WO2021029383A1 - Ue and communication control method - Google Patents

Ue and communication control method Download PDF

Info

Publication number
WO2021029383A1
WO2021029383A1 PCT/JP2020/030442 JP2020030442W WO2021029383A1 WO 2021029383 A1 WO2021029383 A1 WO 2021029383A1 JP 2020030442 W JP2020030442 W JP 2020030442W WO 2021029383 A1 WO2021029383 A1 WO 2021029383A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu session
network
procedure
message
management
Prior art date
Application number
PCT/JP2020/030442
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 河崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2021029383A1 publication Critical patent/WO2021029383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • 3GPP (3rd Generation Partnership Project), which is engaged in standardization activities for mobile communication systems in recent years, is studying SAE (System Architecture Evolution), which is the system architecture of LTE (Long Term Evolution).
  • SAE System Architecture Evolution
  • 3GPP is specifying EPS (Evolved Packet System) as a communication system that realizes all IP (Internet Protocol).
  • EPS Evolved Packet System
  • the core network that makes up EPS is called EPC (Evolved Packet Core).
  • 5GS 5th Generation mobile communication systems
  • 5GS is a system that realizes 5G mobile communication systems.
  • 5G System is being specified (see Non-Patent Document 1 and Non-Patent Document 2).
  • 5GS extracts technical issues for connecting a wide variety of terminals to cellular networks and specifies solutions.
  • a LAN that realizes private communication in a 5G VN group, which is a group composed of a plurality of terminals (User Equipment; UE).
  • the requirements include optimization and diversification of communication procedures to support type services (5G LAN-type Service), and optimization of system architecture in line with optimization and diversification of communication procedures.
  • NAS Non-Access-Stratum
  • Non-Patent Document 1 In addition to the mechanism that provides the function equivalent to congestion management, control signal management based on reasons other than congestion management is being studied (Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document). 3).
  • the UE that established the PDU session for the 5GVN group changes the PLMN, and the PLMN before the change is the home PLMN, the destination PLMN However, it is not clear whether congestion management will be continued.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to realize a control signal management process based on the reason for congestion management at the time of system change when establishing a PDU session for a 5GVN group. It is to provide the mechanism and communication control method of.
  • the UE (User Equipment; terminal device) of the present invention includes a control unit and a transmission / reception unit, and the control unit starts a backoff timer associated with a DNN (Data Network Name), and the DNN is 5GVN (5GVN).
  • the backoff timer is applied to the first PLMN (Public Land Mobile Network) and the second PLMN, and the UE is registered in the first PLMN.
  • the second PLMN is an equal PLMN.
  • the UE (User Equipment; terminal device) communication control method of the present invention includes a step of starting a backoff timer associated with a DNN (Data Network Name), and the DNN corresponds to a 5G VN (Virtual Network) group.
  • the backoff timer is applied to the first PLMN (Public Land Mobile Network) and the second PLMN, and the first PLMN is the PLMN in which the UE is registered, and the said The second PLMN is characterized in that it is an equal PLMN.
  • the terminal device constituting 5GS and the device in the core network perform management processing such as congestion management for each terminal device-driven network slice and / or DNN for different systems. It is characterized by doing.
  • FIG. 2 is a diagram showing details of an access network among the mobile communication systems of FIG.
  • FIG. 3 is a diagram showing details of the core network_A90 mainly in the mobile communication system of FIG.
  • FIG. 4 is a diagram showing details of the core network_B190 mainly in the mobile communication system of FIG.
  • the mobile communication system 1 in the present embodiment includes a terminal device (also referred to as a user device or mobile terminal device) UE (User Equipment) _A10, an access network (AN; Access Network) _A, and an access network _B.
  • UE User Equipment
  • AN Access Network
  • _B access network
  • the combination of access network_A and core network_A90 may be called EPS (Evolved Packet System; 4G mobile communication system), and the combination of access network_B, core network_B190 and UE_A10 is 5GS (5G System). It may be referred to as (5G mobile communication system), and the configuration of 5GS and EPS is not limited to these.
  • core network_A90, core network B, or a combination thereof may also be referred to as a core network
  • access network_A, access network_B, or a combination thereof may also be referred to as an access network or a wireless access network.
  • DN_A5, PDN_A6 or a combination thereof may also be referred to as DN.
  • UE_A10 can connect to network services via 3GPP access (also referred to as 3GPP access or 3GPP access network) and / or non-3GPP access (also referred to as non-3GPP access or non-3GPP access network). It may be a device.
  • UE_A10 may be provided with UICC (Universal Integrated Circuit Card) or eUICC (Embedded UICC).
  • UE_A10 may be a terminal device capable of wireless connection, or may be an ME (Mobile Equipment), MS (Mobile Station), CIoT (Cellular Internet of Things) terminal (CIoT UE), or the like.
  • 3GPP access also referred to as 3GPP access or 3GPP access network
  • non-3GPP access also referred to as non-3GPP access or non-3GPP access network
  • UICC Universal Integrated Circuit Card
  • eUICC embedded UICC
  • UE_A10 may be a terminal device capable of wireless connection, or may be an ME (Mobile Equipment), MS (Mobile Station), CIo
  • UE_A10 can be connected to the access network and / or the core network. UE_A10 can also connect to DN_A and / or PDN_A via the access network and / or core network. UE_A10 sends and receives (communicate) user data with DN_A and / or PDN_A using a PDU (Protocol Data Unit or Packet Data Unit) session and / or PDN (Packet Data Network) connection (also called PDN connection). ). Furthermore, the communication of user data is not limited to IP (Internet Protocol) communication (IPv4 or IPv6), for example, EPS may be non-IP communication, and 5GS may be Ethernet (registered trademark) communication or Unstructured communication. There may be.
  • IP Internet Protocol
  • IPv4 or IPv6 IP (Internet Protocol) communication
  • EPS may be non-IP communication
  • 5GS may be Ethernet (registered trademark) communication or Unstructured communication. There may be.
  • IP communication is data communication using IP, and is data communication realized by sending and receiving an IP packet to which an IP header is added.
  • the payload portion constituting the IP packet may include user data sent and received by UE_A10.
  • non-IP communication is data communication that does not use IP, and is data communication that is realized by sending and receiving data to which an IP header is not added.
  • non-IP communication may be data communication realized by sending and receiving application data to which an IP address is not assigned, or UE_A10 may be provided with another header such as a Mac header or an Ethernet (registered trademark) frame header. You may send and receive user data to be sent and received.
  • a PDU session is a connectivity established between UE_A10 and DN_A5 to provide a PDU connection service. More specifically, the PDU session may be the connectivity established between UE_A10 and the external gateway.
  • the external gateway may be UPF, PGW (Packet Data Network Gateway), or the like.
  • the PDU session may be a communication path established for transmitting / receiving user data between UE_A10 and the core network and / or DN, or may be a communication path for transmitting / receiving PDU.
  • the PDU session may be a session established between UE_A10 and the core network and / or DN, and is a logical configuration consisting of one or more bearers or other transfer paths between each device in the mobile communication system 1.
  • the PDU session may be a connection established by UE_A10 between the core network_B190 and / or an external gateway, or may be a connection established between UE_A10 and the UPF.
  • the PDU session may also be connectivity and / or connection between UE_A10 and UPF_A235 via NR node_A122.
  • the PDU session may be identified by a PDU session ID and / or an EPS bearer ID.
  • UE_A10 can send and receive user data using a device such as an application server located in DN_A5 and a PDU session.
  • the PDU session can transfer user data transmitted and received between UE_A10 and a device such as an application server arranged in DN_A5.
  • each device UE_A10, device in the access network, and / or device in the core network, and / or device in the data network
  • These identification information includes APN (Access Point Name), TFT (Traffic Flow Template), session type, application identification information, DN_A5 identification information, NSI (Network Slice Instance) identification information, and DCN (Dedicated Core Network).
  • At least one of the identification information and the access network identification information may be included, and other information may be further included. Further, when a plurality of PDU sessions are established, the identification information associated with the PDU session may have the same content or different contents. Further, the NSI identification information is information that identifies NSI, and may be NSI ID or Slice Instance ID below.
  • UTRAN Universal Terrestrial Radio Access Network
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NG-RAN 5G-
  • UTRAN_A20 and / or E-UTRAN_A80 and / or NG-RAN_A120 are referred to as 3GPP access or 3GPP access network
  • wireless LAN access network and non-3GPP AN are referred to as non-3GPP access or non-3GPP access network.
  • Each radio access network includes a device (for example, a base station device or an access point) to which the UE_A10 actually connects.
  • E-UTRAN_A80 is an LTE access network and is configured to include one or more eNB_A45.
  • eNB_A45 is a radio base station to which UE_A10 is connected by E-UTRA (Evolved Universal Terrestrial Radio Access).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • each eNB may be connected to each other.
  • NG-RAN_A120 is a 5G access network, which may be (R) AN shown in FIG. 4, and includes one or more NR nodes (New Radio Access Technology node) _A122 and / or ng-eNB. It is composed.
  • NR node_A122 is a radio base station to which UE_A10 is connected by 5G radio access (5G Radio Access), and is also referred to as gNB.
  • the ng-eNB may be an eNB (E-UTRA) that constitutes a 5G access network, may be connected to the core network_B190 via NR node_A, or may be directly connected to the core network_B190. You may be.
  • E-UTRA eNB
  • each NR node_A122 and / or ng-eNB may be connected to each other.
  • NG-RAN_A120 may be an access network composed of E-UTRA and / or 5G Radio Access.
  • NG-RAN_A120 may contain eNB_A45, NR node_A122, or both.
  • eNB_A45 and NR node_A122 may be similar devices. Therefore, NR node_A122 can be replaced with eNB_A45.
  • UTRAN_A20 is an access network for 3G mobile communication systems, and is composed of RNC (Radio Network Controller) _A24 and NB (Node B) _A22.
  • NB_A22 is a radio base station to which UE_A10 is connected by UTRA (Universal Terrestrial Radio Access), and UTRAN_A20 may be configured to include one or more radio base stations.
  • RNC_A24 is a control unit that connects the core network_A90 and NB_A22, and UTRAN_A20 may be configured to include one or more RNCs.
  • RNC_A24 may be connected to one or more NB_A22s.
  • UE_A10 is connected to each radio access network means that it is connected to a base station device, an access point, or the like included in each radio access network, and data, signals, etc. to be transmitted and received. It also means that it goes through a base station device or an access point.
  • the control message sent and received between UE_A10 and the core network_B190 may be the same control message regardless of the type of access network. Therefore, sending and receiving messages between UE_A10 and core network_B190 via NR node_A122 may be the same as sending and receiving messages between UE_A10 and core network_B190 via eNB_A45.
  • the access network is a wireless network connected to UE_A10 and / or the core network.
  • the access network may be a 3GPP access network or a non-3GPP access network.
  • the 3GPP access network may be UTRAN_A20, E-UTRAN_A80, NG-RAN (Radio Access Network) _A120, and the non-3GPP access network may be a wireless LAN access point (WLAN AN).
  • UE_A10 may be connected to the access network in order to connect to the core network, or may be connected to the core network via the access network.
  • DN_A5 and PDN_A6 are data networks (Data Networks) that provide communication services to UE_A10, and may be configured as a packet data service network or may be configured for each service. Further, DN_A5 may include a connected communication terminal. Therefore, connecting to DN_A5 may be connecting to a communication terminal or server device arranged in DN_A5. Further, sending and receiving user data to and from DN_A5 may be sending and receiving user data to and from a communication terminal or server device arranged in DN_A5. Further, although DN_A5 is outside the core network in FIG. 1, it may be inside the core network.
  • Data Networks Data Networks
  • the core network_A90 and / or the core network_B190 may be configured as devices in one or more core networks.
  • the device in the core network may be a device that executes a part or all of the processing or function of each device included in the core network_A90 and / or the core network_B190.
  • the device in the core network may be referred to as a core network device.
  • the core network is an IP mobile communication network operated by a mobile network operator (MNO; Mobile Network Operator) connected to an access network and / or DN.
  • the core network may be a core network for a mobile communication operator that operates and manages the mobile communication system 1, or a virtual mobile communication operator such as MVNO (Mobile Virtual Network Operator) or MVNE (Mobile Virtual Network Enabler) or a virtual network operator. It may be a core network for mobile communication service providers.
  • the core network_A90 may be an EPC (Evolved Packet Core) that constitutes an EPS (Evolved Packet System), and the core network_B190 may be a 5GC (5G Core Network) that constitutes a 5GS.
  • EPC Evolved Packet Core
  • EPS Evolved Packet System
  • 5G Core Network 5GC
  • the core network_B190 may be the core network of the system that provides the 5G communication service.
  • the EPC may be the core network_A90 and the 5GC may be the core network_B190.
  • the core network_A90 and / or the core network_B190 is not limited to this, and may be a network for providing a mobile communication service.
  • Core network_A90 includes HSS (Home Subscriber Server) _A50, AAA (Authentication Authorization Accounting), PCRF (Policy and Charging Rules Function), PGW_A30, ePDG, SGW_A35, MME (Mobility Management Entity) _A40, SGSN (Serving GPRS Support). Node), SCEF, at least one may be included. And these may be configured as NF (Network Function). NF may refer to a processing function configured in the network.
  • the core network_A90 can be connected to a plurality of radio access networks (UTRAN_A20, E-UTRAN_A80).
  • FIG. 3 shows only HSS (HSS_A50), PGW (PGW_A30), SGW (SGW_A35) and MME (MME_A40), but other devices and / or NFs. Does not mean that is not included.
  • UE_A10 is also referred to as UE
  • HSS_A50 is referred to as HSS
  • PGW_A30 is referred to as PGW
  • SGW_A35 is referred to as SGW
  • MME_A40 is referred to as MME
  • DN_A5 and / or PDN_A6 is also referred to as DN or PDN.
  • PGW_A30 is a relay device that is connected to DN, SGW_A35, ePDG, WLAN ANa70, PCRF, and AAA, and transfers user data as a gateway between DN (DN_A5 and / or PDN_A6) and core network_A90.
  • the PGW_A30 may be a gateway for IP communication and / or non-IP communication. Further, PGW_A30 may have a function of transferring IP communication, and may have a function of converting non-IP communication and IP communication.
  • a plurality of such gateways may be arranged in the core network_A90. Further, the plurality of gateways to be arranged may be a gateway connecting the core network_A90 and a single DN.
  • the U-Plane (User Plane; UP) may be a communication path for transmitting and receiving user data, and may be composed of a plurality of bearers.
  • the C-Plane (Control Plane; CP) may be a communication path for transmitting and receiving a control message, and may be composed of a plurality of bearers.
  • PGW_A30 may be connected to SGW and DN and UPF (User plane function) and / or SMF (Session Management Function), or may be connected to UE_A10 via U-Plane.
  • PGW_A30 may be configured with UPF_A235 and / or SMF_A230.
  • SGW_A35 is connected to PGW_A30, MME_A40, E-UTRAN_A80, SGSN and UTRAN_A20, and is a relay that transfers user data as a gateway to the core network_A90 and 3GPP access networks (UTRAN_A20, GERAN, E-UTRAN_A80). It is a device.
  • MME_A40 is a control device that is connected to SGW_A35, an access network, HSS_A50, and SCEF, and performs location information management including mobility management of UE_A10 and access control via the access network. Further, the MME_A40 may include a function as a session management device that manages the sessions established by the UE_A10. Further, a plurality of such control devices may be arranged in the core network_A90, and for example, a position management device different from the MME_A40 may be configured. A location management device different from the MME_A40 may be connected to the SGW_A35, the access network, the SCEF, and the HSS_A50, similar to the MME_A40. Furthermore, MME_A40 may be connected to AMF (Access and Mobility Management Function).
  • AMF Access and Mobility Management Function
  • the MMEs may be connected to each other.
  • the context of UE_A10 may be transmitted and received between MMEs.
  • the MME_A40 is a management device that transmits and receives control information related to mobility management and session management to and from the UE_A10, in other words, it may be a control plane (Control Plane; C-Plane; CP) control device.
  • MME_A40 may be one or more core networks or a management device composed of DCN or NSI, or one or more core networks or. It may be a management device connected to a DCN or NSI.
  • the plurality of DCNs or NSIs may be operated by a single telecommunications carrier or may be operated by different telecommunications carriers.
  • MME_A40 may be a relay device that transfers user data as a gateway between the core network_A90 and the access network.
  • the user data transmitted / received using MME_A40 as a gateway may be small data.
  • MME_A40 may be an NF that plays a role of mobility management such as UE_A10, or an NF that manages one or more NSIs. In addition, MME_A40 may be an NF that plays one or more of these roles.
  • the NF may be one or more devices arranged in the core network_A90, and may also be a CP function for control information and / or a control message (hereinafter, CPF (Control Plane Function) or Control Plane Network Function). It may be a shared CP function shared between multiple network slices.
  • NF is a processing function configured in the network. That is, the NF may be a functional device such as MME, SGW, PGW, CPF, AMF, SMF, UPF, or function / capability information such as MM (Mobility Management) or SM (Session Management). Further, the NF may be a functional device for realizing a single function, or may be a functional device for realizing a plurality of functions. For example, an NF for realizing the MM function and an NF for realizing the SM function may exist separately, or there is an NF for realizing both the MM function and the SM function. You may.
  • HSS_A50 is a management node that is connected to MME_A40, AAA, and SCEF and manages subscriber information.
  • the subscriber information of HSS_A50 is referred to when, for example, access control of MME_A40 is performed.
  • the HSS_A50 may be connected to a position management device different from that of the MME_A40.
  • HSS_A50 may be connected to CPF_A140.
  • HSS_A50 and UDM (Unified Data Management) _A245 may be configured as different devices and / or NFs, or may be configured as the same device and / or NFs.
  • AAA is connected to PGW30, HSS_A50, PCRF, and WLAN ANa70, and controls access to UE_A10, which is connected via WLAN ANa70.
  • PCRF is connected to PGW_A30, WLAN ANa75, AAA, DN_A5 and / or PDN_A6, and performs QoS management for data delivery. For example, it manages the QoS of the communication path between UE_A10 and DN_A5 and / or PDN_A6. Further, the PCRF may be a device that creates and / or manages PCC (Policy and Charging Control) rules and / or routing rules that each device uses when transmitting and receiving user data.
  • PCC Policy and Charging Control
  • the PCRF may also be a PCF that creates and / or manages policies. More specifically, the PCRF may be connected to UPF_A235.
  • the ePDG is connected to PGW30 and WLAN ANb75, and delivers user data as a gateway between core network _A90 and WLAN ANb75.
  • the SGSN is connected to UTRAN_A20, GERAN and SGW_A35, and is a control device for position management between the 3G / 2G access network (UTRAN / GERAN) and the LTE (4G) access network (E-UTRAN). Is.
  • the SGSN has a PGW and SGW selection function, a UE_A10 time zone management function, and an MME_A40 selection function during handover to E-UTRAN.
  • SCEF is a relay device that is connected to DN_A5 and / or PDN_A6, MME_A40 and HSS_A50, and transfers user data as a gateway connecting DN_A5 and / or PDN_A6 and core network_A90.
  • SCEF may be a gateway for non-IP communication.
  • SCEF may have the ability to convert between non-IP communication and IP communication.
  • a plurality of such gateways may be arranged in the core network_A90.
  • multiple gateways connecting the core network_A90 with a single DN_A5 and / or PDN_A6 and / or DN may also be deployed.
  • the SCEF may be configured outside the core network or inside the core network.
  • the core network_B190 includes AUFF (Authentication Server Function), AMF (Access and Mobility Management Function) _A240, UDSF (Unstructured Data Storage Function), NEF (Network Exposure Function), NRF (Network Repository Function), PCF (Policy Control). Function), SMF (Session Management Function) _A230, UDM (Unified Data Management), UPF (User Plane Function) _A235, AF (Application Function), N3IWF (Non-3GPP InterWorking Function) may be included. .. And these may be configured as NF (Network Function). NF may refer to a processing function configured in the network.
  • FIG. 4 shows only AMF (AMF_A240), SMF (SMF_A230), and UPF (UPF_A235), but other than these (devices and / or NF (Network)). It does not mean that Function)) is not included.
  • AMF_A240 is referred to as AMF
  • SMF_A230 is referred to as SMF
  • UPF_A235 is referred to as UPF
  • DN_A5 is also referred to as DN.
  • Fig. 4 shows the N1 interface (hereinafter, also referred to as reference point), N2 interface, N3 interface, N4 interface, N6 interface, N9 interface, and N11 interface.
  • the N1 interface is the interface between the UE and AMF
  • the N2 interface is the interface between (R) AN (access network) and AMF
  • the N3 interface is (R) AN (access network).
  • the interface between UPF, the N4 interface is the interface between SMF and UPF
  • the N6 interface is the interface between UPF and DN
  • the N9 interface is the interface between UPF and UPF.
  • N11 interface is the interface between AMF and SMF. Communication can be performed between the devices by using these interfaces.
  • (R) AN is also referred to as NG RAN below.
  • AMF_A240 is connected to other AMF, SMF (SMF_A230), access network (that is, UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120), UDM, AUSF, PCF.
  • AMF_A240 is used for registration management (Registration management), connection management (Connection management), reachability management (Reachability management), mobility management such as UE_A10 (Mobility management), and transfer of SM (Session Management) messages between UE and SMF.
  • SMF Session Management
  • AMF_A240s may be arranged in the core network_B190.
  • AMF_A240 may be an NF that manages one or more NSIs (Network Slice Instances).
  • AMF_A240 may be a shared CP function (CCNF; Common CPNF (Control Plane Network Function)) shared among a plurality of NSIs.
  • CCNF Common CPNF (Control Plane Network Function)
  • the RM state includes a non-registered state (RM-DEREGISTERED state) and a registered state (RM-REGISTERED state).
  • RM-DEREGISTERED state the UE is not registered in the network, so the UE context in AMF does not have valid location information or routing information for that UE, so AMF cannot reach the UE. is there.
  • the UE is registered in the network, so the UE can receive services that require registration with the network.
  • CM-IDLE state a non-connected state
  • CM-CONNECTED state a connected state
  • N2 connection an N2 interface connection
  • N3 connection an N3 interface connection
  • the UE may have an N2 interface connection (N2 connection) and / or an N3 interface connection (N3 connection).
  • SMF_A230 has session management (Session Management; SM; session management) functions such as PDU sessions, IP address allocation to UEs and its management functions, UPF selection and control functions, and traffic to appropriate destinations.
  • UPF setting function for routing function to notify that downlink data has arrived (Downlink Data Notification), AN-specific (AN) transmitted to AN via AMF via N2 interface It may have a function of providing SM information (for each session), a function of determining an SSC mode (Session and Service Continuity mode) for a session, a roaming function, and the like.
  • SMF_A230 may be connected to AMF_A240, UPF_A235, UDM, and PCF.
  • UPF_A235 is connected to DN_A5, SMF_A230, other UPFs, and access networks (that is, UTRAN_A20, E-UTRAN_A80, and NG-RAN_A120).
  • UPF_A235 is an anchor for intra-RAT mobility or inter-RAT mobility, packet routing & forwarding, UL CL (Uplink Classifier) function that supports routing of multiple traffic flows to one DN, Routing point function that supports multi-homed PDU session, QoS processing for userplane, verification of uplink traffic, buffering of downlink packets, downlink data notification (Downlink Data Notification) It may play a role such as a trigger function.
  • UL CL Uplink Classifier
  • UPF_A235 may be a relay device that transfers user data as a gateway between DN_A5 and core network_B190.
  • UPF_A235 may be a gateway for IP communication and / or non-IP communication.
  • UPF_A235 may have a function of transferring IP communication, and may have a function of converting non-IP communication and IP communication.
  • the plurality of gateways to be arranged may be a gateway connecting the core network_B190 and a single DN.
  • the UPF_A235 may have connectivity with other NFs, or may be connected to each device via other NFs.
  • UPF_C239 (also referred to as branching point or uplink classifier), which is a UPF different from UPF_A235, may exist as a device or NF between UPF_A235 and the access network. If UPF_C239 is present, the PDU session between UE_A10 and DN_A5 will be established via the access network, UPF_C239, UPF_A235.
  • AUSF is connected to UDM and AMF_A240. AUSF acts as an authentication server.
  • UDSF provides a function for all NFs to store and retrieve information as unstructured data.
  • NEF provides a means to safely provide the services and capabilities provided by the 3GPP network.
  • Information received from other NFs is saved as structured data.
  • NRF When NRF receives an NF discovery request (NF Discovery Request) from an NF instance, it provides information on the discovered NF instance to that NF, and information on available NF instances and services supported by that instance. Or hold.
  • NF Discovery Request NF Discovery Request
  • PCF is connected to SMF (SMF_A230), AF, AMF_A240. Provide policy rules, etc.
  • UDM is connected to AMF_A240, SMF (SMF_A230), AUSF, PCF.
  • UDM includes UDM FE (application front end) and UDR (User Data Repository).
  • UDM FE processes authentication information (credentials), location management (location management), subscription management (subscription management), and the like.
  • UDR stores the data required to be provided by UDM FE and the policy profiles required by PCF.
  • AF is connected to PCF. AF influences traffic routing and participates in policy control.
  • N3IWF establishes an IPsec tunnel with the UE, relays NAS (N1) signaling between the UE and AMF, processes N2 signaling transmitted from SMF and relayed by AMF, and establishes IPsec Security Association (IPsec SA).
  • IPsec SA IPsec Security Association
  • S1 mode is a UE mode that allows sending and receiving of messages using the S1 interface.
  • the S1 interface may be composed of an S1-MME interface, an S1-U interface, and an X2 interface that connects radio base stations.
  • the UE in S1 mode can, for example, access the EPC via eNB that provides the E-UTRA function and access the EPC via en-gNB that provides the NR function.
  • the S1 mode is used for access to the EPC via eNB that provides the E-UTRA function and access to the EPC via en-gNB that provides the NR function, but each may be configured as a different mode. ..
  • N1 mode is a UE mode in which the UE can access 5GC via a 5G access network. Further, the N1 mode may be a UE mode capable of transmitting and receiving messages using the N1 interface.
  • the N1 interface may be composed of an N1 interface and an Xn interface that connects radio base stations.
  • the N1 mode UE can, for example, access 5GC via ng-eNB that provides the E-UTRA function and access 5GC via gNB that provides the NR function.
  • the access to 5GC via ng-eNB that provides the E-UTRA function and the access to 5GC via gNB that provides the NR function are set to N1 mode, but they may be configured as different modes individually. ..
  • UE_A10 is composed of a control unit_A500, a transmission / reception unit_A520, and a storage unit_A540.
  • the transmission / reception unit_A520 and the storage unit_A540 are connected to the control unit_A500 via a bus.
  • An external antenna 410 is connected to the transmitter / receiver _A520.
  • the control unit_A500 is a functional unit for controlling the entire UE_A10, and realizes various processes of the entire UE_A10 by reading and executing various information and programs stored in the storage unit_A540.
  • the transmitter / receiver_A520 is a functional unit for UE_A10 to connect to the base stations (UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120) and / or wireless LAN access point (WLAN AN) in the access network and connect to the access network. is there.
  • the UE_A10 can be connected to a base station and / or an access point in the access network via an external antenna 410 connected to the transmitter / receiver_A520.
  • the UE_A10 transmits / receives user data and / or control information to / from a base station and / or an access point in the access network via an external antenna 410 connected to the transmission / reception unit_A520. Can be done.
  • the storage unit_A540 is a functional unit that stores programs and data required for each operation of UE_A10, and is composed of, for example, a semiconductor memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), and the like.
  • the storage unit_A540 stores identification information, control information, flags, parameters, rules, policies, and the like included in control messages sent and received in a communication procedure described later.
  • the eNB_A45 and the NR node_A122 are composed of a control unit_B600, a network connection unit_B620, a transmission / reception unit_B630, and a storage unit_B640.
  • the network connection unit_B620, the transmission / reception unit_B630, and the storage unit_B640 are connected to the control unit_B600 via a bus.
  • An external antenna 510 is connected to the transmitter / receiver _B630.
  • the control unit_B600 is a functional unit for controlling the entire eNB_A45 and NR node_A122, and by reading and executing various information and programs stored in the storage unit_B640, the entire eNB_A45 and NR node_A122 Realize various processes.
  • the network connection part_B620 is a functional part for eNB_A45 and NR node_A122 to connect with AMF_A240 and UPF_A235 in the core network.
  • eNB_A45 and NR node_A122 can be connected to AMF_A240 and UPF_A235 in the core network via the network connection part_B620.
  • eNB_A45 and NR node_A122 can send and receive user data and / or control information to and from AMF_A240 and / or UPF_A235 via the network connection unit_B620.
  • the transmission / reception unit_B630 is a functional unit for eNB_A45 and NR node_A122 to connect to UE_A10.
  • the eNB_A45 and NR node_A122 can send and receive user data and / or control information to and from the UE_A10 via the transmission / reception unit_B630.
  • the storage unit_B640 is a functional unit that stores programs and data required for each operation of eNB_A45 and NR node_A122.
  • the storage unit_B640 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like.
  • the storage unit_B640 stores identification information, control information, flags, parameters, and the like included in the control messages transmitted and received in the communication procedure described later.
  • the storage unit_B640 may store this information as a context for each UE_A10.
  • the MME_A40 or AMF_A240 is composed of a control unit_C700, a network connection unit_C720, and a storage unit_C740.
  • the network connection unit_C720 and the storage unit_C740 are connected to the control unit_C700 via a bus.
  • the storage unit_C740 stores the context 642.
  • the control unit_C700 is a functional unit for controlling the entire MME_A40 or AMF_A240, and realizes various processes of the entire AMF_A240 by reading and executing various information and programs stored in the storage unit_C740. To do.
  • the network connection part_C720 is MME_A40 or AMF_A240, other MME_A40, AMF_240, SMF_A230, base stations in the access network (UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120) and / or wireless LAN access point (WLAN AN), UDM. , AUSF, a functional part for connecting to PCF.
  • the MME_A40 or AMF_A240 sends and receives user data and / or control information to and from the base station and / or access point, UDM, AUSF, PCF in the access network via the network connection_C720. Can be done.
  • the storage unit_C740 is a functional unit that stores programs and data required for each operation of MME_A40 or AMF_A240.
  • the storage unit_C740 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like.
  • the storage unit_C740 stores identification information, control information, flags, parameters, and the like included in the control messages transmitted and received in the communication procedure described later.
  • the context 642 stored in the storage unit_C740 may include a context stored for each UE, a context stored for each PDU session, and a context stored for each bearer.
  • the contexts stored for each UE include IMSI, MSISDN, MMState, GUTI, MEIdentity, UERadioAccessCapability, UENetworkCapability, MSNetworkCapability, AccessRestriction, MMEF-TEID, SGWF-TEID, eNBAddress. , MMEUES1APID, eNBUES1APID, NRnodeAddress, NRnodeID, WAGAddress, WAGID may be included. Further, the context stored for each PDU session may include APN in Use, Assigned Session Type, IP Address (es), PGW F-TEID, SCEF ID, and Default bearer.
  • contexts stored for each bearer are EPS Bearer ID, TI, TFT, SGW F-TEID, PGW F-TEID, MME F-TEID, eNB Address, NR node Address, WAG Address, eNB ID, NR node. ID and WAG ID may be included.
  • N26 interface may be an interface between the core networks between MME_A40 in EPC and AMF_A240 in 5GC.
  • the N26 interface is an optional interface for inter-system interworking between 5GS and EPS.
  • the N26 interface is an interface that enables transmission and reception for exchanging information on the mobility management status such as UE_A10 and the SM (Session Management) status between the UE and SMF between 5GS and EPS. It may be there.
  • the N26 interface may be the interface required to enable seamless session continuity for inter-system change from N1 mode to S1.
  • the SMF_A230 is composed of a control unit_D800, a network connection unit_D820, and a storage unit_D840, respectively.
  • the network connection unit _D820 and the storage unit _D840 are connected to the control unit _D800 via a bus.
  • the storage unit_D840 stores the context 742.
  • the control unit_D800 of SMF_A230 is a functional unit for controlling the entire SMF_A230, and realizes various processes of the entire SMF_A230 by reading and executing various information and programs stored in the storage unit_D840. To do.
  • the network connection part_D820 of SMF_A230 is a functional part for SMF_A230 to connect with AMF_A240, UPF_A235, UDM, and PCF.
  • the SMF_A230 can send and receive user data and / or control information to and from the AMF_A240, UPF_A235, UDM, and PCF via the network connection _D820.
  • the storage unit_D840 of SMF_A230 is a functional unit that stores programs and data required for each operation of SMF_A230.
  • the storage unit_D840 of the SMF_A230 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like.
  • the storage unit_D840 of SMF_A230 stores identification information, control information, flags, parameters, etc. included in control messages transmitted and received in the communication procedure described later.
  • the context 742 stored in the storage unit_D840 of SMF_A230 includes a context stored for each UE, a context stored for each APN, a context stored for each PDU session, and a context stored for each bearer. There may be a context.
  • the context stored for each UE may include IMSI, MEIdentity, MSISDN, and RATtype.
  • the context stored for each APN may include APN in use.
  • the context stored for each APN may be stored for each Data Network Identifier.
  • the context stored for each PDU session may include AssignedSessionType, IPAddress (es), SGWF-TEID, PGWF-TEID, DefaultBearer.
  • the context stored for each bearer may include EPS Bearer ID, TFT, SGW F-TEID, and PGW F-TEID.
  • PGW_A30 or UPF_A235 is composed of a control unit_D800, a network connection unit_D820, and a storage unit_D840, respectively.
  • the network connection unit _D820 and the storage unit _D840 are connected to the control unit _D800 via a bus.
  • the storage unit_D840 stores the context 742.
  • the control unit_D800 of PGW_A30 or UPF_A235 is a functional unit for controlling the entire PGW_A30 or UPF_A235, and by reading and executing various information and programs stored in the storage unit_D840, PGW_A30 or UPF_A235 Realize various processing as a whole.
  • the network connection part_D820 of PGW_A30 or UPF_A235 connects PGW_A30 or UPF_A235 to DN (that is, DN_A5), SMF_A230, other UPF_A235, and access networks (that is, UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120). It is a functional part to do.
  • UPF_A235 is between the DN (ie DN_A5), SMF_A230, other UPF_A235, and the access network (ie UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120) via the network connection_D820.
  • User data and / or control information can be sent and received.
  • the storage unit_D840 of UPF_A235 is a functional unit that stores programs, data, etc. required for each operation of UPF_A235.
  • the storage unit_D840 of UPF_A235 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like.
  • the storage unit_D840 of UPF_A235 stores identification information, control information, flags, parameters, etc. included in control messages transmitted and received in the communication procedure described later.
  • the context 742 stored in the storage unit_D840 of UPF_A235 the context stored for each UE, the context stored for each APN, the context stored for each PDU session, and the context stored for each bearer are stored. There may be a context.
  • the context stored for each UE may include IMSI, MEIdentity, MSISDN, and RATtype.
  • the context stored for each APN may include APN in use.
  • the context stored for each APN may be stored for each Data Network Identifier.
  • the context stored for each PDU session may include AssignedSessionType, IPAddress (es), SGWF-TEID, PGWF-TEID, DefaultBearer.
  • the context stored for each bearer may include EPS Bearer ID, TFT, SGW F-TEID, and PGW F-TEID.
  • IMSI International Mobile Subscriber Identity
  • MME_A40 / CPF_A140 / AMF_A2400 and SGW_A35 may be equal to the IMSI stored by HSS_A50.
  • EMM State / MM State indicates the mobility management state of UE_A10 or MME_A40 / CPF_A140 / AMF_A240.
  • the EMM State / MM State may be an EMM-REGISTERED state (registered state) in which UE_A10 is registered in the network, and / or an EMM-DEREGISTERD state (unregistered state) in which UE_A10 is not registered in the network.
  • the EMM State / MM State may be an ECM-CONNECTED state in which the connection between UE_A10 and the core network is maintained, and / or an ECM-IDLE state in which the connection is released.
  • the EMM State / MM State may be information that can distinguish between the state in which UE_A10 is registered in the EPC and the state in which it is registered in the NGC or 5GC.
  • GUTI Globally Unique Temporary Identity
  • MME_A40 / CPF_A140 / AMF_A240 identification information GUMMEI (Globally Unique MME Identifier)
  • M-TMSI M-Temporary Mobile Subscriber Identity
  • MEIdentity is UE_A10 or ME ID, and may be, for example, IMEI (International Mobile Equipment Identity) or IMEISV (IMEI Software Version).
  • MSISDN represents the basic telephone number of UE_A10.
  • the MSISDN stored by MME_A40 / CPF_A140 / AMF_A240 may be the information indicated by the storage unit of HSS_A50.
  • the GUTI may include information that identifies CPF_140.
  • MME F-TEID is information that identifies MME_A40 / CPF_A140 / AMF_A240.
  • the MME F-TEID may include the IP address of MME_A40 / CPF_A140 / AMF_A240, the TEID (Tunnel Endpoint Identifier) of MME_A40 / CPF_A140 / AMF_A240, or both of them. May be good.
  • the IP address of MME_A40 / CPF_A140 / AMF_A240 and the TEID of MME_A40 / CPF_A140 / AMF_A240 may be stored independently.
  • the MME F-TEID may be identification information for user data or identification information for control information.
  • SGW F-TEID is information that identifies SGW_A35.
  • the SGW F-TEID may include the IP address of SGW_A35, the TEID of SGW_A35, or both of them. Further, the IP address of SGW_A35 and the TEID of SGW_A35 may be stored independently. Further, the SGW F-TEID may be identification information for user data or identification information for control information.
  • PGW F-TEID is information that identifies PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235.
  • the PGW F-TEID may include the IP address of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235, the TEID of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235, or both. Good.
  • the IP address of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235 and the TEID of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235 may be stored independently.
  • the PGW F-TEID may be identification information for user data or identification information for control information.
  • ENB F-TEID is information that identifies eNB_A45.
  • the eNB F-TEID may include the IP address of eNB_A45, the TEID of eNB_A45, or both of them. Further, the IP address of eNB_A45 and the TEID of SGW_A35 may be stored independently. Further, the eNB F-TEID may be identification information for user data or identification information for control information.
  • APN may be identification information that identifies the core network and the external network such as DN. Furthermore, the APN can also be used as information for selecting a gateway such as PGW_A30 / UPGW_A130 / UPF_A235 that connects the core network A_90.
  • the APN may be a DNN (Data Network Name). Therefore, APN may be expressed as DNN, and DNN may be expressed as APN.
  • the APN may be identification information that identifies such a gateway, or identification information that identifies an external network such as a DN.
  • the APN may be identification information that identifies such a gateway, or identification information that identifies an external network such as a DN.
  • UERadioAccessCapability is identification information indicating the wireless access capability of UE_A10.
  • UENetworkCapability includes security algorithms and key derivation functions supported by UE_A10.
  • MS Network Capability is information that includes one or more information required for SGSN_A42 for UE_A10 having GERAN_A25 and / or UTRAN_A20 functions.
  • Access Restriction is registration information for access restrictions.
  • eNB Address is the IP address of eNB_A45.
  • the MMEUES1APID is information that identifies UE_A10 in MME_A40 / CPF_A140 / AMF_A240.
  • the eNB UES1AP ID is information that identifies UE_A10 in eNB_A45.
  • APN in Use is a recently used APN.
  • APN in Use may be a Data Network Identifier. This APN may consist of network identification information and default operator identification information. Further, APN in Use may be information that identifies the DN at which the PDU session is established.
  • the Assigned Session Type is information indicating the type of PDU session.
  • the Assigned Session Type may be the Assigned PDN Type.
  • the type of PDU session can be IP or non-IP.
  • the type of PDU session is IP, it may further include information indicating the type of PDN assigned by the network.
  • the AssignedSessionType may be IPv4, IPv6, or IPv4v6.
  • IP Address is the IP address assigned to the UE.
  • the IP address may be an IPv4 address, an IPv6 address, an IPv6 prefix, or an interface ID.
  • AssignedSessionType indicates non-IP, it is not necessary to include the element of IPAddress.
  • DN ID is identification information that distinguishes the core network_B190 from an external network such as DN. Furthermore, the DN ID can also be used as information for selecting a gateway such as UPGW_A130 or PF_A235 that connects the core network_B190.
  • the DN ID may be identification information that identifies such a gateway, or identification information that identifies an external network such as a DN.
  • the DN ID may be identification information that identifies such a gateway, or identification information that identifies an external network such as a DN.
  • the DN ID may be information equal to the APN or information different from the APN. If the DN ID and the APN are different information, each device may manage the information indicating the correspondence between the DN ID and the APN, or may carry out the procedure for inquiring the APN using the DN ID. Alternatively, the procedure for inquiring the DN ID using the APN may be carried out.
  • SCEFID is the IP address of SCEF_A46 used in the PDU session.
  • the Default Bearer is information acquired and / or generated when the PDU session is established, and is EPS bearer identification information for identifying the default bearer associated with the PDU session.
  • EPS Bearer ID is the identification information of EPS bearer. Further, the EPS Bearer ID may be identification information for identifying SRB (Signalling Radio Bearer) and / or CRB (Control-plane Radio bearer), or may be identification information for identifying DRB (Data Radio Bearer).
  • TI Transaction Identifier
  • the EPS Bearer ID may be EPS bearer identification information that identifies the dedicated bearer. Therefore, the identification information that identifies the EPS bearer different from the default bearer may be used. TFT shows all packet filters associated with EPS bearers.
  • the TFT is information that identifies a part of the user data to be transmitted / received, and UE_A10 transmits / receives the user data identified by the TFT using the EPS bearer associated with the TFT.
  • UE_A10 sends and receives user data identified by the TFT using the RB (Radio Bearer) associated with the TFT.
  • the TFT may associate user data such as application data to be transmitted / received with an appropriate transfer path, or may be identification information for identifying application data.
  • UE_A10 may send and receive user data that cannot be identified by the TFT using the default bearer.
  • UE_A10 may also store the TFT associated with the default bearer in advance.
  • Default Bearer is EPS bearer identification information that identifies the default bearer associated with the PDU session.
  • the EPS bearer may be a logical communication path established between UE_A10 and PGW_A30 / UPGW_A130 / UPF_A235, or may be a communication path constituting a PDN connection / PDU session. Further, the EPS bearer may be a default bearer or a dedicated bearer.
  • the EPS bearer may be configured to include an RB established between UE_A10 and a base station and / or access point in the access network. In addition, RBs and EPS bearers may have a one-to-one correspondence.
  • the RB identification information may be associated with the EPS bearer identification information on a one-to-one basis, or may be the same identification information.
  • the RB may be SRB and / or CRB, or may be DRB.
  • the Default Bearer may be information acquired by UE_A10 and / or SGW_A35 and / or PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235 from the core network when the PDU session is established.
  • the default bearer is an EPS bearer that is first established in a PDN connection / PDU session, and is an EPS bearer that can be established only once in one PDN connection / PDU session.
  • the default bearer may be an EPS bearer that can be used to communicate user data that is not associated with a TFT.
  • a decadeted bearer is an EPS bearer that is established after the default bearer is established during a PDN connection / PDU session, and is an EPS bearer that can be established multiple times during a single PDN connection / PDU session. is there.
  • a decadeted bearer is an EPS bearer that can be used to communicate user data associated with a TFT.
  • User Identity is information that identifies the subscriber. User Identity may be IMSI or MSISDN. Further, User Identity may be identification information other than IMSI and MSISDN. Serving Node Information is information that identifies MME_A40 / CPF_A140 / AMF_A240 used in the PDU session, and may be the IP address of MME_A40 / CPF_A140 / AMF_A240.
  • ENB Address is the IP address of eNB_A45.
  • the eNB ID is information that identifies the UE in eNB_A45.
  • MMEAddress is the IP address of MME_A40 / CPF_A140 / AMF_A240.
  • the MME ID is information that identifies MME_A40 / CPF_A140 / AMF_A240.
  • NR nodeAddress is the IP address of NR node_A122.
  • the NR node ID is information that identifies the NR node_A122.
  • WAGAddress is the IP address of WAG.
  • WAG ID is information that identifies WAG.
  • Anchor or anchor point is a UPF that has a gateway function for DN and PDU sessions.
  • the UPF serving as an anchor point may be a PDU session anchor or an anchor.
  • the SSC mode indicates the mode of service session continuity (Session and Service Continuity) supported by the system and / or each device in 5GC. More specifically, it may be a mode indicating the types of service session continuation supported by the PDU session established between UE_A10 and the anchor point).
  • the anchor point may be UPGW or UPF_A235.
  • SSC mode may be a mode indicating the type of service session continuation set for each PDU session. Further, the SSC mode may be composed of three modes, SSC mode 1, SSC mode 2, and SSC mode 3. The SSC mode is associated with the anchor point and cannot be changed while the PDU session is established.
  • SSC mode 1 in the present embodiment is a service session continuation mode in which the same UPF is maintained as an anchor point regardless of the access technology such as RAT (Radio Access Technology) and cell used when UE_A10 connects to the network.
  • SSC mode1 may be a mode that realizes the continuation of the service session without changing the anchor point used by the established PDU session even when the mobility of UE_A10 occurs.
  • SSC mode2 in the present embodiment includes an anchor point associated with one SSC mode2 in the PDU session, the service session continuation in which the PDU session is released first and then the PDU session is established continuously.
  • the mode More specifically, SSC mode2 is a mode in which when an anchor point relocation occurs, the PDU session is deleted once and then a new PDU session is established.
  • SSC mode2 is a service session continuation mode in which the same UPF is maintained as an anchor point only within the serving area of the UPF. More specifically, SSC mode2 may be a mode that realizes service session continuation without changing the UPF used by the established PDU session as long as UE_A10 is within the serving area of the UPF. Furthermore, SSC mode2 is a mode that realizes service session continuation by changing the UPF used by the established PDU session when the mobility of UE_A10 occurs, such as leaving the serving area of the UPF. Good.
  • the TUPF serving area may be an area where one UPF can provide the service session continuation function, or a subset of the access network such as RAT and cell used when UE_A10 connects to the network. It may be. Further, the subset of the access network may be a network composed of one or more RATs and / or cells, or may be a TA.
  • SSC mode 3 in the present embodiment is a service session continuation mode in which a PDU session can be established between a new anchor point and the UE for the same DN without releasing the PDU session between the UE and the anchor point. is there.
  • SSCmode3 will have a PDU session established between UE_A10 and the UPF, and / or a new PDU session via the new UPF for the same DN before disconnecting the communication path, and / Alternatively, it is a mode of service session continuation that allows the establishment of a communication path. Further, SSC mode 3 may be a service session continuation mode that allows UE_A10 to be multihoming.
  • / or SSC mode 3 may be a mode in which the continuation of the service session using the UPF associated with a plurality of PDU sessions and / or the PDU session is permitted.
  • each device may realize the service session continuation by using a plurality of PDU sessions, or may realize the service session continuation by using a plurality of TUPFs.
  • the selection of the new UPF may be carried out by the network, and the new UPF is the location where UE_A10 is connected to the network. It may be the most suitable UPF.
  • UE_A10 will immediately address the newly established PDU session for application and / or flow communication. It may be carried out based on the completion of communication.
  • the network refers to at least a part of access network_A20 / 80, access network_B80 / 120, core network_A90, core network_B190, DN_A5, and PDN_A6.
  • one or more devices included in at least a part of access network_A20 / 80, access network_B80 / 120, core network_A90, core network_B190, DN_A5, and PDN_A6 are referred to as a network or network device. You may call it. That is, the fact that the network executes the transmission / reception and / or procedure of the message means that the device (network device) in the network executes the transmission / reception and / or procedure of the message.
  • the session management (SM; Session Management) message (also referred to as NAS (Non-Access-Stratum) SM message or SM message) in the present embodiment is a procedure for SM (also referred to as session management procedure or SM procedure). It may be a NAS message used in the above, and may be a control message sent and received between UE_A10 and SMF_A230 via AMF_A240. Further, the SM message includes a PDU session establishment request message, a PDU session establishment acceptance message, a PDU session completion message, a PDU session rejection message, a PDU session change request message, a PDU session change acceptance message, a PDU session change rejection message, and the like. You may.
  • the procedure for SM may include a PDU session establishment procedure, a PDU session change procedure, and the like.
  • the message sent by UE_A10 is expressed as an SM request message.
  • the PDU session establishment request message and the PDU session change request message are SM request messages.
  • the tracking area (also referred to as TA; Tracking Area) in the present embodiment is a range that can be represented by the position information of UE_A10 managed by the core network, and may be composed of, for example, one or more cells. Further, the TA may be a range in which a control message such as a paging message is broadcast, or a range in which UE_A10 can move without performing a handover procedure.
  • the TA list in this embodiment is a list including one or more TAs assigned to UE_A10 by the network.
  • UE_A10 may be able to move without executing the registration procedure while moving within one or more TAs included in the TA list.
  • the TA list may be a group of information indicating areas where UE_A10 can move without performing the registration procedure.
  • the network slice is a logical network that provides specific network capabilities and network characteristics.
  • the network slice is also referred to as a NW slice.
  • the NSI (Network Slice Instance) in this embodiment is an entity of a network slice (Network Slice) composed of one or more in the core network_B190. Further, the NSI in this embodiment may be composed of a virtual NF (Network Function) generated by using NST (Network Slice Template).
  • NST is a logical expression of one or more NFs (Network Functions) associated with a resource request for providing a required communication service or capability.
  • the NSI may be an aggregate in the core network_B190 composed of a plurality of NFs.
  • NSI may be a logical network configured to divide user data delivered by services or the like. At least one or more NFs may be configured in the network slice.
  • the NF configured in the network slice may or may not be a device shared with other network slices.
  • UE_A10 and / or devices in the network include NSSAI and / or S-NSSAI and / or UE usage type and / or one or more network slice type IDs and / or one or more NS IDs, etc. It can be assigned to one or more network slices based on registration information and / or APN.
  • S-NSSAI in this embodiment is an abbreviation for Single Network Slice Selection Assistance information, and is information for identifying a network slice.
  • S-NSSAI may be composed of SST (Slice / Service type) and SD (Slice Differentiator).
  • S-NSSAI may be composed of SST only or both SST and SD.
  • SST is information indicating the operation of the network slice expected in terms of function and service.
  • SD may be information that complements SST when selecting one NSI from a plurality of NSIs represented by SST.
  • S-NSSAI may be information specific to each PLMN (Public Land Mobile Network), standard information shared among PLMNs, or information specific to a telecommunications carrier that differs for each PLMN. There may be.
  • PLMN Public Land Mobile Network
  • standard information shared among PLMNs or information specific to a telecommunications carrier that differs for each PLMN. There may be.
  • SST and / or SD may be standard information (Standard Value) shared among PLMNs, or information specific to a telecommunications carrier (Non Standard Value) that differs for each PLMN. You may.
  • the network may store one or more S-NSSAI in the registration information of UE_A10 as the default S-NSSAI.
  • NSSAI Single Network Slice Selection Assistance information
  • UE_A10 may store NSSAI permitted from the network for each PLMN. Also, NSSAI may be the information used to select AMF_A240.
  • the operator A network in this embodiment is a network operated by network operator A (operator A).
  • the operator A may develop a NW slice common to the operator B described later.
  • the operator B network in this embodiment is a network operated by network operator B (operator B).
  • the operator B may develop a NW slice common to the operator A.
  • the first NW slice in this embodiment is the NW slice to which the established PDU session belongs when the UE connects to a specific DN.
  • the first NW slice may be a NW slice managed in the operator A network or a NW slice commonly managed in the operator B network.
  • the second NW slice in the present embodiment is a NW slice to which another PDU session that can connect to the DN to which the PDU session belonging to the first NW slice belongs belongs.
  • the first NW slice and the second NW slice may be operated by the same operator or may be operated by different operators.
  • the equal PLMN (equivalent PLMN) in the present embodiment is a PLMN that is treated as if it is the same PLMN as any PLMN in the network.
  • the DCN (Dedicated Core Network) in this embodiment is a core network dedicated to a specific subscriber type, which is composed of one or more in the core network_A90.
  • a DCN for a UE registered as a user of an M2M (Machine to Machine) communication function may be configured in the core network_A90.
  • a default DCN may be configured within core network_A90 for UEs that do not have a suitable DCN.
  • the DCN may be populated with at least one MME_40 or SGSN_A42, and may further be populated with at least one SGW_A35 or PGW_A30 or PCRF_A60.
  • the DCN may be identified by the DCN ID, and the UE may be assigned to one DCN based on information such as the UE usage type and / or the DCN ID.
  • the back-off timer in the present embodiment is a timer that manages the start of a procedure for session management such as a PDU session establishment procedure and / or the transmission of an SM (Session Management) message such as a PDU session establishment request message, and is a session. It may be information indicating the value of the backoff timer for managing the behavior of management.
  • the back-off timer and / or the back-off timer may be referred to as a timer. While the backoff timer is running, each device may be prohibited from starting procedures for session management and / or sending and receiving SM messages.
  • the backoff timer may be set in association with at least one of the congestion management unit applied by the NW and / or the congestion management unit identified by the UE.
  • the SM message may be a NAS message used in the procedure for session management, and may be a control message sent and received between UE_A10 and SMF_A230 via AMF_A240.
  • SM messages include PDU session establishment request message, PDU session establishment acceptance message, PDU session completion message, PDU session rejection message, PDU session change request message, PDU session change acceptance message, PDU session change rejection message, and PDU session release.
  • a request message, a PDU session release acceptance message, a PDU session release refusal message, a PDU session release command message, and the like may be included.
  • the procedure for session management may include a PDU session establishment procedure, a PDU session change procedure, a PDU session opening procedure, and the like.
  • the backoff timer value may be included for each message received by UE_A10.
  • the UE may set the backoff timer received from the NW as the backoff timer, may set the timer value by another method, or may set a random value.
  • the UE may manage a plurality of "backoff timers" corresponding to the plurality of backoff timers, and the policy held by the UE.
  • One timer value may be selected from a plurality of backoff timer values received from the NW, set in the backoff timer, and managed based on the above.
  • the UE sets and manages the backoff timer values received from the NW in "backoff timer # 1" and "backoff timer # 2", respectively. Further, based on the policy held by the UE, one value may be selected from a plurality of backoff timer values received from the NW, set in the backoff timer, and managed.
  • UE_A10 may manage a plurality of "backoff timers" corresponding to a plurality of backoff timers when receiving a plurality of backoff timer values from the NW.
  • the following may be described as, for example, "backoff timer # 1" or "backoff timer # 2".
  • the plurality of backoff timers may be acquired by one session management procedure or by different different session management procedures.
  • the back-off timer is set for a plurality of related NW slices based on the information for identifying one NW slice as described above, and is a back-off timer for suppressing reconnection, or an APN / DNN. It may be a backoff timer that is set in units of a combination of and one NW slice to prevent reconnection, but it is not limited to this, and it is based on the information for identifying the APN / DNN and one NW slice. It may be a back-off timer that is set in units of a combination of a plurality of related NW slices and suppresses reconnection.
  • the re-attempt (Re-attempt) information in the present embodiment determines whether or not the rejected PDU session establishment request (S1100) is allowed to be reconnected by using the same DNN information and / or S-NSSAI information. ) Is the information to instruct UE_A10.
  • the UE is executing the PDU session establishment request (S1100) that does not include the DNN in the PDU session establishment request (1100), the fact that the DNN is not included is referred to as the same information. Further, when the UE executes the PDU session establishment request (S1100) that does not include S-NSSAI in the PDU session establishment request (1100), the fact that S-NSSAI is not included is referred to as the same information.
  • the re-attempt information may be set in units of UTRAN access and / or E-UTRAN access and / or NR access and / or slice information and / or equal PLMN and / or S1 mode and / or NW mode. ..
  • the re-attempt information specified in the access unit may be information indicating reconnection using the same information to the network on the premise of access change. ..
  • slice information different from the rejected slice is specified, and reconnection using the specified slice information may be permitted.
  • the re-attempt information specified in units of equal PLMN may be information indicating that reconnection using the same information is permitted if the PLMN of the change destination is equal PLMN when the PLMN is changed.
  • the PLMN to be changed is not an equal PLMN, it may be information indicating that reconnection using this procedure is not permitted.
  • the re-attempt information specified for each mode indicates that when the mode is changed, if the mode to be changed is the S1 mode, reconnection using the same information is permitted. It may be information. Further, if the mode to be changed is the S1 mode, it may be information indicating that reconnection using the same information is not permitted.
  • the network slice association rule in the present embodiment is a rule that associates information that identifies a plurality of network slices.
  • the network slice association rule may be received in the PDU session rejection message, or may be set in UE_A10 in advance. In addition, the newest network slice association rule may be applied in UE_A10. Conversely, UE_A10 may behave based on the latest network slice association rules. For example, if UE_A10 has a network slice association rule set in advance and a new network slice association rule is received in the PDU session rejection message, UE_A10 updates the network slice association rule held in UE_A10. May be good.
  • the priority management rule for the backoff timer in this embodiment is a rule set in UE_A10 in order to collectively manage a plurality of backoff timers that have occurred in a plurality of PDU sessions into one backoff timer. For example, if conflicting or duplicate congestion management is applied and the UE has multiple backoff timers, UE_A10 will have multiple backoff timers based on the backoff timer's preferred management rules. May be managed collectively. Note that the pattern in which conflict or duplicate congestion management occurs is when congestion management based only on DNN and congestion management based on both DNN and slice information are applied at the same time. In this case, congestion based only on DNN. Management is prioritized. The priority management rule for the backoff timer does not have to be limited to this. The backoff timer may be a backoff timer included in the PDU session rejection message.
  • the LADN Local Area Data Network
  • the LADN is a DN to which the UE can connect only in a specific place, and provides connectivity to a specific DNN (that is, LADN DNN).
  • the LADN information in this embodiment is information related to LADN.
  • the LADN information may be information indicating a specific LADN available to the UE.
  • the LADN information may include LADN DNN and LADN service area information.
  • the LADN DNN may be information indicating LADN, information indicating a DN treated as LADN, or a DNN used when establishing a PDU session for LADN.
  • the LADN service area information may be information indicating the LADN service area.
  • LADN service area information may be provided as a set of tracking areas or as a TAI (Tracking area identity) list.
  • the LADN service area may be an area where a PDU session for LADN can be established, or an area where connection to LADN is possible.
  • the PDU session for LADN in the present embodiment is a PDU session associated with the DNN associated with LADN.
  • the PDU session for LADN may be a PDU session established for LADN. In other words, it may be a PDU session established between the UE and LADN, or it may be a PDU session used for user data communication between the UE and LADN.
  • the PDU session for LADN may be a PDU session that can be established only in the LADN service area.
  • the 5G LAN type service (5G LAN-type service) in the present embodiment is a service that provides private communication by IP type or non-IP type communication via 5GS.
  • the IP type communication may be, for example, either an IPv4 type, an IPv6 type, or an IPv4v6 type
  • the non-IP type communication may be, for example, an Ethernet type.
  • the 5G VN (Virtual Network) in this embodiment is a virtual network (Virtual Network) on 5GS that supports 5G LAN type services.
  • the 5G VN group (5G Virtual Network (VN) Group) in this embodiment is a group composed of a plurality of UEs used for private communication for a 5G LAN type service.
  • Information about the 5GVN group may include the 5GVN group ID, 5GVN group membership, and 5GVN group data, and 5GS uses this information to support the management of the 5GVN group.
  • the 5GVN group ID may be an External Group ID and an Internal Group ID used to identify the 5GVN group.
  • GPSI Generic Public Subscription Identifier
  • the 5GVN group data may include information such as a PDU session type, DNN and S-NSSAI, and an application descriptor.
  • the 5GVN group may be associated with the DNN on a one-to-one basis.
  • one 5GVN group may be associated with one DNN, and a specific 5GVN group may be specified by a specific DNN.
  • the DNN associated with the 5GVN group and the 5GVN group may be associated one-to-many or many-to-one.
  • a plurality of 5GVN groups may be associated with one DNN, or a plurality of DNNs may be associated with one 5GVN group.
  • the PDU session (PDU session for 5G VN Group) for the 5G VN group in the present embodiment is a PDU session by DNN associated with the 5G VN group.
  • the PDU session for the 5GVN group may be a PDU session in which UE_A10 is established using the DNN associated with the 5GVN group to connect (access or join) the 5GVN group.
  • UE_A10 connecting to a 5GVN group may mean that UE_A10 establishes a PDU session for the 5GVN group.
  • the UE that has established the PDU session for the 5GVN group communicates user data with the UEs of other members accessing the same 5GVN group using the PDU session for the 5GVN group. You may be able to do it.
  • the PDU session type of the PDU session for the 5GVN group may be an IP type or a non-IP type, and the IP type may be, for example, either an IPv4 type, an IPv6 type, or an IPv4v6 type.
  • the non-IP type may be, for example, an Ethernet type, and one of the modes (SSC mode 1, SSC mode 2, or SSC mode 3) for continuing the session service is set. You may be.
  • the DNN (Data Network Name) associated with the 5GVN group in this embodiment may be associated with the 5GVN group on a one-to-one basis.
  • one 5GVN group may be associated with one DNN, and a specific 5GVN group may be specified by a specific DNN.
  • the DNN associated with the 5GVN group may be transmitted / provided to the network in the PDU session establishment procedure. More specifically, UE_A10 sends the NAS message for requesting the establishment of a PDU session including the DNN associated with the 5GVN group, and is based on the DNN associated with the 5GVN group from the core network.
  • the PDU session for the 5GVN group may be established by receiving the PDU session establishment acceptance message.
  • the AMF that received the NAS message requests.
  • PDU for 5GVN group by using DNN associated with 5GVN group selected based on user subscription information, network settings, network policy, etc. for the PDU session You may establish a session.
  • the DNN used in the PDU session that supports interworking with EPS must be associated with the APN included in the default EPS bearer context of the PDN connection used when the PDU session is moved to EPS.
  • the APN associated with the DNN associated with the 5GVN group does not have to exist.
  • the first state in the present embodiment is a state in which each device has completed the registration procedure and the PDU session establishment procedure.
  • UE_A10 and / or each device may be in a state in which UE_A10 is registered in the network (RM-REGISTERED state) by completing the registration procedure, and when the PDU session establishment procedure is completed, UE_A10 is PDU from the network. It may be in the state of receiving the session establishment acceptance message or the PDU session establishment rejection message.
  • Congestion management in the present embodiment is composed of one or a plurality of congestion managements from the first congestion management to the fourth congestion management.
  • the control of the UE by the NW is realized by the backoff timer and the congestion management recognized by the UE, and the UE may store the association of these information.
  • the first congestion management in the present embodiment indicates control signal congestion management for DNN parameters. For example, if the NW detects congestion for DNN # A and the NW recognizes that it is a UE-driven session management request for DNN # A-only parameters, the NW will be the first. Congestion management may be applied. Even if the UE-led session management request does not include the DNN information, the NW may select the default DNN led by the NW and set it as the congestion management target. Alternatively, the NW may apply the first congestion management even if the NW recognizes that it is a UE-driven session management request that includes DNN # A and S-NSSAI # A. If the first congestion management is applied, the UE may suppress UE-led session management requests for DNN # A only.
  • the first congestion management in the present embodiment may be control signal congestion management for the DNN, and may be congestion management due to the connectivity to the DNN being in a congestion state.
  • the first congestion management may be congestion management to regulate the connection to DNN # A in all connectivity.
  • the connection to DNN # A in all connectivity may be the connection of DNN # A in connectivity using any S-NSSAI available to the UE, and the network slice to which the UE can connect. It may be a DNN # A connection via.
  • connectivity to DNN # A via network slices may be included.
  • DNN # A may be a DNN associated with a 5GVN group.
  • the first congestion management based on the DNN associated with the 5GVN group is applied to the PLMN (registered PLMN) in which the UE is registered and the equal PLMN (equivalent PLMN) of the registered PLMN.
  • a backoff timer may be applied to these PLMNs.
  • the DNN associated with the 5GVN group is also referred to as DNN # A.
  • the second congestion management in this embodiment indicates control signal congestion management for S-NSSI parameters. For example, when the control signal congestion for S-NSSAI # A is detected in the NW, and the NW recognizes that it is a UE-led session management request targeting only the parameters of S-NSSAI # A. , NW may apply a second congestion management. If a second congestion management is applied, the UE may suppress UE-led session management requests for S-NSSAI # A only.
  • the second congestion management in the present embodiment is control signal congestion management for S-NSSAI, and is congestion management due to the network slice selected by S-NSSAI being in a congestion state. It may be there.
  • the second congestion management may be congestion management for regulating all connections based on S-NSSAI # A. That is, it may be congestion management to regulate connections to all DNNs via the network slice selected by S-NSSAI # A.
  • S-NSSAI # A may be S-NSSAI associated with the 5GVN group.
  • the second congestion management based on S-NSSAI associated with the 5GVN group is the PLMN (registered PLMN) in which the UE is registered and the equal PLMN (equivalent PLMN) of the registered PLMN.
  • a backoff timer may be applied to these PLMNs.
  • the S-NSSAI associated with the 5GVN group is also referred to as S-NSSAI # A.
  • the third congestion management in the present embodiment indicates control signal congestion management for the parameters of DNN and S-NSSAI. For example, when the control signal congestion for DNN # A and the control signal congestion for S-NSSAI # A are detected at the same time in the NW, the NW sets the parameters of DNN # A and S-NSSAI # A.
  • the NW may apply a third congestion management if it recognizes that it is a targeted UE-driven session management request. Even if the UE-led session management request does not include information indicating the DNN, the NW may select the default DNN led by the NW and also make it a congestion management target. If a third congestion management is applied, the UE may suppress UE-led session management requests for DNN # A and S-NSSAI # A parameters.
  • the third congestion management in the present embodiment is control signal congestion management for the parameters of DNN and S-NSSAI, and the control signal congestion management to the DNN via the network slice selected based on S-NSSAI is performed.
  • Congestion management may be performed due to the connectivity being in a congested state.
  • the third congestion management may be congestion management for restricting the connection to DNN # A among the connectivity based on S-NSSAI # A.
  • the fourth congestion management in the present embodiment indicates control signal congestion management for at least one parameter of DNN and / or S-NSSAI.
  • the NW is DNN # A and / or S-NSSAI # A.
  • the NW may apply a fourth congestion management if it recognizes that it is a UE-driven session management request for at least one parameter. Even if the UE-led session management request does not include information indicating the DNN, the NW may select the default DNN led by the NW and also make it a congestion management target. If a fourth congestion management is applied, the UE may suppress UE-led session management requests for at least one parameter of DNN # A and / or S-NSSAI # A.
  • the fourth congestion management in the present embodiment is control signal congestion management for the parameters of DNN and S-NSSAI, and the network slice selected based on S-NSSAI and the connection to DNN. It may be congestion management due to the fact that the sex is in a congestion state.
  • the fourth congestion management is congestion management for regulating all connections based on S-NSSAI # A, and congestion management for regulating connections to DNN # A in all connectivity. It may be management.
  • it is congestion management to regulate the connection to all DNNs through the network slice selected by S-NSSAI # A, and to regulate the connection to DNN # A in all connectivity. It may be congestion management.
  • connection to DNN # A in all connectivity may be the connection of DNN # A in connectivity using any S-NSSAI available to the UE, and the network slice to which the UE can connect. It may be a DNN # A connection via.
  • connectivity to DNN # A via network slices may be included.
  • the fourth congestion management with DNN # A and S-NSSAI # A as parameters is the first congestion management with DNN # A as parameters and the second congestion management with S-NSSAI # A as parameters. May be congestion management that executes at the same time.
  • the second behavior in this embodiment is that the UE uses different slice information different from the slice information specified in the first PDU session establishment to make the same APN / DNN as the first PDU session establishment request.
  • This is the behavior of sending a PDU session establishment request for connection.
  • the second behavior is that if the UE receives a backoff timer value from the network of zero or invalid, it uses slice information different from the slice information specified in establishing the first PDU session.
  • the behavior may be to send a PDU session establishment request for connecting to the same APN / DNN as the first PDU session establishment request.
  • the UE connects to the same APN / DNN as the APN / DNN included in the first PDU session establishment request, using slice information different from the slice information specified in the first PDU session establishment. It may be the behavior of sending a PDU session establishment request for the purpose.
  • the third behavior in this embodiment is that when the PDU session establishment request is rejected, the UE does not send a new PDU session establishment request using the same identification information until the backoff timer expires. It is a behavior. Specifically, the third behavior is that if the UE receives a backoff timer value from the network that is neither zero nor invalid, a new PDU session will use the same identification information until the backoff timer expires. The behavior may be such that the establishment request is not transmitted.
  • the same identification information means that the S-NSSAI and / or DNN included in the new PDU session establishment request is the same as the S-NSSAI and / or DNN transmitted in the rejected PDU session establishment request. May mean.
  • the behavior may be such that a new PDU session establishment request using the same identification information is not transmitted until the backoff timer expires.
  • the PDU session that does not send a new PDU session establishment request in the third behavior may be a PDU session to which congestion management associated with the backoff timer is applied. More specifically, in the third behavior, the DNN and / or S-NSSAI that has the connectivity according to the type of congestion management to which the backoff timer is associated and is associated with the congestion management is used. The behavior may be such that a new PDU session establishment request is not transmitted to the used PDU session.
  • the process in which the UE is prohibited by this behavior may be the start of the procedure for session management including the PDU session establishment request and / or the transmission / reception of the SM message.
  • the fourth behavior in the present embodiment is that when the PDU session establishment request is rejected, the UE makes a new PDU session establishment request that does not carry slice information and DNN / APN information until the backoff timer expires. It is a behavior that does not transmit. Specifically, the fourth behavior is that if the backoff timer received by the UE from the network is neither zero nor invalid, a new PDU session that does not carry slice information or DNN / APN information until the backoff timer expires. The behavior may be such that the establishment request is not transmitted.
  • the fifth behavior in the present embodiment is the behavior in which the UE does not send a new PDU session establishment request using the same identification information when the PDU session establishment request is rejected.
  • the fifth behavior is a new PDU session using the same identification information when the UE is in the uniform PLMN when the PDP types supported by the UE and the network are different.
  • the behavior may be such that the establishment request is not transmitted.
  • the sixth behavior in the present embodiment is the behavior in which the UE transmits a new PDU session establishment request as an initial procedure using the same identification information when the PDU session establishment request is rejected.
  • the sixth behavior is that if the UE rejects the first PDU session establishment request because the target PDN session context does not exist in the handover from non-3GPP access, the same identification information As an initial procedure using, the behavior may be to send a new PDU session establishment request.
  • the seventh behavior in the present embodiment is that when the UE selects another NW slice in the procedure for selecting PLMN, the backoff timer received when the previous PDU session establishment request is rejected is continued. It is a behavior. Specifically, the seventh behavior is when the UE makes a PLMN selection when the first PDU session establishment request is rejected, and is specified in the first PDU session establishment request in the selected PLMN. If it is possible to specify a NW slice that is common to the NW slice that has been created, the backoff timer received when the first PDU session establishment request is rejected may be continued.
  • the eighth behavior in the present embodiment is a behavior in which the UE sets a value notified from the network or a value set in the UE in advance as a backoff timer value.
  • the eighth behavior may be the behavior in which the UE sets the backoff timer value received in the rejection notification of the first PDU session establishment request as the backoff timer value, or the UE may be set in advance.
  • the behavior may be such that the value to be set or held is set as the backoff timer value. If the timer to be set or held in the UE is set as the backoff timer value in advance, it may be limited to HPLMN or even PLMN in the service area.
  • the ninth behavior in the present embodiment is that when the PDU session establishment request is rejected, the UE makes a new PDU session establishment request until the terminal power is turned on / off or the USIM (Universal Subscriber Identity Module) is inserted or removed. It is a behavior that does not transmit. Specifically, the ninth behavior is that the UE has an invalid backoff timer received from the network, or the first PDU session rejection reason is a PDP type between the UE and the network. If they are different, do not send a new PDU session establishment request until the terminal power is turned on / off or USIM is inserted / removed.
  • the ninth behavior is that the UE has an invalid backoff timer received from the network, or the first PDU session rejection reason is a PDP type between the UE and the network. If they are different, do not send a new PDU session establishment request until the terminal power is turned on / off or USIM is inserted / removed.
  • the connected PLMN does not send a new PDU session establishment request until the terminal power is turned on / off or the USIM is inserted / removed. You may. Also, when the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, there is no information element of the backoff timer from the network, and the Re-attempt information is displayed.
  • the connected PLMN does not send a new PDU session establishment request until the terminal power is turned on / off or the USIM is inserted / removed. You may. Also, if the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, and the backoff timer from the network is neither zero nor disabled, the terminal power is turned on. The behavior may be such that a new PDU session establishment request is not sent until / off or USIM insertion / removal.
  • the behavior may be such that a new PDU session establishment request is not transmitted until the USIM is inserted or removed.
  • the tenth behavior in the present embodiment is the behavior in which the UE transmits a new PDU session establishment request when the PDU session establishment request is rejected. Specifically, the tenth behavior is that the UE further notifies from the network when the backoff timer received from the network is zero, or when the first PDU session establishment request is rejected for a temporary reason. If there is no backoff timer information element itself, it may behave to send a new PDU session establishment request.
  • the target APN / DNN in the selected PLMN If the backoff timer is not activated, or if the backoff timer received from the network is invalid, the behavior may be to send a new PDU session establishment request. Also, when the first PDU session establishment request is rejected because the PDP type of the UE and the network are different, when different PLMNs are selected, Re-attempt information is not received or PLMNs that are not on the equal PLMN list.
  • the behavior may be to send a new PDU session establishment request. Also, if the backoff timer notified by the network is zero when the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, a new PDU session It may be the behavior of sending an establishment request.
  • the 16th behavior in this embodiment is the behavior of stopping the backoff timer when the session management procedure led by NW is executed while the UE is activating the backoff timer.
  • the UE may identify a plurality of congestion managements to be stopped from being applied.
  • a method of identifying a second congestion management different from the first congestion management will be described, with the congestion management identified by the above-mentioned method as the first congestion management.
  • the UE may identify the congestion management associated with the same DNN as the DNN associated with the first congestion management as the second congestion management. And / or, the UE may identify the congestion management associated with the same S-NSSAI as the S-NSSAI associated with the first congestion management as the second congestion management. It should be noted that identifying a plurality of congestion managements to be stopped may be set to be executed only when the first congestion management and / or the second congestion management is a specific type of congestion management.
  • the UE may identify the second congestion management. And / or, in identifying the second congestion management, the UE identifies the second congestion management when the congestion management to be searched is any of the first congestion management to the fourth congestion management. May be good. It should be noted that in which type the first congestion management and / or the second identification information can identify a plurality of congestion managements may be preset in the core network and / or the UE. It should be noted that the specific types of congestion management that are allowed to be identified need not be specified as one, and may be set in plurality.
  • the first identification information in the present embodiment may be a reason value indicating the reason for rejecting the request for establishing the PDU session.
  • the first identification information may include the reason value indicated by the second identification information described later.
  • the first identification information may be information indicating that the request for establishing the PDU session is rejected.
  • the request for establishing a PDU session is a request made by UE_A10 and includes DNN and / or S-NSSAI. That is, the first identification information may be a reason indicating that the NW rejects the establishment request for the PDU session corresponding to these DNNs and / or S-NSSAs, or information indicating that the NW rejects the establishment request. Further, the first identification information may be information indicating re-attempt (Re-attempt) information.
  • the second identification information in the present embodiment may be a reason value indicating the reason for rejecting the request for establishing the PDU session.
  • the second identification information may be a value indicating that the resource is insufficient as the reason for rejecting the request to establish the PDU session.
  • the fifth identification information in the present embodiment may be a back-off timer value, and the start of a procedure for session management such as a PDU session establishment procedure and / or SM (Session Management) such as a PDU session establishment request message. It is a timer that manages the transmission of messages, and may be information indicating the value of the backoff timer for managing the behavior of session management.
  • SM Session Management
  • the fifth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value when the PLMN is not changed. Good.
  • the fifth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value even when the PLMN is changed. Good.
  • the fifth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value regardless of whether or not the PLMN is changed. You can.
  • the UE that receives the PDU session establishment refusal message containing the fifth identification information sends a PDU session establishment request message or a PDU session setting change request message for the period indicated by the backoff timer value indicated by the fifth identification information. Can't.
  • the eleventh identification information in the present embodiment may be a reason value indicating a reason for rejecting the setting change of the PDU session.
  • the eleventh identification information may include the reason value indicated by the twelfth identification information described later.
  • the eleventh identification information may be information indicating that the request for changing the setting of the PDU session (PDU session modification) is rejected.
  • the request to change the PDU session is a request made by the UE, and includes DNN and / or S-NSSAI. That is, the eleventh identification information may be information indicating that the NW rejects the change request for the PDU session corresponding to these DNNs and / or S-NSSAs. Further, the eleventh identification information may be information indicating re-attempt (Re-attempt) information.
  • the twelfth identification information in the present embodiment may be a reason value indicating a reason indicating that the resource is insufficient.
  • the twelfth identification information may be a value indicating that the resource is insufficient as the reason for rejecting the setting change of the PDU session.
  • the fifteenth identification information in the present embodiment may be a backoff timer value, and the start of a procedure for session management such as a PDU session establishment procedure and / or SM (Session Management) such as a PDU session establishment request message. It is a timer that manages the transmission of messages, and may be information indicating the value of the backoff timer for managing the behavior of session management.
  • SM Session Management
  • the fifteenth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value when the PLMN is not changed. Good.
  • the fifteenth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value even when the PLMN is changed. Good.
  • the fifteenth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value regardless of whether or not the PLMN is changed. You can.
  • the UE Upon receiving the PDU session establishment refusal message containing the 15th identification information, the UE sends a PDU session establishment request message or a PDU session setting change request message for the period indicated by the backoff timer value indicated by the 5th identification information. Can't.
  • the 21st identification information in the present embodiment may be a reason value indicating the reason for opening the PDU session.
  • the 21st identification information may include the reason value indicated by the 22nd identification information described later.
  • the 21st identification information may be information indicating that the request for PDU session release is rejected.
  • the request for opening the PDU session is a request made by the UE, and includes DNN and / or S-NSSAI. That is, the 21st identification information may be information indicating that the NW rejects the release request for the PDU session corresponding to these DNNs and / or S-NSSAs.
  • the eleventh identification information may be information indicating re-attempt (Re-attempt) information.
  • the 22nd identification information in this embodiment may be a reason value indicating the reason for opening the PDU session.
  • the 22nd identification information may be a value indicating that the reason for releasing the PDU session is insufficient resources.
  • the 25th identification information in the present embodiment may be a backoff timer value, and is the start of a procedure for session management such as a PDU session establishment procedure and / or SM (Session Management) such as a PDU session establishment request message. It is a timer that manages the transmission of messages, and may be information indicating the value of the backoff timer for managing the behavior of session management.
  • SM Session Management
  • the 25th identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value when the PLMN is not changed. Good.
  • the 25th identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent during the period indicated by the backoff timer value even when the PLMN is changed. Good.
  • the 25th identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value regardless of whether or not the PLMN is changed. You can.
  • the UE Upon receiving the PDU session establishment refusal message containing the 25th identification information, the UE sends a PDU session establishment request message or a PDU session setting change request message for the period indicated by the backoff timer value indicated by the 25th identification information. Can't.
  • the initial procedure in this embodiment will be described with reference to FIG.
  • the initial procedure is also referred to as this procedure, and this procedure includes a registration procedure (Registration procedure), a UE-led PDU session establishment procedure (PDU session establishment procedure), and a network-led session management procedure. Details of the registration procedure, PDU session establishment procedure, and network-led session management procedure will be described later.
  • each device executes the registration procedure (S900)
  • UE_A10 transitions to the state registered in the network (RM-REGISTERED state).
  • each device executes the PDU session establishment procedure (S902), so that UE_A10 establishes a PDU session with DN_A5, which provides the PDU connection service, via the core network_B190, and between each device. Transitions to the first state (S904).
  • this PDU session is established via the access network, UPF_A235, but it is not limited to this. That is, there may be a UPF (UPF_C239) different from the UPF_A235 between the UPF_A235 and the access network.
  • UPF_C239 UPF_A235
  • each device in the first state may execute a network-driven session management procedure at any time (S906).
  • each device may exchange various capability information and / or various request information of each device in the registration procedure and / or the PDU session establishment procedure and / or the network-led session management procedure.
  • the exchange of various information and / or negotiation of various requests is performed in the PDU session establishment procedure and / or the network-led session management procedure. It may or may not be carried out at.
  • each device does not exchange various information and / or negotiate various requests in the registration procedure, exchange various information and / or negotiate various requests in the PDU session establishment procedure and / or network-led session. It may be carried out by the management procedure.
  • the exchange of various information and / or negotiation of various requests is performed in the PDU session establishment procedure and / or network-led session management. It may be carried out by the procedure.
  • each device may execute the PDU session establishment procedure in the registration procedure or after the registration procedure is completed. Also, if the PDU session establishment procedure is performed during the registration procedure, the PDU session establishment request message may be included in the registration request message and sent / received, and the PDU session establishment acceptance message may be included in the registration acceptance message and sent / received. The PDU session establishment completion message may be included in the registration completion message and sent / received, and the PDU session establishment rejection message may be included in the registration rejection message and sent / received. Further, when the PDU session establishment procedure is executed in the registration procedure, each device may establish a PDU session based on the completion of the registration procedure, or the PDU session is established between the devices. You may transition.
  • each device involved in this procedure sends and receives one or more identification information included in each control message by transmitting and receiving each control message described in this procedure, and stores each transmitted and received identification information as a context. May be good.
  • the registration procedure is a procedure for UE_A10 to take the lead in registering with the network (access network and / or core network_B190 and / or DN_A5).
  • UE_A10 can execute this procedure at any time such as when the power is turned on, as long as it is not registered in the network.
  • UE_A10 may start this procedure at any time as long as it is in the unregistered state (RM-DEREGISTERED state). Further, each device may transition to the registration state (RM-REGISTERED state) based on the completion of the registration procedure.
  • this procedure updates the location registration information of UE_A10 in the network and / or periodically notifies the network of the status of UE_A10 from UE_A10 and / or updates specific parameters regarding UE_A10 in the network. It may be the procedure of.
  • UE_A10 may start this procedure when it has mobility across TAs. In other words, UE_A10 may start this procedure when it moves to a TA different from the TA shown in the held TA list. In addition, UE_A10 may start this procedure when the running timer expires. In addition, UE_A10 may initiate this procedure when the context of each device needs to be updated due to disconnection or invalidation (also referred to as deactivation) of the PDU session. In addition, UE_A10 may initiate this procedure if there is a change in capability information and / or preferences regarding UE_A10's PDU session establishment. In addition, UE_A10 may initiate this procedure on a regular basis. UE_A10 is not limited to these, and this procedure can be executed at any timing as long as the PDU session is established.
  • UE_A10 performs the registration procedure by sending a registration request message to AMF_A240 via NR node (also called gNB) _A122 and / or ng-eNB (S1000) (S1002) (S1004).
  • UE_A10 sends an SM (Session Management) message (for example, a PDU session establishment request message) in the registration request message, or sends an SM message (for example, a PDU session establishment request message) together with the registration request message.
  • SM Session Management
  • the procedure for session management (SM) such as the PDU session establishment procedure may be started during the registration procedure.
  • UE_A10 sends an RRC (Radio Resource Control) message including a registration request message to NR node_A122 and / or ng-eNB (S1000).
  • RRC Radio Resource Control
  • NR node_A122 and / or ng-eNB receives the RRC message including the registration request message, it extracts the registration request message from the RRC message and selects AMF_A240 as the NF or shared CP function to which the registration request message is routed.
  • NR node_A122 and / or ng-eNB may select AMF_A240 based on the information contained in the RRC message.
  • NR node_A122 and / or ng-eNB sends or forwards a registration request message to the selected AMF_A240 (S1004).
  • the registration request message is a NAS (Non-Access-Stratum) message sent and received on the N1 interface.
  • the RRC message is a control message sent and received between UE_A10 and NR node_A122 and / or ng-eNB.
  • NAS messages are processed in the NAS layer
  • RRC messages are processed in the RRC layer
  • the NAS layer is a layer higher than the RRC layer.
  • UE_A10 may send a registration request message for each NSI when there are multiple NSIs requesting registration, or may send multiple registration request messages by including them in one or more RRC messages. Good. Further, the above-mentioned plurality of registration request messages may be included in one or more RRC messages and transmitted as one registration request message.
  • AMF_A240 When AMF_A240 receives a registration request message and / or a control message different from the registration request message, it executes the first condition determination.
  • the first conditional determination is for determining whether or not AMF_A240 accepts the request of UE_A10. In the first condition determination, AMF_A240 determines whether the first condition determination is true or false.
  • AMF_A240 initiates procedure (A) during this procedure if the first condition determination is true (ie, if the network accepts the request for UE_A10) and if the first condition determination is false (ie). , If the network does not accept the request of UE_A10), start the procedure (B) during this procedure.
  • AMF_A240 executes the fourth condition determination and starts the procedure (A) during this procedure.
  • the fourth condition determination is for determining whether or not AMF_A240 sends and receives SM messages to and from SMF_A230.
  • the fourth condition determination may determine whether or not AMF_A240 is in the process of performing the PDU session establishment procedure.
  • AMF_A240 selects SMF_A230 and sends and receives SM messages to and from the selected SMF_A230 when the fourth condition determination is true (that is, when AMF_A240 sends and receives SM messages to and from SMF_A230).
  • AMF_A240 may cancel the procedure (A) during this procedure and start the procedure (B) during this procedure.
  • AMF_A240 sends a Registration Accept message to UE_A10 via NR node_A122 based on the receipt of the registration request message from UE_A10 and / or the completion of sending and receiving SM messages to and from SMF_A230. (S1008). For example, if the fourth condition determination is true, AMF_A240 may send a registration acceptance message based on the receipt of the registration request message from UE_A10. Further, if the fourth condition determination is false, AMF_A240 may send a registration acceptance message based on the completion of transmission / reception of the SM message with SMF_A230. Here, the registration acceptance message may be sent as a response message to the registration request message.
  • the registration acceptance message is a NAS message sent and received on the N1 interface.
  • AMF_A240 sends to NR node_A122 as a control message for N2 interface, and NR node_A122 that receives this is an RRC message to UE_A10. You may include it in and send it.
  • the AMF_A240 may send the registration acceptance message including the SM message (eg, PDU session establishment acceptance message), or together with the registration acceptance message, the SM message (eg, PDU).
  • a session establishment acceptance message may be sent.
  • This transmission method may be executed when the SM message (for example, the PDU session establishment request message) is included in the registration request message and the fourth condition determination is true. Further, this transmission method may be executed when the SM message (for example, the PDU session establishment request message) is included together with the registration request message and the fourth condition determination is true.
  • AMF_A240 may indicate that the procedure for SM has been accepted by performing such a transmission method.
  • UE_A10 receives the registration acceptance message via NR node_A122 (S1008). UE_A10 recognizes the contents of various identification information included in the registration acceptance message by receiving the registration acceptance message.
  • UE_A10 sends a Registration Complete message to AMF_A240 based on the receipt of the registration acceptance message (S1010).
  • UE_A10 may send the registration completion message including the SM message such as the PDU session establishment completion message, or by including the SM message. , May indicate that the procedure for SM is completed.
  • the registration completion message may be sent as a response message to the registration acceptance message.
  • the registration completion message is a NAS message sent and received on the N1 interface.
  • UE_A10 sends it to NR node_A122 by including it in the RRC message, and NR node_A122 that receives this is sent to AMF_A240 on the N2 interface. It may be sent as a control message.
  • AMF_A240 receives a registration completion message (S1010).
  • each device completes the procedure (A) in this procedure based on the transmission / reception of the registration acceptance message and / or the registration completion message.
  • AMF_A240 starts the procedure (B) during this procedure by sending a Registration Reject message to UE_A10 via NR node_A122 (S1012).
  • the registration refusal message may be sent as a response message to the registration request message.
  • the registration refusal message is a NAS message sent and received on the N1 interface.
  • AMF_A240 sends an N2 interface control message to NR node_A122, and NR node_A122 that receives this is an RRC message to UE_A10. You may include it in and send it.
  • the registration refusal message transmitted by AMF_A240 is not limited to this as long as it is a message that rejects the request of UE_A10.
  • AMF_A240 may send the registration refusal message including the SM message indicating refusal such as the PDU session establishment refusal message, or reject the registration.
  • the inclusion of the meaning SM message may indicate that the procedure for SM has been rejected.
  • UE_A10 may further receive an SM message indicating rejection such as a PDU session establishment refusal message, or may recognize that the procedure for SM has been rejected.
  • UE_A10 may recognize that the request of UE_A10 has been rejected by receiving the registration refusal message or by not receiving the registration acceptance message.
  • Each device completes the procedure (B) during this procedure based on the transmission and reception of the registration refusal message.
  • Each device completes this procedure (registration procedure) based on the completion of procedure (A) or (B) during this procedure.
  • each device may transition to the state in which UE_A10 is registered in the network (RM_REGISTERED state) based on the completion of the procedure (A) during this procedure, or the procedure (B) during this procedure.
  • UE_A10 may remain unregistered in the network (RM_DEREGISTERED state) based on the completion of.
  • the transition of each device to each state may be performed based on the completion of this procedure, or may be performed based on the establishment of the PDU session.
  • each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure.
  • the first condition determination may be executed based on the identification information and / or the subscriber information included in the registration request message and / or the operator policy. For example, the first condition determination may be true if the network allows the request for UE_A10. Further, the first condition determination may be false if the network does not allow the request of UE_A10. Further, the first condition determination may be true if the network to which UE_A10 is registered and / or the device in the network supports the function required by UE_A10, and false if it does not support it. Good. Further, the first condition determination may be true if the network determines that it is in a congested state, and may be false if it is determined that it is not in a congested state. The condition for determining the truth of the first condition determination does not have to be limited to the above-mentioned condition.
  • the fourth condition determination may be executed based on whether or not AMF_A240 has received the SM, and may be executed based on whether or not the registration request message includes the SM message. For example, the fourth condition determination may be true if AMF_A240 receives SM and / or if the registration request message contains an SM message, if AMF_A240 does not receive SM, and / Or it may be false if the registration request message does not contain the SM message.
  • the condition for determining the truth of the fourth condition determination does not have to be limited to the above-mentioned condition.
  • the PDU session establishment procedure is also referred to as this procedure.
  • This procedure is a procedure for each device to establish a PDU session.
  • each device may execute this procedure in a state where the registration procedure is completed, or may execute this procedure in the registration procedure. Further, each device may start the main procedure in the registered state, or may start the main procedure at an arbitrary timing after the registration procedure.
  • each device may establish a PDU session based on the completion of the PDU session establishment procedure. Further, each device may establish a plurality of PDU sessions by executing this procedure a plurality of times.
  • UE_A10 starts the PDU session establishment procedure by sending a PDU session establishment request (PDU Session Establishment Request) message to the core network_B via the access network_B (S1100).
  • PDU Session Establishment Request PDU Session Establishment Request
  • UE_A10 uses the N1 interface to send a PDU session establishment request message to AMF_A240 in the core network_B190 via NR node_A122 (S1100).
  • AMF_A receives the PDU session establishment request message and executes the third condition determination.
  • the third condition determination is for determining whether or not AMF_A accepts the request of UE_A10.
  • AMF_A determines whether the fifth condition determination is true or false. If the third condition determination is true, the core network_B starts processing # 1 in the core network (S1101), and if the third condition determination is false, the procedure (B) in this procedure is performed. Start. The step when the third condition determination is false will be described later.
  • the process # 1 in the core network may be SMF selection by AMF_A in the core network_B190 and / or transmission / reception of a PDU session establishment request message between AMF_A and SMF_A.
  • Core network_B190 starts processing # 1 in the core network.
  • AMF_A240 selects SMF_A230 as the routing destination NF for the PDU session establishment request message, and uses the N11 interface to send or forward the PDU session establishment request message to the selected SMF_A230. May be good.
  • AMF_A240 may select the routing destination SMF_A230 based on the information contained in the PDU session establishment request message. More specifically, the AMF_A240 is an identification information and / or a subscriber information acquired based on the reception of a PDU session establishment request message, and / or a network capability information, and / or an operator policy, and / or a network.
  • the routing destination SMF_A230 may be selected based on the state and / or the context already held by AMF_A240.
  • the PDU session establishment request message may be a NAS message. Further, the PDU session establishment request message may be any message that requests the establishment of a PDU session, and is not limited to this.
  • UE_A10 may include the DNN associated with the 5GVN group in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message, and by including this DNN, UE_A10 may be included. May indicate the request of.
  • UE_A10 sends the DNN associated with the 5GVN group by including it in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message, so that the PDU session for the 5GVN group can be sent. It may request establishment, it may indicate the 5GVN group to which the PDU session belongs, as requested by UE_A10, or it may indicate the 5GVN group to which the PDU session will belong.
  • UE_A10 indicates whether or not to include the DNN associated with the 5GVN group in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message, the capability information of UE_A10, and / or the UE policy. Etc., and / or UE_A10 preferences, and / or may be determined based on the application (upper layer). The decision by UE_A10 whether to include the DNN associated with the 5GVN group in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message is not limited to this.
  • SMF_A230 in the core network_B190 receives the PDU session establishment request message and executes the third condition determination.
  • the third condition determination is for determining whether or not SMF_A230 accepts the request of UE_A10.
  • SMF_A230 determines whether the third condition determination is true or false.
  • SMF_A230 starts the procedure (A) in this procedure when the third condition judgment is true, and starts the procedure (B) in this procedure when the third condition judgment is false. The step when the third condition determination is false will be described later.
  • SMF_A230 selects UPF_A235 to establish the PDU session and executes the eleventh condition determination.
  • the eleventh condition determination is for determining whether or not each device executes the process # 2 in the core network.
  • process # 2 in the core network is the start and / or execution of the PDU session establishment authentication procedure by each device, and / or the session establishment request message between SMF_A and UPF_A in the core network_B190. And / or the transmission and reception of a session establishment response message, etc. (S1103).
  • SMF_A230 determines whether the eleventh condition determination is true or false. SMF_A230 starts the PDU session establishment authentication approval procedure when the eleventh condition determination is true, and omits the PDU session establishment authentication approval approval procedure when the eleventh condition determination is false. The details of the PDU session establishment authentication approval procedure for process # 2 in the core network will be described later.
  • SMF_A230 sends a session establishment request message to the selected UPF_A235 based on the completion of the eleventh condition determination and / or the PDU session establishment authentication approval procedure, and starts the procedure (A) during this procedure. To do.
  • SMF_A230 may start the procedure (B) in this procedure without starting the procedure (A) in this procedure based on the completion of the PDU session establishment authentication approval procedure.
  • the SMF_A230 is the identification information acquired based on the reception of the PDU session establishment request message, and / or the network capability information and / or the subscriber information, and / or the operator policy, and / or the network status. And / or one or more UPF_A235s may be selected based on the context already held by SMF_A230. When a plurality of UPF_A235s are selected, SMF_A230 may send a session establishment request message to each UPF_A235.
  • UPF_A235 receives the session establishment request message and creates a context for the PDU session.
  • UPF_A235 receives a session establishment request message and / or sends a session establishment response message to SMF_A230 based on creating a context for the PDU session.
  • SMF_A230 receives a session establishment response message.
  • the session establishment request message and the session establishment response message may be control messages sent and received on the N4 interface. Further, the session establishment response message may be a response message to the session establishment request message.
  • the SMF_A230 may assign an address to be assigned to the UE_A10 based on the reception of the PDU session establishment request message and / or the selection of the UPF_A235 and / or the reception of the session establishment response message. Note that SMF_A230 may assign the address assigned to UE_A10 during the PDU session establishment procedure, or may perform it after the PDU session establishment procedure is completed.
  • the address when SMF_A230 assigns an IPv4 address without using DHCPv4, the address may be assigned during the PDU session establishment procedure, or the assigned address may be transmitted to UE_A10. Furthermore, when SMF_A230 assigns an IPv4 address and / or an IPv6 address and / or an IPv6 prefix using DHCPv4 or DHCPv6 or SLAAC (Stateless Address Autoconfiguration), the address may be assigned after the PDU session establishment procedure. The assigned address may be sent to UE_A10.
  • the address allocation performed by SMF_A230 is not limited to these.
  • SMF_A230 may include the assigned address in the PDU session establishment acceptance message and send it to UE_A10 based on the completion of address assignment of the address assigned to UE_A10, or send it to UE_A10 after the PDU session establishment procedure is completed. You may.
  • SMF_A230 sends to UE_A10 via AMF_A240 based on the receipt of the PDU session establishment request message and / or the selection of UPF_A235 and / or the reception of the session establishment response message and / or the completion of address assignment of the address assigned to UE_A10.
  • SMF_A230 sends a PDU session establishment acceptance message to AMF_A240 using the N11 interface
  • AMF_A240 that receives the PDU session establishment acceptance message sends a PDU session establishment acceptance message to UE_A10 using the N1 interface. ..
  • the PDU session establishment acceptance message may include the DNN associated with the 5GVN group. Also, if UE_A10 sends a NAS message for requesting PDU session establishment without including the DNN associated with the 5GVN group in the PDU session establishment procedure, the AMF that received the NAS message will establish the establishment. For the requested PDU session, for the 5GVN group by using the DNN associated with the 5GVN group selected based on the user subscription information, network settings, network policy, etc. A PDU session may be established. Further, the DNN associated with the 5GVN group included in the PSU session establishment acceptance message may be the DNN used in the first congestion management.
  • the PDU session establishment acceptance message may be a PDN connectivity accept message. Further, the PDU session establishment acceptance message may be a NAS message sent and received on the N11 interface and the N1 interface. Further, the PDU session establishment acceptance message is not limited to this, and may be any message indicating that the establishment of the PDU session has been accepted.
  • UE_A10 receives the PDU session establishment acceptance message from SMF_A230. UE_A10 recognizes the contents of various identification information included in the PDU session establishment acceptance message by receiving the PDU session establishment acceptance message.
  • UE_A10 sends a PDU session establishment complete message to SMF_A230 via AMF_A240 based on the completion of receiving the PDU session establishment acceptance message (S1114).
  • SMF_A230 receives the PDU session establishment completion message and executes the second condition determination.
  • UE_A10 uses the N1 interface to send a PDU session establishment completion message to AMF_A240, and AMF_A240, which receives the PDU session establishment completion message, sends a PDU session establishment completion message to SMF_A230 using the N11 interface. ..
  • the PDU session establishment completion message may be a PDN connection completion (PDN Connectivity complete) message or a default EPS bearer context activation acceptance (Activate default EPS bearer context accept) message.
  • PDN connection completion PDN Connectivity complete
  • Activate default EPS bearer context accept PDN connection completion
  • the PDU session establishment completion message may be a NAS message sent and received on the N1 interface and the N11 interface.
  • the PDU session establishment completion message may be a response message to the PDU session establishment acceptance message, and is not limited to this, and may be a message indicating that the PDU session establishment procedure is completed.
  • the second condition determination is for SMF_A230 to determine the type of message sent and received on the N4 interface. If the second condition determination is true, processing # 3 in the core network may be started (S1115). Here, the process # 3 in the core network may include transmission / reception of a session modification request (Session Modification request) message and / or transmission / reception of a session modification response (Session Modification response) message. SMF_A230 sends a session change request message to UPF_A235, and further receives a session change acceptance message sent by UPF_A235 that received the session change request message. If the second condition determination is false, SMF_A230 executes process # 2 in the core network. That is, SMF_A sends a session establishment request message to UPF_A235, and further receives a session change acceptance message sent by UPF_A235 that has received the session establishment request message.
  • Session Modification request Session Modification request
  • Session Modification response Session Modification response
  • Each device is in the process of this procedure based on sending and receiving PDU session establishment completion messages, / or sending and receiving session change response messages, and / or sending and receiving session establishment response messages, and / or sending and receiving RA (Router Advertisement).
  • PDU session establishment completion messages / or sending and receiving session change response messages
  • RA Send and receiving session establishment response messages
  • RA Send and receiving RA
  • SMF_A230 sends a PDU session establishment reject message to UE_A10 via AMF_A240 (S1122), and starts the procedure (B) during this procedure.
  • SMF_A230 uses the N11 interface to send a PDU session establishment rejection message to AMF_A240, and AMF_A240, which receives the PDU session establishment request message, sends a PDU session establishment rejection message to UE_A10 using the N1 interface. ..
  • the PDU session establishment refusal message may be a PDN connection rejection (PDN connectivity reject) message. Further, the PDU session establishment refusal message may be a NAS message sent and received on the N11 interface and the N1 interface. Further, the PDU session establishment refusal message is not limited to this, and may be any message indicating that the establishment of the PDU session has been rejected.
  • PDN connectivity reject PDN connectivity reject
  • SMF_A230 may include one or more of the first identification information, the second identification information, and the fifth identification information in the PDU session establishment refusal message, and include these identification information. This may indicate that the request for UE_A10 has been rejected.
  • two or more identification information of these identification information may be configured as one or more identification information.
  • the SMF_A230 will include the first and / or second identification and / or fifth identification in the PDU session establishment refusal message to send the PDU for the 5GVN group. It may indicate that the request to establish a session has been rejected, or it may indicate a 5G VN group that is not allowed to establish a PDU session.
  • SMF_A230 may make a request combining the above-mentioned matters by transmitting a combination of two or more identification information out of the first identification information, the second identification information, and the fifth identification information. It should be noted that the matters indicated by SMF_A230 by transmitting each identification information are not limited to these.
  • SMF_A230 determines which of the first identification information, the second identification information, and the fifth identification information is included in the PDU session establishment refusal message of the received identification information and / or the network. It may be determined based on capability information and / or policies such as operator policies and / or network conditions.
  • the core network_B190 notifies the congestion management applied to UE_A10 by sending a PDU session rejection message. It should be noted that this indicates that the core network_B190 applies congestion management to UE_A10 and / or performs congestion management to UE_A10, and / or information that identifies the type of congestion management to be applied. , And / or notify the information that identifies the target of congestion management such as DNN and / or S-NSSAI corresponding to the applied congestion management, and / or the value of the timer associated with the applied congestion management. May be good.
  • each of the above-mentioned information may be information identified by one or more identification information of the first identification information, the second identification information, and the fifth identification information.
  • the PDU session establishment refusal message received by UE_A10 from SMF_A230 may include one or more identification information among the first identification information, the second identification information, and the fifth identification information.
  • UE_A10 performs the fourth process based on the reception of the PDU session establishment refusal message (S1124). In addition, UE_A10 may carry out the fourth process based on the completion of this procedure.
  • the fourth process may be a process in which UE_A10 recognizes the matter indicated by SMF_A230. Further, the fourth process may be a process in which UE_A10 stores the received identification information as a context, or may be a process of transferring the received identification information to the upper layer and / or the lower layer. .. Further, the fourth process may be a process in which UE_A10 recognizes that the request for this procedure has been rejected.
  • UE_A10 when UE_A10 receives the first identification information, the second identification information, and the fifth identification information, in the fourth process, UE_A10 sets the value indicated by the fifth identification information as the backoff timer value. It may be a process of starting a back-off timer in which a timer value based on the fifth identification information is set.
  • the fourth process may be a process in which UE_A10 starts this procedure again after a certain period of time, or a process in which the request of UE_A10 transitions to a limited or restricted state.
  • UE_A10 may transition to the first state when the fourth process is completed.
  • the fourth process may be a process in which UE_A10 recognizes the matter indicated by SMF_A230. Further, the fourth process may be a process in which UE_A10 stores the received identification information as a context, or may be a process of transferring the received identification information to the upper layer and / or the lower layer. ..
  • a process for identifying that congestion management is applied is executed based on one or more of the first identification information, the second identification information, and the fifth identification information. You may.
  • the fifth identification information associated with the applied congestion management is based on one or more of the first identification information, the second identification information, and the fifth identification information.
  • the value to be set in the back-off timer indicated by may be identified and set, and the count of the back-off timer may be started. More specifically, this process may be the process described in the third behavior.
  • one or more of the third to seventh actions may be executed with the start or completion of any of the above-mentioned processes.
  • one or more of the ninth to fifteenth actions may be executed with the start or completion of any of the above-mentioned processes.
  • UE_A10 may transition to the first state when the fourth process is completed.
  • the fourth process is a process in which a part of the plurality of detailed processes described in the first example and a part of the plurality of detailed processes described in the second example are combined. May be good.
  • UE_A10 may recognize that the request of UE_A10 has been rejected by receiving the PDU session establishment refusal message or by not receiving the PDU session establishment acceptance message.
  • Each device completes the procedure (B) during this procedure based on the transmission / reception of the PDU session establishment refusal message.
  • Each device completes this procedure based on the completion of procedure (A) or (B) during this procedure.
  • each device may transition to the state where the PDU session is established based on the completion of the procedure (A) during this procedure, or based on the completion of the procedure (B) during this procedure. , You may recognize that this procedure has been rejected, you may transition to a state where the PDU session has not been established, or you may transition to the first state.
  • each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure.
  • UE_A10 may carry out the fourth process based on the completion of this procedure, or may transition to the first state after the completion of the fourth process.
  • the third condition determination may be executed based on the identification information and / or the subscriber information included in the PDU session establishment request message and / or the operator policy. For example, the third condition determination may be true if the network allows the request for UE_A10. Further, the third condition determination may be false if the network does not allow the request of UE_A10. Furthermore, the third condition determination may be true if the network to which UE_A10 is connected and / or the devices in the network support the functions required by UE_A10, and false if they do not. Good. Further, the third condition determination may be true if the network determines that it is in a congested state, and may be false if it is determined that it is not in a congested state. The condition for determining the truth of the third condition determination is not limited to the above-mentioned condition.
  • the second condition determination may be executed based on whether or not a session on the N4 interface for the PDU session has been established. For example, the second condition determination may be true if the session on the N4 interface for the PDU session is established and false if it is not.
  • the condition for determining the truth of the second condition determination does not have to be limited to the above-mentioned condition.
  • the core network_B190 By sending and receiving the PDU session rejection message in the above procedure, the core network_B190 notifies the congestion management to be applied to the UE_A10, and the UE_A10 can apply the congestion management instructed by the core network_B190.
  • the core networks B190 and UE_A10 may apply a plurality of congestion managements by executing the procedures and processes described in this procedure a plurality of times. Note that each applicable congestion management is a different congestion management type and / or congestion management corresponding to a different DNN, and / or a congestion management corresponding to a different S-NNSAI, and / or a combination of DNN and S-NSSAI. Congestion management may be different.
  • This procedure is a procedure for session management that is executed by the network for the established PDU session. This procedure may be executed at any time after the above-mentioned registration procedure and / or PDU session establishment procedure is completed and each device transitions to the first state. In addition, each device may send and receive a message containing identification information for stopping or changing congestion management during this procedure, or based on new congestion management instructed by the network based on the completion of this procedure. You may start the behavior.
  • UE_A10 may stop applying congestion management identified based on the control information sent and received by this procedure.
  • the core network_B190 stops applying congestion management that can be identified using these control information by leading this procedure and also by sending control messages and control information for this procedure to UE_A10. You can notify UE_A10 to do so.
  • This procedure may be a UE-led or network-led PDU session modification (PDU session modification) procedure, and / or a network-led PDU session release (PDU session release) procedure, or the like.
  • Network-led session management procedures may be performed.
  • Each device may send and receive a PDU session change message in the network-led PDU session change procedure, and may send and receive a PDU session release message in the network-led PDU session release procedure.
  • each device in UE_A10 and core network_B190 that has transitioned to the first state (S1200) based on the completion of the registration procedure and / or the PDU session establishment procedure is network-driven session management at any time.
  • the device in the core network_B190 that initiates this procedure may be SMF_A and / or AMF_A, and UE_A may send and receive messages in this procedure via AMF_A and / or access network_B. ..
  • the device in the core network_B190 sends a network-driven session management request message to UE_A (S1202).
  • the devices in the core network_B190 include the 11th identification information, the 12th identification information, the 15th identification information, the 21st identification information, the 22nd identification information, and the 22nd identification information in the network-driven session management request message.
  • One or more of the 25 identification information may be included, and by including this identification information, the request of the core network_B190 may be indicated.
  • UE_A which receives the network-led session management request message, sends a network-led session management completion message (S1204). Furthermore, UE_A is one of the 11th identification information, the 12th identification information, the 15th identification information, the 21st identification information, the 22nd identification information, and the 25th identification information received from the core network_B190. Based on the above identification information, the fifth process may be executed (S1206) to complete this procedure.
  • the 11th identification information, the 12th identification information, and the 15th identification information may be included in the PDU session change command (PDU SESSION MODIFICATION COMMAND), or the 21st identification information, the 22nd identification information.
  • the identification information and the 25th identification information may be included in the PDU session release command (PDU SESSION RELEASE COMMAND). Further, for example, when this procedure is led by the UE, the 11th identification information, the 12th identification information, and the 15th identification information are transmitted by the NW and received by the UE to reject the PDU session change (PDU SESSION). It may be included in the MODIFICATION REJECT) message. In addition, UE_A10 may carry out the fifth process based on the completion of this procedure.
  • the fifth processing example will be described below.
  • the fifth process may be a process in which UE_A10 recognizes the matter indicated by the core network_B190, or may be a process in which the request of the core network_B190 is recognized. Further, the fifth process may be a process in which UE_A10 stores the received identification information as a context, or may be a process of transferring the received identification information to the upper layer and / or the lower layer. ..
  • the message sent and received in the network-led session management procedure may be a PDU session change command message or a PDU session release command message, and is not limited thereto. Further, the message sent and received in the UE-led session management procedure may be a PDU session change refusal message.
  • UE_A10 may perform the congestion management identification process applied by UE_A10 based on the received identification information in the fifth process.
  • the congestion management identification process may be the 17th behavior.
  • the 5th process may be the 16th behavior. Specifically, for example, it may be a process of stopping one or a plurality of timers executed based on the above-mentioned fourth process.
  • the UE_A10 that received the 21st identification information identifies the congestion management that makes the stop or change instructed by the network by executing the 17th action, and then executes the 16th action. By doing so, the identified congestion management is stopped or changed.
  • each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure.
  • UE_A10 may carry out the fifth process based on the completion of this procedure, or may complete this procedure after the completion of the fifth process.
  • the core network_B190 can instruct UE_A10 to stop or change the congestion management that UE_A10 has already applied by sending and receiving a network-led session management request message.
  • UE_A10 can suspend or change the congestion management applied by UE_A10 based on the network-driven session management request message.
  • the congestion management that implements the stop or change is identified based on the reception of the identification information contained in the network-driven session management request message from the core network_B190. You may.
  • each applicable congestion management is a different congestion management type and / or congestion management corresponding to a different DNN, and / or a congestion management corresponding to a different S-NNSAI, and / or a combination of DNN and S-NSSAI. Congestion management may be different.
  • the procedure explained in the first network-driven session management procedure example explained in Chapter 1.3.3.1 may be a procedure executed according to congestion management.
  • congestion management For example, among one or more congestion managements applied by UE_A10, it is a procedure executed for congestion management classified into the first congestion management, the third congestion management, and the fourth congestion management. Good.
  • UE_A10 may stop the first congestion management, the third congestion management, and the congestion management corresponding to the fourth congestion management by the fifth process.
  • UE_10 receives a network-driven session management request message for the second congestion management while executing the count of the backoff timer associated with the second congestion management, the UE_A10 will be the second. It is also possible to respond to the core network_B190 without stopping the backoff timer associated with congestion management.
  • UE_A10 received a network-driven session management request message for the congested S-NSSAI # A and any DNN while the backoff timer count associated with S-NSSAI # A was running. In some cases, UE_A10 may respond to core network_B190 without stopping the backoff timer associated with S-NSSAI # A.
  • UE_A10 in receiving the network-driven session management request message, UE_A10 sends the response message to the network-driven session management request message to the core network_B190, but congestion management. May continue. Therefore, the transmission of UE-led session management request messages regulated by the second congestion management may continue to be suppressed.
  • the network-driven session management request message in the present embodiment may be a PDU session change command (PDU SESSION MODIFICATION COMMAND) message in the network-driven PDU session change (PDU session modification) procedure. It may be a PDU session release command (PDU SESSION RELEASE COMMAND) message in a network-driven PDU session release procedure.
  • PDU SESSION MODIFICATION COMMAND PDU session change command
  • PDU session modification PDU session modification
  • PDU session release command PDU SESSION RELEASE COMMAND
  • the network-led session management completion message that responds to the PDU session change command message in the present embodiment may be a PDU session change completion message (PDU SESSION MODIFICATION COMPLETE), and the PDU in the present embodiment.
  • the network-driven session management completion message that responds to the session release command message may be a PDU session release completion message (PDU SESSION RELEASE COMPLETE).
  • UE_A10 and core network_B190 perform more detailed processing described below in addition to the processing described above. May be set to.
  • the process may be executed as follows.
  • the information indicating the reactivation request (Reactivation Required) is the information indicating that the activation is requested, and a specific example is the 5G session management reason value # 39 (5GSM Cause # 39). Good.
  • UE_A10 When UE_A10 receives a network-driven session management request message containing information indicating a reactivation request, it re-leads the UE-led PDU session establishment procedure immediately after completing the network-driven session management procedure. Instead, wait for congestion management to be released and re-lead the UE-led PDU session establishment procedure.
  • this UE-driven PDU session establishment procedure is UE-driven for the PDU session type, SSC mode, DNN and S-NSSAI provided in the UE-driven PDU establishment procedure when establishing a modified or released PDU session.
  • PDU session establishment procedure may be used.
  • waiting for the release of congestion management may be executed after the timer associated with the first congestion management has expired (Expire). In other words, it may be executed after the count of the timer associated with the first congestion management is completed and / or after the timer value associated with the first congestion management becomes zero.
  • UE_A10 may include the following supplementary information in the network-led session management completion message.
  • Supplementary information may be information indicating that the timer is waiting to expire and / or information indicating the remaining timer value.
  • the timer may be a timer associated with the first congestion management. Further, waiting for the expiration of the timer may be executed after the timer has expired (Expire). In other words, it may be executed after the count of the timer associated with the first congestion management is completed and / or after the timer value associated with the first congestion management becomes zero.
  • the core network B_190 may receive a network-led session management completion message containing supplementary information and recognize the value of the remaining timer. Furthermore, it may be recognized that the UE-led PDU session establishment procedure will be led after the time indicated by the remaining timer has elapsed.
  • the remaining timer recognized by the core network_B190 may be a value indicated by the received supplementary information, or is an offset between the transmission time of UE_A10 and the reception time of the core network_B190 of the network-led session management completion message. May be a value in consideration of the value indicated by the received supplementary information.
  • UE_A10 in receiving the network-driven session management request message, UE_A10 sends the response message to the network-driven session management request message to the core network_B190. , Congestion management may be continued. Therefore, while the transmission of UE-led session management request messages regulated by the first congestion management continues to be suppressed, UE_A10 and / or core network_B190 goes through the UE-led PDU session establishment procedure. It may be set to be acceptable as long as it leads again.
  • UE_A10 if UE_A10 receives a network-driven session management request message that contains information indicating a reactivation request, the UE_A10 will have a UE-led PDU session after the network-driven network-driven session management procedure is complete. Lead the establishment procedure again.
  • this UE-driven PDU session establishment procedure is UE-driven for the PDU session type, SSC mode, DNN and S-NSSAI provided in the UE-driven PDU establishment procedure when establishing a modified or released PDU session. PDU session establishment procedure may be used.
  • UE_A10 and core network B190 may execute and complete the procedures allowed as an exception to this exception, but UE_A10 is suppressed by the first congestion management.
  • Other UE-led session management procedures may be deterred.
  • UE_A10 when receiving the network-driven session management request message, UE_A10 sends the response message to the network-driven session management request message to the core network_B190. In addition, UE_A10 may suspend the application of the first congestion management when it receives a network-driven session management request message containing information indicating a reactivation request (Reactivation Required).
  • UE_A10 may continue congestion management if the network-driven session management request message does not contain information indicating a reactivation request (Reactivation Required). In this case, the transmission of the UE-led session management request message regulated by the first congestion management may continue to be suppressed.
  • this UE-driven PDU session establishment procedure is UE-driven for the PDU session type, SSC mode, DNN and S-NSSAI provided in the UE-driven PDU establishment procedure when establishing a modified or released PDU session.
  • PDU session establishment procedure may be used.
  • the information indicating the reactivation request is transmitted by the core network_B190 as shown below. It may be set not to be done.
  • the core network_B190 should include information indicating a reactivation request (Reactivation Required) when sending a network-driven session management request message to UE_A10 to which congestion management is applied. It may be set to suppress.
  • the core network_B190 suppresses the inclusion of information indicating a reactivation request (Reactivation Required) when sending a network-driven session management request message to UE_A10 to which the first congestion management is applied. May be set to.
  • core network_B190 The processing and procedures of UE_A10 and core network B190 have been explained above. More specifically, the processing of core network_B190 described in this chapter is the device in core network_B190, SMF_A230 and /. Alternatively, it may be a process executed by a control device such as AMF_A240. Therefore, when the core network B190 sends and receives control messages, it may mean that control devices such as SMF_A230 and / or AMF_A240, which are devices in the core network_B190, send and receive control messages.
  • control devices such as SMF_A230 and / or AMF_A240, which are devices in the core network_B190, send and receive control messages.
  • the backoff timer associated with the congestion management is stopped. Processing may be included, and continuing the application to congestion management, or continuing congestion management may include continuing counting of the backoff timer associated with congestion management.
  • the network-driven session management request message and / or the network-led session management procedure Has explained that UE_A10 is for congested S-NSSAI # A and any DNN.
  • this congested S-NSSAI # A and any DNN are associated with the network-driven session management request messages in this chapter and / or the PDU session targeted by the network-driven session management procedure. It can be NSSAI # A and any DNN.
  • UE_A10 and core network_B190 may execute the anchor relocation procedure of SSC mode 2 including the procedure of this chapter, and switch to the anchor of the PDU session or the PDU session with a different anchor to continue the communication.
  • the anchor relocation procedure in SSC mode 2 is a procedure initiated by the core network_B190, and the procedure associated with the transmission of the PDU session release command executed within this procedure is one of the procedures described in this chapter. It may be.
  • UE_A10 and core network_B190 may execute the anchor relocation procedure of SSC mode 3 including the procedure of this chapter, and switch to the anchor of the PDU session or the PDU session with a different anchor to continue the communication.
  • the anchor relocation procedure in SSC mode 3 is a procedure initiated by the core network_B190, and the procedure associated with the transmission of the PDU session change command executed within this procedure is one of the procedures described in this chapter. It may be.
  • the processing when UE_A10 changes PLMN will be described especially in the state where the first congestion management is applied.
  • the first congestion management and the processing regulated when the first congestion management is applied may be as described above.
  • the first congestion management may be DNN-based congestion management.
  • the NW receives a UE-led session management request using DNN # A from UE_A10 and the NW detects congestion for a specific DNN, for example, DNN # A.
  • It may be congestion management applied by NW to UE_A10 based on the message rejecting the UE-led session management request.
  • UE_A10 starts counting the backoff timer corresponding to the first congestion management received from the NW, and DNN # A until the backoff timer expires. It may be set not to send UE-led session management requests using.
  • DNN may mean including DNN information in a UE-led session management request such as a PDU session establishment request message.
  • DNN # A may be a DNN associated with a 5GVN group.
  • the transmission of the UE-led session management request using DNN # A is a backoff timer corresponding to the first congestion management. May be allowed regardless of whether or not the count is done. Also, if the destination PLMN is not a uniform PLMN and the DNN is DNN # A, sending a UE-led session management request using DNN # A is a backoff timer that corresponds to the first congestion management. It may be configured not to send UE-led session management requests using DNN # A until it expires.
  • sending a UE-led session management request using DNN # A is a backoff timer that corresponds to the first congestion management. It may be configured not to send UE-led session management requests using DNN # A until it expires.
  • first congestion management is referred to as "first congestion management for a specific DNN”.
  • the NW may select the default DNN led by the NW and set it as the congestion management target even if the UE-led session management request does not include the DNN information.
  • the first congestion management is UE-driven session management when the NW receives a UE-driven session management request without DNN information from UE_A10 and the NW detects congestion for the default DNN. It may be the congestion management that the NW applies to UE_A10 based on the message rejecting the request.
  • UE_A10 starts counting the backoff timer corresponding to the first congestion management received from the NW, and uses the DNN until the backoff timer expires. It may be configured not to send UE-led session management requests.
  • DNN may mean that DNN information is not included in the UE-led session management request such as the PDU session establishment request message.
  • the first congestion management for the default DNN is distinguished from the first congestion management for a specific DNN because it is applied based on the UE-led session management request that does not use the DNN information. Therefore, it is expressed as "congestion management for No DNN".
  • a UE-led session management request such as a PDU session establishment request message that does not use DNN is expressed as a UE-led session management request that uses No DNN.
  • the PDU session establishment request message using No DNN is a PDU session establishment request message not using DNN.
  • the first congestion management for a particular DNN may be applied in different PLMNs.
  • the backoff timer for the first congestion management is PLMN (registered PLMN) in which the UE is registered and equal PLMN (equivalent). PLMN) may be associated and applied.
  • the first congestion management backoff timer is associated with and applied to all PLMNs.
  • the UE is not limited to the registered PLMN (registered PLMN) or the equal PLMN (equivalent PLMN).
  • the processing associated with the above-mentioned PLMN change whether the same processing or different processing is performed regardless of whether the first congestion management is for a specific DNN or No DNN is determined in advance in UE_A10. It may be set based on the set information, but it may be determined by whether or not the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change. For example, if the second PLMN after the change is not an equal PLMN with respect to the first PLMN before the change, the same processing may be applied. Further, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, different processing may be executed.
  • UE_A10 may determine its behavior based on more detailed conditions as well as whether or not it is an equal PLMN. For example, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change and the registration area is not changed in the PLMN change, and when the second PLMN after the change is changed. UE_A10 may be set to perform different behaviors depending on whether it is an equal PLMN to the previous first PLMN and the PLMN change involves a change in the registration area.
  • the behavior of UE_A10 executed in each case may be one of the behaviors at the time of PLMN change described so far.
  • UE_A10 may stop the backoff timer associated with the first congestion management for a particular DNN and / or NoDNN in these PLMN changes. Thereby, UE_A10 may be set so that UE_A10 can send a PDU session establishment request message using a specific DNN and / or a PDU session establishment request message not using a specific DNN in the new PLMN. Further, based on this setting, UE_10 may send a PDU session establishment request message using a specific DNN and / or a PDU session establishment request message not using a specific DNN.
  • whether the same processing or different processing is performed regardless of whether the first congestion management is for a specific DNN or No DNN may be set based on the information set in UE_A10 in advance. However, as mentioned above, it may be determined by whether or not the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, but regardless of the first congestion management, the second It may be set to execute different processing also for the fourth congestion management. For example, if the second PLMN after the change is not an equal PLMN with respect to the first PLMN before the change, the same processing may be applied. Further, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, different processing may be executed.
  • UE_A10 may determine its behavior based on more detailed conditions as well as whether or not it is an equal PLMN. For example, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change and the registration area is not changed in the PLMN change, and when the second PLMN after the change is changed. UE_A10 may be set to perform different behaviors depending on whether it is an equal PLMN to the previous first PLMN and the PLMN change involves a change in the registration area.
  • the behavior of UE_A10 executed in each case may be one of the behaviors at the time of PLMN change described so far.
  • the processing of UE_A10 and NW due to the change of PLMN described so far has been described for the backoff timer for the first congestion management, but the second congestion management, the third congestion management, and the fourth congestion management have been described. Similar processing may be performed for management.
  • the PDU session establishment request message whose transmission is restricted or permitted may be a message according to each type.
  • the backoff timer associated with congestion management and / or congestion management may be associated with PLMN regardless of the type of congestion management.
  • the backoff timer associated with arbitrary congestion management and / or congestion management may be set to be associated with PLMN. Therefore, for the first congestion management, the second congestion management, and the third congestion management, the backoff timer associated with the congestion management and / or the congestion management is set to be associated with the PLMN. Good.
  • the backoff timer associated with the congestion management and / or the congestion management can be associated with the PLMN. The first congestion management that is set and for a particular DNN need not be associated with the PLMN.
  • the processing when each congestion management is made compatible with PLMN and / or the processing related to the backoff timer corresponding to each congestion management is the above-mentioned first congestion management associated with PLMN.
  • the first congestion management in the description of the processing and / or the processing related to the backoff timer corresponding to the first congestion management associated with the PLMN described above is the congestion management of each of the second to fourth types. It may be replaced with.
  • the processing when each congestion management is not compatible with PLMN and / or the processing related to the backoff timer corresponding to each congestion management is the first processing not associated with PLMN as described above.
  • the PDU session establishment request message whose transmission is restricted or permitted may be a message according to each type.
  • the behavior at the time of PLMN change when executing the count of the backoff timer associated with the second congestion management and / or the third congestion management is executed as follows in addition to the above-mentioned processing. You may.
  • the backoff timer associated with the first congestion management may be a backoff timer for DNN-based congestion management, as described above.
  • the DNN-based backoff timer may be a timer that is associated with a specific DNN and prohibits the transmission of SM request messages using that specific DNN.
  • UE_A10 may be configured not to send SM request messages with that particular DNN while this timer is counting.
  • the DNN may be a DNN associated with the 5GVN group.
  • UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the SM request message that was prohibited by PLMN before the change is allowed to be sent, the SM request message using the same S-NSSAI as the S-NSSAI associated with the backoff timer will be sent. It may mean that it is acceptable.
  • the slice-based backoff timer may be a timer associated with noS-NSSAI and prohibiting the transmission of SM request messages using noS-NSSAI.
  • UE_A10 may be set not to send SM request messages using noSNSSAI during the counting of this timer.
  • UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. ..
  • it when it is expressed that the transmission of the SM request message prohibited by PLMN before the change is permitted, it may mean that the transmission of the SM request message using no S-NSSAI is permitted.
  • the back-off timer associated with the third congestion management may be a back-off timer for congestion management for the combination of S-NSSAI and DNN, as described above.
  • a backoff timer for congestion management for a combination of S-NSSAI and DNN is associated with a specific S-NSSA and specific DNN combination, and the specific S-NSSAI and specific DNN are assigned. It may be a timer for prohibiting the transmission of the SM request message used.
  • UE_A10 may be configured not to send SM request messages with that particular S-NSSAI and a particular DNN while this timer is counting.
  • UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. ..
  • the transmission of SM request messages prohibited by PLMN before the change is allowed, it is associated with the same S-NSSAI as the S-NSSAI associated with the backoff timer and the backoff timer. It may mean that the transmission of the SM request message using the same DNN as the DNN is allowed.
  • the backoff timer for congestion management for the combination of S-NSSAI and DNN is associated with the combination of noS-NSSA and a specific DNN, and sends an SM request message using noSNSSAI and a specific DNN. It may be a timer for prohibiting.
  • UE_A10 may be set not to send SM request messages including no S-NSSAI and a specific DNN during the counting of this timer.
  • UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the transmission of the SM request message prohibited by the PLMN before the change is permitted, the SM request message using no S-NSSAI and the same DNN as the DNN associated with the backoff timer. May mean that the transmission of is allowed.
  • the backoff timer for congestion management for the combination of S-NSSAI and DNN is associated with the combination of specific S-NSSA and noDNN, and the SM request message using the specific S-NSSAI and noDNN It may be a timer for prohibiting transmission.
  • UE_A10 may be set not to send SM request messages using a particular S-NSSAI and noDNN during this timer count.
  • UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the transmission of SM request messages prohibited by PLMN before the change is allowed, SM using the same S-NSSAI as S-NSSAI associated with the backoff timer and no DNN It may mean that the request message is allowed to be sent.
  • the back-off timer for congestion management for the combination of S-NSSAI and DNN is associated with the combination of no S-NSSAI and no DNN, and the SM request message is transmitted using no S-NSSAI and no DNN. It may be a timer for prohibiting.
  • UE_A10 may be set not to send SM request messages using noS-NSSAI and noDNN during the counting of this timer.
  • UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. ..
  • it is expressed that the transmission of SM request message prohibited by PLMN before the change is permitted it means that the transmission of SM request message using no S-NSSAI and no DNN is permitted. You may.
  • the SM request message when it is expressed that the SM request message is transmitted using no S-NSSAI, the SM request message may be transmitted without including the specific S-NSSAI. Since the network that received such an SM request message does not include S-NSSAI, it may be recognized as a request for the default S-NSSAI and / or the default network slice. Therefore, no S-NSSAI may be information indicating that the SM request message does not include S-NSSAI and / or information indicating that a default network slice is requested.
  • the SM request message when it is expressed that the SM request message is transmitted using no DNN, the SM request message may be transmitted without including the specific DNN.
  • the network that receives such an SM request message may be recognized as a request for the default DNN because it does not contain a DNN. Therefore, no DNN may be information indicating that the SM request message does not include S-NSSAI and / or information indicating that a default DNN is requested.
  • UE_A10 counts if the backoff timer is being counted in the PLMN before the change and the backoff timer is being counted in the destination PLMN as well.
  • the regulation of sending the SM request message described in each example may be continued.
  • UE_A10 may be set to prohibit the transmission of the SM request message described in each example according to the counting backoff timer.
  • the SM request message described in each example will be sent according to the backoff timer being counted in the destination PLMN. May be set to allow transmission of.
  • UE_A10 may be set to allow the transmission of the SM request message described in each example according to the counting backoff timer.
  • UE_A10 is allowed to send the SM request message described in each example, which was prohibited by the PLMN before the change, depending on the backoff timer being counted. It may be set to.
  • AMF or SMF may transmit to UE_A10, and when it is expressed that UE_A10 transmits to NW, UE_A10 expresses that it transmits to AMF. Alternatively, it may be transmitted to the SMF. Furthermore, when NW expresses that it receives from UE_A10, AMF or SMF may receive from UE_A10, and when UE_A10 expresses that it receives from NW, UE_A10 may receive from AMF or SMF. It may be there.
  • the program that operates in the apparatus according to the present invention may be a program that controls the Central Processing Unit (CPU) or the like to operate the computer so as to realize the functions of the embodiments according to the present invention.
  • the program or the information handled by the program is temporarily stored in a volatile memory such as Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the program for realizing the function of the embodiment according to the present invention may be recorded on a computer-readable recording medium. It may be realized by loading the program recorded on this recording medium into a computer system and executing it.
  • the term "computer system” as used herein is a computer system built into a device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another recording medium that can be read by a computer. Is also good.
  • each functional block or various features of the device used in the above-described embodiment can be implemented or executed in an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof may be included.
  • the general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit.
  • one or more aspects of the present invention can also use a new integrated circuit according to the technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device or a kitchen device. , Cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other terminal devices or communication devices such as living equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In one embodiment of the present invention, if an established PDU session was a PDU session for a 5G VN group, if a PLMN change was carried out during start-up of a back-off timer received together with a 5G congestion management cause value and if the PLMN prior to the change was a home PLMN, the communication control method determines in the destination whether or not to permit transmission of an SM request message of a UE on the basis of whether or not there is an information element notified from the network; by making this determination, the method determines whether or not congestion management will also be continued in the destination PLMN if the established PDU session was a PDU session for a 5G VN group, if the PLMN change was carried out during application of congestion management and if the PLMN prior to the change was a home PLMN.

Description

UE、及び通信制御方法UE and communication control method
 本出願は、UE、及び通信制御方法に関する。本出願は、2019年8月9日に出願された日本国特許出願である特願2019-147405号に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本願に含まれる。 This application relates to UE and communication control method. This application claims the benefit of priority to Japanese Patent Application No. 2019-147405, which is a Japanese patent application filed on August 9, 2019, and by referring to it, the content of the application is claimed. All are included in this application.
 近年の移動通信システムの標準化活動を行う3GPP(3rd Generation Partnership Project)は、LTE(Long Term Evolution)のシステムアーキテクチャであるSAE(System Architecture Evolution)の検討を行っている。3GPPは、オールIP(Internet Protocol)化を実現する通信システムとしてEPS(Evolved Packet System)の仕様化を行っている。尚、EPSを構成するコアネットワークはEPC(Evolved Packet Core)と呼ばれる。 3GPP (3rd Generation Partnership Project), which is engaged in standardization activities for mobile communication systems in recent years, is studying SAE (System Architecture Evolution), which is the system architecture of LTE (Long Term Evolution). 3GPP is specifying EPS (Evolved Packet System) as a communication system that realizes all IP (Internet Protocol). The core network that makes up EPS is called EPC (Evolved Packet Core).
 また、近年3GPPでは、次世代移動通信システムである5G(5th Generation)移動通信システムの次世代通信技術やシステムアーキテクチャの検討も行っており、特に、5G移動通信システムを実現するシステムとして、5GS(5G System)の仕様化を行っている(非特許文献1及び非特許文献2参照)。5GSでは、多種多様な端末をセルラーネットワークに接続する為の技術課題を抽出し、解決策を仕様化している。 In recent years, 3GPP has also been studying the next-generation communication technology and system architecture of 5G (5th Generation) mobile communication systems, which are next-generation mobile communication systems. In particular, 5GS (5GS) is a system that realizes 5G mobile communication systems. 5G System) is being specified (see Non-Patent Document 1 and Non-Patent Document 2). 5GS extracts technical issues for connecting a wide variety of terminals to cellular networks and specifies solutions.
 例えば、5G移動通信システム上に構成された、仮想ネットワーク(Virtual Network; VN)において、複数の端末(User Equipment; UE)により構成されたグループである、5G VNグループにおけるプライベート通信を実現する、LANタイプサービス(5G LAN-type Service)をサポートする為の通信手続きの最適化及び多様化や、通信手続きの最適化及び多様化に合わせたシステムアーキテクチャの最適化等も要求条件として挙げられている。 For example, in a virtual network (Virtual Network; VN) configured on a 5G mobile communication system, a LAN that realizes private communication in a 5G VN group, which is a group composed of a plurality of terminals (User Equipment; UE). The requirements include optimization and diversification of communication procedures to support type services (5G LAN-type Service), and optimization of system architecture in line with optimization and diversification of communication procedures.
 5GSでは、輻輳管理に相当する機能を提供する仕組みに加えて、さらに、輻輳管理以外の理由に基づく制御信号管理について検討が行われている(非特許文献1及び非特許文献2及び非特許文献3参照)。 In 5GS, in addition to the mechanism that provides the function equivalent to congestion management, control signal management based on reasons other than congestion management is being studied (Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document). 3).
 しかし、輻輳管理が適用されている状態において、5G VNグループのためのPDUセッションを確立したUEがPLMNの変更を行った場合、且つ変更前のPLMNがホームPLMNの場合に、移動先のPLMNにおいても輻輳管理が継続されるか否かが明確になっていない。 However, when congestion management is applied, the UE that established the PDU session for the 5GVN group changes the PLMN, and the PLMN before the change is the home PLMN, the destination PLMN However, it is not clear whether congestion management will be continued.
 本発明は、このような事情を鑑みてなされたものであり、その目的は、5G VNグループのためのPDUセッション確立時に、システム変更時の輻輳管理の理由に基づく制御信号管理処理を実現するための仕組みや通信制御方法を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to realize a control signal management process based on the reason for congestion management at the time of system change when establishing a PDU session for a 5GVN group. It is to provide the mechanism and communication control method of.
 本発明のUE(User Equipment;端末装置)は、制御部と送受信部を備え、前記制御部は、DNN(Data Network Name) に対応付けられたバックオフタイマーを開始し、前記DNNが5G VN(Virtual Network) グループに対応づけられたDNNの場合、前記バックオフタイマーは、第1のPLMN(Public Land Mobile Network) と第2のPLMNに適用され、前記第1のPLMNは、前記UEが登録されたPLMNであり、前記第2のPLMNは、均等PLMNである、ことを特徴とする。 The UE (User Equipment; terminal device) of the present invention includes a control unit and a transmission / reception unit, and the control unit starts a backoff timer associated with a DNN (Data Network Name), and the DNN is 5GVN (5GVN). In the case of a DNN associated with a Virtual Network) group, the backoff timer is applied to the first PLMN (Public Land Mobile Network) and the second PLMN, and the UE is registered in the first PLMN. The second PLMN is an equal PLMN.
 本発明のUE(User Equipment;端末装置)の通信制御方法は、DNN(Data Network Name) に対応付けられたバックオフタイマーを開始するステップを備え、前記DNNが5G VN(Virtual Network) グループに対応づけられたDNNの場合、前記バックオフタイマーは、第1のPLMN(Public Land Mobile Network) と第2のPLMNに適用され、前記第1のPLMNは、前記UEが登録されたPLMNであり、前記第2のPLMNは、均等PLMNである、ことを特徴とする。 The UE (User Equipment; terminal device) communication control method of the present invention includes a step of starting a backoff timer associated with a DNN (Data Network Name), and the DNN corresponds to a 5G VN (Virtual Network) group. In the case of the attached DNN, the backoff timer is applied to the first PLMN (Public Land Mobile Network) and the second PLMN, and the first PLMN is the PLMN in which the UE is registered, and the said The second PLMN is characterized in that it is an equal PLMN.
 本発明の一態様によれば、5GSを構成する端末装置や、コアネットワーク内の装置は、異なるシステムに対して、端末装置主導ネットワークスライス及び/又はDNN毎に、輻輳管理等の管理処理を実施する、ことを特徴とする。 According to one aspect of the present invention, the terminal device constituting 5GS and the device in the core network perform management processing such as congestion management for each terminal device-driven network slice and / or DNN for different systems. It is characterized by doing.
移動通信システムの概略を示す図である。It is a figure which shows the outline of the mobile communication system. 移動通信システム内のアクセスネットワークの構成等の1例を示す図である。It is a figure which shows an example of the configuration of an access network in a mobile communication system. 移動通信システム内のコアネットワーク_Aの構成等の1例を示す図である。It is a figure which shows an example such as the configuration of the core network_A in a mobile communication system. 移動通信システム内のコアネットワーク_Bの構成等の1例を示す図である。It is a figure which shows an example of the configuration of the core network_B in the mobile communication system. UEの装置構成を示す図である。It is a figure which shows the device configuration of UE. eNB/NR nodeの装置構成を示す図である。It is a figure which shows the apparatus configuration of an eNB / NR node. MME/AMFの装置構成を示す図である。It is a figure which shows the apparatus configuration of MME / AMF. SMF/PGW/UPFの装置構成を示す図である。It is a figure which shows the apparatus configuration of SMF / PGW / UPF. 初期手続きを示す図である。It is a figure which shows the initial procedure. 登録手続きを示す図である。It is a figure which shows the registration procedure. PDUセッション確立手続きを示す図である。It is a figure which shows the PDU session establishment procedure. ネットワーク主導のセッションマネジメント手続きを示す図である。It is a figure which shows the session management procedure led by a network.
 以下、図面を参照して本発明を実施する為に最良の形態について説明する。尚、本実施形態では1例として、本発明を適用した場合の移動通信システムの実施形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. In this embodiment, as an example, an embodiment of a mobile communication system to which the present invention is applied will be described.
 [1.システム概要]
 本実施形態における移動通信システムの概略について、図1、図2、図3、図4を用いて説明する。図2は、図1の移動通信システムのうち、アクセスネットワークの詳細を記載した図である。図3は、図1の移動通信システムのうち、主にコアネットワーク_A90の詳細を記載した図である。図4は、図1の移動通信システムのうち、主にコアネットワーク_B190の詳細を記載した図である。図1に示すように、本実施形態における移動通信システム1は、端末装置(ユーザ装置、移動端末装置とも称する)UE(User Equipment)_A10、アクセスネットワーク(AN; Access Network)_A、アクセスネットワーク_B、コアネットワーク(CN; Core Network)_A90、コアネットワーク_B190、パケットデータネットワーク(PDN; Packet Data Network)_A6、及びデータネットワーク(DN; Data Network)_A5により構成されている。尚、アクセスネットワーク_Aとコアネットワーク_A90の組み合わせをEPS(Evolved Packet System;4G移動通信システム)と称してもよいし、アクセスネットワーク_Bとコアネットワーク_B190とUE_A10の組み合わせを5GS(5G System;5G移動通信システム)と称してもよいし、5GSとEPSの構成はこれらに限らなくてもよい。尚、簡単化のため、コアネットワーク_A90、コアネットワークB又はこれらの組み合わせをコアネットワークとも称することがあり、アクセスネットワーク_A、アクセスネットワーク_B又はこれらの組み合わせをアクセスネットワーク又は無線アクセスネットワークとも称することがあり、DN_A5、PDN_A6又はこれらの組み合わせをDNとも称することがある。
[1. System overview]
The outline of the mobile communication system in this embodiment will be described with reference to FIGS. 1, 2, 3, and 4. FIG. 2 is a diagram showing details of an access network among the mobile communication systems of FIG. FIG. 3 is a diagram showing details of the core network_A90 mainly in the mobile communication system of FIG. FIG. 4 is a diagram showing details of the core network_B190 mainly in the mobile communication system of FIG. As shown in FIG. 1, the mobile communication system 1 in the present embodiment includes a terminal device (also referred to as a user device or mobile terminal device) UE (User Equipment) _A10, an access network (AN; Access Network) _A, and an access network _B. , Core Network (CN) _A90, Core Network _B190, Packet Data Network (PDN) _A6, and Data Network (DN) _A5. The combination of access network_A and core network_A90 may be called EPS (Evolved Packet System; 4G mobile communication system), and the combination of access network_B, core network_B190 and UE_A10 is 5GS (5G System). It may be referred to as (5G mobile communication system), and the configuration of 5GS and EPS is not limited to these. For simplification, core network_A90, core network B, or a combination thereof may also be referred to as a core network, and access network_A, access network_B, or a combination thereof may also be referred to as an access network or a wireless access network. Sometimes DN_A5, PDN_A6 or a combination thereof may also be referred to as DN.
 ここで、UE_A10は、3GPPアクセス(3GPP access又は3GPP access networkとも称する)及び/又はnon-3GPPアクセス(non-3GPP access又はnon-3GPP access networkとも称する)を介して、ネットワークサービスに対して接続可能な装置であってよい。また、UE_A10は、UICC(Universal Integrated Circuit Card)やeUICC(Embedded UICC)を備えてもよい。また、UE_A10は無線接続可能な端末装置であってもよく、ME(Mobile Equipment)、MS(Mobile Station)、又はCIoT(Cellular Internet of Things)端末(CIoT UE)等であってもよい。 Here, UE_A10 can connect to network services via 3GPP access (also referred to as 3GPP access or 3GPP access network) and / or non-3GPP access (also referred to as non-3GPP access or non-3GPP access network). It may be a device. In addition, UE_A10 may be provided with UICC (Universal Integrated Circuit Card) or eUICC (Embedded UICC). Further, UE_A10 may be a terminal device capable of wireless connection, or may be an ME (Mobile Equipment), MS (Mobile Station), CIoT (Cellular Internet of Things) terminal (CIoT UE), or the like.
 また、UE_A10は、アクセスネットワーク及び/又はコアネットワークと接続することができる。また、UE_A10は、アクセスネットワーク及び/又はコアネットワークを介して、DN_A及び/又はPDN_Aと接続することができる。UE_A10は、DN_A及び/又はPDN_Aとの間で、PDU(Protocol Data Unit又はPacket Data Unit)セッション及び/又はPDN(Packet Data Network)接続(PDNコネクションとも称する)を用いて、ユーザデータを送受信(通信)する。さらに、ユーザデータの通信は、IP(Internet Protocol)通信(IPv4又はIPv6)に限らず、例えば、EPSではnon-IP通信であってもよいし、5GSではEthernet(登録商標)通信又はUnstructured通信であってもよい。 Also, UE_A10 can be connected to the access network and / or the core network. UE_A10 can also connect to DN_A and / or PDN_A via the access network and / or core network. UE_A10 sends and receives (communicate) user data with DN_A and / or PDN_A using a PDU (Protocol Data Unit or Packet Data Unit) session and / or PDN (Packet Data Network) connection (also called PDN connection). ). Furthermore, the communication of user data is not limited to IP (Internet Protocol) communication (IPv4 or IPv6), for example, EPS may be non-IP communication, and 5GS may be Ethernet (registered trademark) communication or Unstructured communication. There may be.
 ここで、IP通信とは、IPを用いたデータの通信のことであり、IPヘッダが付与されたIPパケットの送受信によって実現されるデータ通信のことである。尚、IPパケットを構成するペイロード部にはUE_A10が送受信するユーザデータが含まれてよい。また、non-IP通信とは、IPを用いないデータの通信のことであり、IPヘッダが付与されていないデータの送受信によって実現されるデータ通信のことである。例えば、non-IP通信は、IPアドレスが付与されていないアプリケーションデータの送受信によって実現されるデータ通信でもよいし、マックヘッダやEthernet(登録商標)フレームヘッダ等の別のヘッダを付与してUE_A10が送受信するユーザデータを送受信してもよい。 Here, IP communication is data communication using IP, and is data communication realized by sending and receiving an IP packet to which an IP header is added. The payload portion constituting the IP packet may include user data sent and received by UE_A10. Further, non-IP communication is data communication that does not use IP, and is data communication that is realized by sending and receiving data to which an IP header is not added. For example, non-IP communication may be data communication realized by sending and receiving application data to which an IP address is not assigned, or UE_A10 may be provided with another header such as a Mac header or an Ethernet (registered trademark) frame header. You may send and receive user data to be sent and received.
 また、PDUセッションとは、PDU接続サービスを提供する為に、UE_A10とDN_A5との間で確立される接続性である。より具体的には、PDUセッションは、UE_A10と外部ゲートウェイとの間で確立する接続性でよい。ここで、外部ゲートウェイは、UPFやPGW(Packet Data Network Gateway)等であってもよい。また、PDUセッションは、UE_A10と、コアネットワーク及び/又はDNとの間でユーザデータを送受信する為に確立される通信路でもよく、PDUを送受信する為の通信路でもよい。さらに、PDUセッションは、UE_A10と、コアネットワーク及び/又はDNとの間で確立されるセッションでもよく、移動通信システム1内の各装置間の1以上のベアラ等の転送路で構成される論理的な通信路でもよい。より具体的には、PDUセッションは、UE_A10が、コアネットワーク_B190、及び/又は外部ゲートウェイとの間に確立するコネクションでもよく、UE_A10とUPFとの間に確立するコネクションでもよい。また、PDUセッションは、NR node_A122を介したUE_A10とUPF_A235との間の接続性及び/又はコネクションでもよい。さらに、PDUセッションは、PDUセッションID及び/又はEPSベアラIDで識別されてもよい。 A PDU session is a connectivity established between UE_A10 and DN_A5 to provide a PDU connection service. More specifically, the PDU session may be the connectivity established between UE_A10 and the external gateway. Here, the external gateway may be UPF, PGW (Packet Data Network Gateway), or the like. Further, the PDU session may be a communication path established for transmitting / receiving user data between UE_A10 and the core network and / or DN, or may be a communication path for transmitting / receiving PDU. Further, the PDU session may be a session established between UE_A10 and the core network and / or DN, and is a logical configuration consisting of one or more bearers or other transfer paths between each device in the mobile communication system 1. Communication path may be used. More specifically, the PDU session may be a connection established by UE_A10 between the core network_B190 and / or an external gateway, or may be a connection established between UE_A10 and the UPF. The PDU session may also be connectivity and / or connection between UE_A10 and UPF_A235 via NR node_A122. In addition, the PDU session may be identified by a PDU session ID and / or an EPS bearer ID.
 尚、UE_A10は、DN_A5に配置するアプリケーションサーバ等の装置と、PDUセッションを用いてユーザデータの送受信を実行することができる。言い換えると、PDUセッションは、UE_A10とDN_A5に配置するアプリケーションサーバ等の装置との間で送受信されるユーザデータを転送することができる。さらに、各装置(UE_A10、アクセスネットワーク内の装置、及び/又はコアネットワーク内の装置、及び/又はデータネットワーク内の装置)は、PDUセッションに対して、1以上の識別情報を対応づけて管理してもよい。尚、これらの識別情報には、APN(Access Point Name)、TFT(Traffic Flow Template)、セッションタイプ、アプリケーション識別情報、DN_A5の識別情報、NSI(Network Slice Instance)識別情報、及びDCN(Dedicated Core Network)識別情報、及びアクセスネットワーク識別情報のうち、少なくとも1つが含まれてもよいし、その他の情報がさらに含まれてもよい。さらに、PDUセッションを複数確立する場合には、PDUセッションに対応づけられる各識別情報は、同じ内容でもよいし、異なる内容でもよい。さらに、NSI識別情報は、NSIを識別する情報であり、以下NSI ID又はSlice Instance IDであってもよい。 Note that UE_A10 can send and receive user data using a device such as an application server located in DN_A5 and a PDU session. In other words, the PDU session can transfer user data transmitted and received between UE_A10 and a device such as an application server arranged in DN_A5. In addition, each device (UE_A10, device in the access network, and / or device in the core network, and / or device in the data network) manages one or more identifications associated with each PDU session. You may. These identification information includes APN (Access Point Name), TFT (Traffic Flow Template), session type, application identification information, DN_A5 identification information, NSI (Network Slice Instance) identification information, and DCN (Dedicated Core Network). ) At least one of the identification information and the access network identification information may be included, and other information may be further included. Further, when a plurality of PDU sessions are established, the identification information associated with the PDU session may have the same content or different contents. Further, the NSI identification information is information that identifies NSI, and may be NSI ID or Slice Instance ID below.
 また、アクセスネットワーク_A及びアクセスネットワーク_Bとしては、図2に示すように、UTRAN(Universal Terrestrial Radio Access Network)_A20、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)_A80、NG-RAN(5G-RAN)_A120のいずれであってもよい。尚、以下、UTRAN_A20及び/又はE-UTRAN_A80及び/又はNG-RAN_A120は3GPPアクセス又は3GPPアクセスネットワークと称し、無線LANアクセスネットワークやnon-3GPP ANは、はnon-3GPPアクセス又はnon-3GPPアクセスネットワークと称することがある。各無線アクセスネットワークには、UE_A10が実際に接続する装置(例えば、基地局装置やアクセスポイント)等が含まれている。 As the access network_A and access network_B, as shown in Fig. 2, UTRAN (Universal Terrestrial Radio Access Network) _A20, E-UTRAN (Evolved Universal Terrestrial Radio Access Network) _A80, NG-RAN (5G-) It may be any of RAN) _A120. Hereinafter, UTRAN_A20 and / or E-UTRAN_A80 and / or NG-RAN_A120 are referred to as 3GPP access or 3GPP access network, and wireless LAN access network and non-3GPP AN are referred to as non-3GPP access or non-3GPP access network. Sometimes referred to. Each radio access network includes a device (for example, a base station device or an access point) to which the UE_A10 actually connects.
 例えば、E-UTRAN_A80は、LTEのアクセスネットワークであり、1以上のeNB_A45を含んで構成される。eNB_A45はE-UTRA(Evolved Universal Terrestrial Radio Access)でUE_A10が接続する無線基地局である。また、E-UTRAN_A80内に複数のeNBがある場合、各eNBは互いに接続してよい。 For example, E-UTRAN_A80 is an LTE access network and is configured to include one or more eNB_A45. eNB_A45 is a radio base station to which UE_A10 is connected by E-UTRA (Evolved Universal Terrestrial Radio Access). Further, when there are a plurality of eNBs in E-UTRAN_A80, each eNB may be connected to each other.
 また、NG-RAN_A120は、5Gのアクセスネットワークであり、図4に記載の(R)ANであってよく、1以上のNR node(New Radio Access Technology node)_A122及び/又はng-eNBを含んで構成される。尚、NR node_A122は、5Gの無線アクセス(5G Radio Access)でUE_A10が接続する無線基地局であり、gNBとも称する。尚、ng-eNBは、5Gのアクセスネットワークを構成するeNB(E-UTRA)であってよく、NR node_A経由でコアネットワーク_B190に接続されていてもよいし、コアネットワーク_B190に直接接続されていてもよい。また、NG-RAN_A120内に複数のNR node_A122及び/又はng-eNBがある場合、各NR node_A122及び/又はng-eNBは互いに接続してよい。 In addition, NG-RAN_A120 is a 5G access network, which may be (R) AN shown in FIG. 4, and includes one or more NR nodes (New Radio Access Technology node) _A122 and / or ng-eNB. It is composed. Note that NR node_A122 is a radio base station to which UE_A10 is connected by 5G radio access (5G Radio Access), and is also referred to as gNB. The ng-eNB may be an eNB (E-UTRA) that constitutes a 5G access network, may be connected to the core network_B190 via NR node_A, or may be directly connected to the core network_B190. You may be. Further, when there are a plurality of NR node_A122 and / or ng-eNB in NG-RAN_A120, each NR node_A122 and / or ng-eNB may be connected to each other.
 尚、NG-RAN_A120は、E-UTRA及び/又は5G Radio Accessで構成されるアクセスネットワークであってもよい。言い換えると、NG-RAN_A120には、eNB_A45が含まれてもよいし、NR node_A122が含まれてもよいし、その両方が含まれてもよい。この場合、eNB_A45とNR node_A122とは同様の装置であってもよい。従って、NR node_A122は、eNB_A45と置き換えことができる。 Note that NG-RAN_A120 may be an access network composed of E-UTRA and / or 5G Radio Access. In other words, NG-RAN_A120 may contain eNB_A45, NR node_A122, or both. In this case, eNB_A45 and NR node_A122 may be similar devices. Therefore, NR node_A122 can be replaced with eNB_A45.
 UTRAN_A20は、3G移動通信システムのアクセスネットワークであり、RNC(Radio Network Controller)_A24とNB(Node B)_A22とを含んで構成される。NB_A22は、UTRA(Universal Terrestrial Radio Access)でUE_A10が接続する無線基地局であり、UTRAN_A20には1又は複数の無線基地局が含まれて構成されてよい。またRNC_A24は、コアネットワーク_A90とNB_A22とを接続する制御部であり、UTRAN_A20には1又は複数のRNCが含まれて構成されてよい。また、RNC_A24は1又は複数のNB_A22と接続されてよい。 UTRAN_A20 is an access network for 3G mobile communication systems, and is composed of RNC (Radio Network Controller) _A24 and NB (Node B) _A22. NB_A22 is a radio base station to which UE_A10 is connected by UTRA (Universal Terrestrial Radio Access), and UTRAN_A20 may be configured to include one or more radio base stations. Further, RNC_A24 is a control unit that connects the core network_A90 and NB_A22, and UTRAN_A20 may be configured to include one or more RNCs. Also, RNC_A24 may be connected to one or more NB_A22s.
 尚、本明細書において、UE_A10が各無線アクセスネットワークに接続されるということは、各無線アクセスネットワークに含まれる基地局装置やアクセスポイント等に接続されることであり、送受信されるデータや信号等も、基地局装置やアクセスポイントを経由するということである。尚、UE_A10とコアネットワーク_B190間で送受信する制御メッセージは、アクセスネットワークの種類によらず、同じ制御メッセージでもよい。従って、UE_A10とコアネットワーク_B190とがNR node_A122を介してメッセージを送受信するということは、UE_A10とコアネットワーク_B190とがeNB_A45を介してメッセージを送信することと同じであってよい。 In this specification, the fact that UE_A10 is connected to each radio access network means that it is connected to a base station device, an access point, or the like included in each radio access network, and data, signals, etc. to be transmitted and received. It also means that it goes through a base station device or an access point. The control message sent and received between UE_A10 and the core network_B190 may be the same control message regardless of the type of access network. Therefore, sending and receiving messages between UE_A10 and core network_B190 via NR node_A122 may be the same as sending and receiving messages between UE_A10 and core network_B190 via eNB_A45.
 さらに、アクセスネットワークは、UE_A10及び/又はコアネットワークと接続した無線ネットワークのことである。アクセスネットワークは、3GPPアクセスネットワークでもよく、non-3GPPアクセスネットワークでもよい。尚、3GPPアクセスネットワークは、UTRAN_A20、E-UTRAN_A80、NG-RAN(Radio Access Network)_A120でもよく、non-3GPPアクセスネットワークは、無線LANアクセスポイント(WLAN AN)でもよい。尚、UE_A10はコアネットワークに接続する為に、アクセスネットワークに接続してもよく、アクセスネットワークを介してコアネットワークに接続してもよい。 Furthermore, the access network is a wireless network connected to UE_A10 and / or the core network. The access network may be a 3GPP access network or a non-3GPP access network. The 3GPP access network may be UTRAN_A20, E-UTRAN_A80, NG-RAN (Radio Access Network) _A120, and the non-3GPP access network may be a wireless LAN access point (WLAN AN). In addition, UE_A10 may be connected to the access network in order to connect to the core network, or may be connected to the core network via the access network.
 また、DN_A5及びPDN_A6は、UE_A10に通信サービスを提供するデータネットワーク(Data Network)であり、パケットデータサービス網として構成されてもよいし、サービス毎に構成されてもよい。さらに、DN_A5は、接続された通信端末を含んでもよい。従って、DN_A5と接続することは、DN_A5に配置された通信端末やサーバ装置と接続することであってもよい。さらに、DN_A5との間でユーザデータを送受信することは、DN_A5に配置された通信端末やサーバ装置とユーザデータを送受信することであってもよい。また、DN_A5は、図1ではコアネットワークの外にあるが、コアネットワーク内にあってもよい。 Further, DN_A5 and PDN_A6 are data networks (Data Networks) that provide communication services to UE_A10, and may be configured as a packet data service network or may be configured for each service. Further, DN_A5 may include a connected communication terminal. Therefore, connecting to DN_A5 may be connecting to a communication terminal or server device arranged in DN_A5. Further, sending and receiving user data to and from DN_A5 may be sending and receiving user data to and from a communication terminal or server device arranged in DN_A5. Further, although DN_A5 is outside the core network in FIG. 1, it may be inside the core network.
 また、コアネットワーク_A90及び/又はコアネットワーク_B190は、1以上のコアネットワーク内の装置として構成されてもよい。ここで、コアネットワーク内の装置は、コアネットワーク_A90及び/又はコアネットワーク_B190に含まれる各装置の処理又は機能の一部又は全てを実行する装置であってよい。尚、コアネットワーク内の装置は、コアネットワーク装置と称してもよい。 Further, the core network_A90 and / or the core network_B190 may be configured as devices in one or more core networks. Here, the device in the core network may be a device that executes a part or all of the processing or function of each device included in the core network_A90 and / or the core network_B190. The device in the core network may be referred to as a core network device.
 さらに、コアネットワークは、アクセスネットワーク及び/又はDNと接続した移動体通信事業者(MNO; Mobile Network Operator)が運用するIP移動通信ネットワークのことである。コアネットワークは、移動通信システム1を運用、管理する移動通信こと業者の為のコアネットワークでもよいし、MVNO(Mobile Virtual Network Operator)、MVNE(Mobile Virtual Network Enabler)等の仮想移動通信事業者や仮想移動体通信サービス提供者の為のコアネットワークでもよい。尚、コアネットワーク_A90は、EPS(Evolved Packet System)を構成するEPC(Evolved Packet Core)でもよく、コアネットワーク_B190は、5GSを構成する5GC(5G Core Network)でもよい。さらに、コアネットワーク_B190は、5G通信サービスを提供するシステムのコアネットワークでもよい。逆に、EPCはコアネットワーク_A90であってもよく、5GCはコアネットワーク_B190であってもよい。尚、コアネットワーク_A90及び/又はコアネットワーク_B190は、これに限らず、モバイル通信サービスを提供するためのネットワークでもよい。 Furthermore, the core network is an IP mobile communication network operated by a mobile network operator (MNO; Mobile Network Operator) connected to an access network and / or DN. The core network may be a core network for a mobile communication operator that operates and manages the mobile communication system 1, or a virtual mobile communication operator such as MVNO (Mobile Virtual Network Operator) or MVNE (Mobile Virtual Network Enabler) or a virtual network operator. It may be a core network for mobile communication service providers. The core network_A90 may be an EPC (Evolved Packet Core) that constitutes an EPS (Evolved Packet System), and the core network_B190 may be a 5GC (5G Core Network) that constitutes a 5GS. Further, the core network_B190 may be the core network of the system that provides the 5G communication service. Conversely, the EPC may be the core network_A90 and the 5GC may be the core network_B190. The core network_A90 and / or the core network_B190 is not limited to this, and may be a network for providing a mobile communication service.
 次に、コアネットワーク_A90について説明する。コアネットワーク_A90には、HSS(Home Subscriber Server)_A50、AAA(Authentication Authorization Accounting)、PCRF(Policy and Charging Rules Function)、PGW_A30、ePDG、SGW_A35、MME(Mobility Management Entity)_A40、SGSN(Serving GPRS Support Node)、SCEFのうち、少なくとも1つが含まれてよい。そして、これらはNF(Network Function)として構成されてもよい。NFとは、ネットワーク内に構成される処理機能を指してもよい。また、コアネットワーク_A90は、複数の無線アクセスネットワーク(UTRAN_A20、E-UTRAN_A80)に接続することができる。 Next, the core network_A90 will be explained. Core network _A90 includes HSS (Home Subscriber Server) _A50, AAA (Authentication Authorization Accounting), PCRF (Policy and Charging Rules Function), PGW_A30, ePDG, SGW_A35, MME (Mobility Management Entity) _A40, SGSN (Serving GPRS Support). Node), SCEF, at least one may be included. And these may be configured as NF (Network Function). NF may refer to a processing function configured in the network. In addition, the core network_A90 can be connected to a plurality of radio access networks (UTRAN_A20, E-UTRAN_A80).
 図3には、簡単化のために、これらのうち、HSS(HSS_A50)、PGW(PGW_A30)、SGW(SGW_A35)及びMME(MME_A40)についてのみ記載されているが、これら以外の装置及び/又はNFが含まれないということを意味するものではない。尚、簡単化のため、UE_A10はUEと、HSS_A50はHSSと、PGW_A30はPGWと、SGW_A35はSGWと、MME_A40はMMEと、DN_A5及び/又はPDN_A6はDN又はPDNとも称する。 For simplification, FIG. 3 shows only HSS (HSS_A50), PGW (PGW_A30), SGW (SGW_A35) and MME (MME_A40), but other devices and / or NFs. Does not mean that is not included. For simplification, UE_A10 is also referred to as UE, HSS_A50 is referred to as HSS, PGW_A30 is referred to as PGW, SGW_A35 is referred to as SGW, MME_A40 is referred to as MME, and DN_A5 and / or PDN_A6 is also referred to as DN or PDN.
 以下、コアネットワーク_A90内に含まれる各装置の簡単な説明をする。 The following is a brief description of each device included in the core network_A90.
 PGW_A30は、DNとSGW_A35とePDGとWLAN ANa70とPCRFとAAAとに接続されており、DN(DN_A5及び/又はPDN_A6)とコアネットワーク_A90とのゲートウェイとしてユーザデータの転送を行う中継装置である。尚、PGW_A30は、IP通信及び/又はnon-IP通信の為のゲートウェイでもよい。さらに、PGW_A30は、IP通信を転送する機能を持っていてもよく、non-IP通信とIP通信を変換する機能を持っていてもよい。尚、こうしたゲートウェイはコアネットワーク_A90に複数配置されてよい。さらに複数配置されるゲートウェイは、コアネットワーク_A90と単一のDNを接続するゲートウェイでもよい。 PGW_A30 is a relay device that is connected to DN, SGW_A35, ePDG, WLAN ANa70, PCRF, and AAA, and transfers user data as a gateway between DN (DN_A5 and / or PDN_A6) and core network_A90. The PGW_A30 may be a gateway for IP communication and / or non-IP communication. Further, PGW_A30 may have a function of transferring IP communication, and may have a function of converting non-IP communication and IP communication. A plurality of such gateways may be arranged in the core network_A90. Further, the plurality of gateways to be arranged may be a gateway connecting the core network_A90 and a single DN.
 尚、U-Plane(User Plane; UP)とは、ユーザデータを送受信する為の通信路でもよく、複数のベアラで構成されてもよい。さらに、C-Plane(Control Plane; CP)とは、制御メッセージを送受信する為の通信路でもよく、複数のベアラで構成されてもよい。 Note that the U-Plane (User Plane; UP) may be a communication path for transmitting and receiving user data, and may be composed of a plurality of bearers. Further, the C-Plane (Control Plane; CP) may be a communication path for transmitting and receiving a control message, and may be composed of a plurality of bearers.
 さらに、PGW_A30は、SGW及びDN及びUPF(User plane function)及び/又はSMF(Session Management Function)と接続されてもよいし、U-Planeを介してUE_A10と接続されてもよい。さらに、PGW_A30は、UPF_A235及び/又はSMF_A230と一緒に構成されてもよい。 Furthermore, PGW_A30 may be connected to SGW and DN and UPF (User plane function) and / or SMF (Session Management Function), or may be connected to UE_A10 via U-Plane. In addition, PGW_A30 may be configured with UPF_A235 and / or SMF_A230.
 SGW_A35は、PGW_A30とMME_A40とE-UTRAN_A80とSGSNとUTRAN_A20とに接続されており、コアネットワーク_A90と3GPPのアクセスネットワーク(UTRAN_A20、GERAN、E-UTRAN_A80)とのゲートウェイとしてユーザデータの転送を行う中継装置である。 SGW_A35 is connected to PGW_A30, MME_A40, E-UTRAN_A80, SGSN and UTRAN_A20, and is a relay that transfers user data as a gateway to the core network_A90 and 3GPP access networks (UTRAN_A20, GERAN, E-UTRAN_A80). It is a device.
 MME_A40は、SGW_A35とアクセスネットワークとHSS_A50とSCEFとに接続されており、アクセスネットワークを経由してUE_A10のモビリティ管理を含む位置情報管理と、アクセス制御を行う制御装置である。さらに、MME_A40は、UE_A10が確立するセッションを管理するセッション管理装置としての機能を含んでもよい。また、コアネットワーク_A90には、こうした制御装置を複数配置してもよく、例えば、MME_A40とは異なる位置管理装置が構成されてもよい。MME_A40とは異なる位置管理装置は、MME_A40と同様に、SGW_A35とアクセスネットワークとSCEFとHSS_A50と接続されてよい。さらにMME_A40はAMF(Access and Mobility Management Function)と接続されていてもよい。 MME_A40 is a control device that is connected to SGW_A35, an access network, HSS_A50, and SCEF, and performs location information management including mobility management of UE_A10 and access control via the access network. Further, the MME_A40 may include a function as a session management device that manages the sessions established by the UE_A10. Further, a plurality of such control devices may be arranged in the core network_A90, and for example, a position management device different from the MME_A40 may be configured. A location management device different from the MME_A40 may be connected to the SGW_A35, the access network, the SCEF, and the HSS_A50, similar to the MME_A40. Furthermore, MME_A40 may be connected to AMF (Access and Mobility Management Function).
 また、コアネットワーク_A90内に複数のMMEが含まれている場合、MME同士が接続されてもよい。これにより、MME間で、UE_A10のコンテキストの送受信が行われてもよい。このように、MME_A40は、UE_A10とモビリティ管理やセッション管理に関連する制御情報を送受信する管理装置であり、言い換えるとコントロールプレーン(Control Plane;C-Plane;CP)の制御装置であればよい。 Also, if multiple MMEs are included in the core network_A90, the MMEs may be connected to each other. As a result, the context of UE_A10 may be transmitted and received between MMEs. In this way, the MME_A40 is a management device that transmits and receives control information related to mobility management and session management to and from the UE_A10, in other words, it may be a control plane (Control Plane; C-Plane; CP) control device.
 さらに、MME_A40はコアネットワーク_A90に含まれて構成される例を説明したが、MME_A40は1又は複数のコアネットワーク又はDCN又はNSIに構成される管理装置でもよいし、1又は複数のコアネットワーク又はDCN又はNSIに接続される管理装置でもよい。ここで、複数のDCN又はNSIは単一の通信事業者によって運用されてもよいし、それぞれ異なる通信事業者によって運用されてもよい。 Further, although MME_A40 has been described as an example of being included in core network_A90, MME_A40 may be one or more core networks or a management device composed of DCN or NSI, or one or more core networks or. It may be a management device connected to a DCN or NSI. Here, the plurality of DCNs or NSIs may be operated by a single telecommunications carrier or may be operated by different telecommunications carriers.
 また、MME_A40は、コアネットワーク_A90とアクセスネットワークとの間のゲートウェイとしてユーザデータの転送を行う中継装置でもよい。なお、MME_A40がゲートウェイとなって送受信されるユーザデータは、スモールデータでもよい。 Further, MME_A40 may be a relay device that transfers user data as a gateway between the core network_A90 and the access network. The user data transmitted / received using MME_A40 as a gateway may be small data.
 さらに、MME_A40は、UE_A10等のモビリティ管理の役割を担うNFでもよく、1又は複数のNSIを管理するNFでもよい。また、MME_A40は、これらの1又は複数の役割を担うNFでよい。なお、NFは、コアネットワーク_A90内に1又は複数配置される装置でもよく、制御情報及び/又は制御メッセージの為のCPファンクション(以下、CPF(Control Plane Function)、又はControl Plane Network Functionとしても称される)でもよく、複数のネットワークスライス間で共有される共有CPファンクションでもよい。 Furthermore, MME_A40 may be an NF that plays a role of mobility management such as UE_A10, or an NF that manages one or more NSIs. In addition, MME_A40 may be an NF that plays one or more of these roles. The NF may be one or more devices arranged in the core network_A90, and may also be a CP function for control information and / or a control message (hereinafter, CPF (Control Plane Function) or Control Plane Network Function). It may be a shared CP function shared between multiple network slices.
 ここで、NFとは、ネットワーク内に構成される処理機能である。つまり、NFは、MMEやSGWやPGWやCPFやAMFやSMFやUPF等の機能装置でもよいし、MM(Mobility Management)やSM(Session Management)等の機能や能力capability情報でもよい。また、NFは、単一の機能を実現する為の機能装置でもよいし、複数の機能を実現する為の機能装置でもよい。例えば、MM機能を実現する為のNFと、SM機能を実現する為のNFとが別々に存在してもよいし、MM機能とSM機能との両方の機能を実現する為のNFが存在してもよい。 Here, NF is a processing function configured in the network. That is, the NF may be a functional device such as MME, SGW, PGW, CPF, AMF, SMF, UPF, or function / capability information such as MM (Mobility Management) or SM (Session Management). Further, the NF may be a functional device for realizing a single function, or may be a functional device for realizing a plurality of functions. For example, an NF for realizing the MM function and an NF for realizing the SM function may exist separately, or there is an NF for realizing both the MM function and the SM function. You may.
 HSS_A50は、MME_A40とAAAとSCEFとに接続されており、加入者情報の管理を行う管理ノードである。HSS_A50の加入者情報は、例えばMME_A40のアクセス制御の際に参照される。さらに、HSS_A50は、MME_A40とは異なる位置管理装置と接続されていてもよい。例えば、HSS_A50は、CPF_A140と接続されていてもよい。 HSS_A50 is a management node that is connected to MME_A40, AAA, and SCEF and manages subscriber information. The subscriber information of HSS_A50 is referred to when, for example, access control of MME_A40 is performed. Further, the HSS_A50 may be connected to a position management device different from that of the MME_A40. For example, HSS_A50 may be connected to CPF_A140.
 さらに、HSS_A50は、UDM(Unified Data Management)_A245は、異なる装置及び/又はNFとして構成されていてもよいし、同じ装置及び/又はNFとして構成されていてもよい。 Further, HSS_A50 and UDM (Unified Data Management) _A245 may be configured as different devices and / or NFs, or may be configured as the same device and / or NFs.
 AAAは、PGW30とHSS_A50とPCRFとWLAN ANa70とに接続されており、WLAN ANa70を経由して接続するUE_A10のアクセス制御を行う。 AAA is connected to PGW30, HSS_A50, PCRF, and WLAN ANa70, and controls access to UE_A10, which is connected via WLAN ANa70.
 PCRFは、PGW_A30とWLAN ANa75とAAAとDN_A5及び/又はPDN_A6とに接続されており、データ配送に対するQoS管理を行う。例えば、UE_A10とDN_A5及び/又はPDN_A6間の通信路のQoSの管理を行う。さらに、PCRFは、各装置がユーザデータを送受信する際に用いるPCC(Policy and Charging Control)ルール、及び/又はルーティングルールを作成、及び/又は管理する装置でもよい。 PCRF is connected to PGW_A30, WLAN ANa75, AAA, DN_A5 and / or PDN_A6, and performs QoS management for data delivery. For example, it manages the QoS of the communication path between UE_A10 and DN_A5 and / or PDN_A6. Further, the PCRF may be a device that creates and / or manages PCC (Policy and Charging Control) rules and / or routing rules that each device uses when transmitting and receiving user data.
 また、PCRFは、ポリシーを作成及び/又は管理するPCFでもよい。より詳細には、PCRFは、UPF_A235に接続されていてもよい。 The PCRF may also be a PCF that creates and / or manages policies. More specifically, the PCRF may be connected to UPF_A235.
 ePDGは、PGW30とWLAN ANb75とに接続されており、コアネットワーク_A90とWLAN ANb75とのゲートウェイとしてユーザデータの配送を行う。 The ePDG is connected to PGW30 and WLAN ANb75, and delivers user data as a gateway between core network _A90 and WLAN ANb75.
 SGSNは、UTRAN_A20とGERANとSGW_A35とに接続されており、3G/2Gのアクセスネットワーク(UTRAN/GERAN)とLTE(4G)のアクセスネットワーク(E-UTRAN)との間の位置管理の為の制御装置である。さらに、SGSNは、PGW及びSGWの選択機能、UE_A10のタイムゾーンの管理機能、及びE-UTRANへのハンドオーバー時のMME_A40の選択機能を持つ。 The SGSN is connected to UTRAN_A20, GERAN and SGW_A35, and is a control device for position management between the 3G / 2G access network (UTRAN / GERAN) and the LTE (4G) access network (E-UTRAN). Is. In addition, the SGSN has a PGW and SGW selection function, a UE_A10 time zone management function, and an MME_A40 selection function during handover to E-UTRAN.
 SCEFは、DN_A5及び/又はPDN_A6とMME_A40とHSS_A50とに接続されており、DN_A5及び/又はPDN_A6とコアネットワーク_A90とを繋ぐゲートウェイとしてユーザデータの転送を行う中継装置である。なお、SCEFは、non-IP通信の為のゲートウェイでもよい。さらに、SCEFは、non-IP通信とIP通信を変換する機能を持っていてもよい。また、こうしたゲートウェイはコアネットワーク_A90に複数配置されてよい。さらに、コアネットワーク_A90と単一のDN_A5及び/又はPDN_A6及び/又はDNを接続するゲートウェイも複数配置されてよい。なお、SCEFはコアネットワークの外側に構成されてもよいし、内側に構成されてもよい。 SCEF is a relay device that is connected to DN_A5 and / or PDN_A6, MME_A40 and HSS_A50, and transfers user data as a gateway connecting DN_A5 and / or PDN_A6 and core network_A90. SCEF may be a gateway for non-IP communication. In addition, SCEF may have the ability to convert between non-IP communication and IP communication. In addition, a plurality of such gateways may be arranged in the core network_A90. In addition, multiple gateways connecting the core network_A90 with a single DN_A5 and / or PDN_A6 and / or DN may also be deployed. The SCEF may be configured outside the core network or inside the core network.
 次に、コアネットワーク_B190について説明する。コアネットワーク_B190には、AUSF(Authentication Server Function)、AMF(Access and Mobility Management Function)_A240、UDSF(Unstructured Data Storage Function)、NEF(Network Exposure Function)、NRF(Network Repository Function)、PCF(Policy Control Function)、SMF(Session Management Function)_A230、UDM(Unified Data Management)、UPF(User Plane Function)_A235、AF(Application Function)、N3IWF(Non-3GPP InterWorking Function)のうち、少なくとも1つが含まれてよい。そして、これらはNF(Network Function)として構成されてもよい。NFとは、ネットワーク内に構成される処理機能を指してもよい。 Next, the core network_B190 will be explained. The core network _B190 includes AUFF (Authentication Server Function), AMF (Access and Mobility Management Function) _A240, UDSF (Unstructured Data Storage Function), NEF (Network Exposure Function), NRF (Network Repository Function), PCF (Policy Control). Function), SMF (Session Management Function) _A230, UDM (Unified Data Management), UPF (User Plane Function) _A235, AF (Application Function), N3IWF (Non-3GPP InterWorking Function) may be included. .. And these may be configured as NF (Network Function). NF may refer to a processing function configured in the network.
 図4には、簡単化のために、これらのうち、AMF(AMF_A240)、SMF(SMF_A230)、及びUPF(UPF_A235)についてのみ記載されているが、これら以外のもの(装置及び/又はNF(Network Function))が含まれないということを意味するものではない。尚、簡単化のため、UE_A10はUEと、AMF_A240はAMFと、SMF_A230はSMFと、UPF_A235はUPFと、DN_A5はDNとも称する。 For simplicity, FIG. 4 shows only AMF (AMF_A240), SMF (SMF_A230), and UPF (UPF_A235), but other than these (devices and / or NF (Network)). It does not mean that Function)) is not included. For simplicity, UE_A10 is also referred to as UE, AMF_A240 is referred to as AMF, SMF_A230 is referred to as SMF, UPF_A235 is referred to as UPF, and DN_A5 is also referred to as DN.
 また、図4には、N1インターフェース(以下、参照点、reference pointとも称する)、N2インターフェース、N3インターフェース、N4インターフェース、N6インターフェース、N9インターフェース、N11インターフェースが記載されている。ここで、N1インターフェースはUEとAMFとの間のインターフェースであり、N2インターフェースは(R)AN(アクセスネットワーク)とAMFとの間のインターフェースであり、N3インターフェースは(R)AN(アクセスネットワーク)とUPFとの間のインターフェースであり、N4インターフェースはSMFとUPFとの間のインターフェースであり、N6インターフェースはUPFとDNとの間のインターフェースであり、N9インターフェースはUPFとUPFとの間のインターフェースであり、N11インターフェースはAMFとSMFとの間のインターフェースである。これらのインターフェースを利用して、各装置間は通信を行うことができる。ここで、(R)ANは、以下NG RANとも称する。 In addition, Fig. 4 shows the N1 interface (hereinafter, also referred to as reference point), N2 interface, N3 interface, N4 interface, N6 interface, N9 interface, and N11 interface. Here, the N1 interface is the interface between the UE and AMF, the N2 interface is the interface between (R) AN (access network) and AMF, and the N3 interface is (R) AN (access network). The interface between UPF, the N4 interface is the interface between SMF and UPF, the N6 interface is the interface between UPF and DN, and the N9 interface is the interface between UPF and UPF. , N11 interface is the interface between AMF and SMF. Communication can be performed between the devices by using these interfaces. Here, (R) AN is also referred to as NG RAN below.
 以下、コアネットワーク_B190内に含まれる各装置の簡単な説明をする。 The following is a brief description of each device included in the core network_B190.
 まず、AMF_A240は、他のAMF、SMF(SMF_A230)、アクセスネットワーク(つまり、UTRAN_A20とE-UTRAN_A80とNG-RAN_A120)、UDM、AUSF、PCFに接続される。AMF_A240は、登録管理(Registration management)、接続管理(Connection management)、到達可能性管理(Reachability management)、UE_A10等の移動性管理(Mobility management)、UEとSMF間のSM(Session Management)メッセージの転送、アクセス認証(Access Authentication、Access Authorization)、セキュリティアンカー機能(SEA; Security Anchor Function)、セキュリティコンテキスト管理(SCM; Security Context Management)、N3IWFに対するN2インターフェースのサポート、N3IWFを介したUEとのNAS信号の送受信のサポート、N3IWFを介して接続するUEの認証、RM状態(Registration Management states)の管理、CM状態(Connection Management states)の管理等の役割を担ってもよい。また、AMF_A240は、コアネットワーク_B190内に1以上配置されてもよい。また、AMF_A240は、1以上のNSI(Network Slice Instance)を管理するNFでもよい。また、AMF_A240は、複数のNSI間で共有される共有CPファンクション(CCNF; Common CPNF(Control Plane Network Function))でもよい。 First, AMF_A240 is connected to other AMF, SMF (SMF_A230), access network (that is, UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120), UDM, AUSF, PCF. AMF_A240 is used for registration management (Registration management), connection management (Connection management), reachability management (Reachability management), mobility management such as UE_A10 (Mobility management), and transfer of SM (Session Management) messages between UE and SMF. , Access Authentication, Access Authorization, Security Anchor Function (SEA; Security Anchor Function), Security Context Management (SCM), N2 Interface Support for N3IWF, NAS Signals with UE via N3IWF It may play a role of support of transmission / reception, authentication of UE connected via N3IWF, management of RM state (Registration Management states), management of CM state (Connection Management states), and the like. Further, one or more AMF_A240s may be arranged in the core network_B190. In addition, AMF_A240 may be an NF that manages one or more NSIs (Network Slice Instances). Further, AMF_A240 may be a shared CP function (CCNF; Common CPNF (Control Plane Network Function)) shared among a plurality of NSIs.
 また、RM状態としては、非登録状態(RM-DEREGISTERED state)と、登録状態(RM-REGISTERED state)がある。RM-DEREGISTERED状態では、UEはネットワークに登録されていないため、AMFにおけるUEコンテキストが、そのUEに対して有効な場所の情報やルーティングの情報を持っていない為、AMFはUEに到達できない状態である。また、RM-REGISTERED状態では、UEはネットワークに登録されているため、UEはネットワークとの登録が必要なサービスを受信することができる。 In addition, the RM state includes a non-registered state (RM-DEREGISTERED state) and a registered state (RM-REGISTERED state). In the RM-DEREGISTERED state, the UE is not registered in the network, so the UE context in AMF does not have valid location information or routing information for that UE, so AMF cannot reach the UE. is there. Also, in the RM-REGISTERED state, the UE is registered in the network, so the UE can receive services that require registration with the network.
 また、CM状態としては、非接続状態(CM-IDLE state)と、接続状態(CM-CONNECTED state)がある。CM-IDLE状態では、UEはRM-REGISTERED状態にあるが、N1インターフェースを介したAMFとの間で確立されるNASシグナリング接続(NAS signaling connection)を持っていない。また、CM-IDLE状態では、UEはN2インターフェースの接続(N2 connection)、及びN3インターフェースの接続(N3 connection)を持っていない。一方、CM-CONNECTED状態では、N1インターフェースを介したAMFとの間で確立されるNASシグナリング接続(NAS signaling connection)を持っている。また、CM-CONNECTED状態では、UEはN2インターフェースの接続(N2 connection)、及び/又はN3インターフェースの接続(N3 connection)を持っていてもよい。 In addition, there are two types of CM states: a non-connected state (CM-IDLE state) and a connected state (CM-CONNECTED state). In the CM-IDLE state, the UE is in the RM-REGISTERED state, but does not have a NAS signaling connection established with the AMF via the N1 interface. Also, in the CM-IDLE state, the UE does not have an N2 interface connection (N2 connection) and an N3 interface connection (N3 connection). On the other hand, in the CM-CONNECTED state, it has a NAS signaling connection established with the AMF via the N1 interface. Further, in the CM-CONNECTED state, the UE may have an N2 interface connection (N2 connection) and / or an N3 interface connection (N3 connection).
 また、SMF_A230は、PDUセッション等のセッション管理(Session Management;SM;セッションマネジメント)機能、UEに対するIPアドレス割り当て(IP address allocation)及びその管理機能、UPFの選択と制御機能、適切な目的地へトラフィックをルーティングする為のUPFの設定機能、下りリンクのデータが到着したことを通知する機能(Downlink Data Notification)、AMFを介してANに対してN2インターフェースを介して送信される、AN特有の(ANごとの)SM情報を提供する機能、セッションに対するSSCモード(Session and Service Continuity mode)を決定する機能、ローミング機能、等を有してよい。また、SMF_A230は、AMF_A240、UPF_A235、UDM、PCFに接続されてもよい。 In addition, SMF_A230 has session management (Session Management; SM; session management) functions such as PDU sessions, IP address allocation to UEs and its management functions, UPF selection and control functions, and traffic to appropriate destinations. UPF setting function for routing, function to notify that downlink data has arrived (Downlink Data Notification), AN-specific (AN) transmitted to AN via AMF via N2 interface It may have a function of providing SM information (for each session), a function of determining an SSC mode (Session and Service Continuity mode) for a session, a roaming function, and the like. Further, SMF_A230 may be connected to AMF_A240, UPF_A235, UDM, and PCF.
 また、UPF_A235は、DN_A5、SMF_A230、他のUPF、及び、アクセスネットワーク(つまり、UTRAN_A20とE-UTRAN_A80とNG-RAN_A120)に接続される。UPF_A235は、intra-RAT mobility又はinter-RAT mobilityに対するアンカー、パケットのルーティングと転送(Packet routing & forwarding)、1つのDNに対して複数のトラフィックフローのルーティングをサポートするUL CL(Uplink Classifier)機能、マルチホームPDUセッション(multi-homed PDU session)をサポートするBranching point機能、user planeに対するQoS処理、上りリンクトラフィックの検証(verification)、下りリンクパケットのバッファリング、下りリンクデータ通知(Downlink Data Notification)のトリガ機能等の役割を担ってもよい。また、UPF_A235は、DN_A5とコアネットワーク_B190との間のゲートウェイとして、ユーザデータの転送を行う中継装置でもよい。尚、UPF_A235は、IP通信及び/又はnon-IP通信の為のゲートウェイでもよい。さらに、UPF_A235は、IP通信を転送する機能を持っていてもよく、non-IP通信とIP通信を変換する機能を持っていてもよい。さらに複数配置されるゲートウェイは、コアネットワーク_B190と単一のDNを接続するゲートウェイでもよい。尚、UPF_A235は、他のNFとの接続性を備えてもよく、他のNFを介して各装置に接続してもよい。 Also, UPF_A235 is connected to DN_A5, SMF_A230, other UPFs, and access networks (that is, UTRAN_A20, E-UTRAN_A80, and NG-RAN_A120). UPF_A235 is an anchor for intra-RAT mobility or inter-RAT mobility, packet routing & forwarding, UL CL (Uplink Classifier) function that supports routing of multiple traffic flows to one DN, Routing point function that supports multi-homed PDU session, QoS processing for userplane, verification of uplink traffic, buffering of downlink packets, downlink data notification (Downlink Data Notification) It may play a role such as a trigger function. Further, UPF_A235 may be a relay device that transfers user data as a gateway between DN_A5 and core network_B190. UPF_A235 may be a gateway for IP communication and / or non-IP communication. Further, UPF_A235 may have a function of transferring IP communication, and may have a function of converting non-IP communication and IP communication. Further, the plurality of gateways to be arranged may be a gateway connecting the core network_B190 and a single DN. The UPF_A235 may have connectivity with other NFs, or may be connected to each device via other NFs.
 尚、UPF_A235とアクセスネットワークとの間に、UPF_A235とは異なるUPFである、UPF_C239(branching point又はuplink classifierとも称する)が装置又はNFとして存在してもよい。UPF_C239が存在する場合、UE_A10とDN_A5との間のPDUセッションは、アクセスネットワーク、UPF_C239、UPF_A235を介して確立されることになる。 Note that UPF_C239 (also referred to as branching point or uplink classifier), which is a UPF different from UPF_A235, may exist as a device or NF between UPF_A235 and the access network. If UPF_C239 is present, the PDU session between UE_A10 and DN_A5 will be established via the access network, UPF_C239, UPF_A235.
 また、AUSFは、UDM、AMF_A240に接続されている。AUSFは、認証サーバとして機能する。 Also, AUSF is connected to UDM and AMF_A240. AUSF acts as an authentication server.
 UDSFは、全てのNFが、構造化されていないデータ(unstructured data)として、情報を保存したり、取得したりするための機能を提供する。 UDSF provides a function for all NFs to store and retrieve information as unstructured data.
 NEFは、3GPPネットワークによって提供されるサービス・能力を安全に提供する手段を提供する。他のNFから受信した情報を、構造化されたデータ(structured data)として保存する。 NEF provides a means to safely provide the services and capabilities provided by the 3GPP network. Information received from other NFs is saved as structured data.
 NRFは、NFインスタンスからNF発見要求(NF Discovery Request)を受信すると、そのNFに対して、発見したNFインスタンスの情報を提供したり、利用可能なNFインスタンスや、そのインスタンスがサポートするサービスの情報を保持したりする。 When NRF receives an NF discovery request (NF Discovery Request) from an NF instance, it provides information on the discovered NF instance to that NF, and information on available NF instances and services supported by that instance. Or hold.
 PCFは、SMF(SMF_A230)、AF、AMF_A240に接続されている。ポリシールール(policy rule)等を提供する。 PCF is connected to SMF (SMF_A230), AF, AMF_A240. Provide policy rules, etc.
 UDMは、AMF_A240、SMF(SMF_A230)、AUSF、PCFに接続される。UDMは、UDM FE(application front end)とUDR(User Data Repository)を含む。UDM FEは、認証情報(credentials)、場所管理(location management)、加入者管理(subscription management)等の処理を行う。UDRは、UDM FEが提供するのに必要なデータと、PCFが必要とするポリシープロファイル(policy profiles)を保存する。 UDM is connected to AMF_A240, SMF (SMF_A230), AUSF, PCF. UDM includes UDM FE (application front end) and UDR (User Data Repository). UDM FE processes authentication information (credentials), location management (location management), subscription management (subscription management), and the like. UDR stores the data required to be provided by UDM FE and the policy profiles required by PCF.
 AFは、PCFに接続される。AFは、トラフィックルーティングに対して影響を与えたり、ポリシー制御に関与したりする。 AF is connected to PCF. AF influences traffic routing and participates in policy control.
 N3IWFは、UEとのIPsecトンネルの確立、UEとAMF間のNAS(N1)シグナリングの中継(relaying)、SMFから送信されAMFによってリレーされたN2シグナリングの処理、IPsec Security Association(IPsec SA)の確立、UEとUPF間のuser planeパケットの中継(relaying)、AMF選択等の機能を提供する。 N3IWF establishes an IPsec tunnel with the UE, relays NAS (N1) signaling between the UE and AMF, processes N2 signaling transmitted from SMF and relayed by AMF, and establishes IPsec Security Association (IPsec SA). , Provides functions such as relaying userplane packets between UE and UPF, and AMF selection.
 また、S1モードは、S1インターフェースを用いたメッセージの送受信が可能なUEモードである。尚、S1インターフェースは、S1-MMEインターフェース及びS1-Uインターフェース及び無線基地局間を接続するX2インターフェースで構成されて良い。 In addition, S1 mode is a UE mode that allows sending and receiving of messages using the S1 interface. The S1 interface may be composed of an S1-MME interface, an S1-U interface, and an X2 interface that connects radio base stations.
 S1モードのUEは、例えば、E-UTRA機能を提供するeNB経由のEPCへのアクセスや、NR機能を提供するen-gNB経由のEPCへのアクセスが可能である。 The UE in S1 mode can, for example, access the EPC via eNB that provides the E-UTRA function and access the EPC via en-gNB that provides the NR function.
 尚、E-UTRA機能を提供するeNB経由のEPCへのアクセスとNR機能を提供するen-gNB経由のEPCへのアクセスをS1モードとしているが、それぞれ個別の異なるモードとして構成されていても良い。 The S1 mode is used for access to the EPC via eNB that provides the E-UTRA function and access to the EPC via en-gNB that provides the NR function, but each may be configured as a different mode. ..
 また、N1モードは、UEが、5Gアクセスネットワークを介した5GCへのアクセスができるUEモードである。また、N1モードは、N1インターフェースを用いたメッセージの送受信が可能なUEモードであってもよい。尚、N1インターフェースは、N1インターフェース及び無線基地局間を接続するXnインターフェースで構成されて良い。 In addition, N1 mode is a UE mode in which the UE can access 5GC via a 5G access network. Further, the N1 mode may be a UE mode capable of transmitting and receiving messages using the N1 interface. The N1 interface may be composed of an N1 interface and an Xn interface that connects radio base stations.
 N1モードのUEは、例えば、E-UTRA機能を提供するng-eNB経由の5GCへのアクセスや、NR機能を提供するgNB経由の5GCへのアクセスが可能である。 The N1 mode UE can, for example, access 5GC via ng-eNB that provides the E-UTRA function and access 5GC via gNB that provides the NR function.
 尚、E-UTRA機能を提供するng-eNB経由の5GCへのアクセスとNR機能を提供するgNB経由の5GCへのアクセスをN1モードとしているが、それぞれ個別の異なるモードとして構成されていても良い。 The access to 5GC via ng-eNB that provides the E-UTRA function and the access to 5GC via gNB that provides the NR function are set to N1 mode, but they may be configured as different modes individually. ..
 [1.2.各装置の構成]
 以下、各装置の構成について説明する。尚、下記各装置及び各装置の各部の機能の一部又は全部は、物理的なハードウェア上で動作するものでもよいし、汎用的なハードウェア上に仮想的に構成された論理的なハードウェア上で動作するものでもよい。
[1.2. Configuration of each device]
Hereinafter, the configuration of each device will be described. It should be noted that some or all of the following devices and some or all of the functions of each part of each device may operate on physical hardware, or logical hardware virtually configured on general-purpose hardware. It may be the one that operates on the hardware.
 [1.2.1.UEの構成]
 まず、UE_A10の装置構成例を、図5に示す。図5に示すように、UE_A10は、制御部_A500、送受信部_A520、記憶部_A540で構成される。送受信部_A520及び記憶部_A540は、制御部_A500とバスを介して接続されている。また、送受信部_A520には、外部アンテナ410が接続されている。
[1.2.1. UE Configuration]
First, an example of the device configuration of UE_A10 is shown in FIG. As shown in FIG. 5, UE_A10 is composed of a control unit_A500, a transmission / reception unit_A520, and a storage unit_A540. The transmission / reception unit_A520 and the storage unit_A540 are connected to the control unit_A500 via a bus. An external antenna 410 is connected to the transmitter / receiver _A520.
 制御部_A500は、UE_A10全体を制御する為の機能部であり、記憶部_A540に記憶されている各種の情報やプログラムを読みだして実行することにより、UE_A10全体の各種処理を実現する。 The control unit_A500 is a functional unit for controlling the entire UE_A10, and realizes various processes of the entire UE_A10 by reading and executing various information and programs stored in the storage unit_A540.
 送受信部_A520は、UE_A10がアクセスネットワーク内の基地局(UTRAN_A20とE-UTRAN_A80とNG-RAN_A120)及び/又は無線LANアクセスポイント(WLAN AN)に接続し、アクセスネットワークへ接続する為の機能部である。言い換えると、UE_A10は、送受信部_A520に接続された外部アンテナ410を介して、アクセスネットワーク内の基地局及び/又はアクセスポイントと接続することができる。具体的には、UE_A10は、送受信部_A520に接続された外部アンテナ410を介して、アクセスネットワーク内の基地局及び/又はアクセスポイントとの間で、ユーザデータ及び/又は制御情報を送受信することができる。 The transmitter / receiver_A520 is a functional unit for UE_A10 to connect to the base stations (UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120) and / or wireless LAN access point (WLAN AN) in the access network and connect to the access network. is there. In other words, the UE_A10 can be connected to a base station and / or an access point in the access network via an external antenna 410 connected to the transmitter / receiver_A520. Specifically, the UE_A10 transmits / receives user data and / or control information to / from a base station and / or an access point in the access network via an external antenna 410 connected to the transmission / reception unit_A520. Can be done.
 記憶部_A540は、UE_A10の各動作に必要なプログラムやデータ等を記憶する機能部であり、例えば、半導体メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等により構成されている。記憶部_A540は、後述する通信手続き内で送受信する制御メッセージに含まれる識別情報、制御情報、フラグ、パラメータ、ルール、ポリシー等を記憶している。 The storage unit_A540 is a functional unit that stores programs and data required for each operation of UE_A10, and is composed of, for example, a semiconductor memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), and the like. The storage unit_A540 stores identification information, control information, flags, parameters, rules, policies, and the like included in control messages sent and received in a communication procedure described later.
 [1.2.2. eNB/NR node]
 次に、eNB_A45及びNR node_A122の装置構成例を、図6に示す。図6に示すように、eNB_A45及びNR node_A122は、制御部_B600、ネットワーク接続部_B620、送受信部_B630、記憶部_B640で構成されている。ネットワーク接続部_B620、送受信部_B630及び記憶部_B640は、制御部_B600とバスを介して接続されている。また、送受信部_B630には、外部アンテナ510が接続されている。
[1.2.2. eNB / NR node]
Next, a device configuration example of eNB_A45 and NR node_A122 is shown in FIG. As shown in FIG. 6, the eNB_A45 and the NR node_A122 are composed of a control unit_B600, a network connection unit_B620, a transmission / reception unit_B630, and a storage unit_B640. The network connection unit_B620, the transmission / reception unit_B630, and the storage unit_B640 are connected to the control unit_B600 via a bus. An external antenna 510 is connected to the transmitter / receiver _B630.
 制御部_B600は、eNB_A45及びNR node_A122全体を制御する為の機能部であり、記憶部_B640に記憶されている各種の情報やプログラムを読みだして実行することにより、eNB_A45及びNR node_A122全体の各種処理を実現する。 The control unit_B600 is a functional unit for controlling the entire eNB_A45 and NR node_A122, and by reading and executing various information and programs stored in the storage unit_B640, the entire eNB_A45 and NR node_A122 Realize various processes.
 ネットワーク接続部_B620は、eNB_A45及びNR node_A122が、コアネットワーク内のAMF_A240やUPF_A235と接続する為の機能部である。言い換えると、eNB_A45及びNR node_A122は、ネットワーク接続部_B620を介して、コアネットワーク内のAMF_A240やUPF_A235と接続することができる。具体的には、eNB_A45及びNR node_A122は、ネットワーク接続部_B620を介して、AMF_A240及び/又はUPF_A235との間で、ユーザデータ及び/又は制御情報を送受信することができる。 The network connection part_B620 is a functional part for eNB_A45 and NR node_A122 to connect with AMF_A240 and UPF_A235 in the core network. In other words, eNB_A45 and NR node_A122 can be connected to AMF_A240 and UPF_A235 in the core network via the network connection part_B620. Specifically, eNB_A45 and NR node_A122 can send and receive user data and / or control information to and from AMF_A240 and / or UPF_A235 via the network connection unit_B620.
 送受信部_B630は、eNB_A45及びNR node_A122が、UE_A10と接続する為の機能部である。言い換えると、eNB_A45及びNR node_A122は、送受信部_B630を介して、UE_A10との間で、ユーザデータ及び/又は制御情報を送受信することができる。 The transmission / reception unit_B630 is a functional unit for eNB_A45 and NR node_A122 to connect to UE_A10. In other words, the eNB_A45 and NR node_A122 can send and receive user data and / or control information to and from the UE_A10 via the transmission / reception unit_B630.
 記憶部_B640は、eNB_A45及びNR node_A122の各動作に必要なプログラムやデータ等を記憶する機能部である。記憶部_B640は、例えば、半導体メモリや、HDD、SSD等により構成されている。記憶部_B640は、後述する通信手続き内で送受信する制御メッセージに含まれる識別情報、制御情報、フラグ、パラメータ等を記憶している。記憶部_B640は、これらの情報をコンテキストとしてUE_A10毎に記憶してもよい。 The storage unit_B640 is a functional unit that stores programs and data required for each operation of eNB_A45 and NR node_A122. The storage unit_B640 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like. The storage unit_B640 stores identification information, control information, flags, parameters, and the like included in the control messages transmitted and received in the communication procedure described later. The storage unit_B640 may store this information as a context for each UE_A10.
 [1.2.3.MME/AMFの構成]
 次に、MME_A40又はAMF_A240の装置構成例を、図7に示す。図7に示すように、MME_A40又はAMF_A240は、制御部_C700、ネットワーク接続部_C720、記憶部_C740で構成されている。ネットワーク接続部_C720及び記憶部_C740は、制御部_C700とバスを介して接続されている。また、記憶部_C740は、コンテキスト642を記憶している。
[1.2.3. MME / AMF configuration]
Next, an example of the device configuration of MME_A40 or AMF_A240 is shown in FIG. As shown in FIG. 7, the MME_A40 or AMF_A240 is composed of a control unit_C700, a network connection unit_C720, and a storage unit_C740. The network connection unit_C720 and the storage unit_C740 are connected to the control unit_C700 via a bus. In addition, the storage unit_C740 stores the context 642.
 制御部_C700は、MME_A40又はAMF_A240全体を制御する為の機能部であり、記憶部_C740に記憶されている各種の情報やプログラムを読みだして実行することにより、AMF_A240全体の各種処理を実現する。 The control unit_C700 is a functional unit for controlling the entire MME_A40 or AMF_A240, and realizes various processes of the entire AMF_A240 by reading and executing various information and programs stored in the storage unit_C740. To do.
 ネットワーク接続部_C720は、MME_A40又はAMF_A240が、他のMME_A40、AMF_240、SMF_A230、アクセスネットワーク内の基地局(UTRAN_A20とE-UTRAN_A80とNG-RAN_A120)及び/又は無線LANアクセスポイント(WLAN AN)、UDM、AUSF、PCFと接続する為の機能部である。言い換えると、MME_A40又はAMF_A240は、ネットワーク接続部_C720を介して、アクセスネットワーク内の基地局及び/又はアクセスポイント、UDM、AUSF、PCFとの間で、ユーザデータ及び/又は制御情報を送受信することができる。 The network connection part_C720 is MME_A40 or AMF_A240, other MME_A40, AMF_240, SMF_A230, base stations in the access network (UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120) and / or wireless LAN access point (WLAN AN), UDM. , AUSF, a functional part for connecting to PCF. In other words, the MME_A40 or AMF_A240 sends and receives user data and / or control information to and from the base station and / or access point, UDM, AUSF, PCF in the access network via the network connection_C720. Can be done.
 記憶部_C740は、MME_A40又はAMF_A240の各動作に必要なプログラムやデータ等を記憶する機能部である。記憶部_C740は、例えば、半導体メモリや、HDD、SSD等により構成されている。記憶部_C740は、後述する通信手続き内で送受信する制御メッセージに含まれる識別情報、制御情報、フラグ、パラメータ等を記憶している。記憶部_C740に記憶されているコンテキスト642としては、UEごとに記憶されるコンテキスト、PDUセッションごとに記憶されるコンテキスト、ベアラごとに記憶されるコンテキストがあってもよい。UEごとに記憶されるコンテキストとしては、IMSI、MSISDN、MM State、GUTI、ME Identity、UE Radio Access Capability、UE Network Capability、MS Network Capability、Access Restriction、MME F-TEID、SGW F-TEID、eNB Address、MME UE S1AP ID、eNB UE S1AP ID、NR node Address、NR node ID、WAG Address、WAG IDを含んでもよい。また、PDUセッションごとに記憶されるコンテキストとしては、APN in Use、Assigned Session Type、IP Address(es)、PGW F-TEID、SCEF ID、Default bearerを含んでもよい。また、ベアラごとに記憶されるコンテキストとしては、EPS Bearer ID、TI、TFT、SGW F-TEID、PGW F-TEID、MME F-TEID、eNB Address、NR node Address、WAG Address、eNB ID、NR node ID、WAG IDを含んでもよい。 The storage unit_C740 is a functional unit that stores programs and data required for each operation of MME_A40 or AMF_A240. The storage unit_C740 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like. The storage unit_C740 stores identification information, control information, flags, parameters, and the like included in the control messages transmitted and received in the communication procedure described later. The context 642 stored in the storage unit_C740 may include a context stored for each UE, a context stored for each PDU session, and a context stored for each bearer. The contexts stored for each UE include IMSI, MSISDN, MMState, GUTI, MEIdentity, UERadioAccessCapability, UENetworkCapability, MSNetworkCapability, AccessRestriction, MMEF-TEID, SGWF-TEID, eNBAddress. , MMEUES1APID, eNBUES1APID, NRnodeAddress, NRnodeID, WAGAddress, WAGID may be included. Further, the context stored for each PDU session may include APN in Use, Assigned Session Type, IP Address (es), PGW F-TEID, SCEF ID, and Default bearer. In addition, the contexts stored for each bearer are EPS Bearer ID, TI, TFT, SGW F-TEID, PGW F-TEID, MME F-TEID, eNB Address, NR node Address, WAG Address, eNB ID, NR node. ID and WAG ID may be included.
 また、EPC内のMME_A40と5GC内のAMF_A240の間にコアネットワーク間のインターフェースとして、N26インターフェースがあってよい。ここで、N26インターフェースは、5GSとEPSのシステム間インターワーキングのためのオプションのインターフェースである。 Also, there may be an N26 interface as an interface between the core networks between MME_A40 in EPC and AMF_A240 in 5GC. Here, the N26 interface is an optional interface for inter-system interworking between 5GS and EPS.
 尚、N26インターフェースは、5GSとEPS間で、UE_A10等の移動管理(Mobility management)状態、及び、UEとSMF間のSM(Session Management)状態に関する情報の交換のための送受信を可能にするインターフェースであってよい。更に、N26インターフェースは、N1モードからS1へのシステム間変更(inter-system change)のためのシームレスなセッション継続を可能にするために必要とされるインターフェースであってよい。 The N26 interface is an interface that enables transmission and reception for exchanging information on the mobility management status such as UE_A10 and the SM (Session Management) status between the UE and SMF between 5GS and EPS. It may be there. In addition, the N26 interface may be the interface required to enable seamless session continuity for inter-system change from N1 mode to S1.
 [1.2.4.SMFの構成]
 次に、SMF_A230の装置構成例を、図8に示す。図8に示すように、SMF_A230は、それぞれ、制御部_D800、ネットワーク接続部_D820、記憶部_D840で構成されている。ネットワーク接続部_D820及び記憶部_D840は、制御部_D800とバスを介して接続されている。また、記憶部_D840は、コンテキスト742を記憶している。
[1.2.4. SMF configuration]
Next, an example of the device configuration of SMF_A230 is shown in FIG. As shown in FIG. 8, the SMF_A230 is composed of a control unit_D800, a network connection unit_D820, and a storage unit_D840, respectively. The network connection unit _D820 and the storage unit _D840 are connected to the control unit _D800 via a bus. In addition, the storage unit_D840 stores the context 742.
 SMF_A230の制御部_D800は、SMF_A230全体を制御する為の機能部であり、記憶部_D840に記憶されている各種の情報やプログラムを読みだして実行することにより、SMF_A230全体の各種処理を実現する。 The control unit_D800 of SMF_A230 is a functional unit for controlling the entire SMF_A230, and realizes various processes of the entire SMF_A230 by reading and executing various information and programs stored in the storage unit_D840. To do.
 また、SMF_A230のネットワーク接続部_D820は、SMF_A230が、AMF_A240、UPF_A235、UDM、PCFと接続する為の機能部である。言い換えると、SMF_A230は、ネットワーク接続部_D820を介して、AMF_A240、UPF_A235、UDM、PCF との間で、ユーザデータ及び/又は制御情報を送受信することができる。 Also, the network connection part_D820 of SMF_A230 is a functional part for SMF_A230 to connect with AMF_A240, UPF_A235, UDM, and PCF. In other words, the SMF_A230 can send and receive user data and / or control information to and from the AMF_A240, UPF_A235, UDM, and PCF via the network connection _D820.
 また、SMF_A230の記憶部_D840は、SMF_A230 の各動作に必要なプログラムやデータ等を記憶する機能部である。SMF_A230の記憶部_D840は、例えば、半導体メモリや、HDD、SSD等により構成されている。SMF_A230の記憶部_D840は、後述する通信手続き内で送受信する制御メッセージに含まれる識別情報、制御情報、フラグ、パラメータ等を記憶している。また、SMF_A230の記憶部_D840で記憶されるコンテキスト742としては、UEごとに記憶されるコンテキストと、APNごとに記憶されるコンテキストと、PDUセッションごとに記憶されるコンテキストと、ベアラごとに記憶されるコンテキストがあってよい。UEごとに記憶されるコンテキストは、IMSI、ME Identity、MSISDN、RAT typeを含んでもよい。APNごとに記憶されるコンテキストは、APN in useを含んでもよい。尚、APNごとに記憶されるコンテキストは、Data Network Identifierごとに記憶されてもよい。PDUセッションごとに記憶されるコンテキストは、Assigned Session Type、IP Address(es)、SGW F-TEID、PGW F-TEID、Default Bearerを含んでもよい。ベアラごとに記憶されるコンテキストは、EPS Bearer ID、TFT、SGW F-TEID、PGW F-TEIDを含んでもよい。 In addition, the storage unit_D840 of SMF_A230 is a functional unit that stores programs and data required for each operation of SMF_A230. The storage unit_D840 of the SMF_A230 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like. The storage unit_D840 of SMF_A230 stores identification information, control information, flags, parameters, etc. included in control messages transmitted and received in the communication procedure described later. The context 742 stored in the storage unit_D840 of SMF_A230 includes a context stored for each UE, a context stored for each APN, a context stored for each PDU session, and a context stored for each bearer. There may be a context. The context stored for each UE may include IMSI, MEIdentity, MSISDN, and RATtype. The context stored for each APN may include APN in use. The context stored for each APN may be stored for each Data Network Identifier. The context stored for each PDU session may include AssignedSessionType, IPAddress (es), SGWF-TEID, PGWF-TEID, DefaultBearer. The context stored for each bearer may include EPS Bearer ID, TFT, SGW F-TEID, and PGW F-TEID.
 [1.2.5.PGW/UPFの構成]
 次に、PGW_A30又はUPF_A235の装置構成例を、図8に示す。図8に示すように、PGW_A30又はUPF_A235は、それぞれ、制御部_D800、ネットワーク接続部_D820、記憶部_D840で構成されている。ネットワーク接続部_D820及び記憶部_D840は、制御部_D800とバスを介して接続されている。また、記憶部_D840は、コンテキスト742を記憶している。
[1.2.5. PGW / UPF configuration]
Next, an example of the device configuration of PGW_A30 or UPF_A235 is shown in FIG. As shown in FIG. 8, PGW_A30 or UPF_A235 is composed of a control unit_D800, a network connection unit_D820, and a storage unit_D840, respectively. The network connection unit _D820 and the storage unit _D840 are connected to the control unit _D800 via a bus. In addition, the storage unit_D840 stores the context 742.
 PGW_A30又はUPF_A235の制御部_D800は、PGW_A30又はUPF_A235全体を制御する為の機能部であり、記憶部_D840に記憶されている各種の情報やプログラムを読みだして実行することにより、PGW_A30又はUPF_A235全体の各種処理を実現する。 The control unit_D800 of PGW_A30 or UPF_A235 is a functional unit for controlling the entire PGW_A30 or UPF_A235, and by reading and executing various information and programs stored in the storage unit_D840, PGW_A30 or UPF_A235 Realize various processing as a whole.
 また、PGW_A30又はUPF_A235のネットワーク接続部_D820は、PGW_A30又はUPF_A235が、DN(つまり、DN_A5)、SMF_A230、他のUPF_A235、及び、アクセスネットワーク(つまり、UTRAN_A20とE-UTRAN_A80とNG-RAN_A120)と接続する為の機能部である。言い換えると、UPF_A235は、ネットワーク接続部_D820を介して、DN(つまり、DN_A5)、SMF_A230、他のUPF_A235、及び、アクセスネットワーク(つまり、UTRAN_A20とE-UTRAN_A80とNG-RAN_A120)との間で、ユーザデータ及び/又は制御情報を送受信することができる。 In addition, the network connection part_D820 of PGW_A30 or UPF_A235 connects PGW_A30 or UPF_A235 to DN (that is, DN_A5), SMF_A230, other UPF_A235, and access networks (that is, UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120). It is a functional part to do. In other words, UPF_A235 is between the DN (ie DN_A5), SMF_A230, other UPF_A235, and the access network (ie UTRAN_A20 and E-UTRAN_A80 and NG-RAN_A120) via the network connection_D820. User data and / or control information can be sent and received.
 また、UPF_A235の記憶部_D840は、UPF_A235の各動作に必要なプログラムやデータ等を記憶する機能部である。UPF_A235の記憶部_D840は、例えば、半導体メモリや、HDD、SSD等により構成されている。UPF_A235の記憶部_D840は、後述する通信手続き内で送受信する制御メッセージに含まれる識別情報、制御情報、フラグ、パラメータ等を記憶している。また、UPF_A235の記憶部_D840で記憶されるコンテキスト742としては、UEごとに記憶されるコンテキストと、APNごとに記憶されるコンテキストと、PDUセッションごとに記憶されるコンテキストと、ベアラごとに記憶されるコンテキストがあってよい。UEごとに記憶されるコンテキストは、IMSI、ME Identity、MSISDN、RAT typeを含んでもよい。APNごとに記憶されるコンテキストは、APN in useを含んでもよい。尚、APNごとに記憶されるコンテキストは、Data Network Identifierごとに記憶されてもよい。PDUセッションごとに記憶されるコンテキストは、Assigned Session Type、IP Address(es)、SGW F-TEID、PGW F-TEID、Default Bearerを含んでもよい。ベアラごとに記憶されるコンテキストは、EPS Bearer ID、TFT、SGW F-TEID、PGW F-TEIDを含んでもよい。 In addition, the storage unit_D840 of UPF_A235 is a functional unit that stores programs, data, etc. required for each operation of UPF_A235. The storage unit_D840 of UPF_A235 is composed of, for example, a semiconductor memory, an HDD, an SSD, or the like. The storage unit_D840 of UPF_A235 stores identification information, control information, flags, parameters, etc. included in control messages transmitted and received in the communication procedure described later. In addition, as the context 742 stored in the storage unit_D840 of UPF_A235, the context stored for each UE, the context stored for each APN, the context stored for each PDU session, and the context stored for each bearer are stored. There may be a context. The context stored for each UE may include IMSI, MEIdentity, MSISDN, and RATtype. The context stored for each APN may include APN in use. The context stored for each APN may be stored for each Data Network Identifier. The context stored for each PDU session may include AssignedSessionType, IPAddress (es), SGWF-TEID, PGWF-TEID, DefaultBearer. The context stored for each bearer may include EPS Bearer ID, TFT, SGW F-TEID, and PGW F-TEID.
 [1.2.6.上記各装置の記憶部に記憶される情報]
 次に、上記各装置の記憶部で記憶される各情報について、説明する。
[1.2.6. Information stored in the storage unit of each of the above devices]
Next, each information stored in the storage unit of each of the above devices will be described.
 IMSI(International Mobile Subscriber Identity)は、加入者(ユーザ)の永久的な識別情報であり、UEを使用するユーザに割り当てられる識別情報である。UE_A10及びMME_A40/CPF_A140/AMF_A2400及びSGW_A35が記憶するIMSIは、HSS_A50が記憶するIMSIと等しくてよい。 IMSI (International Mobile Subscriber Identity) is the permanent identification information of the subscriber (user), and is the identification information assigned to the user who uses the UE. The IMSI stored by UE_A10 and MME_A40 / CPF_A140 / AMF_A2400 and SGW_A35 may be equal to the IMSI stored by HSS_A50.
 EMM State/MM Stateは、UE_A10又はMME_A40/CPF_A140/AMF_A240の移動管理(Mobility management)状態を示す。例えば、EMM State/MM Stateは、UE_A10がネットワークに登録されているEMM-REGISTERED状態(登録状態)、及び/又はUE_A10がネットワークに登録されていないEMM-DEREGISTERD状態(非登録状態)でもよい。また、EMM State/MM Stateは、UE_A10とコアネットワーク間の接続が維持されているECM-CONNECTED状態、及び/又は接続が解放されているECM-IDLE状態でもよい。尚、EMM State/MM Stateは、UE_A10がEPCに登録されている状態と、NGC又は5GCに登録されている状態とを、区別できる情報であってもよい。 EMM State / MM State indicates the mobility management state of UE_A10 or MME_A40 / CPF_A140 / AMF_A240. For example, the EMM State / MM State may be an EMM-REGISTERED state (registered state) in which UE_A10 is registered in the network, and / or an EMM-DEREGISTERD state (unregistered state) in which UE_A10 is not registered in the network. Further, the EMM State / MM State may be an ECM-CONNECTED state in which the connection between UE_A10 and the core network is maintained, and / or an ECM-IDLE state in which the connection is released. The EMM State / MM State may be information that can distinguish between the state in which UE_A10 is registered in the EPC and the state in which it is registered in the NGC or 5GC.
 GUTI(Globally Unique Temporary Identity)は、UE_A10の一時的な識別情報である。GUTIは、MME_A40/CPF_A140/AMF_A240の識別情報(GUMMEI(Globally Unique MME Identifier))と特定MME_A40/CPF_A140/AMF_A240内でのUE_A10の識別情報(M-TMSI(M-Temporary Mobile Subscriber Identity))とにより構成される。ME Identityは、UE_A10又はMEのIDであり、例えば、IMEI(International Mobile Equipment Identity)やIMEISV(IMEI Software Version)でもよい。MSISDNは、UE_A10の基本的な電話番号を表す。MME_A40/CPF_A140/AMF_A240が記憶するMSISDNはHSS_A50の記憶部により示された情報でよい。尚、GUTIには、CPF_140を識別する情報が含まれてもよい。 GUTI (Globally Unique Temporary Identity) is a temporary identification information of UE_A10. GUTI is composed of MME_A40 / CPF_A140 / AMF_A240 identification information (GUMMEI (Globally Unique MME Identifier)) and UE_A10 identification information (M-TMSI (M-Temporary Mobile Subscriber Identity)) within the specific MME_A40 / CPF_A140 / AMF_A240. Will be done. MEIdentity is UE_A10 or ME ID, and may be, for example, IMEI (International Mobile Equipment Identity) or IMEISV (IMEI Software Version). MSISDN represents the basic telephone number of UE_A10. The MSISDN stored by MME_A40 / CPF_A140 / AMF_A240 may be the information indicated by the storage unit of HSS_A50. The GUTI may include information that identifies CPF_140.
 MME F-TEIDは、MME_A40/CPF_A140/AMF_A240を識別する情報である。MME F-TEIDには、MME_A40/CPF_A140/AMF_A240のIPアドレスが含まれてもよいし、MME_A40/CPF_A140/AMF_A240のTEID(Tunnel Endpoint Identifier)が含まれてもよいし、これらの両方が含まれてもよい。また、MME_A40/CPF_A140/AMF_A240のIPアドレスとMME_A40/CPF_A140/AMF_A240のTEIDは独立して記憶されてもよい。また、MME F-TEIDは、ユーザデータ用の識別情報でもよいし、制御情報用の識別情報でもよい。 MME F-TEID is information that identifies MME_A40 / CPF_A140 / AMF_A240. The MME F-TEID may include the IP address of MME_A40 / CPF_A140 / AMF_A240, the TEID (Tunnel Endpoint Identifier) of MME_A40 / CPF_A140 / AMF_A240, or both of them. May be good. Further, the IP address of MME_A40 / CPF_A140 / AMF_A240 and the TEID of MME_A40 / CPF_A140 / AMF_A240 may be stored independently. Further, the MME F-TEID may be identification information for user data or identification information for control information.
 SGW F-TEIDは、SGW_A35を識別する情報である。SGW F-TEIDには、SGW_A35のIPアドレスが含まれてもよいし、SGW_A35のTEIDが含まれてもよいし、これら両方が含まれてもよい。また、SGW_A35のIPアドレスとSGW_A35のTEIDとは、独立して記憶されてもよい。また、SGW F-TEIDは、ユーザデータ用の識別情報でもよいし、制御情報用の識別情報でもよい。 SGW F-TEID is information that identifies SGW_A35. The SGW F-TEID may include the IP address of SGW_A35, the TEID of SGW_A35, or both of them. Further, the IP address of SGW_A35 and the TEID of SGW_A35 may be stored independently. Further, the SGW F-TEID may be identification information for user data or identification information for control information.
 PGW F-TEIDは、PGW_A30/UPGW_A130/SMF_A230/UPF_A235を識別する情報である。PGW F-TEIDには、PGW_A30/UPGW_A130/SMF_A230/UPF_A235のIPアドレスが含まれてもよいし、PGW_A30/UPGW_A130/SMF_A230/UPF_A235のTEIDが含まれてもよいし、これらの両方が含まれてもよい。また、PGW_A30/UPGW_A130/SMF_A230/UPF_A235のIPアドレスとPGW_A30/UPGW_A130/SMF_A230/UPF_A235のTEIDは独立して記憶されてもよい。また、PGW F-TEIDは、ユーザデータ用の識別情報でもよいし、制御情報用の識別情報でもよい。 PGW F-TEID is information that identifies PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235. The PGW F-TEID may include the IP address of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235, the TEID of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235, or both. Good. Further, the IP address of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235 and the TEID of PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235 may be stored independently. Further, the PGW F-TEID may be identification information for user data or identification information for control information.
 eNB F-TEIDはeNB_A45を識別する情報である。eNB F-TEIDには、eNB_A45のIPアドレスが含まれてもよいし、eNB_A45のTEIDが含まれてもよいし、これら両方が含まれてもよい。また、eNB_A45のIPアドレスとSGW_A35のTEIDとは、独立して記憶されてもよい。また、eNB F-TEIDは、ユーザデータ用の識別情報でもよいし、制御情報用の識別情報でもよい。 ENB F-TEID is information that identifies eNB_A45. The eNB F-TEID may include the IP address of eNB_A45, the TEID of eNB_A45, or both of them. Further, the IP address of eNB_A45 and the TEID of SGW_A35 may be stored independently. Further, the eNB F-TEID may be identification information for user data or identification information for control information.
 また、APNは、コアネットワークとDN等の外部ネットワークとを識別する識別情報でよい。さらに、APNは、コアネットワークA_90を接続するPGW_A30/UPGW_A130/UPF_A235等のゲートウェイを選択する情報として用いることもできる。尚、APNは、DNN(Data Network Name)であってもよい。従って、APNのことをDNNと表現してもよいし、DNNのことをAPNと表現してもよい。 In addition, APN may be identification information that identifies the core network and the external network such as DN. Furthermore, the APN can also be used as information for selecting a gateway such as PGW_A30 / UPGW_A130 / UPF_A235 that connects the core network A_90. The APN may be a DNN (Data Network Name). Therefore, APN may be expressed as DNN, and DNN may be expressed as APN.
 尚、APNは、こうしたゲートウェイを識別する識別情報でもよいし、DN等の外部ネットワークを識別する識別情報でもよい。尚、コアネットワークとDNとを接続するゲートウェイが複数配置される場合には、APNによって選択可能なゲートウェイは複数あってもよい。さらに、APN以外の識別情報を用いた別の手法によって、こうした複数のゲートウェイの中から1つのゲートウェイを選択してもよい。 Note that the APN may be identification information that identifies such a gateway, or identification information that identifies an external network such as a DN. When a plurality of gateways connecting the core network and the DN are arranged, there may be a plurality of gateways that can be selected by the APN. Furthermore, one gateway may be selected from a plurality of these gateways by another method using identification information other than APN.
 UE Radio Access Capabilityは、UE_A10の無線アクセス能力を示す識別情報である。UE Network Capabilityは、UE_A10にサポートされるセキュリティーのアルゴリズムと鍵派生関数を含める。MS Network Capabilityは、GERAN_A25及び/又はUTRAN_A20機能をもつUE_A10に対して、SGSN_A42に必要な1以上の情報を含める情報である。Access Restrictionは、アクセス制限の登録情報である。eNB Addressは、eNB_A45のIPアドレスである。MME UE S1AP IDは、MME_A40/CPF_A140/AMF_A240内でUE_A10を識別する情報である。eNB UE S1AP IDは、eNB_A45内でUE_A10を識別する情報である。 UERadioAccessCapability is identification information indicating the wireless access capability of UE_A10. UENetworkCapability includes security algorithms and key derivation functions supported by UE_A10. MS Network Capability is information that includes one or more information required for SGSN_A42 for UE_A10 having GERAN_A25 and / or UTRAN_A20 functions. Access Restriction is registration information for access restrictions. eNB Address is the IP address of eNB_A45. The MMEUES1APID is information that identifies UE_A10 in MME_A40 / CPF_A140 / AMF_A240. The eNB UES1AP ID is information that identifies UE_A10 in eNB_A45.
 APN in Useは、最近使用されたAPNである。APN in UseはData Network Identifierでもよい。このAPNは、ネットワークの識別情報と、デフォルトのオペレータの識別情報とで構成されてよい。さらに、APN in Useは、PDUセッションの確立先のDNを識別する情報でもよい。 APN in Use is a recently used APN. APN in Use may be a Data Network Identifier. This APN may consist of network identification information and default operator identification information. Further, APN in Use may be information that identifies the DN at which the PDU session is established.
 Assigned Session Typeは、PDUセッションのタイプを示す情報である。Assigned Session TypeはAssigned PDN Typeでもよい。PDUセッションのタイプは、IPでもよいし、non-IPでもよい。さらに、PDUセッションのタイプがIPである場合、ネットワークから割り当てられたPDNのタイプを示す情報をさらに含んでもよい。尚、Assigned Session Typeは、IPv4、IPv6、又はIPv4v6でよい。 Assigned Session Type is information indicating the type of PDU session. The Assigned Session Type may be the Assigned PDN Type. The type of PDU session can be IP or non-IP. In addition, if the type of PDU session is IP, it may further include information indicating the type of PDN assigned by the network. The AssignedSessionType may be IPv4, IPv6, or IPv4v6.
 また、特に記載がない場合には、IP Addressは、UEに割り当てられたIPアドレスである。IPアドレスは、IPv4アドレスでもよいし、IPv6アドレスでもよいし、IPv6プレフィックスでもよいし、インターフェースIDであってもよい。尚、Assigned Session Typeがnon-IPを示す場合、IP Addressの要素を含まなくてもよい。 Unless otherwise specified, IP Address is the IP address assigned to the UE. The IP address may be an IPv4 address, an IPv6 address, an IPv6 prefix, or an interface ID. When AssignedSessionType indicates non-IP, it is not necessary to include the element of IPAddress.
 DN IDは、コアネットワーク_B190とDN等の外部ネットワークとを識別する識別情報である。さらに、DN IDは、コアネットワーク_B190を接続するUPGW_A130又はPF_A235等のゲートウェイを選択する情報として用いることもできる。 DN ID is identification information that distinguishes the core network_B190 from an external network such as DN. Furthermore, the DN ID can also be used as information for selecting a gateway such as UPGW_A130 or PF_A235 that connects the core network_B190.
 尚、DN IDは、こうしたゲートウェイを識別する識別情報でもよいし、DN等の外部ネットワークを識別する識別情報でもよい。尚、コアネットワーク_B190とDNとを接続するゲートウェイが複数配置される場合には、DN IDによって選択可能なゲートウェイは複数あってもよい。さらに、DN ID以外の識別情報を用いた別の手法によって、こうした複数のゲートウェイの中から1つのゲートウェイを選択してもよい。 Note that the DN ID may be identification information that identifies such a gateway, or identification information that identifies an external network such as a DN. When a plurality of gateways connecting the core network_B190 and the DN are arranged, there may be a plurality of gateways that can be selected by the DN ID. Further, one gateway may be selected from the plurality of gateways by another method using identification information other than DNID.
 さらに、DN IDは、APNと等しい情報でもよいし、APNとは異なる情報でもよい。尚、DN IDとAPNが異なる情報である場合、各装置は、DN IDとAPNとの対応関係を示す情報を管理してもよいし、DN IDを用いてAPNを問い合わせる手続きを実施してもよいし、APNを用いてDN IDを問い合わせる手続きを実施してもよい。 Furthermore, the DN ID may be information equal to the APN or information different from the APN. If the DN ID and the APN are different information, each device may manage the information indicating the correspondence between the DN ID and the APN, or may carry out the procedure for inquiring the APN using the DN ID. Alternatively, the procedure for inquiring the DN ID using the APN may be carried out.
 SCEF IDは、PDUセッションで用いられているSCEF_A46のIPアドレスである。Default Bearerは、PDUセッション確立時に取得及び/又は生成する情報であり、PDUセッションに対応づけられたデフォルトベアラ(default bearer)を識別する為のEPSベアラ識別情報である。 SCEFID is the IP address of SCEF_A46 used in the PDU session. The Default Bearer is information acquired and / or generated when the PDU session is established, and is EPS bearer identification information for identifying the default bearer associated with the PDU session.
 EPS Bearer IDは、EPSベアラの識別情報である。また、EPS Bearer IDは、SRB(Signalling Radio Bearer)及び/又はCRB(Control-plane Radio bearer)を識別する識別情報でもよいし、DRB(Data Radio Bearer)を識別する識別情報でもよい。TI(Transaction Identifier)は、双方向のメッセージフロー(Transaction)を識別する識別情報である。尚、EPS Bearer IDは、デディケイテッドベアラ(dedicated bearer)を識別するEPSベアラ識別情報でよい。したがって、デフォルトベアラとは異なるEPSベアラを識別する識別情報でよい。TFTは、EPSベアラと関連づけられた全てのパケットフィルターを示す。TFTは送受信するユーザデータの一部を識別する情報であり、UE_A10は、TFTによって識別されたユーザデータを、TFTに関連付けたEPSベアラを用いて送受信する。さらに言い換えると、UE_A10は、TFTによって識別されたユーザデータを、TFTに関連づけたRB(Radio Bearer)を用いて送受信する。また、TFTは、送受信するアプリケーションデータ等のユーザデータを適切な転送路に対応づけるものでもよく、アプリケーションデータを識別する識別情報でもよい。また、UE_A10は、TFTで識別できないユーザデータを、デフォルトベアラを用いて送受信してもよい。また、UE_A10は、デフォルトベアラに関連付けられたTFTを予め記憶しておいてもよい。 EPS Bearer ID is the identification information of EPS bearer. Further, the EPS Bearer ID may be identification information for identifying SRB (Signalling Radio Bearer) and / or CRB (Control-plane Radio bearer), or may be identification information for identifying DRB (Data Radio Bearer). TI (Transaction Identifier) is identification information that identifies a bidirectional message flow (Transaction). The EPS Bearer ID may be EPS bearer identification information that identifies the dedicated bearer. Therefore, the identification information that identifies the EPS bearer different from the default bearer may be used. TFT shows all packet filters associated with EPS bearers. The TFT is information that identifies a part of the user data to be transmitted / received, and UE_A10 transmits / receives the user data identified by the TFT using the EPS bearer associated with the TFT. In other words, UE_A10 sends and receives user data identified by the TFT using the RB (Radio Bearer) associated with the TFT. Further, the TFT may associate user data such as application data to be transmitted / received with an appropriate transfer path, or may be identification information for identifying application data. In addition, UE_A10 may send and receive user data that cannot be identified by the TFT using the default bearer. UE_A10 may also store the TFT associated with the default bearer in advance.
 Default Bearerは、PDUセッションに対応づけられたデフォルトベアラを識別するEPSベアラ識別情報である。尚、EPSベアラとは、UE_A10とPGW_A30/UPGW_A130/UPF_A235との間で確立する論理的な通信路でもよく、PDNコネクション/PDUセッションを構成する通信路でもよい。さらに、EPSベアラは、デフォルトベアラでもよく、デディケイテッドベアラでもよい。さらに、EPSベアラは、UE_A10とアクセスネットワーク内の基地局及び/又はアクセスポイントとの間で確立するRBを含んで構成されてよい。さらに、RBとEPSベアラとは1対1に対応づけられてよい。その為、RBの識別情報は、EPSベアラの識別情報と1対1に対応づけられてもよいし、同じ識別情報でもよい。尚、RBは、SRB及び/又はCRBでもよいし、DRBでもよい。また、Default Bearerは、PDUセッション確立時にUE_A10及び/又はSGW_A35及び/又はPGW_A30/UPGW_A130/SMF_A230/UPF_A235がコアネットワークから取得する情報でよい。尚、デフォルトベアラとは、PDNコネクション/PDUセッション中で最初に確立されるEPSベアラであり、1つのPDNコネクション/PDUセッション中に、1つしか確立することができないEPSベアラである。デフォルトベアラは、TFTに対応付けられていないユーザデータの通信に用いることができるEPSベアラであってもよい。また、デディケイテッドベアラとは、PDNコネクション/PDUセッション中でデフォルトベアラが確立された後に確立されるEPSベアラであり、1つのPDNコネクション/PDUセッション中に、複数確立することができるEPSベアラである。デディケイテッドベアラは、TFTに対応付けられたユーザデータの通信に用いることができるEPSベアラである。 Default Bearer is EPS bearer identification information that identifies the default bearer associated with the PDU session. The EPS bearer may be a logical communication path established between UE_A10 and PGW_A30 / UPGW_A130 / UPF_A235, or may be a communication path constituting a PDN connection / PDU session. Further, the EPS bearer may be a default bearer or a dedicated bearer. In addition, the EPS bearer may be configured to include an RB established between UE_A10 and a base station and / or access point in the access network. In addition, RBs and EPS bearers may have a one-to-one correspondence. Therefore, the RB identification information may be associated with the EPS bearer identification information on a one-to-one basis, or may be the same identification information. The RB may be SRB and / or CRB, or may be DRB. The Default Bearer may be information acquired by UE_A10 and / or SGW_A35 and / or PGW_A30 / UPGW_A130 / SMF_A230 / UPF_A235 from the core network when the PDU session is established. The default bearer is an EPS bearer that is first established in a PDN connection / PDU session, and is an EPS bearer that can be established only once in one PDN connection / PDU session. The default bearer may be an EPS bearer that can be used to communicate user data that is not associated with a TFT. A decadeted bearer is an EPS bearer that is established after the default bearer is established during a PDN connection / PDU session, and is an EPS bearer that can be established multiple times during a single PDN connection / PDU session. is there. A decadeted bearer is an EPS bearer that can be used to communicate user data associated with a TFT.
 User Identityは、加入者を識別する情報である。User Identityは、IMSIでもよいし、MSISDNでもよい。さらに、User Identityは、IMSI、MSISDN以外の識別情報でもよい。Serving Node Informationは、PDUセッションで用いられているMME_A40/CPF_A140/AMF_A240を識別する情報であり、MME_A40/CPF_A140/AMF_A240のIPアドレスでよい。 User Identity is information that identifies the subscriber. User Identity may be IMSI or MSISDN. Further, User Identity may be identification information other than IMSI and MSISDN. Serving Node Information is information that identifies MME_A40 / CPF_A140 / AMF_A240 used in the PDU session, and may be the IP address of MME_A40 / CPF_A140 / AMF_A240.
 eNB Addressは、eNB_A45のIPアドレスである。eNB IDは、eNB_A45内でUEを識別する情報である。MME Addressは、MME_A40/CPF_A140/AMF_A240のIPアドレスである。MME IDは、MME_A40/CPF_A140/AMF_A240を識別する情報である。NR node Addressは、NR node_A122のIPアドレスである。NR node IDは、NR node_A122を識別する情報である。WAG Addressは、WAGのIPアドレスである。WAG IDは、WAGを識別する情報である。 ENB Address is the IP address of eNB_A45. The eNB ID is information that identifies the UE in eNB_A45. MMEAddress is the IP address of MME_A40 / CPF_A140 / AMF_A240. The MME ID is information that identifies MME_A40 / CPF_A140 / AMF_A240. NR nodeAddress is the IP address of NR node_A122. The NR node ID is information that identifies the NR node_A122. WAGAddress is the IP address of WAG. WAG ID is information that identifies WAG.
 アンカー、もしくはアンカーポイントとは、DNとPDUセッションのゲートウェイ機能を備えるUPFである。アンカーポイントとなるUPFはPDUセッションアンカーであってもよいし、アンカーであってもよい。 Anchor or anchor point is a UPF that has a gateway function for DN and PDU sessions. The UPF serving as an anchor point may be a PDU session anchor or an anchor.
 SSCモードは、5GCにおいて、システム、及び/又は各装置がサポートするサービスセッション継続(Session and Service Continuity)のモードを示すものである。より詳細には、UE_A10とアンカーポイント)との間で確立されたPDUセッションがサポートするサービスセッション継続の種類を示すモードであってもよい。ここで、アンカーポイントは、UPGWであってもよいし、UPF_A235であってもよい。なお、SSC modeはPDUセッション毎に設定されるサービスセッション継続の種類を示すモードであってもよい。さらに、SSC modeは、SSC mode 1、SSC mode 2、SSC mode 3の3つのモードから構成されていてもよい。SSC modeはアンカーポイントに関連付けられており、PDUセッションが確立されている状態の間変更されることはできない。 The SSC mode indicates the mode of service session continuity (Session and Service Continuity) supported by the system and / or each device in 5GC. More specifically, it may be a mode indicating the types of service session continuation supported by the PDU session established between UE_A10 and the anchor point). Here, the anchor point may be UPGW or UPF_A235. Note that SSC mode may be a mode indicating the type of service session continuation set for each PDU session. Further, the SSC mode may be composed of three modes, SSC mode 1, SSC mode 2, and SSC mode 3. The SSC mode is associated with the anchor point and cannot be changed while the PDU session is established.
 さらに、本実施形態におけるSSC mode 1は、UE_A10がネットワークに接続する際に用いるRAT(Radio Access Technology)やセル等のアクセステクノロジーに関わらず、同じUPFがアンカーポイントとして維持され続けるサービスセッション継続のモードである。より詳細には、SSC mode 1は、UE_A10のモビリティが発生しても、確立しているPDUセッションが用いるアンカーポイントを変更せずに、サービスセッション継続を実現するモードであってもよい。 Further, SSC mode 1 in the present embodiment is a service session continuation mode in which the same UPF is maintained as an anchor point regardless of the access technology such as RAT (Radio Access Technology) and cell used when UE_A10 connects to the network. Is. More specifically, SSC mode1 may be a mode that realizes the continuation of the service session without changing the anchor point used by the established PDU session even when the mobility of UE_A10 occurs.
 さらに、本実施形態におけるSSC mode 2は、PDUセッション内に1つのSSC mode2に関連付けられたアンカーポイントを含む場合、先にPDUセッションを解放してから、続けてPDUセッションを確立するサービスセッション継続のモードである。より詳細には、SSC mode2は、アンカーポイントのリロケーションが発生した場合、一度PDUセッションを削除してから、新たにPDUセッションを確立するモードである。 Further, when SSC mode2 in the present embodiment includes an anchor point associated with one SSC mode2 in the PDU session, the service session continuation in which the PDU session is released first and then the PDU session is established continuously. The mode. More specifically, SSC mode2 is a mode in which when an anchor point relocation occurs, the PDU session is deleted once and then a new PDU session is established.
 さらに、SSC mode 2は、UPFのサービングエリア内でのみ、同じUPFをアンカーポイントとして維持され続けるサービスセッション継続のモードである。より詳細には、SSC mode 2は、UE_A10がUPFのサービングエリア内にいる限り、確立しているPDUセッションが用いるUPFを変更せずに、サービスセッション継続を実現するモードであってもよい。さらに、SSC mode 2は、UPFのサービングエリアから出るような、UE_A10のモビリティが発生した場合に、確立しているPDUセッションが用いるUPFを変更して、サービスセッション継続を実現するモードであってもよい。 Furthermore, SSC mode2 is a service session continuation mode in which the same UPF is maintained as an anchor point only within the serving area of the UPF. More specifically, SSC mode2 may be a mode that realizes service session continuation without changing the UPF used by the established PDU session as long as UE_A10 is within the serving area of the UPF. Furthermore, SSC mode2 is a mode that realizes service session continuation by changing the UPF used by the established PDU session when the mobility of UE_A10 occurs, such as leaving the serving area of the UPF. Good.
 ここで、TUPFのサービングエリアとは、1つのUPFがサービスセッション継続機能を提供することができるエリアであってもよいし、UE_A10がネットワークに接続する際に用いるRATやセル等のアクセスネットワークのサブセットであってもよい。さらに、アクセスネットワークのサブセットとは、一又複数のRAT、及び/又はセルから構成されるネットワークであってもよいし、TAであってもよい。 Here, the TUPF serving area may be an area where one UPF can provide the service session continuation function, or a subset of the access network such as RAT and cell used when UE_A10 connects to the network. It may be. Further, the subset of the access network may be a network composed of one or more RATs and / or cells, or may be a TA.
 さらに、本実施形態におけるSSC mode 3は、UEとアンカーポイント間のPDUセッションを解放しないで、同じDNに対して新しいアンカーポイントとUE間でPDUセッションを確立することが出来るサービスセッション継続のモードである。 Further, SSC mode 3 in the present embodiment is a service session continuation mode in which a PDU session can be established between a new anchor point and the UE for the same DN without releasing the PDU session between the UE and the anchor point. is there.
 さらに、SSC mode 3は、UE_A10とUPFとの間で確立されたPDUセッション、及び/又は通信路を切断する前に、同じDNに対して、新たなUPFを介した新たなPDUセッション、及び/又は通信路を確立することを許可するサービスセッション継続のモードである。さらに、SSC mode 3は、UE_A10がマルチホーミングになることを許可するサービスセッション継続のモードであってもよい。 In addition, SSCmode3 will have a PDU session established between UE_A10 and the UPF, and / or a new PDU session via the new UPF for the same DN before disconnecting the communication path, and / Alternatively, it is a mode of service session continuation that allows the establishment of a communication path. Further, SSC mode 3 may be a service session continuation mode that allows UE_A10 to be multihoming.
 及び/又は、SSC mode 3は、複数のPDUセッション、及び/又はPDUセッションに対応づけられたUPFを用いたサービスセッション継続が許可されたモードであってもよい。言い換えると、SSC mode 3の場合、各装置は、複数のPDUセッションを用いてサービスセッション継続を実現してもよいし、複数のTUPFを用いてサービスセッション継続を実現してもよい。 And / or SSC mode 3 may be a mode in which the continuation of the service session using the UPF associated with a plurality of PDU sessions and / or the PDU session is permitted. In other words, in the case of SSC mode 3, each device may realize the service session continuation by using a plurality of PDU sessions, or may realize the service session continuation by using a plurality of TUPFs.
 ここで、各装置が、新たなPDUセッション、及び/又は通信路を確立する場合、新たなUPFの選択は、ネットワークによって実施されてもよいし、新たなUPFは、UE_A10がネットワークに接続した場所に最適なUPFであってもよい。さらに、複数のPDUセッション、及び/又はPDUセッションが用いるUPFが有効である場合、UE_A10は、アプリケーション、及び/又はフローの通信の新たに確立されたPDUセッションへの対応づけを、即座に実施してもよいし、通信の完了に基づいて実施してもよい。 Here, if each device establishes a new PDU session and / or communication path, the selection of the new UPF may be carried out by the network, and the new UPF is the location where UE_A10 is connected to the network. It may be the most suitable UPF. In addition, if the UPF used by multiple PDU sessions and / or PDU sessions is enabled, UE_A10 will immediately address the newly established PDU session for application and / or flow communication. It may be carried out based on the completion of communication.
 [1.3.初期手続きの説明]
 次に、本実施形態における初期手続きの詳細手順を説明する前に、重複説明を避ける為、本実施形態で特有の用語や、各手続きに用いる主要な識別情報を予め説明する。
[1.3. Explanation of initial procedure]
Next, before explaining the detailed procedure of the initial procedure in the present embodiment, in order to avoid duplicate explanation, the terms specific to the present embodiment and the main identification information used for each procedure will be described in advance.
 本実施形態における、ネットワークとは、アクセスネットワーク_A20/80、アクセスネットワーク_B80/120、コアネットワーク_A90、コアネットワーク_B190、DN_A5、及びPDN_A6のうち、少なくとも一部を指す。また、アクセスネットワーク_A20/80、アクセスネットワーク_B80/120、コアネットワーク_A90、コアネットワーク_B190、DN_A5、及びPDN_A6のうち、少なくとも一部に含まれる1以上の装置を、ネットワーク又はネットワーク装置と称してもよい。つまり、ネットワークがメッセージの送受信及び/又は手続きを実行するということは、ネットワーク内の装置(ネットワーク装置)がメッセージの送受信及び/又は手続きを実行することを意味する。 In the present embodiment, the network refers to at least a part of access network_A20 / 80, access network_B80 / 120, core network_A90, core network_B190, DN_A5, and PDN_A6. In addition, one or more devices included in at least a part of access network_A20 / 80, access network_B80 / 120, core network_A90, core network_B190, DN_A5, and PDN_A6 are referred to as a network or network device. You may call it. That is, the fact that the network executes the transmission / reception and / or procedure of the message means that the device (network device) in the network executes the transmission / reception and / or procedure of the message.
 本実施形態における、セッションマネジメント(SM; Session Management)メッセージ(NAS(Non-Access-Stratum) SMメッセージ又は、SMメッセージとも称する)は、SMのための手続き(セッションマネジメント手続き又は、SM手続きとも称する)で用いられるNASメッセージであってよく、AMF_A240を介してUE_A10とSMF_A230の間で送受信される制御メッセージであってよい。さらに、SMメッセージには、PDUセッション確立要求メッセージ、PDUセッション確立受諾メッセージ、PDUセッション完了メッセージ、PDUセッション拒絶メッセージ、PDUセッション変更要求メッセージ、PDUセッション変更受諾メッセージ、PDUセッション変更拒絶メッセージ等が含まれてもよい。また、SMのための手続きには、PDUセッション確立手続き、PDUセッション変更手続き等が含まれてもよい。 The session management (SM; Session Management) message (also referred to as NAS (Non-Access-Stratum) SM message or SM message) in the present embodiment is a procedure for SM (also referred to as session management procedure or SM procedure). It may be a NAS message used in the above, and may be a control message sent and received between UE_A10 and SMF_A230 via AMF_A240. Further, the SM message includes a PDU session establishment request message, a PDU session establishment acceptance message, a PDU session completion message, a PDU session rejection message, a PDU session change request message, a PDU session change acceptance message, a PDU session change rejection message, and the like. You may. In addition, the procedure for SM may include a PDU session establishment procedure, a PDU session change procedure, and the like.
 なお、SMメッセージのうち、UE_A10が送信するメッセージを、SM要求メッセージと表現する。具体的には、PDUセッション確立要求メッセージとPDUセッション変更要求メッセージは、SM要求メッセージである。 Of the SM messages, the message sent by UE_A10 is expressed as an SM request message. Specifically, the PDU session establishment request message and the PDU session change request message are SM request messages.
 本実施形態における、トラッキングエリア(TA; Tracking Areaとも称する)は、コアネットワークが管理する、UE_A10の位置情報で表すことが可能な範囲であり、例えば1以上のセルで構成されてもよい。また、TAは、ページングメッセージ等の制御メッセージがブロードキャストされる範囲でもよいし、UE_A10がハンドオーバー手続きをせずに移動できる範囲でもよい。 The tracking area (also referred to as TA; Tracking Area) in the present embodiment is a range that can be represented by the position information of UE_A10 managed by the core network, and may be composed of, for example, one or more cells. Further, the TA may be a range in which a control message such as a paging message is broadcast, or a range in which UE_A10 can move without performing a handover procedure.
 本実施形態における、TAリスト(TA list)は、ネットワークがUE_A10に割り当てた1以上のTAが含まれるリストである。尚、UE_A10は、TAリストに含まれる1以上のTA内を移動している間は、登録手続きを実行することなく移動することができてよい。言い換えると、TAリストは、UE_A10が登録手続きを実行することなく移動できるエリアを示す情報群であってよい。 The TA list in this embodiment is a list including one or more TAs assigned to UE_A10 by the network. Note that UE_A10 may be able to move without executing the registration procedure while moving within one or more TAs included in the TA list. In other words, the TA list may be a group of information indicating areas where UE_A10 can move without performing the registration procedure.
 本実施形態における、ネットワークスライス(Network Slice)とは、特定のネットワーク能力及びネットワーク特性を提供する論理的なネットワークである。以下、ネットワークスライスはNWスライスとも称する。 In this embodiment, the network slice is a logical network that provides specific network capabilities and network characteristics. Hereinafter, the network slice is also referred to as a NW slice.
 本実施形態におけるNSI(Network Slice Instance)とは、コアネットワーク_B190内に1又は複数構成される、ネットワークスライス(Network Slice)の実体である。また、本実施形態におけるNSIはNST(Network Slice Template)を用いて生成された仮想的なNF(Network Function)により構成されてもよい。ここで、NSTとは、要求される通信サービスや能力(capability)を提供する為のリソース要求に関連付けられ、1又は複数のNF(Network Function)の論理的表現である。つまり、NSIとは、複数のNFにより構成されたコアネットワーク_B190内の集合体でよい。また、NSIはサービス等によって配送されるユーザデータを分ける為に構成された論理的なネットワークでよい。ネットワークスライスには、少なくとも1つ以上のNFが構成されてよい。ネットワークスライスに構成されるNFは、他のネットワークスライスと共有される装置であってもよいし、そうでなくてもよい。UE_A10、及び/又ネットワーク内の装置は、NSSAI及び/又は、S-NSSAI及び/又は、UE usage type及び/又は、1又は複数のネットワークスライスタイプID及び/又は、1又は複数のNS ID等の登録情報及び/又はAPNに基づいて、1又は複数のネットワークスライスに割り当てられることができる。 The NSI (Network Slice Instance) in this embodiment is an entity of a network slice (Network Slice) composed of one or more in the core network_B190. Further, the NSI in this embodiment may be composed of a virtual NF (Network Function) generated by using NST (Network Slice Template). Here, NST is a logical expression of one or more NFs (Network Functions) associated with a resource request for providing a required communication service or capability. In other words, the NSI may be an aggregate in the core network_B190 composed of a plurality of NFs. In addition, NSI may be a logical network configured to divide user data delivered by services or the like. At least one or more NFs may be configured in the network slice. The NF configured in the network slice may or may not be a device shared with other network slices. UE_A10 and / or devices in the network include NSSAI and / or S-NSSAI and / or UE usage type and / or one or more network slice type IDs and / or one or more NS IDs, etc. It can be assigned to one or more network slices based on registration information and / or APN.
 本実施形態におけるS-NSSAIは、Single Network Slice Selection Assistance informationの略であり、ネットワークスライスを識別するための情報である。S-NSSAIは、SST(Slice/Service type)とSD(Slice Differentiator)で構成されていてよい。S-NSSAIはSSTのみが構成されてもよいし、SSTとSDの両方で構成されてもよい。ここで、SSTとは、機能とサービスの面で期待されるネットワークスライスの動作を示す情報である。また、SDは、SSTで示される複数のNSIから1つのNSIを選択する際に、SSTを補完する情報であってもよい。S-NSSAIは、PLMN(Public Land Mobile Network)ごとに特有な情報であってもよいし、PLMN間で共通化された標準の情報であってもし、PLMNごとに異なる通信事業者特有の情報であってもよい。 S-NSSAI in this embodiment is an abbreviation for Single Network Slice Selection Assistance information, and is information for identifying a network slice. S-NSSAI may be composed of SST (Slice / Service type) and SD (Slice Differentiator). S-NSSAI may be composed of SST only or both SST and SD. Here, SST is information indicating the operation of the network slice expected in terms of function and service. Further, SD may be information that complements SST when selecting one NSI from a plurality of NSIs represented by SST. S-NSSAI may be information specific to each PLMN (Public Land Mobile Network), standard information shared among PLMNs, or information specific to a telecommunications carrier that differs for each PLMN. There may be.
 より具体的には、SST及び/又はSDはPLMN間で共通化された標準の情報(Standard Value)であってもよいし、PLMNごとに異なる通信事業者特有の情報(Non Standard Value)であってもよい。 More specifically, SST and / or SD may be standard information (Standard Value) shared among PLMNs, or information specific to a telecommunications carrier (Non Standard Value) that differs for each PLMN. You may.
 また、ネットワークは、デフォルトのS-NSSAIとして、UE_A10の登録情報に1つまたは複数のS-NSSAIを記憶してもよい。 In addition, the network may store one or more S-NSSAI in the registration information of UE_A10 as the default S-NSSAI.
 本実施形態におけるNSSAI(Single Network Slice Selection Assistance information)はS-NSSAIの集まりである。NSSAIに含まれる、各S-NSSAIはアクセスネットワークまたはコアネットワークがNSIを選択するのをアシストする情報である。UE_A10はPLMNごとにネットワークから許可されたNSSAIを記憶してもよい。また、NSSAIはAMF_A240を選択するのに用いられる情報であってよい。 NSSAI (Single Network Slice Selection Assistance information) in this embodiment is a collection of S-NSSAI. Each S-NSSAI contained in NSSAI is information that assists the access network or core network in selecting NSI. UE_A10 may store NSSAI permitted from the network for each PLMN. Also, NSSAI may be the information used to select AMF_A240.
 本実施形態におけるオペレータA網は、ネットワークオペレータA(オペレータA)が運用しているネットワークである。ここで、例えば、オペレータAは後述のオペレータBと共通のNWスライスを展開していてもよい。 The operator A network in this embodiment is a network operated by network operator A (operator A). Here, for example, the operator A may develop a NW slice common to the operator B described later.
 本実施形態におけるオペレータB網は、ネットワークオペレータB(オペレータB)が運用しているネットワークである。ここで、例えば、オペレータBは、オペレータAと共通のNWスライスを展開していてもよい。 The operator B network in this embodiment is a network operated by network operator B (operator B). Here, for example, the operator B may develop a NW slice common to the operator A.
 本実施形態における第1のNWスライスは、UEが特定のDNに接続する際に確立PDUセッションが属するNWスライスである。尚、例えば、第1のNWスライスは、オペレータA網内で管理されるNWスライスであってもよいし、オペレータB網内で共通して管理されるNWスライスであってもよい。 The first NW slice in this embodiment is the NW slice to which the established PDU session belongs when the UE connects to a specific DN. For example, the first NW slice may be a NW slice managed in the operator A network or a NW slice commonly managed in the operator B network.
 本実施形態における第2のNWスライスは、第1のNWスライスに属するPDUセッションが接続先としているDNに接続できる別のPDUセッションが属するNWスライスである。尚、第1のNWスライスと第2のNWスライスとは、同じオペレータによって運用されてもよいし、異なるオペレータによって運用されてもよい。 The second NW slice in the present embodiment is a NW slice to which another PDU session that can connect to the DN to which the PDU session belonging to the first NW slice belongs belongs. The first NW slice and the second NW slice may be operated by the same operator or may be operated by different operators.
 本実施形態における、均等PLMN(equivalent PLMN)は、ネットワークで任意のPLMNと同じPLMNであるように扱われるPLMNのことである。 The equal PLMN (equivalent PLMN) in the present embodiment is a PLMN that is treated as if it is the same PLMN as any PLMN in the network.
 本実施形態におけるDCN(Dedicated Core Network)とは、コアネットワーク_A90内に、1つまたは複数構成される、特定の加入者タイプ専用のコアネットワークである。具体的には、例えば、M2M(Machine to Machine)通信機能の利用者として登録されたUEの為のDCNが、コアネットワーク_A90内に構成されていてもよい。また、その他に、適切なDCNがないUEのための、デフォルトDCNがコアネットワーク_A90内に構成されていてもよい。更に、DCNには、少なくとも1つ以上のMME_40またはSGSN_A42が配置されていてよく、さらに、少なくとも1つ以上のSGW_A35またはPGW_A30またはPCRF_A60が配置されてよい。尚、DCNは、DCN IDで識別されてもよいし、更にUEは、UE usage type及び/又はDCN ID等の情報に基づいて、1つのDCNに割り当てられてもよい。 The DCN (Dedicated Core Network) in this embodiment is a core network dedicated to a specific subscriber type, which is composed of one or more in the core network_A90. Specifically, for example, a DCN for a UE registered as a user of an M2M (Machine to Machine) communication function may be configured in the core network_A90. Alternatively, a default DCN may be configured within core network_A90 for UEs that do not have a suitable DCN. In addition, the DCN may be populated with at least one MME_40 or SGSN_A42, and may further be populated with at least one SGW_A35 or PGW_A30 or PCRF_A60. The DCN may be identified by the DCN ID, and the UE may be assigned to one DCN based on information such as the UE usage type and / or the DCN ID.
 本実施形態におけるバックオフタイマーは、PDUセッション確立手続き等のセッションマネジメントのための手続きの開始、及び/又はPDUセッション確立要求メッセージ等のSM(Session Management)メッセージの送信を管理するタイマーであり、セッションマネジメントの挙動を管理するためのバックオフタイマーの値を示す情報であってもよい。以下、バックオフタイマー及び/又はバックオフタイマーをタイマーと称することがある。バックオフタイマーが実行されている間は、各装置の、セッションマネジメントのための手続きの開始、及び/又はSMメッセージの送受信は禁止されていてもよい。尚、バックオフタイマーは、NWが適用した輻輳管理単位、及び/又はUEが識別した輻輳管理単位の少なくとも一つに関連付けて設定されていてもよい。例えば、APN/DNN単位、及び/又は1又は複数のNWスライスを示す識別情報単位、及び/又はセッションマネジメント手続きにおける拒絶理由値単位、及び/又はセッションマネジメント手続きにおいて拒絶が示されたセッション単位、及び/又はセッションマネジメント手続きのPTI単位の少なくとも一つの単位で設定されていてもよい。 The back-off timer in the present embodiment is a timer that manages the start of a procedure for session management such as a PDU session establishment procedure and / or the transmission of an SM (Session Management) message such as a PDU session establishment request message, and is a session. It may be information indicating the value of the backoff timer for managing the behavior of management. Hereinafter, the back-off timer and / or the back-off timer may be referred to as a timer. While the backoff timer is running, each device may be prohibited from starting procedures for session management and / or sending and receiving SM messages. The backoff timer may be set in association with at least one of the congestion management unit applied by the NW and / or the congestion management unit identified by the UE. For example, APN / DNN units and / or identification information units indicating one or more NW slices, and / or rejection reason value units in the session management procedure, and / or session units indicated to be rejected in the session management procedure, and / Or it may be set in at least one PTI unit of the session management procedure.
 尚、SMメッセージは、セッションマネジメントのための手続きで用いられるNASメッセージであってよく、AMF_A240を介してUE_A10とSMF_A230の間で送受信される制御メッセージであってよい。さらに、SMメッセージには、PDUセッション確立要求メッセージ、PDUセッション確立受諾メッセージ、PDUセッション完了メッセージ、PDUセッション拒絶メッセージ、PDUセッション変更要求メッセージ、PDUセッション変更受諾メッセージ、PDUセッション変更拒絶メッセージ、PDUセッション開放要求メッセージ、PDUセッション開放受諾メッセージ、PDUセッション開放拒絶メッセージ、PDUセッション開放コマンドメッセージ等が含まれてもよい。さらに、セッションマネジメントのための手続きには、PDUセッション確立手続き、PDUセッション変更手続き、PDUセッション開放手続き等が含まれてもよい。また、これら手続きにおいて、UE_A10が受信するメッセージ毎にバックオフタイマー値が含まれることがある。UEは、バックオフタイマーとして、NWから受信したバックオフタイマーを設定してもよいし、別の方法でタイマー値を設定してもよいし、ランダム値を設定してもよい。又、NWから受信したバックオフタイマーが複数で構成されている場合は、UEは、複数のバックオフタイマーに応じた複数の「バックオフタイマー」を管理してもよいし、UEが保持するポリシーに基づいて、NWから受けた複数のバックオフタイマー値から一つのタイマー値を選択し、バックオフタイマーに設定し、管理してもよい。例えば、2つのバックオフタイマー値を受けた場合、UEは、NWから受けたバックオフタイマー値を、「バックオフタイマー#1」と「バックオフタイマー#2」にそれぞれに設定し、管理する。又、UEが保持するポリシーに基づいて、NWから受けた複数のバックオフタイマー値から一つの値を選択し、バックオフタイマーに設定し、管理してもよい。 The SM message may be a NAS message used in the procedure for session management, and may be a control message sent and received between UE_A10 and SMF_A230 via AMF_A240. In addition, SM messages include PDU session establishment request message, PDU session establishment acceptance message, PDU session completion message, PDU session rejection message, PDU session change request message, PDU session change acceptance message, PDU session change rejection message, and PDU session release. A request message, a PDU session release acceptance message, a PDU session release refusal message, a PDU session release command message, and the like may be included. Further, the procedure for session management may include a PDU session establishment procedure, a PDU session change procedure, a PDU session opening procedure, and the like. Also, in these procedures, the backoff timer value may be included for each message received by UE_A10. The UE may set the backoff timer received from the NW as the backoff timer, may set the timer value by another method, or may set a random value. Further, when the backoff timer received from the NW is composed of a plurality of backoff timers, the UE may manage a plurality of "backoff timers" corresponding to the plurality of backoff timers, and the policy held by the UE. One timer value may be selected from a plurality of backoff timer values received from the NW, set in the backoff timer, and managed based on the above. For example, when two backoff timer values are received, the UE sets and manages the backoff timer values received from the NW in "backoff timer # 1" and "backoff timer # 2", respectively. Further, based on the policy held by the UE, one value may be selected from a plurality of backoff timer values received from the NW, set in the backoff timer, and managed.
 UE_A10は、NWから複数のバックオフタイマー値を受けた場合、複数のバックオフタイマーに応じた複数の「バックオフタイマー」を管理してもよい。ここで、UE_A10が受信する複数の「バックオフタイマー」を区別するため、以下、例えば「バックオフタイマー#1」又は「バックオフタイマー#2」のように記載することがある。尚、複数のバックオフタイマーは、一度のセッションマネジメント手続きで取得してもよいし、異なる別のセッションマネジメント手続きで取得してもよい。 UE_A10 may manage a plurality of "backoff timers" corresponding to a plurality of backoff timers when receiving a plurality of backoff timer values from the NW. Here, in order to distinguish a plurality of "backoff timers" received by UE_A10, the following may be described as, for example, "backoff timer # 1" or "backoff timer # 2". The plurality of backoff timers may be acquired by one session management procedure or by different different session management procedures.
 ここで、バックオフタイマーは、前述した通り1つのNWスライスを識別する為の情報に基づき関連する複数のNWスライスに対して設定され、再接続を抑止する為のバックオフタイマー、又はAPN/DNNと1つのNWスライスの組み合わせを単位として設定され、再接続を防止する為のバックオフタイマーであって良いが、これに限らず、APN/DNNと1つのNWスライスを識別する為の情報に基づき関連する複数のNWスライスとを組み合わせた単位で設定され、再接続を抑止する為のバックオフタイマーであってもよい。 Here, the back-off timer is set for a plurality of related NW slices based on the information for identifying one NW slice as described above, and is a back-off timer for suppressing reconnection, or an APN / DNN. It may be a backoff timer that is set in units of a combination of and one NW slice to prevent reconnection, but it is not limited to this, and it is based on the information for identifying the APN / DNN and one NW slice. It may be a back-off timer that is set in units of a combination of a plurality of related NW slices and suppresses reconnection.
 本実施形態におけるre-attempt(Re-attempt)情報は、拒絶されたPDUセッション確立要求(S1100)について、同一のDNN情報及び又はS-NSSAI情報を用いて再接続を許すかどうかをネットワーク(NW)がUE_A10に指示する情報である。 The re-attempt (Re-attempt) information in the present embodiment determines whether or not the rejected PDU session establishment request (S1100) is allowed to be reconnected by using the same DNN information and / or S-NSSAI information. ) Is the information to instruct UE_A10.
 この時、PDUセッション確立要求(1100)において、UEがDNNを含まないPDUセッション確立要求(S1100)を実行していた場合、DNNを含まない事を同一の情報と称する。又、PDUセッション確立要求(1100)において、UEがS-NSSAIを含まないPDUセッション確立要求(S1100)を実行していた場合、S-NSSAIを含まない事を同一の情報と称する。 At this time, if the UE is executing the PDU session establishment request (S1100) that does not include the DNN in the PDU session establishment request (1100), the fact that the DNN is not included is referred to as the same information. Further, when the UE executes the PDU session establishment request (S1100) that does not include S-NSSAI in the PDU session establishment request (1100), the fact that S-NSSAI is not included is referred to as the same information.
 尚、re-attempt情報は、UTRANアクセス及び/又はE-UTRANアクセス及び/又はNRアクセス及び/又はスライス情報及び/又は均等PLMN及び/又はS1モード及び/又はNWモード単位、で設定されてもよい。 The re-attempt information may be set in units of UTRAN access and / or E-UTRAN access and / or NR access and / or slice information and / or equal PLMN and / or S1 mode and / or NW mode. ..
 更に、アクセス単位(UTRANアクセス、E-UTRANアクセス、NRアクセス)で指定されたre-attempt情報は、アクセス変更を前提にネットワークへの同一の情報を用いた再接続を示す情報であってよい。。スライス単位で指定されたre-attempt情報は、拒絶されたスライスとは異なるスライス情報が指定され、指定されたスライス情報を用いた再接続は許されてもよい。 Furthermore, the re-attempt information specified in the access unit (UTRAN access, E-UTRAN access, NR access) may be information indicating reconnection using the same information to the network on the premise of access change. .. For the re-attempt information specified in slice units, slice information different from the rejected slice is specified, and reconnection using the specified slice information may be permitted.
 更に、均等PLMN単位で指定されたre-attempt情報は、PLMN変更時、変更先のPLMNが均等PLMNであれば同一の情報を用いた再接続を許可する事を示す情報であってよい。また、変更先のPLMNが均等PLMNではない場合、本手続を用いた再接続を許可しない事を示す情報であってよい。 Furthermore, the re-attempt information specified in units of equal PLMN may be information indicating that reconnection using the same information is permitted if the PLMN of the change destination is equal PLMN when the PLMN is changed. In addition, if the PLMN to be changed is not an equal PLMN, it may be information indicating that reconnection using this procedure is not permitted.
 更に、モード単位(S1モード、N1モード)で指定されたre-attempt情報は、モード変更時、変更先のモードが、S1モードであれば同一の情報を用いた再接続を許可する事を示す情報であってよい。また、変更先のモードが、S1モードであれば同一の情報を用いた再接続を許可しない事を示す情報であってよい。 Furthermore, the re-attempt information specified for each mode (S1 mode, N1 mode) indicates that when the mode is changed, if the mode to be changed is the S1 mode, reconnection using the same information is permitted. It may be information. Further, if the mode to be changed is the S1 mode, it may be information indicating that reconnection using the same information is not permitted.
 本実施形態におけるネットワークスライス関連付けルールとは、複数のネットワークスライスを識別する情報を関連付けるルールである。尚、ネットワークスライス関連付けルールは、PDUセッション拒絶メッセージで受信してもよいし、事前にUE_A10に設定されていてもよい。さらに、ネットワークスライス関連付けルールは、UE_A10において最も新しいものが適用されてもよい。逆に、UE_A10は最新のネットワークスライス関連付けルールに基づいた挙動を行ってもよい。例えば、UE_A10にあらかじめネットワークスライス関連付けルールが設定されている状態で、PDUセッション拒絶メッセージにて新たなネットワークスライス関連付けルールを受信した場合、UE_A10は、UE_A10内に保持するネットワークスライス関連付けルールを更新してもよい。 The network slice association rule in the present embodiment is a rule that associates information that identifies a plurality of network slices. The network slice association rule may be received in the PDU session rejection message, or may be set in UE_A10 in advance. In addition, the newest network slice association rule may be applied in UE_A10. Conversely, UE_A10 may behave based on the latest network slice association rules. For example, if UE_A10 has a network slice association rule set in advance and a new network slice association rule is received in the PDU session rejection message, UE_A10 updates the network slice association rule held in UE_A10. May be good.
 本実施形態におけるバックオフタイマーの優先管理ルールとは、複数のPDUセッションで起きた複数のバックオフタイマーを1つのバックオフタイマーにまとめて管理するために、UE_A10に設定されるルールである。例えば、競合又は重複する輻輳管理が適用された場合で、かつUEが複数のバックオフタイマーを保持している場合に、UE_A10は、バックオフタイマーの優先管理ルールに基づいて、複数のバックオフタイマーをまとめて管理してもよい。尚、競合又は、重複する輻輳管理が起きるパターンは、DNNのみに基づいた輻輳管理とDNNとスライス情報の両方に基づいた輻輳管理が同時に適用された場合で、この場合、DNNのみに基づいた輻輳管理が優先される。尚、バックオフタイマーの優先管理ルールは、これに限らなくてもよい。尚、バックオフタイマーは、PDUセッション拒絶メッセージに含まれるバックオフタイマーであってよい。 The priority management rule for the backoff timer in this embodiment is a rule set in UE_A10 in order to collectively manage a plurality of backoff timers that have occurred in a plurality of PDU sessions into one backoff timer. For example, if conflicting or duplicate congestion management is applied and the UE has multiple backoff timers, UE_A10 will have multiple backoff timers based on the backoff timer's preferred management rules. May be managed collectively. Note that the pattern in which conflict or duplicate congestion management occurs is when congestion management based only on DNN and congestion management based on both DNN and slice information are applied at the same time. In this case, congestion based only on DNN. Management is prioritized. The priority management rule for the backoff timer does not have to be limited to this. The backoff timer may be a backoff timer included in the PDU session rejection message.
 本実施形態におけるLADN(Local Area Data Network)とは、特定の場所においてのみUEが接続可能なDNであり、特定のDNN(つまりLADN DNN)に対する接続性を提供するものである。 The LADN (Local Area Data Network) in the present embodiment is a DN to which the UE can connect only in a specific place, and provides connectivity to a specific DNN (that is, LADN DNN).
 本実施形態におけるLADN情報は、LADNに関連する情報である。LADN情報は、UEが利用可能な特定のLADNを示す情報であってもよい。LADN情報には、LADN DNNと、LADN service area informationとが含まれてよい。LADN DNNは、LADNを示す情報であってもよく、LADNとして扱われるDNを示す情報であってもよく、LADNに対してPDUセッションを確立する際に用いるDNNであってよい。さらに、LADN service area informationは、LADN service areaを示す情報であってよい。さらに、LADN service area informationは、トラッキングエリアのセットとして提供されてもよいし、TAI(Tracking area identity) listとして提供されてもよい。尚、LADN service areaは、LADNに対するPDUセッションの確立が可能なエリアであってよいし、LADNへの接続が可能なエリアであってもよい。 The LADN information in this embodiment is information related to LADN. The LADN information may be information indicating a specific LADN available to the UE. The LADN information may include LADN DNN and LADN service area information. The LADN DNN may be information indicating LADN, information indicating a DN treated as LADN, or a DNN used when establishing a PDU session for LADN. Further, the LADN service area information may be information indicating the LADN service area. Further, LADN service area information may be provided as a set of tracking areas or as a TAI (Tracking area identity) list. The LADN service area may be an area where a PDU session for LADN can be established, or an area where connection to LADN is possible.
 本実施形態におけるLADNのためのPDUセッション(PDU session for LADN) は、LADNに関連づけられたDNNに対応づけられたPDUセッションである。LADNのためのPDUセッションは、LADNに対して確立されるPDUセッションであってよい。言い換えると、UEとLADNとの間に確立されるPDUセッションであってもよいし、UEとLADNとの間のユーザデータ通信に用いられるPDUセッションであってもよい。尚、LADNのためのPDUセッションは、LADN service areaにおいてのみ確立可能なPDUセッションであってもよい。 The PDU session for LADN (PDU session for LADN) in the present embodiment is a PDU session associated with the DNN associated with LADN. The PDU session for LADN may be a PDU session established for LADN. In other words, it may be a PDU session established between the UE and LADN, or it may be a PDU session used for user data communication between the UE and LADN. The PDU session for LADN may be a PDU session that can be established only in the LADN service area.
 本実施形態における5GLANタイプサービス(5G LAN-type service)は、5GSを介した、IPタイプ又はnon-IPタイプ通信による、プライベート通信を提供するサービスである。ここで、IPタイプ通信は、例えば、IPv4タイプ、又は、IPv6タイプ、又は、IPv4v6タイプのいずれかであってよく、non-IPタイプ通信は、例えば、Ethernetタイプであってよい。 The 5G LAN type service (5G LAN-type service) in the present embodiment is a service that provides private communication by IP type or non-IP type communication via 5GS. Here, the IP type communication may be, for example, either an IPv4 type, an IPv6 type, or an IPv4v6 type, and the non-IP type communication may be, for example, an Ethernet type.
 本実施形態における5G VN(Virtual Network)は、5G LANタイプサービスをサポートする、5GS上の仮想的なネットワーク(Virtual Network)である。 The 5G VN (Virtual Network) in this embodiment is a virtual network (Virtual Network) on 5GS that supports 5G LAN type services.
 本実施形態における5G VNグループ(5G Virtual Network(VN) Group)は、5G LANタイプサービスのためのプライベート通信に使用される、複数のUEで構成されるグループである。 The 5G VN group (5G Virtual Network (VN) Group) in this embodiment is a group composed of a plurality of UEs used for private communication for a 5G LAN type service.
 5G VNグループに関する情報として、5G VNグループID、及び、5G VNグループメンバーシップ、及び、5G VNグループデータが含まれていてもよく、5GSはこれらの情報を用いて、5G VNグループの管理をサポートする。ここで、5G VNグループIDは、5G VNグループを識別するために使用される、External Group ID及びInternal Group IDであってよい。5G VNグループメンバーシップとして、5G VNグループメンバーであるUEを一意に識別するため、GPSI(Generic Public Subscription Identifier)を用いてよい。5G VNグループデータは、PDUセッションタイプ、及び、DNN及びS-NSSAI、及び、アプリケーション記述子(Application descriptor)等の情報が含まれていてよい。 Information about the 5GVN group may include the 5GVN group ID, 5GVN group membership, and 5GVN group data, and 5GS uses this information to support the management of the 5GVN group. To do. Here, the 5GVN group ID may be an External Group ID and an Internal Group ID used to identify the 5GVN group. As a 5GVN group membership, GPSI (Generic Public Subscription Identifier) may be used to uniquely identify a UE that is a 5GVN group member. The 5GVN group data may include information such as a PDU session type, DNN and S-NSSAI, and an application descriptor.
 ここで、5G VNグループは、DNNと、1対1で対応付けられていてもよい。言い換えると、ひとつのDNNに対して、ひとつの5G VNグループが対応付けられていてもよく、特定の5G VNグループは、特定のDNNによって指定することができてもよい。また、5G VNグループに対応付けられたDNNと5G VNグループは、1対多、又は、多対1で対応付けられていてもよい。言い換えると、ひとつのDNNに対して複数の5G VNグループが対応付けられていてもよいし、ひとつの5G VNグループに対して複数のDNNが対応付けられていてもよい。 Here, the 5GVN group may be associated with the DNN on a one-to-one basis. In other words, one 5GVN group may be associated with one DNN, and a specific 5GVN group may be specified by a specific DNN. Further, the DNN associated with the 5GVN group and the 5GVN group may be associated one-to-many or many-to-one. In other words, a plurality of 5GVN groups may be associated with one DNN, or a plurality of DNNs may be associated with one 5GVN group.
 本実施形態における5G VNグループのためのPDUセッション(PDU session for 5G VN Group)は、5G VNグループに対応付けられたDNNによるPDUセッションである。5G VNグループのためのPDUセッションは、UE_A10が、5G VNグループに接続(アクセス又は参加)するために、5G VNグループに対応付けられたDNNを使用して確立されるPDUセッションであってよい。言い換えると、UE_A10が5G VNグループに接続することは、UE_A10が、5G VNグループのためのPDUセッションを確立することであってよい。 The PDU session (PDU session for 5G VN Group) for the 5G VN group in the present embodiment is a PDU session by DNN associated with the 5G VN group. The PDU session for the 5GVN group may be a PDU session in which UE_A10 is established using the DNN associated with the 5GVN group to connect (access or join) the 5GVN group. In other words, UE_A10 connecting to a 5GVN group may mean that UE_A10 establishes a PDU session for the 5GVN group.
 また、5G VNグループのためのPDUセッションを確立したUEは、同じ5G VNグループにアクセスしている他のメンバーのUEとの間で、5G VNグループのためのPDUセッションを用いてユーザデータ通信を行うことができてもよい。 In addition, the UE that has established the PDU session for the 5GVN group communicates user data with the UEs of other members accessing the same 5GVN group using the PDU session for the 5GVN group. You may be able to do it.
 尚、5G VNグループのためのPDUセッションのPDUセッションタイプは、IPタイプ又はnon-IPタイプであってよく、IPタイプは、例えば、IPv4タイプ、又は、IPv6タイプ、又は、IPv4v6タイプのいずれかであってよく、non-IPタイプは、例えば、Ethernetタイプであってよいし、セッションサービス継続のためのいずれかのモード(SSC mode 1、又は、SSC mode 2、又は、SSC mode 3)が設定されていてもよい。 The PDU session type of the PDU session for the 5GVN group may be an IP type or a non-IP type, and the IP type may be, for example, either an IPv4 type, an IPv6 type, or an IPv4v6 type. The non-IP type may be, for example, an Ethernet type, and one of the modes (SSC mode 1, SSC mode 2, or SSC mode 3) for continuing the session service is set. You may be.
 本実施形態における5G VNグループと対応付けられたDNN(Data Network Name)は、5G VNグループと、1対1で対応付けられていてもよい。言い換えると、ひとつのDNNに対して、ひとつの5G VNグループが対応付けられていてもよく、特定の5G VNグループは、特定のDNNによって指定することができてもよい。 The DNN (Data Network Name) associated with the 5GVN group in this embodiment may be associated with the 5GVN group on a one-to-one basis. In other words, one 5GVN group may be associated with one DNN, and a specific 5GVN group may be specified by a specific DNN.
 UE_A10は、5G VNグループにアクセスするため、PDUセッション確立手続きにおいて、5G VNグループと対応付けられたDNNをネットワークに送信/提供してもよい。より具体的には、UE_A10は、PDUセッション確立を要求する為のNASメッセージに、5G VNグループと対応付けられたDNNを含めて送信し、コアネットワークから5G VNグループと対応付けられたDNNに基づくPDUセッション確立受諾メッセージを受信することで、5G VNグループのためのPDUセッションが確立されてもよい。 Since UE_A10 accesses the 5GVN group, the DNN associated with the 5GVN group may be transmitted / provided to the network in the PDU session establishment procedure. More specifically, UE_A10 sends the NAS message for requesting the establishment of a PDU session including the DNN associated with the 5GVN group, and is based on the DNN associated with the 5GVN group from the core network. The PDU session for the 5GVN group may be established by receiving the PDU session establishment acceptance message.
 ここで、UE_A10が、PDUセッション確立手続きにおいて、PDUセッション確立を要求するためのNASメッセージに、5G VNグループと対応付けられたDNNを含めずに送信した場合、NASメッセージを受信したAMFが、要求されたPDUセッションに対して、ユーザーサブスクリプション情報、又は、ネットワーク設定、又は、ネットワークポリシー等に基づいて選択した5G VNグループと対応付けられたDNNを使用することで、5G VNグループのためのPDUセッションを確立してもよい。 Here, when UE_A10 sends the NAS message for requesting the establishment of the PDU session in the PDU session establishment procedure without including the DNN associated with the 5GVN group, the AMF that received the NAS message requests. PDU for 5GVN group by using DNN associated with 5GVN group selected based on user subscription information, network settings, network policy, etc. for the PDU session You may establish a session.
 尚、EPSとのインターワーキングをサポートするPDUセッションで使用されるDNNは、PDUセッションをEPSに移した際に使用されるPDN接続のデフォルトEPSベアラコンテキストに含まれるAPNは対応付けられている必要があるが、5G VNグループと対応付けられたDNNに対応付けられたAPNは存在し無くてもよい。 Note that the DNN used in the PDU session that supports interworking with EPS must be associated with the APN included in the default EPS bearer context of the PDN connection used when the PDU session is moved to EPS. However, the APN associated with the DNN associated with the 5GVN group does not have to exist.
 本実施形態における第1の状態とは、各装置が登録手続き及びPDUセッション確立手続きを完了した状態である。ここで、UE_A10及び/又は各装置は、登録手続きの完了により、UE_A10がネットワークに登録された状態(RM-REGISTERED状態)であってよく、PDUセッション確立手続きの完了は、UE_A10が、ネットワークからPDUセッション確立受諾メッセージ又は、PDUセッション確立拒絶メッセージを受信した状態であってよい。 The first state in the present embodiment is a state in which each device has completed the registration procedure and the PDU session establishment procedure. Here, UE_A10 and / or each device may be in a state in which UE_A10 is registered in the network (RM-REGISTERED state) by completing the registration procedure, and when the PDU session establishment procedure is completed, UE_A10 is PDU from the network. It may be in the state of receiving the session establishment acceptance message or the PDU session establishment rejection message.
 本実施形態における輻輳管理とは、第1の輻輳管理から第4の輻輳管理のうち、1又は複数の輻輳管理から構成される。尚、NWによるUEの制御は、バックオフタイマーとUEが認識する輻輳管理によって実現され、UEはこれらの情報の関連付けを記憶していてもよい。 Congestion management in the present embodiment is composed of one or a plurality of congestion managements from the first congestion management to the fourth congestion management. The control of the UE by the NW is realized by the backoff timer and the congestion management recognized by the UE, and the UE may store the association of these information.
 本実施形態における第1の輻輳管理とは、DNNのパラメータを対象にした制御信号輻輳管理を示す。例えば、NWにおいて、DNN#Aに対しての輻輳が検知された場合で、NWがDNN#Aのみのパラメータを対象としたUE主導のセッションマネジメント要求であると認識した場合、NWは、第1の輻輳管理を適用してもよい。尚、NWは、UE主導のセッションマネジメント要求にDNN情報が含まれていない場合でも、NW主導でデフォルトDNNを選定し、輻輳管理対象としてもよい。或は、NWがDNN#AとS-NSSAI#Aとを含むUE主導のセッションマネジメント要求とであると認識した場合においても、NWは、第1の輻輳管理を適用してもよい。第1の輻輳管理が適用された場合、UEは、DNN#Aのみを対象としたUE主導のセッションマネジメント要求を抑止してもよい。 The first congestion management in the present embodiment indicates control signal congestion management for DNN parameters. For example, if the NW detects congestion for DNN # A and the NW recognizes that it is a UE-driven session management request for DNN # A-only parameters, the NW will be the first. Congestion management may be applied. Even if the UE-led session management request does not include the DNN information, the NW may select the default DNN led by the NW and set it as the congestion management target. Alternatively, the NW may apply the first congestion management even if the NW recognizes that it is a UE-driven session management request that includes DNN # A and S-NSSAI # A. If the first congestion management is applied, the UE may suppress UE-led session management requests for DNN # A only.
 言い換えると、本実施形態における第1の輻輳管理とは、DNNを対象にした制御信号輻輳管理であり、DNNへの接続性が輻輳状態であることに起因した輻輳管理であってよい。例えば、第1の輻輳管理とは、すべての接続性におけるDNN#Aへの接続を規制するための輻輳管理であってよい。ここで、すべての接続性におけるDNN#Aへの接続とは、UEが利用可能なあらゆるS-NSSAIを用いた接続性におけるDNN#Aの接続であってよく、UEが接続可能なネットワークスライスを介したDNN#Aの接続であってよい。さらに、ネットワークスライスを介さないDNN#Aへの接続性が含まれてもよい。 In other words, the first congestion management in the present embodiment may be control signal congestion management for the DNN, and may be congestion management due to the connectivity to the DNN being in a congestion state. For example, the first congestion management may be congestion management to regulate the connection to DNN # A in all connectivity. Here, the connection to DNN # A in all connectivity may be the connection of DNN # A in connectivity using any S-NSSAI available to the UE, and the network slice to which the UE can connect. It may be a DNN # A connection via. In addition, connectivity to DNN # A via network slices may be included.
 また、DNN#Aは、5G VNグループに対応付けられたDNNであってよい。この場合、5G VNグループに対応付けられたDNNに基づく第1の輻輳管理は、上記に加え、UEが登録されたPLMN(registered PLMN)と、登録されたPLMNの均等PLMN(equivalent PLMN)に適用されてもよく、バックオフタイマーが、これらのPLMNに適用されてもよい。以下、5G VNグループに対応付けられたDNNをDNN#Aとも称する。 Also, DNN # A may be a DNN associated with a 5GVN group. In this case, in addition to the above, the first congestion management based on the DNN associated with the 5GVN group is applied to the PLMN (registered PLMN) in which the UE is registered and the equal PLMN (equivalent PLMN) of the registered PLMN. A backoff timer may be applied to these PLMNs. Hereinafter, the DNN associated with the 5GVN group is also referred to as DNN # A.
 本実施形態における第2の輻輳管理とは、S-NSSIのパラメータを対象にした制御信号輻輳管理を示す。例えば、NWにおいて、S-NSSAI#Aに対しての制御信号輻輳が検知された場合で、NWがS-NSSAI#Aのみのパラメータを対象としたUE主導のセッションマネジメント要求であると認識した場合、NWは、第2の輻輳管理を適用してもよい。第2の輻輳管理が適用された場合、UEは、S-NSSAI#Aのみを対象としたUE主導のセッションマネジメント要求を抑止してもよい。 言い換えると、本実施形態における第2の輻輳管理とは、S-NSSAIを対象にした制御信号輻輳管理であり、S-NSSAIによって選択されるネットワークスライスが輻輳状態であることに起因した輻輳管理であってよい。例えば、第2の輻輳管理とは、S-NSSAI#Aに基づいたすべての接続を規制するための輻輳管理であってよい。つまり、S-NSSAI#Aで選択されるネットワークスライスを介したすべてのDNNへの接続を規制するための輻輳管理であってよい。 The second congestion management in this embodiment indicates control signal congestion management for S-NSSI parameters. For example, when the control signal congestion for S-NSSAI # A is detected in the NW, and the NW recognizes that it is a UE-led session management request targeting only the parameters of S-NSSAI # A. , NW may apply a second congestion management. If a second congestion management is applied, the UE may suppress UE-led session management requests for S-NSSAI # A only. In other words, the second congestion management in the present embodiment is control signal congestion management for S-NSSAI, and is congestion management due to the network slice selected by S-NSSAI being in a congestion state. It may be there. For example, the second congestion management may be congestion management for regulating all connections based on S-NSSAI # A. That is, it may be congestion management to regulate connections to all DNNs via the network slice selected by S-NSSAI # A.
 また、S-NSSAI#Aは、5G VNグループに対応付けられたS-NSSAIであってもよい。この場合、5G VNグループに対応付けられたS-NSSAIに基づく第2の輻輳管理は、上記に加え、UEが登録されたPLMN(registered PLMN)と、登録されたPLMNの均等PLMN(equivalent PLMN)に適用されてもよく、バックオフタイマーが、これらのPLMNに適用されてもよい。以下、5G VNグループに対応付けられたS-NSSAIをS-NSSAI#Aとも称する。 Further, S-NSSAI # A may be S-NSSAI associated with the 5GVN group. In this case, in addition to the above, the second congestion management based on S-NSSAI associated with the 5GVN group is the PLMN (registered PLMN) in which the UE is registered and the equal PLMN (equivalent PLMN) of the registered PLMN. A backoff timer may be applied to these PLMNs. Hereinafter, the S-NSSAI associated with the 5GVN group is also referred to as S-NSSAI # A.
 本実施形態における第3の輻輳管理とは、DNN及びS-NSSAIのパラメータを対象にした制御信号輻輳管理を示す。例えば、NWにおいて、DNN#Aに対しての制御信号輻輳とS-NSSAI#Aに対しての制御信号輻輳が同時に検知された場合で、NWがDNN#A及びS-NSSAI#Aのパラメータを対象としたUE主導のセッションマネジメント要求であると認識した場合、NWは、第3の輻輳管理を適用してもよい。尚、NWは、UE主導のセッションマネジメント要求にDNNを示す情報が含まれていない場合でも、NW主導でデフォルトDNNを選定し、合わせて輻輳管理対象としてもよい。第3の輻輳管理が適用された場合、UEは、DNN#A及びS-NSSAI#Aのパラメータを対象としたUE主導のセッションマネジメント要求を抑止してもよい。 The third congestion management in the present embodiment indicates control signal congestion management for the parameters of DNN and S-NSSAI. For example, when the control signal congestion for DNN # A and the control signal congestion for S-NSSAI # A are detected at the same time in the NW, the NW sets the parameters of DNN # A and S-NSSAI # A. The NW may apply a third congestion management if it recognizes that it is a targeted UE-driven session management request. Even if the UE-led session management request does not include information indicating the DNN, the NW may select the default DNN led by the NW and also make it a congestion management target. If a third congestion management is applied, the UE may suppress UE-led session management requests for DNN # A and S-NSSAI # A parameters.
 言い換えると、本実施形態における第3の輻輳管理とは、DNN及びS-NSSAIのパラメータを対象にした制御信号輻輳管理であり、S-NSSAIを基に選択されるネットワークスライスを介したDNNへの接続性が輻輳状態であることに起因した輻輳管理であってよい。例えば、第3の輻輳管理とは、S-NSSAI#Aに基づいた接続性の内、DNN#Aへの接続を規制するための輻輳管理であってよい。 In other words, the third congestion management in the present embodiment is control signal congestion management for the parameters of DNN and S-NSSAI, and the control signal congestion management to the DNN via the network slice selected based on S-NSSAI is performed. Congestion management may be performed due to the connectivity being in a congested state. For example, the third congestion management may be congestion management for restricting the connection to DNN # A among the connectivity based on S-NSSAI # A.
 本実施形態における第4の輻輳管理とは、DNN及び/又はS-NSSAIの少なくとも一つのパラメータを対象にした制御信号輻輳管理を示す。例えば、NWにおいて、DNN#Aに対しての制御信号輻輳とS-NSSAI#Aに対しての制御信号輻輳が同時に検知された場合で、NWがDNN#A及び/又はS-NSSAI#Aの少なくとも一つのパラメータを対象としたUE主導のセッションマネジメント要求であると認識した場合、NWは、第4の輻輳管理を適用してもよい。尚、NWは、UE主導のセッションマネジメント要求にDNNを示す情報が含まれていない場合でも、NW主導でデフォルトDNNを選定し、合わせて輻輳管理対象としてもよい。第4の輻輳管理が適用された場合、UEは、DNN#A及び/又はS-NSSAI#Aの少なくとも一つのパラメータを対象としたUE主導のセッションマネジメント要求を抑止してもよい。 The fourth congestion management in the present embodiment indicates control signal congestion management for at least one parameter of DNN and / or S-NSSAI. For example, when the control signal congestion for DNN # A and the control signal congestion for S-NSSAI # A are detected at the same time in the NW, the NW is DNN # A and / or S-NSSAI # A. The NW may apply a fourth congestion management if it recognizes that it is a UE-driven session management request for at least one parameter. Even if the UE-led session management request does not include information indicating the DNN, the NW may select the default DNN led by the NW and also make it a congestion management target. If a fourth congestion management is applied, the UE may suppress UE-led session management requests for at least one parameter of DNN # A and / or S-NSSAI # A.
 言い換えると、本実施形態における第4の輻輳管理とは、DNN及びS-NSSAIのパラメータを対象にした制御信号輻輳管理であり、S-NSSAIを基に選択されるネットワークスライスと、DNNへの接続性が輻輳状態であることに起因した輻輳管理であってよい。例えば、第4の輻輳管理とは、S-NSSAI#Aに基づいたすべての接続を規制するための輻輳管理であり、且つ、すべての接続性におけるDNN#Aへの接続を規制するための輻輳管理であってよい。つまり、S-NSSAI#Aで選択されるネットワークスライスを介したすべてのDNNへの接続を規制するための輻輳管理であり、且つ、すべての接続性におけるDNN#Aへの接続を規制するための輻輳管理であってよい。ここで、すべての接続性におけるDNN#Aへの接続とは、UEが利用可能なあらゆるS-NSSAIを用いた接続性におけるDNN#Aの接続であってよく、UEが接続可能なネットワークスライスを介したDNN#Aの接続であってよい。さらに、ネットワークスライスを介さないDNN#Aへの接続性が含まれてもよい。 In other words, the fourth congestion management in the present embodiment is control signal congestion management for the parameters of DNN and S-NSSAI, and the network slice selected based on S-NSSAI and the connection to DNN. It may be congestion management due to the fact that the sex is in a congestion state. For example, the fourth congestion management is congestion management for regulating all connections based on S-NSSAI # A, and congestion management for regulating connections to DNN # A in all connectivity. It may be management. In other words, it is congestion management to regulate the connection to all DNNs through the network slice selected by S-NSSAI # A, and to regulate the connection to DNN # A in all connectivity. It may be congestion management. Here, the connection to DNN # A in all connectivity may be the connection of DNN # A in connectivity using any S-NSSAI available to the UE, and the network slice to which the UE can connect. It may be a DNN # A connection via. In addition, connectivity to DNN # A via network slices may be included.
 したがって、DNN#AとS-NSSAI#Aをパラメータとする第4の輻輳管理は、DNN#Aをパラメータとする第1の輻輳管理とS-NSSAI#Aをパラメータとする第2の輻輳管理とを同時に実行する輻輳管理であってよい。 Therefore, the fourth congestion management with DNN # A and S-NSSAI # A as parameters is the first congestion management with DNN # A as parameters and the second congestion management with S-NSSAI # A as parameters. May be congestion management that executes at the same time.
 本実施形態における第2の挙動とは、UEが、第1のPDUセッション確立で指定したスライス情報とは異なる別のスライス情報を用いて、第1のPDUセッション確立要求と同一のAPN/DNNに接続する為のPDUセッション確立要求を送信する挙動である。具体的には、第2の挙動は、UEが、ネットワークから受信したバックオフタイマー値がゼロもしくは無効の場合、第1のPDUセッション確立で指定したスライス情報とは別のスライス情報を用いて、第1のPDUセッション確立要求と同一のAPN/DNNに接続する為のPDUセッション確立要求を送信する挙動であってもよい。又、指定したAPN/DNNが接続している特定のPLMNの無線アクセスがサポートされていない為に第1のPDUセッションが拒絶された場合、もしくは、一時的な理由で第1のPDUセッションが拒絶された場合、UEは、第1のPDUセッション確立で指定したスライス情報とは別のスライス情報を用いて、第1のPDUセッション確立要求に含まれるAPN/DNNと同一のAPN/DNNに接続する為のPDUセッション確立要求を送信する挙動であってもよい。 The second behavior in this embodiment is that the UE uses different slice information different from the slice information specified in the first PDU session establishment to make the same APN / DNN as the first PDU session establishment request. This is the behavior of sending a PDU session establishment request for connection. Specifically, the second behavior is that if the UE receives a backoff timer value from the network of zero or invalid, it uses slice information different from the slice information specified in establishing the first PDU session. The behavior may be to send a PDU session establishment request for connecting to the same APN / DNN as the first PDU session establishment request. Also, if the first PDU session is rejected because the wireless access of the specific PLMN to which the specified APN / DNN is connected is not supported, or the first PDU session is rejected for a temporary reason. If so, the UE connects to the same APN / DNN as the APN / DNN included in the first PDU session establishment request, using slice information different from the slice information specified in the first PDU session establishment. It may be the behavior of sending a PDU session establishment request for the purpose.
 本実施形態における第3の挙動とは、UEが、PDUセッション確立要求が拒絶された際に、バックオフタイマーが満了するまで、同一の識別情報を用いた、新たなPDUセッション確立要求を送信しない挙動である。具体的には、第3の挙動は、UEが、ネットワークから受信したバックオフタイマー値がゼロでも無効でもない場合、バックオフタイマーが満了するまで、同一の識別情報を用いた、新たなPDUセッション確立要求を送信しない挙動であってもよい。ここで、同一の識別情報とは、新たなPDUセッション確立要求に含めるS-NSSAI及び/又はDNNが、拒絶されたPDUセッション確立要求で送信したS-NSSAI及び/又はDNNが同一であることを意味してよい。 The third behavior in this embodiment is that when the PDU session establishment request is rejected, the UE does not send a new PDU session establishment request using the same identification information until the backoff timer expires. It is a behavior. Specifically, the third behavior is that if the UE receives a backoff timer value from the network that is neither zero nor invalid, a new PDU session will use the same identification information until the backoff timer expires. The behavior may be such that the establishment request is not transmitted. Here, the same identification information means that the S-NSSAI and / or DNN included in the new PDU session establishment request is the same as the S-NSSAI and / or DNN transmitted in the rejected PDU session establishment request. May mean.
 又、別のPLMNを選択した場合、もしくは、別のNWスライスを選択した場合で、ネットワーク運用の設定障害に関する拒絶理由を受信した場合、第1のPDUセッション確立要求が拒絶された際に受信したバックオフタイマーが起動されている場合に、バックオフタイマーが満了するまで、同一の識別情報を用いた、新たなPDUセッション確立要求を送信しない挙動であってもよい。 Also, when another PLMN is selected, or when another NW slice is selected, and the reason for refusal regarding the setting failure of network operation is received, it is received when the first PDU session establishment request is rejected. When the backoff timer is activated, the behavior may be such that a new PDU session establishment request using the same identification information is not transmitted until the backoff timer expires.
 詳細には、第3の挙動における新たなPDUセッション確立要求を送信しないPDUセッションは、バックオフタイマーに対応づけられた輻輳管理が適用されたPDUセッションであってよい。より具体的には、第3の挙動では、バックオフタイマーが対応づけられた輻輳管理の種別に応じた接続性であり、且つ、その輻輳管理に対応づけられたDNN及び/又はS-NSSAIを用いたPDUセッションに対して、新たにPDUセッション確立要求を送信しない挙動であってよい。尚、本挙動によってUEが禁止される処理は、PDUセッション確立要求を含むセッションマネジメントのための手続きの開始、及び/又はSMメッセージの送受信であってよい。 Specifically, the PDU session that does not send a new PDU session establishment request in the third behavior may be a PDU session to which congestion management associated with the backoff timer is applied. More specifically, in the third behavior, the DNN and / or S-NSSAI that has the connectivity according to the type of congestion management to which the backoff timer is associated and is associated with the congestion management is used. The behavior may be such that a new PDU session establishment request is not transmitted to the used PDU session. The process in which the UE is prohibited by this behavior may be the start of the procedure for session management including the PDU session establishment request and / or the transmission / reception of the SM message.
 本実施形態における第4の挙動とは、UEが、PDUセッション確立要求が拒絶された際に、バックオフタイマーが満了するまで、スライス情報、DNN/APN情報を載せない新たなPDUセッション確立要求を送信しない挙動である。具体的には、第4の挙動は、UEがネットワークから受信したバックオフタイマーがゼロでも無効でもない場合、バックオフタイマーが満了するまで、スライス情報、DNN/APN情報を載せない新たなPDUセッション確立要求を送信しない挙動であってもよい。 The fourth behavior in the present embodiment is that when the PDU session establishment request is rejected, the UE makes a new PDU session establishment request that does not carry slice information and DNN / APN information until the backoff timer expires. It is a behavior that does not transmit. Specifically, the fourth behavior is that if the backoff timer received by the UE from the network is neither zero nor invalid, a new PDU session that does not carry slice information or DNN / APN information until the backoff timer expires. The behavior may be such that the establishment request is not transmitted.
 本実施形態における第5の挙動とは、UEが、PDUセッション確立要求が拒絶された際に、同一の識別情報を用いた、新たなPDUセッション確立要求を送信しない挙動である。具体的には、第5の挙動は、UEが、UEとネットワークにおいてサポートしているPDP typeが異なる場合で均等PLMNに在圏している場合に、同一の識別情報を用いた新たなPDUセッション確立要求を送信しない挙動であってもよい。 The fifth behavior in the present embodiment is the behavior in which the UE does not send a new PDU session establishment request using the same identification information when the PDU session establishment request is rejected. Specifically, the fifth behavior is a new PDU session using the same identification information when the UE is in the uniform PLMN when the PDP types supported by the UE and the network are different. The behavior may be such that the establishment request is not transmitted.
 本実施形態における第6の挙動とは、UEが、PDUセッション確立要求が拒絶された際に、同一の識別情報を用いて初期手続きとして、新たなPDUセッション確立要求を送信する挙動である。具体的には、第6の挙動は、UEが、第1のPDUセッション確立要求がnon-3GPPアクセスからのハンドオーバーにおいて対象のPDNセッションコンテキストが存在しない為、拒絶された場合、同一の識別情報を用いて初期手続きとして、新たなPDUセッション確立要求を送信する挙動であってもよい。 The sixth behavior in the present embodiment is the behavior in which the UE transmits a new PDU session establishment request as an initial procedure using the same identification information when the PDU session establishment request is rejected. Specifically, the sixth behavior is that if the UE rejects the first PDU session establishment request because the target PDN session context does not exist in the handover from non-3GPP access, the same identification information As an initial procedure using, the behavior may be to send a new PDU session establishment request.
 本実施形態における第7の挙動とは、UEが、PLMNを選択する手続きにおいて、別のNWスライスを選択した場合、前回のPDUセッション確立要求が拒絶された際に受信したバックオフタイマーを継続する挙動である。具体的には、第7の挙動は、UEが、第1のPDUセッション確立要求が拒絶された際に、PLMN選択を行った場合で、選択先のPLMNで第1のPDUセッション確立要求で指定したNWスライスと共通のNWスライスの指定が可能な場合、第1のPDUセッション確立要求が拒絶された際に受信したバックオフタイマーを継続する挙動であってもよい。 The seventh behavior in the present embodiment is that when the UE selects another NW slice in the procedure for selecting PLMN, the backoff timer received when the previous PDU session establishment request is rejected is continued. It is a behavior. Specifically, the seventh behavior is when the UE makes a PLMN selection when the first PDU session establishment request is rejected, and is specified in the first PDU session establishment request in the selected PLMN. If it is possible to specify a NW slice that is common to the NW slice that has been created, the backoff timer received when the first PDU session establishment request is rejected may be continued.
 本実施形態における第8の挙動とは、UEが、ネットワークから通知された値、又は、事前にUEに設定された値をバックオフタイマー値として設定する挙動である。具体的には、第8の挙動は、UEが、第1のPDUセッション確立要求の拒絶通知で受信したバックオフタイマー値をバックオフタイマー値として設定する挙動であってもよいし、事前にUEに設定、もしくは、保持する値をバックオフタイマー値として設定する挙動であってもよい。尚、事前にUEに設定、もしくは、保持するタイマーをバックオフタイマー値として設定する場合は、HPLMN、もしくは、均等PLMN在圏時に限ってもよい。 The eighth behavior in the present embodiment is a behavior in which the UE sets a value notified from the network or a value set in the UE in advance as a backoff timer value. Specifically, the eighth behavior may be the behavior in which the UE sets the backoff timer value received in the rejection notification of the first PDU session establishment request as the backoff timer value, or the UE may be set in advance. The behavior may be such that the value to be set or held is set as the backoff timer value. If the timer to be set or held in the UE is set as the backoff timer value in advance, it may be limited to HPLMN or even PLMN in the service area.
 本実施形態における第9の挙動とは、UEが、PDUセッション確立要求が拒絶された際に、端末電源オン/オフ、もしくはUSIM(Universal Subscriber Identity Module)の抜き差しまで、新たなPDUセッション確立要求を送信しない挙動である。具体的には、第9の挙動は、UEが、ネットワークから受信したバックオフタイマーが無効の場合、もしくは、第1のPDUセッション拒絶理由がUEとネットワークとの間でPDPタイプ(PDP type)が異なる場合に、端末電源のオン/オフ、もしくはUSIM抜き差しまで、新たなPDUセッション確立要求を送信しない。又、指定したAPN/DNNが接続しているPLMNの無線でサポートされていない為に第1のPDUセッション拒絶された場合で、ネットワークからのバックオフタイマーの情報要素が無く、Re-attempt情報が無い場合、もしくは、均等PLMNへのPDUセッション再接続が許容されている場合、接続しているPLMNでは、端末電源オン/オフ、もしくはUSIM抜き差しまで、新たなPDUセッション確立要求を送信しない挙動であってもよい。又、指定したAPN/DNNが接続しているPLMNの無線でサポートされていない為に第1のPDUセッション拒絶された場合で、ネットワークからのバックオフタイマーの情報要素が無く、Re-attempt情報が無い場合、もしくは、均等PLMNへのPDUセッション再接続が許容されていない場合、接続しているPLMNでは、端末電源オン/オフ、もしくはUSIM抜き差しまで、新たなPDUセッション確立要求を送信しない挙動であってもよい。又、指定したAPN/DNNが接続しているPLMNの無線でサポートされていない為に第1のPDUセッション拒絶された場合で、ネットワークからのバックオフタイマーがゼロでも無効でもない場合、端末電源オン/オフ、もしくはUSIM抜き差しまで、新たなPDUセッション確立要求を送信しない挙動であってもよい。又、指定したAPN/DNNが接続しているPLMNの無線でサポートされていない為に第1のPDUセッション拒絶された場合で、ネットワークからのバックオフタイマーが無効の場合、端末電源オン/オフ、もしくはUSIM抜き差しまで、新たなPDUセッション確立要求を送信しない挙動であってもよい。 The ninth behavior in the present embodiment is that when the PDU session establishment request is rejected, the UE makes a new PDU session establishment request until the terminal power is turned on / off or the USIM (Universal Subscriber Identity Module) is inserted or removed. It is a behavior that does not transmit. Specifically, the ninth behavior is that the UE has an invalid backoff timer received from the network, or the first PDU session rejection reason is a PDP type between the UE and the network. If they are different, do not send a new PDU session establishment request until the terminal power is turned on / off or USIM is inserted / removed. Also, when the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, there is no information element of the backoff timer from the network, and the Re-attempt information is displayed. If there is no PDU session reconnection to the equal PLMN, the connected PLMN does not send a new PDU session establishment request until the terminal power is turned on / off or the USIM is inserted / removed. You may. Also, when the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, there is no information element of the backoff timer from the network, and the Re-attempt information is displayed. If there is no PDU session reconnection to the equal PLMN, the connected PLMN does not send a new PDU session establishment request until the terminal power is turned on / off or the USIM is inserted / removed. You may. Also, if the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, and the backoff timer from the network is neither zero nor disabled, the terminal power is turned on. The behavior may be such that a new PDU session establishment request is not sent until / off or USIM insertion / removal. Also, if the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, and the backoff timer from the network is disabled, the terminal power on / off, Alternatively, the behavior may be such that a new PDU session establishment request is not transmitted until the USIM is inserted or removed.
 本実施形態における第10の挙動とは、UEが、PDUセッション確立要求が拒絶された際に、新たなPDUセッション確立要求を送信する挙動である。具体的には、第10の挙動は、UEが、ネットワークから受信したバックオフタイマーがゼロの場合、もしくは、第1のPDUセッション確立要求が一時的な理由で拒絶された場合で更にネットワークから通知されるバックオフタイマー情報要素自体が無い場合、新たなPDUセッション確立要求を送信する挙動であってもよい。又、別のPLMNを選択した場合、もしくは、別のNWスライスを選択した場合で、第1のPDUセッション確立要求が一時的な理由で拒絶された場合で、選択したPLMNで対象のAPN/DNNについてバックオフタイマーが起動されていない場合、もしくは、ネットワークから受信したバックオフタイマーが無効の場合、新たなPDUセッション確立要求を送信する挙動であってもよい。又、第1のPDUセッション確立要求がUEとネットワークのPDP typeが異なる為に拒絶された場合で、異なるPLMNを選択した際に、Re-attempt情報を受信しない、もしくは、均等PLMNリストに無いPLMNを選択した場合、もしくは、PDP typeが変更された場合、もしくは、端末電源オン/オフ、もしくは、USIMの抜き差しをした場合、新たなPDUセッション確立要求を送信する挙動であってもよい。又、指定したAPN/DNNが接続しているPLMNの無線でサポートされていない為に第1のPDUセッション拒絶された場合でネットワークから通知を受けたバックオフタイマーがゼロの場合、新たなPDUセッション確立要求を送信する挙動であってもよい。 The tenth behavior in the present embodiment is the behavior in which the UE transmits a new PDU session establishment request when the PDU session establishment request is rejected. Specifically, the tenth behavior is that the UE further notifies from the network when the backoff timer received from the network is zero, or when the first PDU session establishment request is rejected for a temporary reason. If there is no backoff timer information element itself, it may behave to send a new PDU session establishment request. Also, if another PLMN is selected, or if another NW slice is selected and the first PDU session establishment request is rejected for a temporary reason, the target APN / DNN in the selected PLMN If the backoff timer is not activated, or if the backoff timer received from the network is invalid, the behavior may be to send a new PDU session establishment request. Also, when the first PDU session establishment request is rejected because the PDP type of the UE and the network are different, when different PLMNs are selected, Re-attempt information is not received or PLMNs that are not on the equal PLMN list. When is selected, when the PDP type is changed, when the terminal power is turned on / off, or when the USIM is inserted / removed, the behavior may be to send a new PDU session establishment request. Also, if the backoff timer notified by the network is zero when the first PDU session is rejected because the specified APN / DNN is not supported by the connected PLMN radio, a new PDU session It may be the behavior of sending an establishment request.
 本実施形態における第16の挙動とは、UEがバックオフタイマーを起動している状態で、NW主導のセッションマネジメント手続きが実行された場合、バックオフタイマーを停止する挙動である。 The 16th behavior in this embodiment is the behavior of stopping the backoff timer when the session management procedure led by NW is executed while the UE is activating the backoff timer.
 尚、UEは、適用を停止する輻輳管理を複数識別してもよい。以下では、前述した方法により識別した輻輳管理を第1の輻輳管理とし、第1の輻輳管理とは異なる第2の輻輳管理を識別する方法について説明する。 Note that the UE may identify a plurality of congestion managements to be stopped from being applied. Hereinafter, a method of identifying a second congestion management different from the first congestion management will be described, with the congestion management identified by the above-mentioned method as the first congestion management.
 例えば、UEは第1の輻輳管理に対応づけられるDNNと同一のDNNに対応づけられる輻輳管理を第2の輻輳管理として識別してもよい。及び/又は、UEは、第1の輻輳管理に対応付けられるS-NSSAIと同一のS-NSSAIに対応付けられる輻輳管理を第2の輻輳管理として識別してもよい。尚、適用を停止する輻輳管理を複数識別することは、第1の輻輳管理及び/又は第2の輻輳管理が特定の輻輳管理の種別である場合に限って実行するよう設定されてもよい。 For example, the UE may identify the congestion management associated with the same DNN as the DNN associated with the first congestion management as the second congestion management. And / or, the UE may identify the congestion management associated with the same S-NSSAI as the S-NSSAI associated with the first congestion management as the second congestion management. It should be noted that identifying a plurality of congestion managements to be stopped may be set to be executed only when the first congestion management and / or the second congestion management is a specific type of congestion management.
 具体的には、第1の輻輳管理が第1の輻輳管理から第4の輻輳管理のいずれかの場合において、UEは第2の輻輳管理を識別してもよい。及び/又は、第2の輻輳管理を特定するにあたり、検索対象となる輻輳管理が第1の輻輳管理から第4の輻輳管理のいずれかの場合において、UEは第2の輻輳管理を識別してもよい。尚、第1の輻輳管理及び/又は第2の識別情報がどの種別において複数の輻輳管理を識別可能かは、コアネットワーク及び/又はUEにおいてあらかじめ設定されていればよい。なお、識別が許容される、特定の輻輳管理の種別は、一つに特定される必要はなく、複数設定されてもよい。 Specifically, when the first congestion management is any of the first congestion management to the fourth congestion management, the UE may identify the second congestion management. And / or, in identifying the second congestion management, the UE identifies the second congestion management when the congestion management to be searched is any of the first congestion management to the fourth congestion management. May be good. It should be noted that in which type the first congestion management and / or the second identification information can identify a plurality of congestion managements may be preset in the core network and / or the UE. It should be noted that the specific types of congestion management that are allowed to be identified need not be specified as one, and may be set in plurality.
 本実施形態における第1の識別情報は、PDUセッションの確立要求を拒絶する理由を示す理由値であってよい。例えば、第1の識別情報は、後述の第2の識別情報が示す理由値を含んでいてもよい。また、第1の識別情報は、PDUセッション確立の要求を拒絶することを示す情報であってもよい。尚、PDUセッション確立の要求は、UE_A10によって行われる要求であり、DNN及び/又はS-NSSAIが含まれている。つまり、第1の識別情報は、これらのDNN及び/又はS-NSSAに対応するPDUセッションに対する確立要求をNWが拒絶することを示す理由、又は、拒絶することを示す情報であってよい。更に、第1の識別情報は、re-attempt(Re-attempt)情報を示す情報であってよい。 The first identification information in the present embodiment may be a reason value indicating the reason for rejecting the request for establishing the PDU session. For example, the first identification information may include the reason value indicated by the second identification information described later. Further, the first identification information may be information indicating that the request for establishing the PDU session is rejected. The request for establishing a PDU session is a request made by UE_A10 and includes DNN and / or S-NSSAI. That is, the first identification information may be a reason indicating that the NW rejects the establishment request for the PDU session corresponding to these DNNs and / or S-NSSAs, or information indicating that the NW rejects the establishment request. Further, the first identification information may be information indicating re-attempt (Re-attempt) information.
 本実施形態における第2の識別情報は、PDUセッションの確立要求を拒絶する理由を示す理由値であってよい。具体的には、第2の識別情報は、PDUセッションの確立要求を拒絶する理由は、リソースが不十分であることを示す値であってよい。 The second identification information in the present embodiment may be a reason value indicating the reason for rejecting the request for establishing the PDU session. Specifically, the second identification information may be a value indicating that the resource is insufficient as the reason for rejecting the request to establish the PDU session.
 本実施形態における第5の識別情報は、バックオフタイマー値であってよく、PDUセッション確立手続き等のセッションマネジメントのための手続きの開始、及び/又はPDUセッション確立要求メッセージ等のSM(Session Management)メッセージの送信を管理するタイマーであり、セッションマネジメントの挙動を管理するためのバックオフタイマーの値を示す情報であってもよい。 The fifth identification information in the present embodiment may be a back-off timer value, and the start of a procedure for session management such as a PDU session establishment procedure and / or SM (Session Management) such as a PDU session establishment request message. It is a timer that manages the transmission of messages, and may be information indicating the value of the backoff timer for managing the behavior of session management.
 具体的には、第5の識別情報は、PLMNを変更しない場合に、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。また、第5の識別情報は、PLMNを変更した場合であっても、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。また、第5の識別情報は、PLMNを変更するか否かに関わらず、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。 Specifically, the fifth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value when the PLMN is not changed. Good. The fifth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value even when the PLMN is changed. Good. The fifth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value regardless of whether or not the PLMN is changed. You can.
 第5の識別情報を含むPDUセッション確立拒絶メッセージを受信したUEは、第5の識別情報で示されるバックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信することができない。 The UE that receives the PDU session establishment refusal message containing the fifth identification information sends a PDU session establishment request message or a PDU session setting change request message for the period indicated by the backoff timer value indicated by the fifth identification information. Can't.
 本実施形態における第11の識別情報は、PDUセッションの設定変更を拒絶する理由を示す理由値であってよい。例えば、第11の識別情報は、後述の第12の識別情報が示す理由値を含んでいてもよい。また、第11の識別情報は、PDUセッションの設定変更(PDUセッションモディフィケーション)の要求を拒絶することを示す情報であってもよい。尚、PDUセッション変更の要求は、UEによって行われる要求であり、DNN及び/又はS-NSSAIが含まれている。つまり、第11の識別情報は、これらのDNN及び/又はS-NSSAに対応するPDUセッションに対する変更要求をNWが拒絶することを示す情報であってよい。また、第11の識別情報は、re-attempt(Re-attempt)情報を示す情報であってよい。 The eleventh identification information in the present embodiment may be a reason value indicating a reason for rejecting the setting change of the PDU session. For example, the eleventh identification information may include the reason value indicated by the twelfth identification information described later. Further, the eleventh identification information may be information indicating that the request for changing the setting of the PDU session (PDU session modification) is rejected. The request to change the PDU session is a request made by the UE, and includes DNN and / or S-NSSAI. That is, the eleventh identification information may be information indicating that the NW rejects the change request for the PDU session corresponding to these DNNs and / or S-NSSAs. Further, the eleventh identification information may be information indicating re-attempt (Re-attempt) information.
 本実施形態における第12の識別情報は、リソースが不十分であることを示す理由を示す理由値であってよい。具体的には、第12の識別情報は、PDUセッションの設定変更を拒絶する理由は、リソースが不十分であることを示す値であってよい。 The twelfth identification information in the present embodiment may be a reason value indicating a reason indicating that the resource is insufficient. Specifically, the twelfth identification information may be a value indicating that the resource is insufficient as the reason for rejecting the setting change of the PDU session.
 本実施形態における第15の識別情報は、バックオフタイマー値であってよく、PDUセッション確立手続き等のセッションマネジメントのための手続きの開始、及び/又はPDUセッション確立要求メッセージ等のSM(Session Management)メッセージの送信を管理するタイマーであり、セッションマネジメントの挙動を管理するためのバックオフタイマーの値を示す情報であってもよい。 The fifteenth identification information in the present embodiment may be a backoff timer value, and the start of a procedure for session management such as a PDU session establishment procedure and / or SM (Session Management) such as a PDU session establishment request message. It is a timer that manages the transmission of messages, and may be information indicating the value of the backoff timer for managing the behavior of session management.
 具体的には、第15の識別情報は、PLMNを変更しない場合に、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。また、第15の識別情報は、PLMNを変更した場合であっても、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。また、第15の識別情報は、PLMNを変更するか否かに関わらず、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。 Specifically, the fifteenth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value when the PLMN is not changed. Good. The fifteenth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value even when the PLMN is changed. Good. The fifteenth identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value regardless of whether or not the PLMN is changed. You can.
 第15の識別情報を含むPDUセッション確立拒絶メッセージを受信したUEは、第5の識別情報で示されるバックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信することができない。 Upon receiving the PDU session establishment refusal message containing the 15th identification information, the UE sends a PDU session establishment request message or a PDU session setting change request message for the period indicated by the backoff timer value indicated by the 5th identification information. Can't.
 本実施形態における第21の識別情報は、PDUセッションを開放する理由を示す理由値であってよい。例えば、第21の識別情報は、後述の第22の識別情報が示す理由値を含んでいてもよい。また、第21の識別情報は、PDUセッション開放(PDU session release)の要求を拒絶することを示す情報であってもよい。尚、PDUセッション開放の要求は、UEによって行われる要求であり、DNN及び/又はS-NSSAIが含まれている。つまり、第21の識別情報は、これらのDNN及び/又はS-NSSAに対応するPDUセッションに対する開放要求をNWが拒絶することを示す情報であってよい。また、第11の識別情報は、re-attempt(Re-attempt)情報を示す情報であってよい。 The 21st identification information in the present embodiment may be a reason value indicating the reason for opening the PDU session. For example, the 21st identification information may include the reason value indicated by the 22nd identification information described later. Further, the 21st identification information may be information indicating that the request for PDU session release is rejected. The request for opening the PDU session is a request made by the UE, and includes DNN and / or S-NSSAI. That is, the 21st identification information may be information indicating that the NW rejects the release request for the PDU session corresponding to these DNNs and / or S-NSSAs. Further, the eleventh identification information may be information indicating re-attempt (Re-attempt) information.
 本実施形態における第22の識別情報は、PDUセッションを開放する理由を示す理由値であってよい。具体的には、第22の識別情報は、PDUセッションを開放する理由は、リソースが不十分であることを示す値であってよい。 The 22nd identification information in this embodiment may be a reason value indicating the reason for opening the PDU session. Specifically, the 22nd identification information may be a value indicating that the reason for releasing the PDU session is insufficient resources.
 本実施形態における第25の識別情報は、バックオフタイマー値であってよく、PDUセッション確立手続き等のセッションマネジメントのための手続きの開始、及び/又はPDUセッション確立要求メッセージ等のSM(Session Management)メッセージの送信を管理するタイマーであり、セッションマネジメントの挙動を管理するためのバックオフタイマーの値を示す情報であってもよい。 The 25th identification information in the present embodiment may be a backoff timer value, and is the start of a procedure for session management such as a PDU session establishment procedure and / or SM (Session Management) such as a PDU session establishment request message. It is a timer that manages the transmission of messages, and may be information indicating the value of the backoff timer for managing the behavior of session management.
 具体的には、第25の識別情報は、PLMNを変更しない場合に、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。また、第25の識別情報は、PLMNを変更した場合であっても、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。また、第25の識別情報は、PLMNを変更するか否かに関わらず、バックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信できないことを示す値であってよい。 Specifically, the 25th identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value when the PLMN is not changed. Good. The 25th identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent during the period indicated by the backoff timer value even when the PLMN is changed. Good. The 25th identification information is a value indicating that the PDU session establishment request message or the PDU session setting change request message cannot be sent for the period indicated by the backoff timer value regardless of whether or not the PLMN is changed. You can.
 第25の識別情報を含むPDUセッション確立拒絶メッセージを受信したUEは、第25の識別情報で示されるバックオフタイマー値で示される期間、PDUセッション確立要求メッセージ又はPDUセッション設定変更要求メッセージを送信することができない。 Upon receiving the PDU session establishment refusal message containing the 25th identification information, the UE sends a PDU session establishment request message or a PDU session setting change request message for the period indicated by the backoff timer value indicated by the 25th identification information. Can't.
 次に、本実施形態における初期手続きを、図9を用いて説明する。以下、初期手続きは本手続きとも称し、本手続きには、登録手続き(Registration procedure)、UE主導のPDUセッション確立手続き(PDU session establishment procedure)、ネットワーク主導のセッションマネジメント手続きが含まれる。登録手続き、PDUセッション確立手続き、ネットワーク主導のセッションマネジメント手続きの詳細は、後述する。 Next, the initial procedure in this embodiment will be described with reference to FIG. Hereinafter, the initial procedure is also referred to as this procedure, and this procedure includes a registration procedure (Registration procedure), a UE-led PDU session establishment procedure (PDU session establishment procedure), and a network-led session management procedure. Details of the registration procedure, PDU session establishment procedure, and network-led session management procedure will be described later.
 具体的には、各装置が登録手続き(S900)を実行することにより、UE_A10はネットワークに登録された状態(RM-REGISTERED状態)に遷移する。次に、各装置がPDUセッション確立手続き(S902)を実行することにより、UE_A10は、コアネットワーク_B190を介して、PDU接続サービスを提供するDN_A5との間でPDUセッションを確立し、各装置間は第1の状態に遷移する(S904)。尚、このPDUセッションは、アクセスネットワーク、UPF_A235を介して確立されていることを想定しているが、それに限られない。すなわち、UPF_A235とアクセスネットワークとの間に、UPF_A235とは異なるUPF(UPF_C239)が存在してもよい。このとき、このPDUセッションは、アクセスネットワーク、UPF_C239、UPF_A235を介して確立されることになる。次に、第1の状態の各装置は任意のタイミングで、ネットワーク主導のセッションマネジメント手続きを実行してもよい(S906)。 Specifically, when each device executes the registration procedure (S900), UE_A10 transitions to the state registered in the network (RM-REGISTERED state). Next, each device executes the PDU session establishment procedure (S902), so that UE_A10 establishes a PDU session with DN_A5, which provides the PDU connection service, via the core network_B190, and between each device. Transitions to the first state (S904). It is assumed that this PDU session is established via the access network, UPF_A235, but it is not limited to this. That is, there may be a UPF (UPF_C239) different from the UPF_A235 between the UPF_A235 and the access network. At this time, this PDU session will be established via the access network, UPF_C239, UPF_A235. Next, each device in the first state may execute a network-driven session management procedure at any time (S906).
 尚、各装置は、登録手続き及び/又はPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きにおいて、各装置の各種能力情報及び/又は各種要求情報を交換してもよい。また、各装置は、各種情報の交換及び/又は各種要求の交渉を登録手続きで実施した場合、各種情報の交換及び/又は各種要求の交渉をPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きで実施してもよいし、しなくてもよい。また、各装置は、各種情報の交換及び/又は各種要求の交渉を登録手続きで実施しなかった場合、各種情報の交換及び/又は各種要求の交渉をPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きで実施してもよい。また、各装置は、各種情報の交換及び/又は各種要求の交渉を登録手続きで実施した場合でも、各種情報の交換及び/又は各種要求の交渉をPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きで実施してもよい。 Note that each device may exchange various capability information and / or various request information of each device in the registration procedure and / or the PDU session establishment procedure and / or the network-led session management procedure. In addition, when each device exchanges various information and / or negotiates various requests in the registration procedure, the exchange of various information and / or negotiation of various requests is performed in the PDU session establishment procedure and / or the network-led session management procedure. It may or may not be carried out at. In addition, if each device does not exchange various information and / or negotiate various requests in the registration procedure, exchange various information and / or negotiate various requests in the PDU session establishment procedure and / or network-led session. It may be carried out by the management procedure. In addition, even if each device exchanges various information and / or negotiates various requests in the registration procedure, the exchange of various information and / or negotiation of various requests is performed in the PDU session establishment procedure and / or network-led session management. It may be carried out by the procedure.
 また、各装置は、PDUセッション確立手続きを、登録手続きの中で実行してもよく、登録手続きの完了後に実行してもよい。また、PDUセッション確立手続きが登録手続きの中で実行される場合、PDUセッション確立要求メッセージは登録要求メッセージに含まれて送受信されてよく、PDUセッション確立受諾メッセージは登録受諾メッセージに含まれて送受信されてよく、PDUセッション確立完了メッセージは登録完了メッセージに含まれて送受信されてよく、PDUセッション確立拒絶メッセージは登録拒絶メッセージに含まれて送受信されてよい。また、PDUセッション確立手続きが登録手続きの中で実行された場合、各装置は、登録手続きの完了に基づいてPDUセッションを確立してもよいし、各装置間でPDUセッションが確立された状態へ遷移してもよい。 Further, each device may execute the PDU session establishment procedure in the registration procedure or after the registration procedure is completed. Also, if the PDU session establishment procedure is performed during the registration procedure, the PDU session establishment request message may be included in the registration request message and sent / received, and the PDU session establishment acceptance message may be included in the registration acceptance message and sent / received. The PDU session establishment completion message may be included in the registration completion message and sent / received, and the PDU session establishment rejection message may be included in the registration rejection message and sent / received. Further, when the PDU session establishment procedure is executed in the registration procedure, each device may establish a PDU session based on the completion of the registration procedure, or the PDU session is established between the devices. You may transition.
 また、本手続きに関わる各装置は、本手続きで説明する各制御メッセージを送受信することにより、各制御メッセージに含まれる1以上の識別情報を送受信し、送受信した各識別情報をコンテキストとして記憶してもよい。 In addition, each device involved in this procedure sends and receives one or more identification information included in each control message by transmitting and receiving each control message described in this procedure, and stores each transmitted and received identification information as a context. May be good.
 [1.3.1.登録手続きの概要]
 まず、登録手続きの概要について説明する。登録手続きは、UE_A10が主導してネットワーク(アクセスネットワーク、及び/又はコアネットワーク_B190、及び/又はDN_A5)へ登録する為の手続きである。UE_A10は、ネットワークに登録していない状態であれば、電源投入時等の任意のタイミングで本手続きを実行することができる。言い換えると、UE_A10は、非登録状態(RM-DEREGISTERED state)であれば任意のタイミングで本手続きを開始してもよい。また、各装置は、登録手続きの完了に基づいて、登録状態(RM-REGISTERED state)に遷移してもよい。
[1.3.1. Outline of registration procedure]
First, the outline of the registration procedure will be described. The registration procedure is a procedure for UE_A10 to take the lead in registering with the network (access network and / or core network_B190 and / or DN_A5). UE_A10 can execute this procedure at any time such as when the power is turned on, as long as it is not registered in the network. In other words, UE_A10 may start this procedure at any time as long as it is in the unregistered state (RM-DEREGISTERED state). Further, each device may transition to the registration state (RM-REGISTERED state) based on the completion of the registration procedure.
 さらに、本手続きは、ネットワークにおけるUE_A10の位置登録情報を更新する、及び/又は、UE_A10からネットワークへ定期的にUE_A10の状態を通知する、及び/又は、ネットワークにおけるUE_A10に関する特定のパラメータを更新する為の手続きであってもよい。 In addition, this procedure updates the location registration information of UE_A10 in the network and / or periodically notifies the network of the status of UE_A10 from UE_A10 and / or updates specific parameters regarding UE_A10 in the network. It may be the procedure of.
 UE_A10は、TAを跨ぐモビリティをした際に、本手続きを開始してもよい。言い換えると、UE_A10は、保持しているTAリストで示されるTAとは異なるTAに移動した際に、本手続きを開始してもよい。さらに、UE_A10は、実行しているタイマーが満了した際に本手続きを開始してもよい。さらに、UE_A10は、PDUセッションの切断や無効化(非活性化とも称する)が原因で各装置のコンテキストの更新が必要な際に本手続きを開始してもよい。さらに、UE_A10は、UE_A10のPDUセッション確立に関する、能力情報、及び/又はプリファレンスに変化が生じた場合、本手続きを開始してもよい。さらに、UE_A10は、定期的に本手続きを開始してもよい。尚、UE_A10は、これらに限らず、PDUセッションが確立された状態であれば、任意のタイミングで本手続きを実行することができる。 UE_A10 may start this procedure when it has mobility across TAs. In other words, UE_A10 may start this procedure when it moves to a TA different from the TA shown in the held TA list. In addition, UE_A10 may start this procedure when the running timer expires. In addition, UE_A10 may initiate this procedure when the context of each device needs to be updated due to disconnection or invalidation (also referred to as deactivation) of the PDU session. In addition, UE_A10 may initiate this procedure if there is a change in capability information and / or preferences regarding UE_A10's PDU session establishment. In addition, UE_A10 may initiate this procedure on a regular basis. UE_A10 is not limited to these, and this procedure can be executed at any timing as long as the PDU session is established.
 [1.3.1.1.登録手続き例]
 図10を用いて、登録手続きを実行する手順の例を説明する。本章では、本手続きとは登録手続きを指す。以下、本手続きの各ステップについて説明する。
[1.3.1.1. Example of registration procedure]
An example of the procedure for executing the registration procedure will be described with reference to FIG. In this chapter, this procedure refers to the registration procedure. Each step of this procedure will be described below.
 まず、UE_A10は、NR node(gNBとも称する)_A122及び/又はng-eNBを介して、AMF_A240に登録要求(Registration Request)メッセージを送信することにより(S1000)(S1002)(S1004)、登録手続きを開始する。また、UE_A10は、登録要求メッセージにSM(Session Management)メッセージ(例えば、PDUセッション確立要求メッセージ)を含めて送信することで、又は登録要求メッセージとともにSMメッセージ(例えば、PDUセッション確立要求メッセージ)を送信することで、登録手続き中にPDUセッション確立手続き等のセッションマネジメント(SM)のための手続きを開始してもよい。 First, UE_A10 performs the registration procedure by sending a registration request message to AMF_A240 via NR node (also called gNB) _A122 and / or ng-eNB (S1000) (S1002) (S1004). Start. In addition, UE_A10 sends an SM (Session Management) message (for example, a PDU session establishment request message) in the registration request message, or sends an SM message (for example, a PDU session establishment request message) together with the registration request message. By doing so, the procedure for session management (SM) such as the PDU session establishment procedure may be started during the registration procedure.
 具体的には、UE_A10は、登録要求メッセージを含むRRC(Radio Resource Control)メッセージを、NR node_A122及び/又はng-eNBに送信する(S1000)。NR node_A122及び/又はng-eNBは、登録要求メッセージを含むRRCメッセージを受信すると、RRCメッセージの中から登録要求メッセージを取り出し、登録要求メッセージのルーティング先のNF又は共有CPファンクションとして、AMF_A240を選択する(S1002)。ここで、NR node_A122及び/又はng-eNBは、RRCメッセージに含まれる情報に基づき、AMF_A240を選択してもよい。NR node_A122及び/又はng-eNBは、選択したAMF_A240に、登録要求メッセージを送信又は転送する(S1004)。 Specifically, UE_A10 sends an RRC (Radio Resource Control) message including a registration request message to NR node_A122 and / or ng-eNB (S1000). When NR node_A122 and / or ng-eNB receives the RRC message including the registration request message, it extracts the registration request message from the RRC message and selects AMF_A240 as the NF or shared CP function to which the registration request message is routed. (S1002). Here, NR node_A122 and / or ng-eNB may select AMF_A240 based on the information contained in the RRC message. NR node_A122 and / or ng-eNB sends or forwards a registration request message to the selected AMF_A240 (S1004).
 尚、登録要求メッセージは、N1インターフェース上で送受信されるNAS(Non-Access-Stratum)メッセージである。また、RRCメッセージは、UE_A10とNR node_A122及び/又はng-eNBとの間で送受信される制御メッセージである。また、NASメッセージはNASレイヤで処理され、RRCメッセージはRRCレイヤで処理され、NASレイヤはRRCレイヤよりも上位のレイヤである。 The registration request message is a NAS (Non-Access-Stratum) message sent and received on the N1 interface. The RRC message is a control message sent and received between UE_A10 and NR node_A122 and / or ng-eNB. In addition, NAS messages are processed in the NAS layer, RRC messages are processed in the RRC layer, and the NAS layer is a layer higher than the RRC layer.
 また、UE_A10は、登録を要求するNSIが複数存在する場合は、そのNSIごとに登録要求メッセージを送信してもよく、複数の登録要求メッセージを、1以上のRRCメッセージに含めて送信してもよい。また、上記の複数の登録要求メッセージを1つの登録要求メッセージとして、1以上のRRCメッセージに含めて送信してもよい。 In addition, UE_A10 may send a registration request message for each NSI when there are multiple NSIs requesting registration, or may send multiple registration request messages by including them in one or more RRC messages. Good. Further, the above-mentioned plurality of registration request messages may be included in one or more RRC messages and transmitted as one registration request message.
 AMF_A240は、登録要求メッセージ及び/又は登録要求メッセージとは異なる制御メッセージを受信すると、第1の条件判別を実行する。第1の条件判別は、AMF_A240がUE_A10の要求を受諾するか否かを判別するためのものである。第1の条件判別において、AMF_A240は第1の条件判別が真であるか偽であるかを判定する。AMF_A240は、第1の条件判別が真の場合(すなわち、ネットワークがUE_A10の要求を受諾する場合)、本手続き中の(A)の手続きを開始し、第1の条件判別が偽の場合(すなわち、ネットワークがUE_A10の要求を受諾しない場合)、本手続き中の(B)の手続きを開始する。 When AMF_A240 receives a registration request message and / or a control message different from the registration request message, it executes the first condition determination. The first conditional determination is for determining whether or not AMF_A240 accepts the request of UE_A10. In the first condition determination, AMF_A240 determines whether the first condition determination is true or false. AMF_A240 initiates procedure (A) during this procedure if the first condition determination is true (ie, if the network accepts the request for UE_A10) and if the first condition determination is false (ie). , If the network does not accept the request of UE_A10), start the procedure (B) during this procedure.
 以下、第1の条件判別が真の場合のステップ、すなわち本手続き中の(A)の手続きの各ステップを説明する。AMF_A240は、第4の条件判別を実行し、本手続き中の(A)の手続きを開始する。第4の条件判別は、AMF_A240がSMF_A230との間でSMメッセージの送受信を実施するか否かを判別するためのものである。言い換えると、第4の条件判別は、AMF_A240が本手続き中で、PDUセッション確立手続きを実施するか否かを判別するものであってもよい。AMF_A240は、第4の条件判別が真の場合(すなわち、AMF_A240がSMF_A230との間でSMメッセージの送受信を実施する場合)には、SMF_A230の選択、及び選択したSMF_A230との間でSMメッセージの送受信を実行し、第4の条件判別が偽の場合(すなわち、AMF_A240がSMF_A230との間でSMメッセージの送受信を実施しない場合)には、それらを省略する(S1006)。尚、AMF_A240は、SMF_A230から拒絶を示すSMメッセージを受信した場合は、本手続き中の(A)の手続きを中止し、本手続き中の(B)の手続きを開始してもよい。 Hereinafter, the steps when the first condition determination is true, that is, each step of the procedure (A) in this procedure will be described. AMF_A240 executes the fourth condition determination and starts the procedure (A) during this procedure. The fourth condition determination is for determining whether or not AMF_A240 sends and receives SM messages to and from SMF_A230. In other words, the fourth condition determination may determine whether or not AMF_A240 is in the process of performing the PDU session establishment procedure. AMF_A240 selects SMF_A230 and sends and receives SM messages to and from the selected SMF_A230 when the fourth condition determination is true (that is, when AMF_A240 sends and receives SM messages to and from SMF_A230). If the fourth condition determination is false (that is, AMF_A240 does not send or receive SM messages to or from SMF_A230), omit them (S1006). When AMF_A240 receives an SM message indicating refusal from SMF_A230, it may cancel the procedure (A) during this procedure and start the procedure (B) during this procedure.
 さらに、AMF_A240は、UE_A10からの登録要求メッセージの受信、及び/又はSMF_A230との間のSMメッセージの送受信の完了に基づいて、NR node_A122を介して、UE_A10に登録受諾(Registration Accept)メッセージを送信する(S1008)。例えば、第4の条件判別が真の場合、AMF_A240は、UE_A10からの登録要求メッセージの受信に基づいて、登録受諾メッセージを送信してもよい。また、第4の条件判別が偽の場合、AMF_A240は、SMF_A230との間のSMメッセージの送受信の完了に基づいて、登録受諾メッセージを送信してもよい。ここで、登録受諾メッセージは、登録要求メッセージに対する応答メッセージとして送信されてよい。また、登録受諾メッセージは、N1インターフェース上で送受信されるNASメッセージであり、例えば、AMF_A240はNR node_A122に対してN2インターフェースの制御メッセージとして送信し、これを受信したNR node_A122はUE_A10に対してRRCメッセージに含めて送信してもよい。 In addition, AMF_A240 sends a Registration Accept message to UE_A10 via NR node_A122 based on the receipt of the registration request message from UE_A10 and / or the completion of sending and receiving SM messages to and from SMF_A230. (S1008). For example, if the fourth condition determination is true, AMF_A240 may send a registration acceptance message based on the receipt of the registration request message from UE_A10. Further, if the fourth condition determination is false, AMF_A240 may send a registration acceptance message based on the completion of transmission / reception of the SM message with SMF_A230. Here, the registration acceptance message may be sent as a response message to the registration request message. The registration acceptance message is a NAS message sent and received on the N1 interface. For example, AMF_A240 sends to NR node_A122 as a control message for N2 interface, and NR node_A122 that receives this is an RRC message to UE_A10. You may include it in and send it.
 さらに、第4の条件判別が真の場合、AMF_A240は、登録受諾メッセージに、SMメッセージ(例えば、PDUセッション確立受諾メッセージ)を含めて送信するか、又は登録受諾メッセージとともに、SMメッセージ(例えば、PDUセッション確立受諾メッセージ)を送信してもよい。この送信方法は、登録要求メッセージの中にSMメッセージ(例えば、PDUセッション確立要求メッセージ)が含められており、かつ、第4の条件判別が真の場合に、実行されてもよい。また、この送信方法は、登録要求メッセージとともにSMメッセージ(例えば、PDUセッション確立要求メッセージ)を含められており、かつ、第4の条件判別が真の場合に、実行されてもよい。AMF_A240は、このような送信方法を行うことにより、SMのための手続きが受諾されたことを示してもよい。 Further, if the fourth condition determination is true, the AMF_A240 may send the registration acceptance message including the SM message (eg, PDU session establishment acceptance message), or together with the registration acceptance message, the SM message (eg, PDU). A session establishment acceptance message) may be sent. This transmission method may be executed when the SM message (for example, the PDU session establishment request message) is included in the registration request message and the fourth condition determination is true. Further, this transmission method may be executed when the SM message (for example, the PDU session establishment request message) is included together with the registration request message and the fourth condition determination is true. AMF_A240 may indicate that the procedure for SM has been accepted by performing such a transmission method.
 UE_A10は、NR node_A122介して、登録受諾メッセージを受信する(S1008)。UE_A10は、登録受諾メッセージを受信することで、登録受諾メッセージに含まれる各種の識別情報の内容を認識する。 UE_A10 receives the registration acceptance message via NR node_A122 (S1008). UE_A10 recognizes the contents of various identification information included in the registration acceptance message by receiving the registration acceptance message.
 次に、UE_A10は、登録受諾メッセージの受信に基づいて、登録完了(Registration Complete)メッセージを、AMF_A240に送信する(S1010)。尚、UE_A10は、PDUセッション確立受諾メッセージ等のSMメッセージを受信した場合は、登録完了メッセージに、PDUセッション確立完了メッセージ等のSMメッセージを含めて送信してもよいし、SMメッセージを含めることで、SMのための手続きを完了することを示してもよい。ここで、登録完了メッセージは、登録受諾メッセージに対する応答メッセージとして送信されてよい。また、登録完了メッセージは、N1インターフェース上で送受信されるNASメッセージであり、例えば、UE_A10はNR node_A122に対してRRCメッセージに含めて送信し、これを受信したNR node_A122はAMF_A240に対してN2インターフェースの制御メッセージとして送信してもよい。 Next, UE_A10 sends a Registration Complete message to AMF_A240 based on the receipt of the registration acceptance message (S1010). When UE_A10 receives an SM message such as a PDU session establishment acceptance message, it may send the registration completion message including the SM message such as the PDU session establishment completion message, or by including the SM message. , May indicate that the procedure for SM is completed. Here, the registration completion message may be sent as a response message to the registration acceptance message. The registration completion message is a NAS message sent and received on the N1 interface. For example, UE_A10 sends it to NR node_A122 by including it in the RRC message, and NR node_A122 that receives this is sent to AMF_A240 on the N2 interface. It may be sent as a control message.
 AMF_A240は、登録完了メッセージを受信する(S1010)。また、各装置は、登録受諾メッセージ、及び/又は登録完了メッセージの送受信に基づき、本手続き中の(A)の手続きを完了する。 AMF_A240 receives a registration completion message (S1010). In addition, each device completes the procedure (A) in this procedure based on the transmission / reception of the registration acceptance message and / or the registration completion message.
 次に、第1の条件判別が偽の場合のステップ、すなわち本手続き中の(B)の手続きの各ステップを説明する。AMF_A240は、NR node_A122を介して、UE_A10に登録拒絶(Registration Reject)メッセージを送信することにより(S1012)、本手続き中の(B)の手続きを開始する。ここで、登録拒絶メッセージは、登録要求メッセージに対する応答メッセージとして送信されてよい。また、登録拒絶メッセージは、N1インターフェース上で送受信されるNASメッセージであり、例えば、AMF_A240はNR node_A122に対してN2インターフェースの制御メッセージとして送信し、これを受信したNR node_A122はUE_A10に対してRRCメッセージに含めて送信してもよい。また、AMF_A240が送信する登録拒絶メッセージは、UE_A10の要求を拒絶するメッセージであれば、これに限らない。 Next, the steps when the first condition determination is false, that is, each step of the procedure (B) in this procedure will be described. AMF_A240 starts the procedure (B) during this procedure by sending a Registration Reject message to UE_A10 via NR node_A122 (S1012). Here, the registration refusal message may be sent as a response message to the registration request message. The registration refusal message is a NAS message sent and received on the N1 interface. For example, AMF_A240 sends an N2 interface control message to NR node_A122, and NR node_A122 that receives this is an RRC message to UE_A10. You may include it in and send it. Further, the registration refusal message transmitted by AMF_A240 is not limited to this as long as it is a message that rejects the request of UE_A10.
 尚、本手続き中の(B)の手続きは、本手続き中の(A)の手続きを中止した場合に開始される場合もある。(A)の手続きにおいて、第4の条件判別が真の場合、AMF_A240は、登録拒絶メッセージに、PDUセッション確立拒絶メッセージ等の拒絶を意味するSMメッセージを含めて送信してもよいし、拒絶を意味するSMメッセージを含めることで、SMのための手続きが拒絶されたことを示してもよい。その場合、UE_A10は、さらに、PDUセッション確立拒絶メッセージ等の拒絶を意味するSMメッセージを受信してもよいし、SMのための手続きが拒絶されたことを認識してもよい。 Note that the procedure (B) during this procedure may be started when the procedure (A) during this procedure is cancelled. In the procedure (A), if the fourth condition determination is true, AMF_A240 may send the registration refusal message including the SM message indicating refusal such as the PDU session establishment refusal message, or reject the registration. The inclusion of the meaning SM message may indicate that the procedure for SM has been rejected. In that case, UE_A10 may further receive an SM message indicating rejection such as a PDU session establishment refusal message, or may recognize that the procedure for SM has been rejected.
 さらに、UE_A10は、登録拒絶メッセージを受信することにより、あるいは、登録受諾メッセージを受信しないことにより、UE_A10の要求が拒絶されたことを認識してもよい。各装置は、登録拒絶メッセージの送受信に基づき、本手続き中の(B)の手続きを完了する。 Furthermore, UE_A10 may recognize that the request of UE_A10 has been rejected by receiving the registration refusal message or by not receiving the registration acceptance message. Each device completes the procedure (B) during this procedure based on the transmission and reception of the registration refusal message.
 各装置は、本手続き中の(A)又は(B)の手続きの完了に基づいて、本手続き(登録手続き)を完了する。尚、各装置は、本手続き中の(A)の手続きの完了に基づいて、UE_A10がネットワークに登録された状態(RM_REGISTERED state)に遷移してもよいし、本手続き中の(B)の手続きの完了に基づいて、UE_A10がネットワークに登録されていない状態(RM_DEREGISTERED state)を維持してもよい。また、各装置の各状態への遷移は、本手続きの完了に基づいて行われてもよく、PDUセッションの確立に基づいて行われてもよい。 Each device completes this procedure (registration procedure) based on the completion of procedure (A) or (B) during this procedure. In addition, each device may transition to the state in which UE_A10 is registered in the network (RM_REGISTERED state) based on the completion of the procedure (A) during this procedure, or the procedure (B) during this procedure. UE_A10 may remain unregistered in the network (RM_DEREGISTERED state) based on the completion of. Further, the transition of each device to each state may be performed based on the completion of this procedure, or may be performed based on the establishment of the PDU session.
 さらに、各装置は、本手続きの完了に基づいて、本手続きで送受信した識別情報に基づいた処理を実施してもよい。 Furthermore, each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure.
 また、第1の条件判別は、登録要求メッセージに含まれる識別情報、及び/又は加入者情報、及び/又はオペレータポリシーに基づいて実行されてもよい。例えば、第1の条件判別は、UE_A10の要求をネットワークが許可する場合、真でよい。また、第1の条件判別は、UE_A10の要求をネットワークが許可しない場合、偽でよい。さらに、第1の条件判別は、UE_A10の登録先のネットワーク、及び/又はネットワーク内の装置が、UE_A10が要求する機能を、サポートしている場合は真でよく、サポートしていない場合は偽でよい。さらに、第1の条件判別は、ネットワークが、輻輳状態であると判断した場合は真であってよく、輻輳状態ではないと判断した場合は偽であってよい。尚、第1の条件判別の真偽が決まる条件は前述した条件に限らなくてもよい。 Further, the first condition determination may be executed based on the identification information and / or the subscriber information included in the registration request message and / or the operator policy. For example, the first condition determination may be true if the network allows the request for UE_A10. Further, the first condition determination may be false if the network does not allow the request of UE_A10. Further, the first condition determination may be true if the network to which UE_A10 is registered and / or the device in the network supports the function required by UE_A10, and false if it does not support it. Good. Further, the first condition determination may be true if the network determines that it is in a congested state, and may be false if it is determined that it is not in a congested state. The condition for determining the truth of the first condition determination does not have to be limited to the above-mentioned condition.
 また、第4の条件判別は、AMF_A240がSMを受信したか否かに基づいて実行されてよく、登録要求メッセージにSMメッセージが含まれているかに基づいて実行されてもよい。例えば、第4の条件判別は、AMF_A240がSMを受信した場合、及び/又は登録要求メッセージにSMメッセージが含まれていた場合は真であってよく、AMF_A240がSMを受信しなかった場合、及び/又は登録要求メッセージにSMメッセージが含まれていなかった場合は偽であってよい。尚、第4の条件判別の真偽が決まる条件は前述した条件に限らなくてもよい。 Further, the fourth condition determination may be executed based on whether or not AMF_A240 has received the SM, and may be executed based on whether or not the registration request message includes the SM message. For example, the fourth condition determination may be true if AMF_A240 receives SM and / or if the registration request message contains an SM message, if AMF_A240 does not receive SM, and / Or it may be false if the registration request message does not contain the SM message. The condition for determining the truth of the fourth condition determination does not have to be limited to the above-mentioned condition.
 [1.3.2.PDUセッション確立手続きの概要]
 次に、DN_A5に対するPDUセッションを確立するために行うPDUセッション確立手続きの概要について説明する。以下、PDUセッション確立手続きは、本手続きとも称する。本手続きは、各装置がPDUセッションを確立する為の手続きである。尚、各装置は、本手続きを、登録手続きを完了した状態で実行してもよいし、登録手続きの中で実行してもよい。また、各装置は、登録状態で本手続きを開始してもよいし、登録手続き後の任意のタイミングで本手続きを開始してもよい。また、各装置は、PDUセッション確立手続きの完了に基づいて、PDUセッションを確立してもよい。さらに、各装置は、本手続きを複数回実行することで、複数のPDUセッションを確立してもよい。
[1.3.2. Outline of PDU session establishment procedure]
Next, the outline of the PDU session establishment procedure performed to establish the PDU session for DN_A5 will be described. Hereinafter, the PDU session establishment procedure is also referred to as this procedure. This procedure is a procedure for each device to establish a PDU session. In addition, each device may execute this procedure in a state where the registration procedure is completed, or may execute this procedure in the registration procedure. Further, each device may start the main procedure in the registered state, or may start the main procedure at an arbitrary timing after the registration procedure. In addition, each device may establish a PDU session based on the completion of the PDU session establishment procedure. Further, each device may establish a plurality of PDU sessions by executing this procedure a plurality of times.
 [1.3.2.1.PDUセッション確立手続き例]
 図11を用いて、PDUセッション確立手続きを実行する手順の例を説明する。以下、本手続きの各ステップについて説明する。まず、UE_A10は、アクセスネットワーク_Bを介して、コアネットワーク_BにPDUセッション確立要求(PDU Session Establishment Request)メッセージを送信することにより(S1100)、PDUセッション確立手続きを開始する。
[1.3.2.1. Example of PDU session establishment procedure]
An example of the procedure for executing the PDU session establishment procedure will be described with reference to FIG. Each step of this procedure will be described below. First, UE_A10 starts the PDU session establishment procedure by sending a PDU session establishment request (PDU Session Establishment Request) message to the core network_B via the access network_B (S1100).
 具体的には、UE_A10は、N1インターフェースを用いて、NR node_A122を介して、コアネットワーク_B190内のAMF_A240に、PDUセッション確立要求メッセージを送信する(S1100)。AMF_Aは、PDUセッション確立要求メッセージを受信し、第3の条件判別を実行する。第3の条件判別は、AMF_Aが、UE_A10の要求を受諾するか否かを判断する為のものである。第3の条件判別において、AMF_Aは、第5の条件判別が真であるか偽であるかを判定する。コアネットワーク_Bは、第3の条件判別が真の場合はコアネットワーク内の処理#1を開始し(S1101)、第3の条件判別が偽の場合は本手続き中の(B)の手続きを開始する。尚、第3の条件判別が偽の場合のステップは後述する。ここで、コアネットワーク内の処理#1は、コアネットワーク_B190内のAMF_AによるSMF選択及び/又はAMF_AとSMF_AとのPDUセッション確立要求メッセージの送受信であってよい。 Specifically, UE_A10 uses the N1 interface to send a PDU session establishment request message to AMF_A240 in the core network_B190 via NR node_A122 (S1100). AMF_A receives the PDU session establishment request message and executes the third condition determination. The third condition determination is for determining whether or not AMF_A accepts the request of UE_A10. In the third condition determination, AMF_A determines whether the fifth condition determination is true or false. If the third condition determination is true, the core network_B starts processing # 1 in the core network (S1101), and if the third condition determination is false, the procedure (B) in this procedure is performed. Start. The step when the third condition determination is false will be described later. Here, the process # 1 in the core network may be SMF selection by AMF_A in the core network_B190 and / or transmission / reception of a PDU session establishment request message between AMF_A and SMF_A.
 コアネットワーク_B190は、コアネットワーク内の処理#1を開始する。コアネットワーク内の処理#1において、AMF_A240が、PDUセッション確立要求メッセージのルーティング先のNFとしてSMF_A230を選択し、N11インターフェースを用いて、選択したSMF_A230に、PDUセッション確立要求メッセージを送信又は転送してもよい。ここで、AMF_A240は、PDUセッション確立要求メッセージに含まれる情報に基づき、ルーティング先のSMF_A230を選択してもよい。より詳細には、AMF_A240は、PDUセッション確立要求メッセージの受信に基づいて取得した各識別情報、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はAMF_A240が既に保持しているコンテキストに基づいて、ルーティング先のSMF_A230を選択してもよい。 Core network_B190 starts processing # 1 in the core network. In process # 1 in the core network, AMF_A240 selects SMF_A230 as the routing destination NF for the PDU session establishment request message, and uses the N11 interface to send or forward the PDU session establishment request message to the selected SMF_A230. May be good. Here, AMF_A240 may select the routing destination SMF_A230 based on the information contained in the PDU session establishment request message. More specifically, the AMF_A240 is an identification information and / or a subscriber information acquired based on the reception of a PDU session establishment request message, and / or a network capability information, and / or an operator policy, and / or a network. The routing destination SMF_A230 may be selected based on the state and / or the context already held by AMF_A240.
 尚、PDUセッション確立要求メッセージは、NASメッセージであってよい。また、PDUセッション確立要求メッセージは、PDUセッションの確立を要求するメッセージであればよく、これに限らない。 The PDU session establishment request message may be a NAS message. Further, the PDU session establishment request message may be any message that requests the establishment of a PDU session, and is not limited to this.
 ここで、UE_A10は、PDUセッションの確立を要求するためのNASメッセージ又は、PDUセッション確立要求メッセージに、5G VNグループに対応付けられたDNNを含めてもよいし、このDNNを含めることで、UE_A10の要求を示してもよい。 Here, UE_A10 may include the DNN associated with the 5GVN group in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message, and by including this DNN, UE_A10 may be included. May indicate the request of.
 さらに、UE_A10は、5G VNグループに対応付けられたDNNをPDUセッションの確立を要求するためのNASメッセージ又は、PDUセッション確立要求メッセージに含めて送信することで、5G VNグループのためのPDUセッションの確立を要求してもよいし、UE_A10が要求する、PDUセッションが属する5G VNグループを示してもよいし、PDUセッションがこれから属する予定である5G VNグループを示してもよい。 Furthermore, UE_A10 sends the DNN associated with the 5GVN group by including it in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message, so that the PDU session for the 5GVN group can be sent. It may request establishment, it may indicate the 5GVN group to which the PDU session belongs, as requested by UE_A10, or it may indicate the 5GVN group to which the PDU session will belong.
 尚、UE_A10は、5G VNグループに対応付けられたDNNをPDUセッションの確立を要求するためのNASメッセージ又は、PDUセッション確立要求メッセージに入れるか否かを、UE_A10の能力情報、及び/又はUEポリシー等のポリシー、及び/又はUE_A10のプリファレンス、及び/又はアプリケーション(上位層)に基づいて決定してもよい。尚、5G VNグループに対応付けられたDNNをPDUセッションの確立を要求するためのNASメッセージ又は、PDUセッション確立要求メッセージに入れるかのUE_A10による決定はこれに限らない。 In addition, UE_A10 indicates whether or not to include the DNN associated with the 5GVN group in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message, the capability information of UE_A10, and / or the UE policy. Etc., and / or UE_A10 preferences, and / or may be determined based on the application (upper layer). The decision by UE_A10 whether to include the DNN associated with the 5GVN group in the NAS message for requesting the establishment of the PDU session or the PDU session establishment request message is not limited to this.
 コアネットワーク_B190内のSMF_A230は、PDUセッション確立要求メッセージを受信し、第3の条件判別を実行する。第3の条件判別は、SMF_A230が、UE_A10の要求を受諾するか否かを判断する為のものである。第3の条件判別において、SMF_A230は、第3の条件判別が真であるか偽であるかを判定する。SMF_A230は、第3の条件判別が真の場合は本手続き中の(A)の手続きを開始し、第3の条件判別が偽の場合は本手続き中の(B)の手続きを開始する。尚、第3の条件判別が偽の場合のステップは後述する。 SMF_A230 in the core network_B190 receives the PDU session establishment request message and executes the third condition determination. The third condition determination is for determining whether or not SMF_A230 accepts the request of UE_A10. In the third condition determination, SMF_A230 determines whether the third condition determination is true or false. SMF_A230 starts the procedure (A) in this procedure when the third condition judgment is true, and starts the procedure (B) in this procedure when the third condition judgment is false. The step when the third condition determination is false will be described later.
 以下、第3の条件判別が真の場合のステップ、すなわち本手続き中の(A)の手続きの各ステップを説明する。SMF_A230は、PDUセッションの確立先のUPF_A235を選択し、第11の条件判別を実行する。 Hereinafter, the steps when the third condition determination is true, that is, each step of the procedure (A) in this procedure will be described. SMF_A230 selects UPF_A235 to establish the PDU session and executes the eleventh condition determination.
 ここで、第11の条件判別は、各装置がコアネットワーク内の処理#2を実行するか否かを判断するためのものである。ここで、コアネットワーク内の処理#2は、各装置によるPDUセッション確立認証手続きの開始及び又は実行、及び/又はコアネットワーク_B190内のSMF_AとUPF_Aの間のセッション確立要求(Session Establishment request)メッセージの送受信及び/又は、セッション確立応答(Session Establishment response)メッセージの送受信、等が含まれていてよい(S1103)。第11の条件判別において、SMF_A230は第11の条件判別が真であるか偽であるかを判定する。SMF_A230は、第11の条件判別が真の場合はPDUセッション確立認証承認手続きを開始し、第11の条件判別が偽の場合はPDUセッション確立認証承認手続を省略する。尚、コアネットワーク内の処理#2のPDUセッション確立認証承認手続きの詳細は後述する。 Here, the eleventh condition determination is for determining whether or not each device executes the process # 2 in the core network. Here, process # 2 in the core network is the start and / or execution of the PDU session establishment authentication procedure by each device, and / or the session establishment request message between SMF_A and UPF_A in the core network_B190. And / or the transmission and reception of a session establishment response message, etc. (S1103). In the eleventh condition determination, SMF_A230 determines whether the eleventh condition determination is true or false. SMF_A230 starts the PDU session establishment authentication approval procedure when the eleventh condition determination is true, and omits the PDU session establishment authentication approval approval procedure when the eleventh condition determination is false. The details of the PDU session establishment authentication approval procedure for process # 2 in the core network will be described later.
 次に、SMF_A230は、第11の条件判別、及び/又はPDUセッション確立認証承認手続きの完了に基づいて、選択したUPF_A235にセッション確立要求メッセージを送信し、本手続き中の(A)の手続きを開始する。尚、SMF_A230は、PDUセッション確立認証承認手続きの完了に基づいて、本手続き中の(A)の手続きを開始せずに、本手続き中の(B)の手続きを開始してもよい。 Next, SMF_A230 sends a session establishment request message to the selected UPF_A235 based on the completion of the eleventh condition determination and / or the PDU session establishment authentication approval procedure, and starts the procedure (A) during this procedure. To do. In addition, SMF_A230 may start the procedure (B) in this procedure without starting the procedure (A) in this procedure based on the completion of the PDU session establishment authentication approval procedure.
 ここで、SMF_A230は、PDUセッション確立要求メッセージの受信に基づいて取得した各識別情報、及び/又はネットワークの能力情報、及び/又は加入者情報、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はSMF_A230が既に保持しているコンテキストに基づいて、1以上のUPF_A235を選択してもよい。尚、複数のUPF_A235が選択された場合、SMF_A230は、各々のUPF_A235に対してセッション確立要求メッセージを送信してもよい。 Here, the SMF_A230 is the identification information acquired based on the reception of the PDU session establishment request message, and / or the network capability information and / or the subscriber information, and / or the operator policy, and / or the network status. And / or one or more UPF_A235s may be selected based on the context already held by SMF_A230. When a plurality of UPF_A235s are selected, SMF_A230 may send a session establishment request message to each UPF_A235.
 UPF_A235は、セッション確立要求メッセージを受信し、PDUセッションのためのコンテキストを作成する。さらに、UPF_A235は、セッション確立要求メッセージを受信、及び/又はPDUセッションのためのコンテキストの作成に基づいて、SMF_A230にセッション確立応答メッセージを送信する。さらに、SMF_A230は、セッション確立応答メッセージを受信する。尚、セッション確立要求メッセージ及びセッション確立応答メッセージは、N4インターフェース上で送受信される制御メッセージであってもよい。さらに、セッション確立応答メッセージは、セッション確立要求メッセージに対する応答メッセージであってよい。 UPF_A235 receives the session establishment request message and creates a context for the PDU session. In addition, UPF_A235 receives a session establishment request message and / or sends a session establishment response message to SMF_A230 based on creating a context for the PDU session. In addition, SMF_A230 receives a session establishment response message. The session establishment request message and the session establishment response message may be control messages sent and received on the N4 interface. Further, the session establishment response message may be a response message to the session establishment request message.
 さらに、SMF_A230は、PDUセッション確立要求メッセージの受信、及び/又はUPF_A235の選択、及び/又はセッション確立応答メッセージの受信に基づいて、UE_A10に割り当てるアドレスのアドレス割り当てを行ってよい。尚、SMF_A230は、UE_A10に割り当てるアドレスのアドレス割り当てをPDUセッション確立手続き中で行ってもよいし、PDUセッション確立手続きの完了後に行ってもよい。 Further, the SMF_A230 may assign an address to be assigned to the UE_A10 based on the reception of the PDU session establishment request message and / or the selection of the UPF_A235 and / or the reception of the session establishment response message. Note that SMF_A230 may assign the address assigned to UE_A10 during the PDU session establishment procedure, or may perform it after the PDU session establishment procedure is completed.
 具体的には、SMF_A230は、DHCPv4を用いずにIPv4アドレスを割り当てる場合、PDUセッション確立手続き中に、アドレス割り当てを行ってもよいし、割り当てたアドレスをUE_A10に送信してもよい。さらに、SMF_A230は、DHCPv4又はDHCPv6又はSLAAC(Stateless Address Autoconfiguration)用いてIPv4アドレス、及び/又はIPv6アドレス、及び/又はIPv6プレフィックスを割り当てる場合、PDUセッション確立手続き後に、アドレス割り当てを行ってもよいし、割り当てたアドレスをUE_A10に送信してもよい。尚、SMF_A230が実施するアドレス割り当てはこれらに限らない。 Specifically, when SMF_A230 assigns an IPv4 address without using DHCPv4, the address may be assigned during the PDU session establishment procedure, or the assigned address may be transmitted to UE_A10. Furthermore, when SMF_A230 assigns an IPv4 address and / or an IPv6 address and / or an IPv6 prefix using DHCPv4 or DHCPv6 or SLAAC (Stateless Address Autoconfiguration), the address may be assigned after the PDU session establishment procedure. The assigned address may be sent to UE_A10. The address allocation performed by SMF_A230 is not limited to these.
 さらに、SMF_A230は、UE_A10に割り当てるアドレスのアドレス割り当ての完了に基づいて、割り当てたアドレスをPDUセッション確立受諾メッセージに含めてUE_A10に送信してもよいし、PDUセッション確立手続きの完了後に、UE_A10に送信してもよい。 In addition, SMF_A230 may include the assigned address in the PDU session establishment acceptance message and send it to UE_A10 based on the completion of address assignment of the address assigned to UE_A10, or send it to UE_A10 after the PDU session establishment procedure is completed. You may.
 SMF_A230は、PDUセッション確立要求メッセージの受信、及び/又はUPF_A235の選択、及び/又はセッション確立応答メッセージの受信、及び/又はUE_A10に割り当てるアドレスのアドレス割り当ての完了に基づいて、AMF_A240を介してUE_A10にPDUセッション確立受諾(PDU session establishment accept)メッセージを送信する(S1110)。 SMF_A230 sends to UE_A10 via AMF_A240 based on the receipt of the PDU session establishment request message and / or the selection of UPF_A235 and / or the reception of the session establishment response message and / or the completion of address assignment of the address assigned to UE_A10. Send a PDU session establishment accept message (S1110).
 具体的には、SMF_A230は、N11インターフェースを用いてAMF_A240にPDUセッション確立受諾メッセージを送信し、PDUセッション確立受諾メッセージを受信したAMF_A240が、N1インターフェースを用いてUE_A10にPDUセッション確立受諾メッセージを送信する。 Specifically, SMF_A230 sends a PDU session establishment acceptance message to AMF_A240 using the N11 interface, and AMF_A240 that receives the PDU session establishment acceptance message sends a PDU session establishment acceptance message to UE_A10 using the N1 interface. ..
 ここで、PDUセッション確立受諾メッセージは、5G VNグループに対応付けられたDNNが含まれていてよい。また、UE_A10が、PDUセッション確立手続きにおいて、PDUセッション確立を要求するためのNASメッセージに、5G VNグループと対応付けられたDNNを含めずに送信した場合、NASメッセージを受信したAMFが、確立を要求されたPDUセッションに対して、ユーザーサブスクリプション情報、又は、ネットワーク設定、又は、ネットワークポリシー等に基づいて選択した5G VNグループと対応付けられたDNNを使用することで、5G VNグループのためのPDUセッションを確立してもよい。更に、PSUセッション確立受諾メッセージに含まれる、5G VNグループに対応付けられたDNNは、第1の輻輳管理で用いられるDNNであってよい。 Here, the PDU session establishment acceptance message may include the DNN associated with the 5GVN group. Also, if UE_A10 sends a NAS message for requesting PDU session establishment without including the DNN associated with the 5GVN group in the PDU session establishment procedure, the AMF that received the NAS message will establish the establishment. For the requested PDU session, for the 5GVN group by using the DNN associated with the 5GVN group selected based on the user subscription information, network settings, network policy, etc. A PDU session may be established. Further, the DNN associated with the 5GVN group included in the PSU session establishment acceptance message may be the DNN used in the first congestion management.
 尚、PDUセッションがPDNコネクションである場合、PDUセッション確立受諾メッセージはPDN接続受諾(PDN connectivity accept)メッセージでよい。さらに、PDUセッション確立受諾メッセージは、N11インターフェース、及びN1インターフェース上で送受信されるNASメッセージであってよい。また、PDUセッション確立受諾メッセージは、これに限らず、PDUセッションの確立が受諾されたことを示すメッセージであればよい。 If the PDU session is a PDN connection, the PDU session establishment acceptance message may be a PDN connectivity accept message. Further, the PDU session establishment acceptance message may be a NAS message sent and received on the N11 interface and the N1 interface. Further, the PDU session establishment acceptance message is not limited to this, and may be any message indicating that the establishment of the PDU session has been accepted.
 UE_A10は、SMF_A230からPDUセッション確立受諾メッセージを受信する。UE_A10は、PDUセッション確立受諾メッセージを受信することで、PDUセッション確立受諾メッセージに含まれる各種の識別情報の内容を認識する。 UE_A10 receives the PDU session establishment acceptance message from SMF_A230. UE_A10 recognizes the contents of various identification information included in the PDU session establishment acceptance message by receiving the PDU session establishment acceptance message.
 次に、UE_A10は、PDUセッション確立受諾メッセージの受信の完了に基づいて、AMF_A240を介してSMF_A230にPDUセッション確立完了(PDU session establishment complete)メッセージを送信する(S1114)。さらに、SMF_A230は、PDUセッション確立完了メッセージを受信し、第2の条件判別を実行する。 Next, UE_A10 sends a PDU session establishment complete message to SMF_A230 via AMF_A240 based on the completion of receiving the PDU session establishment acceptance message (S1114). In addition, SMF_A230 receives the PDU session establishment completion message and executes the second condition determination.
 具体的には、UE_A10は、N1インターフェースを用いてAMF_A240にPDUセッション確立完了メッセージを送信し、PDUセッション確立完了メッセージを受信したAMF_A240が、N11インターフェースを用いてSMF_A230にPDUセッション確立完了メッセージを送信する。 Specifically, UE_A10 uses the N1 interface to send a PDU session establishment completion message to AMF_A240, and AMF_A240, which receives the PDU session establishment completion message, sends a PDU session establishment completion message to SMF_A230 using the N11 interface. ..
 尚、PDUセッションがPDNコネクションである場合、PDUセッション確立完了メッセージは、PDN接続完了(PDN Connectivity complete)メッセージでもよいし、デフォルトEPSベアラコンテキストアクティブ化受諾(Activate default EPS bearer context accept)メッセージでもよい。さらに、PDUセッション確立完了メッセージは、N1インターフェース、及びN11インターフェース上で送受信されるNASメッセージであってよい。また、PDUセッション確立完了メッセージは、PDUセッション確立受諾メッセージに対する応答メッセージであればよく、これに限らず、PDUセッション確立手続きが完了することを示すメッセージであればよい。 When the PDU session is a PDN connection, the PDU session establishment completion message may be a PDN connection completion (PDN Connectivity complete) message or a default EPS bearer context activation acceptance (Activate default EPS bearer context accept) message. Further, the PDU session establishment completion message may be a NAS message sent and received on the N1 interface and the N11 interface. Further, the PDU session establishment completion message may be a response message to the PDU session establishment acceptance message, and is not limited to this, and may be a message indicating that the PDU session establishment procedure is completed.
 第2の条件判別は、SMF_A230が、送受信されるN4インターフェース上のメッセージの種類を決定する為ものである。第2の条件判別が真の場合、コアネットワーク内の処理#3を開始してもよい(S1115)。ここで、コアネットワーク内の処理#3は、セッション変更要求(Session Modification request)メッセージの送受信及び/又は、セッション変更応答(Session Modification response)メッセージの送受信、等が含まれていてよい。SMF_A230はUPF_A235にセッション変更要求メッセージを送信し、さらに、セッション変更要求メッセージを受信したUPF_A235が送信したセッション変更受諾メッセージを受信する。また、第2の条件判別が偽の場合、SMF_A230は、コアネットワーク内の処理#2を実行する。すなわち、SMF_Aは、UPF_A235にセッション確立要求メッセージを送信し、さらに、セッション確立要求メッセージを受信したUPF_A235が送信したセッション変更受諾メッセージを受信する。 The second condition determination is for SMF_A230 to determine the type of message sent and received on the N4 interface. If the second condition determination is true, processing # 3 in the core network may be started (S1115). Here, the process # 3 in the core network may include transmission / reception of a session modification request (Session Modification request) message and / or transmission / reception of a session modification response (Session Modification response) message. SMF_A230 sends a session change request message to UPF_A235, and further receives a session change acceptance message sent by UPF_A235 that received the session change request message. If the second condition determination is false, SMF_A230 executes process # 2 in the core network. That is, SMF_A sends a session establishment request message to UPF_A235, and further receives a session change acceptance message sent by UPF_A235 that has received the session establishment request message.
 各装置は、PDUセッション確立完了メッセージの送受信、及び/又はセッション変更応答メッセージの送受信、及び/又はセッション確立応答メッセージの送受信、及び/又はRA(Router Advertisement)の送受信に基づいて、本手続き中の(A)の手続きを完了する。 Each device is in the process of this procedure based on sending and receiving PDU session establishment completion messages, / or sending and receiving session change response messages, and / or sending and receiving session establishment response messages, and / or sending and receiving RA (Router Advertisement). Complete the procedure of (A).
 次に、第3の条件判別が偽の場合のステップ、すなわち本手続き中の(B)の手続きの各ステップを説明する。SMF_A230は、AMF_A240を介してUE_A10にPDUセッション確立拒絶(PDU session establishment reject)メッセージを送信し(S1122)、本手続き中の(B)の手続きを開始する。 Next, the steps when the third condition determination is false, that is, each step of the procedure (B) in this procedure will be described. SMF_A230 sends a PDU session establishment reject message to UE_A10 via AMF_A240 (S1122), and starts the procedure (B) during this procedure.
 具体的には、SMF_A230は、N11インターフェースを用いてAMF_A240にPDUセッション確立拒絶メッセージを送信し、PDUセッション確立要求メッセージを受信したAMF_A240が、N1インターフェースを用いてUE_A10にPDUセッション確立拒絶メッセージを送信する。 Specifically, SMF_A230 uses the N11 interface to send a PDU session establishment rejection message to AMF_A240, and AMF_A240, which receives the PDU session establishment request message, sends a PDU session establishment rejection message to UE_A10 using the N1 interface. ..
 尚、PDUセッションがPDNコネクションである場合、PDUセッション確立拒絶メッセージはPDN接続拒絶(PDN connectivity reject)メッセージでよい。さらに、PDUセッション確立拒絶メッセージは、N11インターフェース、及びN1インターフェース上で送受信されるNASメッセージであってよい。また、PDUセッション確立拒絶メッセージは、これに限らず、PDUセッションの確立が拒絶されたことを示すメッセージであればよい。 If the PDU session is a PDN connection, the PDU session establishment refusal message may be a PDN connection rejection (PDN connectivity reject) message. Further, the PDU session establishment refusal message may be a NAS message sent and received on the N11 interface and the N1 interface. Further, the PDU session establishment refusal message is not limited to this, and may be any message indicating that the establishment of the PDU session has been rejected.
 ここで、SMF_A230は、PDUセッション確立拒絶メッセージに、第1の識別情報、第2の識別情報、第5の識別情報のうち1以上の識別情報を含めてもよいし、これらの識別情報を含めることで、UE_A10の要求が拒絶されたことを示してもよい。尚、これらの識別情報の2以上の識別情報は、1以上の識別情報として構成されてもよい。 Here, SMF_A230 may include one or more of the first identification information, the second identification information, and the fifth identification information in the PDU session establishment refusal message, and include these identification information. This may indicate that the request for UE_A10 has been rejected. In addition, two or more identification information of these identification information may be configured as one or more identification information.
 さらに、SMF_A230は、第1の識別情報、及び/又は、第2の識別情報、及び/又は第5の識別情報をPDUセッション確立拒絶メッセージに含めて送信することで、5G VNグループのためのPDUセッションの確立の要求が拒絶されたことを示してもよいし、PDUセッションを確立することが許可されていない5G VNグループを示してもよい。 In addition, the SMF_A230 will include the first and / or second identification and / or fifth identification in the PDU session establishment refusal message to send the PDU for the 5GVN group. It may indicate that the request to establish a session has been rejected, or it may indicate a 5G VN group that is not allowed to establish a PDU session.
 さらに、SMF_A230は、第1の識別情報、第2の識別情報、第5の識別情報のうち2以上の識別情報を組合せて送信することにより、上述した事柄を組合せた要求を行ってもよい。尚、SMF_A230が各識別情報を送信することで示す事柄はこれらに限らなくてもよい。 Further, SMF_A230 may make a request combining the above-mentioned matters by transmitting a combination of two or more identification information out of the first identification information, the second identification information, and the fifth identification information. It should be noted that the matters indicated by SMF_A230 by transmitting each identification information are not limited to these.
 尚、SMF_A230は、第1の識別情報、第2の識別情報、第5の識別情報のうち、どの識別情報をPDUセッション確立拒絶メッセージに入れるかを、受信した識別情報、及び/又は、ネットワークの能力情報、及び/又はオペレータポリシー等のポリシー、及び/又はネットワークの状態に基づいて決定してもよい。 In addition, SMF_A230 determines which of the first identification information, the second identification information, and the fifth identification information is included in the PDU session establishment refusal message of the received identification information and / or the network. It may be determined based on capability information and / or policies such as operator policies and / or network conditions.
 以上のように、コアネットワーク_B190はPDUセッション拒絶メッセージを送信することにより、UE_A10に適用する輻輳管理を通知する。尚、これにより、コアネットワーク_B190は、UE_A10に輻輳管理を適用すること、及び/又は、UE_A10に輻輳管理を実行することを示すこと、及び/又は、適用する輻輳管理の種別を識別する情報、及び/又は、適用する輻輳管理に対応するDNN及び/又はS-NSSAI等の輻輳管理の対象を識別する情報、及び/又は、適用する輻輳管理に対応づけられたタイマーの値を通知してもよい。 As described above, the core network_B190 notifies the congestion management applied to UE_A10 by sending a PDU session rejection message. It should be noted that this indicates that the core network_B190 applies congestion management to UE_A10 and / or performs congestion management to UE_A10, and / or information that identifies the type of congestion management to be applied. , And / or notify the information that identifies the target of congestion management such as DNN and / or S-NSSAI corresponding to the applied congestion management, and / or the value of the timer associated with the applied congestion management. May be good.
 ここで、上述した各情報は、第1の識別情報、第2の識別情報、第5の識別情報の一つ以上の識別情報によって識別される情報であってよい。 Here, each of the above-mentioned information may be information identified by one or more identification information of the first identification information, the second identification information, and the fifth identification information.
 UE_A10が、SMF_A230から受信するPDUセッション確立拒絶メッセージには、第1の識別情報、第2の識別情報、第5の識別情報の内、1又は複数の識別情報が含まれてよい。 The PDU session establishment refusal message received by UE_A10 from SMF_A230 may include one or more identification information among the first identification information, the second identification information, and the fifth identification information.
 次に、UE_A10は、PDUセッション確立拒絶メッセージの受信に基づいて、第4の処理を実施する(S1124)。また、UE_A10は、第4の処理を本手続きの完了に基づいて実施してもよい。 Next, UE_A10 performs the fourth process based on the reception of the PDU session establishment refusal message (S1124). In addition, UE_A10 may carry out the fourth process based on the completion of this procedure.
 以下、第4の処理の第1の例について説明する。 The first example of the fourth process will be described below.
 ここで、第4の処理は、UE_A10が、SMF_A230によって示された事柄を認識する処理であってよい。さらに、第4の処理は、UE_A10が、受信した識別情報をコンテキストとして記憶する処理であってもよいし、受信した識別情報を上位層、及び/又は下位層に転送する処理であってもよい。さらに、第4の処理は、UE_A10が、本手続きの要求が拒絶されたことを認識する処理であってもよい。 Here, the fourth process may be a process in which UE_A10 recognizes the matter indicated by SMF_A230. Further, the fourth process may be a process in which UE_A10 stores the received identification information as a context, or may be a process of transferring the received identification information to the upper layer and / or the lower layer. .. Further, the fourth process may be a process in which UE_A10 recognizes that the request for this procedure has been rejected.
 さらに、UE_A10が第1の識別情報、第2の識別情報、第5の識別情報を受信した場合、第4の処理は、UE_A10が、第5の識別情報が示す値をバックオフタイマー値に設定する処理であってもよいし、第5の識別情報に基づくタイマー値を設定したバックオフタイマーを開始する処理であってもよい。 Further, when UE_A10 receives the first identification information, the second identification information, and the fifth identification information, in the fourth process, UE_A10 sets the value indicated by the fifth identification information as the backoff timer value. It may be a process of starting a back-off timer in which a timer value based on the fifth identification information is set.
 さらに、第4の処理は、UE_A10が、一定期間後に再び本手続きを開始する処理であってもよいし、UE_A10の要求が限定又は制限された状態へ遷移する処理であってもよい。 Further, the fourth process may be a process in which UE_A10 starts this procedure again after a certain period of time, or a process in which the request of UE_A10 transitions to a limited or restricted state.
 なお、UE_A10は、第4の処理の完了に伴い、第1の状態に遷移してもよい。 Note that UE_A10 may transition to the first state when the fourth process is completed.
 次に、第4の処理の第2の例について説明する。 Next, the second example of the fourth process will be described.
 ここで、第4の処理は、UE_A10が、SMF_A230によって示された事柄を認識する処理であってよい。さらに、第4の処理は、UE_A10が、受信した識別情報をコンテキストとして記憶する処理であってもよいし、受信した識別情報を上位層、及び/又は下位層に転送する処理であってもよい。 Here, the fourth process may be a process in which UE_A10 recognizes the matter indicated by SMF_A230. Further, the fourth process may be a process in which UE_A10 stores the received identification information as a context, or may be a process of transferring the received identification information to the upper layer and / or the lower layer. ..
 さらに、第4の処理では、第1の識別情報、第2の識別情報、第5の識別情報のうち一つ以上の識別情報に基づいて、輻輳管理を適用することを識別する処理を実行してもよい。 Further, in the fourth process, a process for identifying that congestion management is applied is executed based on one or more of the first identification information, the second identification information, and the fifth identification information. You may.
 さらに、第4の処理では、第1の識別情報、第2の識別情報、第5の識別情報のうち一つ以上の識別情報に基づいて、適用する輻輳管理に対応づけられる第5の識別情報が示すバックオフタイマーに設定する値を識別及び設定し、バックオフタイマーのカウントを開始してもよい。より具体的には、本処理は第3の挙動で説明する処理であってよい。 Further, in the fourth process, the fifth identification information associated with the applied congestion management is based on one or more of the first identification information, the second identification information, and the fifth identification information. The value to be set in the back-off timer indicated by may be identified and set, and the count of the back-off timer may be started. More specifically, this process may be the process described in the third behavior.
 さらに、第4の処理では、上述したいずれかの処理の開始又は完了に伴い、第3の挙動から第7の挙動のうち一つ以上を実行してもよい。 Further, in the fourth process, one or more of the third to seventh actions may be executed with the start or completion of any of the above-mentioned processes.
 さらに、第4の処理では、上述したいずれかの処理の開始又は完了に伴い、第9の挙動から第15の挙動のうち一つ以上を実行してもよい。 Further, in the fourth process, one or more of the ninth to fifteenth actions may be executed with the start or completion of any of the above-mentioned processes.
 なお、UE_A10は、第4の処理の完了に伴い、第1の状態に遷移してもよい。 Note that UE_A10 may transition to the first state when the fourth process is completed.
 これまで、第4の処理に対し、第1の例と第2の例を用いて処理内容を説明してきたが、第4の処理のこれらの処理に限らなくてもよい。例えば、第4の処理は、第1の例で説明した複数の詳細処理の内の一部と、第2の例で説明した複数の詳細処理の内の一部とを組み合わせた処理であってもよい。 So far, the processing contents have been explained using the first example and the second example for the fourth processing, but it is not limited to these processings of the fourth processing. For example, the fourth process is a process in which a part of the plurality of detailed processes described in the first example and a part of the plurality of detailed processes described in the second example are combined. May be good.
 さらに、UE_A10は、PDUセッション確立拒絶メッセージを受信することにより、あるいは、PDUセッション確立受諾メッセージを受信しないことにより、UE_A10の要求が拒絶されたことを認識してもよい。各装置は、PDUセッション確立拒絶メッセージの送受信に基づき、本手続き中の(B)の手続きを完了する。 Furthermore, UE_A10 may recognize that the request of UE_A10 has been rejected by receiving the PDU session establishment refusal message or by not receiving the PDU session establishment acceptance message. Each device completes the procedure (B) during this procedure based on the transmission / reception of the PDU session establishment refusal message.
 各装置は、本手続き中の(A)又は(B)の手続きの完了に基づいて、本手続きを完了する。尚、各装置は、本手続き中の(A)の手続きの完了に基づいて、PDUセッションが確立された状態に遷移してもよいし、本手続き中の(B)の手続きの完了に基づいて、本手続きが拒絶されたことを認識してもよいし、PDUセッションが確立されていない状態に遷移してもよいし、第1の状態に遷移してもよい。 Each device completes this procedure based on the completion of procedure (A) or (B) during this procedure. In addition, each device may transition to the state where the PDU session is established based on the completion of the procedure (A) during this procedure, or based on the completion of the procedure (B) during this procedure. , You may recognize that this procedure has been rejected, you may transition to a state where the PDU session has not been established, or you may transition to the first state.
 さらに、各装置は、本手続きの完了に基づいて、本手続きで送受信した識別情報に基づいた処理を実施してもよい。言い換えると、UE_A10は、本手続きの完了に基づいて、第4の処理を実施してもよいし、第4の処理の完了後に第1の状態に遷移してもよい。 Furthermore, each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure. In other words, UE_A10 may carry out the fourth process based on the completion of this procedure, or may transition to the first state after the completion of the fourth process.
 また、第3の条件判別は、PDUセッション確立要求メッセージに含まれる識別情報、及び/又は加入者情報、及び/又はオペレータポリシーに基づいて実行されてもよい。例えば、第3の条件判別は、UE_A10の要求をネットワークが許可する場合、真でよい。また、第3の条件判別は、UE_A10の要求をネットワークが許可しない場合、偽でよい。さらに、第3の条件判別は、UE_A10の接続先のネットワーク、及び/又はネットワーク内の装置が、UE_A10が要求する機能を、サポートしている場合は真でよく、サポートしていない場合は偽でよい。さらに、第3の条件判別は、ネットワークが、輻輳状態であると判断した場合は真であってよく、輻輳状態ではないと判断した場合は偽であってよい。尚、第3の条件判別の真偽が決まる条件は前述した条件に限らなくてもよい。 Further, the third condition determination may be executed based on the identification information and / or the subscriber information included in the PDU session establishment request message and / or the operator policy. For example, the third condition determination may be true if the network allows the request for UE_A10. Further, the third condition determination may be false if the network does not allow the request of UE_A10. Furthermore, the third condition determination may be true if the network to which UE_A10 is connected and / or the devices in the network support the functions required by UE_A10, and false if they do not. Good. Further, the third condition determination may be true if the network determines that it is in a congested state, and may be false if it is determined that it is not in a congested state. The condition for determining the truth of the third condition determination is not limited to the above-mentioned condition.
 また、第2の条件判別は、PDUセッションのためのN4インターフェース上のセッションが確立されているか否かに基づいて実行されてもよい。例えば、第2の条件判別は、PDUセッションのためのN4インターフェース上のセッションが、確立されている場合は真であってよく、確立されていない場合は偽であってよい。尚、第2の条件判別の真偽が決まる条件は前述した条件に限らなくてもよい。 Further, the second condition determination may be executed based on whether or not a session on the N4 interface for the PDU session has been established. For example, the second condition determination may be true if the session on the N4 interface for the PDU session is established and false if it is not. The condition for determining the truth of the second condition determination does not have to be limited to the above-mentioned condition.
 以上の手続きにおける、PDUセッション拒絶メッセージの送受信により、コアネットワーク_B190はUE_A10に対して適用する輻輳管理を通知し、UE_A10は、コアネットワーク_B190の指示する輻輳管理を適用することができる。なお、コアネットワークB190及びUE_A10は、本手続きで説明した手続き及び処理を複数回実行することで、複数の輻輳管理を適用してもよい。尚、適用される各輻輳管理は、異なる輻輳管理の種別、及び/又は異なるDNNに対応する輻輳管理、及び/又は異なるS-NNSAIに対応する輻輳管理、及び/又はDNNとS-NSSAIの組み合わせに差異がある輻輳管理であってよい。 By sending and receiving the PDU session rejection message in the above procedure, the core network_B190 notifies the congestion management to be applied to the UE_A10, and the UE_A10 can apply the congestion management instructed by the core network_B190. The core networks B190 and UE_A10 may apply a plurality of congestion managements by executing the procedures and processes described in this procedure a plurality of times. Note that each applicable congestion management is a different congestion management type and / or congestion management corresponding to a different DNN, and / or a congestion management corresponding to a different S-NNSAI, and / or a combination of DNN and S-NSSAI. Congestion management may be different.
 [1.3.3.セッションマネジメント手続きの概要]
 次に、UE主導又は、ネットワーク主導のセッションマネジメント手続きの概要について説明する。以下、ネットワーク主導のセッションマネジメント手続きは本手続きとも称する。本手続きは、確立されたPDUセッションに対してネットワークが主導して実行するセッションマネジメントの為の手続きである。尚、本手続きは、前述の登録手続き及び/又はPDUセッション確立手続きが完了し、各装置が第1の状態に遷移した後の任意のタイミングで実行してもよい。また、各装置は、本手続き中に輻輳管理を停止又は変更する為の識別情報を含んだメッセージを送受信してもよいし、本手続きの完了に基づいてネットワークが指示する新たな輻輳管理に基づく挙動を開始してもよい。
[1.3.3. Outline of session management procedure]
Next, the outline of the UE-led or network-led session management procedure will be described. Hereinafter, the network-led session management procedure is also referred to as this procedure. This procedure is a procedure for session management that is executed by the network for the established PDU session. This procedure may be executed at any time after the above-mentioned registration procedure and / or PDU session establishment procedure is completed and each device transitions to the first state. In addition, each device may send and receive a message containing identification information for stopping or changing congestion management during this procedure, or based on new congestion management instructed by the network based on the completion of this procedure. You may start the behavior.
 又、UE_A10は、本手続きによって送受信される制御情報を基に識別される輻輳管理の適用を停止してもよい。言い換えると、コアネットワーク_B190は、本手続きを主導すること、さらには本手続きの制御メッセージ及び制御情報をUE_A10に送信することより、これらの制御情報を用いて識別可能な輻輳管理の適用を停止するようUE_A10に通知することができる。 Also, UE_A10 may stop applying congestion management identified based on the control information sent and received by this procedure. In other words, the core network_B190 stops applying congestion management that can be identified using these control information by leading this procedure and also by sending control messages and control information for this procedure to UE_A10. You can notify UE_A10 to do so.
 尚、本手続きは、UE主導又は、ネットワーク主導のPDUセッション変更(PDUセッションモディフィケーション)手続き、及び/又はネットワーク主導のPDUセッション解放(PDUセッションリリース)手続き等であってもよいし、これらに限らないネットワーク主導のセッションマネジメント手続きを実行してもよい。尚、各装置は、ネットワーク主導のPDUセッション変更手続きにおいて、PDUセッション変更メッセージを送受信してもよいし、ネットワーク主導のPDUセッション解放手続きにおいて、PDUセッション解放メッセージを送受信してもよい。 This procedure may be a UE-led or network-led PDU session modification (PDU session modification) procedure, and / or a network-led PDU session release (PDU session release) procedure, or the like. Network-led session management procedures may be performed. Each device may send and receive a PDU session change message in the network-led PDU session change procedure, and may send and receive a PDU session release message in the network-led PDU session release procedure.
 [1.3.3.1.第1のネットワーク主導のセッションマネジメント手続き例]
 図12を用いて、ネットワーク主導のセッションマネジメント手続きの例を説明する。本章では、本手続きとはネットワーク主導のセッションマネジメント手続きを指す。以下、本手続きの各ステップについて説明する。
[1.3.3.1. Example of first network-led session management procedure]
An example of a network-driven session management procedure will be described with reference to FIG. In this chapter, this procedure refers to a network-led session management procedure. Each step of this procedure will be described below.
 前述の通り、登録手続き及び/又はPDUセッション確立手続きの完了に基づき、第1の状態に遷移(S1200)したUE_A10及びコアネットワーク_B190内の各装置は、任意のタイミングで、ネットワーク主導のセッションマネジメント手続きを開始する。ここで、本手続きを開始するコアネットワーク_B190内の装置は、SMF_A及び/又はAMF_Aであってよく、UE_AはAMF_A及び/又はアクセスネットワーク_Bを介して本手続きにおけるメッセージを送受信してもよい。 As described above, each device in UE_A10 and core network_B190 that has transitioned to the first state (S1200) based on the completion of the registration procedure and / or the PDU session establishment procedure is network-driven session management at any time. Start the procedure. Here, the device in the core network_B190 that initiates this procedure may be SMF_A and / or AMF_A, and UE_A may send and receive messages in this procedure via AMF_A and / or access network_B. ..
 具体的には、コアネットワーク_B190内の装置が、UE_Aにネットワーク主導のセッションマネジメント要求メッセージを送信する(S1202)。ここでコアネットワーク_B190内の装置は、ネットワーク主導のセッションマネジメント要求メッセージに第11の識別情報、第12の識別情報、第15の識別情報、第21の識別情報、第22の識別情報、第25の識別情報のうち1以上の識別情報を含めてもよいし、この識別情報を含めることで、コアネットワーク_B190の要求を示してもよい。 Specifically, the device in the core network_B190 sends a network-driven session management request message to UE_A (S1202). Here, the devices in the core network_B190 include the 11th identification information, the 12th identification information, the 15th identification information, the 21st identification information, the 22nd identification information, and the 22nd identification information in the network-driven session management request message. One or more of the 25 identification information may be included, and by including this identification information, the request of the core network_B190 may be indicated.
 次に、ネットワーク主導のセッションマネジメント要求メッセージを受信したUE_Aは、ネットワーク主導のセッションマネジメント完了メッセージを送信する(S1204)。さらに、UE_Aは、コアネットワーク_B190から受信した第11の識別情報、第12の識別情報、第15の識別情報、第21の識別情報、第22の識別情報、第25の識別情報のうち1以上の識別情報に基づいて、第5の処理を実行し(S1206)、本手続きを完了してもよい。ここで、第11の識別情報、第12の識別情報、第15の識別情報は、PDUセッション変更コマンド(PDU SESSION MODIFICATION COMMAND)に含まれていてもよいし、第21の識別情報、第22の識別情報、第25の識別情報は、PDUセッション解放コマンド(PDU SESSION RELEASE COMMAND)に含まれていてもよい。また、例えば、本手続きが、UE主導であった場合、第11の識別情報、第12の識別情報、第15の識別情報は、NWが送信してUEが受信するPDUセッション変更拒絶(PDU SESSION MODIFICATION REJECT)メッセージに含まれていてもよい。また、UE_A10は、本手続きの完了に基づいて第5の処理を実施してもよい。 Next, UE_A, which receives the network-led session management request message, sends a network-led session management completion message (S1204). Furthermore, UE_A is one of the 11th identification information, the 12th identification information, the 15th identification information, the 21st identification information, the 22nd identification information, and the 25th identification information received from the core network_B190. Based on the above identification information, the fifth process may be executed (S1206) to complete this procedure. Here, the 11th identification information, the 12th identification information, and the 15th identification information may be included in the PDU session change command (PDU SESSION MODIFICATION COMMAND), or the 21st identification information, the 22nd identification information. The identification information and the 25th identification information may be included in the PDU session release command (PDU SESSION RELEASE COMMAND). Further, for example, when this procedure is led by the UE, the 11th identification information, the 12th identification information, and the 15th identification information are transmitted by the NW and received by the UE to reject the PDU session change (PDU SESSION). It may be included in the MODIFICATION REJECT) message. In addition, UE_A10 may carry out the fifth process based on the completion of this procedure.
 以下、第5の処理の例について説明する。 The fifth processing example will be described below.
 ここで、第5の処理は、UE_A10が、コアネットワーク_B190によって示された事柄を認識する処理であってよいし、コアネットワーク_B190の要求を認識する処理であってもよい。さらに、第5の処理は、UE_A10が、受信した識別情報をコンテキストとして記憶する処理であってもよいし、受信した識別情報を上位層、及び/又は下位層に転送する処理であってもよい。 Here, the fifth process may be a process in which UE_A10 recognizes the matter indicated by the core network_B190, or may be a process in which the request of the core network_B190 is recognized. Further, the fifth process may be a process in which UE_A10 stores the received identification information as a context, or may be a process of transferring the received identification information to the upper layer and / or the lower layer. ..
 また、ネットワーク主導のセッションマネジメント手続きで送受信されるメッセージは、PDUセッション変更コマンドメッセージであってもよいし、PDUセッション解放コマンドメッセージであってもよいし、これらに限らない。また、UE主導のセッションマネジメント手続きで送受信されるメッセージは、PDUセッション変更拒絶メッセージであってもよい。 Further, the message sent and received in the network-led session management procedure may be a PDU session change command message or a PDU session release command message, and is not limited thereto. Further, the message sent and received in the UE-led session management procedure may be a PDU session change refusal message.
 尚、UE_A10は、第5の処理において、受信した識別情報に基づいて、UE_A10が適用する輻輳管理識別処理を行ってもよい。ここで、輻輳管理識別処理は第17の挙動であってよい。 Note that UE_A10 may perform the congestion management identification process applied by UE_A10 based on the received identification information in the fifth process. Here, the congestion management identification process may be the 17th behavior.
 更に、UE_A10は、第21の識別情報を受信した場合、第5の処理は、第16の挙動であってもよい。具体的には、例えば、前述の第4の処理に基づいて実行している一又は複数のタイマーを停止する処理であってもよい。 Furthermore, when UE_A10 receives the 21st identification information, the 5th process may be the 16th behavior. Specifically, for example, it may be a process of stopping one or a plurality of timers executed based on the above-mentioned fourth process.
 言い換えると、第21の識別情報を受信したUE_A10は、第17の挙動を実行することで、ネットワークから指示された停止又は変更を行う輻輳管理を識別し、続いて、第16の挙動を実行することで、識別した輻輳管理の停止又は変更を実施する。 In other words, the UE_A10 that received the 21st identification information identifies the congestion management that makes the stop or change instructed by the network by executing the 17th action, and then executes the 16th action. By doing so, the identified congestion management is stopped or changed.
 さらに、各装置は、本手続きの完了に基づいて、本手続きで送受信した識別情報に基づいた処理を実施してもよい。言い換えると、UE_A10は、本手続きの完了に基づいて、第5の処理を実施してもよいし、第5の処理の完了後に本手続きを完了してもよい。 Furthermore, each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure. In other words, UE_A10 may carry out the fifth process based on the completion of this procedure, or may complete this procedure after the completion of the fifth process.
 以上の手続きにおいて、ネットワーク主導のセッションマネジメント要求メッセージの送受信により、コアネットワーク_B190は、UE_A10に対して、UE_A10が既に適用している輻輳管理の停止又は変更を指示することができる。更にUE_A10は、ネットワーク主導のセッションマネジメント要求メッセージに基づいて、UE_A10が適用している輻輳管理の停止又は変更を実施することができる。ここで、UE_A10が1以上の輻輳管理を適用している場合、コアネットワーク_B190からのネットワーク主導のセッションマネジメント要求メッセージに含まれる識別情報の受信に基づき、停止又は変更を実施する輻輳管理を識別してもよい。尚、適用される各輻輳管理は、異なる輻輳管理の種別、及び/又は異なるDNNに対応する輻輳管理、及び/又は異なるS-NNSAIに対応する輻輳管理、及び/又はDNNとS-NSSAIの組み合わせに差異がある輻輳管理であってよい。 In the above procedure, the core network_B190 can instruct UE_A10 to stop or change the congestion management that UE_A10 has already applied by sending and receiving a network-led session management request message. In addition, UE_A10 can suspend or change the congestion management applied by UE_A10 based on the network-driven session management request message. Here, when UE_A10 applies one or more congestion management, the congestion management that implements the stop or change is identified based on the reception of the identification information contained in the network-driven session management request message from the core network_B190. You may. Note that each applicable congestion management is a different congestion management type and / or congestion management corresponding to a different DNN, and / or a congestion management corresponding to a different S-NNSAI, and / or a combination of DNN and S-NSSAI. Congestion management may be different.
 [1.3.3.2.第2のネットワーク主導のセッションマネジメント手続き例]
 1.3.3.1章で説明した第1のネットワーク主導のセッションマネジメント手続き例では、UE_A10に対して適用されている輻輳管理が、第1から第4の輻輳管理のどの輻輳管理であるかに関わらず、手続きの中で輻輳管理を停止する例を説明した。
[1.3.3.2. Example of second network-led session management procedure]
In the first network-driven session management procedure example described in Section 1.3.3.1, the congestion management applied to UE_A10 is regardless of which of the first to fourth congestion managements. An example of stopping congestion management in the procedure was explained.
 それに限らず、1.3.3.1章で説明した第1のネットワーク主導のセッションマネジメント手続き例で説明した手続きは、輻輳管理に応じて実行される手続きであってよい。例えば、UE_A10が適用する1又は複数の輻輳管理の内、第1の輻輳管理と、第3の輻輳管理と、第4の輻輳管理に分類される輻輳管理に対して実行される手続きであってよい。 Not limited to that, the procedure explained in the first network-driven session management procedure example explained in Chapter 1.3.3.1 may be a procedure executed according to congestion management. For example, among one or more congestion managements applied by UE_A10, it is a procedure executed for congestion management classified into the first congestion management, the third congestion management, and the fourth congestion management. Good.
 言い換えると、UE_A10は、第5の処理によって第1の輻輳管理と、第3の輻輳管理と、第4の輻輳管理に対応する輻輳管理を停止してもよい。 In other words, UE_A10 may stop the first congestion management, the third congestion management, and the congestion management corresponding to the fourth congestion management by the fifth process.
 第2の輻輳管理に対応づけられたバックオフタイマーのカウントを実行中に、もし、UE_10が第2の輻輳管理に対するネットワーク主導のセッションマネジメント要求メッセージを受信した場合には、UE_A10は、第2の輻輳管理に対応付けられたバックオフタイマーを停止することなくコアネットワーク_B190に対して応答もよい。 If UE_10 receives a network-driven session management request message for the second congestion management while executing the count of the backoff timer associated with the second congestion management, the UE_A10 will be the second. It is also possible to respond to the core network_B190 without stopping the backoff timer associated with congestion management.
 言い換えると、S-NSSAI#Aに対応付けられたバックオフタイマーのカウントの実行中において、UE_A10が、輻輳しているS-NSSAI#Aと任意のDNNに対するネットワーク主導のセッションマネジメント要求メッセージを受信した場合には、UE_A10はS-NSSAI#Aに対応づけられたバックオフタイマーを停止することなくコアネットワーク_B190に対して応答もよい。 In other words, UE_A10 received a network-driven session management request message for the congested S-NSSAI # A and any DNN while the backoff timer count associated with S-NSSAI # A was running. In some cases, UE_A10 may respond to core network_B190 without stopping the backoff timer associated with S-NSSAI # A.
 このように、第2の輻輳管理に対しては、ネットワーク主導のセッションマネジメント要求メッセージの受信において、UE_A10は、ネットワーク主導のセッションマネジメント要求メッセージに対する応答メッセージはコアネットワーク_B190に送信するが、輻輳管理を継続してもよい。したがって、第2の輻輳管理によって規制されるUE主導のセッションマネジメント要求メッセージの送信は抑止された状態が継続されてよい。 Thus, for the second congestion management, in receiving the network-driven session management request message, UE_A10 sends the response message to the network-driven session management request message to the core network_B190, but congestion management. May continue. Therefore, the transmission of UE-led session management request messages regulated by the second congestion management may continue to be suppressed.
 ここで、前述したとおり、本実施形態におけるネットワーク主導のセッションマネジメント要求メッセージは、ネットワーク主導のPDUセッション変更(PDUセッションモディフィケーション)手続きにおけるPDUセッション変更コマンド(PDU SESSION MODIFICATION COMMAND)メッセージであってもよいし、ネットワーク主導のPDUセッション解放手続きにおけるPDUセッション解放コマンド(PDU SESSION RELEASE COMMAND)メッセージであってよい。 Here, as described above, the network-driven session management request message in the present embodiment may be a PDU session change command (PDU SESSION MODIFICATION COMMAND) message in the network-driven PDU session change (PDU session modification) procedure. It may be a PDU session release command (PDU SESSION RELEASE COMMAND) message in a network-driven PDU session release procedure.
 さらに、前述したとおり、本実施形態におけるPDUセッション変更コマンドメッセージに対して応答するネットワーク主導のセッションマネジメント完了メッセージは、PDUセッション変更完了メッセージ(PDU SESSION MODIFICATION COMPLETE)であってよく、本実施形態におけるPDUセッション解放コマンドメッセージに対して応答するネットワーク主導のセッションマネジメント完了メッセージは、PDUセッション解放完了メッセージ(PDU SESSION RELEASE COMPLETE)であってよい。また、ネットワーク主導のセッションマネジメント要求メッセージがPDUセッション変更コマンド及び/又はPDUセッション解放メッセージであった場合、UE_A10とコアネットワーク_B190は、上述した処理に加え、以下に説明するさらに詳細な処理を実行するよう設定されてもよい。 Further, as described above, the network-led session management completion message that responds to the PDU session change command message in the present embodiment may be a PDU session change completion message (PDU SESSION MODIFICATION COMPLETE), and the PDU in the present embodiment. The network-driven session management completion message that responds to the session release command message may be a PDU session release completion message (PDU SESSION RELEASE COMPLETE). Also, if the network-driven session management request message is a PDU session change command and / or a PDU session release message, UE_A10 and core network_B190 perform more detailed processing described below in addition to the processing described above. May be set to.
 例えば、コアネットワーク_B190はネットワーク主導のセッションマネジメント要求メッセージに再アクティベーション要求(Reactivation Required)を示す情報を含めて送信した場合、以下のように処理を実行してもよい。なお、再アクティベーション要求(Reactivation Required)を示す情報は、アクティベーションを要求することを示す情報であり、具体的な例としては、5Gセッションマネジメント理由値#39(5GSM Cause #39)であってよい。 For example, when the core network_B190 sends a network-led session management request message including information indicating a reactivation request (Reactivation Required), the process may be executed as follows. The information indicating the reactivation request (Reactivation Required) is the information indicating that the activation is requested, and a specific example is the 5G session management reason value # 39 (5GSM Cause # 39). Good.
 以下、再アクティベーション要求を示す情報を受信した際の第1の処理及び手続き例を説明する。 The first process and procedure example when the information indicating the reactivation request is received will be described below.
 UE_A10は、再アクティベーション要求(Reactivation Required)を示す情報が含まれたネットワーク主導のセッションマネジメント要求メッセージを受信した場合、ネットワーク主導のセッションマネジメント手続きの完了後直ちにUE主導のPDUセッション確立手続きを再度主導するのではなく、輻輳管理の解除を待ってUE主導のPDUセッション確立手続きを再度主導する。ここで、このUE主導のPDUセッション確立手続きは、変更又は解放されるPDUセッションを確立した際のUE主導のPDU確立手続きで提供されたPDUセッションタイプ、SSCモード、DNN及びS-NSSAIに対するUE主導のPDUセッション確立手続きであってよい。 When UE_A10 receives a network-driven session management request message containing information indicating a reactivation request, it re-leads the UE-led PDU session establishment procedure immediately after completing the network-driven session management procedure. Instead, wait for congestion management to be released and re-lead the UE-led PDU session establishment procedure. Here, this UE-driven PDU session establishment procedure is UE-driven for the PDU session type, SSC mode, DNN and S-NSSAI provided in the UE-driven PDU establishment procedure when establishing a modified or released PDU session. PDU session establishment procedure may be used.
 なお、輻輳管理の解除を待つとは、第1の輻輳管理に対応付けられたタイマーが満了(Expire)した後に実行することであってよい。言い換えると、第1の輻輳管理に対応付けられたタイマーのカウントの完了後、及び/又は第1の輻輳管理に対応付けられたタイマー値がゼロになった後に実行することであってよい。 Note that waiting for the release of congestion management may be executed after the timer associated with the first congestion management has expired (Expire). In other words, it may be executed after the count of the timer associated with the first congestion management is completed and / or after the timer value associated with the first congestion management becomes zero.
 さらに、UE_A10は、ネットワーク主導のセッションマネジメント完了メッセージに、以下の補足情報を含めてもよい。 Furthermore, UE_A10 may include the following supplementary information in the network-led session management completion message.
 補足情報は、タイマーの満了待ちであることを示す情報、及び/又は、残タイマー値を示す情報であってよい。ここでタイマーは、第1の輻輳管理に対応付けられたタイマーであってよい。また、タイマーの満了待ちとは、タイマーの満了(Expire)した後に実行することであってよい。言い換えると、第1の輻輳管理に対応付けられたタイマーのカウントの完了後、及び/又は第1の輻輳管理に対応付けられたタイマー値がゼロになった後に実行することであってよい。 Supplementary information may be information indicating that the timer is waiting to expire and / or information indicating the remaining timer value. Here, the timer may be a timer associated with the first congestion management. Further, waiting for the expiration of the timer may be executed after the timer has expired (Expire). In other words, it may be executed after the count of the timer associated with the first congestion management is completed and / or after the timer value associated with the first congestion management becomes zero.
 なお、コアネットワークB_190は、補足情報が含まれたネットワーク主導のセッションマネジメント完了メッセージを受信し、残タイマーの値を認識してもよい。さらに、残タイマーが示す値の時間が経過したのちにUE主導のPDUセッション確立手続きが主導されることを認識してもよい。 Note that the core network B_190 may receive a network-led session management completion message containing supplementary information and recognize the value of the remaining timer. Furthermore, it may be recognized that the UE-led PDU session establishment procedure will be led after the time indicated by the remaining timer has elapsed.
 ここで、コアネットワーク_B190が認識する残タイマーは、受信した補足情報が示す値であってもよいし、ネットワーク主導のセッションマネジメント完了メッセージのUE_A10の送信時間とコアネットワーク_B190の受信時間のオフセットを、受信した補足情報が示す値に対して考慮した値であってもよい。 Here, the remaining timer recognized by the core network_B190 may be a value indicated by the received supplementary information, or is an offset between the transmission time of UE_A10 and the reception time of the core network_B190 of the network-led session management completion message. May be a value in consideration of the value indicated by the received supplementary information.
 また、再アクティベーション要求を示す情報を受信した際の第1の処理及び手続き例に限らず、以下のように、再アクティベーション要求を示す情報を受信した際の第2の処理及び手続き例が実行されてもよい。 In addition, not only the first process and procedure example when the information indicating the reactivation request is received, but also the second process and procedure example when the information indicating the reactivation request is received as shown below. It may be executed.
 これまで説明したように、第1の輻輳管理に対しては、ネットワーク主導のセッションマネジメント要求メッセージの受信において、UE_A10は、ネットワーク主導のセッションマネジメント要求メッセージに対する応答メッセージはコアネットワーク_B190に送信するが、輻輳管理を継続してもよい。したがって、第1の輻輳管理によって規制されるUE主導のセッションマネジメント要求メッセージの送信は抑止された状態が継続されているが、UE_A10及び/又はコアネットワーク_B190は、UE主導のPDUセッション確立手続きを再度主導することに限り、許容されるよう設定されてもよい。 As described above, for the first congestion management, in receiving the network-driven session management request message, UE_A10 sends the response message to the network-driven session management request message to the core network_B190. , Congestion management may be continued. Therefore, while the transmission of UE-led session management request messages regulated by the first congestion management continues to be suppressed, UE_A10 and / or core network_B190 goes through the UE-led PDU session establishment procedure. It may be set to be acceptable as long as it leads again.
 言い換えると、UE_A10は、再アクティベーション要求(Reactivation Required)を示す情報が含まれたネットワーク主導のセッションマネジメント要求メッセージを受信した場合、ネットワーク主導のネットワーク主導のセッションマネジメント手続きの完了後UE主導のPDUセッション確立手続きを再度主導する。ここで、このUE主導のPDUセッション確立手続きは、変更又は解放されるPDUセッションを確立した際のUE主導のPDU確立手続きで提供されたPDUセッションタイプ、SSCモード、DNN及びS-NSSAIに対するUE主導のPDUセッション確立手続きであってよい。 In other words, if UE_A10 receives a network-driven session management request message that contains information indicating a reactivation request, the UE_A10 will have a UE-led PDU session after the network-driven network-driven session management procedure is complete. Lead the establishment procedure again. Here, this UE-driven PDU session establishment procedure is UE-driven for the PDU session type, SSC mode, DNN and S-NSSAI provided in the UE-driven PDU establishment procedure when establishing a modified or released PDU session. PDU session establishment procedure may be used.
 なお、UE_A10は、輻輳管理の適用が継続している間、UE_A10及びコアネットワーク B190はこの例外として許容された手続きは実行して完了してもよいが、UE_A10は第1の輻輳管理によって抑止されるその他のUE主導のセッションマネジメント手続きの主導は抑止されてよい。 For UE_A10, while the application of congestion management continues, UE_A10 and core network B190 may execute and complete the procedures allowed as an exception to this exception, but UE_A10 is suppressed by the first congestion management. Other UE-led session management procedures may be deterred.
 また、再アクティベーション要求を示す情報を受信した際の第1及び第2の処理及び手続き例に限らず、以下のように、再アクティベーション要求を示す情報を受信した際の第3の処理及び手続き例が実行されてもよい。 In addition, not only the first and second processes and procedure examples when the information indicating the reactivation request is received, but also the third process and the third process when the information indicating the reactivation request is received as follows. A procedure example may be executed.
 これまで説明したように、第1の輻輳管理に対しては、ネットワーク主導のセッションマネジメント要求メッセージの受信において、UE_A10は、ネットワーク主導のセッションマネジメント要求メッセージに対する応答メッセージはコアネットワーク_B190に送信する。さらに、UE_A10は、再アクティベーション要求(Reactivation Required)を示す情報が含まれたネットワーク主導のセッションマネジメント要求メッセージを受信した場合には、第1の輻輳管理の適用を停止してもよい。 As explained so far, for the first congestion management, when receiving the network-driven session management request message, UE_A10 sends the response message to the network-driven session management request message to the core network_B190. In addition, UE_A10 may suspend the application of the first congestion management when it receives a network-driven session management request message containing information indicating a reactivation request (Reactivation Required).
 言い換えると、UE_A10は、ネットワーク主導のセッションマネジメント要求メッセージに再アクティベーション要求(Reactivation Required)を示す情報が含まれていない場合には、輻輳管理を継続してもよい。この場合、第1の輻輳管理によって規制されるUE主導のセッションマネジメント要求メッセージの送信は抑止された状態が継続されてよい。 In other words, UE_A10 may continue congestion management if the network-driven session management request message does not contain information indicating a reactivation request (Reactivation Required). In this case, the transmission of the UE-led session management request message regulated by the first congestion management may continue to be suppressed.
 したがって、UE_A10は、再アクティベーション要求(Reactivation Required)を示す情報が含まれたネットワーク主導のセッションマネジメント要求メッセージを受信した場合、ネットワーク主導のネットワーク主導のセッションマネジメント手続きの完了後UE主導のPDUセッション確立手続きを再度主導する。ここで、このUE主導のPDUセッション確立手続きは、変更又は解放されるPDUセッションを確立した際のUE主導のPDU確立手続きで提供されたPDUセッションタイプ、SSCモード、DNN及びS-NSSAIに対するUE主導のPDUセッション確立手続きであってよい。 Therefore, when UE_A10 receives a network-driven session management request message containing information indicating a reactivation request, the UE_A10 establishes a UE-led PDU session after completing the network-driven network-driven session management procedure. Lead the procedure again. Here, this UE-driven PDU session establishment procedure is UE-driven for the PDU session type, SSC mode, DNN and S-NSSAI provided in the UE-driven PDU establishment procedure when establishing a modified or released PDU session. PDU session establishment procedure may be used.
 また、再アクティベーション要求を示す情報を受信した際の第1、第2、第3の処理及び手続き例に限らず、以下のように、再アクティベーション要求を示す情報はコアネットワーク_B190によって送信されないよう設定されてもよい。 In addition, not limited to the first, second, and third processing and procedure examples when the information indicating the reactivation request is received, the information indicating the reactivation request is transmitted by the core network_B190 as shown below. It may be set not to be done.
 より具体的には、コアネットワーク_B190は、輻輳管理を適用しているUE_A10に対して、ネットワーク主導のセッションマネジメント要求メッセージを送信する場合、再アクティベーション要求(Reactivation Required)を示す情報を含むことを抑止するよう設定されてよい。 More specifically, the core network_B190 should include information indicating a reactivation request (Reactivation Required) when sending a network-driven session management request message to UE_A10 to which congestion management is applied. It may be set to suppress.
 もしくは、コアネットワーク_B190は、第1の輻輳管理を適用しているUE_A10に対して、ネットワーク主導のセッションマネジメント要求メッセージを送信する場合、再アクティベーション要求(Reactivation Required)を示す情報を含むことを抑止するよう設定されてもよい。 Alternatively, the core network_B190 suppresses the inclusion of information indicating a reactivation request (Reactivation Required) when sending a network-driven session management request message to UE_A10 to which the first congestion management is applied. May be set to.
 以上、UE_A10とコアネットワーク B190の処理及び手続きを説明してきたが、本章において説明をしてきたコアネットワーク_B190の処理は、より具体的には、コアネットワーク_B190内の装置である、SMF_A230及び/又はAMF_A240などの制御装置で実行される処理であってよい。したがって、コアネットワーク B190が制御メッセージを送受信するとは、コアネットワーク_B190内の装置である、SMF_A230及び/又はAMF_A240などの制御装置が制御メッセージを送受信することであってよい。 The processing and procedures of UE_A10 and core network B190 have been explained above. More specifically, the processing of core network_B190 described in this chapter is the device in core network_B190, SMF_A230 and /. Alternatively, it may be a process executed by a control device such as AMF_A240. Therefore, when the core network B190 sends and receives control messages, it may mean that control devices such as SMF_A230 and / or AMF_A240, which are devices in the core network_B190, send and receive control messages.
 さらに、本章に限らず、本実施形態の説明に用いた表現において、輻輳管理に対しては適用を解除する、又は輻輳管理を停止するとは、輻輳管理に対応づけられたバックオフタイマーを停止する処理を含んでよく、輻輳管理に対しては適用を継続する、又は輻輳管理を継続するとは、輻輳管理に対応づけられたバックオフタイマーのカウントを継続することを含んでもよい。 Further, not limited to this chapter, in the expressions used in the description of the present embodiment, when the application to the congestion management is canceled or the congestion management is stopped, the backoff timer associated with the congestion management is stopped. Processing may be included, and continuing the application to congestion management, or continuing congestion management may include continuing counting of the backoff timer associated with congestion management.
 また、本章で説明した再アクティベーション要求を示す情報を受信した際の第1、第2、第3の処理及び手続き例において、ネットワーク主導のセッションマネジメント要求メッセージ、及び/又はネットワーク主導のセッションマネジメント手続きは、UE_A10が、輻輳しているS-NSSAI#Aと任意のDNNに対するものであると説明してきた。 In addition, in the first, second, and third processing and procedure examples when the information indicating the reactivation request explained in this chapter is received, the network-driven session management request message and / or the network-led session management procedure Has explained that UE_A10 is for congested S-NSSAI # A and any DNN.
 言い換えると、この輻輳しているS-NSSAI#A及び任意のDNNは、本章のネットワーク主導のセッションマネジメント要求メッセージ、及び/又はネットワーク主導のセッションマネジメント手続きが対象とするPDUセッションに関連付けられたS-NSSAI#A及び任意のDNNであってよい。 In other words, this congested S-NSSAI # A and any DNN are associated with the network-driven session management request messages in this chapter and / or the PDU session targeted by the network-driven session management procedure. It can be NSSAI # A and any DNN.
 なお、UE_A10及びコアネットワーク_B190は、本章の手続きが含まれるSSCモード2のアンカーリロケーション手続きを実行し、PDUセッションのアンカー、もしくはアンカーの異なるPDUセッションに切り替えて通信を継続してもよい。ここで、SSCモード2のアンカーリロケーション手続きはコアネットワーク_B190が主導して開始する手続きであり、この手続き内で実行するPDUセッション解放コマンドの送信に伴う手続きが、本章で説明したいずれかの手続きであってよい。 Note that UE_A10 and core network_B190 may execute the anchor relocation procedure of SSC mode 2 including the procedure of this chapter, and switch to the anchor of the PDU session or the PDU session with a different anchor to continue the communication. Here, the anchor relocation procedure in SSC mode 2 is a procedure initiated by the core network_B190, and the procedure associated with the transmission of the PDU session release command executed within this procedure is one of the procedures described in this chapter. It may be.
 また、UE_A10及びコアネットワーク_B190は、本章の手続きが含まれるSSCモード3のアンカーリロケーション手続きを実行し、PDUセッションのアンカー、もしくはアンカーの異なるPDUセッションに切り替えて通信を継続してもよい。ここで、SSCモード3のアンカーリロケーション手続きはコアネットワーク_B190が主導して開始する手続きであり、この手続き内で実行するPDUセッション変更コマンドの送信に伴う手続きが、本章で説明したいずれかの手続きであってよい。 In addition, UE_A10 and core network_B190 may execute the anchor relocation procedure of SSC mode 3 including the procedure of this chapter, and switch to the anchor of the PDU session or the PDU session with a different anchor to continue the communication. Here, the anchor relocation procedure in SSC mode 3 is a procedure initiated by the core network_B190, and the procedure associated with the transmission of the PDU session change command executed within this procedure is one of the procedures described in this chapter. It may be.
 次に、輻輳管理が適用されている状態において、UEがPLMNの変更を伴う移動をした場合の処理について説明する。 Next, the processing when the UE moves with a change in PLMN while congestion management is applied will be described.
 ここでは、特に第1の輻輳管理が適用されている状態において、UE_A10がPLMNを変更した場合の処理について説明する。ここで、第1の輻輳管理、及び第1の輻輳管理が適用された際に規制される処理については既に説明した通りであってよい。 Here, the processing when UE_A10 changes PLMN will be described especially in the state where the first congestion management is applied. Here, the first congestion management and the processing regulated when the first congestion management is applied may be as described above.
 繰り返すと、第1の輻輳管理は、DNNベースの輻輳管理であってよい。例えば、第1の輻輳管理は、DNN#Aを用いたUE主導のセッションマネジメント要求をNWがUE_A10から受信し、NWにおいて、特定のDNN、例えばDNN#Aに対しての輻輳が検知された場合、UE主導のセッションマネジメント要求をリジェクトするメッセージを基に、NWがUE_A10に対して適用する輻輳管理であってよい。この場合、第1の輻輳管理の適用においては、UE_A10は、NWから受信した第1の輻輳管理に対応するバックオフタイマーのカウントを開始し、バックオフタイマーが満了するまでの間、DNN#Aを用いたUE主導のセッションマネジメント要求の送信を行わないよう設定されてよい。なお、DNNを用いるとは、PDUセッション確立要求メッセージなどのUE主導のセッションマネジメント要求にDNN情報を含めることであってよい。ここで、DNN#Aは、5G VNグループに対応付けられたDNNであってよい。 Repeatedly, the first congestion management may be DNN-based congestion management. For example, in the first congestion management, when the NW receives a UE-led session management request using DNN # A from UE_A10 and the NW detects congestion for a specific DNN, for example, DNN # A. , It may be congestion management applied by NW to UE_A10 based on the message rejecting the UE-led session management request. In this case, in applying the first congestion management, UE_A10 starts counting the backoff timer corresponding to the first congestion management received from the NW, and DNN # A until the backoff timer expires. It may be set not to send UE-led session management requests using. Note that using DNN may mean including DNN information in a UE-led session management request such as a PDU session establishment request message. Here, DNN # A may be a DNN associated with a 5GVN group.
 更に、移動先のPLMNが均等PLMNであり、かつ、DNNがDNN#Aである場合、DNN#Aを用いたUE主導のセッションマネジメント要求の送信が、第1の輻輳管理に対応するバックオフタイマーのカウントが行われているか否かに関わらず、許可されていてよい。 また、移動先のPLMNが均等PLMNで無く、かつ、DNNがDNN#Aである場合、DNN#Aを用いたUE主導のセッションマネジメント要求の送信が、第1の輻輳管理に対応するバックオフタイマーが満了するまでの間、DNN#Aを用いたUE主導のセッションマネジメント要求の送信を行わないよう設定されてよい。 Further, when the destination PLMN is an equal PLMN and the DNN is DNN # A, the transmission of the UE-led session management request using DNN # A is a backoff timer corresponding to the first congestion management. May be allowed regardless of whether or not the count is done. Also, if the destination PLMN is not a uniform PLMN and the DNN is DNN # A, sending a UE-led session management request using DNN # A is a backoff timer that corresponds to the first congestion management. It may be configured not to send UE-led session management requests using DNN # A until it expires.
 更に、移動先のPLMNが均等PLMNであり、かつ、DNNがDNN#Aで無い場合、DNN#Aを用いたUE主導のセッションマネジメント要求の送信が、第1の輻輳管理に対応するバックオフタイマーが満了するまでの間、DNN#Aを用いたUE主導のセッションマネジメント要求の送信を行わないよう設定されてよい。 Furthermore, if the destination PLMN is an even PLMN and the DNN is not DNN # A, sending a UE-led session management request using DNN # A is a backoff timer that corresponds to the first congestion management. It may be configured not to send UE-led session management requests using DNN # A until it expires.
 ここでは、説明のためにこうした第1の輻輳管理を、”特定のDNNに対する第1の輻輳管理”と表現する。 Here, for the sake of explanation, such first congestion management is referred to as "first congestion management for a specific DNN".
 また、第1の輻輳管理では、NWは、UE主導のセッションマネジメント要求にDNN情報が含まれていない場合でも、NW主導でデフォルトDNNを選定し、輻輳管理対象としてもよい。言い換えると、第1の輻輳管理は、DNN情報を用いないUE主導のセッションマネジメント要求をNWがUE_A10から受信し、NWにおいてデフォルトのDNNに対しての輻輳が検知された場合、UE主導のセッションマネジメント要求を拒絶するメッセージを基に、NWがUE_A10に対して適用する輻輳管理であってよい。この場合、第1の輻輳管理の適用においては、UE_A10は、NWから受信した第1の輻輳管理に対応するバックオフタイマーのカウントを開始し、バックオフタイマーが満了するまでの間、DNNを用いないUE主導のセッションマネジメント要求の送信を行わないよう設定されてよい。なお、DNNを用いないとは、PDUセッション確立要求メッセージなどのUE主導のセッションマネジメント要求にDNN情報を含まないことであってよい。 Further, in the first congestion management, the NW may select the default DNN led by the NW and set it as the congestion management target even if the UE-led session management request does not include the DNN information. In other words, the first congestion management is UE-driven session management when the NW receives a UE-driven session management request without DNN information from UE_A10 and the NW detects congestion for the default DNN. It may be the congestion management that the NW applies to UE_A10 based on the message rejecting the request. In this case, in applying the first congestion management, UE_A10 starts counting the backoff timer corresponding to the first congestion management received from the NW, and uses the DNN until the backoff timer expires. It may be configured not to send UE-led session management requests. Note that not using DNN may mean that DNN information is not included in the UE-led session management request such as the PDU session establishment request message.
 ここでは、説明のためにこうしたデフォルトDNNに対する第1の輻輳管理は、DNN情報を用いないUE主導のセッションマネジメント要求を基に適用されることから、特定のDNNに対する第1の輻輳管理と区別するために、”No DNNに対する輻輳管理“と表現する。さらに、DNNを用いないPDUセッション確立要求メッセージなどのUE主導のセッションマネジメント要求は、No DNNを用いたUE主導のセッションマネジメント要求と表現する。例えば、No DNNを用いたPDUセッション確立要求メッセージとは、DNNを用いないPDUセッション確立要求メッセージである。 Here, for the sake of explanation, the first congestion management for the default DNN is distinguished from the first congestion management for a specific DNN because it is applied based on the UE-led session management request that does not use the DNN information. Therefore, it is expressed as "congestion management for No DNN". Furthermore, a UE-led session management request such as a PDU session establishment request message that does not use DNN is expressed as a UE-led session management request that uses No DNN. For example, the PDU session establishment request message using No DNN is a PDU session establishment request message not using DNN.
 このように、特定のDNNに対する第1の輻輳管理は異なるPLMNにおいても適用されてよい。 Thus, the first congestion management for a particular DNN may be applied in different PLMNs.
 尚、例えば、DNNがLADN DNN又は、5G VNグループに対応付けられたDNNであった場合、第1の輻輳管理のバックオフタイマーは、UEが登録されたPLMN(registered PLMN)及び均等PLMN(equivalent PLMN)に対応付けられ、適用されてよい。 For example, when the DNN is a LADN DNN or a DNN associated with a 5GVN group, the backoff timer for the first congestion management is PLMN (registered PLMN) in which the UE is registered and equal PLMN (equivalent). PLMN) may be associated and applied.
 尚、例えば、DNNがLADN DNNでなく、かつ、5G VNグループに対応付けられたDNNでなかった場合、第1の輻輳管理のバックオフタイマーは、全てのPLMNに対応付けられ、適用されてもよい。すなわち、UEが登録されたPLMN(registered PLMN)又は、均等PLMN(equivalent PLMN)に限られない。 For example, if the DNN is not a LADN DNN and is not a DNN associated with a 5GVN group, the first congestion management backoff timer is associated with and applied to all PLMNs. Good. That is, the UE is not limited to the registered PLMN (registered PLMN) or the equal PLMN (equivalent PLMN).
 ここで、上述したPLMNの変更に伴う処理として、第1の輻輳管理が特定のDNNに対するものかNo DNNに対するものかに関わらず同様の処理を行うか、異なる処理を行うかは、予めUE_A10に設定された情報を基に設定されてよいが、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであるか否かによって決定されてもよい。例えば、変更後の第2のPLMNが、変更前の第1のPLMNに対しての均等PLMNではない場合には、同様の処理が適用され、てもよい。また、変更後の第2のPLMNが、変更前の第1のPLMNに対しての均等PLMNである場合には、異なる処理が実行されてよい。 Here, as the processing associated with the above-mentioned PLMN change, whether the same processing or different processing is performed regardless of whether the first congestion management is for a specific DNN or No DNN is determined in advance in UE_A10. It may be set based on the set information, but it may be determined by whether or not the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change. For example, if the second PLMN after the change is not an equal PLMN with respect to the first PLMN before the change, the same processing may be applied. Further, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, different processing may be executed.
 さらに、UE_A10は、均等PLMNであるか否かだけでなく、更なる詳細条件を基に挙動を決定してもよい。例えば、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであり、且つ、そのPLMN変更においてレジストレーションエリアを変更しない場合と、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであり、且つ、そのPLMN変更においてレジストレーションエリアの変更を伴う場合とで、UE_A10は異なる挙動が実行されるよう設定されてよい。 Furthermore, UE_A10 may determine its behavior based on more detailed conditions as well as whether or not it is an equal PLMN. For example, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change and the registration area is not changed in the PLMN change, and when the second PLMN after the change is changed. UE_A10 may be set to perform different behaviors depending on whether it is an equal PLMN to the previous first PLMN and the PLMN change involves a change in the registration area.
 なお、各場合において実行されるUE_A10の挙動は、これまで説明したPLMN変更時の挙動のうちの一つであってよい。 The behavior of UE_A10 executed in each case may be one of the behaviors at the time of PLMN change described so far.
 次に、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであり、且つ、そのPLMN変更においてレジストレーションエリアの変更が伴う場合の第3の例を説明する。UE_A10は、こうしたPLMNの変更において、特定のDNN、及び/又はNo DNNに対する第1の輻輳管理に対応付けられたバックオフタイマーを停止してもよい。これにより、UE_A10は、UE_A10は新たなPLMNにおいて、特定のDNNを用いたPDUセッション確立要求メッセージ、及び/又は特定のDNNを用いないPDUセッション確立要求メッセージを送信できるよう設定されてよい。さらに、この設定に基づいてUE_10は特定のDNNを用いたPDUセッション確立要求メッセージ、及び/又は特定のDNNを用いないPDUセッション確立要求メッセージを送信してもよい。 Next, a third example will be described in which the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, and the PLMN change involves a change in the registration area. UE_A10 may stop the backoff timer associated with the first congestion management for a particular DNN and / or NoDNN in these PLMN changes. Thereby, UE_A10 may be set so that UE_A10 can send a PDU session establishment request message using a specific DNN and / or a PDU session establishment request message not using a specific DNN in the new PLMN. Further, based on this setting, UE_10 may send a PDU session establishment request message using a specific DNN and / or a PDU session establishment request message not using a specific DNN.
 また、第1の輻輳管理が特定のDNNに対するものかNo DNNに対するものかに関わらず同様の処理を行うか、異なる処理を行うかは、予めUE_A10に設定された情報を基に設定されてよいが、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであるか否かによって決定されてもよいと前述したが、第1の輻輳管理に関わらず、第2~第4の輻輳管理に対しても、異なる処理が実行させるよう設定されてよい。例えば、変更後の第2のPLMNが、変更前の第1のPLMNに対しての均等PLMNではない場合には、同様の処理が適用され、てもよい。また、変更後の第2のPLMNが、変更前の第1のPLMNに対しての均等PLMNである場合には、異なる処理が実行されてよい。 Further, whether the same processing or different processing is performed regardless of whether the first congestion management is for a specific DNN or No DNN may be set based on the information set in UE_A10 in advance. However, as mentioned above, it may be determined by whether or not the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, but regardless of the first congestion management, the second It may be set to execute different processing also for the fourth congestion management. For example, if the second PLMN after the change is not an equal PLMN with respect to the first PLMN before the change, the same processing may be applied. Further, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change, different processing may be executed.
 さらに、UE_A10は、均等PLMNであるか否かだけでなく、更なる詳細条件を基に挙動を決定してもよい。例えば、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであり、且つ、そのPLMN変更においてレジストレーションエリアを変更しない場合と、変更後の第2のPLMNが変更前の第1のPLMNに対しての均等PLMNであり、且つ、そのPLMN変更においてレジストレーションエリアの変更を伴う場合とで、UE_A10は異なる挙動が実行されるよう設定されてよい。 Furthermore, UE_A10 may determine its behavior based on more detailed conditions as well as whether or not it is an equal PLMN. For example, when the second PLMN after the change is an equal PLMN with respect to the first PLMN before the change and the registration area is not changed in the PLMN change, and when the second PLMN after the change is changed. UE_A10 may be set to perform different behaviors depending on whether it is an equal PLMN to the previous first PLMN and the PLMN change involves a change in the registration area.
 なお、各場合において実行されるUE_A10の挙動は、これまで説明したPLMN変更時の挙動のうちの一つであってよい。 The behavior of UE_A10 executed in each case may be one of the behaviors at the time of PLMN change described so far.
 これまで説明してきたPLMNの変更に伴うUE_A10とNWの処理は、第1の輻輳管理に対するバックオフタイマーを対象として説明してきたが、第2の輻輳管理、第3の輻輳管理、第4の輻輳管理に対しても、同様の処理が行われてよい。ただし、送信が規制又は許容されるPDUセッション確立要求メッセージは、各種別に応じたメッセージであってよい。 The processing of UE_A10 and NW due to the change of PLMN described so far has been described for the backoff timer for the first congestion management, but the second congestion management, the third congestion management, and the fourth congestion management have been described. Similar processing may be performed for management. However, the PDU session establishment request message whose transmission is restricted or permitted may be a message according to each type.
 言い換えると、輻輳管理及び/又は輻輳管理に対応づけられたバックオフタイマーは、輻輳管理の種別に関わらず、PLMNに対応付けられてよい。 In other words, the backoff timer associated with congestion management and / or congestion management may be associated with PLMN regardless of the type of congestion management.
 もしくは、任意の輻輳管理及び/又は輻輳管理に対応づけられたバックオフタイマーは、PLMNに対応付けられるよう設定されてよい。したがって、第1の輻輳管理、第2の輻輳管理、及び第3の輻輳管理に対して、輻輳管理及び/又は輻輳管理に対応づけられたバックオフタイマーは、PLMNに対応付けられるよう設定されてよい。または、No DNNに対する第1の輻輳管理、第2の輻輳管理、及び第3の輻輳管理に対して、輻輳管理及び/又は輻輳管理に対応づけられたバックオフタイマーは、PLMNに対応付けられるよう設定され、特定のDNNに対する第1の輻輳管理はPLMNに対応付けらなくてもよい。 Alternatively, the backoff timer associated with arbitrary congestion management and / or congestion management may be set to be associated with PLMN. Therefore, for the first congestion management, the second congestion management, and the third congestion management, the backoff timer associated with the congestion management and / or the congestion management is set to be associated with the PLMN. Good. Alternatively, for the first congestion management, the second congestion management, and the third congestion management for NoDNN, the backoff timer associated with the congestion management and / or the congestion management can be associated with the PLMN. The first congestion management that is set and for a particular DNN need not be associated with the PLMN.
 なお、各輻輳管理がPLMNに対応づれけられた場合の処理、及び/又は、各輻輳管理に対応するバックオフタイマーに係る処理は、前述した、PLMNに対応付けられた第1の輻輳管理に対する処理、及び/又は、前述した、PLMNに対応付けられた第1の輻輳管理に対応するバックオフタイマーに係る処理の説明における第1の輻輳管理を、第2から第4の各種別の輻輳管理に置き換えたものであってよい。 Note that the processing when each congestion management is made compatible with PLMN and / or the processing related to the backoff timer corresponding to each congestion management is the above-mentioned first congestion management associated with PLMN. The first congestion management in the description of the processing and / or the processing related to the backoff timer corresponding to the first congestion management associated with the PLMN described above is the congestion management of each of the second to fourth types. It may be replaced with.
 また、各輻輳管理がPLMNに対応づれけられていない場合の処理、及び/又は、各輻輳管理に対応するバックオフタイマーに係る処理は、前述した、PLMNに対応付づけられていない第1の輻輳管理に対する処理、及び/又は、前述した、PLMNに対応付けられていない第1の輻輳管理に対応するバックオフタイマーに係る処理の説明における第1の輻輳管理を、第2から第4の各種別の輻輳管理に置き換えたものであってよい。 In addition, the processing when each congestion management is not compatible with PLMN and / or the processing related to the backoff timer corresponding to each congestion management is the first processing not associated with PLMN as described above. The second to fourth types of the first congestion management in the description of the processing for the congestion management and / or the processing related to the backoff timer corresponding to the first congestion management not associated with the PLMN described above. It may be replaced with another congestion management.
 ただし、前述したとおり、送信が規制又は許容されるPDUセッション確立要求メッセージは、各種別に応じたメッセージであってよい。 However, as described above, the PDU session establishment request message whose transmission is restricted or permitted may be a message according to each type.
 或は、第2の輻輳管理、及び/又は第3の輻輳管理に対応づけられたバックオフタイマーのカウントを実行時のPLMN変更時の挙動は、上述した処理の他、以下のように実行されてもよい。 Alternatively, the behavior at the time of PLMN change when executing the count of the backoff timer associated with the second congestion management and / or the third congestion management is executed as follows in addition to the above-mentioned processing. You may.
 なお、第1の輻輳管理に対応づけられたバックオフタイマーとは、これまで説明したとおり、DNNベースの輻輳管理のためのバックオフタイマーであってよい。 The backoff timer associated with the first congestion management may be a backoff timer for DNN-based congestion management, as described above.
 具体的には、DNNベースのバックオフタイマーは、特定のDNNに対応付けられ、その特定のDNNを用いたSM要求メッセージの送信を禁止するためのタイマーであってよい。言い換えると、UE_A10は、このタイマーのカウント中は、その特定のDNNを用いたSM要求メッセージを送信しないよう設定してもよい。ここで、DNNは、5G VNグループに対応付けられたDNNであってよい。 Specifically, the DNN-based backoff timer may be a timer that is associated with a specific DNN and prohibits the transmission of SM request messages using that specific DNN. In other words, UE_A10 may be configured not to send SM request messages with that particular DNN while this timer is counting. Here, the DNN may be a DNN associated with the 5GVN group.
 さらに、UE_A10は、このタイマーのカウント中に、後述する特定の条件に基づいて、新しいPLMNにおいて、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。尚、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されると表現した場合、バックオフタイマーに対応付けられたS-NSSAIと同じS-NSSAIを用いたSM要求メッセージの送信が許容されることを意味してもよい。 In addition, UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the SM request message that was prohibited by PLMN before the change is allowed to be sent, the SM request message using the same S-NSSAI as the S-NSSAI associated with the backoff timer will be sent. It may mean that it is acceptable.
 また、スライスベースのバックオフタイマーは、no S-NSSAIに対応付けられ、no S-NSSAIを用いたSM要求メッセージの送信を禁止するためのタイマーであってよい。言い換えると、UE_A10は、このタイマーのカウント中は、no SNSSAIを用いたSM要求メッセージを送信しないよう設定してもよい。さらに、UE_A10は、このタイマーのカウント中に、後述する特定の条件に基づいて、新しいPLMNにおいて、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。尚、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されると表現した場合、no S-NSSAIを用いたSM要求メッセージの送信が許容されることを意味してもよい。 Further, the slice-based backoff timer may be a timer associated with noS-NSSAI and prohibiting the transmission of SM request messages using noS-NSSAI. In other words, UE_A10 may be set not to send SM request messages using noSNSSAI during the counting of this timer. In addition, UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. In addition, when it is expressed that the transmission of the SM request message prohibited by PLMN before the change is permitted, it may mean that the transmission of the SM request message using no S-NSSAI is permitted.
 また、第3の輻輳管理に対応づけられたバックオフタイマーとは、これまで説明したとおり、S-NSSAIとDNNの組み合わせに対する輻輳管理のためのバックオフタイマーであってよい。 Further, the back-off timer associated with the third congestion management may be a back-off timer for congestion management for the combination of S-NSSAI and DNN, as described above.
 具体的には、S-NSSAIとDNNの組み合わせに対する輻輳管理のためのバックオフタイマーは、特定のS-NSSAと特定のDNNの組み合わせに対応付けられ、その特定のS-NSSAIと特定のDNNを用いたSM要求メッセージの送信を禁止するためのタイマーであってよい。言い換えると、UE_A10は、このタイマーのカウント中は、その特定のS-NSSAIと特定のDNNを用いたSM要求メッセージを送信しないよう設定してもよい。さらに、UE_A10は、このタイマーのカウント中に、後述する特定の条件に基づいて、新しいPLMNにおいて、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。尚、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されると表現した場合、バックオフタイマーに対応付けられたS-NSSAIと同じS-NSSAIと、バックオフタイマーに対応付けられたDNNと同じDNNとを用いたSM要求メッセージの送信が許容されることを意味してもよい。 Specifically, a backoff timer for congestion management for a combination of S-NSSAI and DNN is associated with a specific S-NSSA and specific DNN combination, and the specific S-NSSAI and specific DNN are assigned. It may be a timer for prohibiting the transmission of the SM request message used. In other words, UE_A10 may be configured not to send SM request messages with that particular S-NSSAI and a particular DNN while this timer is counting. In addition, UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the transmission of SM request messages prohibited by PLMN before the change is allowed, it is associated with the same S-NSSAI as the S-NSSAI associated with the backoff timer and the backoff timer. It may mean that the transmission of the SM request message using the same DNN as the DNN is allowed.
 また、S-NSSAIとDNNの組み合わせに対する輻輳管理のためのバックオフタイマーは、no S-NSSAと特定のDNNの組み合わせに対応付けられ、no SNSSAIと特定のDNNを用いたSM要求メッセージの送信を禁止するためのタイマーであってよい。言い換えると、UE_A10は、このタイマーのカウント中は、no S-NSSAIと特定のDNNを含めたSM要求メッセージを送信しないよう設定してもよい。さらに、UE_A10は、このタイマーのカウント中に、後述する特定の条件に基づいて、新しいPLMNにおいて、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。尚、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されると表現した場合、no S-NSSAIと、バックオフタイマーに対応付けられたDNNと同じDNNとを用いたSM要求メッセージの送信が許容されることを意味してもよい。 In addition, the backoff timer for congestion management for the combination of S-NSSAI and DNN is associated with the combination of noS-NSSA and a specific DNN, and sends an SM request message using noSNSSAI and a specific DNN. It may be a timer for prohibiting. In other words, UE_A10 may be set not to send SM request messages including no S-NSSAI and a specific DNN during the counting of this timer. In addition, UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the transmission of the SM request message prohibited by the PLMN before the change is permitted, the SM request message using no S-NSSAI and the same DNN as the DNN associated with the backoff timer. May mean that the transmission of is allowed.
 また、S-NSSAIとDNNの組み合わせに対する輻輳管理のためのバックオフタイマーは、特定のS-NSSAとno DNNの組み合わせに対応付けられ、特定のS-NSSAIとno DNNを用いたSM要求メッセージの送信を禁止するためのタイマーであってよい。言い換えると、UE_A10は、このタイマーのカウント中は、特定のS-NSSAIとno DNNを用いたSM要求メッセージを送信しないよう設定してもよい。さらに、UE_A10は、このタイマーのカウント中に、後述する特定の条件に基づいて、新しいPLMNにおいて、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。尚、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されると表現した場合、バックオフタイマーに対応付けられたS-NSSAIと同じS-NSSAIと、no DNNとを用いたSM要求メッセージの送信が許容されることを意味してもよい。 In addition, the backoff timer for congestion management for the combination of S-NSSAI and DNN is associated with the combination of specific S-NSSA and noDNN, and the SM request message using the specific S-NSSAI and noDNN It may be a timer for prohibiting transmission. In other words, UE_A10 may be set not to send SM request messages using a particular S-NSSAI and noDNN during this timer count. In addition, UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. If it is expressed that the transmission of SM request messages prohibited by PLMN before the change is allowed, SM using the same S-NSSAI as S-NSSAI associated with the backoff timer and no DNN It may mean that the request message is allowed to be sent.
 また、S-NSSAIとDNNの組み合わせに対する輻輳管理のためのバックオフタイマーは、no S-NSSAIとno DNNの組み合わせに対応付けられ、no S-NSSAI及びno DNNを用いたSM要求メッセージの送信を禁止するためのタイマーであってよい。言い換えると、UE_A10は、このタイマーのカウント中は、no S-NSSAI及びno DNNを用いたSM要求メッセージを送信しないよう設定してもよい。さらに、UE_A10は、このタイマーのカウント中に、後述する特定の条件に基づいて、新しいPLMNにおいて、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。尚、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されると表現した場合、no S-NSSAIと、no DNNとを用いたSM要求メッセージの送信が許容されることを意味してもよい。 In addition, the back-off timer for congestion management for the combination of S-NSSAI and DNN is associated with the combination of no S-NSSAI and no DNN, and the SM request message is transmitted using no S-NSSAI and no DNN. It may be a timer for prohibiting. In other words, UE_A10 may be set not to send SM request messages using noS-NSSAI and noDNN during the counting of this timer. In addition, UE_A10 may be set to allow the new PLMN to send SM request messages that were prohibited by the PLMN before the change, based on certain conditions described below, during the counting of this timer. .. In addition, when it is expressed that the transmission of SM request message prohibited by PLMN before the change is permitted, it means that the transmission of SM request message using no S-NSSAI and no DNN is permitted. You may.
 なお、本実施形態において、no S-NSSAIを用いてSM要求メッセージを送信すると表現した場合には、特定のS-NSSAIを含めずにSM要求メッセージを送信することであってよい。こうしたSM要求メッセージを受信したネットワークは、S-NSSAIが含まれていないことから、デフォルトのS-NSSAI、及び/又は、デフォルトのネットワークスライスに対する要求であると認識してもよい。したがって、no S-NSSAIとは、SM要求メッセージにS-NSSAIを含まないことを示す情報、及び/又は、デフォルトのネットワークスライスを要求することを意味する情報であってよい。 In the present embodiment, when it is expressed that the SM request message is transmitted using no S-NSSAI, the SM request message may be transmitted without including the specific S-NSSAI. Since the network that received such an SM request message does not include S-NSSAI, it may be recognized as a request for the default S-NSSAI and / or the default network slice. Therefore, no S-NSSAI may be information indicating that the SM request message does not include S-NSSAI and / or information indicating that a default network slice is requested.
 また、本実施形態において、no DNNを用いてSM要求メッセージを送信すると表現した場合には、特定のDNNを含めずにSM要求メッセージを送信することであってよい。こうしたSM要求メッセージを受信したネットワークは、DNNが含まれていないことから、デフォルトのDNNに対する要求であると認識してもよい。したがって、no DNNとは、SM要求メッセージにS-NSSAIを含まないことを示す情報、及び/又は、デフォルトのDNNを要求することを意味する情報であってよい。 Further, in the present embodiment, when it is expressed that the SM request message is transmitted using no DNN, the SM request message may be transmitted without including the specific DNN. The network that receives such an SM request message may be recognized as a request for the default DNN because it does not contain a DNN. Therefore, no DNN may be information indicating that the SM request message does not include S-NSSAI and / or information indicating that a default DNN is requested.
 さらに、UE_A10は、PLMNを変更した際、変更前のPLMNにおいてバックオフタイマーのカウントを実行していて、且つ、移動先のPLMNにおいてもバックオフタイマーのカウントを実行している場合、カウントしているバックオフタイマーに応じて、各例で説明したSM要求メッセージの送信の規制を継続してもよい。言い換えると、この場合、移動先のPLMNにおいて、UE_A10は、カウントしているバックオフタイマーに応じて、各例で説明したSM要求メッセージの送信を禁止するよう設定してもよい。 Furthermore, when the PLMN is changed, UE_A10 counts if the backoff timer is being counted in the PLMN before the change and the backoff timer is being counted in the destination PLMN as well. Depending on the back-off timer, the regulation of sending the SM request message described in each example may be continued. In other words, in this case, in the destination PLMN, UE_A10 may be set to prohibit the transmission of the SM request message described in each example according to the counting backoff timer.
 尚、全ての処理例において、UE_A10は、PLMNを変更した際、上述した条件に当てはまらない場合、移動先のPLMNにおいて、カウントしているバックオフタイマーに応じて、各例で説明したSM要求メッセージの送信を許すよう設定してもよい。言い換えると、この場合、移動先のPLMNにおいて、UE_A10は、カウントしているバックオフタイマーに応じて、各例で説明したSM要求メッセージの送信を許容するよう設定してもよい。さらに言い換えると、この場合、移動先のPLMNにおいて、UE_A10は、カウントしているバックオフタイマーに応じて、各例で説明した、変更前のPLMNで禁止されていたSM要求メッセージの送信が許容されるように設定してもよい。 In all processing examples, when the PLMN is changed, if the above conditions are not met, the SM request message described in each example will be sent according to the backoff timer being counted in the destination PLMN. May be set to allow transmission of. In other words, in this case, in the destination PLMN, UE_A10 may be set to allow the transmission of the SM request message described in each example according to the counting backoff timer. In other words, in this case, in the destination PLMN, UE_A10 is allowed to send the SM request message described in each example, which was prohibited by the PLMN before the change, depending on the backoff timer being counted. It may be set to.
 また、本実施形態における説明において、NWがUE_A10に送信すると表現した場合には、AMF又はSMFがUE_A10に送信することであってよく、UE_A10がNWに送信すると表現した場合には、UE_A10がAMF又はSMFに送信することであってよい。さらに、NWがUE_A10から受信すると表現した場合には、AMF又はSMFがUE_A10から受信することであってよく、UE_A10がNWから受信すると表現した場合には、UE_A10がAMF又はSMFから受信することであってよい。 Further, in the description of the present embodiment, when it is expressed that NW transmits to UE_A10, AMF or SMF may transmit to UE_A10, and when it is expressed that UE_A10 transmits to NW, UE_A10 expresses that it transmits to AMF. Alternatively, it may be transmitted to the SMF. Furthermore, when NW expresses that it receives from UE_A10, AMF or SMF may receive from UE_A10, and when UE_A10 expresses that it receives from NW, UE_A10 may receive from AMF or SMF. It may be there.
 [2.変形例]
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)等の揮発性メモリあるいはフラッシュメモリ等の不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
[2. Modification example]
The program that operates in the apparatus according to the present invention may be a program that controls the Central Processing Unit (CPU) or the like to operate the computer so as to realize the functions of the embodiments according to the present invention. The program or the information handled by the program is temporarily stored in a volatile memory such as Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
 尚、本発明に関わる実施形態の機能を実現する為のプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。 Note that the program for realizing the function of the embodiment according to the present invention may be recorded on a computer-readable recording medium. It may be realized by loading the program recorded on this recording medium into a computer system and executing it. The term "computer system" as used herein is a computer system built into a device, and includes hardware such as an operating system and peripheral devices. The "computer-readable recording medium" is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another recording medium that can be read by a computer. Is also good.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサでもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一以上の態様は当該技術による新たな集積回路を用いることも可能である。 Further, each functional block or various features of the device used in the above-described embodiment can be implemented or executed in an electric circuit, for example, an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof may be included. The general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine. The electric circuit described above may be composed of a digital circuit or an analog circuit. In addition, when an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, one or more aspects of the present invention can also use a new integrated circuit according to the technology.
 尚、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の1例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器等の端末装置もしくは通信装置に適用出来る。 The invention of the present application is not limited to the above-described embodiment. In the embodiment, an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device or a kitchen device. , Cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other terminal devices or communication devices such as living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included. Further, the present invention can be variously modified within the scope of the claims, and the technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is done. In addition, the elements described in each of the above-described embodiments include a configuration in which elements having the same effect are replaced with each other.
1 移動通信システム
5 DN_A
6 PDN_A
10 UE_A
20 UTRAN_A
22 NB_A
24 RNC_A
30 PGW_A
35 SGW_A
40 MME_A
45 eNB_A
50 HSS_A
80 E-UTRAN_A
90 コアネットワーク_A
120 NG-RAN_A
122 NR node_A
190 コアネットワーク_B
230 SMF_A
235 UPF_A
239 UPF_C
240 AMF_A
1 Mobile communication system
5 DN_A
6 PDN_A
10 UE_A
20 UTRAN_A
22 NB_A
24 RNC_A
30 PGW_A
35 SGW_A
40 MME_A
45 eNB_A
50 HSS_A
80 E-UTRAN_A
90 Core Network_A
120 NG-RAN_A
122 NR node_A
190 Core network_B
230 SMF_A
235 UPF_A
239 UPF_C
240 AMF_A

Claims (2)

  1.  UE(User Equipment;端末装置)であって、
      制御部と送受信部を備え、
     前記制御部は、DNN(Data Network Name) に対応付けられたバックオフタイマーを開始し、
     前記DNNが5G VN(Virtual Network) グループに対応づけられたDNNの場合、前記バックオフタイマーは、第1のPLMN(Public Land Mobile Network) と第2のPLMNに適用され、
     前記第1のPLMNは、前記UEが登録されたPLMNであり、
     前記第2のPLMNは、均等PLMNである、
     ことを特徴とするUE。
    UE (User Equipment)
    Equipped with a control unit and a transmitter / receiver
    The control unit starts a backoff timer associated with a DNN (Data Network Name), and then starts a backoff timer.
    When the DNN is a DNN associated with a 5G VN (Virtual Network) group, the backoff timer is applied to the first PLMN (Public Land Mobile Network) and the second PLMN.
    The first PLMN is a PLMN in which the UE is registered.
    The second PLMN is an equal PLMN,
    UE characterized by that.
  2.  UE(User Equipment;端末装置)の通信制御方法であって、
     DNN(Data Network Name) に対応付けられたバックオフタイマーを開始するステップを備え、
     前記DNNが5G VN(Virtual Network) グループに対応づけられたDNNの場合、前記バックオフタイマーは、第1のPLMN(Public Land Mobile Network) と第2のPLMNに適用され、
     前記第1のPLMNは、前記UEが登録されたPLMNであり、
     前記第2のPLMNは、均等PLMNである、
     ことを特徴とするUEの通信制御方法。
    UE (User Equipment) communication control method
    It has a step to start a backoff timer associated with a DNN (Data Network Name).
    When the DNN is a DNN associated with a 5G VN (Virtual Network) group, the backoff timer is applied to the first PLMN (Public Land Mobile Network) and the second PLMN.
    The first PLMN is a PLMN in which the UE is registered.
    The second PLMN is an equal PLMN,
    UE communication control method characterized by that.
PCT/JP2020/030442 2019-08-09 2020-08-07 Ue and communication control method WO2021029383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147405A JP7362344B2 (en) 2019-08-09 2019-08-09 UE and communication control method
JP2019-147405 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029383A1 true WO2021029383A1 (en) 2021-02-18

Family

ID=74569593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030442 WO2021029383A1 (en) 2019-08-09 2020-08-07 Ue and communication control method

Country Status (2)

Country Link
JP (1) JP7362344B2 (en)
WO (1) WO2021029383A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Support of restrictions on 5G VN group communication", 3GPP TSG SA WG2 #133 S 2-1906575, 16 May 2019 (2019-05-16), XP051736379 *
SHARP ET AL.: "DNN based congestion control for PDU session for LADN", 3GPP TSG CT WG1 #117 C1-193559, 17 May 2019 (2019-05-17), XP051726922 *

Also Published As

Publication number Publication date
JP2021029008A (en) 2021-02-25
JP7362344B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2020071502A1 (en) Ue
JP6884731B2 (en) UE communication control method
JP6869908B2 (en) UE and UE communication control method
JP6855431B2 (en) UE and UE communication control method
WO2020100636A1 (en) Ue and communication control method
JP6884730B2 (en) UE communication control method
WO2020204097A1 (en) Ue and communication control method
WO2020204096A1 (en) Ue and communication control method
WO2021029381A1 (en) Ue and communication control method
JP7079141B2 (en) UE communication control method
JP6901413B2 (en) UE and UE communication control method
WO2020204094A1 (en) Ue and communication control method
JP7216553B2 (en) UE, core network device, and communication control method
WO2020153126A1 (en) Ue
WO2021029383A1 (en) Ue and communication control method
WO2020204095A1 (en) Ue and communication control method
WO2021132452A1 (en) Ue and communication control method
JP2019186718A (en) Ue, control unit and communication control method
WO2021132451A1 (en) Ue and communication control method
JP2019145935A (en) UE and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852293

Country of ref document: EP

Kind code of ref document: A1