WO2021029787A1 - Алюминиевый электролизер с утепленной бортовой футеровкой - Google Patents

Алюминиевый электролизер с утепленной бортовой футеровкой Download PDF

Info

Publication number
WO2021029787A1
WO2021029787A1 PCT/RU2020/050164 RU2020050164W WO2021029787A1 WO 2021029787 A1 WO2021029787 A1 WO 2021029787A1 RU 2020050164 W RU2020050164 W RU 2020050164W WO 2021029787 A1 WO2021029787 A1 WO 2021029787A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refractory
lining
silicon carbide
electrolyzer
Prior art date
Application number
PCT/RU2020/050164
Other languages
English (en)
French (fr)
Inventor
Геннадий Викторович АРХИПОВ
Рашид Халиуллович Мухаметчин
Евгений Рашидович ШАЙДУЛИН
Александр Владимирович Попов
Юрий Олегович Авдеев
Original Assignee
Общество С Ограниченной Ответственностью "Объединенная Компания Русал Инженерно -Технологический Центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Объединенная Компания Русал Инженерно -Технологический Центр" filed Critical Общество С Ограниченной Ответственностью "Объединенная Компания Русал Инженерно -Технологический Центр"
Priority to CA3148080A priority Critical patent/CA3148080C/en
Priority to NO20220184A priority patent/NO20220184A1/en
Publication of WO2021029787A1 publication Critical patent/WO2021029787A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium

Definitions

  • the invention relates to the field of nonferrous metallurgy, namely, to the design of electrolytic cells for the electrolytic production of aluminum, and can be performed in all types of electrolysers.
  • RU 94012661, S25SZ / 06, publ. 10.04.1996) which allows the formation of stable decks and a long service life of the electrolyzer.
  • the main distinguishing feature of this design is an inclined longitudinal side wall made of side carbon-graphite blocks.
  • the side lining of the electrolyzer is inclined to the horizon at an angle of 0.3-0.9 F, where F is the angle of inclination of the side wall of the cathode casing to the same plane.
  • Known "Cathode device of an aluminum electrolyzer" (RU 1295786, S25SZ / 08, publ.
  • the disadvantage is that with this version of the side lining, oxidation and destruction of coal plates takes place when they are exposed to oxygen from the air entering through the electrolyte crust, this leads to leaks of the electrolyte melt into the lining and deterioration of the thermal insulation properties. As a result of leaks, forces arise that squeeze the coal plates from the cathode casing, which subsequently destroy the side lining.
  • a known electrolyzer for producing aluminum and a method for maintaining a crust on the side wall and regenerating electricity (application RU 2002135593, C25SZ / 06, publ. 29.05.2001), where the high-temperature, heat-resistant and heat-insulating material is located inside, on the inside of the side walls of the steel body, characterized in that all the side walls of the cell are equipped with cooling evaporative panels.
  • the disadvantage of the solution is that the heat balance of the electrolyzer of the claimed design depends on the crust and skull that are intensively formed due to the cooling of the sides by the evaporating panels, with each deviation of the technological parameters of the electrolyzer and the change in the shape of the working space, the heat balance of the electrolyzer will not be stable.
  • the location of the cooling evaporative panels inside the cathode casing is critical, since contact of the panels with an aggressive electrolyte environment will significantly reduce their service life, and the protection of panels in a heat-resistant, heat-insulating material is associated with a significant increase in capital costs.
  • the closest in technical essence to the claimed invention is the side lining of an aluminum electrolyzer (copyright certificate SU 377419, ⁇ 25 ⁇ / 08, publ. 17.04.1973), where the side lining is made in height from materials with different resistance to melt, while its upper part made of material with increased resistance - graphite plates, and the lower part of material with reduced resistance - fired carbon blocks.
  • the disadvantage of the prototype is that after sintering with an adhesive layer at a high melt circulation rate, the insert is destroyed due to deformation shifts in the upper parts of the cathode casing.
  • the objective of the proposed invention is to reduce heat losses from the side walls of the electrolyzer and stabilize the heat balance of the electrolyzer, as well as the formation of a stable crust and skull, which ensures a long service life of the electrolyzer, a stable course of electrolysis technology and can significantly reduce energy consumption due to operation at a lower operating voltage electrolyzer.
  • the technical result is to solve the problem, reduce the operating voltage of the cell by reducing heat losses from the side walls of the cell, stabilizing the heat balance and increasing the MG D-stability of the cell (MHD magnetohydrodynamic).
  • the above technical result also includes a decrease in power consumption, due to an increase in MG D-stability - an increase in the current efficiency, which in turn makes it possible to reduce the cost of aluminum produced.
  • the problem is solved, and the technical result is achieved due to the fact that in the electrolytic cell for the electrolytic production of aluminum, which includes a metal cathode casing, heat-insulating and refractory lining, a hearth made of hearth blocks with cathode current supply rods, a side lining, the new thing is that the side lining made of silicon carbide and / or carbon plates with an additional molded refractory layer with a lower thermal conductivity installed between the walls of the metal cathode casing and silicon carbide and / or carbon plates.
  • Silicon carbide is a material obtained by combining powdered silicon carbide with soot, characterized by increased density, high heat resistance, electrical conductivity and resistance to the process of scale formation.
  • Multi-layer structures can be used, where the first layer is a silicon carbide plate or a cheaper carbon plate.
  • the material of the first layer should be erosion-resistant, with low electrical and thermal conductivity, low porosity and high density.
  • the refractory layer can be made of chamotte material or a multilayer structure. The dimensions of the refractory layer are determined in accordance with the design of the cathode sheath and depend on the target technological parameters of electrolysis. It is important that the first silicon carbide layer is erosion-resistant to the aggressive electrolysis medium (electrolyte), and the second, for example, made of chamotte, is heat-resistant in order to reduce heat losses.
  • electrolysis medium electrolysis medium
  • the shaped refractory layer can be made of monolithic refractory plates and / or refractory bricks, it can contain inserts of additional heat-insulating material located inside the masonry of refractory plates and / or refractory bricks, while the inserts can be made of shaped and / or unshaped heat-insulating material.
  • the additional refractory layer can also be made from an unshaped material.
  • the installation of the side lining involves the manufacture of special equipment (frame), in which Unshaped material is poured for further ramming, drying and solidification into a refractory layer in a mold committed by the tooling.
  • frame special equipment
  • FIG. 2 a shows the results of modeling the temperature field 10 and the shape of the working space of an electrolyzer with a two-layer insulated side lining in comparison with an existing serial design b);
  • FIG. 3 shows an electrolytic cell for the electrolytic production of aluminum
  • FIG. 4 shows an additional refractory layer.
  • an aluminum electrolytic cell used a side lining of carbon blocks, later of silicon carbide plates.
  • Carbon blocks are predominantly cheap and have low thermal conductivity, which minimizes heat losses from the sides of the electrolyzer.
  • carbon blocks have relatively low erosion resistance (weak resistance to high overheating, as well as to the aggressive electrolysis environment - electrolyte), which reduces the life of the electrolyzer.
  • Expensive silicon carbide plates have high resistance to overheating and high resistance in an electrolyte environment.
  • a significant disadvantage of silicon carbide plates is their high thermal conductivity, which entails large heat losses from the sides of the electrolyzer, which require compensation in the form of voltage to stabilize the heat balance, which leads to increased power consumption - an increase in the cost of aluminum.
  • the proposed insulated design of the side lining consisting of silicon carbide plates adjoining the electrolyte and an additional refractory layer between the silicon carbide plates and the electrolyzer casing, combines both high resistance to overheating and high resistance to electrolyte, and low thermal conductivity, which ensures a high service life with a stable thermal the balance of the electrolyzer, which will allow electrolysis technologies to be carried out at a lower voltage, with a lower power consumption, with a lower cost of aluminum produced.
  • the maximum temperature of the longitudinal wall of the cathode device will be 235 ° C, the end wall of the cathode device is 155 ° C, and the bottom of the cathode device is 70 ° C.
  • the length of the crust along the longitudinal wall will be 150 mm, along the end wall - 162 mm under the anode.
  • the minimum thickness of the skull will be 30 mm along the longitudinal wall, and 64 mm along the end wall at the level of the carbon block of the insert.
  • the average voltage will be 4,050 V, and the power consumption will be 12,823 kWh / t.
  • an additional refractory layer is glued to the cathode casing of the electrolyzer; a layer of silicon carbide plates is also glued to the additional refractory layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

Изобретение относится к цветной металлургии, а именно, к конструкции электролизеров для электролитического получения алюминия, и может быть исполнено в электролизерах всех типов. Электролизер включает металлический катодный кожух, теплоизоляционную и огнеупорную футеровку, подину, выполненную из подовых блоков с катодными токоподводящими стержнями, бортовую футеровку, выполненную из карбидкремниевых плит с дополнительным формованным огнеупорным слоем с более низкой теплопроводностью, установленным между стенками металлического катодного кожуха и карбидкремниевыми плитами. В результате снижается рабочее напряжение электролизера за счет снижения тепловых потерь с бортовых стенок электролизера, стабилизируется тепловой баланс и увеличивается МГ Д-стабильность электролизера.

Description

АЛЮМИНИЕВЫЙ ЭЛЕКТРОЛИЗЕР С УТЕПЛЕННОЙ БОРТОВОЙ ФУТЕРОВКОЙ
Область техники
Изобретение относится к области цветной металлургии, а именно, к конструкции электролизеров для электролитического получения алюминия, и может быть исполнено в электролизерах всех типов.
Уровень техники
В существующих конструкциях электролизеров для электролитического получения алюминия наиболее высокая составляющая теплопотерь (около 35%) приходится на продольные бортовые стенки (фиг.1) (см. Zhaowen Wang и др., Утилизация тепла алюминиевых электролизеров.
Получение алюминия: Сборник докладов IX Международного Конгресса
«Цветные металлы и минералы». Красноярск: Northeastern University, 2017,
209-217). Такое количество теплопотерь отрицательно влияет на тепловой баланс электролизера, и требуется возмещение тепла за счет напряжения электролизера, что влечет за собой повышенный расход электроэнергии и, как следствие увеличение себестоимости произведенного алюминия.
Известен алюминиевый электролизер с бортовой футеровкой (заявка
RU 94012661, С25СЗ/06, опубл. 10.04.1996г.), которая позволяет формировать стабильные настилы и обеспечить высокий срок службы электролизера. Главной отличительной чертой данной конструкции является наклонная продольная бортовая стенка, выполненная из бортовых углеграфитовых блоков. При этом бортовая футеровка электролизера наклонена к горизонту под углом 0,3-0, 9 Ф, где Ф - угол наклона бортовой стенки катодного кожуха к той же плоскости. Известны «Катодное устройство алюминиевого электролизера» (RU 1295786, С25СЗ/08, опубл. 1985г.), где угол наклона бортовой стенки 45-66°, «Алюминиевый электролизер» (SU 1788090, С25СЗ/08, опубл. 1990г.), где угол наклона бортовой стенки 20-45°, «Электролизер для получения алюминия» (RU 94009828, опубл. 10.04.1996г.), где угол наклона бортовой стенки 120°.
Недостаток данных технических решений обусловлен тем, что в процессе электролиза усилие от термического расширения подовых углеграфитовых блоков, воздействуя на наклонную бортовую стенку, вызывает силу направленную перпендикулярно наклонным стенкам кожуха. Тангенциальная составляющая, действуя на наклонные бортовые блоки, прижимает их фланцевым листом, нагрузки на фланцевый лист существенно возрастают, что приводит к разрушению бортовой футеровки. Поэтому, использование наклонных бортовых стенок требует увеличение жесткости катодного кожуха, в свою очередь увеличение жесткости кожуха сопряжено с ростом его массы и ростом капитальных затрат.
Также недостатком является то, что при данном исполнении бортовой футеровки имеет место окисление и разрушение угольных плит при воздействии на них кислорода из воздуха, поступающего через корку электролита, это приводит к протекам расплава электролита в футеровку и ухудшению теплоизоляционных свойств. В результате протеков возникают усилия, отжимающие угольные плиты от катодного кожуха, которые впоследствии разрушают бортовую футеровку.
Кроме того, при наклонной конструкции бортовой стенки, стабилизировать тепловой баланс электролизера, снизив теплопотери с бортов возможно только после пускового периода электролизера, т.е. после формирования настыли и гарнисажа. Таким образом, теплопотери с бортов при наклонной продольной стенки в пусковой период останутся неизменными, что потребует возмещение тепла за счет напряжения электролизера. Известна боковая футеровка алюминиевого электролизера (патент RU 2072398, С25СЗ/06, опубл. 27.01.1997г.), в которой выполнен пояс из непроводящего керамического материала на основе нитрида алюминия. Пояс выполнен из плит, соединенных торцевыми гранями с помощью асимметричных выступов и углублений при помощи клея с добавками тугоплавких соединений. Недостатком решения является применение дорогостоящих материалов, обладающих низкой барьерной стойкостью к воздействию расплава электролита.
Известен электролизер для получения алюминия и способ поддержания корки на боковой стенки и регенерирования электричества (заявка RU 2002135593, С25СЗ/06, опубл. 29.05.2001г.), где высокотемпературный, термостойкий и теплоизоляционный материал расположен внутри, на внутренней части боковых стенок стального корпуса, отличающийся тем, что все боковые стенки электролизера оборудованы охлаждающими испарительными панелями. Недостатком решения является то, что тепловой баланс электролизера заявляемой конструкции зависит от интенсивно сформировавшихся за счет охлаждения бортов испарительными панелями настыли и гарнисажа, при каждом отклонении технологических параметров работы электролизера и изменении формы рабочего пространства тепловой баланс электролизера будет не стабилен. Расположение охлаждающих испарительных панелей внутри катодного кожуха является критичным, так как контактирование панелей с агрессивной средой электролита будет существенно сокращать их срок службы, а защита панелей в термостойком, теплоизоляционном материале сопряжена со значительным ростом капитальных затрат.
Наиболее близким по технической сущности к заявляемому изобретению является бортовая футеровка алюминиевого электролизера (авторское свидетельство SU 377419, С25СЗ/08, опубл. 17.04.1973г.), где бортовая футеровка выполнена по высоте из материалов с различной стойкостью к расплаву, при этом верхняя часть ее выполнена из материала с повышенной стойкостью - графитированных плит, а нижняя часть из материала с пониженной стойкостью - обожженных угольных блоков. Недостатком прототипа является то, что после спекания клеящим слоем при высокой скорости циркуляции расплава происходит разрушение вставки за счет деформационных сдвигов в верхних частях катодного кожуха.
Раскрытие изобретения
Задачей предложенного изобретения является снижение тепловых потерь с бортовых стенок электролизера и стабилизация теплового баланса электролизера, а также формирование устойчивой настыли и гарнисажа, что обеспечивает высокий срок службы электролизера, стабильный ход технологии электролиза и позволяет существенно снизить расход электроэнергии за счет работы при более низком рабочем напряжении электролизера.
Техническим результатом является решение поставленной задачи, снижение рабочего напряжения электролизера за счет снижения тепловых потерь с бортовых стенок электролизера, стабилизации теплового баланса и увеличения МГ Д-стабильности электролизера (МГД магнитогидродинамическая) .
Вследствие стабилизации теплового баланса электролизера вышеуказанный технический результат включает также снижение расхода электроэнергии, вследствие увеличения МГ Д-стабильности - повышение выхода по току, что в свою очередь позволяет снизить себестоимость произведенного алюминия.
Задача решается, а технический результат достигается за счет того, что в электролизере для электролитического получения алюминия, включающем металлический катодный кожух, теплоизоляционную и огнеупорную футеровку, подину, выполненную из подовых блоков с катодными токоподводящими стержнями, бортовую футеровку, новым является то, что бортовая футеровка выполнена из карбидкремниевых и/или углеродных плит с дополнительным формованным огнеупорным слоем с более низкой теплопроводностью, установленным между стенками металлического катодного кожуха и карбидкремниевыми и/или углеродными плитами.
Для осуществления предложенного изобретения целесообразно использовать углеродные плиты, карбидкремниевые материалы, шамот. Карбид кремния представляет собой материал, полученный в результате соединения порошкового карбида кремния с сажей, характеризуется повышенной плотностью, высокой степенью термостойкости, электропроводности и устойчивости к процессу образования окалины.
Могут использоваться многослойные конструкции, где первый слой это карбидкремниевая плита или более дешевая углеродная. Материал первого слоя должен быть эрозионно-стойким, с низкой электропроводностью и теплопроводностью, с низкой пористостью и высокой плотностью. Огнеупорный слой может быть выполнен из материала шамот или представлять собой многослойную структуру. Размеры огнеупорного слоя определяются в соответствии с конструкцией катодного кожуха, и зависят от целевых технологических параметров электролиза. Важно, что первый слой карбидкремниевый является эрозионно-стойким к агрессивной среде электролиза (электролиту), а второй, например, из шамота - термостойкий, чтобы снизить тепловые потери.
Формованный огнеупорный слой может быть выполнен из монолитных огнеупорных плит и/или огнеупорных кирпичей, может содержать вставки дополнительного теплоизоляционного материала, расположенного внутри кладки огнеупорных плит и/или огнеупорных кирпичей, при этом вставки могут быть выполнены из формованного и/или неформованного теплоизоляционного материала.
Дополнительный огнеупорный слой также может быть выполнен из неформованного материала. В данном случае монтаж бортовой футеровки предусматривает изготовление специальной оснастки (каркаса), в которую засыпается неформованный материал для дальнейшей трамбовки, сушки и застывания в огнеупорный слой в форме, преданной оснасткой.
Ранее двуслойная футеровка не применялась, т.е. не было футеровки из двух разных материалов, применялась либо углеродная (дешевая, слабо 5 противостоит перегревам, обладает низкой теплопроводностью), либо карбидкремниевая (более дорогая, но более эррозионно стойкая, но и тепло пропускает сильно - высокие теплопотери).
Сущность изобретения поясняется чертежами.
На фиг. 2 а) представлены результаты моделирования температурного 10 поля и формы рабочего пространства электролизера с двуслойной утепленной бортовой футеровкой в сравнении с электролизером существующей серийной конструкции б);
На фиг. 3 показан электролизер для электролитического получения алюминия;
15 На фиг. 4 представлен дополнительный огнеупорный слой.
Пояснения конструктивных элементов, приведенных на чертежах:
1 - металлический катодный кожух;
2 - теплоизоляционная футеровка;
3 - огнеупорная футеровка;
20 4 - подина, выполненная из подовых блоков;
5 - катодные токоподводящие стержни;
6 - карбидкремниевые плиты;
7 - дополнительный формованный огнеупорный слой;
8 - вставки дополнительного теплоизоляционного материала;
25 9 - огнеупорные кирпичи/плиты.
До настоящего времени в алюминиевом электролизере применялась бортовая футеровка из углеродных блоков, позднее из карбидкремниевых плит. Углеродные блоки преимущественно дешевые и обладают низкой теплопроводностью, что минимизирует тепловые потери с бортов зо электролизера. В тоже время у углеродных блоков относительно низкая эрозионная стойкость (слабое противостояние высоким перегревам, а также агрессивной среде электролиза - электролиту), что сокращает срок службы электролизера. Дорогостоящие карбидкремниевые плиты напротив обладают высоким сопротивлением перегревам и высокой стойкостью в среде электролита. Существенным недостатком карбидкремниевых плит является их высокая теплопроводность, что влечет за собой большие потери тепла с бортов электролизера, которые требуют компенсацию в виде напряжения для стабилизации теплового баланса, что ведет к повышенному расходу электроэнергии - повышению себестоимости алюминия.
Предложенная утепленная конструкция бортовой футеровки, состоящая из граничащих с электролитом карбидкремниевых плит и дополнительного огнеупорно слоя между карбидкремниевыми плитами и кожухом электролизера, совмещает в себе как высокое сопротивление перегревам и высокую стойкость к электролиту, так и низкую теплопроводность, что обеспечивает высокий срок службы при стабильном тепловом балансе электролизера, который позволит вести технологии электролиза при более низком напряжении, с более низким расходом электроэнергии, с более низкой себестоимостью произведенного алюминия.
Ниже приведены результаты математического моделирования электролизера с бортовой футеровкой заявляемой конструкции.
Результаты расчетов показали, что для обеспечения теплового баланса электролизера с двуслойной (и более) утепленной бортовой футеровкой, с температурой электролита 956 °С, необходимо МПР (межполюсное расстояние) 48,3 мм. При данных условиях общие потери тепла с анодного устройства составят 106,0 кВт (42,1 %), с продольных стенок катодного устройства 86,5 кВт (21,5 %), с торцевых стенок катодного устройства 37,3 кВт (14,9 %), с днища катодного устройства 22,8 кВт (8,6%). Максимальная температура продольной стенки катодного устройства составит 235 °С, торцевой стенки катодного устройства 155 °С, днища катодного устройства 70 °С. Длина настыли по продольной стенке составит 150 мм, по торцевой стенке - 162 мм под анодом. Минимальная толщина гарнисажа составит 30 мм по продольной стенке, по торцевой стенке - 64 мм на уровне угольной блок вставки. Среднее напряжение составит 4,050 В, а расход электроэнергии - 12823 кВтч/т. В рамках опытно-промышленных испытаний утепленной двухслойной
(и более) бортовой футеровки выполнена приклейка дополнительного огнеупорного слоя к катодному кожуху электролизера, к дополнительному огнеупорному слою также приклейкой смонтирован слой карбидкремниевых плит. В процессе монтажа двуслойной бортовой футеровки никаких особых требований к материалам приклейки, а также к операциям укладки предъявлено не было. В ходе промышленных испытаний на опытном электролизере благодаря утепленной конструкции бортовой футеровки было достигнуто снижение расхода электроэнергии на 300 кВтч/т относительно существующих электролизеров с карбидкремниевой бортовой футеровкой.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Электролизер для электролитического получения алюминия, содержащий металлический катодный кожух, теплоизоляционную и огнеупорную футеровку, подину, выполненную из подовых блоков с катодными токоподводящими стержнями, бортовую футеровку, отличающийся тем, что бортовая футеровка выполнена в виде многослойной структуры, содержащей карбидкремниевые и/или углеродные плиты с дополнительным формованным по меньшей мере одним огнеупорным слоем с более низкой теплопроводностью, установленным между стенками металлического катодного кожуха и карбидкремниевыми и/или углеродными плитами.
2. Электролизер по п. 1, отличающийся тем, что формованный огнеупорный слой выполнен из монолитных огнеупорных плит и/или огнеупорных кирпичей.
3. Электролизер по п. 1 или 2, отличающийся тем, что формованный огнеупорный слой содержит вставки дополнительного теплоизоляционного материала, расположенного внутри кладки огнеупорных плит и/или огнеупорных кирпичей.
4. Электролизер по п. 3, отличающийся тем, что вставки выполнены из формованного или неформованного теплоизоляционного материала.
PCT/RU2020/050164 2019-08-15 2020-07-24 Алюминиевый электролизер с утепленной бортовой футеровкой WO2021029787A1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3148080A CA3148080C (en) 2019-08-15 2020-07-24 Aluminium reduction cell with a heat insulated side lining
NO20220184A NO20220184A1 (en) 2019-08-15 2020-07-24 Aluminium-producing electrolytic cell with heat-insulated side wall lining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2019125927 2019-08-15
RU2019125927A RU2714565C1 (ru) 2019-08-15 2019-08-15 Алюминиевый электролизер с утепленной бортовой футеровкой

Publications (1)

Publication Number Publication Date
WO2021029787A1 true WO2021029787A1 (ru) 2021-02-18

Family

ID=69625802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2020/050164 WO2021029787A1 (ru) 2019-08-15 2020-07-24 Алюминиевый электролизер с утепленной бортовой футеровкой

Country Status (4)

Country Link
CA (1) CA3148080C (ru)
NO (1) NO20220184A1 (ru)
RU (1) RU2714565C1 (ru)
WO (1) WO2021029787A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129157A1 (fr) * 2021-11-18 2023-05-19 Rio Tinto Alcan International Limited Système de revêtement intérieur pour cuve d’électrolyse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683046A (en) * 1985-03-22 1987-07-28 Swiss Aluminium Ltd. Reduction pot for the production of aluminum
RU2186880C1 (ru) * 2001-03-05 2002-08-10 Общество с ограниченной ответственностью "АЛКОРУС ИНЖИНИРИНГ" Боковая футеровка алюминиевого электролизера
CN1928161A (zh) * 2006-08-11 2007-03-14 王文 铝电解槽用侧部内衬及废阴极在制备其侧部内衬中的应用
RU2299277C2 (ru) * 2005-06-22 2007-05-20 Общество с ограниченной ответственностью "Инженерно-технологический центр" Катодное устройство электролизера для производства алюминия

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2318921C1 (ru) * 2006-04-26 2008-03-10 Общество с ограниченной ответственностью "Русская инжиниринговая компания" Футеровка катодного устройства электролизера для производства первичного алюминия
RU2608942C1 (ru) * 2015-09-10 2017-01-26 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Катодная футеровка электролизера производства первичного алюминия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683046A (en) * 1985-03-22 1987-07-28 Swiss Aluminium Ltd. Reduction pot for the production of aluminum
RU2186880C1 (ru) * 2001-03-05 2002-08-10 Общество с ограниченной ответственностью "АЛКОРУС ИНЖИНИРИНГ" Боковая футеровка алюминиевого электролизера
RU2299277C2 (ru) * 2005-06-22 2007-05-20 Общество с ограниченной ответственностью "Инженерно-технологический центр" Катодное устройство электролизера для производства алюминия
CN1928161A (zh) * 2006-08-11 2007-03-14 王文 铝电解槽用侧部内衬及废阴极在制备其侧部内衬中的应用

Also Published As

Publication number Publication date
RU2714565C1 (ru) 2020-02-18
NO20220184A1 (en) 2022-02-10
CA3148080C (en) 2023-10-17
CA3148080A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
RU2403324C2 (ru) Катоды для алюминиевых электролизеров с пазом неплоской конфигурации
US4376690A (en) Cathode for a cell for fused salt electrolysis
WO2008106849A1 (fr) Cellule électrolytique de production d'aluminium comportant une cathode de blocs de carbone de structure hétérotypique
RU2239007C2 (ru) Катодный коллекторный стержень для улучшения теплового баланса
WO2011079548A1 (zh) 一种能减缓阴极凸起磨蚀的阴极结构铝电解槽
CN104047034A (zh) 保护电解槽的系统和方法
CA3148080C (en) Aluminium reduction cell with a heat insulated side lining
CA1332376C (en) Electrolytic cell for the production of a metal
RU2727441C1 (ru) Катодный блок с пазом особой геометрической формы
US9850586B2 (en) Lining for an aluminum electrolyzer having inert anodes
CA2910088C (en) Cathode block having a slot with a varying depth and a filled intermediate space
US3507768A (en) Electrolytic cell
JPH0211676B2 (ru)
RU2616754C1 (ru) Алюминиевый электролизер с искусственной настылью
RU2482224C2 (ru) Катодное устройство алюминиевого электролизера с рельефной подиной
RU2742633C1 (ru) Способ получения алюминия электролизом криолитоглиноземных расплавов
RU2687617C1 (ru) Электролизер для получения алюминия
RU2072398C1 (ru) Боковая футеровка алюминиевого электролизера
SU1079699A1 (ru) Катодный кожух алюминиевого электролизера
SU1740499A1 (ru) Способ обжига и пуска электролизера дл получени алюмини
RU2449060C2 (ru) Подина электролизера для получения алюминия
SU1236001A1 (ru) Анодный кожух алюминиевого электролизера с верхним токоподводом
EA044747B1 (ru) Сборочный узел катода для электролизера холла-эру для производства алюминия и способ его изготовления
RU2166007C1 (ru) Электролизер для получения магния и хлора
Øye Long life for high amperage cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3148080

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852151

Country of ref document: EP

Kind code of ref document: A1