WO2021029436A1 - Method for screening vascular endothelial cell activation substances - Google Patents

Method for screening vascular endothelial cell activation substances Download PDF

Info

Publication number
WO2021029436A1
WO2021029436A1 PCT/JP2020/030921 JP2020030921W WO2021029436A1 WO 2021029436 A1 WO2021029436 A1 WO 2021029436A1 JP 2020030921 W JP2020030921 W JP 2020030921W WO 2021029436 A1 WO2021029436 A1 WO 2021029436A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular endothelial
endothelial cells
vegf
uptake
test substance
Prior art date
Application number
PCT/JP2020/030921
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 田口
映恵 田浦
優子 小川
Original Assignee
公益財団法人神戸医療産業都市推進機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人神戸医療産業都市推進機構 filed Critical 公益財団法人神戸医療産業都市推進機構
Priority to JP2021539317A priority Critical patent/JP7466547B2/en
Publication of WO2021029436A1 publication Critical patent/WO2021029436A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for screening a substance that controls vascular endothelial cell activation. More specifically, the present invention relates to a method for screening a substance that promotes or suppresses vascular endothelial cell activation, using the amount of VEGF taken up into vascular endothelial cells as an index.
  • BM-MNC bone marrow mononuclear cells
  • BM-MNC contains a relatively high proportion of hematopoietic stem cells and can be easily prepared from autologous tissue, making it a suitable source of cell therapy, and experiments on ischemic diseases such as limb ischemia, myocardial infarction, and cerebral infarction. Although frequently used in therapeutic treatment, it is not known how BM-MNC activates angiogenesis.
  • VEGF Vascular Endothelial Growth Factor
  • VEGFR1 A method for screening a substance having an angiogenesis-promoting action using the phosphorylation of the cell and the migration of the cell as an index has been reported (Patent Document 2). In addition, a method for evaluating angiogenic ability by measuring blood concentrations of VEGF and endostatin has been reported (Patent Document 3).
  • the angiogenesis-promoting ability has been measured based on the concentration of VEGF, the dynamics of VEGF receptors, etc., but as in the present invention, the amount of uptake of vascular endothelial cells of VEGF is a candidate.
  • the idea of directly measuring the angiogenesis-promoting capacity of a substance was completely lacking.
  • the subject of the present invention is to apply the mechanism of angiogenesis by BM-MNC transplantation, establish a method for screening low molecular weight substances that substitute for its function, and ischemic including cerebral infarction, myocardial infarction, and limb ischemia.
  • the purpose is to provide new therapeutic drug candidates for diseases or diseases in which angiogenesis such as cancer, inflammatory disease, and rheumatism is involved in the progression of the pathological condition.
  • BM-MNC has been considered to promote angiogenesis by secreting various growth factors related to promotion of angiogenesis.
  • the present inventors do not promote angiogenesis by secreting various growth factors related to angiogenesis promotion, but BM-MNC acts on vascular endothelial cells to cause angiogenesis.
  • promoting the uptake of promoting factors in vascular endothelial cells results in the promotion of angiogenesis.
  • a new candidate for a therapeutic drug for ischemic disease I found that it is possible to search for.
  • the present invention relates to the following (1) to (13).
  • Screening method for substances that promote or suppress vascular endothelial cell activation including the following steps: 1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF, 2) Step of determining the amount of VEGF uptake into vascular endothelial cells, 3) A step of evaluating the vascular endothelial cell activating effect of the test substance based on the amount of VEGF taken up by the vascular endothelial cells.
  • the label include a fluorescent label, an enzyme label, and a radioactive label, and a fluorescent label is preferable.
  • step 3 when the amount of VEGF uptake into the vascular endothelial cells is increased, the test substance is evaluated to be useful as a vascular endothelial cell activation promoting substance, and the uptake of VEGF into the vascular endothelial cells is evaluated.
  • cytokine contains at least angiopoietin 2.
  • the test substance By culturing with the test substance, when the cytokine concentration in the culture supernatant decreases in addition to the increase in the amount of VEGF uptake into the vascular endothelial cells, the test substance is used as a vascular endothelial cell activation promoting substance.
  • the test substance is evaluated as useful as a vascular endothelial cell activation inhibitor.
  • the methods (1) to (8) can be a screening method for an ischemic disease therapeutic agent or an angiogenesis inhibitor.
  • ischemic disease examples include limb ischemia, ischemic heart disease including myocardial infarction / angina / heart failure, and ischemic cerebrovascular disorder such as cerebral infarction.
  • Angiogenesis inhibitors include cancers such as solid tumors and hemangiomas, rheumatoid arthritis, Kron's disease, Bechet's disease, psoriasis, porphyritic arteriosclerosis, diabetic retinopathy, angiogenic glaucoma, retinopathy of prematurity, and aging. It is useful for the treatment of diseases (angiogenic diseases) in which angiogenesis is involved in the progression of pathological conditions, such as retinopathy of prematurity.
  • Screening method for angiogenesis inhibitor including the following steps: 1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF, 2) Step of determining the amount of VEGF uptake into vascular endothelial cells, 3) A step of selecting the test substance as a candidate for a therapeutic agent for ischemic disease when the amount of VEGF taken up by the vascular endothelial cells increases.
  • Screening method for angiogenesis inhibitor including the following steps: 1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF, 2) Step of determining the amount of VEGF uptake into vascular endothelial cells, 3) A step of selecting the test substance as an angiogenesis inhibitor when the amount of VEGF taken up by the vascular endothelial cells decreases. (12) The method according to any one of (1) to (11), wherein the label is a fluorescent label. (13) The method according to any one of (1) to (12), wherein the vascular endothelial cells are human vascular endothelial cells.
  • a substance having an action of activating vascular endothelial cells can be screened from known low molecular weight compounds by a mechanism similar to that of BM-MNC, and the function of BM-MNC in vivo can be reduced to low molecular weight. It can be replaced with a compound.
  • a screening system using the intracellular uptake of labeled VEGF as an index enables high-throughput screening of substances that promote or suppress vascular endothelial cell activation.
  • the identified test substance is also advantageous from the viewpoint of drug delivery because the target is vascular endothelial cells.
  • FIG. 1 shows Vascular Endothelial Growth Factor (VEGF) uptake into human Umbilical Vein Endothelial Cell (HUVEC) by co-culture with BM-MNC.
  • VEGF Vascular Endothelial Growth Factor
  • A A significant decrease in VEGF concentration in the medium was observed by co-culture with BM-MNC. In contrast, non-contact co-culture with BM-MNC with cell culture inserts did not reduce VEGF levels.
  • B HUVEC and BM-MNC could be clearly distinguished by anti-CD31 antibody and anti-CD45 antibody. No uptake of (CG) streptavidin-Allophycocyanin (APC) into HUVEC was observed (C).
  • CG streptavidin-Allophycocyanin
  • BCECF 2 shows the BCECF (2', 7'-Bis (carboxyethyl) -4 or 5-carboxyfluorescein) transition from BM-MNC to HUVEC via gap junctions in vitro.
  • AD FACS analysis of HUVEC (AC) co-cultured with naive (A) and BCECF-labeled BM-MNC (B).
  • BCECF-positive HUVEC was observed after co-culture with BCECF-labeled BM-MNC.
  • BCECF migration was blocked when co-cultured with cell culture inserts (C) or when the gap junction decoupling agent 1-octanol was applied (D).
  • HUVEC was stained with Alexa Fluor® 488 fluorescently labeled antibody (hereafter Alexa488) alone (E) or anti-Cx37 (connexin 37) antibody and Alexa488 (F). In HUVEC, almost no expression of Cx37 was observed.
  • BM-MNC was stained with Alexa488 alone (I) or anti-Cx37 antibody and Alexa488 (J). Expression of Cx37 was observed in BM-MNC.
  • FIG. 3 shows the transfer of BCECF from BM-MNC to endothelial cells via gap junctions in vivo.
  • AD BCECF-positive BM-MNC transplanted 5 minutes after intravenous injection into the brain after cerebral infarction.
  • BCECF-positive cells A were observed in the cerebral microvascular system (B). Overlaying the images demonstrates the transfer of BCECF from BM-MNC to endothelial cells through the CD31-positive endothelial cell membrane (C, D).
  • Connexin 37 (Cx37) was not observed in the contralateral healthy cerebral cortex (E), but was clearly expressed 48 hours after the induction of cerebral infarction on the ipsilateral side (F).
  • FIG. 4 shows that changes in endothelial cell microstructure suggest a reduction in autophagy in BM-MNC transplanted animals.
  • A Normal capillaries consisting of endothelial cells, basal layer, pericytes and astrocyte foot processes in non-cerebral infarction mice.
  • B, C Representative photographs of capillaries in lesions. A significant number of autophagosome-like vacuoles were observed in the endothelial cells of PBS-treated mice (B).
  • FIG. 5 shows the expression of the autophagy marker LC3 in endothelial cells after cerebral infarction.
  • A Most CD31-positive endothelial cells in the lesion area express LC3 in both PBS and BM-MNC-treated mice.
  • FIG. 6 shows Hif-1 ⁇ expression after BM-MNC transplantation.
  • FIG. 7 shows changes in the concentrations of various cytokines in the HUVEC culture supernatant.
  • FIG. 8 compares the VEGF uptake promoting action of HUVEC (human umbilical vein vascular endothelial cells) by a low molecular weight compound with a standard substance.
  • A Fluorescent background
  • B Standard substance / no test substance
  • C Standard substance (Cafeic acid)
  • D Test substance 1 (4-0-Cafeoylequic acid)
  • E Test substance 2 (Caffeic acid) acid).
  • the present invention screens vascular endothelial cell activation-promoting or inhibitory substances using VEGF uptake in vascular endothelial cells as an index, particularly substances having an action of controlling vascular endothelial cell activation by a mechanism similar to BM-MNC. Regarding the method.
  • Step 1) “Vascular endothelial cells” in which vascular endothelial cells are cultured together with a test substance in the presence of labeled VEGF.
  • the "vascular endothelial cell” used in the present invention is not particularly limited as long as it is a culturable vascular endothelial cell expressing a receptor for VEGF, but a mammalian-derived cell is preferable, and a human-derived cell is more preferable. preferable.
  • human vascular endothelial cells examples include human umbilical venous endothelial cells (HUVEC), human brain microvascular endothelial cells (HBMEC), human umbilical artery endothelial cells (HUAEC), human aortic endothelial cells (HAoEC), and human coronary endothelial cells.
  • HBMEC human brain microvascular endothelial cells
  • HAAEC human umbilical artery endothelial cells
  • HAoEC human aortic endothelial cells
  • coronary endothelial cells examples include human coronary endothelial cells.
  • HCAEC Human Pulmonary Arterial Endothelial Cell
  • HPAEC Human Pulmonary Arterial Endothelial Cell
  • HaVEC Human Saphenous Vinegar Endothelial Cell
  • HBEC Human Cutaneous Vascular Endothelial Cell
  • HDMEC Human Skin Microvascular Endothelial Cell
  • HMMEC Human Uterine Microvascular Endothelial Cell
  • HPMEC Human lung microvascular endothelial cells
  • HCMEC human heart microvascular endothelial cells
  • HDLEC human skin microlymphocyte endothelial cells
  • VEGF Vascular Endothelial Growth Factor
  • the vascular endothelial growth factor (VEGF) used in the present invention is not particularly limited as long as it can bind to the VEGF receptor expressed in the vascular endothelial cells used, but mammalian-derived VEGF is particularly preferable. Human-derived VEGF is more preferred.
  • VEGF-A vascular endothelial growth factor
  • VEGF-B vascular endothelial growth factor
  • VEGF-C vascular endothelial growth factor
  • VEGF-D vascular endothelial growth factor
  • VEGF-E PIGF-1
  • PIGF-2 PIGF-1
  • PIGF-2 PIGF-2.
  • VEGF-A may be referred to as VEGF, and even in the present specification, when simply referred to as VEGF, it means VEGF-A.
  • labeled VEGF can be used.
  • the labeling method is not particularly limited, and known methods such as enzyme labeling, radioactive labeling, and fluorescent labeling can be appropriately selected and used. Fluorescent labels are preferred in the present invention.
  • Examples of the enzyme used for enzyme labeling include HRP (Horseradish peroxidase) and AP (Alkaline phosphatase).
  • HRP uses a coloring substrate such as DAB or TAB
  • AP uses a coloring substrate such as BCIP / NBT or pPNPP. To develop color.
  • the radioisotope used in radiolabeled can be used like 125 I, 3 H, using protein iodine labeling reagent is incorporated into the protein to be detected by enzymatic or chemical oxidation.
  • fluorescent substance used for the fluorescent label examples include fluorescent proteins such as PE (Phycoerythrin), APC (Allophycocyanin), GFP, CFP, RFP, etc., FITC (Fluorescein Isothiocyanate), Coumarin, and TRITC (Tetramethyllo). ), Cy (registered trademark), Texas Red (registered trademark), BODIPY (registered trademark) FL, Super Bright, and other low-molecular-weight fluorescent dyes can be preferably used, but are not limited thereto.
  • the signal of the fluorescent label can be detected and quantified by a detection method such as an optical microscope, a high-sensitivity CCD camera, a confocal laser microscope, or flow cytometry, and an image processing technique.
  • the fluorescence signal may be amplified by using a biotin-avidin system or a biotin-streptavidin system in order to increase the sensitivity.
  • Test substance The type of test substance to be screened in the method of the present invention is not particularly limited. Considering the use as a therapeutic agent for ischemic diseases described later, low molecular weight compounds that are easy to synthesize and handle are preferable.
  • the low molecular weight compound means a compound having a molecular weight of about 10,000 or less.
  • Vascular endothelial cells are cultured with the test substance in the presence of labeled VEGF.
  • a commercially available medium for endothelial cells may be used, or various nutrient sources necessary for maintenance and proliferation of cells and various components necessary for inducing differentiation may be added to the basal medium.
  • DMEM As the basal medium, DMEM, Keratinocite-SFM, BME medium, BGJb medium, CMRL 1066 medium, Glassgow MEM, Improved MEM Zinc Option, IMDM, Medium 199, Eagle MEM, ⁇ MEM, ham medium, RPMIs Any medium that can be used for culturing mammalian cells, such as a medium, McCoy's medium, Williams E medium, and a mixed medium thereof, can be used.
  • Nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, honey, starch and dextrin, hydrocarbons such as fatty acids, fats and oils, lecithin and alcohols, ammonium sulfate, ammonium nitrate, ammonium chloride and urea.
  • Nitrogen sources such as sodium nitrate, salt, potassium salt, phosphate, magnesium salt, calcium salt, iron salt, manganese salt and other inorganic salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, sulfuric acid It can contain ferrous iron, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like.
  • amino acid reducing agents such as retinoic acid, pyruvate, ⁇ -mercaptoethanol, transferrin, fatty acids, insulin, collagen precursors, trace elements, 3'thiolglycerol, growth factors (epidermal growth factor; EGF, basic fibrlast growth factor; bFGF, Insulin-like growth factor; IGF, etc.), serum or serum substitute may be added.
  • serum substitutes include albumin (for example, lipid-rich albumin), commercially available Knockout Serum Supplement (KSR), bovine pituitary extract (BPE), Chemically-defined Lipid coordinated (Gibco), and Gibco. ), B27 supplement (manufactured by Gibco), Y-27632 (Wako Junyaku).
  • the pH of the medium obtained by blending these components is in the range of 5.5 to 9.0, preferably 6.0 to 8.0, and more preferably 6.5 to 7.5.
  • Culturing is carried out at 36 ° C. to 38 ° C., preferably 36.5 ° C. to 37.5 ° C., under the conditions of 1% to 25% O 2 , 1% to 15% CO 2 .
  • Step 2) Determining the amount of VEGF uptake into vascular endothelial cells "Determining the amount of VEGF uptake into vascular endothelial cells"
  • the amount of VEGF uptake into vascular endothelial cells can be directly determined by measuring the change in signal intensity derived from labeled VEGF in vascular endothelial cells before and after culturing with the test substance.
  • the amount of VEGF uptake into vascular endothelial cells may be indirectly determined by measuring the change in signal intensity derived from the labeled VEGF remaining in the culture solution before and after culturing with the test substance.
  • the vascular endothelial cells and the test substance are subjected to at least 10 minutes or more, 20 minutes or more, 30 minutes or more, more preferably in the presence of the labeled VEGF. It is recommended to measure after culturing with the test substance for 30 minutes to 4 hours, more preferably about 1 to 3 hours, but it may be appropriately changed depending on the culture conditions and the cells to be used.
  • vascular endothelial cells and the test substance should be subjected to at least 30 minutes or more, 1 hour or more, 2 hours or more and 3 hours or more in the presence of the labeled VEGF. It is recommended to measure after culturing with the test substance for more preferably 4 hours or more, particularly preferably about 6 hours, but it may be appropriately changed depending on the culture conditions and the cells to be used.
  • the amount of labeled VEGF in cells can be easily measured by using, for example, FACS.
  • the amount of labeled VEGF remaining in the culture supernatant can be measured using, for example, a spectrofluorometer, a microplate reader, or a Bio-Plex reader.
  • Step 3) Evaluating the vascular endothelial cell activating effect of the test substance
  • the vascular endothelial cell activating effect of the test substance is evaluated based on the amount of VEGF taken up by the test substance into the vascular endothelial cells.
  • the evaluation may be carried out by the test substance alone, or a compound known to have a VEGF uptake promoting action on vascular endothelial cells may be used as a standard substance and evaluated in comparison with the standard substance.
  • the test substance When evaluating the test substance alone, the simplest case is that when the amount of VEGF uptake into vascular endothelial cells is significantly increased by culturing with the test substance, the test substance is used as a vascular endothelial cell activating substance. Identify as a candidate. Alternatively, if a certain reference value can be set, the test substance is identified as a candidate for a vascular endothelial cell activating substance when an uptake amount of VEGF exceeding the reference value is observed.
  • the test substance When evaluating the test substance alone, the simplest case is that when the amount of VEGF uptake into vascular endothelial cells is significantly reduced by culturing with the test substance, the test substance is a candidate for a vascular endothelial cell inhibitor. Identify as. Alternatively, if a certain reference value can be set, the test substance is identified as a candidate for a vascular endothelial cell inhibitor when an uptake amount of VEGF exceeding the reference value is observed.
  • Standard substance When evaluating in comparison with a standard substance, the amount of VEGF uptake into vascular endothelial cells when the standard substance is added and when the test substance is added under the same conditions is compared to vascular endothelial cells. Evaluate the activation effect.
  • the standard substance is not particularly limited as long as it has been confirmed to have a VEGF uptake promoting effect on vascular endothelial cells.
  • the method of the present invention is used to obtain VEGF uptake of other low molecular weight compounds into vascular endothelial cells by using Caffeic acid, for which the inventors have confirmed the effect of promoting VEGF uptake on vascular endothelial cells.
  • the reference material is not limited to this.
  • Vascular endothelial cell activation promoter The "vascular endothelial cell activation promoting substance” screened by the method of the present invention is a substance having an action of promoting the activation of vascular endothelial cells by the same mechanism as BM-MNC.
  • Vascular endothelial cell activation inhibitor The "vascular endothelial cell activation inhibitor” screened by the method of the present invention is a substance that exerts an action opposite to that of BM-MNC and has an action of suppressing the activation of vascular endothelial cells.
  • the above method further comprises one or more selected from the group consisting of angiopoetin 2, endoglin, IGFBP (insulin-like growth factor binding protein), TNF ⁇ , and TGF ⁇ . It may include a step of determining the concentration of the cytokine in the culture supernatant. Cytokine concentration can be measured in a similar manner to VEGF, but multiple cytokines may be measured simultaneously using a commercially available multiplex system.
  • the test substance when the cytokine concentration in the culture supernatant is decreased in addition to the increase in the amount of VEGF uptake into the vascular endothelial cells by culturing with the test substance, the test substance is used as a substance for promoting vascular endothelial cell activation. Identify as a candidate.
  • the test substance when the cytokine concentration in the culture supernatant is increased in addition to the decrease in the amount of VEGF uptake into the vascular endothelial cells by culturing with the test substance, the test substance is used as the inhibitor of vascular endothelial cell activation. Identify as a candidate.
  • cytokines used for evaluation angiopoietin 2 and TGF ⁇ are particularly preferable, and angiopoietin 2 is more preferable.
  • the vascular endothelial cell activation-promoting substance identified by the screening method of the present invention can activate angiogenesis by vascular endothelial cells by a mechanism of action similar to that of BM-MNC.
  • inflammatory disease including chronic inflammatory bowel disease such as ulcerative colitis and Crohn's disease, severe limb ischemia, myocardial infarction / angina ⁇
  • It is useful as a therapeutic agent for ischemic heart disease including heart failure, ischemic cerebrovascular disorder such as cerebral infarction, diabetic neuropathy, and ischemic disease such as cancer with severe ischemia (ischemic disease). ..
  • the screening method of the present invention can be used for screening candidate substances for therapeutic agents for ischemic diseases.
  • Angiogenesis inhibitors The vascular endothelial cell activation inhibitor identified by the screening method of the present invention can suppress angiogenesis activation by vascular endothelial cells by a mechanism that antagonizes the action of BM-MNC. Therefore, as angiogenesis inhibitors, cancer, chronic rheumatoid arthritis, which is closely related to the progression of pathological conditions and angiogenesis, Clone's disease, Bechet's disease, psoriasis, porphyritic arteriosclerosis, diabetic retinopathy, angiogenic glaucoma, It is useful as a therapeutic agent for angiogenic diseases such as retinopathy of prematurity and age-related yellow spot degeneration. In other words, the screening method of the present invention can be used for screening the above-mentioned candidate substances for angiogenesis inhibitors.
  • Example 1 Promotion of HUVEC VEGF uptake by BM-MNC 1.
  • Materials and Methods-Preparation of BM-MNC Bone marrow was obtained from 6-week-old male C57BL / 6 mice (Japan SLC). The femur and tibia were dissected and bone marrow was extracted from the bone using PBS. Bone marrow was mechanically separated and BM-MNC was isolated by density gradient centrifugation using Ficoll-Paque Premium (GE Healthcare).
  • HUVEC 6-well plates 1000 .mu.l, 1.5 ⁇ 10 5 cells / well were seeded in, were incubated for 72 hours. A supernatant (200 ⁇ l) was collected from the sample.
  • HuMedia-EB2 or a BM-MNC suspension suspended in HuMedia-EB2 (1 ⁇ 10 6 cells / well) was added to HUVEC. After co-culturing for 6 hours, supernatant (200 ⁇ l) was collected from the wells.
  • BM-MNC was used as a gap junction inhibitor 1-octanol (final concentration 1 mM) or a gap junction inhibitor. It was incubated with a carbenoxolone (CDX: final concentration 100 ⁇ M, Sigma) and washed twice with HuMedia-EB 2 before co-culturing with HUVEC.
  • CDX carbenoxolone
  • hVEGF human vascular endothelial growth factor
  • BCECF-AM (2', 7'-bis- (2-carboxyethyl) -5- (and-6) -carboxyfluorescein, acetoxyformater) , Thermo Fisher) at room temperature for 30 minutes.
  • BCECF labeled BM-MNC was washed twice with PBS.
  • BM-MNC was incubated with 1-octanol to assess the role of gap junctions in VEGF uptake.
  • CBF Cerebral blood flow
  • mice were deeply anesthetized with pentobarbital sodium and perfused with saline containing paraformaldehyde at a final concentration of 4%. The brain was carefully removed and a coronary section (20 ⁇ m) was prepared using a Vibratome (Leica). Sections of non-cerebral infarcted CB-17 mice were also prepared to assess the expression of connexins 37 and 43 in the cerebral cortex.
  • Sections were CD31 (BD Harmingen, dilution 1:50), LC3 (Medical & Biological Laboratories, 1: 500), HIF-1 ⁇ (Hif-1 ⁇ R & D, 1:50), Connexin 37 (Cloud-Clone, 1:50), Immunostaining was performed with a primary antibody against Connexin 43 (Proteintech, 1: 200) or DAPI (BD Bioscience, 1: 1000). The anti-Hif-1 ⁇ antibody was visualized by the 3,3'-diaminobenzidine (DAB) method and counterstained with Mayer's hematoxylin solution (Wako).
  • DAB 3,3'-diaminobenzidine
  • Alexa 555 binding antibody Novus Biologicals was used as the secondary antibody to visualize CD31, connexin 37 and connexin 43. Alexa647, Alexa488 or Alexa633 (all Novus Biologicals) -binding antibodies were used as secondary antibodies to detect Hif-1 ⁇ , LC3, Connexin 37 or Connexin 43 antibodies, respectively.
  • BM-MNC promotes uptake of VEGF into HUVEC through gap junction-mediated interactions VEGF is one of the most prominent angiogenesis-promoting factors.
  • BM-MNC promotes uptake of VEGF into HUVEC through gap junction-mediated interactions VEGF is one of the most prominent angiogenesis-promoting factors.
  • HUVEC and BM-MNC were distinguished by antibodies against CD31 and CD45 (Fig. 1B).
  • Increased uptake of VEGF into HUVEC was observed after co-culture with BM-MNC (Fig. 1C-E).
  • Gap junctions are known to play an important role in cell-cell interactions, including interactions between bone marrow hematopoietic stem cells (HSCs) and endothelial cells. The essential contribution of cell-cell interactions through gap junctions to VEGF uptake was investigated.
  • BCECF low molecular weight fluorescence A molecular fluorescent substance (BCECF) was introduced into the cytoplasm of BM-MNC.
  • BCECF has a molecular weight of about 520 and is known to cross gap junctions.
  • FACS FACS
  • BCECF-labeled BM-MNC was intravenously transplanted into mice 48 hours after the induction of cerebral infarction. Mice were euthanized 5 minutes after BM-MNC injection and the localization of BCECF was evaluated by fluorescence microscopy. BCECF-positive cells were observed in the microvasculature of the cerebral infarct region, with evidence of BCECF transfer from BM-MNC to endothelial cells (FIGS. 3A-D).
  • connexin 37 was expressed in the brain after cerebral infarction. Almost no expression of connexin 37 was observed in non-cerebral infarction mice (Fig. 3E), and increased expression of connexin 37 was observed in the lesion area 48 hours after the induction of cerebral infarction (Fig. 3F). Similarly, no expression of connexin 43 was observed in non-cerebral infarcted mice (Fig. 3G). However, connexin 43 expression increased in the lesion area 48 hours after the induction of cerebral infarction (Fig. 3H).
  • BCECF-labeled BM-MNC was intravenously implanted in mice 48 hours after cerebral infarction induction. BCECF positive signals were observed in endothelial cells with accumulation of connexin 37 (FIG. 3IL) and connexin 43 (FIG. 3MP).
  • FIG. 4A shows intact capillaries with a normal blood-brain barrier (BBB) of the lesion-free brain composed of endothelial cells, basement membranes, pericytes, and astrocyte foot processes.
  • BBB blood-brain barrier
  • vacuoles of various sizes were formed in the cytoplasm of mouse endothelial cells to which PBS was administered (Fig. 4D).
  • BM-MNC-treated mice showed little autophagosome-like vacuolization in endothelial cells (Fig. 4E).
  • Some vacuoles in endothelial cells were observed in the lesion-free contralateral cortex of mice treated with PBS (Fig. 4F), whereas such vacuoles were observed in mice treated with BM-MNC. There was no (Fig. 4G).
  • BM-MNC transplantation reduced the formation of autophagosome-like vacuoles in all related regions (Fig. 4H).
  • LC3-positive vascular endothelial cells were observed in both PBS-treated and BM-MNC-treated mice in the area of cerebral infarction. In the region around cerebral infarction, LC3-positive vascular endothelial cells were observed in PBS-administered mice, but hardly observed in BM-MNC-treated mice (Fig. 5B).
  • LC3-positive vascular endothelial cells were observed in PBS-administered mice, but not in BM-MNC-treated mice. (Fig. 5C). These data demonstrate that BM-MNC transplantation suppresses autophagy in endothelial cells after cerebral ischemia.
  • BCECF-labeled BM-MNC was injected intravenously 48 hours after the induction of cerebral infarction, and the localization of BCECF and Hif-1 ⁇ in endothelial cells was examined 30 minutes after the cell injection. As a result, co-localization of BCECF and Hif-1 ⁇ was observed in endothelial cells (Fig. 6E-H). These data showed that the transfer of low molecular weight material from BM-MNC could potentially induce Hif-1 ⁇ expression in cerebral endothelial cells after cerebral infarction.
  • Endothelial cells are known to communicate with the bone marrow cell population in the bone marrow vascular niche, which is mediated by gap junctions.
  • the expression of connexins 37 and 43 in cerebral endothelial cells is up-regulated after cerebral infarction.
  • the low molecular weight water-soluble substance migrated from the transplanted BM-MNC to the endothelial cells, and this migration increased the Hif-1 ⁇ content.
  • Activation of Hif-1 ⁇ is known to induce up-regulation of VEGF uptake into endothelial cells (Gledle JM and Ratcliffe PJ., (1997) Blood.15; 89 (2): pp503-9. ).
  • BM-MNC-mediated activation of Hif-1 ⁇ in endothelial cells, followed by upregulation of VEGF uptake is an important mechanism of angiogenesis by cell therapy in cerebral infarction. If a small molecule can replace the complicated process leading to VEGF uptake by BM-MNC, it will be useful as an alternative treatment to cell therapy for diseases involving angiogenesis such as cerebral infarction.
  • Example 2 Promotion of uptake of various cytokines of HUVEC by BM-MNC 1.
  • Materials and Methods BM-MNC was prepared by the method described in Example 1. According to Example 1, HUVEC was co-cultured with BM-MNC, and the amount of change in various cytokine concentrations in the culture supernatant after 6 hours of culture was examined.
  • the concentration of various cytokines (Angiopoietin, Endoglin, IGFBP-1 (Insulin-like growth factor binding protein-1), TNF- ⁇ , TGF- ⁇ (all derived from humans)) is determined by Bio-Plex Pro human Cancer Simultaneous measurements were made using Plex panel # 171AC600M (BioRad). For comparison, the concentrations of various cytokines when the same amount of medium was added instead of BM-MNC and HUVEC was cultured in the same manner were also measured.
  • cytokines such as Angiopoietin-2, Endoglin, IGFBP-1, TNF ⁇ , and TGF ⁇ in the culture supernatant
  • cytokines are also molecules that are deeply involved in angiogenesis, and it is considered that co-culture with BM-MNC increased their uptake in HUVEC as well as VEGF. Therefore, by reducing the concentration of these cytokines in the culture supernatant or measuring the amount taken into HUVEC, it is possible to screen for substances that promote or suppress vascular endothelial cell activation.
  • Example 3 Standardization of a method for quantitative evaluation of a vascular activator using a standard substance
  • the inventors of the present invention used a 100 ⁇ g / ml Caffeic acid (3,4-dihydroxycinnamic acid) according to the experimental system (screening system) of the present invention. It was confirmed that CAS registration number 331-39-5) has a VEGF uptake effect of HUVEC.
  • caffeic acid is a polyphenol belonging to chlorogenic acids, and the polyphenol belonging to chlorogenic acids is known to have an effect of improving vascular function (Am J Hypertension. 2007 May; 20 (5): 508-13. Functional acid restaurants -Dependent vasodilation in aortas of spontaneously hypertension.).
  • APC-binding VEGF was added to HUVEC, and Chicoric acid (CAS Registry Number 6537-80-0), whose VEGF uptake promoting action was unknown, was added to 100 ⁇ g / ml and then cultured for 3 hours (test substance 2).
  • the amount of VEGF uptake without the standard substance / test substance is 3.38 (value obtained by subtracting 1.54 of background fluorescence from the fluorescence intensity of 4.92), and the amount of VEGF uptake of the sample to which the standard substance (caffeic acid) is added is It was 5.24. These results indicate that the addition of the standard substance increased VEGF uptake in HUVEC by 55% ((VEGF uptake with standard substance addition [5.24] -VEGF uptake without standard substance / test substance). Amount [3.38]) / Standard substance / VEGF uptake without test substance [3.38]).
  • test substance 1 4-0-Cafeoylquinic acid
  • HUVEC has been shown to have a 49% increase in VEGF uptake, resulting in 88% of its uptake promoting capacity compared to the standard substance. It turned out ([49%] / [55%]).
  • test substance 2 Choleic acid
  • HUVEC was shown to have a 30% reduction in VEGF uptake, and as a result, its uptake promoting capacity was found to be -55% compared to the standard substance. ([-30%] / [55%]).
  • the coffee extract acid acid is known to have an vascular endothelium activating effect (Int J Food Sci Nutr. 2019 May; 70 (3): 267-284. TNF- ⁇ -induced oxidative stress and endothelial 9th endothelial cells is presented by mate and green coffee extends, 5-caffeoylquinic acid and it's microbial metabolite, dihydrocaffic acid. Wang S, et.
  • Hydroxycinnamic acid is Hydroxycinnamic acid, but it is known that they have angiogenesis-inhibiting action (2011 KAKEN expense performance report (research subject / area number: 21390033), for angiogenesis-inhibiting therapy. Bioprobe molecular design and chemical genetics, principal investigator: Hideko Nagasawa), consistent with the results of this measurement system.
  • a substance having an action of activating vascular endothelial cells by a mechanism similar to that of BM-MNC can be easily screened in vitro.
  • the substance identified by the method of the present invention replaces the function of BM-MNC in vivo and is a candidate substance for a therapeutic agent for ischemic diseases such as cerebral infarction and limb ischemia, or angiogenic diseases such as cancer. It is useful.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method which screens substances for promoting or inhibiting vascular endothelial activation and uses, as an index, the uptake quantity of VEGF into vascular endothelial cells. More specifically, the present invention relates to a method for screening substances for promoting or inhibiting vascular endothelial activation, the method comprising the following steps of: 1) culturing vascular endothelial cells along with test substances; 2) determining the uptake quantity of VEGF into the vascular endothelial cells; and 3) evaluating the vascular endothelial cell activation effect of the test substances on the basis of the uptake quantity of VEGF into the vascular endothelial cells.

Description

血管内皮細胞活性化物質のスクリーニング方法Screening method for vascular endothelial cell activator
関連出願:
 本明細書は、本願の優先権の基礎である特願2019−147942(2019年8月9日出願)の明細書に記載された内容を包含する。
技術分野:
 本発明は、血管内皮細胞活性化を制御する物質のスクリーニング方法に関する。より詳細には、血管内皮細胞内へのVEGFの取り込み量を指標として、血管内皮細胞活性化促進又は抑制物質をスクリーニングする方法に関する。
Related application:
This specification includes the contents described in the specification of Japanese Patent Application No. 2019-147942 (filed on August 9, 2019), which is the basis of the priority of the present application.
Technical field:
The present invention relates to a method for screening a substance that controls vascular endothelial cell activation. More specifically, the present invention relates to a method for screening a substance that promotes or suppresses vascular endothelial cell activation, using the amount of VEGF taken up into vascular endothelial cells as an index.
 骨髄単核球細胞(Bone Marrow−Mononuclear Cell:BM−MNC)の移植は、虚血組織における血管新生を活性化することが知られている。BM−MNCは造血幹細胞を比較的高い割合で含有し、自家組織から容易に調製できるため、細胞療法の供給源に適しており、四肢虚血、心筋梗塞、脳梗塞などの虚血性疾患の実験的治療に頻繁に使用されているが、どのようにBM−MNCが血管新生を活性化するかはわかっていない。 Transplantation of bone marrow mononuclear cells (Bone Marlow-Monocular Cell: BM-MNC) is known to activate angiogenesis in ischemic tissue. BM-MNC contains a relatively high proportion of hematopoietic stem cells and can be easily prepared from autologous tissue, making it a suitable source of cell therapy, and experiments on ischemic diseases such as limb ischemia, myocardial infarction, and cerebral infarction. Although frequently used in therapeutic treatment, it is not known how BM-MNC activates angiogenesis.
 当初は、BM−MNCに含まれる造血幹細胞から内皮細胞への分化が基本的なメカニズムとして提案されていたが、その後の研究において、内皮細胞に分化するのは極めて少数の移植細胞であり、根本的なメカニズムではないことが判明した。複数の増殖因子やエクソソームの分泌も提唱されているが、はっきりしたエビデンスは示されていない。さらに、移植後の細胞の生存期間は比較的短いことが知られており、増殖因子やエクソソームの分泌は、BM−MNC移植後に長期間観察される強力な血管新生活性化作用の根本的なメカニズムではないと考えられている。 Initially, the differentiation of hematopoietic stem cells contained in BM-MNC into endothelial cells was proposed as a basic mechanism, but in subsequent studies, very few transplanted cells differentiate into endothelial cells, which is fundamental. It turned out that it was not a typical mechanism. Secretion of multiple growth factors and exosomes has also been proposed, but no clear evidence has been shown. In addition, cell survival after transplantation is known to be relatively short, and growth factor and exosome secretion is fundamental to the potent angiogenesis-activating effects observed long-term after BM-MNC transplantation. It is not considered a mechanism.
 血管内皮細胞増殖因子(VEGF)は最も重要な血管新生促進因子の1つである。VEGFは細胞表面に存在するVEGF受容体に結合することで、チロシンキナーゼを活性化し、細胞内にシグナルを伝達し、細胞の機能や構造に変化を与える。VEGF受容体であるVGFR1とVGFR2の発現比率を指標として血管新生能の高い内皮細胞をスクリーニングする方法(特許文献1)や、VEGFR1を細胞表面に発現する培養血管内皮細胞株を利用して、VEGFR1のリン酸化や当該細胞の遊走を指標として血管新生促進作用を有する物質をスクリーニングする方法が報告されている(特許文献2)。また、VEGFとエンドスタチンの血中濃度を測定することにより、血管新生能を評価する方法が報告されている(特許文献3)。以上のように、従前は、VEGFの濃度や、VEGF受容体の動態等により、血管新生促進能力の測定を行なってきたが、本発明のように、VEGFの血管内皮細胞の取り込み量で、候補物質の血管新生促進能力を直接測定するという発想は、全く欠如していた。 Vascular Endothelial Growth Factor (VEGF) is one of the most important angiogenesis-promoting factors. By binding to VEGF receptors on the cell surface, VEGF activates tyrosine kinase, transmits signals inside the cell, and changes the function and structure of the cell. Using a method for screening endothelial cells with high angiogenic potential using the expression ratio of VEGF receptors VGFR1 and VGFR2 as an index (Patent Document 1), or using a cultured vascular endothelial cell line expressing VEGFR1 on the cell surface, VEGFR1 A method for screening a substance having an angiogenesis-promoting action using the phosphorylation of the cell and the migration of the cell as an index has been reported (Patent Document 2). In addition, a method for evaluating angiogenic ability by measuring blood concentrations of VEGF and endostatin has been reported (Patent Document 3). As described above, conventionally, the angiogenesis-promoting ability has been measured based on the concentration of VEGF, the dynamics of VEGF receptors, etc., but as in the present invention, the amount of uptake of vascular endothelial cells of VEGF is a candidate. The idea of directly measuring the angiogenesis-promoting capacity of a substance was completely lacking.
特開2005−065697号公報Japanese Unexamined Patent Publication No. 2005-0565697 特開2007−244273号公報JP-A-2007-244273 WO2002/031497WO 2002/031497
 本発明の課題は、BM−MNC移植による血管新生の作用機序を応用し、その機能を代替する低分子物質をスクリーニングする方法を確立し、脳梗塞や心筋梗塞、四肢虚血を含む虚血性疾患、あるいは、癌、炎症性疾患、リウマチなどの血管新生が病態の進行に関与する疾患の新たな治療薬候補を提供することにある。 The subject of the present invention is to apply the mechanism of angiogenesis by BM-MNC transplantation, establish a method for screening low molecular weight substances that substitute for its function, and ischemic including cerebral infarction, myocardial infarction, and limb ischemia. The purpose is to provide new therapeutic drug candidates for diseases or diseases in which angiogenesis such as cancer, inflammatory disease, and rheumatism is involved in the progression of the pathological condition.
 従来、BM−MNCは、血管新生促進に関する各種成長因子などを分泌することにより、血管新生を促進すると考えられてきた。本発明者らは、BM−MNCが、血管新生促進に関する各種成長因子などを分泌することにより、血管内新生を促進するのではなく、BM−MNCが、血管内皮細胞に作用し、血管新生を促進する因子の血管内皮細胞における取り込みを、促進することにより、結果として、血管新生が促進されることを発見した。そして、VEGFあるいは、他の血管新生促進因子の血管内皮細胞における取り込み量の変化を指標として、BM−MNCと同様の作用を有する低分子化合物をスクリーニングすることで、新たな虚血疾患治療薬候補の探索が可能になることを見出した。 Conventionally, BM-MNC has been considered to promote angiogenesis by secreting various growth factors related to promotion of angiogenesis. The present inventors do not promote angiogenesis by secreting various growth factors related to angiogenesis promotion, but BM-MNC acts on vascular endothelial cells to cause angiogenesis. We have found that promoting the uptake of promoting factors in vascular endothelial cells results in the promotion of angiogenesis. Then, by screening for low molecular weight compounds having the same action as BM-MNC using the change in the amount of uptake of VEGF or other angiogenesis-promoting factors in vascular endothelial cells as an index, a new candidate for a therapeutic drug for ischemic disease I found that it is possible to search for.
 すなわち、本発明は、以下の(1)~(13)に関する。
(1)下記の工程を含む、血管内皮細胞活性化促進又は抑制物質のスクリーニング方法:
1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する工程、
2)血管内皮細胞へのVEGFの取り込み量を決定する工程、
3)前記血管内皮細胞へのVEGFの取り込み量に基づき、前記被験物質の血管内皮細胞活性化効果を評価する工程。
 上記標識としては、蛍光標識、酵素標識、又は放射性標識が挙げられ、好ましくは蛍光標識である。
(2)血管内皮細胞へのVEGFの取り込み量が、被験物質との培養前後における、血管内皮細胞内における標識されたVEGF由来のシグナルの変化によって決定される、(1)に記載の方法。
(3)血管内皮細胞への標識VEGFの取り込み量が、被験物質との培養前後における、培養上清中における標識されたVEGF由来のシグナルの変化によって決定される、(1)に記載の方法。
(4)被験物質による血管内皮細胞へのVEGFの取り込み量の変化を、標準物質による血管内皮細胞へのVEGFの取り込み量の変化と比較する工程をさらに含む、(1)~(3)のいずれかに記載の方法。
(5)工程3)において、前記血管内皮細胞へのVEGFの取り込み量が増加した場合に、前記被験物質は血管内皮細胞活性化促進物質として有用と評価し、前記血管内皮細胞へのVEGFの取り込み量が減少した場合に、前記被験物質は血管内皮細胞抑制物質として有用と評価する、(1)~(4)のいずれかに記載の方法。
(6)さらに、アンジオポエチン2、エンドグリン、IGFBP(インスリン様増殖因子結合タンパク質)、TNFα、及びTGFαからなる群から選ばれる1又は2以上のサイトカインの培養上清中の濃度を決定する工程を含む、(1)~(5)のいずれかに記載の方法。
(7)前記サイトカインが、少なくともアンジオポエチン2を含む、(6)に記載の方法。
(8)被験物質とともに培養することにより、血管内皮細胞へのVEGF取り込み量の増加に加えて、上記培養上清中のサイトカイン濃度が減少した場合に、当該被験物質を血管内皮細胞活性化促進物質の候補として有用と評価し、血管内皮細胞へのVEGF取り込み量の減少に加えて、培養上清中のサイトカイン濃度が増加した場合に、当該被験物質を血管内皮細胞活性化抑制物質として有用と評価する、(6)又は(7)に記載の方法。
(9)血管内皮細胞活性化促進物質が虚血性疾患治療薬の候補であり、血管内皮細胞活性化抑制物質が血管新生阻害薬の候補である、(1)~(8)のいずれかに記載の方法。
換言すれば、(1)~(8)の方法は、虚血性疾患治療薬あるいは血管新生阻害薬のスクリーニング方法となりうる。前記虚血性疾患としては、例えば、四肢虚血、心筋梗塞・狭心症・心不全を含む虚血性心疾患、脳梗塞などの虚血性脳血管障害等が挙げられる。血管新生阻害薬は、固形腫瘍や血管腫などの癌、慢性関節リウマチ、クロ−ン病、ベーチェット病、乾癬、粥状動脈硬化、糖尿病性網膜症、血管新生緑内障、未熟児網膜症、加齢性黄斑変性症など、血管新生が病態の進行に関与する疾患(血管新生病)の治療に有用である。
(10)下記の工程を含む、血管新生阻害薬のスクリーニング方法:
1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する工程、
2)血管内皮細胞へのVEGFの取り込み量を決定する工程、
3)前記血管内皮細胞へのVEGFの取り込み量が増加した場合に、前記被験物質を虚血性疾患治療薬の候補として選択する工程。
(11)下記の工程を含む、血管新生阻害薬のスクリーニング方法:
1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する工程、
2)血管内皮細胞へのVEGFの取り込み量を決定する工程、
3)前記血管内皮細胞へのVEGFの取り込み量が減少した場合に、前記被験物質を血管新生阻害薬として選択する工程。
(12)標識が蛍光標識である、(1)~(11)のいずれかに記載の方法。
(13)血管内皮細胞がヒト血管内皮細胞である、(1)~(12)のいずれかに記載の方法。
That is, the present invention relates to the following (1) to (13).
(1) Screening method for substances that promote or suppress vascular endothelial cell activation, including the following steps:
1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF,
2) Step of determining the amount of VEGF uptake into vascular endothelial cells,
3) A step of evaluating the vascular endothelial cell activating effect of the test substance based on the amount of VEGF taken up by the vascular endothelial cells.
Examples of the label include a fluorescent label, an enzyme label, and a radioactive label, and a fluorescent label is preferable.
(2) The method according to (1), wherein the amount of VEGF uptake into the vascular endothelial cells is determined by the change in the labeled VEGF-derived signal in the vascular endothelial cells before and after culturing with the test substance.
(3) The method according to (1), wherein the amount of labeled VEGF uptake into vascular endothelial cells is determined by a change in the labeled VEGF-derived signal in the culture supernatant before and after culturing with the test substance.
(4) Any of (1) to (3), further comprising a step of comparing the change in the amount of VEGF uptake into the vascular endothelial cell by the test substance with the change in the amount of VEGF uptake into the vascular endothelial cell by the standard substance. The method described in Crab.
(5) In step 3), when the amount of VEGF uptake into the vascular endothelial cells is increased, the test substance is evaluated to be useful as a vascular endothelial cell activation promoting substance, and the uptake of VEGF into the vascular endothelial cells is evaluated. The method according to any one of (1) to (4), wherein the test substance is evaluated to be useful as a vascular endothelial cell inhibitor when the amount is reduced.
(6) Further, it comprises a step of determining the concentration in the culture supernatant of one or more cytokines selected from the group consisting of angiopoetin 2, endoglin, IGFBP (insulin-like growth factor binding protein), TNFα, and TGFα. , (1) to (5).
(7) The method according to (6), wherein the cytokine contains at least angiopoietin 2.
(8) By culturing with the test substance, when the cytokine concentration in the culture supernatant decreases in addition to the increase in the amount of VEGF uptake into the vascular endothelial cells, the test substance is used as a vascular endothelial cell activation promoting substance. When the cytokine concentration in the culture supernatant increases in addition to the decrease in the amount of VEGF uptake into vascular endothelial cells, the test substance is evaluated as useful as a vascular endothelial cell activation inhibitor. The method according to (6) or (7).
(9) Described in any of (1) to (8), wherein the vascular endothelial cell activation promoting substance is a candidate for a therapeutic agent for ischemic disease, and the vascular endothelial cell activation inhibitor is a candidate for an angiogenesis inhibitor. the method of.
In other words, the methods (1) to (8) can be a screening method for an ischemic disease therapeutic agent or an angiogenesis inhibitor. Examples of the ischemic disease include limb ischemia, ischemic heart disease including myocardial infarction / angina / heart failure, and ischemic cerebrovascular disorder such as cerebral infarction. Angiogenesis inhibitors include cancers such as solid tumors and hemangiomas, rheumatoid arthritis, Kron's disease, Bechet's disease, psoriasis, porphyritic arteriosclerosis, diabetic retinopathy, angiogenic glaucoma, retinopathy of prematurity, and aging. It is useful for the treatment of diseases (angiogenic diseases) in which angiogenesis is involved in the progression of pathological conditions, such as retinopathy of prematurity.
(10) Screening method for angiogenesis inhibitor including the following steps:
1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF,
2) Step of determining the amount of VEGF uptake into vascular endothelial cells,
3) A step of selecting the test substance as a candidate for a therapeutic agent for ischemic disease when the amount of VEGF taken up by the vascular endothelial cells increases.
(11) Screening method for angiogenesis inhibitor including the following steps:
1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF,
2) Step of determining the amount of VEGF uptake into vascular endothelial cells,
3) A step of selecting the test substance as an angiogenesis inhibitor when the amount of VEGF taken up by the vascular endothelial cells decreases.
(12) The method according to any one of (1) to (11), wherein the label is a fluorescent label.
(13) The method according to any one of (1) to (12), wherein the vascular endothelial cells are human vascular endothelial cells.
 これまで、VEGF受容体の発現やVEGFの分泌量を指標として血管新生活性化作用を評価する手法は知られているが(前掲)、VEGFの取り込み量の促進を指標として、血管内皮細胞の活性化作用を評価する方法は知られていない。 Until now, a method for evaluating angiogenesis-activating action using the expression of VEGF receptor and the amount of VEGF secretion as an index has been known (above), but the promotion of the uptake amount of VEGF is used as an index to evaluate the vascular endothelial cells. No method is known to evaluate the activating effect.
 本発明によれば、BM−MNCと同様の機構で血管内皮細胞を活性化する作用を有する物質を公知の低分子化合物等からスクリーニングすることができ、生体内におけるBM−MNCの機能を低分子化合物で置換することが可能になる。標識VEGFの細胞内取り込み量を指標としたスクリーニング系は、血管内皮細胞活性化促進又は抑制物質のハイスループットスクリーニングを可能とする。同定された被験物質は、標的が血管内皮細胞であるため、薬物送達の観点からも有利である。 According to the present invention, a substance having an action of activating vascular endothelial cells can be screened from known low molecular weight compounds by a mechanism similar to that of BM-MNC, and the function of BM-MNC in vivo can be reduced to low molecular weight. It can be replaced with a compound. A screening system using the intracellular uptake of labeled VEGF as an index enables high-throughput screening of substances that promote or suppress vascular endothelial cell activation. The identified test substance is also advantageous from the viewpoint of drug delivery because the target is vascular endothelial cells.
[図1] 図1は、BM−MNCとの共培養によるヒト臍帯静脈血管内皮細胞(Human Umbilical Vein Endothelial Cell:HUVEC)への血管内皮増殖因子(Vascular Endothelial Growth Factor:VEGF)取り込みを示す。
(A)培地中のVEGF濃度の有意な減少が、BM−MNCとの共培養によって観察された。対照的に、セルカルチャーインサートによるBM−MNCとの非接触共培養は、VEGFレベルを減少させなかった。(B)HUVEC及びBM−MNCは、抗CD31抗体及び抗CD45抗体によって明確に区別することができた。(C−G)ストレプトアビジン−Allophycocyanin(APC)のHUVECへの取り込みは観察されなかった(C)。HUVEC培養のみ(D)と比較して、VEGFのHUVECへの取り込みがBM−MNC共培養後に上昇していることが観察された(E)。1−オクタノール(F)又はカルベノキソロン(G)によるBM−MNCギャップ結合の遮断は、共培養効果を無効にした。(H−J)ストレプトアビジン−APCのBM−MNCへの結合は観察されなかった(H)。BM−MNCを単独で培養した場合(I)又はHUVECと共培養した場合(J)、BM−MNCへのVEGFの取り込みはほとんど観察されなかった。*p<0.01 versus medium、**p<0.01 versus medium、各群n=3(A)。
[図2] 図2は、in vitroでのギャップ結合を介したBM−MNCからHUVECへのBCECF(2’,7’−Bis(carboxyethyl)−4 or 5−carboxyfluorescein)移行を示す。
(A−D)ナイーブ(A)及びBCECF標識BM−MNC(B)と共培養したHUVEC(A−C)のFACS分析。BCECF標識BM−MNCとの共培養後にBCECF陽性のHUVECが観察された。セルカルチャーインサートを用いて共培養した場合(C)、又はギャップ結合脱共役剤1−オクタノールを適用した場合(D)、BCECF移行は遮断された。(E、F)HUVECはAlexa Fluor(登録商標)488蛍光標識抗体(以下、Alexa488)単独(E)又は抗Cx37(コネキシン37)抗体及びAlexa488(F)で染色した。HUVECでは、Cx37の発現はほとんど見られなかった。(G、H)アイソタイプコントロール抗体(G)又は抗Cx43(コネキシン43)抗体(H)で染色したHUVEC。Cx43の発現はHUVECで観察された。(I、J)BM−MNCはAlexa488単独(I)、又は抗Cx37抗体及びAlexa488(J)で染色した。Cx37の発現はBM−MNCにおいて観察された。(K、L)アイソタイプコントロール抗体(K)又は抗Cx43抗体(L)で染色したBM−MNC。Cx43の発現はHUVECで観察された。
[図3] 図3は、in vivoでのギャップ結合を介したBM−MNCから内皮細胞へのBCECFの移行を示す。
(A−D)脳梗塞後脳への静脈内注射の5分後に移植したBCECF陽性BM−MNC。BCECF陽性細胞(A)が脳微小血管系(B)に観察された。画像を重ね合わせることで、BCECFはCD31陽性内皮細胞膜を通過してBM−MNCから内皮細胞への移行が実証される(C、D)。(E、F)反対側の健康な大脳皮質ではコネキシン37(Cx37)の発現は観察されなかったが(E)、同側では脳梗塞誘発48時間後に明らかに発現された(F)。(G、H)コネキシン43(Cx43)の発現は健康な皮質ではほとんど観察されなかったが(G)、脳梗塞後には発現の増加が観察された(H)。(I−L)BCECFの浸潤(J)を伴うCx37の蓄積(J)が内皮細胞において観察された(K、L)。(M−P)BCECFの浸潤(N)を伴うCx43の蓄積(M)が内皮細胞において観察された(O、P)。スケールバー、20μm(A),5μm(D,I),40μm(E)
[図4] 図4は、内皮細胞の微細構造の変化が、BM−MNC移植動物におけるオートファジーの減少を示唆することを示す。
(A)非脳梗塞マウスにおける内皮細胞、基底層、周皮細胞及び星状細胞(astrocyte foot processes)からなる正常な毛細血管。(B、C)病変部の毛細血管の代表的な写真。相当数のオートファゴソーム様液胞が、PBS処置マウスの内皮細胞において観察された(B)。対照的に、星状細胞(astrocyte foot processes)の消失にもかかわらず、脳梗塞誘発72時間後のBM−MNC処置マウスの内皮細胞中には、付着した周皮細胞を伴う数個のオートファゴソーム様液胞が観察された(C)。(D、E)PBS処置マウスの内皮細胞において、相当数のオートファゴソーム様液胞が観察された(D)。対照的に、BM−MNC処置マウスの内皮細胞では、オートファゴソーム様の液胞はほとんど観察されなかった(E)。(F、G)非損傷対側皮質における毛細血管の写真。オートファゴソーム様液胞が、PBS処置マウスのいくつかの内皮細胞において観察された(F)。対照的に、BM−MNC処置マウスの内皮細胞においてオートファゴソーム様液胞は観察されなかった(G)。(H)定量分析により、BM−MNC移植が関連領域におけるオートファゴソーム様液胞の形成を抑制することが確認された。スケールバー、2μm(A)、p<0.01versus PBS、各群n=5(H)。
[図5] 図5は、脳梗塞後の内皮細胞におけるオートファジーマーカーLC3の発現を示す。
(A)病変領域のほとんどのCD31陽性内皮細胞は、PBS及びBM−MNC処置マウスの両方においてLC3を発現する。(B)病変周辺領域において、LC3陽性内皮細胞はBM−MNC処置マウスにおいてめったに観察されなかったが、ほとんどの内皮細胞はPBS処置マウスにおいてLC3陽性であった。(C)損傷を受けていない対側皮質では、PBSを投与されたマウスではいくつかのLC3陽性内皮細胞が観察されたが、BM−MNCを投与されたマウスではLC3陽性内皮細胞は観察されなかった。スケールバー、20μm(A)
[図6] 図6は、BM−MNC移植後のHif−1α発現を示す。
(A−C)脳損傷誘発後3時間(B)又は48時間(C)において、損傷を受けていない脳(A)、及び脳梗塞後領域において、Hif−1αの発現はほとんど観察されなかった。(D)しかしながら、BM−MNC移植の1時間後、毛細血管様構造においてHif−1α発現の増加が観察された。(E−H)BCECFシグナル(E)は、CD31陽性内皮細胞におけるHif−1α発現と共局在していた(G、H)。スケールバー、40μm(A),10μm(E)
[図7] 図7は、HUVEC培養上清中の各種サイトカイン濃度の変化を示す。
HUVEC単独培養(PBS)、BM−MNCとの共培養(BM−MNC)。グラフは、上清中のサイトカイン濃度の培養6時間での変化量(pM)を示す。(A)Angiopoetin−2、(B)Endoglin、(C)TGFα、(D)IGFBP−1、(E)TNFα。
[図8] 図8は、低分子化合物によるHUVEC(ヒト臍帯静脈血管内皮細胞)のVEGF取り込み促進作用を、標準物質と比較したものである。
(A)蛍光バックグラウンド、(B)標準物質/被験物質なし、(C)標準物質(Caffeic acid)、(D)被験物質1(4−0−Caffeoylquinic acid)、(E)被験物質2(Chicoric acid)。
FIG. 1 shows Vascular Endothelial Growth Factor (VEGF) uptake into human Umbilical Vein Endothelial Cell (HUVEC) by co-culture with BM-MNC.
(A) A significant decrease in VEGF concentration in the medium was observed by co-culture with BM-MNC. In contrast, non-contact co-culture with BM-MNC with cell culture inserts did not reduce VEGF levels. (B) HUVEC and BM-MNC could be clearly distinguished by anti-CD31 antibody and anti-CD45 antibody. No uptake of (CG) streptavidin-Allophycocyanin (APC) into HUVEC was observed (C). It was observed that the uptake of VEGF into HUVEC was increased after BM-MNC co-culture as compared to HUVEC culture alone (D) (E). Blocking BM-MNC gap junctions with 1-octanol (F) or carbenoxolone (G) negated the co-culture effect. No binding of (HJ) streptavidin-APC to BM-MNC was observed (H). When BM-MNC was cultured alone (I) or co-cultured with HUVEC (J), uptake of VEGF into BM-MNC was hardly observed. * P <0.01 versus medium, ** p <0.01 versus medium, n = 3 (A) in each group.
FIG. 2 shows the BCECF (2', 7'-Bis (carboxyethyl) -4 or 5-carboxyfluorescein) transition from BM-MNC to HUVEC via gap junctions in vitro.
(AD) FACS analysis of HUVEC (AC) co-cultured with naive (A) and BCECF-labeled BM-MNC (B). BCECF-positive HUVEC was observed after co-culture with BCECF-labeled BM-MNC. BCECF migration was blocked when co-cultured with cell culture inserts (C) or when the gap junction decoupling agent 1-octanol was applied (D). (E, F) HUVEC was stained with Alexa Fluor® 488 fluorescently labeled antibody (hereafter Alexa488) alone (E) or anti-Cx37 (connexin 37) antibody and Alexa488 (F). In HUVEC, almost no expression of Cx37 was observed. HUVEC stained with (G, H) isotype control antibody (G) or anti-Cx43 (connexin 43) antibody (H). Expression of Cx43 was observed on HUVEC. (I, J) BM-MNC was stained with Alexa488 alone (I) or anti-Cx37 antibody and Alexa488 (J). Expression of Cx37 was observed in BM-MNC. (K, L) BM-MNC stained with isotype control antibody (K) or anti-Cx43 antibody (L). Expression of Cx43 was observed on HUVEC.
FIG. 3 shows the transfer of BCECF from BM-MNC to endothelial cells via gap junctions in vivo.
(AD) BCECF-positive BM-MNC transplanted 5 minutes after intravenous injection into the brain after cerebral infarction. BCECF-positive cells (A) were observed in the cerebral microvascular system (B). Overlaying the images demonstrates the transfer of BCECF from BM-MNC to endothelial cells through the CD31-positive endothelial cell membrane (C, D). (E, F) Connexin 37 (Cx37) was not observed in the contralateral healthy cerebral cortex (E), but was clearly expressed 48 hours after the induction of cerebral infarction on the ipsilateral side (F). Expression of (G, H) connexin 43 (Cx43) was rarely observed in healthy cortex (G), but increased expression was observed after cerebral infarction (H). Accumulation (J) of Cx37 with (IL) BCECF infiltration (J) was observed in endothelial cells (K, L). Accumulation (M) of Cx43 with (MP) BCECF infiltration (N) was observed in endothelial cells (O, P). Scale bar, 20 μm (A), 5 μm (D, I), 40 μm (E)
FIG. 4 shows that changes in endothelial cell microstructure suggest a reduction in autophagy in BM-MNC transplanted animals.
(A) Normal capillaries consisting of endothelial cells, basal layer, pericytes and astrocyte foot processes in non-cerebral infarction mice. (B, C) Representative photographs of capillaries in lesions. A significant number of autophagosome-like vacuoles were observed in the endothelial cells of PBS-treated mice (B). In contrast, despite the disappearance of astrocyte foot processes, several autophagosomes with attached pericytes were found in the endothelial cells of BM-MNC-treated mice 72 hours after cerebral infarction induction. Astrocytes were observed (C). (D, E) A significant number of autophagosome-like vacuoles were observed in the endothelial cells of PBS-treated mice (D). In contrast, few autophagosome-like vacuoles were observed in the endothelial cells of BM-MNC-treated mice (E). (F, G) Photographs of capillaries in the intact contralateral cortex. Autophagosome-like vacuoles were observed in some endothelial cells of PBS-treated mice (F). In contrast, no autophagosome-like vacuoles were observed in the endothelial cells of BM-MNC-treated mice (G). (H) Quantitative analysis confirmed that BM-MNC transplantation suppressed the formation of autophagosome-like vacuoles in the relevant region. Scale bar, 2 μm (A), p <0.01 versus PBS, n = 5 (H) in each group.
FIG. 5 shows the expression of the autophagy marker LC3 in endothelial cells after cerebral infarction.
(A) Most CD31-positive endothelial cells in the lesion area express LC3 in both PBS and BM-MNC-treated mice. (B) In the peri-lesion region, LC3-positive endothelial cells were rarely observed in BM-MNC-treated mice, but most endothelial cells were LC3-positive in PBS-treated mice. (C) In the undamaged contralateral cortex, some LC3-positive endothelial cells were observed in mice treated with PBS, but no LC3-positive endothelial cells were observed in mice treated with BM-MNC. It was. Scale bar, 20 μm (A)
FIG. 6 shows Hif-1α expression after BM-MNC transplantation.
(AC) At 3 hours (B) or 48 hours (C) after the induction of brain injury, almost no expression of Hif-1α was observed in the undamaged brain (A) and the post-cerebral infarction region. .. (D) However, one hour after BM-MNC transplantation, increased Hif-1α expression was observed in the capillary-like structure. (EH) BCECF signal (E) was co-localized with Hif-1α expression in CD31-positive endothelial cells (G, H). Scale bar, 40 μm (A), 10 μm (E)
FIG. 7 shows changes in the concentrations of various cytokines in the HUVEC culture supernatant.
HUVEC single culture (PBS), co-culture with BM-MNC (BM-MNC). The graph shows the amount of change (pM) in the cytokine concentration in the supernatant after 6 hours of culturing. (A) Angiopoietin-2, (B) Endoglin, (C) TGFα, (D) IGFBP-1, (E) TNFα.
FIG. 8 compares the VEGF uptake promoting action of HUVEC (human umbilical vein vascular endothelial cells) by a low molecular weight compound with a standard substance.
(A) Fluorescent background, (B) Standard substance / no test substance, (C) Standard substance (Cafeic acid), (D) Test substance 1 (4-0-Cafeoylequic acid), (E) Test substance 2 (Caffeic acid) acid).
 本発明は、血管内皮細胞におけるVEGFの取り込みを指標とした血管内皮細胞活性化促進物質又は抑制物質、特にBM−MNCと同様の機構で血管内皮細胞の活性化を制御する作用を有する物質のスクリーニング方法に関する。 The present invention screens vascular endothelial cell activation-promoting or inhibitory substances using VEGF uptake in vascular endothelial cells as an index, particularly substances having an action of controlling vascular endothelial cell activation by a mechanism similar to BM-MNC. Regarding the method.
1.工程1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する「血管内皮細胞」
 本発明で使用される「血管内皮細胞」は、VEGFに対するレセプターを発現している培養可能な血管内皮細胞であれば特に限定されないが、哺乳動物由来の細胞が好ましく、特にヒト由来の細胞がより好ましい。ヒト血管内皮細胞としては、例えば、ヒト臍帯静脈内皮細胞(HUVEC)、ヒト脳微小血管内皮細胞(HBMEC)、ヒト臍帯動脈内皮細胞(HUAEC)、ヒト大動脈内皮細胞(HAoEC)、ヒト冠状動脈内皮細胞(HCAEC)、ヒト肺動脈内皮細胞(HPAEC)、ヒト伏在静脈血管内皮細胞(HSaVEC)、ヒト皮膚血管内皮細胞(HDBEC)、ヒト皮膚微小血管内皮細胞(HDMEC)、ヒト子宮微小血管内皮細胞(HUtMEC)、ヒト肺微小血管内皮細胞(HPMEC)、ヒト心臓微小血管内皮細胞(HCMEC)、ヒト皮膚微小リンパ管内皮細胞(HDLEC)などが挙げられ、いずれも市販の培養細胞株を利用することができる。特に好ましいのは、HUVEC及びHBMECである。
1. 1. Step 1) “Vascular endothelial cells” in which vascular endothelial cells are cultured together with a test substance in the presence of labeled VEGF.
The "vascular endothelial cell" used in the present invention is not particularly limited as long as it is a culturable vascular endothelial cell expressing a receptor for VEGF, but a mammalian-derived cell is preferable, and a human-derived cell is more preferable. preferable. Examples of human vascular endothelial cells include human umbilical venous endothelial cells (HUVEC), human brain microvascular endothelial cells (HBMEC), human umbilical artery endothelial cells (HUAEC), human aortic endothelial cells (HAoEC), and human coronary endothelial cells. (HCAEC), Human Pulmonary Arterial Endothelial Cell (HPAEC), Human Saphenous Vinegar Endothelial Cell (HSaVEC), Human Cutaneous Vascular Endothelial Cell (HDBEC), Human Skin Microvascular Endothelial Cell (HDMEC), Human Uterine Microvascular Endothelial Cell (HUtMEC) ), Human lung microvascular endothelial cells (HPMEC), human heart microvascular endothelial cells (HCMEC), human skin microlymphocyte endothelial cells (HDLEC), etc., and commercially available cultured cell lines can be used for all of them. .. Particularly preferred are HUVEC and HBMEC.
「血管内皮細胞増殖因子(VEGF)」
 本発明で使用される血管内皮細胞増殖因子(VEGF)は、使用する血管内皮細胞に発現しているVEGF受容体に結合できるものであれば特に限定されないが、哺乳動物由来のVEGFが好ましく、特にヒト由来のVEGFがより好ましい。VEGFには、VEGF−A、VEGF−B、VEGF−C、VEGF−D、VEGF−E、PIGF−1、PIGF−2など7つのファミリーが存在する。一般にVEGF−AをVEGFと呼ぶこともあり、本明細書においても、単にVEGFと記載する場合には、VEGF−Aを意味するものとする。
"Vascular Endothelial Growth Factor (VEGF)"
The vascular endothelial growth factor (VEGF) used in the present invention is not particularly limited as long as it can bind to the VEGF receptor expressed in the vascular endothelial cells used, but mammalian-derived VEGF is particularly preferable. Human-derived VEGF is more preferred. There are seven families of VEGF, including VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PIGF-1, and PIGF-2. Generally, VEGF-A may be referred to as VEGF, and even in the present specification, when simply referred to as VEGF, it means VEGF-A.
 本発明では、標識されたVEGFを使用することができる。標識方法は特に限定されず、酵素標識、放射性標識、蛍光標識など、公知の方法を適宜選択して用いることができる。本発明においては、蛍光標識が好ましい。 In the present invention, labeled VEGF can be used. The labeling method is not particularly limited, and known methods such as enzyme labeling, radioactive labeling, and fluorescent labeling can be appropriately selected and used. Fluorescent labels are preferred in the present invention.
 酵素標識に使用する酵素としては、HRP(Horseradish peroxidase)、AP(Alkaline phosphatase)が挙げられ、HRPはDABやTABなどの発色基質を用いて、APはBCIP/NBTやpPNPPなどの発色基質を用いて発色させる。
 放射性標識に使用する放射性同位体としては、125I、Hなどを使用することができ、タンパク質ヨウ素標識試薬を用いて、酵素的又は化学的酸化により検出対象であるタンパク質に組み込む。
Examples of the enzyme used for enzyme labeling include HRP (Horseradish peroxidase) and AP (Alkaline phosphatase). HRP uses a coloring substrate such as DAB or TAB, and AP uses a coloring substrate such as BCIP / NBT or pPNPP. To develop color.
The radioisotope used in radiolabeled, can be used like 125 I, 3 H, using protein iodine labeling reagent is incorporated into the protein to be detected by enzymatic or chemical oxidation.
 蛍光標識に使用する蛍光物質としては、PE(Phycoerythrin)、APC(Allophycocyanin)、GFP、CFP、RFPなどのなどの蛍光蛋白質、FITC(Fluorescein Isothiocyanate)、Coumarin、TRITC(Tetramethylrhodamine)、Alexa Fluor(登録商標)、Cy(登録商標)、Texas Red(登録商標)、BODIPY(登録商標)FL、Super Brightなどの低分子蛍光色素を好適に使用することができるが、これらに限定されない。蛍光標識のシグナルは、光学顕微鏡、高感度CCDカメラ、共焦点レーザー顕微鏡、フローサイトメトリーなどの検出方法と画像処理技術によって検出・定量することができる。 Examples of the fluorescent substance used for the fluorescent label include fluorescent proteins such as PE (Phycoerythrin), APC (Allophycocyanin), GFP, CFP, RFP, etc., FITC (Fluorescein Isothiocyanate), Coumarin, and TRITC (Tetramethyllo). ), Cy (registered trademark), Texas Red (registered trademark), BODIPY (registered trademark) FL, Super Bright, and other low-molecular-weight fluorescent dyes can be preferably used, but are not limited thereto. The signal of the fluorescent label can be detected and quantified by a detection method such as an optical microscope, a high-sensitivity CCD camera, a confocal laser microscope, or flow cytometry, and an image processing technique.
 検出は、感度を上げるためにビオチン−アビジン系やビオチン−ストレプトアビジン系を用いて蛍光シグナルを増幅してもよい。 For detection, the fluorescence signal may be amplified by using a biotin-avidin system or a biotin-streptavidin system in order to increase the sensitivity.
「被験物質」
 本発明の方法においてスクリーニングの対象となる被験物質の種類は特に限定されない。後述する虚血性疾患治療薬としての使用を考慮した場合、合成や取扱いが容易な低分子化合物が好ましい。低分子化合物とは、分子量が約1万以下の化合物を意味する。
"Test substance"
The type of test substance to be screened in the method of the present invention is not particularly limited. Considering the use as a therapeutic agent for ischemic diseases described later, low molecular weight compounds that are easy to synthesize and handle are preferable. The low molecular weight compound means a compound having a molecular weight of about 10,000 or less.
「血管内皮細胞の培養」
 血管内皮細胞は、標識VEGFの存在下で被験物質とともに培養する。培養には、市販の内皮細胞用の培地を用いてもよいし、基本培地に細胞の維持増殖に必要な各種栄養源や分化誘導に必要な各成分を添加して作成してもよい。基本培地としては、DMEM、Keratinocyte−SFM、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM、Improved MEM Zinc Option、IMDM、Medium 199、Eagle MEM、α MEM、ハム培地、RPMI 1640 培地、Fischer’s培地、McCoy’s培地、ウイリアムスE培地、及びこれらの混合培地など、哺乳動物細胞の培養に使用できる培地であればいずれも用いることができる。
"Culture of vascular endothelial cells"
Vascular endothelial cells are cultured with the test substance in the presence of labeled VEGF. For culturing, a commercially available medium for endothelial cells may be used, or various nutrient sources necessary for maintenance and proliferation of cells and various components necessary for inducing differentiation may be added to the basal medium. As the basal medium, DMEM, Keratinocite-SFM, BME medium, BGJb medium, CMRL 1066 medium, Glassgow MEM, Improved MEM Zinc Option, IMDM, Medium 199, Eagle MEM, α MEM, ham medium, RPMIs Any medium that can be used for culturing mammalian cells, such as a medium, McCoy's medium, Williams E medium, and a mixed medium thereof, can be used.
 栄養源としては、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、また、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウム及び硫酸マンガン、各種ビタミン類、アミノ酸類等を含むことができる。 Nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, honey, starch and dextrin, hydrocarbons such as fatty acids, fats and oils, lecithin and alcohols, ammonium sulfate, ammonium nitrate, ammonium chloride and urea. , Nitrogen sources such as sodium nitrate, salt, potassium salt, phosphate, magnesium salt, calcium salt, iron salt, manganese salt and other inorganic salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, sulfuric acid It can contain ferrous iron, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like.
 培地には、その他必要に応じて、レチノイン酸、ピルビン酸、βメルカプトエタノール等のアミノ酸還元剤、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、3’チオールグリセロール、増殖因子(epidermal growth factor;EGF,basic fibrobrast growth factor;bFGF,Insulin−like growth factor;IGFなど)、血清あるいは血清代替物等を添加してもよい。なお血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン)、市販のKnockout Serum Replacement(KSR)、bovine pituitary extract(BPE)、Chemically−defined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)、B27 supplement(Gibco社製)、Y−27632(和光純薬)が挙げられる。 In the medium, if necessary, amino acid reducing agents such as retinoic acid, pyruvate, β-mercaptoethanol, transferrin, fatty acids, insulin, collagen precursors, trace elements, 3'thiolglycerol, growth factors (epidermal growth factor; EGF, basic fibrlast growth factor; bFGF, Insulin-like growth factor; IGF, etc.), serum or serum substitute may be added. Examples of serum substitutes include albumin (for example, lipid-rich albumin), commercially available Knockout Serum Supplement (KSR), bovine pituitary extract (BPE), Chemically-defined Lipid coordinated (Gibco), and Gibco. ), B27 supplement (manufactured by Gibco), Y-27632 (Wako Junyaku).
 これらの成分を配合して得られる培地のpHは5.5~9.0、好ましくは6.0~8.0、より好ましくは6.5~7.5の範囲である。 The pH of the medium obtained by blending these components is in the range of 5.5 to 9.0, preferably 6.0 to 8.0, and more preferably 6.5 to 7.5.
 培養は、36℃~38℃、好ましくは36.5℃~37.5℃で、1%~25% O、1%~15% COの条件下で行われる。 Culturing is carried out at 36 ° C. to 38 ° C., preferably 36.5 ° C. to 37.5 ° C., under the conditions of 1% to 25% O 2 , 1% to 15% CO 2 .
2.工程2)血管内皮細胞へのVEGFの取り込み量を決定する
「血管内皮細胞へのVEGFの取り込み量の決定」
 血管内皮細胞へのVEGFの取り込み量は、被験物質との培養前後における、血管内皮細胞内における標識VEGF由来のシグナル強度の変化を測定することにより、直接的に決定することができる。あるいは被験物質との培養前後における、培養液中に残存する標識VEGF由来のシグナル強度の変化を測定することにより、血管内皮細胞へのVEGFの取り込み量を間接的に決定してもよい。
2. 2. Step 2) Determining the amount of VEGF uptake into vascular endothelial cells "Determining the amount of VEGF uptake into vascular endothelial cells"
The amount of VEGF uptake into vascular endothelial cells can be directly determined by measuring the change in signal intensity derived from labeled VEGF in vascular endothelial cells before and after culturing with the test substance. Alternatively, the amount of VEGF uptake into vascular endothelial cells may be indirectly determined by measuring the change in signal intensity derived from the labeled VEGF remaining in the culture solution before and after culturing with the test substance.
 血管内皮細胞内における標識されたVEGF由来のシグナルの変化を測定する場合、血管内皮細胞と被験物質を、標識VEGFの存在下において、少なくとも10分以上、20分以上、30分以上、より好ましくは30分~4時間、更に好ましくは1~3時間程度、被験物質と培養した後に測定することが推奨されるが、培養条件や使用する細胞に応じて適宜変更しても良い。 When measuring changes in the labeled VEGF-derived signal within vascular endothelial cells, the vascular endothelial cells and the test substance are subjected to at least 10 minutes or more, 20 minutes or more, 30 minutes or more, more preferably in the presence of the labeled VEGF. It is recommended to measure after culturing with the test substance for 30 minutes to 4 hours, more preferably about 1 to 3 hours, but it may be appropriately changed depending on the culture conditions and the cells to be used.
 培養上清中における標識されたVEGF由来のシグナルの変化を測定する場合、血管内皮細胞と被験物質を、標識VEGFの存在下において、少なくとも30分以上、1時間以上、2時間以上、3時間以上、より好ましくは4時間以上、特に好ましくは6時間程度、被験物質と培養した後に測定することが推奨されるが、培養条件や使用する細胞に応じて適宜変更しても良い。 When measuring changes in the labeled VEGF-derived signal in the culture supernatant, vascular endothelial cells and the test substance should be subjected to at least 30 minutes or more, 1 hour or more, 2 hours or more and 3 hours or more in the presence of the labeled VEGF. It is recommended to measure after culturing with the test substance for more preferably 4 hours or more, particularly preferably about 6 hours, but it may be appropriately changed depending on the culture conditions and the cells to be used.
 細胞内における標識VEGFの量は、例えば、FACSを使用することで簡便に測定することができる。培養上清中に残存する標識VEGFの量は、例えば、分光蛍光光度計及びマイクロプレートリーダー、Bio−Plexリーダーを利用して測定することができる。 The amount of labeled VEGF in cells can be easily measured by using, for example, FACS. The amount of labeled VEGF remaining in the culture supernatant can be measured using, for example, a spectrofluorometer, a microplate reader, or a Bio-Plex reader.
3.工程3)被験物質の血管内皮細胞活性化効果を評価する
 被験物質の血管内皮細胞活性化効果は、前記被験物質による血管内皮細胞へのVEGFの取り込み量に基づいて評価する。評価は、被験物質単独で行ってもよいし、血管内皮細胞へのVEGF取り込み促進作用が既知の化合物を標準物質として使用し、当該標準物質と比較して評価してもよい。
3. 3. Step 3) Evaluating the vascular endothelial cell activating effect of the test substance The vascular endothelial cell activating effect of the test substance is evaluated based on the amount of VEGF taken up by the test substance into the vascular endothelial cells. The evaluation may be carried out by the test substance alone, or a compound known to have a VEGF uptake promoting action on vascular endothelial cells may be used as a standard substance and evaluated in comparison with the standard substance.
 被験物質単独で評価を行う場合、最も単純には、被験物質とともに培養することにより、血管内皮細胞へのVEGFの取り込み量が有意に増加した場合に、当該被験物質を血管内皮細胞活性化物質の候補として同定する。あるいは、一定の基準値が設定できれば、その基準値を上回るVEGFの取り込み量が認められた場合に、当該被験物質を血管内皮細胞活性化物質の候補として同定する。 When evaluating the test substance alone, the simplest case is that when the amount of VEGF uptake into vascular endothelial cells is significantly increased by culturing with the test substance, the test substance is used as a vascular endothelial cell activating substance. Identify as a candidate. Alternatively, if a certain reference value can be set, the test substance is identified as a candidate for a vascular endothelial cell activating substance when an uptake amount of VEGF exceeding the reference value is observed.
 被験物質単独で評価を行う場合、最も単純には、被験物質とともに培養することにより、血管内皮細胞へのVEGFの取り込み量が有意に減少した場合に、当該被験物質を血管内皮細胞抑制物質の候補として同定する。あるいは、一定の基準値が設定できれば、その基準値を上回るVEGFの取り込み量が認められた場合に、当該被験物質を血管内皮細胞抑制物質の候補として同定する。 When evaluating the test substance alone, the simplest case is that when the amount of VEGF uptake into vascular endothelial cells is significantly reduced by culturing with the test substance, the test substance is a candidate for a vascular endothelial cell inhibitor. Identify as. Alternatively, if a certain reference value can be set, the test substance is identified as a candidate for a vascular endothelial cell inhibitor when an uptake amount of VEGF exceeding the reference value is observed.
「標準物質」
 標準物質と比較して評価する場合には、同一の条件において、標準物質を添加した場合と、被験物質を添加した場合における、血管内皮細胞へのVEGF取り込み量を比較することで、血管内皮細胞活性化効果を評価する。なお、標準物質は血管内皮細胞のVEGF取り込み促進作用が確認できている物質であれば特に限定されない。後述する実施例では、本発明の方法により、発明者らが血管内皮細胞に対するVEGF取り込み促進効果を確認しているCaffeic acidを使用することにより、他の低分子化合物の血管内皮細胞に対するVEGF取り込みを評価したが、標準物質はこれに限定されるものではない。
"Standard substance"
When evaluating in comparison with a standard substance, the amount of VEGF uptake into vascular endothelial cells when the standard substance is added and when the test substance is added under the same conditions is compared to vascular endothelial cells. Evaluate the activation effect. The standard substance is not particularly limited as long as it has been confirmed to have a VEGF uptake promoting effect on vascular endothelial cells. In the examples described later, the method of the present invention is used to obtain VEGF uptake of other low molecular weight compounds into vascular endothelial cells by using Caffeic acid, for which the inventors have confirmed the effect of promoting VEGF uptake on vascular endothelial cells. Although evaluated, the reference material is not limited to this.
「血管内皮細胞活性化促進物質」
 本発明の方法でスクリーニングされる「血管内皮細胞活性化促進物質」とは、BM−MNCと同様の機構で血管内皮細胞の活性化を促進する作用を有する物質である。
"Vascular endothelial cell activation promoter"
The "vascular endothelial cell activation promoting substance" screened by the method of the present invention is a substance having an action of promoting the activation of vascular endothelial cells by the same mechanism as BM-MNC.
「血管内皮細胞活性化抑制物質」
 本発明の方法でスクリーニングされる「血管内皮細胞活性化抑制物質」とは、BM−MNCと逆の作用を発揮し、血管内皮細胞の活性化を抑制する作用を有する物質である。
"Vascular endothelial cell activation inhibitor"
The "vascular endothelial cell activation inhibitor" screened by the method of the present invention is a substance that exerts an action opposite to that of BM-MNC and has an action of suppressing the activation of vascular endothelial cells.
4.培養上清中のサイトカイン濃度の評価
 必要に応じて、上記方法は、さらに、アンジオポエチン2、エンドグリン、IGFBP(インスリン様増殖因子結合タンパク質)、TNFα、及びTGFαからなる群から選ばれる1又は2以上のサイトカインの培養上清中の濃度を決定する工程を含んでいてもよい。サイトカイン濃度は、VEGFと同様の方法で測定できるが、市販のマルチプレックスシステムを使用して複数のサイトカインを同時測定してもよい。例えば、被験物質とともに培養することにより、血管内皮細胞へのVEGF取り込み量の増加に加えて、上記培養上清中のサイトカイン濃度が減少した場合に、当該被験物質を血管内皮細胞活性化促進物質の候補として同定する。逆に、被験物質とともに培養することにより、血管内皮細胞へのVEGF取り込み量の減少に加えて、培養上清中のサイトカイン濃度が増加した場合に、当該被験物質を血管内皮細胞活性化抑制物質の候補として同定する。評価に使用するサイトカインとしては、特にアンジオポエチン2とTGFαが好ましく、アンジオポエチン2がより好ましい。
4. Evaluation of Cytokine Concentration in Culture Supernatants If necessary, the above method further comprises one or more selected from the group consisting of angiopoetin 2, endoglin, IGFBP (insulin-like growth factor binding protein), TNFα, and TGFα. It may include a step of determining the concentration of the cytokine in the culture supernatant. Cytokine concentration can be measured in a similar manner to VEGF, but multiple cytokines may be measured simultaneously using a commercially available multiplex system. For example, when the cytokine concentration in the culture supernatant is decreased in addition to the increase in the amount of VEGF uptake into the vascular endothelial cells by culturing with the test substance, the test substance is used as a substance for promoting vascular endothelial cell activation. Identify as a candidate. On the contrary, when the cytokine concentration in the culture supernatant is increased in addition to the decrease in the amount of VEGF uptake into the vascular endothelial cells by culturing with the test substance, the test substance is used as the inhibitor of vascular endothelial cell activation. Identify as a candidate. As cytokines used for evaluation, angiopoietin 2 and TGFα are particularly preferable, and angiopoietin 2 is more preferable.
5.虚血性疾患治療薬のスクリーニング
「虚血性疾患治療薬」
 本発明のスクリーニング方法で同定された血管内皮細胞活性化促進物質は、BM−MNCと同様の作用機序で血管内皮細胞による血管新生を活性化させることができる。そのため、床ずれ・皮膚潰瘍、手術瘢痕、難治性消化性潰瘍を含む創傷、潰瘍性大腸炎、クローン病などの慢性炎症性腸疾患を含む炎症性疾患、重症四肢虚血、心筋梗塞・狭心症・心不全を含む虚血性心疾患、脳梗塞などの虚血性脳血管障害、糖尿病性ニューロパチー、重症虚血を伴うがんなどの虚血に起因する疾患(虚血性疾患)の治療薬として有用である。換言すれば、本発明のスクリーニング方法は、虚血性疾患治療薬の候補物質のスクリーニングに利用できる。
5. Screening of therapeutic agents for ischemic diseases "Therapeutic agents for ischemic diseases"
The vascular endothelial cell activation-promoting substance identified by the screening method of the present invention can activate angiogenesis by vascular endothelial cells by a mechanism of action similar to that of BM-MNC. Therefore, bed slip / skin ulcer, surgical scar, wound including refractory digestive ulcer, inflammatory disease including chronic inflammatory bowel disease such as ulcerative colitis and Crohn's disease, severe limb ischemia, myocardial infarction / angina・ It is useful as a therapeutic agent for ischemic heart disease including heart failure, ischemic cerebrovascular disorder such as cerebral infarction, diabetic neuropathy, and ischemic disease such as cancer with severe ischemia (ischemic disease). .. In other words, the screening method of the present invention can be used for screening candidate substances for therapeutic agents for ischemic diseases.
6.血管新生阻害薬のスクリーニング
「血管新生阻害薬」
 本発明のスクリーニング方法で同定された血管内皮細胞活性化阻害物質は、BM−MNCの作用に拮抗する機序で血管内皮細胞による血管新生活性化を抑制することができる。そのため、血管新生阻害薬として、病態の進行と血管新生が密接に関連する癌、慢性関節リウマチ、、クロ−ン病、ベーチェット病、乾癬、粥状動脈硬化、糖尿病性網膜症、血管新生緑内障、未熟児網膜症、加齢性黄斑変性症などの血管新生病の治療薬として有用である。換言すれば、本発明のスクリーニング方法は、上記した血管新生阻害薬の候補物質のスクリーニングに利用できる。
6. Screening for angiogenesis inhibitors "Angiogenesis inhibitors"
The vascular endothelial cell activation inhibitor identified by the screening method of the present invention can suppress angiogenesis activation by vascular endothelial cells by a mechanism that antagonizes the action of BM-MNC. Therefore, as angiogenesis inhibitors, cancer, chronic rheumatoid arthritis, which is closely related to the progression of pathological conditions and angiogenesis, Clone's disease, Bechet's disease, psoriasis, porphyritic arteriosclerosis, diabetic retinopathy, angiogenic glaucoma, It is useful as a therapeutic agent for angiogenic diseases such as retinopathy of prematurity and age-related yellow spot degeneration. In other words, the screening method of the present invention can be used for screening the above-mentioned candidate substances for angiogenesis inhibitors.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例1:BM−MNCによるHUVECのVEGF取り込みの促進
1.材料及び方法
・BM−MNCの調製
 骨髄は、6週齢、オスのC57BL/6マウス(Japan SLC)から得た。大腿骨及び脛骨を解剖し、PBSを用いて骨から骨髄を抽出した。骨髄を機械的に分離し、BM−MNCをFicoll−Paque Premium(GE Healthcare)を用いた密度勾配遠心分離によって単離した。
Example 1: Promotion of HUVEC VEGF uptake by BM-MNC 1. Materials and Methods-Preparation of BM-MNC Bone marrow was obtained from 6-week-old male C57BL / 6 mice (Japan SLC). The femur and tibia were dissected and bone marrow was extracted from the bone using PBS. Bone marrow was mechanically separated and BM-MNC was isolated by density gradient centrifugation using Ficoll-Paque Premium (GE Healthcare).
・内皮細胞の調製とBM−MNCとの共培養
 メーカーのプロトコルに従い、ヒト臍帯静脈内皮細胞(HUVEC、Kurabo)を培地(HuMedia−EB2、Kurabo)、血清及び増殖添加剤とともに培養した。HUVECを6ウェルプレート(1000μl、1.5x10細胞/ウェル)に播種し、72時間インキュベートした。試料から上清(200μl)を集めた。次に、共培養実験のために、HuMedia−EB2のみ、又はHuMedia−EB2に懸濁させたBM−MNC懸濁液(1×10細胞/ウェル)、をHUVECに添加した。6時間共培養の後、上清(200μl)をウェルから集めた。
-Preparation of endothelial cells and co-culture with BM-MNC Human umbilical vein endothelial cells (HUVEC, Kurabo) were cultured with medium (HuMedia-EB2, Kurabo), serum and growth additives according to the manufacturer's protocol. HUVEC 6-well plates (1000 .mu.l, 1.5 × 10 5 cells / well) were seeded in, were incubated for 72 hours. A supernatant (200 μl) was collected from the sample. Next, for co-culture experiments, only HuMedia-EB2 or a BM-MNC suspension suspended in HuMedia-EB2 (1 × 10 6 cells / well) was added to HUVEC. After co-culturing for 6 hours, supernatant (200 μl) was collected from the wells.
 HUVECとBM−MNCとの間のギャップ結合介在性細胞間相互作用の関連性を評価するために、BM−MNCをギャップ結合阻害剤である1−オクタノール(最終濃度1mM)又はギャップ結合阻害剤であるカルベノキソロン(CDX:終濃度100μM、Sigma)とともにインキュベートし、HUVECと共培養する前にHuMedia−EB 2で2回洗浄した。 To assess the association of gap junction-mediated cell-cell interactions between HUVEC and BM-MNC, BM-MNC was used as a gap junction inhibitor 1-octanol (final concentration 1 mM) or a gap junction inhibitor. It was incubated with a carbenoxolone (CDX: final concentration 100 μM, Sigma) and washed twice with HuMedia-EB 2 before co-culturing with HUVEC.
・VEGF測定
 ヒト血管内皮増殖因子(hVEGF)の濃度を、メーカーのプロトコルに従いBio−Plex Multiplex System(Bio−Rad)を用いて測定した。予想したとおり、BM−MNC懸濁液中のhVEGFレベルは検出限界以下であった。HUVECとBM−MNCとの間の細胞間相互作用の効果を評価するため、セルカルチャーインサート(1μm孔径:Thermo Fisher)を用いて直接の細胞間相互作用を防止した。
-VEGF measurement The concentration of human vascular endothelial growth factor (hVEGF) was measured using the Bio-Plex Multiplex System (Bio-Rad) according to the manufacturer's protocol. As expected, hVEGF levels in the BM-MNC suspension were below the detection limit. To assess the effect of cell-cell interactions between HUVEC and BM-MNC, cell culture inserts (1 μm pore size: Thermo Fisher) were used to prevent direct cell-cell interactions.
・BM−MNCのサイトゾルへの低分子蛍光分子の導入
 BM−MNCを1μMのBCECF−AM(2’,7’−bis−(2−carboxyethyl)−5−(and−6)−carboxyfluorescein,acetoxymethylester、Thermo Fisher)とともに室温で30分間インキュベートした。使用前に、BCECF標識BM−MNCをPBSで2回洗浄した。
-Introduction of low-molecular-weight fluorescent molecules into the cytosol of BM-MNC 1 μM BCECF-AM (2', 7'-bis- (2-carboxyethyl) -5- (and-6) -carboxyfluorescein, acetoxyformater) , Thermo Fisher) at room temperature for 30 minutes. Prior to use, BCECF labeled BM-MNC was washed twice with PBS.
・HUVECによるVEGFの取り込み
 ビオチン結合VEGF(R&D Systems)をストレプトアビジン結合APC(Thermo Fisher、モル比4:1)とともに室温で10分間インキュベートした。HUVECをPBS中に懸濁した。2×10個のBM−MNC及びAPC標識VEGF(最終濃度10nM)を1×10個のHUVECに加え、37℃で3時間インキュベートした。同時インキュベーション後、細胞混合物をPBSで2回洗浄し、Phycoerythrin(PE)標識抗ヒトCD31抗体(BD Bioscience)、FITC(Fluorescein isothiocyanate)標識抗マウスCD45抗体(BD Bioscience)及び7−AAD(BD Bioscience)で染色した。HUVEC中のAPCのレベル(CD31陽性、CD45陰性及び7AAD陰性)をFACS Calibur蛍光セルソーター(BD Bioscience)で評価した。VEGF取り込みに対するギャップ結合の役割を評価するために、BM−MNCを1−オクタノールとともにインキュベートした。
Incorporation of VEGF by HUVEC Biotin-bound VEGF (R & D Systems) was incubated with streptavidin-bound APC (Thermo Fisher, molar ratio 4: 1) for 10 minutes at room temperature. HUVEC was suspended in PBS. 2 × 10 5 BM-MNCs and APC-labeled VEGF (final concentration 10 nM) were added to 1 × 10 5 HUVECs and incubated at 37 ° C. for 3 hours. After co-incubation, the cell mixture was washed twice with PBS and Phycoerythrin (PE) -labeled anti-human CD31 antibody (BD Bioscience), FITC (Fluorescein isothiociate) -labeled anti-mouse CD45 antibody (BD Bioscience) and 7-AAD (BD Bioscience). Stained with. Levels of APC in HUVEC (CD31 positive, CD45 negative and 7AAD negative) were evaluated on a FACS Calibur fluorescent cell sorter (BD Bioscience). BM-MNC was incubated with 1-octanol to assess the role of gap junctions in VEGF uptake.
・局所脳虚血の誘発及びBM−MNC投与
 再現性に優れたマウス脳梗塞モデルを採用した(Taguchi A et al.,“A Reproducible and Simple Model of Permanent Cerebral Ischemia in CB−17 and SCID Mice.”J Exp Stroke Transl Med.2010;3(1):28−33.)。すなわち、3%ハロタン吸入麻酔下で双極鉗子を用いて7週齢のオスのCB−17マウス(オリエンタル酵母)の左中大脳動脈(MCA)遠位部分を結紮及び切断して永久局所的脳虚血を誘発した。術中、直腸温をモニターし、フィードバック調節式加温パッドで37.0±0.2℃に制御した。MCA領域における脳血流(CBF)もモニターした。MCA閉塞直後にCBFが75%以上減少したマウスを実験に使用した(成功率100%)。術前の動物の体重は20~25グラムであった。脳梗塞誘発48時間後に、5×10個のBM−MNC又はPBSを尾静脈から注入した。
-Induction of local cerebral ischemia and administration of BM-MNC A mouse cerebral infarction model with excellent reproducibility was adopted (Taguchi A et al., "A Reproducible and Simple Model of Permanent Cerembral Issue Machine in CB-17". J Exp Stroke Transl Med. 2010; 3 (1): 28-33.). That is, a permanent local cerebral deficiency was obtained by ligating and cutting the distal part of the left middle cerebral artery (MCA) of a 7-week-old male CB-17 mouse (Oriental yeast) using bipolar forceps under 3% halothane inhalation anesthesia. Induced blood. During the operation, rectal temperature was monitored and controlled to 37.0 ± 0.2 ° C. with a feedback-adjustable heating pad. Cerebral blood flow (CBF) in the MCA region was also monitored. Mice with a CBF reduction of 75% or more immediately after MCA occlusion were used in the experiment (success rate 100%). Preoperative animals weighed 20-25 grams. Forty-eight hours after the induction of cerebral infarction, 5 × 10 5 BM-MNC or PBS were injected through the tail vein.
・免疫組織化学
 梗塞皮質を分析するために組織化学的に、マウスをペントバルビタールナトリウムで深く麻酔し、生理食塩水終濃度4%パラホルムアルデヒドを含む生理食塩水で灌流して固定した。脳を注意深く摘出し、ビブラトーム(Leica)を用いて冠状切片(20μm)を作製した。非脳梗塞CB−17マウスの切片も、大脳皮質でのコネキシン37及び43の発現を評価するために作製した。切片をCD31(BD Pharmingen、希釈率1:50)、LC3(Medical&Biological Laboratories、1:500)、HIF−1α(Hif−1α R&D、1:50)、コネキシン37(Cloud−Clone、1:50)、コネキシン43(Proteintech、1:200)又はDAPI(BD Bioscience、1:1000)に対する一次抗体で免疫染色した。抗Hif−1α抗体を3,3’−ジアミノベンジジン(DAB)法によって可視化し、Mayerのヘマトキシリン溶液(Wako)で対比染色した。Alexa 555結合抗体(Novus Biologicals)を二次抗体として使用して、CD31、コネキシン37及びコネキシン43を可視化した。Alexa647、Alexa488又はAlexa633(すべてNovus Biologicals)−結合抗体を、それぞれHif−1α、LC3、コネキシン37又はコネキシン43抗体を検出するための二次抗体として使用した。
-Immunohistochemistry To analyze the infarct cortex, mice were deeply anesthetized with pentobarbital sodium and perfused with saline containing paraformaldehyde at a final concentration of 4%. The brain was carefully removed and a coronary section (20 μm) was prepared using a Vibratome (Leica). Sections of non-cerebral infarcted CB-17 mice were also prepared to assess the expression of connexins 37 and 43 in the cerebral cortex. Sections were CD31 (BD Harmingen, dilution 1:50), LC3 (Medical & Biological Laboratories, 1: 500), HIF-1α (Hif-1α R & D, 1:50), Connexin 37 (Cloud-Clone, 1:50), Immunostaining was performed with a primary antibody against Connexin 43 (Proteintech, 1: 200) or DAPI (BD Bioscience, 1: 1000). The anti-Hif-1α antibody was visualized by the 3,3'-diaminobenzidine (DAB) method and counterstained with Mayer's hematoxylin solution (Wako). Alexa 555 binding antibody (Novus Biologicals) was used as the secondary antibody to visualize CD31, connexin 37 and connexin 43. Alexa647, Alexa488 or Alexa633 (all Novus Biologicals) -binding antibodies were used as secondary antibodies to detect Hif-1α, LC3, Connexin 37 or Connexin 43 antibodies, respectively.
・電子顕微鏡分析
 超微細構造を分析するため、動物を4%パラホルムアルデヒドと2%グルタルアルデヒド含有PBS(pH7.4)を含む固定液で灌流した。脳を注意深く摘出し、4℃のパラホルムアルデヒドに24時間浸漬した。冠状脳切片をマイクロスライサーで100μmの厚さに薄切した。切片を1%OsOで固定した。1時間、脱水し、エポキシ樹脂中でシリコン処理したスライドグラス上に平らに包埋した。虚血性病変、脳梗塞周辺領域又は対応する対側性皮質領域を含む大脳皮質の超薄切片を切り出し、Formvar被覆シングルスロット(2x1mm)グリッドに載せ、2%酢酸ウラニル及びクエン酸鉛で染色した。電子顕微鏡写真は、JEM−1400EX+(JDEL)を使用し80kVで撮影した。虚血性病変、脳梗塞周辺領域及び対応する対側性皮質領域におけるオートファゴソーム様液胞の数を数えた。
-Electron Microscopic Analysis Animals were perfused with a fixative containing PBS containing 4% paraformaldehyde and 2% glutaraldehyde (pH 7.4) to analyze hyperfine structure. The brain was carefully removed and immersed in paraformaldehyde at 4 ° C. for 24 hours. The coronary brain section was sliced with a microslicer to a thickness of 100 μm. Sections were fixed at 1% OsO 4 . It was dehydrated for 1 hour and flatly embedded on a siliconized slide glass in epoxy resin. Ultrathin sections of the cerebral cortex containing ischemic lesions, peri-cerebral infarction regions or corresponding contralateral cortical regions were excised and placed on a Formvar-coated single slot (2x1 mm) grid and stained with 2% uranyl acetate and lead citrate. Electron micrographs were taken at 80 kV using JEM-1400EX + (JDEL). The number of autophagosome-like vacuoles in ischemic lesions, peri-cerebral infarction and corresponding contralateral cortical areas was counted.
・データ解析
 群間の統計的比較は、一元配置分散分析(ANOVA)、続いてDunnett’s検定を用いたpost−hoc分析を用いて決定した。指示がある場合は、Student’s t検定を使用して個々の比較を行った。全ての実験において、平均±SDとして示した。
-Data analysis Statistical comparisons between groups were determined using one-way analysis of variance (ANOVA) followed by post-hoc analysis using Dunnett's test. When instructed, individual comparisons were made using Student's t-test. Shown as mean ± SD in all experiments.
2.結果
(1)BM−MNCはギャップ結合介在性相互作用を通してHUVECへのVEGFの取り込みを促進する
 VEGFは、最も顕著な血管新生促進因子の1つである。最初にHUVEC培地中のVEGFレベルに対するBM−MNCの効果を評価した。マウスBM−MNCをHUVECと共培養し、共培養の前及び6時間後に培地中のhVEGFのレベルを評価した。hVEGFレベルはBM−MNCとの共培養後にベースラインから有意に減少したが、対照においては増加した(図1A)。セルカルチャーインサートによって分離されたBM−MNCとの共培養では、hVEGFレベルは減少しなかった。この発見は、BM−MNCが細胞間相互作用を介してHUVECへのhVEGFの取り込みを促進し得るという仮説を支持する。
2. 2. Results (1) BM-MNC promotes uptake of VEGF into HUVEC through gap junction-mediated interactions VEGF is one of the most prominent angiogenesis-promoting factors. First, the effect of BM-MNC on VEGF levels in HUVEC medium was evaluated. Mouse BM-MNC was co-cultured with HUVEC and the level of hVEGF in the medium was evaluated before and 6 hours after co-culture. hVEGF levels decreased significantly from baseline after co-culture with BM-MNC, but increased in controls (FIG. 1A). Co-culture with BM-MNC isolated by cell culture inserts did not reduce hVEGF levels. This finding supports the hypothesis that BM-MNC may promote the uptake of hVEGF into HUVEC through cell-cell interactions.
 仮説を確認するために、APC標識VEGFをHUVEC培地に添加し、HUVECへのAPC標識VEGFの取り込みをFACSによって評価した。HUVEC及びBM−MNCは、CD31及びCD45に対する抗体によって区別した(図1B)。HUVECへのVEGFの取り込みの増加は、BM−MNCとの共培養後に観察された(図1C−E)。ギャップ結合は、骨髄の造血幹細胞(HSC)と内皮細胞間の相互作用を含む、細胞間相互作用において重要な役割を果たすことが知られている。VEGFの取り込みに対するギャップ結合を介した細胞間相互作用の本質的な寄与を調べた。BM−MNCが共培養の前にギャップ結合阻害薬(1−オクタノール又はカルベノキソロン)で前処理されている場合、HUVECへのAPC−VEGFの取り込みは改善されなかった(図1F、G)。HUVECの存在下又は非存在下で共培養した場合、BM−MNCにおいてVEGFの取り込みがほとんど観察されなかったことに留意すべきである(図1H−J) To confirm the hypothesis, APC-labeled VEGF was added to HUVEC medium and the uptake of APC-labeled VEGF into HUVEC was evaluated by FACS. HUVEC and BM-MNC were distinguished by antibodies against CD31 and CD45 (Fig. 1B). Increased uptake of VEGF into HUVEC was observed after co-culture with BM-MNC (Fig. 1C-E). Gap junctions are known to play an important role in cell-cell interactions, including interactions between bone marrow hematopoietic stem cells (HSCs) and endothelial cells. The essential contribution of cell-cell interactions through gap junctions to VEGF uptake was investigated. Incorporation of APC-VEGF into HUVEC was not improved when BM-MNC was pretreated with a gap junction inhibitor (1-octanol or carbenoxolone) prior to co-culture (FIGS. 1F, G). It should be noted that little VEGF uptake was observed in BM-MNC when co-cultured in the presence or absence of HUVEC (Fig. 1HJ).
(2)ギャップ結合を介したBM−MNCから内皮細胞への低分子量物質のin vitro輸送
 BM−MNCとHUVEC、低分子量蛍光の間の仮定されたギャップ結合介在性相互作用を確認するため、低分子蛍光物質(BCECF)をBM−MNCの細胞質に導入した。BCECFの分子量は約520であり、ギャップ結合を通過することが知られている。BM−MNCからHUVECへのBCECFの移行をFACSによって評価した(図2A、B)。BM−MNCとHUVECをセルカルチャーインサートで分離して共培養しても移動は観察されず(図2C)、ギャップ結合脱共役剤1−オクタノールを塗布した場合も移動は認められなかった(図2D)。BM−MNCとHUVECとの間のギャップ結合介在性相互作用を確認するために、コネキシン37及び43の発現を調べた。コネキシン37の発現は観察されなかったが(図2E、F)、コネキシン43の発現はHUVECの細胞表面で観察された(図2G、H)。対照的に、コネキシン37(図2I、J)及びコネキシン43(図2K)の両方の発現がBM−MNCで観察された。
(2) In vitro transport of low molecular weight material from BM-MNC to endothelial cells via gap junction Low to confirm the assumed gap junction-mediated interaction between BM-MNC and HUVEC, low molecular weight fluorescence A molecular fluorescent substance (BCECF) was introduced into the cytoplasm of BM-MNC. BCECF has a molecular weight of about 520 and is known to cross gap junctions. The transition of BCECF from BM-MNC to HUVEC was evaluated by FACS (FIGS. 2A, B). No migration was observed when BM-MNC and HUVEC were separated and co-cultured with a cell culture insert (Fig. 2C), and no migration was observed when the gap junction decoupling agent 1-octanol was applied (Fig. 2D). ). Expression of connexins 37 and 43 was examined to confirm the gap junction-mediated interaction between BM-MNC and HUVEC. Expression of connexin 37 was not observed (FIGS. 2E, F), but expression of connexin 43 was observed on the cell surface of HUVEC (FIGS. 2G, H). In contrast, expression of both connexin 37 (FIGS. 2I, J) and connexin 43 (FIG. 2K) was observed in BM-MNC.
(3)ギャップ結合を介したBM−MNCから内皮細胞への低分子量物質のin vivo移動
 BCECF標識BM−MNCを脳梗塞誘発48時間後にマウスに静脈内移植した。BM−MNC注入の5分後、マウスを安楽死させ、BCECFの局在を蛍光顕微鏡により評価した。BM−MNCから内皮細胞へのBCECF移行の証拠とともに、BCECF陽性細胞が脳梗塞領域の微小血管系において観察された(図3A−D)。BM−MNCと内皮細胞との間のギャップ結合介在性細胞間相互作用を調査するために、脳梗塞後の脳におけるコネキシン37の発現を調査した。非脳梗塞マウスではコネキシン37の発現はほとんど観察されず(図3E)、脳梗塞誘発の48時間後の病変領域ではコネキシン37の発現の増加が観察された(図3F)。同様に、非脳梗塞マウスにおいてコネキシン43の発現は観察されなかった(図3G)。しかし、コネキシン43発現は、脳梗塞誘発の48時間後に病変領域において増加した(図3H)。in vivoでのBM−MNCと内皮細胞との間のギャップ結合介在性の細胞間相互作用を確認するために、BCECF標識BM−MNCを脳梗塞誘発48時間後にマウスに静脈内移植した。BCECF陽性シグナルは、コネキシン37(図3I−L)及びコネキシン43(図3M−P)の蓄積を伴う内皮細胞において観察された。
(3) In vivo transfer of low molecular weight substance from BM-MNC to endothelial cells via gap junction BCECF-labeled BM-MNC was intravenously transplanted into mice 48 hours after the induction of cerebral infarction. Mice were euthanized 5 minutes after BM-MNC injection and the localization of BCECF was evaluated by fluorescence microscopy. BCECF-positive cells were observed in the microvasculature of the cerebral infarct region, with evidence of BCECF transfer from BM-MNC to endothelial cells (FIGS. 3A-D). To investigate gap junction-mediated cell-cell interactions between BM-MNC and endothelial cells, we investigated the expression of connexin 37 in the brain after cerebral infarction. Almost no expression of connexin 37 was observed in non-cerebral infarction mice (Fig. 3E), and increased expression of connexin 37 was observed in the lesion area 48 hours after the induction of cerebral infarction (Fig. 3F). Similarly, no expression of connexin 43 was observed in non-cerebral infarcted mice (Fig. 3G). However, connexin 43 expression increased in the lesion area 48 hours after the induction of cerebral infarction (Fig. 3H). To confirm gap junction-mediated cell-cell interactions between BM-MNC and endothelial cells in vivo, BCECF-labeled BM-MNC was intravenously implanted in mice 48 hours after cerebral infarction induction. BCECF positive signals were observed in endothelial cells with accumulation of connexin 37 (FIG. 3IL) and connexin 43 (FIG. 3MP).
(4)BM−MNC移植は脳梗塞後の内皮細胞におけるオートファジーを減少させる
 BM−MNC移植後の内皮細胞における超微細構造変化を調べるために、電子顕微鏡検査用の試験片を調製した。図4Aは、内皮細胞、基底膜、周皮細胞、及び星状細胞(astrocyte foot processes)で構成される病変のない脳の正常な血液脳関門(BBB)を有する無傷の毛細血管を示す。
(4) BM-MNC transplantation reduces autophagy in endothelial cells after cerebral infarction In order to investigate hyperfine structure changes in endothelial cells after BM-MNC transplantation, test pieces for electron microscopy were prepared. FIG. 4A shows intact capillaries with a normal blood-brain barrier (BBB) of the lesion-free brain composed of endothelial cells, basement membranes, pericytes, and astrocyte foot processes.
 予想通り、ニューロン及びグリア細胞の変性及び壊死は、脳梗塞誘発72時間後(すなわち、それぞれPBS及びBM−MNC投与の24時間後)の病巣中心において有意であったが、血管構造は依然としてPBS処置マウス(図4B)及びBM−MNC処置マウス(図4C)の両方で比較的良好に維持された。PBS処置マウス(図4B)では、内皮細胞中に多数のオートファゴソーム様液胞が形成され、時には非晶質物質を含有したり、層状構造を有していた。不明瞭なクリステを伴う変性ミトコンドリアもEC細胞質において観察され、核ヘテロクロマチンも減少した。対照的に、BM−MNC処置マウスではほとんど変化が見られなかった(図4C)。 As expected, neuronal and glial cell degeneration and necrosis were significant in the focal center 72 hours after cerebral infarction induction (ie, 24 hours after PBS and BM-MNC administration, respectively), but vascular structure was still treated with PBS. It was maintained relatively well in both mice (FIG. 4B) and BM-MNC-treated mice (FIG. 4C). In PBS-treated mice (Fig. 4B), a large number of autophagosome-like vacuoles were formed in the endothelial cells, sometimes containing an amorphous substance or having a layered structure. Denatured mitochondria with obscure cristae were also observed in the EC cytoplasm, and nuclear heterochromatin was also reduced. In contrast, little change was seen in BM-MNC-treated mice (Fig. 4C).
 脳梗塞周辺領域では、PBSを投与されたマウス内皮細胞の細胞質内に様々なサイズの液胞が形成された(図4D)。対照的に、BM−MNCを投与されたマウスは、内皮細胞においてオートファゴソーム様液胞形成をほとんど示さなかった(図4E)。内皮細胞におけるいくらかの液胞が、PBSを投与されたマウスの病変のない対側皮質で観察された(図4F)が、BM−MNCを投与されたマウスにおいてはそのような液胞は観察されなかった(図4G)。異なる領域におけるオートファゴソーム様液胞数を計測したところ、BM−MNC移植はすべての関連領域でオートファゴソーム様液胞の形成を減少させることが確認された(図4H)。 In the region around the cerebral infarction, vacuoles of various sizes were formed in the cytoplasm of mouse endothelial cells to which PBS was administered (Fig. 4D). In contrast, BM-MNC-treated mice showed little autophagosome-like vacuolization in endothelial cells (Fig. 4E). Some vacuoles in endothelial cells were observed in the lesion-free contralateral cortex of mice treated with PBS (Fig. 4F), whereas such vacuoles were observed in mice treated with BM-MNC. There was no (Fig. 4G). When the number of autophagosome-like vacuoles in different regions was measured, it was confirmed that BM-MNC transplantation reduced the formation of autophagosome-like vacuoles in all related regions (Fig. 4H).
 内皮細胞におけるオートファゴソーム様液胞を調べるために、脳梗塞誘発72時間後(すなわち、PBS又はBM−MNC注射の24時間後)の脳切片をオートファジーマーカーであるLC3で染色した。LC3陽性血管内皮細胞は、脳梗塞領域においては、PBS処置マウス及びBM−MNC処置マウスの両方において観察された。脳梗塞周辺領域では、PBS投与マウスにおいはLC3陽性血管内皮細胞が観察されたが、BM−MNC処置マウスにおいてほとんど観察されなかった(図5B)。脳梗塞反対側においては、PBS投与マウスにおいはLC3陽性血管内皮細胞が観察されたが、BM−MNC処置マウスにおいては、全く観察されなかった。(図5C)。これらのデータは、BM−MNC移植が、脳虚血後の内皮細胞におけるオートファジーを抑制することを実証する。 To examine autophagosome-like vacuoles in endothelial cells, brain sections 72 hours after cerebral infarction induction (ie, 24 hours after injection of PBS or BM-MNC) were stained with the autophagy marker LC3. LC3-positive vascular endothelial cells were observed in both PBS-treated and BM-MNC-treated mice in the area of cerebral infarction. In the region around cerebral infarction, LC3-positive vascular endothelial cells were observed in PBS-administered mice, but hardly observed in BM-MNC-treated mice (Fig. 5B). On the opposite side of the cerebral infarction, LC3-positive vascular endothelial cells were observed in PBS-administered mice, but not in BM-MNC-treated mice. (Fig. 5C). These data demonstrate that BM-MNC transplantation suppresses autophagy in endothelial cells after cerebral ischemia.
(5)BM−MNC移植後の脳梗塞後の微小血管系におけるHif−1α発現の増加
 内皮細胞におけるVEGF取り込みの上流調節因子を最終的に調査するために、脳梗塞後の脳におけるHif−1αの発現を調査した。以前の報告と同様に、脳梗塞誘発3時間後(図6B)又は48時間後(図6C)において、損傷を受けていない脳ではHif−1αの発現はほとんど観察されなかった(図6A)。BM−MNCは、脳梗塞の誘発後48時間に静脈内投与され、細胞投与後1時間で、脳梗塞後の脳の血管系様細胞におけるHif−1αの発現が見られた。BCECF標識BM−MNCの移植後のHif−1α活性化の可能性の増加を調べた。BCECF標識BM−MNCを脳梗塞誘発後48時間で静脈内注射し、内皮細胞におけるBCECF及びHif−1αの局在を細胞注射後30分で調べた。その結果、内皮細胞ではBCECFとHif−1αの共局在が観察された(図6E−H)。これらのデータは、BM−MNCからの低分子量物質の移動が脳梗塞後の脳の内皮細胞においてHif−1αの発現を潜在的に誘導し得ることを示した。
(5) Increased Hif-1α expression in the microvascular system after cerebral infarction after BM-MNC transplantation Hif-1α in the brain after cerebral infarction in order to finally investigate upstream regulators of VEGF uptake in endothelial cells. The expression of was investigated. Similar to previous reports, little Hif-1α expression was observed in the undamaged brain 3 hours (FIG. 6B) or 48 hours (FIG. 6C) after cerebral infarction induction (FIG. 6A). BM-MNC was intravenously administered 48 hours after the induction of cerebral infarction, and expression of Hif-1α in vascular system-like cells of the brain after cerebral infarction was observed 1 hour after cell administration. The increased likelihood of Hif-1α activation after transplantation of BCECF-labeled BM-MNC was investigated. BCECF-labeled BM-MNC was injected intravenously 48 hours after the induction of cerebral infarction, and the localization of BCECF and Hif-1α in endothelial cells was examined 30 minutes after the cell injection. As a result, co-localization of BCECF and Hif-1α was observed in endothelial cells (Fig. 6E-H). These data showed that the transfer of low molecular weight material from BM-MNC could potentially induce Hif-1α expression in cerebral endothelial cells after cerebral infarction.
3.考察
 本結果により、BM−MNCが低分子物質のギャップ結合介在性細胞間交換によりHif−1α発現を増加させることで、VEGF取り込みをアップレギュレートし、内皮細胞活性化をサポートすることが実証された。
3. 3. Discussion This result demonstrates that BM-MNC upregulates VEGF uptake and supports endothelial cell activation by increasing Hif-1α expression through gap junction-mediated cell-cell exchange of small molecules. It was.
 内皮細胞は骨髄血管ニッチで骨髄細胞集団と連絡することが知られており、これはギャップ結合に仲介される。本実験では、脳内皮細胞におけるコネキシン37と43の発現が脳梗塞後にアップレギュレートされることを実証した。低分子水溶性物質は、移植されたBM−MNCから内皮細胞に移動し、この移動によりHif−1α含有量が増加した。Hif−1αの活性化は、内皮細胞へのVEGF取り込みのアップレギュレーションを誘導することが知られている(Gleadle JM and Ratcliffe PJ.,(1997)Blood.15;89(2):pp503−9.)。これらの知見は、内皮細胞におけるHif−1αのBM−MNC介在性活性化、それに続くVEGF取り込みのアップレギュレーションが、脳梗塞における細胞療法による血管形成の重要なメカニズムであることを示す。このBM−MNCによるVEGF取り込みに至る複雑な過程を低分子で代替することができれば、それは脳梗塞など血管新生が関与する疾患に対して、細胞療法に代わる治療法として有用である。 Endothelial cells are known to communicate with the bone marrow cell population in the bone marrow vascular niche, which is mediated by gap junctions. In this experiment, we demonstrated that the expression of connexins 37 and 43 in cerebral endothelial cells is up-regulated after cerebral infarction. The low molecular weight water-soluble substance migrated from the transplanted BM-MNC to the endothelial cells, and this migration increased the Hif-1α content. Activation of Hif-1α is known to induce up-regulation of VEGF uptake into endothelial cells (Gledle JM and Ratcliffe PJ., (1997) Blood.15; 89 (2): pp503-9. ). These findings indicate that BM-MNC-mediated activation of Hif-1α in endothelial cells, followed by upregulation of VEGF uptake, is an important mechanism of angiogenesis by cell therapy in cerebral infarction. If a small molecule can replace the complicated process leading to VEGF uptake by BM-MNC, it will be useful as an alternative treatment to cell therapy for diseases involving angiogenesis such as cerebral infarction.
実施例2:BM−MNCによるHUVECの各種サイトカイン取り込みの促進
1.材料及び方法
 BM−MNCは、実施例1に記載した方法で調製した。実施例1にしたがいHUVECをBM−MNCと共培養し、培養上清中の各種サイトカイン濃度の培養6時間での変化量を調べた。各種サイトカイン(Angiopoietin、Endoglin、IGFBP−1(Insulin−like growth factor binding protein−1)、TNF−α、TGF−α(いずれもヒト由来))の濃度は、Bio−Plex ProヒトCancer Biomarker 2 18−Plexパネル#171AC600M(BioRad)を用いて同時に測定した。比較のため、BM−MNCの代わりに、同量の培地を添加して同様にHUVECを培養したときの各種サイトカインの濃度も測定した。
Example 2: Promotion of uptake of various cytokines of HUVEC by BM-MNC 1. Materials and Methods BM-MNC was prepared by the method described in Example 1. According to Example 1, HUVEC was co-cultured with BM-MNC, and the amount of change in various cytokine concentrations in the culture supernatant after 6 hours of culture was examined. The concentration of various cytokines (Angiopoietin, Endoglin, IGFBP-1 (Insulin-like growth factor binding protein-1), TNF-α, TGF-α (all derived from humans)) is determined by Bio-Plex Pro human Cancer Simultaneous measurements were made using Plex panel # 171AC600M (BioRad). For comparison, the concentrations of various cytokines when the same amount of medium was added instead of BM-MNC and HUVEC was cultured in the same manner were also measured.
2.結果
 結果を図7に示す。Angiopoetin−2は、HUVECのみの場合には培養上清中の濃度は7081pMに増加したが、BM−MNCと共培養した場合には培養上清中の濃度は1618pM低下し、結果としてBM−MNCは培養上清中のAngiopoetin−2を8699pM低下させる。同様に、Endoglin、IGFBP−1、TNFα、TGFαについても、BM−MNCとの共培養により、培養上清中の濃度は有意な差を持って低下した。なおこの実験系では、BM−MNCとの共培養前と、共培養6時間後の、培養上清中の濃度の変化を観察しており、値がプラスであれば、培養上清中の濃度が上昇したこと、値がマイナスであれば培養上清中の濃度が低下したこと、値が0であれば、培養上清中の濃度に変化がなかったことを示す。
2. 2. Results The results are shown in FIG. The concentration of Angiopoietin-2 in the culture supernatant increased to 7081 pM when HUVEC alone was used, but when co-cultured with BM-MNC, the concentration in the culture supernatant decreased by 1618 pM, resulting in a decrease in the concentration of BM-MNC. Decreases Angiopoietin-2 in culture supernatant by 8699 pM. Similarly, the concentrations of Endoglin, IGFBP-1, TNFα, and TGFα in the culture supernatant decreased significantly by co-culturing with BM-MNC. In this experimental system, changes in the concentration in the culture supernatant were observed before co-culturing with BM-MNC and after 6 hours of co-culturing. If the value is positive, the concentration in the culture supernatant is observed. Was increased, a negative value indicates a decrease in the concentration in the culture supernatant, and a value of 0 indicates that there was no change in the concentration in the culture supernatant.
3.考察
 培養上清中のAngiopoetin−2、Endoglin、IGFBP−1、TNFα、TGFαなどのサイトカイン濃度の低下は、BM−MNCとの共培養により、VEGFに加えて、これらサイトカインの細胞内への取り込みが増加することを示唆する。これらのサイトカインも、血管新生に深く関与している分子であり、BM−MNCとの共培養によりVEGFと同様にHUVECでの取り込みが増加したと考えられる。そのため、これらのサイトカインの培養上清中濃度の減少あるいはHUVECへの取り込み量を測定することにより、血管内皮細胞活性化促進又は抑制物質のスクリーニングが、可能となる。
3. 3. Discussion The decrease in the concentration of cytokines such as Angiopoietin-2, Endoglin, IGFBP-1, TNFα, and TGFα in the culture supernatant is caused by the uptake of these cytokines into cells in addition to VEGF by co-culture with BM-MNC. Suggests an increase. These cytokines are also molecules that are deeply involved in angiogenesis, and it is considered that co-culture with BM-MNC increased their uptake in HUVEC as well as VEGF. Therefore, by reducing the concentration of these cytokines in the culture supernatant or measuring the amount taken into HUVEC, it is possible to screen for substances that promote or suppress vascular endothelial cell activation.
実施例3:標準物質を使った血管活性化物質の定量的評価方法の標準化
 発明者らは、本発明の実験系(スクリーニング系)により、100μg/mlのCaffeic acid(3,4−dihydroxycinnamic acid、CAS登録番号331−39−5)には、HUVECのVEGF取り込み作用があることが確認された。事実、Caffeic acidは、クロロゲン酸類に属するポリフェノールであり、クロロゲン酸類に属するポリフェノールには血管機能向上効果が知られている(Am J Hypertens.2007 May;20(5):508−13.Ferulic acid restoresendothelium−dependent vasodilation in aortas of spontaneously hypertensiverats.)。このことから、本実験系は血管内皮細胞活性化作用のスクリーニングに有用と判断された。
 本実施例では、このCaffeic acid(100μg/ml)を標準物質として、他の低分子化合物の血管内皮細胞に対するVEGF取り込み促進作用を定量的に評価できることを示す。
Example 3: Standardization of a method for quantitative evaluation of a vascular activator using a standard substance The inventors of the present invention used a 100 μg / ml Caffeic acid (3,4-dihydroxycinnamic acid) according to the experimental system (screening system) of the present invention. It was confirmed that CAS registration number 331-39-5) has a VEGF uptake effect of HUVEC. In fact, caffeic acid is a polyphenol belonging to chlorogenic acids, and the polyphenol belonging to chlorogenic acids is known to have an effect of improving vascular function (Am J Hypertension. 2007 May; 20 (5): 508-13. Functional acid restaurants -Dependent vasodilation in aortas of spontaneously hypertension.). From this, it was judged that this experimental system is useful for screening the vascular endothelial cell activating action.
In this example, it is shown that the effect of other low molecular weight compounds on promoting VEGF uptake on vascular endothelial cells can be quantitatively evaluated using this caffeic acid (100 μg / ml) as a standard substance.
1.材料及び方法
 ビオチン結合VEGF(R&D Systems)をストレプトアビジン結合APC(Thermo Fisher、モル比4:1)とともに室温で10分間インキュベートし、APC結合VEGFを作成した。上記等同様の方法でHUVECを回収し、PBS中に懸濁した。
1. 1. Materials and Methods Biotin-bound VEGF (R & D Systems) was incubated with streptavidin-bound APC (Thermo Fisher, molar ratio 4: 1) for 10 minutes at room temperature to create APC-bound VEGF. HUVEC was recovered by the same method as described above and suspended in PBS.
 実験サンプルとして、以下の1−6を用意した。
1.HUVECにAPC結合VEGFを加えないサンプル(蛍光バックグランド)
2.HUVECにAPC結合VEGFを加え、PBSを添加後、3時間培養したもの(標準物質/被検物質なし)
3.HUVECにAPC結合VEGFを加え、100μg/mlのCaffeic acidを添加後、3時間培養したもの(標準物質)
4.HUVECにAPC結合VEGFを加え、VEGF取り込み促進作用が未知である4−0−Caffeoylquinic acid(CAS登録番号905−99−7)を100μg/mlとなるように添加後、3時間培養したもの(被検物質1)
5.HUVECにAPC結合VEGFを加え、VEGF取り込み促進作用が未知であるChicoric acid(CAS登録番号6537−80−0)を100μg/mlとなるように添加後、3時間培養したもの(被検物質2)
The following 1-6 were prepared as experimental samples.
1. 1. Sample without APC-bound VEGF added to HUVEC (fluorescent background)
2. 2. APC-bound VEGF added to HUVEC, PBS added, and then cultured for 3 hours (standard substance / no test substance)
3. 3. APC-bound VEGF added to HUVEC, 100 μg / ml caffeic acid added, and then cultured for 3 hours (standard substance).
4. APC-binding VEGF was added to HUVEC, and 4-0-Cafeoylequic acid (CAS Registry Number 905-99-7), whose VEGF uptake promoting action was unknown, was added to 100 μg / ml and then cultured for 3 hours (subject). Test substance 1)
5. APC-binding VEGF was added to HUVEC, and Chicoric acid (CAS Registry Number 6537-80-0), whose VEGF uptake promoting action was unknown, was added to 100 μg / ml and then cultured for 3 hours (test substance 2).
2.結果
 本測定系のバックグランド蛍光(APC結合VEGFを加えなかったサンプルの蛍光強度)は1.54であった(図8A)。標準物質/被検物質なし(PBS添加)のサンプルは、4.92の蛍光強度を示した(図8B)。標準物質(100μg/ml Caffeic acid)添加サンプルは、6.78の蛍光強度を示した。被験物質1及び2(各100μg/mlの4−0−Caffeoylquinic acid、Chicoric acid)添加サンプルは、それぞれ、6.56、3.90の蛍光強度を示した(図8D、E)。
2. 2. Results The background fluorescence of this measurement system (fluorescence intensity of the sample to which APC-bound VEGF was not added) was 1.54 (Fig. 8A). The sample without standard / test material (with PBS added) showed a fluorescence intensity of 4.92 (Fig. 8B). The sample to which the standard substance (100 μg / ml Caffeic acid) was added showed a fluorescence intensity of 6.78. Samples supplemented with Test Substances 1 and 2 (100 μg / ml each of 4-0-Cafeoylequic acid, Chicoric acid) showed fluorescence intensities of 6.56 and 3.90, respectively (FIGS. 8D and E).
 標準物質/被検物質なしの場合のVEGF取り込み量は、3.38(蛍光強度4.92よりバックグランド蛍光1.54を差し引いた値)、標準物質(Caffeic acid)添加サンプルのVEGF取り込み量は、5.24であった。これらの結果は、標準物質の添加によりHUVECではVEGF取り込みが55%増加したことを示す((標準物質添加時のVEGF取り込み量[5.24]−標準物質/被検物質なしの場合のVEGF取り込み量[3.38])/標準物質/被検物質なしの場合のVEGF取り込み量[3.38])。 The amount of VEGF uptake without the standard substance / test substance is 3.38 (value obtained by subtracting 1.54 of background fluorescence from the fluorescence intensity of 4.92), and the amount of VEGF uptake of the sample to which the standard substance (caffeic acid) is added is It was 5.24. These results indicate that the addition of the standard substance increased VEGF uptake in HUVEC by 55% ((VEGF uptake with standard substance addition [5.24] -VEGF uptake without standard substance / test substance). Amount [3.38]) / Standard substance / VEGF uptake without test substance [3.38]).
 被検物質1(4−0−Caffeoylquinic acid)では、HUVECには49%増加のVEGF取り込みが起こることが示されており、結果として、標準物質に比し、その取り込み促進能力は88%であることが判明した([49%]/[55%])。 In test substance 1 (4-0-Cafeoylquinic acid), HUVEC has been shown to have a 49% increase in VEGF uptake, resulting in 88% of its uptake promoting capacity compared to the standard substance. It turned out ([49%] / [55%]).
 被検物質2(Chicoric acid)では、HUVECには30%減少のVEGF取り込みが起こることが示されており、結果として、標準物質に比し、その取り込み促進能力は−55%であることが判明した([−30%]/[55%])。 In test substance 2 (Choric acid), HUVEC was shown to have a 30% reduction in VEGF uptake, and as a result, its uptake promoting capacity was found to be -55% compared to the standard substance. ([-30%] / [55%]).
3.考察
 以上のように、本測定系を用いることにより、標準物質であるCaffeic acidに比べて、どの程度の血管内皮細胞活性化作用を有しているかの判定が可能である。さらに、本測定系を用いることにより、血管活性化を促進する物質だけでなく、血管活性化を抑制する物質の定量的判定も可能である。なお、標準物質は適宜変更することも可能である。
3. 3. Discussion As described above, by using this measurement system, it is possible to determine the degree of vascular endothelial cell activating effect as compared with the standard substance caffeic acid. Furthermore, by using this measurement system, it is possible to quantitatively determine not only substances that promote vascular activation but also substances that suppress vascular activation. The standard substance can be changed as appropriate.
 なおCaffeoylquinic acidは血管内皮活性化作用があることが知られている(Int J Food Sci Nutr.2019 May;70(3):267−284.TNF−α−induced oxidative stress and endothelial dysfunction in EA.hy926 cells is prevented by mate and green coffee extracts,5−caffeoylquinic acid and its microbial metabolite,dihydrocaffeic acid.Wang S,et al.)。また、Chicoric acidはHydroxycinnamic acidであるが、それらは血管新生阻害作用があることが知られており(2011年度KAKEN費実績報告書(研究課題/領域番号:21390033)、血管新生阻害療法のためのバイオプローブ分子設計とケミカルジェネティクス、研究代表者:永澤 秀子)、本測定系の結果とも一致している。 It should be noted that the coffee extract acid acid is known to have an vascular endothelium activating effect (Int J Food Sci Nutr. 2019 May; 70 (3): 267-284. TNF-α-induced oxidative stress and endothelial 9th endothelial cells is presented by mate and green coffee extends, 5-caffeoylquinic acid and it's microbial metabolite, dihydrocaffic acid. Wang S, et. In addition, Hydroxycinnamic acid is Hydroxycinnamic acid, but it is known that they have angiogenesis-inhibiting action (2011 KAKEN expense performance report (research subject / area number: 21390033), for angiogenesis-inhibiting therapy. Bioprobe molecular design and chemical genetics, principal investigator: Hideko Nagasawa), consistent with the results of this measurement system.
 本発明により、BM−MNCと同様の機構で血管内皮細胞を活性化する作用を有する物質を、in vitroで簡便にスクリーニングすることができる。本発明の方法で同定された物質は、生体内でのBM−MNCの機能を代替し、脳梗塞や四肢虚血などの虚血性疾患、あるいは癌などの血管新生病の治療薬の候補物質として有用である。 According to the present invention, a substance having an action of activating vascular endothelial cells by a mechanism similar to that of BM-MNC can be easily screened in vitro. The substance identified by the method of the present invention replaces the function of BM-MNC in vivo and is a candidate substance for a therapeutic agent for ischemic diseases such as cerebral infarction and limb ischemia, or angiogenic diseases such as cancer. It is useful.
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated herein by reference as is.

Claims (13)

  1.  下記の工程を含む、血管内皮細胞活性化促進又は抑制物質のスクリーニング方法:
    1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する工程、
    2)血管内皮細胞へのVEGFの取り込み量を決定する工程、
    3)前記血管内皮細胞へのVEGFの取り込み量に基づき、前記被験物質の血管内皮細胞活性化効果を評価する工程。
    Screening method for substances that promote or suppress vascular endothelial cell activation, including the following steps:
    1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF,
    2) Step of determining the amount of VEGF uptake into vascular endothelial cells,
    3) A step of evaluating the vascular endothelial cell activating effect of the test substance based on the amount of VEGF taken up by the vascular endothelial cells.
  2.  血管内皮細胞へのVEGFの取り込み量が、被験物質との培養前後における、血管内皮細胞内における標識されたVEGF由来のシグナルの変化によって決定される、請求項1に記載の方法。 The method according to claim 1, wherein the amount of VEGF uptake into the vascular endothelial cells is determined by the change in the labeled VEGF-derived signal in the vascular endothelial cells before and after culturing with the test substance.
  3.  血管内皮細胞への標識VEGFの取り込み量が、被験物質との培養前後における、培養上清中における標識されたVEGF由来のシグナルの変化によって決定される、請求項1に記載の方法。 The method according to claim 1, wherein the amount of labeled VEGF uptake into vascular endothelial cells is determined by a change in the labeled VEGF-derived signal in the culture supernatant before and after culturing with the test substance.
  4.  被験物質による血管内皮細胞へのVEGFの取り込み量の変化を、標準物質による血管内皮細胞へのVEGFの取り込み量の変化と比較する工程をさらに含む、請求項1~3のいずれか1項に記載の方法。 The invention according to any one of claims 1 to 3, further comprising a step of comparing a change in the amount of VEGF uptake into vascular endothelial cells by a test substance with a change in the amount of VEGF uptake into vascular endothelial cells by a standard substance. the method of.
  5.  工程3)において、前記血管内皮細胞へのVEGFの取り込み量が増加した場合に、前記被験物質は血管内皮細胞活性化促進物質として有用と評価し、前記血管内皮細胞へのVEGFの取り込み量が減少した場合に、前記被験物質は血管内皮細胞抑制物質として有用と評価する、請求項1~4のいずれか1項に記載の方法。 In step 3), when the amount of VEGF uptake into the vascular endothelial cells increased, the test substance was evaluated as useful as a vascular endothelial cell activation promoting substance, and the amount of VEGF uptake into the vascular endothelial cells decreased. The method according to any one of claims 1 to 4, wherein the test substance is evaluated to be useful as a vascular endothelial cell inhibitor.
  6.  さらに、アンジオポエチン2、エンドグリン、IGFBP(インスリン様増殖因子結合タンパク質)、TNFα、及びTGFαからなる群から選ばれる1又は2以上のサイトカインの培養上清中の濃度を決定する工程を含む、請求項1~5のいずれか1項に記載の方法。 The claim further comprises the step of determining the concentration in the culture supernatant of one or more cytokines selected from the group consisting of angiopoetin 2, endoglin, IGFBP (insulin-like growth factor binding protein), TNFα, and TGFα. The method according to any one of 1 to 5.
  7.  サイトカインが、少なくともアンジオポエチン2を含む、請求項6に記載の方法。 The method according to claim 6, wherein the cytokine contains at least angiopoietin 2.
  8.  血管内皮細胞へのVEGF取り込み量の増加に加えて、上記培養上清中のサイトカイン濃度が減少した場合に、当該被験物質を血管内皮細胞活性化促進物質の候補として有用と評価し、血管内皮細胞へのVEGF取り込み量の減少に加えて、培養上清中のサイトカイン濃度が増加した場合に、当該被験物質を血管内皮細胞活性化抑制物質として有用と評価する、請求項6又は7に記載の方法。 When the cytokine concentration in the culture supernatant decreases in addition to the increase in VEGF uptake into vascular endothelial cells, the test substance is evaluated as useful as a candidate for vascular endothelial cell activation promoting substance, and vascular endothelial cells The method according to claim 6 or 7, wherein the test substance is evaluated as useful as a vascular endothelial cell activation inhibitor when the cytokine concentration in the culture supernatant increases in addition to the decrease in the amount of VEGF uptake into the cell. ..
  9.  血管内皮細胞活性化促進物質が虚血性疾患治療薬の候補であり、血管内皮細胞活性化抑制物質が血管新生阻害薬の候補である、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the vascular endothelial cell activation promoting substance is a candidate for a therapeutic agent for ischemic disease, and the vascular endothelial cell activation inhibitor is a candidate for an angiogenesis inhibitor.
  10.  下記の工程を含む、血管新生阻害薬のスクリーニング方法:
    1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する工程、
    2)血管内皮細胞へのVEGFの取り込み量を決定する工程、
    3)前記血管内皮細胞へのVEGFの取り込み量が増加した場合に、前記被験物質を虚血性疾患治療薬の候補として選択する工程。
    Screening method for angiogenesis inhibitors, including the following steps:
    1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF,
    2) Step of determining the amount of VEGF uptake into vascular endothelial cells,
    3) A step of selecting the test substance as a candidate for a therapeutic agent for ischemic disease when the amount of VEGF taken up by the vascular endothelial cells increases.
  11.  下記の工程を含む、血管新生阻害薬のスクリーニング方法:
    1)標識されたVEGFの存在下、血管内皮細胞を被験物質とともに培養する工程、
    2)血管内皮細胞へのVEGFの取り込み量を決定する工程、
    3)前記血管内皮細胞へのVEGFの取り込み量が減少した場合に、前記被験物質を血管新生阻害薬として選択する工程。
    Screening method for angiogenesis inhibitors, including the following steps:
    1) A step of culturing vascular endothelial cells together with a test substance in the presence of labeled VEGF,
    2) Step of determining the amount of VEGF uptake into vascular endothelial cells,
    3) A step of selecting the test substance as an angiogenesis inhibitor when the amount of VEGF taken up by the vascular endothelial cells decreases.
  12.  標識が蛍光標識である、請求項1~11のいずれか1項に記載の方法。 The method according to any one of claims 1 to 11, wherein the label is a fluorescent label.
  13.  血管内皮細胞がヒト血管内皮細胞である、請求項1~12のいずれか1項に記載の方法。 The method according to any one of claims 1 to 12, wherein the vascular endothelial cells are human vascular endothelial cells.
PCT/JP2020/030921 2019-08-09 2020-08-04 Method for screening vascular endothelial cell activation substances WO2021029436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539317A JP7466547B2 (en) 2019-08-09 2020-08-04 Screening method for vascular endothelial cell activator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-147942 2019-08-09
JP2019147942 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029436A1 true WO2021029436A1 (en) 2021-02-18

Family

ID=74569367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030921 WO2021029436A1 (en) 2019-08-09 2020-08-04 Method for screening vascular endothelial cell activation substances

Country Status (2)

Country Link
JP (1) JP7466547B2 (en)
WO (1) WO2021029436A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502114A (en) * 2008-09-12 2012-01-26 クライオプラキス クライオバイオロヒア エリテーデーアー. Cell therapy of ischemic tissue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502114A (en) * 2008-09-12 2012-01-26 クライオプラキス クライオバイオロヒア エリテーデーアー. Cell therapy of ischemic tissue

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FUKUHARA, SHIGETOMO: "Signaling mechanisms underlying dynamic regulation of vascular permeability", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 89, no. 3, 2017, pages 368 - 376 *
KIKUCHI-TAURA AKIE, OKINAKA YUKA, TAKEUCHI YUKIKO, OGAWA YUKO, MAEDA MITSUYO, KATAOKA YOSKY, YASUI TERUHITO, KIMURA TAKAFUMI, GUL : "Bone Marrow Mononuclear Cells Activate Angiogenesis via Gap Junction- Mediated Cell - Cell Interaction", STROKE, vol. 51, no. 4, 19 February 2020 (2020-02-19), pages 1279 - 1289, XP055793488 *
NAKANO-DOI AKIKO, NAKAGOMI TAKAYUKI, FUJIKAWA MASATOSHI, NAKAGOMI NAMI, KUBO SHUJI, LU SHAN, YOSHIKAWA HIROO, SOMA TOSHIHIRO, TAGU: "Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction", STEM CELLS, vol. 28, no. 7, 2010, pages 1292 - 1302, XP055793467 *
TAGUCHI, AKIHIKO: "Therapeutic angiogenesis for cerebrovascular diseases with hematopoietic stem cells", NEUROLOGICAL THERAPEUTICS, vol. 34, no. 1, 2017, pages 31 - 36, XP055793471 *
WANG JIANPING; FU XIAOJIE; YU LIE; LI NAN; WANG MENGHAN; LIU XI; ZHANG DI; HAN WEI; ZHOU CHENGUANG; WANG JIAN: "Preconditioning with VEGF Enhances Angiogenic and Neuroprotective Effects of Bone Marrow Mononuclear Cell Transplantation in a Rat Model of Chronic Cerebral Hypoperfusion", MOLECULAR NEUROBIOLOGY, vol. 53, no. 9, 2016, pages 6057 - 6068, XP036087266 *
WEISE, S. M. ET AL.: "Pathophysiological consequences of VEGF-induced vascular permeability", NATURE, vol. 437, no. 7058, 22 September 2005 (2005-09-22), pages 497 - 504, XP002688930, DOI: 10.1038/NATURE03987 *

Also Published As

Publication number Publication date
JP7466547B2 (en) 2024-04-12
JPWO2021029436A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
Küchler et al. Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation
Bernier-Latmani et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport
Liu et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis
Nakaya et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction
Virgintino et al. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis
Wang et al. Vascular endothelial growth factor stimulates endothelial differentiation from mesenchymal stem cells via Rho/myocardin-related transcription factor-A signaling pathway
Wixler et al. Deficiency in the LIM-only protein Fhl2 impairs skin wound healing
Weissleder et al. Decline in proliferation and immature neuron markers in the human subependymal zone during aging: relationship to EGF-and FGF-related transcripts
Rossi et al. Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism
Garbelli et al. PDGFRβ+ cells in human and experimental neuro-vascular dysplasia and seizures
Christie et al. Intraganglionic interactions between satellite cells and adult sensory neurons
Tamura et al. Inhibitory effect of insulin-like growth factor-binding protein-7 (IGFBP7) on in vitro angiogenesis of vascular endothelial cells in the rat corpus luteum
Zhao et al. Velvet antler peptide prevents pressure overload-induced cardiac fibrosis via transforming growth factor (TGF)-β1 pathway inhibition
Kong et al. Endothelial progenitor cells improve functional recovery in focal cerebral ischemia of rat by promoting angiogenesis via VEGF
US8003336B2 (en) Method of screening endothelial cells for angiogenic capability
Yu et al. Activation of liver X receptor enhances the proliferation and migration of endothelial progenitor cells and promotes vascular repair through PI3K/Akt/eNOS signaling pathway activation
Rao et al. Human epicardial cell-conditioned medium contains HGF/IgG complexes that phosphorylate RYK and protect against vascular injury
Li et al. Circulating fibrocytes stabilize blood vessels during angiogenesis in a paracrine manner
Vasiljevic et al. Spatio-temporal expression analysis of the calcium-binding protein calumenin in the rodent brain
Kurtovic et al. Leptin enhances endothelial cell differentiation and angiogenesis in murine embryonic stem cells
Li et al. C-kit positive cardiac outgrowth cells demonstrate better ability for cardiac recovery against ischemic myopathy
Edwards et al. SNAIL Transctiption factor in prostate cancer cells promotes neurite outgrowth
WO2021029436A1 (en) Method for screening vascular endothelial cell activation substances
Zhu et al. Adrenomedullin promotes the proliferation and inhibits apoptosis of dental pulp stem cells involved in divergence pathways
Kang et al. Inhibition of hepatic stellate cell activation suppresses tumorigenicity of hepatocellular carcinoma in mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852840

Country of ref document: EP

Kind code of ref document: A1