disk and disc include compact discs (CD), laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种物理下行控制信道PDCCH配置方法及装置,用以提高PDCCH检测的成功率,该PDCCH配置方法包括:第一用户终端UE接入广播专用载波;所述第一UE在所述广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。

Description

一种PDCCH配置方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种PDCCH配置方法及装置。
背景技术
物理下行控制信道(Physical Downlink Control Channel,PDCCH)可以在下行子帧中发送,用于传输下行控制信息(Downlink Control Information,DCI),用于PDCCH传输的区域称为控制区域,控制区域占用一个下行子帧的前N个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。PDCCH信道的传输以CCE形式来组织,一般的,PDCCH可以在逻辑上连续的M个控制信道单元(Control Channel Element,CCE)上传输,称为聚合等级(Aggregation Level,AL),聚合等级与CCE的数量M之间存在对应关系。
终端进行PDCCH盲检测,搜索是否存在针对该终端发送的PDCCH。终端检测PCFICH获得控制格式指示(Control Format Indicator,CFI)信息,确定PDCCH在时域上占用的符号数,终端根据确定的PDCCH在时域上占用的符号数,确定传输PDCCH的控制区域,在该控制区域中根据搜索空间和PDCCH的聚合等级确定M的数量,从而在M个CCE中进行PDCCH盲检测,具体为在公共搜索空间或用户专属搜索空间中搜索是否存在针对该终端发送的PDCCH,如果检测到PDCCH,才能检测到DCI等信息。
现有通常终端的CCE聚合等级为8,终端只能对聚合等级不超过8的PDCCH进行盲检测,而如果基站发送的PDCCH的聚合等级超过8,比如16或24,那么对于现有的最大只支持CCE聚合等级8的终端,其不能盲检测出基站发送的PDCCH,也就不能检测到DCI等信息。
发明内容
本申请实施例提供了PDCCH配置方法及装置,从而当网络设备发送的PDCCH的聚合等级大于第一UE支持的聚合等级时第一UE通过对CCE的组合能够实现对PDDCH的检测,因此提高了PDCCH检测的成功率。
第一方面,提供了一种PDCCH配置方法,包括如下过程:网络设备在广播专用载波上向用户终端UE发送供所述UE接入的信号;第一用户终端UE接入广播专用载波;所述第一UE在所述广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
可选的,针对第一UE来说,网络设备发送的供所述第一UE接入的信号中,还可以用来指示第一UE的第一能力,和/或用来指示第一UE对至少一个第一PDCCH候选进行检测。
第一UE指高版本的UE,即支持16及16以上版本协议的UE,第一UE也称新UE。例如,第一UE的聚合能力为4或8、16或更高等。
示例的,所述第一能力包括以下至少一个:
所述第一UE支持对由16个CCE组成的第一PDCCH候选进行检测,即第一UE的聚合能力为16;
所述第一UE支持16版本的协议;
所述第一UE支持16版本广播或多播的特性。
示例的,网络设备如何在广播专用载波上发送PDCCH候选,该一个第一PDCCH候选可以看作由两个第二PDCCH候选组成,当第一PDCCH为多个时,网络设备发送PDDCH候选的过程相似,在此不做赘述。
在一种实现方式中,网络设备在广播专用载波上向UE发送两个第二PDCCH候选。
该UE包括第一UE和第二UE。
对于第一UE来说,该第一UE如果确定对第一PDCCH候选进行检测,第一UE接收到两个第二PDCCH候选后,将该两个第二PDCCH候选组成一个第一PDCCH候选,第一UE对该一个第一PDCCH候选进行检测。
对于第一UE来说,该第一UE如果确定不对第一PDCCH候选进行检测,第一UE接收到两个第二PDCCH候选后,对该两个第二PDCCH候选分别检测。
对于第二UE来说,第二UE接收到两个第二PDCCH候选后,对该两个第二PDCCH候选分别检测。
其中,该N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,示例的,可以是CCE索引(如CCE逻辑编码)从小到大进行排序,第一个CCE至第(N/2)*L个CCE即为前(N/2)*L个CCE,第(N/2)*L+1个CCE到最后一个CCE即为后(N/2)*L个CCE。或者,CCE索引0至CCE索引(N/2)*L-1即为前(N/2)*L个CCE,CCE索引(N/2)*L到最后一个CCE即为后(N/2)*L个CCE。
组成所述第一PDCCH候选的前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同指前(N/2)*L个CCE中第一个CCE对应的编码比特收集后的序列中的第一个比特,所对应的编码比特收集前的序列中的比特或者所对应的编码比特收集前的序列中的比特索引,与后(N/2)*L个CCE中第一个CCE对应的编码比特收集后的序列中的第一个比特,所对应的编码比特收集前的序列中的比特或者所对应的编码比特收集前的序列中的比特索引至少有一个相同。
第一UE接入广播专用载波,在该广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,该第一PDCCH候选由N*L个CCE组成,并且在N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,第一UE能够对由N*L个CCE组成的第一PDCCH候选进行检测,因此当网络设备发送的PDCCH的聚合等级大于或等于第一UE的聚合等级时第一UE通过对CCE组合能够实现对PDDCH的检测,因此提高了PDCCH检测的成功率。
在一个可能的实现中,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
在一个可能的实现中,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选检测。
在该实现中,该两个第二PDCCH之间相互独立且CCE的编码比特收集的起始位置相同,因此对于第二UE来说,也能够对这两个第二PDCCH独立译码。
第二UE指低版本的UE,即不支持16及16以上版本协议的UE,也就是说第二UE仅支持 16以下版本协议的UE,第二UE也称为老UE。
在一个可能的实现中,所述第一PDCCH候选在公共搜索空间中。
也可以说第一PDCCH候选属于公共搜索空间。也就是说第一UE在公共搜索空间中对第一PDCCH候选进行监听。
在一个可能的实现中,所述对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,包括:
若所述第一UE接收到网络设备发送的检测所述第一PDCCH候选的指示,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测;或者
若所述第一UE支持对所述第一PDCCH候选的检测,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测。
网络设备向所述第一UE发送检测第一PDCCH候选的指示,第一UE可以接收网络设备发送的检测第一PDCCH候选的指示。
在一种实现方式中,检测第一PDCCH候选的指示由PBCH承载的MBMS主信息块指示。
例如,MBMS主信息块,包括主信息块(master information block,MIB)、MIB-MBMS、SIB1、SI中的一种。
第二方面,提供了一种PDCCH的检测方法,包括如下过程:网络设备在广播专用载波上向用户终端UE发送供所述UE接入的信号;所述网络设备在所述广播专用载波上向所述UE发送PDCCH候选集合中的至少一个第一PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数;UE对所述至少一个第一PDCCH候选进行检测。
在一个可能的实现中,PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
在一个可能的实现中,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选检测。
在一个可能的实现中,所述第一PDCCH候选在公共搜索空间中。
在一个可能的实现中,所述网络设备向所述第一UE发送检测第一PDCCH候选的指示。
在一个可能的实现中,所述检测第一PDCCH候选的指示为物理广播信道PBCH承载的MBMS主信息块中的至少一个信息。
示例的,网络设备在MBMS主信息块中通过至少一个信息指示。
又一示例的,网络设备在MBMS主信息块中通过至少一个信息指示bit状态值指示,并和第一UE预先约定有PDCCH使用的聚合等级的对应关系。
第三方面,提供了一种控制格式指示CFI的配置方法,包括如下过程:用户终端UE确定CFI,所述CFI用于指示一个子帧中PDCCH传输占用的符号数量,所述CFI由以下几种方式中的至少一种确定:
所述UE根据接收的第三信息确定所述CFI;
所述UE根据预先定义确定所述CFI;
所述UE根据第一对应关系和第四信息确定所述CFI;
其中,所述第三信息和/或第四信息是承载在物理广播信道PBCH中的信息;
所述UE根据所述CFI,检测下行控制信息PDCCH。
通过该方法中静态配置CFI,UE可以不需要也可以不通过检测PCFICH来确定CFI,且UE在连接态或空闲态下都能够确定CFI的数值,从而提高了PDCCH盲检测的成功率。
在一种可能的实现中,所述第三信息和/或第四信息承载在MBMS主信息块中。
在一种可能的实现中,所述第三信息通过1位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2和4中的一个;或者
1,3和4中的一个;或者
1,2,3和4中的一个。
在一种可能的实现中,所述第三信息通过2位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2和4中的一个;或者
1,3和4中的一个;或者
1,2,3和4中的一个。
在一种可能的实现中,所述UE根据预先定义确定所述CFI的数值,所述CFI数值包括1,2,3和4中的一个。
在一种可能的实现中,所述UE根据第一对应关系和第四信息确定所述CFI,所述第四信息用于指示系统带宽或资源块RB的数量;
所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系。
在一种可能的实现中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于第一数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于或等于第一数值且小于第二数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于或等于第二数值时,所述CFI的数值为1。
在一种可能的实现中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于或等于第一数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于第一数值且小于或等于第二数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于第二数值时,所述CFI的数值为1。
在一种可能的实现中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于第一数值时,所述CFI的数值为4;
当所述系统带宽的数值或所述RB的数量大于或等于第一数值且小于第二数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于或等于第二数值且小于第三数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于或等于第三数值时,所述CFI的数值为1。
在一种可能的实现中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于或等于第一数值时,所述CFI的数值为4;
当所述系统带宽的数值或所述RB的数量大于第一数值且小于或等于第二数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于第二数值且小于或等于第三数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于第三数值时,所述CFI的数值为1。
第四方面,提供了一种控制格式指示CFI的配置方法,包括如下过程:网络设备将第三消息和/或第四消息发送给用户终端UE,其中第三消息和第四消息用于指示CFI,所述CFI用于指示一个子帧中PDCCH传输占用的符号数量;
其中,所述第三信息和/或第四信息是承载在物理广播信道PBCH中的信息。
在一种可能的实现中,所述第三信息和/或第四信息承载在MBMS主信息块中。
在一种可能的实现中,所述第三信息通过1位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2和4中的一个;或者
1,3和4中的一个;或者
1,2,3和4中的一个。
在一种可能的实现中,所述第三信息通过2位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2和4中的一个;或者
1,3和4中的一个;或者
1,2,3和4中的一个。
在一种可能的实现中,所述第四信息用于指示系统带宽或资源块RB的数量。
第五方面,提供了一种PDCCH的检测装置。本申请提供的装置具有实现上述方法方面UE或网络设备的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中UE或网络设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也 可以与处理器分离设置。本申请并不限定。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中UE或网络设备完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中UE或网络设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备或卫星必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以位于UE或网络设备中,或为UE或网络设备星。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面、第二方面、第一方面中任一种可能实现方式、或第二方面中任一种可能实现方式中UE或网络设备完成的方法。
第六方面,提供了一种CFI的配置装置。本申请提供的装置具有实现上述方法方面UE或网络设备的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中UE或网络设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式中UE或网络设备完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中UE或网络设备相应的功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备或卫星必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以位于UE或网络设备中,或为UE或网络设备星。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第三方面、第四方面、第三方面中任一种可能实现方式、或第四方面中任一种可能实现方式中UE或网络设备完成的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第三方面、第四方面,或第一方面、第二方面、第三方 面、第四方面中任一种可能实现方式中的方法的指令。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面、第四方面,或第一方面、第二方面、第三方面、第四方面中任一种可能实现方式中的方法。
附图说明
图1为一种单播通信系统和广播通信系统的示意图;
图2为一种用于PDCCH传输的控制区域的示意图;
图3为本申请实施例适用的一种PDCCH的检测流程示意图;
图4为本申请实施例适用的一种CCE组合的示意图;
图5为本申请实施例适用的另一种CEE组合的示意图;
图6为本申请实施例适用的一种CFI的配置和PDCCH的检测结合的流程示意图;
图7为本申请实施例适用的一种PDCCH的检测装置结构图;
图8为本申请实施例适用的一种PDCCH的检测装置结构图;
图9为本申请实施例适用的一种CFI的配置装置结构图;
图10为本申请实施例适用的一种CFI的配置装置结构图。
具体实施方式
下面将结合附图对本发明作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第四代(4th Generation,4G),4G系统包括系统长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等,只要该通信系统中存在一个实体需要发送信号,另一个实体需要接收该信号,并需要确定信号传输块的大小均可,实体可以理解为通信系统中的通信设备。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端,又称之为用户设备/用户终端(user equipment,UE)、移动台(mobile station, MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、地面广播(terrestrial broadcast)中的无线终端等。
2)网络设备,是无线网络中的设备,例如网络设备可以为将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。又例如网络设备可以是为终端提供业务支持的核心网(core network,CN)设备,常见的核心网设备包括接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。基站可以是天面位置高、发射功率大、覆盖范围远的高塔高功率基站,也可以是天面位置低、发射功率小、覆盖范围近的低塔低功率基站。
3)数据传输方式,无线通信系统主要分为单播(Unicast)、广播(Broadcast)和多播/组播(Multicast)3种数据传输方式。
4)小区,也称蜂窝小区,一个基站或基站的一部分所覆盖的区域(一般指无线信号所覆盖的区域),位于小区内的终端可以通过无线信道与基站进行通信。
5)高层,也称高层协议层,为物理层以上的每个协议层中的至少一个协议层。其中,高层协议层具体可以为以下协议层中的至少一个:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)。可以理解的是,高层信令一般也可以等同于配置信息。
6)广播专用载波,所述广播专用载波包括多媒体广播多播业务专用(MBMS-dedicated)小区中用于承载数据信息和/或控制信息的载波,或者多媒体广播多播业务/单播混合(MBMS/Unicast-mixed)小区中用于承载数据信息和/或控制信息的载波,或者进一步增强的多媒体广播多播业务/单播混合(FeMBMS/Unicast-mixed)小区中用于承载数据信息和/ 或控制信息的载波。
7)UE接入所述广播专用载波,所述UE接入所述广播专用载波至少包括所述UE检测同步信号和所述UE获取主信息块(如主信息块(master information block,MIB))等信息。所述UE检测网络设备发送的主同步信号(Primary Synchronization Signa,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),所述UE与所述网络设备对应的小区取得时间和频率同步,所述UE确定物理小区标识及物理小区标识所属的小区标识组编号。所述小区为广播专用载波上承载的数据信息和/或控制信息所属的小区。所述UE解码物理广播信道PBCH,获得所述小区的主信息块MIB和系统消息块SIB1等信息。所述主信息块MIB还包括多媒体广播多播业务(MBMS-dedicated)专用小区发送的MIB-MBMS,包含下行系统带宽,无线系统帧号SFN等信息;所述系统消息块SIB1还包括多媒体广播多播业务(MBMS-dedicated)专用小区发送的SIB1-MBMS,包含系统(SI)消息的调度信息。
8)下行控制信息DCI的处理过程,PDCCH承载下行控制信息DCI,DCI的处理过程主要包括CRC添加、信道编码、速率匹配等。
CRC添加,通过对传输块添加循环冗余码校验CRC,DCI传输可以获得错误检测。传输块,即有效载荷的比特序列为a 0,a 1,a 2,a 3,...,a A-1,奇偶校验比特序列为p 0,p 1,p 2,p 3,...,p L-1,其中A是有效载荷比特数,L是奇偶校验比特数。添加CRC之后的传输块比特序列为b 0,b 1,b 2,b 3,...,b B-1,其中B=A+L。添加CRC之后,CRC比特序列被对应的RNTI序列加扰,形成比特序列c 0,c 1,c 2,c 3,...,c B-1
信道编码,输入信道编码的编码块比特序列为c 0,c 1,c 2,c 3,...,c K-1,其中K是需要编码的比特数。使用咬尾卷积码编码后的比特为
Figure PCTCN2019101208-appb-000001
其中i是编码器输出编码码流的索引,并且i=0,1,2,D是每个编码码流的比特数,D=K。
速率匹配,DCI的速率匹配包括3个比特流
Figure PCTCN2019101208-appb-000002
Figure PCTCN2019101208-appb-000003
的交织,比特收集和循环缓存生成。
输入到块交织器的比特序列表示为
Figure PCTCN2019101208-appb-000004
子块交织后的比特表示为
Figure PCTCN2019101208-appb-000005
D是比特数。
长度为K w=3K Π的环形缓存按照下列要求生成:
Figure PCTCN2019101208-appb-000006
Figure PCTCN2019101208-appb-000007
速率匹配输出的比特序列为e k,k=0,1,...,E-1,序列长度为E。
比特收集的方法如下:令k=0且j=0;当k<E时,如果
Figure PCTCN2019101208-appb-000008
那么
Figure PCTCN2019101208-appb-000009
且k=k+1;j=j+1。比特收集模块将完成交织的各子块复用到一起得到长度为K w=3K Π的序列w,重复地将所述序列w放入长度表示为E的比特序列e k中直至填满。其中E为物理信道传输的比特数,与PDCCH候选的聚合等级相关。例如,如果PDCCH候选的聚合等级为8,使用正交相移键控(Quadrature Phase Shift Keying,QPSK)调制,那么E=2*8*9*4=576比特;如果PDCCH候选的聚合等级为16,使用QPSK调制,那么E=2*16*9*4=1152比特。
CCE的编码比特收集的起始位置为,所述CCE上承载的比特收集后的序列e k中第一个比特对应的比特收集前的序列w的比特或所述比特收集前的序列w的比特索引。例如,聚合等级为8的PDCCH候选由8个CCE组成,其中第一个CCE的编码比特收集后的第一个比特为e 0,所述编码比特收集后的第一个比特e 0对应的编码比特收集前的比特为w 0,则第一个CCE的编码比特收集的起始位置为w 0或0;如果第二个CCE的编码比特收集后的第一个比特为e 71,所述编码比特收集后的第一个比特e 71对应的编码比特收集前的比特为w 71,则第一个CCE的编码比特收集的起始位置为w 71或71;所述第一个CCE的编码比特收集的起始位置与所述第二个CCE的编码比特收集的起始位置不同。
9)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一数据包和第二数据包,只是为了区分不同的数据包,而并不是表示这两个数据包的内容、优先级、发送顺序或者重要程度等的不同。
为了便于理解本申请实施例,首先对本申请使用的应用场景进行说明。
首先对多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)进行介绍。无线通信系统主要分为单播(Unicast)、广播(Broadcast)和多播/组播(Multicast)3种数据传输方式。区别于单播的点到单点传递,在广播或多播通信系统中,一个数据信号可以被多个终端接收。如图1(1)所示中基站(Base station,BS)和UE1~UE2组成一个单播通信系统,BS把不同的数据信号(如图1(1)中的信号1和信号2)分别发送给UE1~UE2;图1(2)中BS和UE1~UE2组成一个广播通信系统,BS把同样的数据信号(如图1(2)中的信号1)同时发送给UE1~UE2。
互联网技术的快速发展以及大屏幕多媒体终端的快速普及,催生了大量的大带宽高速率的多媒体业务,例如电视广播、球赛转播、互联网直播、时频会议等。与一般移动数据业务相比,上述多媒体业务允许多个用户同时接收相同的数据,并且具有传输数据高、覆盖范围大的特点。为了有效的利用无线网络资源,第三代伙伴计划(3rd Generation Partnership Project,3GPP)引入了MBMS,实现点对多点的数据传输,提高了空口资源的利用率。LTE中定义了物理多播信道(Physical Multicast Channel,PMCH)用于MBMS业务的数据传输。MBMS业务使用多媒体广播多播单频网(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)通过相互同步的多个小区在相同的时域、频域和空域资源上联合发送MBMS信号,然后在空中自然形成多小区信号的合并,提高了UE侧的信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
MBMS小区(cell)根据传输的数据不同,分为以下三种类型:多媒体广播多播业务专用(MBMS-dedicated)小区、多媒体广播多播业务/单播混合(MBMS/Unicast-mixed) 小区,以及进一步增强的多媒体广播多播服务(Further enhanced Multimedia Broadcast Multicast Service,FeMBMS)/单播混合小区,其中,MBMS专用小区只传输MBMS业务,MBMS/单播混合小区既传输MBMS业务,又传输单播业务,FeMBMS/单播混合小区是一种特殊的MBMS/单播-混合小区,也是既传输MBMS业务,又传输单播业务,此外FeMBMS/单播混合小区中还满足以下条件中的至少一种:子帧(subframe)4配置MBSFN子帧、或子帧9配置MBSFN子帧、或子帧4和子帧9都配置为MBSFN子帧,以及FeMBMS/单播混合小区内存在不包括单播控制区域的子帧,MBSFN子帧是用于传输MBMS业务的子帧。对于MBMS-dedicated小区,每40ms至少会有一个非MBSFN子帧,用于传输主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、物理广播信道(Physical Broadcast Channel,PBCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)等,该子帧被称为小区获取子帧(Cell Acquisition Subframe,CAS)。CAS子帧中的物理信道或信号不能进行多小区的信号合并,导致UE接收到CAS子帧中的物理信道的SINR比MBSFN子帧中的PMCH信号的SINR低。在信道条件比较差时,UE接收到的CAS子帧中的物理信道(比如PDCCH)的SINR低于解调门限,PDCCH盲检测不成功,导致UE不能正常接收PDSCH中承载的系统信息(System Information,SI),也就不能收到PMCH数据信号。
下面对PDCCH进行介绍,在长期演进(Long Term Evolution,LTE)系统中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)可以在下行子帧中发送,用于传输下行控制信息(Downlink Control Information,DCI)。用于PDCCH传输的区域为控制区域,其占用一个下行子帧的前N个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,其中N可能的取值为1,2,3,4,且不同OFDM符号上会进行时域交织。图2是控制区域的示意图,图2中控制区域占用了3个连续的OFDM符号。
PDCCH信道的传输以控制信道单元(Control Channel Element,CCE)形式来组织,1个CCE包含9个资源单元组(Resource Element Group,REG)。每个子帧的控制区域由一系列控制信道单元CCE组成,所述控制信道单元CCE编号从0到N CCE,k-1,其中N CCE,k是子帧k上控制区域中的全部CCE数量。PDCCH可以在逻辑上连续的M个CCE上传输,其中M的可能的取值为1,2,4,8,称为聚合等级(Aggregation Level,AL)。PDCCH候选的起始CCE索引,也称为第一CCE索引,指组成该PDCCH候选的CCE的最低或最小索引。搜索空间中的一系列PDCCH候选组成PDCCH候选集合。
UE在控制区域进行PDCCH盲检测,搜索是否存在针对其发送的PDCCH。PDCCH盲检测的过程,就是UE使用其对应的无线网络临时标识(Radio Network Temporary Identifier,RNTI)在下行子帧的控制区域的PDCCH搜索空间中对不同的CCE聚合等级和DCI格式(format)的PDCCH候选进行尝试解码,如果解码正确,则该UE收到针对其发送的DCI。UE的搜索空间分为公共搜索空间(Common Search Space)和用户专属搜索空间(UE-specific Search Space)。其中公共搜索空间主要用于传输小区专属控制信息,如寻呼消息、系统信息、组播控制信息等;用户专属搜索空间主要用于传输上行和下行数据信道调度相关的控制信息。UE在CAS子帧中只检测公共搜索空间中PDCCH。
公共搜索空间从CCE索引0开始,占据逻辑上连续的16个CCE,并且只支持4和8两种聚合等级,如表1所示,其中Search space表示小区的搜索空间,Type表示小区的 搜索空间的类型,UE-specific表示用户专属搜索空间,Common表示公共搜索空间,Aggregation level表示聚合等级,Size[in CCEs]表示CCE的大小(即CCE的数量),Number of PDCCH Candidates表示PDCCH候选的数量,具体的,用户专属搜索空间中,聚合等级为1,CCE的数量为6,PDCCH候选的数量为6,聚合等级为2,CCE的数量为12,PDCCH候选的数量为6,聚合等级为4,CCE的数量为8,PDCCH候选的数量为2,聚合等级为8,CCE的数量为16,PDCCH候选的数量为2;公共搜索空间中,聚合等级为4,CCE的数量为16,PDCCH候选的数量为4,聚合等级为8,CCE的数量为16,PDCCH候选的数量为2。
表1
Figure PCTCN2019101208-appb-000010
下面对控制格式指示(Control Format Indicator,CFI)进行介绍,物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH)承载的是CFI信息,用来指示每个子帧上控制区域的大小,也就是说每个子帧上的PDCCH在时域上占有几个符号。表2列举了每个子帧上PDCCH可能占用的符号数,其中子帧包括:1,帧结构类型2的子帧1和6,或者与特殊子帧配置的DwPTS持续时间相同的帧结构类型3的子帧,如果下行资源块(Resource Block,RB)的数量大于10,PDCCH在子帧上占用的符号数为1或2,如果下行RB的数量小于或等于10,PDCCH在子帧上占用的符号数为2;2,子载波间隔为15kHz且配置有1个或2个小区专用天线端口的MBSFN子帧,如果RB的数量大于10,PDCCH在子帧上占用的符号数为1或2,如果下行RB的数量小于或等于10,PDCCH在子帧上占用的符号数为2;3、子载波间隔为15kHz且配置有4个小区专用天线端口的MBSFN子帧,如果RB的数量大于10,PDCCH在子帧上占用的符号数为2,如果下行RB的数量小于或等于10,PDCCH在子帧上占用的符号数为2;4、子载波间隔为7.5kHz或为1.25kHz的MBSFN子帧,如果RB的数量大于10,PDCCH在子帧上占用的符号数为0,如果下行RB的数量小于或等于10,PDCCH在子帧上占用的符号数为0;5、配置有定位参考信号的非MBSFN子帧(除子帧结构类型2的子帧6),如果RB的数量大于10,PDCCH在子帧上占用的符号数为1或2或3,如果下行RB的数量小于或等于10,PDCCH在子帧上占用的符号数为2或3;6、其他情况,如果RB的数量大于10,PDCCH在子帧上占用的符号数为1或2或3,如果下行RB的数量小于或等于10,PDCCH在子帧上占用的符号数为2或3或4。
表2
Figure PCTCN2019101208-appb-000011
Figure PCTCN2019101208-appb-000012
综上,UE在PCFICH中检测获得CFI信息,确定PDCCH在时域上占用的符号数,然后对确定的PDCCH进行盲检测得到DCI等信息,也就是说,UE需要PCFICH和PDCCH都检测成功才能得到DCI信息。
与PDCCH类似,增强的物理下行控制信道(Enhanced physical downlink control channel,EPDCCH)承载调度信息,并用一个或几个聚合的增强控制信道单元(Enhanced Control Channel Element,ECCE)来传输。不同format的EPDCCH使用的ECCE数量如表3所示,其中根据使用的ECCE数量可知EPDCCH支持的最大聚合等级为32,具体的,EPDCCH的格式为0,在Case A下,局部传输(Localized transmission)时,EPDCCH使用的ECCE的数量为2,在Case A下分布式传输(Distributed transmission)时,EPDCCH使用的ECCE的数量为2,在Case B下,局部传输时,EPDCCH使用的ECCE的数量为1,在Case B下分布式传输时,EPDCCH使用的ECCE的数量为1;EPDCCH的格式为1,在Case A下,局部传输时,EPDCCH使用的ECCE的数量为4,在Case A下分布式传输时,EPDCCH使用的ECCE的数量为4,在Case B下,局部传输时,EPDCCH使用的ECCE的数量为2,在Case B下分布式传输时,EPDCCH使用的ECCE的数量为2;EPDCCH的格式为2,在Case A下,局部传输时,EPDCCH使用的ECCE的数量为8,在Case A下分布式传输时,EPDCCH使用的ECCE的数量为8,在Case B下,局部传输时,EPDCCH使用的ECCE的数量为4,在Case B下分布式传输时,EPDCCH使用的ECCE的数量为4;EPDCCH的格式为3,在Case A下,局部传输时,EPDCCH使用的ECCE的数量为16,在Case A下分布式传输时,EPDCCH使用的ECCE的数量为16,在Case B下,局部传输时,EPDCCH使用的ECCE的数量为8,在Case B下分布式传输时,EPDCCH使用的ECCE的数量为8;EPDCCH的格式为4,在Case A下,局部传输时,EPDCCH使用的ECCE的数量未配置,在Case A下分布式传输时,EPDCCH使用的ECCE的数量为32,在Case B下,局部传输时,EPDCCH使用的ECCE的数量未配置,在Case B下分布式传输时,EPDCCH使用的ECCE的数量为16。
表3
Figure PCTCN2019101208-appb-000013
Figure PCTCN2019101208-appb-000014
类似地,不同format的MTC物理下行控制信道(MTC physical downlink control channel,MPDCCH)使用的ECCE数量如表4所示,其中根据使用的ECCE数量可知MPDCCH支持的最大聚合等级为24,具体的,MPDCCH的格式为0,在一个ECCE包含的增强资源单元组(Enhanced Resource Element Group,EREG)的数量为4的情况下,局部传输(Localized transmission)时,MPDCCH使用的ECCE的数量为2,在一个ECCE包含的EREG的数量为4的情况下,分布式传输(Distributed transmission)时,MPDCCH使用的ECCE的数量为2,在一个ECCE包含的EREG的数量为8的情况,局部传输时,MPDCCH使用的ECCE的数量为1,在一个ECCE包含的EREG的数量为8的情况,分布式传输时,MPDCCH使用的ECCE的数量为1;MPDCCH的格式为1,在一个ECCE包含的EREG的数量为4的情况下,局部传输时MPDCCH使用的ECCE的数量为4,在一个ECCE包含的EREG的数量为4的情况下,分布式传输时MPDCCH使用的ECCE的数量为4,在一个ECCE包含的EREG的数量为8的情况,局部传输时MPDCCH使用的ECCE的数量为2,在一个ECCE包含的EREG的数量为8的情况,分布式传输时MPDCCH使用的ECCE的数量为2;MPDCCH的格式为3,在一个ECCE包含的EREG的数量为4的情况下,局部传输时MPDCCH使用的ECCE的数量为8,在一个ECCE包含的EREG的数量为4的情况下,分布式传输时MPDCCH使用的ECCE的数量为8,在一个ECCE包含的EREG的数量为8的情况,局部传输时MPDCCH使用的ECCE的数量为4,在一个ECCE包含的EREG的数量为8的情况,分布式传输时MPDCCH使用的ECCE的数量为4;MPDCCH的格式为3,在一个ECCE包含的EREG的数量为4的情况下,局部传输时MPDCCH使用的ECCE的数量为16,在一个ECCE包含的EREG的数量为4的情况下,分布式传输时MPDCCH使用的ECCE的数量为16,在一个ECCE包含的EREG的数量为8的情况,局部传输时MPDCCH使用的ECCE的数量为8,在一个ECCE包含的EREG的数量为8的情况,分布式传输时MPDCCH使用的ECCE的数量为8;MPDCCH的格式为1,在一个ECCE包含的EREG的数量为4的情况下,局部传输时MPDCCH使用的ECCE的数量未配置,在一个ECCE包含的EREG的数量为4的情况下,分布式传输时MPDCCH使用的ECCE的数量未配置,在一个ECCE包含的EREG的数量为8的情况,局部传输时MPDCCH使用的ECCE的数量未配置,在一个ECCE包含的EREG的数量为8的情况,分布式传输时MPDCCH使用的ECCE的数量未配置;MPDCCH的格式为5,在一个ECCE包含的EREG的数量为4的情况下,局部传输时MPDCCH使用的ECCE的数量为24,在一个ECCE包含的EREG的数量为4的情况下,分布式传输时MPDCCH使用的ECCE的数量为24,在一个ECCE包含的EREG的数量为8的情况,局部传输时MPDCCH使用的ECCE的数量为12,在一个ECCE包含的EREG的数量为8的情况,分布式传输时MPDCCH使用的ECCE的数量为12。
表4
Figure PCTCN2019101208-appb-000015
现有通常UE的CCE聚合等级最大为8,UE只能对聚合等级不超过8的PDCCH进行盲检测,而如果基站发送的PDCCH的聚合等级超过8,比如16或24,那么对于现有的最大只支持CCE聚合等级8的UE,其不能盲检测出基站发送的PDCCH,也就不能检测到DCI等信息。
鉴于此,为了保证网络设备发送的PDCCH的聚合等级大于终端支持的聚合等级时,网络设备发送的PDCCH能够被终端盲检测到,以提高PDCCH检测的成功率,本申请实施例提出了一种PDCCH的检测方法。
具体的,在该方法中第一UE接入广播专用载波,在该广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,该第一PDCCH候选由N*L个CCE组成,并且在N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,第一UE能够对由N*L个CCE组成的第一PDCCH候选进行检测,因此当网络设备发送的PDCCH的聚合等级大于或等于第一UE的聚合等级时第一UE通过对CCE组合能够实现对PDDCH的检测,因此提高了PDCCH检测的成功率。
实施例一
以下述实施例详细说明PDCCH的检测的具体过程,首先参见图3所示的PDCCH的检测过程,该过程包括:
步骤301:网络设备在广播专用载波上向UE发送供UE接入的信号。
该步骤301中的UE可以包括本申请实施例中的第一UE和第二UE。
示例的,网络设备发送的供UE接入的信息包括同步信号和物理广播信道PBCH承载的MBMS主信息块。
具体的,所述广播专用载波包括多媒体广播多播业务专用(MBMS-dedicated)小区中用于承载数据信息和/或控制信息的载波,或者多媒体广播多播业务/单播混合(MBMS/Unicast-mixed)小区中用于承载数据信息和/或控制信息的载波,或者进一步增强的多媒体广播多播业务/单播混合(FeMBMS/Unicast-mixed)小区中用于承载数据信息和/或控制信息的载波。UE接入所述广播专用载波,所述UE接入所述广播专用载波至少包括所述UE检测同步信号和所述UE获取主信息块等信息。所述UE检测网络设备发送的主同步信号PSS和辅同步信号SSS,所述UE与所述网络设备对应的小区取得时间和频率同步,所述UE确定物理小区标识及物理小区标识所属的小区标识组编号。所述小区为广播专用载波上承载的数据信息和/或控制信息所属的小区。所述UE解码物理广播信道PBCH, 获得所述小区的主信息块MIB和系统消息块SIB1等信息。所述主信息块MIB还包括多媒体广播多播业务(MBMS-dedicated)专用小区发送的MIB-MBMS,包含下行系统带宽,无线系统帧号SFN等信息;所述系统消息块SIB1还包括多媒体广播多播业务(MBMS-dedicated)专用小区发送的SIB1-MBMS,包含系统(SI)消息的调度信息。
可选的,针对第一UE来说,网络设备发送的供所述第一UE接入的信号中,还可以用来指示第一UE的第一能力,和/或用来指示第一UE对至少一个第一PDCCH候选进行检测。
步骤302:第一UE接收供UE接入的信号,接入广播专用载波。
接入广播专用载波的UE为接收广播和/或组播业务的数据的UE,可以通过以下方式中的一种或多种判断UE是否为广播UE:UE工作在MBMS相关的小区上,所述MBMS相关的小区包括MBMS/单播混合小区、FeMBMS/单播混合小区和MBMS专用小区中的一种或多种;以及UE检测到循环冗余码校验(Cyclic Redundancy Check,CRC)被M-RNTI加扰。
示例的,在本申请实施例中第一UE指高版本的UE,即支持16及16以上版本协议的UE,第一UE也称新UE。例如,第一UE的聚合能力为4或8、16或更高等。更具体而言,第一UE可以为支持本申请实施例中PDCCH检测方法的UE。
可选的,第一UE能够获取该第一UE的第一能力,第一UE的第一能力可以用来指示第一UE的聚合能力。
所述第一能力包括以下至少一个:
所述第一UE支持对由16个CCE组成的第一PDCCH候选进行检测,即第一UE的聚合能力为16;
所述第一UE支持16版本的协议;
所述第一UE支持16版本广播或多播的特性。
其中第一UE的第一能力可以预先约定好的能力,也可以是网络设备指示的第一能力。
对应的,为了与第一UE区分,本申请实施例中还提出了第二UE,在本申请实施例中第二UE指低版本的UE,即不支持16及16以上版本协议的UE,也就是说第二UE仅支持16以下版本协议的UE,第二UE也称为老UE。例如,第二UE的聚合能力为4或8等。更具体而言,第二UE可以为不支持本申请实施例中PDCCH检测方法的UE。
可选的,网络设备确认第一UE接入广播专用载波后,网络设备在广播专用载波上向第一UE发送指示信息,用来指示第一UE的第一能力(如第一UE的聚合能力),和/或用来指示第一UE对至少一个第一PDCCH候选进行检测。
步骤303:所述第一UE在所述广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,所述第一PDCCH候选由N*L个CCE组成,分别组成所述第一PDCCH候选的前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
该N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,示例的,可以是CCE索引(如CCE逻辑编码)从小到大进行排序,第一个CCE至第(N/2)*L个CCE即为前(N/2)*L个CCE,第(N/2)*L+1个CCE到最后一个CCE即为后(N/2)*L个CCE。或者,CCE索引0至CCE索引(N/2)*L-1即为前(N/2)*L个CCE,CCE索引(N/2)*L到最后一个CCE即为后(N/2)*L个CCE。
可选的,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选检测。
以第一UE对PDCCH候选集中的一个第一PDCCH候选进行检测为例,说明网络设备如何在广播专用载波上发送PDCCH候选,该一个第一PDCCH候选可以看作由两个第二PDCCH候选组成,当第一PDCCH为多个时,网络设备发送PDDCH候选的过程相似,在此不做赘述。
在一种实现方式中,网络设备在广播专用载波上向UE发送两个第二PDCCH候选。
该UE包括第一UE和第二UE。
对于第一UE来说,该第一UE如果确定对第一PDCCH候选进行检测,第一UE接收到两个第二PDCCH候选后,将该两个第二PDCCH候选作为一个第一PDCCH候选,第一UE对该一个第一PDCCH候选进行检测。这样,与第二UE相比,第一UE支持的聚合等级能力更高,或者第一UE可以对两个重复第二候选联合译码,提升了UE的译码能力。
对于第一UE来说,该第一UE如果确定不对第一PDCCH候选进行检测,第一UE接收到两个第二PDCCH候选后,对该两个第二PDCCH候选分别检测。
其中,第一UE确定是否对第一PDCCH候选进行检测将在以下内容中详细说明。
对于第二UE来说,第二UE接收到两个第二PDCCH候选后,对该两个第二PDCCH候选分别检测。这样,将聚合等级为N*L拆分成独立的两部分(即两个第二PDCCH),该两个第二PDCCH之间相互独立且CCE的编码比特收集的起始位置相同,因此对于第二UE来说,也能够对这两个第二PDCCH独立译码。
如果第二UE接收到第三PDCCH候选,所述第三PDCCH候选由N*L个CCE组成,分别组成所述第三PDCCH候选的前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置不同。第二UE接收到第三PDCCH候选后,只能对前(N/2)*L个CCE进行检测,并且不能对后(N/2)*L个CCE进行检测。与第二UE接收到两个第二PDCCH候选相比,第二UE接收到一个第三PDCCH候选,只能对一个长度为(N/2)*L个CCE进行检测,第二UE的译码能力降低。例如,N为2,L为8时,第三PDCCH候选的聚合等级为16,组成第三PDCCH候选前8个CCE和后8个CCE的编码比特收集的起始位置不同,如前8个CC的编码比特收集的起始位置为0,后8个CCE的编码比特收集的起始位置为8,则第二UE接收到该第三PDCCH候选后,只能对前8个CCE进行检测,不能对后8个CCE进行检测,其中前8个CCE和后8个CCE可以理解为聚合等级为8个PDCCH候选。
在另一个实现方式中,网络设备在广播专用载波上向UE发送一个第一PDCCH候选。
具体的,网络设备在所述广播专用载波上向所述UE发送PDCCH候选集合中的至少一个第一PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
对于第一UE来说,第一UE对接收到的一个第一PDCCH候选检测。
对于第二UE来说,由于第二UE能力受限,第二UE无法对第一PDCCH候选检测。
PDCCH候选集合中包括至少一个第二PDCCH候选。PDCCH候选集合中包括的第二PDCCH候选的数量可以参见上述表1,如在公共搜索空间中,聚合等级为8的UE对应有两个第二PDCCH候选。特别地,第二PDCCH候选的聚合等级为8,PDCCH候选集合中包括的第二PDCCH候选的数量为2。
合并后的每个第一PDCCH候选由N*L个CCE组成,L为大于或等于8的整数,可选的,L可以为未合并之前的第二PDCCH候选所对应的聚合能力等级。例如,L为8,N为2,则第一PDCCH候选由2*8个CEE组成,即由16个CCE组成,该第一PDCCH可以看作是由2个聚合等级为8的第二PDCCH候选组成。对于N和L为其他取值的情况可以参见L取8,N取2,在本申请实施例中不做赘述。
例如,如图4所示,对于聚合等级为16的第一PDCCH候选,两个聚合等级为8的第二PDCCH候选的CCE索引分别为0到7和8到15,则CCE索引从0到7组成第一编码比特,CCE索引从8到15组成第二编码比特,将该两个第二PDCCH候选组成为一个聚合等级为16的第一PDCCH候选,CEE逻辑编号从0到15组成第一PDCCH候选的编码比特。
如图5所示,对于聚合等级为16的第一PDCCH候选,两个聚合等级为8的第二PDCCH候选的CCE索引分别为0到7和8到15,则CCE索引从0到7组成第一编码比特,CCE索引从8到15组成第二编码比特,将该两个第二PDCCH候选组成为一个第一PDCCH候选。
分别组成所述第一PDCCH候选的前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
CCE的编码比特收集的起始位置为,所述CCE上承载的比特收集后的序列e k中第一个比特对应的比特收集前的序列w的比特或所述比特收集前的序列w的比特索引。
例如,如图4所示,L取8,N取2,第一PDCCH候选的聚合等级为16,前(N/2)*L个CCE,即前8个CCE,CCE索引为0到7,CCE索引0的编码比特收集后的第一个比特为e 0,编码比特收集后的第一个比特为e 0对应的编码比特收集前的比特为w 0,则前8个CCE的编码比特收集的起始位置为CCE索引0上的编码比特收集的起始位置,为w 0或0。后(N/2)*L个CCE,即后8个CCE,CCE索引为8到15,CCE索引8的编码比特收集后的第一个比特为e 0,编码比特收集后的第一个比特为e 0对应的编码比特收集前的比特为w 0,则后8个CCE的编码比特收集的起始位置为CCE索引0上的编码比特收集的起始位置,为w 0或0。
简单来说,组成所述第一PDCCH候选的前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同指前(N/2)*L个CCE中第一个CCE对应的编码比特收集后的序列中的第一个比特,所对应的编码比特收集前的序列中的比特或者所对应的编码比特收集前的序列中的比特索引,与后(N/2)*L个CCE中第一个CCE对应的编码比特收集后的序列中的第一个比特,所对应的编码比特收集前的序列中的比特或者所对应的编码比特收集前的序列中的比特索引至少有一个相同。
可选的,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。还以图4为例,两个候选PDCCH的CCE索引连续,且分别为0到7和8到15。
可选的,所述第一PDCCH候选在公共搜索空间中,也可以说第一PDCCH候选属于公共搜索空间。也就是说第一UE在公共搜索空间中对第一PDCCH候选进行监听。
可选的,每个第二PDCCH候选中承载的DCI信息和/或冗余信息相同。
示例的,第一UE确定对第一PDCCH候选进行检测,可以是在确定满足如下一种或多种条件时,确定对至少一个PDCCH候选进行检测:
若所述第一UE接收到网络设备发送的检测所述第一PDCCH候选的指示,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测;或者
若所述第一UE支持对所述第一PDCCH候选的检测,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测。
在一种实现方式中,网络设备向所述第一UE发送检测第一PDCCH候选的指示,第一UE可以接收网络设备发送的检测第一PDCCH候选的指示。
可选的,检测第一PDCCH候选的指示由PBCH承载的MBMS主信息块指示。例如,MBMS主信息块,包括主信息块(master information block,MIB)、MIB-MBMS、SIB1、SI中的一种。示例的,所述检测第一PDCCH候选的指示为PBCH承载的MBMS主信息块中的至少一个信息,即PBCH承载的MBMS主信息块中的至少一个信息用于指示(第一)UE检测第一PDCCH候选。
以网络设备发送检测第一PDCCH候选的指示为例,若第一UE接收到网络设备发送的检测第一PDDCH候选的指示,第一UE对接收到的两个聚合等级为8的第二PDCCH候选合并接收,以提高盲检测的成功率,若第一UE未接收到网络设备发送的检测第一PDCCH候选的指示,第一UE对接收到的两个聚合等级为8的第二PDCCH候选分别进行盲检测,不做差分合并。
示例的,网络设备在MBMS主信息块中通过至少一个信息指示,如通过3bit(比特)进行指示,3bit分别表示第一UE是否支持聚合等级4/8/16,如通过2bit进行指示,2bit分别表示第一UE是否支持聚合等级4/8。
又一示例的,网络设备在MBMS主信息块中通过至少一个信息指示bit状态值,并和第一UE预先约定有PDCCH使用的聚合等级的对应关系。例如,如表5所示,bit状态值00/01/10分别和PDCCH聚合等级4/8/16对应,bit状态值11无对应的PDCCH聚合等级。
表5
Bit field Message
00 4
01 8
10 16
11 Spare
可选的,bit状态值对应的PDCCH聚合等级,可以指示第一UE支持的聚合等级为4/8/16中的一个或多个。
即bit状态值为第一UE支持的唯一聚合等级,例如bit状态值为01,对应的聚合等级为8,第一UE仅能使用聚合等级8对应第一PDDCH候选进行检测。
可选的,bit状态值对应的PDCCH聚合等级可以是第一UE支持的最小聚合等级。
例如bit状态值为01,对应的聚合等级为8,第一UE能够使用聚合等级4和8对第一PDCCH候选进行检测。
可选的,可以是第一UE支持的最大聚合等级。
例如bit状态值为01,对应的聚合等级为8,第一UE能够使用聚合等级8和16对第一PDCCH候选进行检测。
而对于第二UE来说,第二UE不支持接收MBMS主信息块来获取PDCCH支持的聚合等级,第二UE不能在MBMS主信息块中获取到聚合等级的信息,或者在MBMS主信 息块中获取到的bit值为空。
在另一种可能的实现中,第一UE确定预先约定了第一PDCCH候选,则确定支持对第一PDCCH候选的检测,其中第一UE与网络设备(如基站)预先约定第一PDCCH候选。
以第一UE预先约定有第一PDCCH候选为例,如果第一UE确定自身为接收MBMS业务的UE时,第一UE对在公共搜索空间检测到的两个聚合等级为8的第二PDCCH候选进行合并接收。
在又一种可能的实现中,第一UE根据自身的第一能力确定支持对第一PDCCH候选的检测,第一UE的第一能力可以参见步骤301。
综上,第一UE能够将多个第二PDCCH候选作为一个更高聚合等级的第一PDCCH候选,从而提高了PDCCH盲检测的成功率,而第二UE可以对接收到的第二PDCCH候选直接进行盲检测。
实施例二
另外,现有技术中UE可以通过接收高层参数确定控制格式指示CFI,而不同通过FCFICH才能得到CFI,具体的如果UE配置了高层参数semiStaticCFI-SlotSubslotNonMBSFN或semiStaticCFI-SubframeNonMBSFN,对于非MBSFN子帧,CFI值等于该高层参数。如果UE配置了高层参数semiStaticCFI-SlotSubslotMBSFN或semiStaticCFI-SubframeMBSFN,对于MBSFN子帧,CFI值等于该高层参数。但是只有UE处于连接(RRC_CONNECTED)态时,才能接收到用于指示CFI的高层信令。而MBMS专用小区上的UE处于空闲(RRC_IDLE)态,无法通过上述高层信令配置CFI。
鉴于此,本申请实施例还提供了一种CFI的配置方法,该方法中通过静态配置CFI间接提高了PDCCH盲检测成功率。可选的,该CFI的配置方法可以与上述PDCCH检测方法结合使用,从而进一步提高PDCCH盲检成功率。
示例的,该CFI配置方法仅应用于新UE,即上述实施例一的PDCCH检测方法中的第一UE。
UE确定CFI,所述CFI用于指示一个子帧中PDCCH传输占用的符号数量,所述CFI由以下几种方式中的至少一种确定:
所述UE根据接收的第三信息确定所述CFI;
所述UE根据预先定义确定所述CFI;
所述UE根据第一对应关系和第四信息确定所述CFI;
其中,所述第三信息和/或第四信息是承载在物理广播信道PBCH中的信息;
所述UE根据所述CFI,检测下行控制信息PDCCH。
示例的,第三信息和/或第四信息承载在MBMS主信息块中。例如,MBMS主信息块包括主信息块(master information block,MIB)、MIB-MBMS、SIB1、SI中的一种。
对应的,网络设备可以将第三信息和/或第四信息发送给UE。
示例的,网络设备可以将第信息和/或第四承载在MBMS主信息块中发送给UE。
在一种实现方式中,第三信息通过1位比特或2位比特指示CFI的数值。
示例的,第三信息通过1位比特指示CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2和4中的一个;或者
1,3和4中的一个;或者
1,2,3和4中的一个。
可选的,1位比特的数值为{0,1}时,分别对应的2个CFI数值的可以是{1,2}、{1,3}、{1,4}、{2,3}、{2,4}和{3,4}中的一个。例如1位比特{0,1}和CFI数值{1,2}一一对应,即该信息的比特为0表示CFI为1,比特为1表示CFI为2。
又一示例的,所述第三信息通过2位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2和4中的一个;或者
1,3和4中的一个;或者
1,2,3和4中的一个。
例如,2位比特的数值为{00,01,10,11},可以与CFI数值{1,2,3,4}一一对应,比特00表示CFI为1,比特为01表示CFI为2,比特为10表示CFI为3,比特为11表示在CFI为4。
在该实现方式中,网络设备确定要为UE指示的CFI的数值后,确定该为UE指示的CFI的数值对应的1位比特的数值或2位比特的数值,在第三信息中携带该1位比特的数值或2位比特的数值。UE接收第三信息,通过第三信息中携带的1位比特的数值或2位比特的数值,能够确定该1位比特的数值对应的CFI的数值,或确定该2位比特的数值对应的CFI的数值,从而UE确定网络设备为该UE指示的CFI的数值。
在另一个实现方式中,所述UE根据预先定义确定所述CFI的数值,所述CFI数值包括1,2,3和4中的一个。
在该实现方式中,UE直接确定预先定义的CFI的数值。
在又一个实现方式中,所述UE根据第一对应关系和第四信息确定所述CFI,所述第四信息用于指示系统带宽或资源块RB的数量,其中所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系。
在该实现方式中,网络设备确定要为UE指示的CFI的数值后,通过第一对应关系中包括的系统宽带的数值与CFI的数值的对应关系,确定为该UE指示的CFI的数值对应的系统带宽的数值,在第四信息中携带该系统带宽的数值。UE接收第四信息,通过第四信息中携带的系统带宽的数值,及第一对应关系,确定第一对应关系中该系统带宽的数值对应的CFI的数值,从而UE确定网络设备为该UE指示的CFI的数值。
或者,网络设备确定要为UE指示的CFI的数值后,通过第一对应关系中包括的系统宽带的数值与CFI的数值的对应关系,确定为该UE指示的CFI的数值对应的系统RB的数量,在第四信息中携带该系统RB的数量。UE接收第四信息,通过第四信息中携带的系统RB的数量,及第一对应关系,确定第一对应关系中该系统RB的数量对应的CFI的数值,从而UE确定网络设备为该UE指示的CFI的数值。
示例的,第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于第一数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于或等于第一数值且小于第二数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于或等于第二数值时,所述CFI的数值为1。
又一示例的,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于或等于第一数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于第一数值且小于或等于第二数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于第二数值时,所述CFI的数值为1。
另外,示例的,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于第一数值时,所述CFI的数值为4;
当所述系统带宽的数值或所述RB的数量大于或等于第一数值且小于第二数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于或等于第二数值且小于第三数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于或等于第三数值时,所述CFI的数值为1。
又一示例的,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于或等于第一数值时,所述CFI的数值为4;
当所述系统带宽的数值或所述RB的数量大于第一数值且小于或等于第二数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于第二数值且小于或等于第三数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于第三数值时,所述CFI的数值为1。
其中,对于系统宽带的数值来说,对应的第一数值和第二数值,可以为以下中的一种{1.4,3},{1.4,5},{1.4,10},{1.4,15},{1.4,20},{3,5},{3,10},{3,15},{3,20},{5,10},{5,15},{5,20},{10,15},{10,20},{15,20}。对应的第一数值、第二数值和第三数值,可以为以下中的一种{1.4,3,5},{1.4,3,10},{1.4,3,15},{1.4,3,20},{1.4,5,10},{1.4,5,15},{1.4,5,20},{1.4,10,15},{1.4,10,20},{1.4,15,20},{3,5,10},{3,5,15},{3,5,20},{3,10,15},{3,10,20},{3,15,20},{5,10,15},{5,10,20},{5,15,20},{10,15,20}。
对于RB的数量来说,对应的第一数值和第二数值,可以为以下中的一种{6,15},{6,25},{6,50},{6,75},{6,100},{15,25},{15,50},{15,75},{15,100},{25,50},{25,75},{25,100},{50,75},{50,100},{75,100}。对应的第一数值、第二数值和第三数值,可以为以下中的一种{6,15,25},{6,15,50},{6,15,75},{6,15,100},{6,25,50},{6,25,75},{6,25,100},{6,50,75},{6,50,100},{6,75,100},{15,25,50},{15,25,75},{15,25,100},{15,50,75},{15,50,100},{15,75,100},{25,50,75},{25,50,100},{25,75,100},{50,75,100}。
具体的第一对应关系,可以如下表6至表13所示,下面依次对表6至表13进行说明。
表6中的第一对应关系包括系统带宽的数值与CFI的数值的对应关系,其中Channel bandwidth BW表示系统带宽的数值,单位为兆赫兹(MHz),CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的系统带宽的数值大于或等于X2时,对应的CFI的数值为1,系统带宽的数值小于X2且系统带宽的数值大于或等于X1时,对应的CFI的数值为2,系统带宽的数值小于X1时,对应的CFI的数值为3。
表6
Channel bandwidth BW[MHz] Number of OFDM symbols for PDCCH
BW>=X2 1
X1<=BW<X2 2
BW<X1 3
表7中的第一对应关系包括系统带宽的数值与CFI的数值的对应关系,其中Channel bandwidth BW表示系统带宽的数值,单位为兆赫兹(MHz),CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的系统带宽的数值大于X2时,对应的CFI的数值为1,系统带宽的数值小于或等于X2且系统带宽的数值大于X1时,对应的CFI的数值为2,系统带宽的数值小于或等于X1时,对应的CFI的数值为3。
表7
Channel bandwidth BW[MHz] Number of OFDM symbols for PDCCH
BW>X2 1
X1<BW<=X2 2
BW<=X1 3
表8中的第一对应关系包括系统带宽的数值与CFI的数值的对应关系,其中Channel bandwidth BW表示系统带宽的数值,单位为兆赫兹(MHz),CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的系统带宽的数值大于或等于X3时,对应的CFI的数值为1,系统带宽的数值小于X3且系统带宽的数值大于或等于X2时,对应的CFI的数值为2,系统带宽的数值小于X2且系统带宽的数值大于或等于X1时,对应的CFI的数值为3,系统带宽的数值小于X1时,对应的CFI的数值为4。
表8
Channel bandwidth BW[MHz] Number of OFDM symbols for PDCCH
BW>=X3 1
X2<=BW<X3 2
X1<=BW<X2 3
BW<X1 4
表9中的第一对应关系包括系统带宽的数值与CFI的数值的对应关系,其中Channel bandwidth BW表示系统带宽的数值,单位为兆赫兹(MHz),CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的系统带宽的数值大于X3时,对应的CFI的数值为1,系统带宽的数值小于或等于X3且系统带宽的数值大于X2时,对应的CFI的数值为2,系统带宽的数值小于或等于X2且系统带宽的数值大于X1时,对应的CFI的数值为3,系统带宽的数值小于或等于X1时,对应的CFI的数值为4。
表9
Channel bandwidth BW[MHz] Number of OFDM symbols for PDCCH
BW>X3 1
X2<BW<=X3 2
X1<BW<=X2 3
BW<=X1 4
表10中的第一对应关系包括RB的数量与CFI的数值的对应关系,其中Transmission bandwidth configuration N RB表示RB的数量,即传输带宽配置的RB的数量,CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的RB的数量大于或等于X2时,对应的CFI的数值为1,RB的数量小于X2且RB的数量大于或等于X1时,对应的CFI的数值为2,RB的数量小于X1时,对应的CFI的数值为3。
表10
Transmission bandwidth configuration N RB Number of OFDM symbols for PDCCH
N RB>=X2 1
X1<=N RB<X2 2
N RB<X1 3
表11中的第一对应关系包括RB的数量与CFI的数值的对应关系,其中Transmission bandwidth configuration N RB表示RB的数量,即传输带宽配置的RB的数量,CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的RB的数量大于X2时,对应的CFI的数值为1,RB的数量小于或等于X2且RB的数量大于X1时,对应的CFI的数值为2,RB的数量小于或等于X1时,对应的CFI的数值为3。
表11
Transmission bandwidth configuration N RB Number of OFDM symbols for PDCCH
N RB>X2 1
X1<N RB<=X2 2
N RB<=X1 3
表12中的第一对应关系包括RB的数量与CFI的数值的对应关系,其中Transmission bandwidth configuration N RB表示RB的数量,即传输带宽配置的RB的数量,CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的RB的数量大于或等于X3时,对应的CFI的数值为1,RB的数量小于X3且RB的数量大于或等于X2时,对应的CFI的数值为2,RB的数量小于X2且RB的数量大于或等于X1时,对应的CFI的数值为3,RB的数量小于X1时,对应的CFI的数值为4。
表12
Transmission bandwidth configuration N RB Number of OFDM symbols for PDCCH
N RB>=X3 1
X2<=N RB<X3 2
X1<=N RB<X2 3
N RB<X1 4
表12中的第一对应关系包括RB的数量与CFI的数值的对应关系,其中Transmission bandwidth configuration N RB表示RB的数量,即传输带宽配置的RB的数量,CFI的数值用Number of OFDM symbols for PDCCH表示,即PDCCH占用的OFDM符号的数量。具体的RB的数量大于X3时,对应的CFI的数值为1,RB的数量小于或等于X3且RB的数量大于X2时,对应的CFI的数值为2,RB的数量小于或等于X2且RB的数量大于X1时,对应的CFI的数值为3,RB的数量小于或等于X1时,对应的CFI的数值为4。
表13
Transmission bandwidth configuration N RB Number of OFDM symbols for PDCCH
N RB>X3 1
X2<N RB<=X3 2
X1<N RB<=X2 3
N RB<=X1 4
UE通过接收MIB中的CFI指示信息,或通过约定的CFI与带宽(或RB数)的对应关系确定CFI数值,不需要再检测PCFICH来确定CFI,最终提高了PDCCH的盲检测成功率。
综上,通过该方法中静态配置CFI,UE可以不需要也可以不通过检测PCFICH来确定CFI,且UE在连接态或空闲态下都能够确定CFI的数值,从而提高了PDCCH盲检测的成功率。
实施例三
本申请实施例还提供了一种CFI的配置以及PDCCH的检测的方法,更具体而言,可以理解为在上述实施例二提供的CFI的配置方法的基础上,结合实施例一提供的PDCCH的检测方法,来实现PDCCH的检测,从而进一步提高PDCCH盲检测成功率。
示例的,本申请实施例中涉及到的UE主要指新UE,即上述PDCCH检测方法中的第一UE。
具体的,在该实施例中通过静态配置CFI,UE不需要检测PCFICH来确定CFI,UE 无论在什么状态下均能够确定CFI的数值,已经提高了PDCCH的盲检测成功率,并且该UE通过确定的CFI的数值在广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH进行检测,当网络设备发送的PDCCH的聚合等级大于或等于第一UE支持的聚合等级时第一UE通过对CCE组合能够实现对PDDCH的检测,又进一步提高了PDCCH检测的成功率。
以下对本申请实施例三的具体过程进行详细说明,首先参见图6所示的CFI的配置以及PDCCH的检测过程,该过程包括:
步骤601:第一UE接入广播专用载波。
示例的,第一UE可以接收网络设备发送的供UE接入的信号,接入广播专用载波。
需要说明的是,步骤601的执行过程可参见图3中步骤301和步骤302的具体描述,在此不赘述。
步骤602:第一UE确定CFI。
需要说明的是,步骤602的执行过程可参见上述实施例二中的具体描述,在此不赘述。
步骤603:网络设备在所述广播专用载波上向所述第一UE发送PDCCH候选集合中的至少一个第一PDCCH候选,所述第一PDCCH候选由N*L个CCE组成,分别组成所述第一PDCCH候选的前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
示例的,在该步骤603中网络设备发送的是由(至少)两个第二PDCCH候选组成的(至少一个)第一PDCCH,而非是(至少)两个独立的第二PDCCH。
需要说明的是,步骤603的执行过程可参见图3中步骤303的具体描述,在此不赘述。
步骤604:第一UE在所述广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测。
需要说明的是,步骤604的执行过程可参见图3中步骤303的具体描述,在此不赘述。
可以理解的是,图6中仅是对实施例一和实施例二结合使用的一个示例,以提高了PDCCH检测的成功率,而非对实施例一和实施例二中其他结合使用的方式构成限定。
以上结合图3至图5详细说明了本申请实施例的PDCCH的检测方法,基于与上述PDCCH的检测方法的同一发明构思,本申请实施例还提供了一种PDCCH的检测装置,如图7所述,所述PDCCH的检测装置700包含处理单元701和收发单元702,装置700可用于实现上述应用于UE或网络设备的方法实施例中描述的方法,UE包括第一UE和/或第二UE,在此主要对第一UE进行说明。
在一个实施例中,装置700应用于第一UE。
具体的,处理单元701,用于接入广播专用载波;
收发单元702,用于在所述广播专用载波上接收PDCCH候选集合中的至少一个第一PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数;
所述处理单元701,还用于对所述至少一个第一PDCCH候选进行检测。
在一个实现方式中,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
在一个实现方式中,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选检测。
在一个实现方式中,所述第一PDCCH候选在公共搜索空间中。
在一个实现方式中,所述处理单元701,具体用于若第一UE接收到网络设备发送的检测所述第一PDCCH候选的指示,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测;或者若第一UE支持对所述第一PDCCH候选的检测,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测。
在一个实现方式中,所述检测第一PDCCH候选的指示由物理广播信道PBCH承载的MBMS主信息块指示。
在另一个实施例中,装置700应用于网络设备。
具体的,收发单元702,用于在广播专用载波上向用户终端UE发送供所述UE接入的信号;
处理单元701,用于确定PDCCH候选集合中的至少一个PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数;
所述收发单元702,还用于在所述广播专用载波上向所述UE发送所述至少一个第一PDCCH候选。
在一个实现方式中,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
在一个实现方式中,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选。
在一个实现方式中,所述第一PDCCH候选在公共搜索空间中。
在一个实现方式中,所述收发单元702,还用于向所述第一UE发送检测第一PDCCH候选的指示。
在一个实现方式中,所述检测第一PDCCH候选的指示为物理广播信道PBCH承载的MBMS主信息块中的至少一个信息。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述PDCCH的检测方法相同的构思,如图8所示,本申请实施例还提供了一种PDCCH的检测装置800的结构示意图。装置800可用于实现上述UE或网络设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述UE包括第一UE和/或第二UE。所述装置800可以处于UE或网络设备中或为UE或网络设备。
所述装置800包括一个或多个处理器801。所述处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置800包括一个或多个所述处理器801,所述一个或多个处理器801可实现上述所示的实施例中UE或网络设备的方法。
可选的,处理器801除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器801可以执行指令,使得所述装置800执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令803,也可以全部或部分存储在与所述处理器耦合的存储器802中,如指令804,也可以通过指令803和804共同使得装置800执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置800也可以包括电路,所述电路可以实现前述方法实施例中UE或网络设备的功能。
在又一种可能的设计中所述装置800中可以包括一个或多个存储器802,其上存有指令804,所述指令可在所述处理器上被运行,使得所述装置800执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器802可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置800还可以包括收发器805以及天线806。所述处理器801可以称为处理单元,对装置(终端或者基站)进行控制。所述收发器805可以称为收发机、收发电路、或者收发器等,用于通过天线806实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包 括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于UE或网络设备的任一方法实施例所述的PDCCH的检测的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于UE或网络设备的任一方法实施例所述的PDCCH的检测的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于UE或网络设备的任一方法实施例所述的PDCCH的检测的方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
以上结合图4至图5详细说明了本申请实施例的CFI的配置方法,基于与上述CFI的 配置方法的同一发明构思,本申请实施例还提供了一种CFI的配置装置,如图9所述,所述CFI的配置装置900包含处理单元901和收发单元902,装置900可用于实现上述应用于UE或网络设备的方法实施例中描述的方法,UE包括第一UE和/或第二UE,在此主要对第一UE进行说明。
在一个实施例中,装置900应用于UE。
具体的,处理单元901,用于确定CFI,所述CFI用于指示一个子帧中PDCCH传输占用的符号数量,所述CFI由以下几种方式中的至少一种确定:
所述UE根据接收的第三信息确定所述CFI;
所述UE根据预先定义确定所述CFI;
所述UE根据第一对应关系和第四信息确定所述CFI。
收发单元902,用于接收下行控制信息PDCCH;
所述处理单元,还用于根据所述CFI,检测所述PDCCH。
在一个实现方式中,所述第三信息和/或第四信息承载在MBMS主信息块中。
在一个实现方式中,所述第三信息通过1位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2,3和4中的一个。
在一个实现方式中,所述第三信息通过2位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2,3和4中的一个。
在一个实现方式中,所述处理单元,具体用于根据预先定义确定所述CFI的数值,所述CFI数值包括1,2,3和4中的一个。
在一个实现方式中,所述处理单元,具体用于根据第一对应关系和第四信息确定所述CFI,所述第四信息用于指示系统带宽或资源块RB的数量;所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系。
在一个实现方式中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于第一数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于或等于第一数值且小于第二数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于或等于第二数值时,所述CFI的数值为1。
在一个实现方式中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于或等于第一数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于第一数值且小于或等于第二数值时,所 述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于第二数值时,所述CFI的数值为1。
在一个实现方式中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于第一数值时,所述CFI的数值为4;
当所述系统带宽的数值或所述RB的数量大于或等于第一数值且小于第二数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于或等于第二数值且小于第三数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于或等于第三数值时,所述CFI的数值为1。
在一个实现方式中,所述第一对应关系包括系统带宽的数值与CFI的数值的对应关系,或者,RB的数量与CFI的数值的对应关系,包括:
当所述系统带宽的数值或所述RB的数量小于或等于第一数值时,所述CFI的数值为4;
当所述系统带宽的数值或所述RB的数量大于第一数值且小于或等于第二数值时,所述CFI的数值为3;
当所述系统带宽的数值或所述RB的数量大于第二数值且小于或等于第三数值时,所述CFI的数值为2;
当所述系统带宽的数值或所述RB的数量大于第三数值时,所述CFI的数值为1。
在另一个实施例中,该装置900应用于网络设备。
具体的,处理单元901,用于确定第三消息和/或第四消息,其中第三消息和第四消息用于指示CFI,所述CFI用于指示一个子帧中PDCCH传输占用的符号数量;
收发单元902,用于将第三消息和/或第四消息发送给用户终端UE,其中,所述第三信息和/或第四信息是承载在物理广播信道PBCH中的信息。
在一个实现方式中,所述第三信息和/或第四信息承载在MBMS主信息块中。
在一个实现方式中,所述第三信息通过1位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2,3和4中的一个。
在一个实现方式中,所述第三信息通过2位比特指示所述CFI的数值,包括以下一种情况:
1,2和3中的一个;或者
2,3和4中的一个;或者
1,2,3和4中的一个。
在一个实现方式中,所述第四信息用于指示系统带宽或资源块RB的数量。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于与上述CFI的配置方法相同的构思,如图10所示,本申请实施例还提供了一种CFI的配置装置1000的结构示意图。装置1000可用于实现上述UE或网络设备的方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述UE包括第一UE和/或第二UE。所述装置1000可以处于UE或网络设备中或为UE或网络设备。
所述装置1000包括一个或多个处理器1001。所述处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1000包括一个或多个所述处理器1001,所述一个或多个处理器1001可实现上述所示的实施例中UE或网络设备的方法。
可选的,处理器1001除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1001可以执行指令,使得所述装置1000执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1003,也可以全部或部分存储在与所述处理器耦合的存储器1002中,如指令1004,也可以通过指令1003和1004共同使得装置1000执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1000也可以包括电路,所述电路可以实现前述方法实施例中UE或网络设备的功能。
在又一种可能的设计中所述装置1000中可以包括一个或多个存储器1002,其上存有指令1004,所述指令可在所述处理器上被运行,使得所述装置1000执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1002可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1000还可以包括收发器1005以及天线1006。所述处理器1001可以称为处理单元,对装置(终端或者基站)进行控制。所述收发器1005可以称为收发机、收发电路、或者收发器等,用于通过天线1006实现装置的收发功能。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软 件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述应用于UE或网络设备的任一方法实施例所述的CFI的配置的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述应用于UE或网络设备的任一方法实施例所述的CFI的配置的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例 如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述应用于UE或网络设备的任一方法实施例所述的CFI的配置的方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源 传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种物理下行控制信道PDCCH的检测方法,其特征在于,包括:
    第一用户终端UE接入广播专用载波;
    所述第一UE在所述广播专用载波上对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
  3. 根据权利要求1或2所述的方法,其特征在于,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选检测。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一PDCCH候选在公共搜索空间中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述对PDCCH候选集合中的至少一个第一PDCCH候选进行检测,包括:
    若所述第一UE接收到网络设备发送的检测所述第一PDCCH候选的指示,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测;或者
    若所述第一UE支持对所述第一PDCCH候选的检测,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测。
  6. 根据权利要求5所述的方法,其特征在于,所述检测第一PDCCH候选的指示由物理广播信道PBCH承载的MBMS主信息块指示。
  7. 一种物理下行控制信道PDCCH的检测方法,其特征在于,包括:
    网络设备在广播专用载波上向用户终端UE发送供所述UE接入的信号;
    所述网络设备在所述广播专用载波上向所述UE发送PDCCH候选集合中的至少一个第一PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
  9. 根据权利要求7或8所述的方法,其特征在于,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第一PDCCH候选在公共搜索空间中。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一UE发送检测第一PDCCH候选的指示。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述检测第一PDCCH候选的指示为物理广播信道PBCH承载的MBMS主信息块中的至少一个信息。
  13. 一种物理下行控制信道PDCCH的检测装置,其特征在于,包括:
    处理单元,用于接入广播专用载波;
    收发单元,用于在所述广播专用载波上接收PDCCH候选集合中的至少一个第一PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE中,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数;
    所述处理单元,还用于对所述至少一个第一PDCCH候选进行检测。
  14. 根据权利要求13所述的装置,其特征在于,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
  15. 根据权利要求13或14所述的装置,其特征在于,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选检测。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述第一PDCCH候选在公共搜索空间中。
  17. 根据权利要求13-16任一项所述的装置,其特征在于,所述处理单元,具体用于若第一UE接收到网络设备发送的检测所述第一PDCCH候选的指示,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测;或者若第一UE支持对所述第一PDCCH候选的检测,则所述第一UE对所述PDCCH候选集合中的至少一个所述第一PDCCH候选进行检测。
  18. 根据权利要求17所述的装置,其特征在于,所述检测第一PDCCH候选的指示由物理广播信道PBCH承载的MBMS主信息块指示。
  19. 一种物理下行控制信道PDCCH的检测装置,其特征在于,包括:
    收发单元,用于在广播专用载波上向用户终端UE发送供所述UE接入的信号;
    处理单元,用于确定PDCCH候选集合中的至少一个PDCCH候选,所述第一PDCCH候选由N*L个控制信道单元CCE组成,其中,所述N*L个CCE,前(N/2)*L个CCE和后(N/2)*L个CCE的编码比特收集的起始位置相同,L为大于或等于8的整数,N为大于0的偶数;
    所述收发单元,还用于在所述广播专用载波上向所述UE发送所述至少一个第一PDCCH候选。
  20. 根据权利要求19所述的装置,其特征在于,所述第一PDCCH候选由以第一起始CCE为起点的N*L个连续CCE组成,所述第一起始CCE为CCE索引0。
  21. 根据权利要求19或20所述的装置,其特征在于,所述前(N/2)*L个CCE,和所述后(N/2)*L个CCE分别构成两个第二PDCCH候选。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述第一PDCCH候选在公共搜索空间中。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述收发单元,还用于向所述第一UE发送检测第一PDCCH候选的指示。
  24. 根据权利要求19-23任一项所述的装置,其特征在于,所述检测第一PDCCH候选的指示为物理广播信道PBCH承载的MBMS主信息块中的至少一个信息。
  25. 一种物理下行控制信道PDCCH的检测装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求 1-12中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-12中任一项所述的方法被执行。
  27. 一种计算机程序产品,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-12中任一项所述的方法被执行。
  28. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以执行权利要求1-12中任一项所述的方法。
PCT/CN2019/101208 2019-08-16 2019-08-16 一种pdcch配置方法及装置 WO2021031032A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/101208 WO2021031032A1 (zh) 2019-08-16 2019-08-16 一种pdcch配置方法及装置
PCT/CN2019/111339 WO2021031317A1 (zh) 2019-08-16 2019-10-15 一种pdcch的检测方法及装置
CN201980099208.4A CN114208375B (zh) 2019-08-16 2019-10-15 一种pdcch的检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101208 WO2021031032A1 (zh) 2019-08-16 2019-08-16 一种pdcch配置方法及装置

Publications (1)

Publication Number Publication Date
WO2021031032A1 true WO2021031032A1 (zh) 2021-02-25

Family

ID=74660015

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/101208 WO2021031032A1 (zh) 2019-08-16 2019-08-16 一种pdcch配置方法及装置
PCT/CN2019/111339 WO2021031317A1 (zh) 2019-08-16 2019-10-15 一种pdcch的检测方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111339 WO2021031317A1 (zh) 2019-08-16 2019-10-15 一种pdcch的检测方法及装置

Country Status (2)

Country Link
CN (1) CN114208375B (zh)
WO (2) WO2021031032A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328829A (zh) * 2021-05-21 2021-08-31 Oppo广东移动通信有限公司 一种编译码方法、设备及计算机存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152050A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 下行控制信道参数的配置方法、网络设备和终端设备
CN109392151A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种确定pdcch搜索空间的方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255688B (zh) * 2011-07-06 2013-04-10 合肥东芯通信股份有限公司 Ltepdcch盲检控制方法和装置
KR102039714B1 (ko) * 2011-10-28 2019-11-29 삼성전자주식회사 통신 시스템에서의 물리 하향링크 제어 채널 검색 방법
CN106301674B (zh) * 2015-05-22 2019-11-29 中国移动通信集团公司 一种聚合载波的盲检方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152050A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 下行控制信道参数的配置方法、网络设备和终端设备
CN109392151A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种确定pdcch搜索空间的方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "CORESET Configuration and Search Space Design", 3GPP DRAFT; R1-1715395, vol. RAN WG1, 11 September 2017 (2017-09-11), Nagoya, Japan, pages 1 - 10, XP051329020 *
NOKIA; NOKIA SHANGHAI BELL: "Summary on CRs related to rate-matching in NR", 3GPP DRAFT; R1-1905599_SUMMARY_CRS_7_1_3_RAN1_96BIS_RATE_MATCHING_FINAL, vol. RAN WG1, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 16, XP051707657 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328829A (zh) * 2021-05-21 2021-08-31 Oppo广东移动通信有限公司 一种编译码方法、设备及计算机存储介质
CN113328829B (zh) * 2021-05-21 2022-12-27 Oppo广东移动通信有限公司 一种编译码方法、设备及计算机存储介质

Also Published As

Publication number Publication date
CN114208375A (zh) 2022-03-18
WO2021031317A1 (zh) 2021-02-25
CN114208375B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN111510992B (zh) 无线发射/接收单元的系统信息块获取方法和装置
EP3282725B1 (en) Base station and user terminal
US9414358B2 (en) Communication units and methods for control change notification in broadcast communication
TWI725158B (zh) 用於稀疏碼多工存取(scma)編碼簿設計的技術
US9456435B2 (en) Communication units and methods for control channel change notification in broadcast communication system supporting carrier aggregation
US10257844B2 (en) Beam-combining scheme with broadcast beam-sweeping and beam-index indication
JP6728380B2 (ja) 改善されたピークデータレートを有するhd−fdd通信
US9094182B2 (en) Communication units and methods for resource change notification in broadcast communication
TW201921962A (zh) 針兌一個或多個載波類型的epdcch共用檢索空間設計
TW202143755A (zh) 用於多播/廣播服務的方法和用戶設備
WO2020063275A1 (zh) 一种信息指示方法及装置
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
US9320055B2 (en) Method for efficiently transmitting broadcasting message in broadband wireless access system
WO2014113968A1 (zh) 信道变更获知方法、通知方法及设备
US20180176881A1 (en) Methods and Arrangements Regarding Paging of Wireless Communication Devices of a Certain Category
WO2019029734A9 (zh) 一种信息的发送方法及设备
WO2021013141A1 (zh) 协作传输方法、装置及设备
WO2021031032A1 (zh) 一种pdcch配置方法及装置
WO2020199514A1 (zh) 一种tbs的确定方法及装置
US20200186278A1 (en) Support for multiple coding schemes
US20240098754A1 (en) Method And Apparatus For Providing A Unified Control Channel Framework In Mobile Communications
WO2020199588A1 (zh) 一种tbs的确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941918

Country of ref document: EP

Kind code of ref document: A1