WO2021029300A1 - Method for manufacturing conveyance roller, conveyance roller, and electrophotography image forming apparatus - Google Patents

Method for manufacturing conveyance roller, conveyance roller, and electrophotography image forming apparatus Download PDF

Info

Publication number
WO2021029300A1
WO2021029300A1 PCT/JP2020/030046 JP2020030046W WO2021029300A1 WO 2021029300 A1 WO2021029300 A1 WO 2021029300A1 JP 2020030046 W JP2020030046 W JP 2020030046W WO 2021029300 A1 WO2021029300 A1 WO 2021029300A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
tube portion
transport roller
molding
shaft
Prior art date
Application number
PCT/JP2020/030046
Other languages
French (fr)
Japanese (ja)
Inventor
大 阿久津
基 森
賀文 今津
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021539236A priority Critical patent/JPWO2021029300A1/ja
Publication of WO2021029300A1 publication Critical patent/WO2021029300A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern

Definitions

  • the present invention relates to a method for manufacturing a transport roller, a transport roller, and an electrophotographic image forming apparatus. More specifically, the present invention relates to a method for manufacturing a transport roller, which is inexpensive and has high shape accuracy, a transport roller, and an electrophotographic image forming apparatus.
  • Rollers for transport used in transport units are rollers that have an elastic body for gripping objects to be transported such as paper, and “rollers” that move with the rollers. It is configured to have a so-called resin roller.
  • FIG. 1 is an example of a schematic diagram of a roller used in a transport unit.
  • the roller 1 used in the transfer unit has a transfer roller 2 and a resin roller 6.
  • the transport roller 2 has an elastic body portion 4 and a gear portion 5 on the shaft 3 and functions as a drive roller.
  • a resin roller 6 that is in contact with the elastic body portion 4 and is driven by its rotation is provided as a roller.
  • the resin roller 6 has a groove shape (also referred to as “edge groove”) 7 on the outer peripheral surface.
  • the transport roller 1 transports paper by sandwiching, for example, paper, which is an object to be transported, between the elastic body portion 4 and the resin roller 6 and rotationally driving the paper in that state.
  • the elastic body portion 4 uses an elastic body such as rubber in order to stably convey the paper in contact with the paper or the like to be conveyed. Further, from the viewpoint of slidability, the resin roller 6 uses polyoxymethylene resin (hereinafter abbreviated as “POM”, also referred to as polyacetal), and is often manufactured at low cost by injection molding.
  • POM polyoxymethylene resin
  • the melting point of toner used for printing for example, toner containing styrene acrylic and polyester resin
  • the elastic body part of the transport roller or the resin roller that comes into contact with the paper sent in a warm state after fixing is about 100 ° C.
  • Patent Document 1 discloses a technique for forming a groove structure in an injection molding die.
  • a technique for integrally molding is insufficient from the viewpoint of shape accuracy of the molded product, and further improvement in accuracy has been required.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved thereof is an inexpensive method for manufacturing a transport roller having high shape accuracy, a transport roller, and an electrophotographic image forming apparatus including the same. Is to provide.
  • the present inventor has a resin tube portion and a resin shaft portion having a structure in which the transport roller is insert-molded into the tube portion.
  • the resin tube portion can be used on the outer surface side, and the shape change of the tube portion due to the influence of the shrinkage of the shaft portion during insert molding can be reduced, so that the cost is low.
  • a transport roller with high shape accuracy can be realized, and have arrived at the present invention. That is, the above problem according to the present invention is solved by the following means.
  • the tube portion and the shaft portion are held by the shrinkage force of the molding resin at the time of cooling by filling both end surfaces of the tube portion with the molten molding resin and then cooling the tube portion.
  • Equation (1) is satisfied by controlling the molding shrinkage force P, the area A of the portion where the resin portion contacts both end surfaces of the tube portion, and the Young's modulus E of the resin constituting the tube portion.
  • P represents the molding shrinkage force represented by the following formula (2).
  • A represents the resin portion in contact with both end surfaces of the tube portion. Represents the area of the portion.
  • E represents the Young's modulus of the resin constituting the tube portion at 25 ° C.) Equation (2)
  • P Young's modulus of the resin constituting the shaft at 25 ° C. ⁇
  • Cross-sectional area of the resin constituting the shaft ⁇ (Shaft molding shrinkage-Tube shrinkage)
  • a transport roller that transports the object to be transported.
  • a transport roller characterized in that the transport roller includes a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded.
  • An electrophotographic image forming apparatus comprising the transport roller according to any one of items 10 to 13.
  • the transport roller is provided with a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded, and the resin tube portion can be used on the outer surface side and is insert-molded. Since it is possible to reduce the shape change of the tube portion due to the influence of the contraction of the shaft portion at the time, it is presumed that an inexpensive and highly accurate transfer roller can be realized. Further, since the material constituting the shaft portion and the tube portion mainly on the outer surface of the transport roller can be made of different materials, it is possible to obtain a highly functional transport roller.
  • FIG. 1 An example of a schematic diagram of a roller used in a transport unit
  • FIG. 1 An example of a cross-sectional view of a transport roller of the present invention
  • FIG. 1 An example of an external perspective view of a transport roller of the present invention
  • Schematic diagram illustrating the outline of the abrasion resistance test Schematic diagram illustrating the outline of the abrasion resistance test
  • Schematic diagram for explaining the adhesion between the shaft and the tube Schematic diagram explaining a method of measuring adhesion
  • FIGmatic diagram explaining a method of measuring adhesion An example of a diagram showing the relationship between theoretical adhesion and measured adhesion Schematic diagram explaining the deformation of the tube portion
  • Schematic diagram illustrating a method for measuring roundness Schematic diagram illustrating a method for measuring roundness
  • the figure explaining insert molding The figure explaining insert molding
  • the figure explaining insert molding The figure explaining insert molding
  • the figure explaining insert molding The figure explaining insert molding
  • the method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller having a resin shaft portion and a resin tube portion, wherein the tube portion is set in a mold and further melted for molding. It is characterized by having a step of filling the tube portion with a resin and molding the shaft portion.
  • This feature is a technical feature common to or corresponding to each of the following embodiments (forms).
  • both end faces of the tube portion are filled with the molten molding resin and then cooled, and the shrinking force of the molding resin during cooling causes the tube portion and the shaft portion to be cooled. It is preferable to hold the above because the adhesion between the shaft portion and the tube portion is enhanced and slipping prevention can be obtained.
  • the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more.
  • the resin portion holds the tube portion due to the contraction of the shaft portion during the insert molding, and the tube portion This is preferable because it has the effect of suppressing idling with respect to the shaft portion.
  • the outer peripheral surface of the resin portion has a groove shape.
  • the above formula is controlled by controlling the molding shrinkage force P, the area A of the portion where the resin portion contacts both end surfaces of the tube portion in the previous period, and the Young's modulus E of the resin constituting the tube portion. It is preferable to satisfy (1).
  • the water repellency angle of the tube portion at 25 ° C. is 90 ° or more because the printing toner is prevented from adhering and the effect of suppressing the retransfer to the paper can be obtained.
  • polypropylene as a constituent material for the tube portion and polyacetal for the shaft portion.
  • the transport roller for transporting an object to be transported, wherein the transport roller includes a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded. It is preferable that the roller is a transport roller. From the viewpoint of suppressing deformation of the tube portion, the Young's modulus of the resin constituting the tube portion at 25 ° C. is preferably 100 MPa or more. Further, the fact that the resin portions constituting the shaft portion are in contact with both end surfaces of the tube portion means that the resin portion holds the tube portion due to the contraction of the shaft portion during the insert molding, and the tube portion is the shaft. This is preferable because it has the effect of suppressing idling with respect to the portion. Further, from the viewpoint of expressing the effect of the present invention, it is preferable to satisfy the above formula (1).
  • the transport roller of the present invention can be suitably provided in an electrophotographic image forming apparatus.
  • the method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller having a resin shaft portion and a resin tube portion, wherein the tube portion is set in a mold and further melted for molding. It is characterized by having a step of filling the tube portion with a resin and molding the shaft portion.
  • a resin tube portion is set in a mold, and a molten molding resin is filled in the tube portion to form a resin shaft portion, whereby the shaft portion and the tube portion are formed.
  • the molding method of integration is also referred to as "insert molding".
  • the resin shaft portion is used as a molding resin melted during insert molding, and it is preferable that the tube portion is held by the shrinkage force of the molding resin of the shaft portion during cooling. Therefore, the resin used for the shaft portion is preferably a heat-shrinkable resin.
  • the resin tube portion needs to be prepared in advance.
  • a method of integrally molding such different members a method of two-color molding of a tube portion and a shaft portion is known. Here, it refers to a technique of molding two types of resins different from two-color molding into one part.
  • the resin tube portion can be used on the outer surface side, the shape change of the tube portion due to the influence of the contraction of the shaft portion during insert molding can be reduced, and the shape accuracy is low. It is possible to realize a high-performance transport roller, and since different materials can be used for the tube portion that is mainly in contact with the object to be transported and the shaft portion that supports rotation, it is possible to obtain a highly functional transport roller.
  • the manufacturing method may be injection molding as well as cutting out of an extruded tube.
  • Known molding methods for obtaining a molded product of a tube portion include, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a deformed extrusion method, a transfer molding method, a hollow molding method, a gas-assisted hollow molding method, and a blow. Molding method, extrusion blow molding, IMC (in-mold coating molding) molding method, rotary molding method, multi-layer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, pressure molding method, etc. Can be mentioned.
  • the molten resin for molding is filled and transferred to both end surfaces of the resin tube portion and then cooled, so that the shrinkage force of the molding resin during cooling causes the shrinkage force of the molding resin. It is preferable to hold the tube portion and the molding resin portion.
  • the transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller has a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded. It is characterized by having.
  • the transport roller of the present invention can be applied to at least one of the above-mentioned transport roller (drive roller) or the resin roller (roller) driven by the drive roller, and is preferably applied to the resin roller.
  • the “object to be transported” is one that is transported by the above-mentioned transport roller, and includes a so-called recording medium.
  • the recording medium various media such as paper, resin plate, metal, cloth, and rubber can be used. Examples of the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.
  • FIG. 2 is an example of a cross-sectional view of the transport roller of the present invention.
  • the transport roller (resin roller) 11 of the present invention includes a resin tube portion 12 and a resin shaft portion 13 having a structure insert-molded into the resin tube portion 12.
  • the resin portions 14 constituting the shaft portion 13 are in contact with both end faces of the resin tube portion 12, but the resin tube portion 12 extends to the surface end portion when the object to be transported mainly contacts. It may be. Since the resin portions 14 constituting the shaft portion 13 are in contact with both end faces of the resin tube portion 12, the resin portion 14 holds the tube portion 12 by shrinkage of the shaft portion during insert molding. It is a preferable embodiment.
  • the resin tube portion can be used on the outer surface side, and the shape change of the tube portion due to the influence of the contraction of the shaft portion during insert molding can be reduced. Therefore, it is possible to realize a method for manufacturing a transport roller and a transport roller that are inexpensive and have high shape accuracy. Further, as a preferred embodiment, by using different constituent materials for the tube portion that is mainly in contact with the object to be transported and the shaft portion that supports rotation, the transport roller 11 is made into a transport roller that is inexpensive and has excellent adhesion resistance to toner. be able to.
  • FIG. 3 is an example of an external perspective view of the transport roller 11 of the present invention.
  • the transport roller 11 of the present invention preferably has a groove shape 15 on the outer peripheral surface of the resin portion 14. By having such a groove, it becomes easy to eject the object to be transported at the time of discharge, which is preferable in realizing stable transportation.
  • the transport roller of the present invention includes a resin tube portion and a resin shaft portion having a structure insert-molded in the tube portion. Since the resin tube portion is in contact with the object to be transported, a resin having various functions different from that of the shaft portion can be used. When functioning as a driven roller, it does not have to be an elastic body, and the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more in order to suppress deterioration of the roundness of the tube portion due to molding shrinkage. That is preferable.
  • the resin used for the tube portion is not particularly limited and can be selected according to the purpose. Specifically, instead of POM, which has been used mainly from the viewpoint of slidability, the shaft part and the tube part are made independent, and the tube part is changed to a resin having higher antifouling property, which is a conventional problem. It is possible to reduce the adhesion of toner on the resin roller that has become. Conventionally, a fluorine-based resin, which is expensive and takes time to process, has been used to prevent this, but it is preferable to use a water-repellent resin for the tube portion because the adhesion of toner can be reduced. ..
  • the water repellency angle of the tube portion at 25 ° C. is preferably 90 ° or more.
  • the water repellency angle is measured by dropping minute water droplets on the surface of the tube portion with a microsyringe, shining light from one side and passing the objective lens provided on the other side to measure the contact angle of the water droplets with respect to the tube portion. It can be done by. Specifically, it can be obtained by measuring the contact angle using an image processing type contact angle meter (CA-X150 type manufactured by Kyowa Interface Science Co., Ltd.).
  • the tube portion preferably contains a polyolefin-based resin because it has a large water-repellent angle and an effect of preventing toner adhesion can be obtained.
  • the polyolefin-based resin include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polypropylene-polystyrene copolymer, and polypropylene acrylic acid ester copolymer. Of these, it is preferable that the tube portion contains polypropylene.
  • the polyolefin-based resin may be used alone or in combination of two or more.
  • the resin shaft portion used in the transport roller of the present invention has a structure in which a tube portion is insert-molded.
  • the resin used for shaft is preferably a resin that shrinks after insert molding.
  • heat-shrinkable resin examples include polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyvinylidene chloride resin, polystyrene resin, polyester resin and the like.
  • the shaft portion supports the transport roller, and wear resistance is required when transporting the object to be transported.
  • Table I shows the results of wear resistance tests of various resins.
  • the test materials are polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), rubber-modified polystyrene (HIPS), perfluoroalkoxy alkanesyl (PFA), polypropylene (PP), and polyphenylene sulfide (PPS) shown in Table I.
  • PMMA polymethylmethacrylate
  • PTFE polytetrafluoroethylene
  • HIPS rubber-modified polystyrene
  • PFA perfluoroalkoxy alkanesyl
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PEEK Polyetheretherketone
  • PA66 nylon
  • PE ultrahigh molecular weight polyethylene
  • POM polyacetal
  • the members of the shaft according to the present invention include polyacetal (POM), ultrahigh molecular weight polyethylene (PE), nylon (PA66), and polyphenylene sulfide (PPS), which have better wear resistance than polypropylene (PP).
  • POM polyacetal
  • PE ultrahigh molecular weight polyethylene
  • PA66 nylon
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • the member of the shaft portion contains polyacetal (POM) from the viewpoint of wear resistance and cost.
  • FIG. 4A and 4B are schematic views illustrating an outline of the wear resistance test.
  • a steel wire spring 202 is brought into point contact with various cylindrical resin materials 201, and the resin material is rotated while applying a pressure (about 140 MPa) equivalent to that of a resin roller at the time of paper ejection.
  • a pressure about 140 MPa
  • the wear depth of the resin is measured and converted into a wear volume.
  • the shaft portion contains a resin strengthening agent in order to improve the strength.
  • a fibrous filler such as polybenzazole fiber, carbon fiber, aramid fiber, metal fiber, glass fiber, ceramic fiber or polyparaphenylene terephthalamide fiber can be mixed in the thermoplastic resin forming the shaft portion.
  • the fibrous filler is more preferably at least one of carbon fibers and glass fibers.
  • fibrous filler examples include carbon fiber milled fiber (manufactured by Mitsubishi Chemical Co., Ltd.), glass fiber T-289DE (manufactured by JEOL Ltd.), milled fiber (manufactured by Asahi Glass Fiber Co., Ltd.), and the like. Can be done.
  • the tube portion and the shaft portion may contain various polymers and additives other than the resin as long as the object of the present invention is not impaired.
  • additives include antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, light-resistant stabilizers, UV absorbers, antistatic agents, anti-aging agents, fatty acid metal salts, softeners, dispersants, nucleating agents, and lubricants. , Flame retardants, pigments, dyes, organic fillers.
  • FIG. 5 is a diagram for explaining the adhesion between the shaft portion and the tube portion.
  • the resin portions 14 constituting the shaft portion are in contact with both end surfaces of the tube portion 12, and the resin portion 14 is the insert. It is preferable that the tube portion is held by the contraction of the shaft portion during molding.
  • the white arrow in the figure indicates the direction in which the shaft contracts. That is, it is preferable to arrange the resin portions constituting the shaft portion on both end surfaces of the tube portion and hold the tube portion by the contraction force thereof.
  • the adhesion force N [N: Newton] between the tube portion and the shaft portion can be expressed by the following formula (A).
  • Equation (A) N ⁇ AE
  • represents the coefficient of friction between the resin constituting the tube portion and the shaft portion.
  • represents the strain [dimensionless] of the tube portion due to molding.
  • a [mm 2 ] represents the cross-sectional area where both end faces of the tube portion are in contact with the shaft portion.
  • E [MPa] represents Young's modulus of the tube portion.
  • the adhesion force N can be measured as follows.
  • a tape (7413D manufactured by polyimide tape 3M) 21 is wound around the tube portion 12 of the resin roller and pulled in the direction of the white arrow, and the magnitude of the force when the belt 22 attached to the shaft portion 13 starts to slide is measured.
  • a tensile tester autograph manufactured by Shimadzu Corporation
  • Shimadzu Corporation can be used for measurement.
  • FIG. 7 is an example of a diagram showing the relationship between the theoretical adhesion force N and the actually measured adhesion force N.
  • the resin rollers having the configuration shown in FIG. 2 which were insert-molded under the molding conditions shown in Example 2 described later with each combination of the material of the tube portion and the shaft portion were evaluated, and the vertical axis is the actual measurement.
  • the value and the horizontal axis show the theoretical value obtained by the formula (A).
  • the tube portion used was injection molded.
  • a tube portion having a length of 12.6 mm was used.
  • PFA 9 ⁇ 10 indicates that PFA (perfluoroalkoxy fluororesin) having an inner diameter of 9 mm and an outer diameter of 10 mm was used as the tube portion.
  • the following resin materials were used as the shaft portion and the tube portion.
  • the Young's modulus used a general physical property value.
  • the cross-sectional area A was calculated from the outer diameter and wall thickness of the tube of the tube portion.
  • was calculated by (tube length change) / (tube length) by measuring the axial length of the tube before and after molding.
  • For the coefficient of friction prepare flat plates made of the same material as the tube and molding resin, stack the flat plates on top of each other, place a weight on them, tilt the entire plate, and set the angle ⁇ at which the flat plates slide out under the condition that the tilt angle is less than 3 ° / sec. Read and set the tangent tan ⁇ of ⁇ as the coefficient of static friction ⁇ .
  • the theoretical adhesion force N shows a good correlation with the measured value.
  • a combination of a tube having a larger coefficient of friction and a molding resin is preferable.
  • the larger the cross-sectional area of the tube the greater the adhesion.
  • the adhesion can be adjusted by appropriately selecting a material or the like.
  • the required adhesion varies depending on the intended use, but if it is about 2N or more, the adhesion is good.
  • Equation (2) Young's modulus of the resin constituting the shaft at 25 ° C. ⁇
  • Cross-sectional area of the resin constituting the shaft ⁇ (Shaft molding shrinkage-Tube shrinkage) AE represents the axial rigidity of the tube.
  • the cross-sectional area [mm 2 ] of the resin constituting the shaft portion is specifically the cross-sectional area of the portion surrounded by the inner diameter of the tube portion 12 shown in FIG. 5 described above.
  • the shrinkage of the shaft is calculated from the mold size and the size of the molded product.
  • the coefficient of contraction of the tube portion is calculated by multiplying the linear expansion coefficient of the tube portion (25 ° C.) by the difference between the mold temperature and the room temperature during the resin cooling step. Specifically, it can be calculated from the following formula.
  • Tube part shrinkage rate tube part linear expansion rate (25 ° C) x (mold temperature-room temperature (25 ° C))
  • can be a measure of roundness.
  • the "roundness" refers to the magnitude of deviation from a geometrically correct circle, that is, the deviation of each diameter of a circle having a constant cross section. It is preferable that the value of roundness is small because the deviation from the geometrically correct circle is small.
  • the roundness is measured by measuring the diameters in three directions between the outer surfaces of the tube portions forming 45 ° with each other with a commercially available roundness measuring device as shown in FIG. 9B, and measuring the diameters in the three directions. , The value of the difference between the maximum value and the minimum value was defined as the roundness.
  • the measurement positions 15 are three points at the end and the center of the tube portion 12, and the average value of the three points can be calculated as the roundness.
  • ⁇ represented by the formula (1) is smaller than 0.17.
  • FIG. 10 is a cross-sectional view of an example of the insert-molded transport roller 11 (resin roller).
  • FIG. 11A to 13F are views for explaining insert molding used in the present invention. As shown in FIG. 11A, using a known insert jig (not shown), a separately molded tube portion 12 is set, and the opening / closing dies 31 and 32 and the mounting jig (not shown) are set. Position with and set in place.
  • the tube portion 12 was inserted into the mold 31 during mold opening, and as shown in FIG. 12C, after the mold was clamped, the resin melted in the mold to which the tube portion 12 was mounted. Is injected from the runner 33 into the space forming the shaft portion (FIGS. 12C and 12D) to form the shaft portion (FIG. 13E).
  • the molds 31 and 32 are opened in FIG. 13F to obtain a resin roller 11 in which the tube portion and the shaft portion are integrated.
  • the gate is cut to separate the molded part from the runner or the like.
  • the transport roller of the present invention is a transport roller that transports an object to be transported, and the object to be transported includes a so-called recording medium, and the recording medium includes various types such as paper, resin plate, metal, cloth, and rubber. Medium can be used. Examples of the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.
  • Examples of the device provided with the transport roller for transporting such a recording medium include an inkjet printer, a laser beam printer, an electrophotographic image forming device, a fax device, and a scanner. Among these, it is preferable to apply it to an electrophotographic image forming apparatus.
  • an electrostatic latent image is formed on the photoconductor by a charging / exposing means, and the electrostatic latent image is developed by a developing agent containing a toner to form a toner image.
  • the toner image is transferred onto a recording medium such as paper or a sheet by a transfer means, and the toner image is fixed on a recording medium by using heat, solvent, pressure or the like by a fixing means to obtain a permanent image.
  • a recording medium such as paper or a sheet by a transfer means
  • the toner image is fixed on a recording medium by using heat, solvent, pressure or the like by a fixing means to obtain a permanent image.
  • the transport roller of the present invention is preferably applied to a resin roller (roller).
  • Example 1 Toner adhesion test
  • Process blue made of cyan and magenta solid-printed paper was set on various resin sheets, the temperature was changed as shown in Table III, and pressure (0.5 MPa) was applied to perform an adhesion test. .. It was evaluated whether the toner component of the printing paper was transferred to the resin sheet, visually observed, and ranked as follows. The results are shown in Table III. "Deformation" in the table indicates that the resin sheet was deformed by the temperature.
  • the ultra-high molecular weight PE sheet was prepared by the manufacturer, and the other sheets were prepared by injection molding by purchasing resin pellets.
  • PE Polyethylene resin (HJ580N, manufactured by Japan Polyethylene Corporation)
  • Ultra high molecular weight PE Polyethylene resin (New Light Sheet NL-W, manufactured by Saxin Industry Co., Ltd.)
  • PP Polypropylene resin (BC3AD, manufactured by Nippon Polypropylene)
  • PC Polycarbonate resin (H3000R, manufactured by Mitsubishi Engineering Plastics)
  • POM Polyacetal (F20-03, manufactured by Mitsubishi Engineering Plastics)
  • a resin roller was manufactured by the manufacturing method using the mold described above.
  • [Manufacturing of resin roller 1] (Making the tube part)
  • a tube portion made of PE having a diameter of 10.0 mm, a length of 12.6 mm, and a tube thickness of 1.0 mm was prepared in advance by injection molding.
  • the resin roller 1 of the present invention was produced by insert molding by the method described above under the following conditions.
  • the resin of the tube portion is produced by using the materials PP and PC shown in Table III, respectively, and then the tube portion having the same shape as the resin roller is produced, and then in the same manner as in the production of the resin roller 1.
  • the resin rollers 3 and 4 of the present invention were produced by insert molding POM on the shaft portion.
  • a resin roller 5 made of POM having the same shape as the resin roller 1 was manufactured by injection molding without separating the tube portion and the shaft portion. Specifically, the molten POM used for the shaft portion was inserted into the mold without loading the tube portion into the mold to produce a comparative resin roller 5. The following materials were used for the tube part and the shaft part.
  • the ultra-high molecular weight PE tube was prepared by the manufacturer, and the others were formed by injection molding by purchasing resin pellets.
  • PE Polyethylene resin (HJ580N, manufactured by Japan Polyethylene Corporation) Ultra high molecular weight PE: Polyethylene resin (New Light Tube, manufactured by Saxin Industry Co., Ltd.) PP: Polypropylene resin (BC3AD, manufactured by Nippon Polypropylene) PC: Polycarbonate resin (H3000R, manufactured by Mitsubishi Engineering Plastics) POM: Polyacetal (F20-03, manufactured by Mitsubishi Engineering Plastics)
  • Example 3 (Making resin rollers) Using the molding conditions of Example 2, a resin roller that was insert-molded with each combination of the above-mentioned materials of the shaft portion and the tube portion used in the measurement of the adhesion force was produced. That is, the resin roller shown in FIG. 14 was produced by the following combination of the shaft portion and the tube portion.
  • Shaft POM Polyacetal (Iupital F20-03 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.))
  • POM Inorganic Inorganic-filled polyacetal (Iupital TC3015 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.))
  • HDPE High-density polyethylene (HIZEX 2200J (manufactured by Prime Polymer Co., Ltd.))
  • Tube part PTFE Polytetrafluoroethylene (manufactured by Hagitec Co., Ltd .: 8 ⁇ 10, model number 244-1031-75: 9 ⁇ 10, model number 244-1031-64)
  • PFA Perfluoroalkoxy alkane resin (manufactured by Hagitech Co., Ltd .: 9 ⁇ 10: model number 02-032-11-02)
  • Ultra High Molecular Weight PE Polyethylene Resin (Saxin New Light, manufactured by Saxin Industry Co., Ltd.)
  • the roundness of the comparative resin roller 5 integrally molded using POM produced in Example 2 was measured and found to be 0.23 mm, as compared with the resin roller having the insert-molded structure of the present invention. , The value of roundness was large and the shape accuracy was inferior.
  • the transport roller of the present invention is a transport roller that transports an object to be transported, and has features of low cost and high shape accuracy.
  • various media such as paper, resin plate, metal, cloth, and rubber can be used.
  • the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

The present invention addresses the problem of providing a method for manufacturing a conveyance roller that is inexpensive and has high shape accuracy, a conveyance roller, and an electrophotography image forming apparatus provided with the conveyance roller. The method for manufacturing a conveyance roller according to the present invention has a resinous shaft part and a resinous tube part, the method characterized by comprising: a step of setting the resinous tube part in a mold and filling a melted molding resin in the tube to mold the resinous shaft part.

Description

搬送用ローラーの製造方法、搬送用ローラー及び電子写真画像形成装置Manufacturing method of transport roller, transport roller and electrophotographic image forming apparatus
 本発明は、搬送用ローラーの製造方法、搬送用ローラー及び電子写真画像形成装置に関する。より詳しくは、安価で、形状精度の高い搬送用ローラーの製造方法、搬送用ローラー及び電子写真画像形成装置に関する。 The present invention relates to a method for manufacturing a transport roller, a transport roller, and an electrophotographic image forming apparatus. More specifically, the present invention relates to a method for manufacturing a transport roller, which is inexpensive and has high shape accuracy, a transport roller, and an electrophotographic image forming apparatus.
 レーザービームプリンターや複合機等の搬送ユニットに用いられている、搬送用のローラーは、紙等の被搬送物をグリップするための弾性体部を有するローラーと、そのローラーに従動する”ころ”と呼ばれる樹脂ローラーを有する構成になっている。 Rollers for transport used in transport units such as laser beam printers and multifunction devices are rollers that have an elastic body for gripping objects to be transported such as paper, and "rollers" that move with the rollers. It is configured to have a so-called resin roller.
 図1は、搬送ユニットに用いられるローラーの模式図の一例である。搬送ユニットに用いられるローラー1は、搬送ローラー2と樹脂ローラー6を有している。搬送ローラー2は、シャフト3に、弾性体部4とギア部5を有しており、駆動ローラーとして機能する。そして、弾性体部4に接しその回転に従動する樹脂ローラー6を、ころとして備えている。樹脂ローラー6は、外周面に溝形状(「けり出し溝」ともいう)7を有している。搬送ローラー1は、弾性体部4と樹脂ローラー6との間に被搬送物である例えば紙を挟持し、その状態で回転駆動することにより紙を搬送する。 FIG. 1 is an example of a schematic diagram of a roller used in a transport unit. The roller 1 used in the transfer unit has a transfer roller 2 and a resin roller 6. The transport roller 2 has an elastic body portion 4 and a gear portion 5 on the shaft 3 and functions as a drive roller. A resin roller 6 that is in contact with the elastic body portion 4 and is driven by its rotation is provided as a roller. The resin roller 6 has a groove shape (also referred to as “edge groove”) 7 on the outer peripheral surface. The transport roller 1 transports paper by sandwiching, for example, paper, which is an object to be transported, between the elastic body portion 4 and the resin roller 6 and rotationally driving the paper in that state.
 弾性体部4は、被搬送物である紙等と接触して安定的に紙を搬送するため、ゴム等の弾性体を用いている。また、樹脂ローラー6は、摺動性の観点からポリオキシメチレン(polyoxymethylene樹脂(以下「POM」と略す。ポリアセタールともいう。)が使われ、射出成形により安価に製造されることが多い。 The elastic body portion 4 uses an elastic body such as rubber in order to stably convey the paper in contact with the paper or the like to be conveyed. Further, from the viewpoint of slidability, the resin roller 6 uses polyoxymethylene resin (hereinafter abbreviated as “POM”, also referred to as polyacetal), and is often manufactured at low cost by injection molding.
 しかし、印刷に使われるトナー、例えばスチレンアクリルとポリエステル系樹脂を含有するトナーの融点は100℃程度のため、定着後に温かい状態で送られてくる紙に接する搬送用ローラーの弾性体部や樹脂ローラー(ころ)の表面部分に、トナーが付着してしまうという問題があった。 However, since the melting point of toner used for printing, for example, toner containing styrene acrylic and polyester resin, is about 100 ° C., the elastic body part of the transport roller or the resin roller that comes into contact with the paper sent in a warm state after fixing. There was a problem that toner adhered to the surface portion of the roller.
 この不具合を回避するため、ローラー表面にパーフルオロエラストマー(PFE)の熱収縮チューブを組み立てる方式が提案されているが、これを、樹脂ローラーに適用する場合、けり出し溝を作ることができないため紙送り不具合が発生する懸念があったり、組立に工数がかかるという問題があった。 In order to avoid this problem, a method of assembling a heat-shrinkable tube of perfluoroelastomer (PFE) on the roller surface has been proposed, but when this is applied to a resin roller, it is not possible to make a protrusion groove, so paper. There was a concern that a feeding problem would occur, and there was a problem that it took a lot of man-hours to assemble.
 また、別法として、樹脂ローラー自体を防汚性の高い、エチレン-テトラフルオロエチレン(ETFE)やパーフルオロアルコキシフッ素樹脂(PFA)などフッ素樹脂で成形して軸部品を金属などと組み合わせる方式があるが、こちらも材料コストがかかるという問題と、金属との摩耗で異音が発生するという問題があった。
 さらに、樹脂ローラーは、射出成形により、安価に効率よく製造できるが、射出成形品は一般に切削加工品に比べて形状精度が劣るという欠点があった。特に真円度(幾何学的に正しい円からの狂いの大きさ:一定断面円の各直径の偏り)おいては、これが重大な問題となる場合が多い。この対策として、特許文献1では、射出成形用金型において溝構造をつける技術が開示されている。しかしながら、一体成形するこのような技術では、成形品の形状精度の観点からは不十分であり、さらなる精度向上が求められていた。
Another method is to mold the resin roller itself with a fluororesin such as ethylene-tetrafluoroethylene (ETFE) or perfluoroalkoxy alkane resin (PFA), which has high antifouling properties, and combine the shaft part with a metal or the like. However, this also has the problem that the material cost is high and the problem that abnormal noise is generated due to wear with metal.
Further, although the resin roller can be manufactured inexpensively and efficiently by injection molding, the injection molded product generally has a drawback that the shape accuracy is inferior to that of the cut product. This is often a serious problem, especially when it comes to roundness (the magnitude of deviation from a geometrically correct circle: the deviation of each diameter of a circle of constant cross section). As a countermeasure against this, Patent Document 1 discloses a technique for forming a groove structure in an injection molding die. However, such a technique for integrally molding is insufficient from the viewpoint of shape accuracy of the molded product, and further improvement in accuracy has been required.
特公平07-053393号公報Special Fair 07-053393
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、安価で、形状精度の高い搬送用ローラーの製造方法、搬送用ローラー及びそれを具備する電子写真画像形成装置を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved thereof is an inexpensive method for manufacturing a transport roller having high shape accuracy, a transport roller, and an electrophotographic image forming apparatus including the same. Is to provide.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、搬送用ローラーが、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えていることにより、樹脂製のチューブ部を、外表面側に用いることができ、インサート成形時の軸部の収縮の影響によるチューブ部の形状変化を少なくすることができるため、安価で、形状精度の高い搬送用ローラーを実現できることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In the process of examining the cause of the above problem in order to solve the above problems, the present inventor has a resin tube portion and a resin shaft portion having a structure in which the transport roller is insert-molded into the tube portion. By providing, the resin tube portion can be used on the outer surface side, and the shape change of the tube portion due to the influence of the shrinkage of the shaft portion during insert molding can be reduced, so that the cost is low. We have found that a transport roller with high shape accuracy can be realized, and have arrived at the present invention.
That is, the above problem according to the present invention is solved by the following means.
 1.樹脂製の軸部と樹脂製のチューブ部を有する搬送用ローラーの製造方法であって、前記チューブ部を金型内にセットし、さらに溶融した成型用樹脂を前記チューブ部内に充填して、前記軸部を成形する工程を有することを特徴とする搬送用ローラーの製造方法。 1. A method for manufacturing a transport roller having a resin shaft portion and a resin tube portion, wherein the tube portion is set in a mold, and further, the molten molding resin is filled in the tube portion. A method for manufacturing a transport roller, which comprises a step of forming a shaft portion.
 2.前記チューブ部の両端面に前記溶融した成形用樹脂を充填させた後に冷却することにより、冷却時の前記成形用樹脂の収縮力により、前記チューブ部と前記軸部とを保持させることを特徴とする第1項に記載の搬送用ローラーの製造方法。 2. The tube portion and the shaft portion are held by the shrinkage force of the molding resin at the time of cooling by filling both end surfaces of the tube portion with the molten molding resin and then cooling the tube portion. The method for manufacturing a transport roller according to the first item.
 3.前記チューブ部を構成する樹脂の25℃におけるヤング率を、100MPa以上にすることを特徴とする第1項又は第2項に記載の搬送用ローラーの製造方法。 3. The method for manufacturing a transport roller according to item 1 or 2, wherein the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more.
 4.前記チューブ部の両端面を、前記軸部を構成する樹脂部に接するようにすることを特徴とする第1項から第3項までのいずれか一項に記載の搬送用ローラーの製造方法。 4. The method for manufacturing a transport roller according to any one of items 1 to 3, wherein both end faces of the tube portion are in contact with the resin portion constituting the shaft portion.
 5.前記樹脂部の外周面に、溝形状を有するようにすることを特徴とする第4項に記載の搬送用ローラーの製造方法。 5. The method for manufacturing a transport roller according to item 4, wherein the outer peripheral surface of the resin portion has a groove shape.
 6.成形収縮力P、前記チューブ部の両端面に前記樹脂部が接する部分の面積A及び前記チューブ部を構成する樹脂のヤング率Eの制御により、下記式(1)を満足させることを特徴とする第4項又は第5項に記載の搬送用ローラーの製造方法。
  式(1)
   ε=P/AE<0.17
 (式(1)中、εは、成形によるチューブ部のひずみを表す。Pは、下記式(2)で表される成形収縮力を表す。Aは、チューブ部の両端面に樹脂部が接する部分の面積を表す。Eは、25℃におけるチューブ部を構成する樹脂のヤング率を表す。)
  式(2)
   P=軸部を構成する樹脂の25℃におけるヤング率×軸部を構成する樹脂の断面積×(軸部成形収縮率-チューブ部収縮率)
6. The following formula (1) is satisfied by controlling the molding shrinkage force P, the area A of the portion where the resin portion contacts both end surfaces of the tube portion, and the Young's modulus E of the resin constituting the tube portion. The method for manufacturing a transport roller according to item 4 or 5.
Equation (1)
ε = P / AE <0.17
(In the formula (1), ε represents the strain of the tube portion due to molding. P represents the molding shrinkage force represented by the following formula (2). A represents the resin portion in contact with both end surfaces of the tube portion. Represents the area of the portion. E represents the Young's modulus of the resin constituting the tube portion at 25 ° C.)
Equation (2)
P = Young's modulus of the resin constituting the shaft at 25 ° C. × Cross-sectional area of the resin constituting the shaft × (Shaft molding shrinkage-Tube shrinkage)
 7.前記チューブ部の25℃における撥水角を、90°以上にすることを特徴とする第1項から第6項までのいずれか一項に記載の搬送用ローラーの製造方法。 7. The method for manufacturing a transport roller according to any one of items 1 to 6, wherein the water repellency angle of the tube portion at 25 ° C. is 90 ° or more.
 8.前記チューブ部に、構成材料としてポリオレフィン系樹脂を用いることを特徴とする第1項から第7項までのいずれか一項に記載の搬送用ローラーの製造方法。 8. The method for manufacturing a transport roller according to any one of items 1 to 7, wherein a polyolefin resin is used as a constituent material for the tube portion.
 9.前記チューブ部に、構成材料としてポリプロピレンを用い、前記軸部にポリアセタールを用いることを特徴とする第1項から第8項までのいずれか一項に記載の搬送用ローラーの製造方法。 9. The method for manufacturing a transport roller according to any one of items 1 to 8, wherein polypropylene is used as a constituent material for the tube portion and polyacetal is used for the shaft portion.
 10.被搬送物を搬送する搬送用ローラーであって、
前記搬送用ローラーが、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えていることを特徴とする搬送用ローラー。
10. A transport roller that transports the object to be transported.
A transport roller, characterized in that the transport roller includes a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded.
 11.前記チューブ部を構成する樹脂の25℃におけるヤング率が、100MPa以上であることを特徴とする第10項に記載の搬送用ローラー。 11. The transport roller according to Item 10, wherein the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more.
 12.前記チューブ部の両端面に前記軸部を構成する樹脂部が接していることを特徴とする第10項又は第11項に記載の搬送用ローラー。 12. The transport roller according to item 10 or 11, wherein the resin portions constituting the shaft portion are in contact with both end surfaces of the tube portion.
 13.下記式(1)を満足することを特徴とする第12項に記載の搬送用ローラー。
  式(1)
   ε=P/AE<0.17
 (式(1)中、εは、成形によるチューブ部のひずみを表す。Pは、下記式(2)で表される成形収縮力を表す。Aは、チューブ部の両端面に樹脂部が接する部分の面積を表す。Eは、25℃におけるチューブ部を構成する樹脂のヤング率を表す。)
  式(2)
   P=軸部を構成する樹脂の25℃におけるヤング率×軸部を構成する樹脂の断面積×(軸部成形収縮率-チューブ部収縮率)
13. The transport roller according to Item 12, wherein the transport roller satisfies the following formula (1).
Equation (1)
ε = P / AE <0.17
(In the formula (1), ε represents the strain of the tube portion due to molding. P represents the molding shrinkage force represented by the following formula (2). A represents the resin portion in contact with both end surfaces of the tube portion. Represents the area of the portion. E represents the Young's modulus of the resin constituting the tube portion at 25 ° C.)
Equation (2)
P = Young's modulus of the resin constituting the shaft at 25 ° C. × Cross-sectional area of the resin constituting the shaft × (Shaft molding shrinkage-Tube shrinkage)
 14.第10項から第13項までのいずれか一項に記載の搬送用ローラーを具備することを特徴とする電子写真画像形成装置。 14. An electrophotographic image forming apparatus comprising the transport roller according to any one of items 10 to 13.
 本発明の上記手段により、安価で、形状精度の高い搬送用ローラーの製造方法、搬送用ローラー及びそれを具備する電子写真画像形成装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
According to the above means of the present invention, it is possible to provide an inexpensive method for manufacturing a transport roller with high shape accuracy, a transport roller, and an electrophotographic image forming apparatus including the same.
Although the mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, it is inferred as follows.
 搬送用ローラーが、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えており、樹脂製のチューブ部を、外表面側に用いることができ、インサート成形時の軸部の収縮の影響によるチューブ部の形状変化を少なくすることができるため、安価で、形状精度の高い搬送用ローラーを実現できるものと推定される。また、軸部を構成する材料と主に搬送用ローラーの外表面となるチューブ部とを別材料とすることができるため、高機能な搬送用ローラーとすることもできる。 The transport roller is provided with a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded, and the resin tube portion can be used on the outer surface side and is insert-molded. Since it is possible to reduce the shape change of the tube portion due to the influence of the contraction of the shaft portion at the time, it is presumed that an inexpensive and highly accurate transfer roller can be realized. Further, since the material constituting the shaft portion and the tube portion mainly on the outer surface of the transport roller can be made of different materials, it is possible to obtain a highly functional transport roller.
搬送ユニットに用いられるローラーの模式図の一例An example of a schematic diagram of a roller used in a transport unit 本発明の搬送用ローラーの断面図の一例An example of a cross-sectional view of a transport roller of the present invention 本発明の搬送用ローラーの外観斜視図の一例An example of an external perspective view of a transport roller of the present invention 耐摩耗試験の概要を説明する概略図Schematic diagram illustrating the outline of the abrasion resistance test 耐摩耗試験の概要を説明する概略図Schematic diagram illustrating the outline of the abrasion resistance test 軸部とチューブ部の密着力を説明する概略図Schematic diagram for explaining the adhesion between the shaft and the tube 密着力の測定方法を説明する概略図Schematic diagram explaining a method of measuring adhesion 密着力の測定方法を説明する概略図Schematic diagram explaining a method of measuring adhesion 理論密着力と実測密着力の関係を示す図の一例An example of a diagram showing the relationship between theoretical adhesion and measured adhesion チューブ部の変形を説明する概略図Schematic diagram explaining the deformation of the tube portion 真円度の測定方法を説明する概略図Schematic diagram illustrating a method for measuring roundness 真円度の測定方法を説明する概略図Schematic diagram illustrating a method for measuring roundness インサート成形された搬送用ローラー(樹脂ローラー)の一例の断面図Cross-sectional view of an example of an insert-molded transport roller (resin roller) インサート成形を説明する図The figure explaining insert molding インサート成形を説明する図The figure explaining insert molding インサート成形を説明する図The figure explaining insert molding インサート成形を説明する図The figure explaining insert molding インサート成形を説明する図The figure explaining insert molding インサート成形を説明する図The figure explaining insert molding εと真円度の関係を示す図の一例An example of a diagram showing the relationship between ε and roundness
 本発明の搬送用ローラーの製造方法は、樹脂製の軸部と樹脂製のチューブ部を有する搬送用ローラーの製造方法であって、前記チューブ部を金型内にセットし、さらに溶融した成型用樹脂を前記チューブ部内に充填して、前記軸部を成形する工程を有することを特徴とする。この特徴は、下記各実施態様(形態)に共通する又は対応する技術的特徴である。 The method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller having a resin shaft portion and a resin tube portion, wherein the tube portion is set in a mold and further melted for molding. It is characterized by having a step of filling the tube portion with a resin and molding the shaft portion. This feature is a technical feature common to or corresponding to each of the following embodiments (forms).
 本発明の実施態様としては、前記チューブ部の両端面に前記溶融した成形用樹脂を充填させた後に冷却することにより、冷却時の前記成形用樹脂の収縮力により、前記チューブ部と前記軸部とを保持させることが、軸部とチューブ部の密着力を高め空転防止が得られることから好ましい。
 本発明の実施態様としては、チューブ部の変形抑制の観点から、前記チューブ部を構成する樹脂の25℃におけるヤング率を、100MPa以上にすることが好ましい。
In an embodiment of the present invention, both end faces of the tube portion are filled with the molten molding resin and then cooled, and the shrinking force of the molding resin during cooling causes the tube portion and the shaft portion to be cooled. It is preferable to hold the above because the adhesion between the shaft portion and the tube portion is enhanced and slipping prevention can be obtained.
In an embodiment of the present invention, from the viewpoint of suppressing deformation of the tube portion, it is preferable that the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more.
 また、前記チューブ部の両端面を、前記軸部を構成する樹脂部に接するようにすることが、樹脂部が、前記インサート成形時の軸部の収縮により前記チューブ部を保持してチューブ部が軸部に対して空転するのを抑える効果が得られることから好ましい。
 さらに、本発明においては、前記樹脂部の外周面に、溝形状を有するようにすることが好ましい。これにより、排紙時に排紙しきれなかった紙の終端部を溝で引っ掛けて送り出す効果が得られる。
 また、本発明の効果発現の観点から、成形収縮力P、前期チューブ部の両端面に前記樹脂部が接する部分の面積A及び前記チューブ部を構成する樹脂のヤング率Eの制御により、前記式(1)を満させることが好ましい。
Further, by making both end surfaces of the tube portion in contact with the resin portion constituting the shaft portion, the resin portion holds the tube portion due to the contraction of the shaft portion during the insert molding, and the tube portion This is preferable because it has the effect of suppressing idling with respect to the shaft portion.
Further, in the present invention, it is preferable that the outer peripheral surface of the resin portion has a groove shape. As a result, the effect of hooking the end portion of the paper that could not be completely discharged at the time of paper ejection with the groove and feeding the paper can be obtained.
Further, from the viewpoint of exhibiting the effect of the present invention, the above formula is controlled by controlling the molding shrinkage force P, the area A of the portion where the resin portion contacts both end surfaces of the tube portion in the previous period, and the Young's modulus E of the resin constituting the tube portion. It is preferable to satisfy (1).
 また、前記チューブ部の25℃における撥水角を、90°以上にすることが、印刷用トナーの付着防止となり、それが紙に再転写することを抑制する効果が得られることから好ましい。
 さらに、本発明においては、前記チューブ部に、構成材料としてポリオレフィン系樹脂を用いることが好ましい。これにより、ポリオレフィン系樹脂が撥水角が大きいことからトナー付着防止の効果が得られる。
 本発明の実施態様としては、前記チューブ部に、構成材料としてポリプロピレンを用い、前記軸部にポリアセタールを用いることが好ましい。
Further, it is preferable that the water repellency angle of the tube portion at 25 ° C. is 90 ° or more because the printing toner is prevented from adhering and the effect of suppressing the retransfer to the paper can be obtained.
Further, in the present invention, it is preferable to use a polyolefin resin as a constituent material for the tube portion. As a result, since the polyolefin-based resin has a large water-repellent angle, the effect of preventing toner adhesion can be obtained.
In an embodiment of the present invention, it is preferable to use polypropylene as a constituent material for the tube portion and polyacetal for the shaft portion.
 また、被搬送物を搬送する搬送用ローラーであって、前記搬送用ローラーが、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えていることを特徴とする搬送用ローラーであることが好ましい。
 チューブ部の変形抑制の観点から、前記チューブ部を構成する樹脂の25℃におけるヤング率が、100MPa以上であることが好ましい。
 また、前記チューブ部の両端面に、前記軸部を構成する樹脂部が接していることが、樹脂部が、前記インサート成形時の軸部の収縮により前記チューブ部を保持してチューブ部が軸部に対して空転するのを抑える効果が得られることから好ましい。
 さらに、本発明の効果発現の観点から、前記式(1)を満足することが好ましい。
 本発明の搬送用ローラーは、電子写真画像形成装置に好適に具備され得る。
Further, it is a transport roller for transporting an object to be transported, wherein the transport roller includes a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded. It is preferable that the roller is a transport roller.
From the viewpoint of suppressing deformation of the tube portion, the Young's modulus of the resin constituting the tube portion at 25 ° C. is preferably 100 MPa or more.
Further, the fact that the resin portions constituting the shaft portion are in contact with both end surfaces of the tube portion means that the resin portion holds the tube portion due to the contraction of the shaft portion during the insert molding, and the tube portion is the shaft. This is preferable because it has the effect of suppressing idling with respect to the portion.
Further, from the viewpoint of expressing the effect of the present invention, it is preferable to satisfy the above formula (1).
The transport roller of the present invention can be suitably provided in an electrophotographic image forming apparatus.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 《搬送用ローラーの製造方法の概要》
 本発明の搬送用ローラーの製造方法は、樹脂製の軸部と樹脂製のチューブ部を有する搬送用ローラーの製造方法であって、前記チューブ部を金型内にセットし、さらに溶融した成型用樹脂を前記チューブ部内に充填して、前記軸部を成形する工程を有することを特徴とする。
 本発明において、樹脂製のチューブ部を金型内にセットし、さらに溶融した成型用樹脂を前記チューブ部内に充填して、樹脂製の軸部を成形することにより、軸部とチューブ部とを一体化する成形方法を、「インサート成形」ともいう。
<< Outline of manufacturing method of transport roller >>
The method for manufacturing a transport roller of the present invention is a method for manufacturing a transport roller having a resin shaft portion and a resin tube portion, wherein the tube portion is set in a mold and further melted for molding. It is characterized by having a step of filling the tube portion with a resin and molding the shaft portion.
In the present invention, a resin tube portion is set in a mold, and a molten molding resin is filled in the tube portion to form a resin shaft portion, whereby the shaft portion and the tube portion are formed. The molding method of integration is also referred to as "insert molding".
 樹脂製の軸部は、インサート成形時に溶融した成型用樹脂として用いられ、冷却時、軸部の成形用樹脂の収縮力により、前記チューブ部を保持させることが好ましい。このため軸部に用いられる樹脂は、熱収縮する樹脂であることが好ましい。
 樹脂製のチューブ部は、あらかじめ準備しておく必要がある。
 このような、異なる部材を一体成形する方法として、チューブ部と軸部を2色成形する方法が知られている。ここで、2色成形とは異なる2種の樹脂を1つの部品に成形する技術をいう。
The resin shaft portion is used as a molding resin melted during insert molding, and it is preferable that the tube portion is held by the shrinkage force of the molding resin of the shaft portion during cooling. Therefore, the resin used for the shaft portion is preferably a heat-shrinkable resin.
The resin tube portion needs to be prepared in advance.
As a method of integrally molding such different members, a method of two-color molding of a tube portion and a shaft portion is known. Here, it refers to a technique of molding two types of resins different from two-color molding into one part.
 しかしながら、上記方法では、2色成形用の設備が必要になることや、2回成形するために金型機構が複雑になるなど生産性が悪いこと、軸部とチューブ部の密着性を持たせるために、凹凸形状を付与させるため金型加工、成形が困難になる等問題点がある。 However, in the above method, equipment for two-color molding is required, productivity is poor due to complicated mold mechanism for molding twice, and adhesion between the shaft portion and the tube portion is provided. Therefore, there are problems such as difficulty in mold processing and molding because the uneven shape is imparted.
 本発明によれば、樹脂製のチューブ部を、外表面側に用いることができ、インサート成形時の軸部の収縮の影響によるチューブ部の形状変化を少なくすることができ、安価で、形状精度の高い搬送用ローラーを実現でき、被搬送物が主に接するチューブ部と回転を支える軸部とで異なる材料を用いることができるため、高機能な搬送用ローラーとすることもできる。 According to the present invention, the resin tube portion can be used on the outer surface side, the shape change of the tube portion due to the influence of the contraction of the shaft portion during insert molding can be reduced, and the shape accuracy is low. It is possible to realize a high-performance transport roller, and since different materials can be used for the tube portion that is mainly in contact with the object to be transported and the shaft portion that supports rotation, it is possible to obtain a highly functional transport roller.
 チューブ部は同一金型で作る必要はなく、その製法も射出成形はもちろん、押出加工チューブの切り出しでもよい。
 チューブ部の成形物を得るための公知の成形法としては、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。
It is not necessary to make the tube part with the same mold, and the manufacturing method may be injection molding as well as cutting out of an extruded tube.
Known molding methods for obtaining a molded product of a tube portion include, for example, an injection molding method, an injection compression molding method, an extrusion molding method, a deformed extrusion method, a transfer molding method, a hollow molding method, a gas-assisted hollow molding method, and a blow. Molding method, extrusion blow molding, IMC (in-mold coating molding) molding method, rotary molding method, multi-layer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, pressure molding method, etc. Can be mentioned.
 具体的には、前記インサート成形において、前記樹脂製のチューブ部の両端面に溶融した前記成形用樹脂を充填・転写させた後に冷却することにより、冷却時の前記成形用樹脂の収縮力により、前記チューブ部と前記成形樹脂部とを保持させることが好ましい。 Specifically, in the insert molding, the molten resin for molding is filled and transferred to both end surfaces of the resin tube portion and then cooled, so that the shrinkage force of the molding resin during cooling causes the shrinkage force of the molding resin. It is preferable to hold the tube portion and the molding resin portion.
 この方式ならば、チューブ部を使っても、樹脂部の外周面にけり出し溝を作製することが可能である。 With this method, it is possible to create a protrusion groove on the outer peripheral surface of the resin part even if the tube part is used.
 《搬送用ローラーの概要》
 本発明の搬送用ローラーは、被搬送物を搬送する搬送用ローラーであって、前記搬送用ローラーが、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えていることを特徴とする。
<< Overview of transport rollers >>
The transport roller of the present invention is a transport roller that transports an object to be transported, and the transport roller has a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded. It is characterized by having.
 本発明の搬送用ローラーは、前述した、搬送ローラー(駆動ローラー)又は駆動ローラーに従動する樹脂ローラー(ころ)の少なくともいずれかに適用することができ、樹脂ローラーに適用することが好ましい。
 また、「被搬送物」とは、上記搬送ローラーにより搬送されるものであり、いわゆる記録媒体を含む。記録媒体としては、紙、樹脂板、金属、布帛、ゴムなどの種々の媒体が用いられ得る。また、紙としては、普通紙、板紙、塗工紙、レジンコート紙、合成紙などを挙げることができる。
The transport roller of the present invention can be applied to at least one of the above-mentioned transport roller (drive roller) or the resin roller (roller) driven by the drive roller, and is preferably applied to the resin roller.
Further, the “object to be transported” is one that is transported by the above-mentioned transport roller, and includes a so-called recording medium. As the recording medium, various media such as paper, resin plate, metal, cloth, and rubber can be used. Examples of the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.
 図2は、本発明の搬送用ローラーの断面図の一例である。搬送用ローラーとして、樹脂ローラーに適用された例である。本発明の搬送用ローラー(樹脂ローラー)11は、樹脂製のチューブ部12とこの樹脂製のチューブ部12にインサート成形された構造を有する樹脂製の軸部13を備えている。本例においては、前記樹脂製のチューブ部12の両端面に前記軸部13を構成する樹脂部14が接しているが、被搬送物が主に接するころ表面端部まで樹脂製のチューブ部12であってもよい。前記樹脂製のチューブ部12の両端面に前記軸部13を構成する樹脂部14が接していることで、この樹脂部14が、前記インサート成形時の軸部の収縮により前記チューブ部12を保持していることが好ましい態様である。 FIG. 2 is an example of a cross-sectional view of the transport roller of the present invention. This is an example applied to a resin roller as a transport roller. The transport roller (resin roller) 11 of the present invention includes a resin tube portion 12 and a resin shaft portion 13 having a structure insert-molded into the resin tube portion 12. In this example, the resin portions 14 constituting the shaft portion 13 are in contact with both end faces of the resin tube portion 12, but the resin tube portion 12 extends to the surface end portion when the object to be transported mainly contacts. It may be. Since the resin portions 14 constituting the shaft portion 13 are in contact with both end faces of the resin tube portion 12, the resin portion 14 holds the tube portion 12 by shrinkage of the shaft portion during insert molding. It is a preferable embodiment.
 このような搬送用ローラー11とすることで、樹脂製のチューブ部を、外表面側に用いることができ、インサート成形時の軸部の収縮の影響によるチューブ部の形状変化を少なくすることができるため、安価で、形状精度の高い搬送用ローラーの製造方法と搬送用ローラーを実現できる。
 さらに、好ましい態様として被搬送物が主に接するチューブ部と回転を支える軸部とで異なる構成材料を用いることで、搬送用ローラー11を安価、トナーに対する耐付着性の優れた搬送用ローラーとすることができる。
By using such a transport roller 11, the resin tube portion can be used on the outer surface side, and the shape change of the tube portion due to the influence of the contraction of the shaft portion during insert molding can be reduced. Therefore, it is possible to realize a method for manufacturing a transport roller and a transport roller that are inexpensive and have high shape accuracy.
Further, as a preferred embodiment, by using different constituent materials for the tube portion that is mainly in contact with the object to be transported and the shaft portion that supports rotation, the transport roller 11 is made into a transport roller that is inexpensive and has excellent adhesion resistance to toner. be able to.
 図3は、本発明の搬送用ローラー11の外観斜視図の一例である。本発明の搬送用ローラー11は、樹脂部14の外周面に溝形状15を有することが好ましい。このような溝を有することにより、被搬送物を排出時けりだすことが容易となり、安定した搬送を実現する上で好ましい。 FIG. 3 is an example of an external perspective view of the transport roller 11 of the present invention. The transport roller 11 of the present invention preferably has a groove shape 15 on the outer peripheral surface of the resin portion 14. By having such a groove, it becomes easy to eject the object to be transported at the time of discharge, which is preferable in realizing stable transportation.
 《製造方法で用いられる材料》
 [チューブ部]
 本発明の搬送用ローラーは、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えている。樹脂製のチューブ部は、被搬送物と接するため、軸部とは異なる種々の機能を有する樹脂を用いることができる。
 従動ローラーとして機能する場合、弾性体である必要はなく、成形収縮によるチューブ部の真円度の悪化を抑制させるために、チューブ部を構成する樹脂の25℃におけるヤング率が、100MPa以上であること好ましい。
<< Materials used in manufacturing methods >>
[Tube]
The transport roller of the present invention includes a resin tube portion and a resin shaft portion having a structure insert-molded in the tube portion. Since the resin tube portion is in contact with the object to be transported, a resin having various functions different from that of the shaft portion can be used.
When functioning as a driven roller, it does not have to be an elastic body, and the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more in order to suppress deterioration of the roundness of the tube portion due to molding shrinkage. That is preferable.
 (チューブ部に用いられる樹脂)
 チューブ部用いられる樹脂に特に制限はなく、目的に応じて選択することができる。
 具体的には、主に摺動性の観点から用いられてきた、POMの代わりに、軸部とチューブ部を独立させ、チューブ部に、より防汚性の高い樹脂に変えることにより、従来問題になっていた樹脂ローラー上のトナーの付着を軽減することができる。
 従来はこの防止のために、高価で、また加工に手間のかかるフッ素系の樹脂が用いられてきたが、チューブ部に撥水性の樹脂を用いることでトナーの付着を軽減することができるため好ましい。チューブ部の25℃における撥水角は、90°以上であることが好ましい。
(Resin used for tube part)
The resin used for the tube portion is not particularly limited and can be selected according to the purpose.
Specifically, instead of POM, which has been used mainly from the viewpoint of slidability, the shaft part and the tube part are made independent, and the tube part is changed to a resin having higher antifouling property, which is a conventional problem. It is possible to reduce the adhesion of toner on the resin roller that has become.
Conventionally, a fluorine-based resin, which is expensive and takes time to process, has been used to prevent this, but it is preferable to use a water-repellent resin for the tube portion because the adhesion of toner can be reduced. .. The water repellency angle of the tube portion at 25 ° C. is preferably 90 ° or more.
 なお、撥水角の測定は、マイクロシリンジにより微小な水滴をチューブ部の表面に滴下し、一方側より光を当てて反対側に設けた対物レンズを通して、チューブ部に対する水滴の接触角を測定することにより行うことができる。具体的には、画像処理式接触角計(協和界面科学株式会社製CA-X150型)を使用して、その接触角を測定して得ることができる。 The water repellency angle is measured by dropping minute water droplets on the surface of the tube portion with a microsyringe, shining light from one side and passing the objective lens provided on the other side to measure the contact angle of the water droplets with respect to the tube portion. It can be done by. Specifically, it can be obtained by measuring the contact angle using an image processing type contact angle meter (CA-X150 type manufactured by Kyowa Interface Science Co., Ltd.).
 チューブ部は、撥水角が大きくトナー付着防止の効果が得られることから、ポリオレフィン系樹脂を含有することが好ましい。ポリオレフィン系樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、ポリプロピレンポリスチレン共重合体、ポロプロピレンアクリル酸エステル共重合体等が挙げられる。このうち、前記チューブ部が、ポリプロピレンを含有していることが好ましい。
 なお、ポリオレフィン系樹脂は、単独で用いられても2種以上が併用されてもよい。
The tube portion preferably contains a polyolefin-based resin because it has a large water-repellent angle and an effect of preventing toner adhesion can be obtained. Examples of the polyolefin-based resin include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polypropylene-polystyrene copolymer, and polypropylene acrylic acid ester copolymer. Of these, it is preferable that the tube portion contains polypropylene.
The polyolefin-based resin may be used alone or in combination of two or more.
 [軸部]
 本発明の搬送用ローラーに用いられる樹脂製の軸部は、チューブ部にインサート成形された構造を有するものである。
[Shaft]
The resin shaft portion used in the transport roller of the present invention has a structure in which a tube portion is insert-molded.
 (軸部に用いられる樹脂)
 樹脂部14を有する、図2の構成の場合には、インサート成形の冷却時時、軸部の成形用樹脂の収縮力により、前記チューブ部を樹脂部14で保持させることが好ましいため、軸部に用いられる樹脂は、インサート成形後、収縮する樹脂であることが好ましい。
(Resin used for shaft)
In the case of the configuration shown in FIG. 2 having the resin portion 14, it is preferable that the tube portion is held by the resin portion 14 by the contraction force of the molding resin of the shaft portion when the insert molding is cooled. The resin used in is preferably a resin that shrinks after insert molding.
 熱収縮する樹脂としては、例えば、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリエステル樹脂などを挙げることができる。 Examples of the heat-shrinkable resin include polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyvinylidene chloride resin, polystyrene resin, polyester resin and the like.
 さらに、軸部は、搬送用ローラーを支持し、被搬送物の搬送に際し、耐摩耗性が要求される。
 表Iに、各種樹脂の耐摩耗性試験の結果を示す。試験材料は、表Iに示す、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、ゴム変性ポリスチレン(HIPS)、パーフルオロアルコキシフッ素樹脂(PFA)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ナイロン(PA66)、超高分子量ポリエチレン(PE)及びポリアセタール(POM)で実施した。表Iから、軸部に用いられる樹脂として好ましい耐摩耗性が良好な材料を選定することができる。
Further, the shaft portion supports the transport roller, and wear resistance is required when transporting the object to be transported.
Table I shows the results of wear resistance tests of various resins. The test materials are polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), rubber-modified polystyrene (HIPS), perfluoroalkoxy alkanesyl (PFA), polypropylene (PP), and polyphenylene sulfide (PPS) shown in Table I. , Polyetheretherketone (PEEK), nylon (PA66), ultrahigh molecular weight polyethylene (PE) and polyacetal (POM). From Table I, a material having good wear resistance, which is preferable as the resin used for the shaft portion, can be selected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表Iより、本発明に係る軸部の部材としては、ポリプロピレン(PP)より耐摩耗性が良好な、ポリアセタール(POM)、超高分子量ポリエチレン(PE)、ナイロン(PA66)、ポリフェニレンサルファイド(PPS)、又はポリエーテルエーテルケトン(PEEK)を用いることが好ましい。なかでも、軸部の部材が、ポリアセタール(POM)を含有することが、耐摩耗性とコストの観点から好ましい。 From Table I, the members of the shaft according to the present invention include polyacetal (POM), ultrahigh molecular weight polyethylene (PE), nylon (PA66), and polyphenylene sulfide (PPS), which have better wear resistance than polypropylene (PP). , Or polyetheretherketone (PEEK) is preferably used. Among them, it is preferable that the member of the shaft portion contains polyacetal (POM) from the viewpoint of wear resistance and cost.
 (耐摩耗試験)
 上記の耐摩耗試験は以下のようにして行った。
 図4A及び図4Bは、耐摩耗試験の概要を説明する概略図である。
 図4Aに示すように、円柱形状の各種樹脂材料201に鋼製の線ばね202を点接触させ、排紙時の樹脂ローラー相当の圧力(約140MPa)をかけながら樹脂材料を回転する。一定時間試験後に樹脂の摩耗深さ(図4B参照)を測定し、摩耗体積に変換する。
(Abrasion resistance test)
The above wear resistance test was performed as follows.
4A and 4B are schematic views illustrating an outline of the wear resistance test.
As shown in FIG. 4A, a steel wire spring 202 is brought into point contact with various cylindrical resin materials 201, and the resin material is rotated while applying a pressure (about 140 MPa) equivalent to that of a resin roller at the time of paper ejection. After the test for a certain period of time, the wear depth of the resin (see FIG. 4B) is measured and converted into a wear volume.
 また、軸部は強度向上のために樹脂強化剤を含有することも好ましい。例えば、前記軸部を形成する熱可塑性樹脂中に、ポリベンザゾール繊維、カーボン繊維、アラミド繊維、金属繊維、ガラス繊維、セラミック繊維又はポリパラフェニレンテレフタルアミド繊維などの繊維状フィラーを混合することが好ましい。中でも、当該繊維状のフィラーとしては、カーボン繊維又はガラス繊維のうちの少なくとも一方であることがより好ましい。 It is also preferable that the shaft portion contains a resin strengthening agent in order to improve the strength. For example, a fibrous filler such as polybenzazole fiber, carbon fiber, aramid fiber, metal fiber, glass fiber, ceramic fiber or polyparaphenylene terephthalamide fiber can be mixed in the thermoplastic resin forming the shaft portion. preferable. Above all, the fibrous filler is more preferably at least one of carbon fibers and glass fibers.
 具体的な繊維状のフィラーとしては、例えば、炭素繊維ミルドファイバー(三菱ケミカル株式会社製)、ガラス繊維T-289DE(日本電子硝子社製)、ミルドファイバー(旭グラスファイバー社製)等を挙げることができる。 Specific examples of the fibrous filler include carbon fiber milled fiber (manufactured by Mitsubishi Chemical Co., Ltd.), glass fiber T-289DE (manufactured by JEOL Ltd.), milled fiber (manufactured by Asahi Glass Fiber Co., Ltd.), and the like. Can be done.
 さらに、前記チューブ部及び軸部は、本発明の目的を損なわない範囲内で、樹脂以外の各種の重合体や添加剤を含有してもよい。添加剤の具体例としては、酸化防止剤、耐熱安定剤、耐候安定剤、耐光安定剤、紫外線吸収剤、帯電防止剤、老化防止剤、脂肪酸金属塩、軟化剤、分散剤、核剤、滑剤、難燃剤、顔料、染料、有機充填剤が挙げられる。 Further, the tube portion and the shaft portion may contain various polymers and additives other than the resin as long as the object of the present invention is not impaired. Specific examples of additives include antioxidants, heat-resistant stabilizers, weather-resistant stabilizers, light-resistant stabilizers, UV absorbers, antistatic agents, anti-aging agents, fatty acid metal salts, softeners, dispersants, nucleating agents, and lubricants. , Flame retardants, pigments, dyes, organic fillers.
 [軸部とチューブ部の密着力]
 図5は、軸部とチューブ部の密着力を説明する図である。
 軸部13とチューブ部12を有する本発明の搬送用ローラー(樹脂ローラー)11は、チューブ部12の両端面に前記軸部を構成する樹脂部14が接しており、樹脂部14が、前記インサート成形時の軸部の収縮により前記チューブ部を保持していることが好ましい。
 図中の白矢印が軸部の収縮する方向を示している。つまり、チューブ部の両端面に軸部を構成する樹脂部を配置し、その収縮力でチューブ部を保持することが好ましい。
 この、チューブ部と軸部の密着力N[N:ニュートン]は、下記式(A)で表すことができる。
[Adhesion between shaft and tube]
FIG. 5 is a diagram for explaining the adhesion between the shaft portion and the tube portion.
In the transport roller (resin roller) 11 of the present invention having the shaft portion 13 and the tube portion 12, the resin portions 14 constituting the shaft portion are in contact with both end surfaces of the tube portion 12, and the resin portion 14 is the insert. It is preferable that the tube portion is held by the contraction of the shaft portion during molding.
The white arrow in the figure indicates the direction in which the shaft contracts. That is, it is preferable to arrange the resin portions constituting the shaft portion on both end surfaces of the tube portion and hold the tube portion by the contraction force thereof.
The adhesion force N [N: Newton] between the tube portion and the shaft portion can be expressed by the following formula (A).
  式(A)
   N=μεAE
 式(A)中、μは、チューブ部と軸部を構成する樹脂間の摩擦係数を表す。εは、成形によるチューブ部のひずみ[無次元]を表す。A[mm2]は、チューブ部の両端面が軸部に接する断面積を表す。E[MPa]は、チューブ部のヤング率を表す。
Equation (A)
N = μεAE
In the formula (A), μ represents the coefficient of friction between the resin constituting the tube portion and the shaft portion. ε represents the strain [dimensionless] of the tube portion due to molding. A [mm 2 ] represents the cross-sectional area where both end faces of the tube portion are in contact with the shaft portion. E [MPa] represents Young's modulus of the tube portion.
 図6A及び図6Bは、密着力の測定方法を説明する概略図である。密着力Nは、以下のように測定することができる。樹脂ローラーのチューブ部12にテープ(ポリイミドテープ3M社製 7413D)21を巻き付けて白矢印の方向に引っ張り、軸部13に取り付けたベルト22が滑り始めたときの力の大きさを測定する。測定機器として、引張試験機(島津製作所製オートグラフ)を使用して測定することができる。 6A and 6B are schematic views illustrating a method for measuring the adhesion force. The adhesion force N can be measured as follows. A tape (7413D manufactured by polyimide tape 3M) 21 is wound around the tube portion 12 of the resin roller and pulled in the direction of the white arrow, and the magnitude of the force when the belt 22 attached to the shaft portion 13 starts to slide is measured. As a measuring device, a tensile tester (autograph manufactured by Shimadzu Corporation) can be used for measurement.
 図7は、理論密着力Nと実測密着力Nの関係を示す図の一例である。具体的には、チューブ部と軸部の材料のそれぞれの組み合わせで、後述する実施例2で示した成形条件でインサート成形した図2の構成の樹脂ローラーを評価したものであり、縦軸が実測値、横軸が式(A)で得られた理論値を示している。なお、チューブ部は射出成形したものを用いた。チューブ部は長さ12.6mmのものを用いた。
 なお、図中例えば「PFA 9×10」の略号は、チューブ部として、内径9mm、外形10mmのPFA(パーフルオロアルコキシフッ素樹脂)を用いたことを示す。
 軸部及びチューブ部として、以下に示す樹脂材料を用いた。
FIG. 7 is an example of a diagram showing the relationship between the theoretical adhesion force N and the actually measured adhesion force N. Specifically, the resin rollers having the configuration shown in FIG. 2 which were insert-molded under the molding conditions shown in Example 2 described later with each combination of the material of the tube portion and the shaft portion were evaluated, and the vertical axis is the actual measurement. The value and the horizontal axis show the theoretical value obtained by the formula (A). The tube portion used was injection molded. A tube portion having a length of 12.6 mm was used.
In the figure, for example, the abbreviation of "PFA 9 × 10" indicates that PFA (perfluoroalkoxy fluororesin) having an inner diameter of 9 mm and an outer diameter of 10 mm was used as the tube portion.
The following resin materials were used as the shaft portion and the tube portion.
 軸部
POM   :ポリアセタール(ユピタールF20-03(三菱エンジニアプラスチック株式会社製))
POM無機 :無機質充填ポリアセタール(ユピタールTC3015(三菱エンジニアプラスチック株式会社製))
HDPE  :高密度ポリエチレン(ハイゼックス 2200J(プライムポリマー社製))
 チューブ部
PTFE :ポリテトラフルオロエチレン(株式会社ハギテック製:8×10、型番244-1031-75:9×10、型番244-1031-64)
PFA  :パーフルオロアルコキシフッ素樹脂(株式会社ハギテック製:9×10:型番02-032-11-02)
超高分子量PE:ポリエチレン樹脂(Saxinニューライト、作新工業社製)
 用いた材料の物性値は以下のとおりである。式(2)の説明において述べる線膨張率も併せて記載する。
Shaft POM: Polyacetal (Iupital F20-03 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.))
POM Inorganic: Inorganic-filled polyacetal (Iupital TC3015 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.))
HDPE: High-density polyethylene (HIZEX 2200J (manufactured by Prime Polymer Co., Ltd.))
Tube part PTFE: Polytetrafluoroethylene (manufactured by Hagitech Co., Ltd .: 8 × 10, model number 244-1031-75: 9 × 10, model number 244-1031-64)
PFA: Perfluoroalkoxy alkane resin (manufactured by Hagitech Co., Ltd .: 9 × 10: model number 02-032-11-02)
Ultra High Molecular Weight PE: Polyethylene Resin (Saxin New Light, manufactured by Saxin Industry Co., Ltd.)
The physical property values of the materials used are as follows. The coefficient of linear expansion described in the description of the formula (2) is also described.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、式(A)から理論密着力を算出するに中って、ヤング率は、一般的な物性値を用いた。断面積Aは、チューブ部のチューブの外径と肉厚から算出した。εは成形前後のチューブの軸方向の長さを測定して、(チューブ長変化)/(チューブ長)で算出した。摩擦係数はチューブ、成形樹脂と同材質の平板を準備し、平板同士を重ねてその上に重りを乗せ、全体を傾けて傾け角度3°/秒未満の条件で、平板間で滑り出す角度θを読み取り、θの正接tanθを静摩擦係数μとした。 In calculating the theoretical adhesion force from the formula (A), the Young's modulus used a general physical property value. The cross-sectional area A was calculated from the outer diameter and wall thickness of the tube of the tube portion. ε was calculated by (tube length change) / (tube length) by measuring the axial length of the tube before and after molding. For the coefficient of friction, prepare flat plates made of the same material as the tube and molding resin, stack the flat plates on top of each other, place a weight on them, tilt the entire plate, and set the angle θ at which the flat plates slide out under the condition that the tilt angle is less than 3 ° / sec. Read and set the tangent tan θ of θ as the coefficient of static friction μ.
 図7から、理論密着力Nは、実測値と良い相関を示すことが分かる。密着力を高めるため、摩擦係数がより大きいチューブと成形樹脂の組み合わせが好ましい。チューブの断面積が大きいほど密着力は大きくなる。このように、密着力は、適宜材料等を選択することにより調整することができる。
 使用用途により、必要な密着力は変わるが、2N程度以上あれば密着力は良好である。
From FIG. 7, it can be seen that the theoretical adhesion force N shows a good correlation with the measured value. In order to increase the adhesion, a combination of a tube having a larger coefficient of friction and a molding resin is preferable. The larger the cross-sectional area of the tube, the greater the adhesion. In this way, the adhesion can be adjusted by appropriately selecting a material or the like.
The required adhesion varies depending on the intended use, but if it is about 2N or more, the adhesion is good.
 [チューブ部の真円度]
 インサート成形時、図8中の白矢印で示した軸部の収縮が大きいとチューブ部12と軸部13の密着力Nは大きくなるが、収縮量が多すぎると、チューブ部12の中央が膨らんでしまい、チューブ部が変形してしまう場合がある。このような成形時のチューブ部のひずみεを少なくするためには、下記一般式(1)を満足することが好ましい。
[Roundness of tube part]
During insert molding, if the shrinkage of the shaft portion indicated by the white arrow in FIG. 8 is large, the adhesion force N between the tube portion 12 and the shaft portion 13 increases, but if the shrinkage amount is too large, the center of the tube portion 12 swells. The tube part may be deformed. In order to reduce the strain ε of the tube portion during such molding, it is preferable to satisfy the following general formula (1).
  式(1)
   ε=P/AE<0.17
 (式(1)中、εは、成形によるチューブ部のひずみ[無次元]を表す。Pは、下記式(2)で表される成形収縮力を表す。Aは、チューブ部の両端面に樹脂部が接する部分の面積を表す。Eは、25℃におけるチューブ部を構成する樹脂のヤング率を表す。)
Equation (1)
ε = P / AE <0.17
(In the formula (1), ε represents the strain [dimensionless] of the tube portion due to molding. P represents the molding shrinkage force represented by the following formula (2). A is on both end faces of the tube portion. Represents the area of the portion in contact with the resin portion. E represents the Young ratio of the resin constituting the tube portion at 25 ° C.)
  式(2)
   P=軸部を構成する樹脂の25℃におけるヤング率×軸部を構成する樹脂の断面積×(軸部成形収縮率-チューブ部収縮率)
 AEはチューブの軸剛性を表している。
 軸部を構成する樹脂の断面積[mm2]は、具体的には前述した図5で示されるチューブ部12の内径で囲まれる部分の断面積である。
 軸部成形収縮率は金型寸法と成形品の寸法から収縮率を算出する。
 また、チューブ部収縮率はチューブ部の線膨張率(25℃)と樹脂冷却工程時の金型温度と室温の差の積で算出する。具体的には、下記式から求めることができる。
 チューブ部収縮率=チューブ部の線膨張率(25℃)×(金型温度-室温(25℃))
Equation (2)
P = Young's modulus of the resin constituting the shaft at 25 ° C. × Cross-sectional area of the resin constituting the shaft × (Shaft molding shrinkage-Tube shrinkage)
AE represents the axial rigidity of the tube.
The cross-sectional area [mm 2 ] of the resin constituting the shaft portion is specifically the cross-sectional area of the portion surrounded by the inner diameter of the tube portion 12 shown in FIG. 5 described above.
The shrinkage of the shaft is calculated from the mold size and the size of the molded product.
The coefficient of contraction of the tube portion is calculated by multiplying the linear expansion coefficient of the tube portion (25 ° C.) by the difference between the mold temperature and the room temperature during the resin cooling step. Specifically, it can be calculated from the following formula.
Tube part shrinkage rate = tube part linear expansion rate (25 ° C) x (mold temperature-room temperature (25 ° C))
 εは真円度の尺度とすることができる。本発明において「真円度」とは、幾何学的に正しい円からの狂いの大きさ、すなわち一定断面円の各直径の偏りをいう。真円度の値が小さいと幾何学的に正しい円からの狂いが小さく好ましい。
 本発明において真円度の測定は、図9Bに示したように市販の真円度測定器で互いに45°をなすチューブ部の外表面間の3方向の直径を測定し、3方向の直径の、最大値から最小値の差の値を真円度とした。測定位置15は、図9Aに示したようにチューブ部12の端部と中央部の3点とし、3点の平均値を真円度として算出することができる。
ε can be a measure of roundness. In the present invention, the "roundness" refers to the magnitude of deviation from a geometrically correct circle, that is, the deviation of each diameter of a circle having a constant cross section. It is preferable that the value of roundness is small because the deviation from the geometrically correct circle is small.
In the present invention, the roundness is measured by measuring the diameters in three directions between the outer surfaces of the tube portions forming 45 ° with each other with a commercially available roundness measuring device as shown in FIG. 9B, and measuring the diameters in the three directions. , The value of the difference between the maximum value and the minimum value was defined as the roundness. As shown in FIG. 9A, the measurement positions 15 are three points at the end and the center of the tube portion 12, and the average value of the three points can be calculated as the roundness.
 本発明によれば、真円度の値が低い、形状精度の高い搬送用ローラーの製造方法と搬送用ローラーを提供することができる。式(1)で表されるεは0.17より小さくすることが好ましい。 According to the present invention, it is possible to provide a method for manufacturing a transport roller having a low roundness value and high shape accuracy and a transport roller. It is preferable that ε represented by the formula (1) is smaller than 0.17.
 《搬送用ローラーの製造方法の詳細》
 以下さらに搬送用ローラーの製造方法の詳細について述べる。
 図10は、インサート成形された搬送用ローラー11(樹脂ローラー)の一例の断面図である。
<< Details of manufacturing method of transport roller >>
The details of the manufacturing method of the transport roller will be further described below.
FIG. 10 is a cross-sectional view of an example of the insert-molded transport roller 11 (resin roller).
 図11A~13Fは、本発明に用いるインサート成形を説明する図である。
図11Aに示したように、公知のインサート用治具(図示せず)を用い、別途成形したチューブ部12をセットし、開閉型の金型31、32及び取付用治具(図示せず)で位置決めして、所定の位置にセットする。
11A to 13F are views for explaining insert molding used in the present invention.
As shown in FIG. 11A, using a known insert jig (not shown), a separately molded tube portion 12 is set, and the opening / closing dies 31 and 32 and the mounting jig (not shown) are set. Position with and set in place.
 次に図11Bに示したようチューブ部12を型開き中に金型31に挿入し、図12Cに示したように、型締めした後、チューブ部12が装着された金型に溶融された樹脂を、軸部を形成する空間に、ランナー33から射出し(図12C及び12D)、軸部を形成する(図13E)。 Next, as shown in FIG. 11B, the tube portion 12 was inserted into the mold 31 during mold opening, and as shown in FIG. 12C, after the mold was clamped, the resin melted in the mold to which the tube portion 12 was mounted. Is injected from the runner 33 into the space forming the shaft portion (FIGS. 12C and 12D) to form the shaft portion (FIG. 13E).
 その後、十分に冷却した後、図13Fにおいて、金型31及び32を開き、チューブ部と軸部が一体化した樹脂ローラー11を得る。この際、通常の射出成形と同様にエジェクターピンなどにより突出し取り出すことが好ましい。取り出した後、ゲートカットして成形部をランナーなどから切り離す。 Then, after sufficiently cooling, the molds 31 and 32 are opened in FIG. 13F to obtain a resin roller 11 in which the tube portion and the shaft portion are integrated. At this time, it is preferable to project and take out by an ejector pin or the like as in normal injection molding. After taking it out, the gate is cut to separate the molded part from the runner or the like.
 [用途]
 本発明の搬送用ローラーは、被搬送物を搬送する搬送用ローラーであり、被搬送物としては、いわゆる記録媒体を含み、記録媒体としては、紙、樹脂板、金属、布帛、ゴムなどの種々の媒体が用いられ得る。また、紙としては、普通紙、板紙、塗工紙、レジンコート紙、合成紙などを挙げることができる。
[Use]
The transport roller of the present invention is a transport roller that transports an object to be transported, and the object to be transported includes a so-called recording medium, and the recording medium includes various types such as paper, resin plate, metal, cloth, and rubber. Medium can be used. Examples of the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.
 このような記録媒体を搬送する搬送用ローラーを具備した装置としては、インクジェットプリンター、レーザービームプリンター、電子写真画像形成装置、FAX装置、及びスキャナーなどを挙げることができる。これらの中では、電子写真画像形成装置に適用することが好ましい。 Examples of the device provided with the transport roller for transporting such a recording medium include an inkjet printer, a laser beam printer, an electrophotographic image forming device, a fax device, and a scanner. Among these, it is preferable to apply it to an electrophotographic image forming apparatus.
 具体的には、例えば、帯電・露光手段により、感光体上に静電潜像を形成し、現像手段によりトナーを含む現像剤を用いて該静電潜像を現像してトナー像を形成し、転写手段により該トナー像を紙、シート等の記録媒体上に転写し、定着手段により、熱、溶剤、圧力等を利用して該トナー像を記録媒体上に定着し、永久画像を得ることのできる電子写真画像形成装置に具備することが好ましい。
 これらの装置に、記録媒体を搬送するローラーとして使用することが好ましい。具体的には、図1で示したような搬送ユニットの少なくとも一部として用いることができる。本発明の搬送用ローラーは、樹脂ローラー(ころ)に適用されることが好ましい。
Specifically, for example, an electrostatic latent image is formed on the photoconductor by a charging / exposing means, and the electrostatic latent image is developed by a developing agent containing a toner to form a toner image. , The toner image is transferred onto a recording medium such as paper or a sheet by a transfer means, and the toner image is fixed on a recording medium by using heat, solvent, pressure or the like by a fixing means to obtain a permanent image. It is preferable to provide it in an electrophotographic image forming apparatus capable of forming the same.
It is preferable to use these devices as rollers for conveying the recording medium. Specifically, it can be used as at least a part of the transport unit as shown in FIG. The transport roller of the present invention is preferably applied to a resin roller (roller).
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, the indication of "parts" or "%" is used, but unless otherwise specified, it indicates "parts by mass" or "% by mass".
 〔実施例1〕
 (トナー付着試験)
 各種樹脂シートの上にプロセスブルー(シアンとマゼンタで作製)のベタ印刷した用紙をセットして、温度を表IIIのように変えて、及び圧力(0.5MPa)をかけて付着試験
を行った。印刷紙のトナー成分が樹脂シートに転写するかを評価して、目視観察し、以下のランク付けを行った。結果を表IIIに示す。表中「変形」は温度によって、樹脂シートが変形したことを示す。
[Example 1]
(Toner adhesion test)
Process blue (made of cyan and magenta) solid-printed paper was set on various resin sheets, the temperature was changed as shown in Table III, and pressure (0.5 MPa) was applied to perform an adhesion test. .. It was evaluated whether the toner component of the printing paper was transferred to the resin sheet, visually observed, and ranked as follows. The results are shown in Table III. "Deformation" in the table indicates that the resin sheet was deformed by the temperature.
 なお樹脂シートは以下の材料を用いた。超高分子量PEシートはメーカー品、それ以外は樹脂ペレット購入で射出成形にてシート形成して用意した。
 PE:ポリエチレン樹脂(HJ580N、日本ポリエチレン社製)
 超高分子量PE:ポリエチレン樹脂(ニューライトシートNL-W、作新工業社製)
 PP:ポリプロピレン樹脂(BC3AD、日本ポリプロピレン社製)
 PC:ポリカーボネート樹脂(H3000R、三菱エンジニアリングプラスチックス社製)
 POM:ポリアセタール(F20-03、三菱エンジニアリングプラスチックス社製)
The following materials were used for the resin sheet. The ultra-high molecular weight PE sheet was prepared by the manufacturer, and the other sheets were prepared by injection molding by purchasing resin pellets.
PE: Polyethylene resin (HJ580N, manufactured by Japan Polyethylene Corporation)
Ultra high molecular weight PE: Polyethylene resin (New Light Sheet NL-W, manufactured by Saxin Industry Co., Ltd.)
PP: Polypropylene resin (BC3AD, manufactured by Nippon Polypropylene)
PC: Polycarbonate resin (H3000R, manufactured by Mitsubishi Engineering Plastics)
POM: Polyacetal (F20-03, manufactured by Mitsubishi Engineering Plastics)
 〇:付着が認められない
 △:若干付着が認められる
 ×:付着多い
〇: No adhesion is observed △: Slight adhesion is observed ×: High adhesion
 (撥水角の測定)
 前述した方法で25℃の環境下、それぞれの樹脂シートを測定した。
(Measurement of water repellency angle)
Each resin sheet was measured in an environment of 25 ° C. by the method described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表IIIから、撥水角が90°以上であれば、トナーの付着が認められない。POMを使った場合は、PCよりトナー付着量は多かった。 From Table III, if the water repellency angle is 90 ° or more, no toner adhesion is observed. When POM was used, the amount of toner adhered was larger than that of PC.
 〔実施例2〕
 前述した金型を用いた製造方法により、樹脂ローラーを製造した。
 [樹脂ローラー1の作製]
 (チューブ部の作製)
 あらかじめ射出成形によって、PEからなる直径10.0mm、長さ12.6mm、チューブの厚さ1.0mmのチューブ部を作製した。
[Example 2]
A resin roller was manufactured by the manufacturing method using the mold described above.
[Manufacturing of resin roller 1]
(Making the tube part)
A tube portion made of PE having a diameter of 10.0 mm, a length of 12.6 mm, and a tube thickness of 1.0 mm was prepared in advance by injection molding.
 (軸部の作製)
 以下の条件で、前述した方法によりインサート成形することにより本発明の樹脂ローラー1を作製した。
(Making the shaft)
The resin roller 1 of the present invention was produced by insert molding by the method described above under the following conditions.
 (成形条件)
 軸部部樹脂:POM
 樹脂温度:210℃
 金型温度:70℃
 保圧条件:80MPa-3s
(Molding condition)
Shaft resin: POM
Resin temperature: 210 ° C
Mold temperature: 70 ° C
Holding pressure condition: 80MPa-3s
 [樹脂ローラー2の作製]
 樹脂ローラー1の作製において、直径10mm内径8mmのチューブをチューブカッターにて長さ12.6mmに切り出し表IIIで示した素材超高分子量PEを用いて同形状のチューブ部を作製したのち、樹脂ローラー1の作製と同様にして、軸部にPOMをインサート成形して本発明の樹脂ローラー2を作製した。
[Manufacturing of resin roller 2]
In the production of the resin roller 1, a tube having a diameter of 10 mm and an inner diameter of 8 mm is cut out to a length of 12.6 mm with a tube cutter, and a tube portion having the same shape is produced using the material ultra-high molecular weight PE shown in Table III, and then the resin roller is produced. The resin roller 2 of the present invention was produced by insert molding a POM on the shaft portion in the same manner as in the production of 1.
 [樹脂ローラー3~4の作製]
 樹脂ローラー3~4の作製において、チューブ部の樹脂を表IIIで示した素材PP及びPCをそれぞれ用いて樹脂ローラーと同形状のチューブ部を作製したのち、樹脂ローラー1の作製と同様にして、軸部にPOMをインサート成形して本発明の樹脂ローラー3及び4を作製した。
[Manufacturing of resin rollers 3 to 4]
In the production of the resin rollers 3 to 4, the resin of the tube portion is produced by using the materials PP and PC shown in Table III, respectively, and then the tube portion having the same shape as the resin roller is produced, and then in the same manner as in the production of the resin roller 1. The resin rollers 3 and 4 of the present invention were produced by insert molding POM on the shaft portion.
 [樹脂ローラー5の作製]
 チューブ部と軸部を別部品とせずに、樹脂ローラー1と同形状のPOMからなる樹脂ローラー5を、射出成形で作製した。具体的には、チューブ部を金型に装填せずに、軸部に用いる溶融したPOMを金型に挿入して、比較の樹脂ローラー5を作製した。
 なおチューブ部、及び軸部は以下の材料を用いた。超高分子量PEチューブはメーカー品、それ以外は樹脂ペレット購入で射出成形にて形成して用意した。
 PE:ポリエチレン樹脂(HJ580N、日本ポリエチレン社製)
 超高分子量PE:ポリエチレン樹脂(ニューライトチューブ、作新工業社製)
 PP:ポリプロピレン樹脂(BC3AD、日本ポリプロピレン社製)
 PC:ポリカーボネート樹脂(H3000R、三菱エンジニアリングプラスチックス社製)
 POM:ポリアセタール(F20-03、三菱エンジニアリングプラスチックス社製)
[Preparation of resin roller 5]
A resin roller 5 made of POM having the same shape as the resin roller 1 was manufactured by injection molding without separating the tube portion and the shaft portion. Specifically, the molten POM used for the shaft portion was inserted into the mold without loading the tube portion into the mold to produce a comparative resin roller 5.
The following materials were used for the tube part and the shaft part. The ultra-high molecular weight PE tube was prepared by the manufacturer, and the others were formed by injection molding by purchasing resin pellets.
PE: Polyethylene resin (HJ580N, manufactured by Japan Polyethylene Corporation)
Ultra high molecular weight PE: Polyethylene resin (New Light Tube, manufactured by Saxin Industry Co., Ltd.)
PP: Polypropylene resin (BC3AD, manufactured by Nippon Polypropylene)
PC: Polycarbonate resin (H3000R, manufactured by Mitsubishi Engineering Plastics)
POM: Polyacetal (F20-03, manufactured by Mitsubishi Engineering Plastics)
 [トナー付着性試験]
 電子写真画像形成装置としてbizhub C4050iを用い、排紙ユニットの排紙ローラーの樹脂ローラー(ころ)を取り付け、ベタ画像200枚を、温度20℃の環境下普通用紙を用いて印刷した後の樹脂ローラーに付着したトナーの付着量を観察した。
 実施例1と同様、チューブ部にPOMを有する樹脂ローラー5にはトナーの付着が認められ、チューブ部にPOMを有する樹脂ローラー5にはトナーの付着がわずかに認められた。しかし、本発明の、PE、超高分子量PE又はPPを有する樹脂ローラー1~3にはトナーの付着が認められない結果を得た。
[Toner adhesion test]
Using bizhub C4050i as an electrophotographic image forming apparatus, a resin roller (roller) of a paper ejection roller of a paper ejection unit is attached, and a resin roller after printing 200 solid images using plain paper in an environment of a temperature of 20 ° C. The amount of toner adhering to the paper was observed.
Similar to Example 1, toner adhered to the resin roller 5 having POM in the tube portion was observed, and toner adhered slightly to the resin roller 5 having POM in the tube portion. However, the results obtained that no toner adhered to the resin rollers 1 to 3 having PE, ultra-high molecular weight PE or PP of the present invention.
 〔実施例3〕
 (樹脂ローラーの作製)
 実施例2の成形条件を用い、密着力の測定で用いた、軸部とチューブ部の前述した材料のそれぞれの組み合わせでインサート成形した樹脂ローラーを作製した。
 すなわち以下の、軸部とチューブ部の組み合わせで、図14に示した樹脂ローラーを作製した。
[Example 3]
(Making resin rollers)
Using the molding conditions of Example 2, a resin roller that was insert-molded with each combination of the above-mentioned materials of the shaft portion and the tube portion used in the measurement of the adhesion force was produced.
That is, the resin roller shown in FIG. 14 was produced by the following combination of the shaft portion and the tube portion.
 軸部
POM   :ポリアセタール(ユピタールF20-03(三菱エンジニアプラスチック株式会社製))
POM無機 :無機質充填ポリアセタール(ユピタールTC3015(三菱エンジニアプラスチック株式会社製))
HDPE  :高密度ポリエチレン(ハイゼックス 2200J(プライムポリマー社製))
Shaft POM: Polyacetal (Iupital F20-03 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.))
POM Inorganic: Inorganic-filled polyacetal (Iupital TC3015 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.))
HDPE: High-density polyethylene (HIZEX 2200J (manufactured by Prime Polymer Co., Ltd.))
 チューブ部
PTFE :ポリテトラフルオロエチレン(株式会社ハギテック社製:8×10、型番244-1031-75:9×10、型番244-1031-64)
PFA  :パーフルオロアルコキシフッ素樹脂(株式会社ハギテック製:9×10:型番02-032-11-02)
超高分子量PE:ポリエチレン樹脂(Saxinニューライト、作新工業社製)
Tube part PTFE: Polytetrafluoroethylene (manufactured by Hagitec Co., Ltd .: 8 × 10, model number 244-1031-75: 9 × 10, model number 244-1031-64)
PFA: Perfluoroalkoxy alkane resin (manufactured by Hagitech Co., Ltd .: 9 × 10: model number 02-032-11-02)
Ultra High Molecular Weight PE: Polyethylene Resin (Saxin New Light, manufactured by Saxin Industry Co., Ltd.)
 (樹脂ローラーの精度の評価)
 作製した各樹脂ローラーの形状精度を、真円度及び式(1)で表される成形によるチューブ部のひずみεで評価した。真円度は前述した方法で測定した。
 結果を図14に示す。図14は、εと真円度の関係を示している。縦軸は実際に測定した真円度[mm]で、横軸は、式(1)から算出したεの値である。なお、図中例えば「PFA 9×10」の略号は、図7同様、チューブ部として、内径9mm、外形10mmのPFA(パーフルオロアルコキシフッ素樹脂)を用いたことを示す。
 図14から、成形によるチューブ部のひずみεは、実際の真円度とよく相関することが分かる。つまり、成形による変形を抑制するために必要な材料物性とその範囲を明確にすることができる。
(Evaluation of resin roller accuracy)
The shape accuracy of each of the produced resin rollers was evaluated by the roundness and the strain ε of the tube portion formed by molding represented by the formula (1). The roundness was measured by the method described above.
The results are shown in FIG. FIG. 14 shows the relationship between ε and roundness. The vertical axis is the actually measured roundness [mm], and the horizontal axis is the value of ε calculated from the equation (1). In the figure, for example, the abbreviation of "PFA 9 × 10" indicates that PFA (perfluoroalkoxy fluororesin) having an inner diameter of 9 mm and an outer diameter of 10 mm was used as the tube portion as in FIG. 7.
From FIG. 14, it can be seen that the strain ε of the tube portion due to molding correlates well with the actual roundness. That is, it is possible to clarify the material physical characteristics and the range thereof necessary for suppressing the deformation due to molding.
 別途、実施例2で作製した、POMを用い一体成型した、比較の樹脂ローラー5の真円度を測定したところ0.23mmであり、本発明のインサート成形された構造を有する樹脂ローラーに比べて、真円度の値が大きく形状精度が劣っていた。 Separately, the roundness of the comparative resin roller 5 integrally molded using POM produced in Example 2 was measured and found to be 0.23 mm, as compared with the resin roller having the insert-molded structure of the present invention. , The value of roundness was large and the shape accuracy was inferior.
 以上の結果から、安価で、形状精度の高い搬送用ローラーを実現できることが分かった。また、軸部を構成する材料と搬送用ローラーの表面を構成する材料とを、別材料とすることで、耐付着性の優れた高機能の搬送用ローラーにできることが分かった。 From the above results, it was found that a transport roller that is inexpensive and has high shape accuracy can be realized. Further, it was found that by using different materials for the material constituting the shaft portion and the material constituting the surface of the transport roller, a highly functional transport roller having excellent adhesion resistance can be obtained.
 本発明の搬送用ローラーは、被搬送物を搬送する搬送用ローラーであり、安価で、形状精度の高い特徴を有する。記録媒体としては、紙、樹脂板、金属、布帛、ゴムなどの種々の媒体が用いられ得る。また、紙としては、普通紙、板紙、塗工紙、レジンコート紙、合成紙などを挙げることができる。 The transport roller of the present invention is a transport roller that transports an object to be transported, and has features of low cost and high shape accuracy. As the recording medium, various media such as paper, resin plate, metal, cloth, and rubber can be used. Examples of the paper include plain paper, paperboard, coated paper, resin-coated paper, and synthetic paper.
 1 搬送ユニットに用いられるローラー
 2 搬送ローラー
 3 シャフト
 4 弾性体部
 5 ギア部
 6 樹脂ローラー
 7 溝形状
 11 搬送用ローラー(樹脂ローラー)
 12 チューブ部
 13 軸部
 14 樹脂部
 15 溝形状
 31、32 金型
 33 ランナー
 201 樹脂材料
 202 線ばね
1 Roller used for the transport unit 2 Transport roller 3 Shaft 4 Elastic body part 5 Gear part 6 Resin roller 7 Groove shape 11 Transport roller (resin roller)
12 Tube part 13 Shaft part 14 Resin part 15 Groove shape 31, 32 Mold 33 Runner 201 Resin material 202 Wire spring

Claims (14)

  1.  樹脂製の軸部と樹脂製のチューブ部を有する搬送用ローラーの製造方法であって、
    前記チューブ部を金型内にセットし、さらに溶融した成型用樹脂を前記チューブ部内に充填して、前記軸部を成形する工程を有することを特徴とする搬送用ローラーの製造方法。
    A method for manufacturing a transport roller having a resin shaft portion and a resin tube portion.
    A method for manufacturing a transport roller, which comprises a step of setting the tube portion in a mold, further filling the tube portion with a molten molding resin, and molding the shaft portion.
  2.  前記チューブ部の両端面に前記溶融した成形用樹脂を充填させた後に冷却することにより、冷却時の前記成形用樹脂の収縮力により、前記チューブ部と前記軸部とを保持させることを特徴とする請求項1に記載の搬送用ローラーの製造方法。 The tube portion and the shaft portion are held by the shrinkage force of the molding resin at the time of cooling by filling both end surfaces of the tube portion with the molten molding resin and then cooling the tube portion. The method for manufacturing a transport roller according to claim 1.
  3.  前記チューブ部を構成する樹脂の25℃におけるヤング率を、100MPa以上にすることを特徴とする請求項1又は請求項2に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to claim 1 or 2, wherein the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more.
  4.  前記チューブ部の両端面を、前記軸部を構成する樹脂部に接するようにすることを特徴とする請求項1から請求項3までのいずれか一項に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to any one of claims 1 to 3, wherein both end faces of the tube portion are in contact with the resin portion constituting the shaft portion.
  5.  前記樹脂部の外周面に、溝形状を有するようにすることを特徴とする請求項4に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to claim 4, wherein the outer peripheral surface of the resin portion has a groove shape.
  6.  成形収縮力P、前期チューブ部の両端面に前記樹脂部が接する部分の面積A及び前記チューブ部を構成する樹脂のヤング率Eの制御により、下記式(1)を満足させることを特徴とする請求項4又は請求項5に記載の搬送用ローラーの製造方法。
      式(1)
       ε=P/AE<0.17
     (式(1)中、εは、成形によるチューブ部のひずみを表す。Pは、下記式(2)で表される成形収縮力を表す。Aは、チューブ部の両端面に樹脂部が接する部分の面積を表す。Eは、25℃におけるチューブ部を構成する樹脂のヤング率を表す。)
      式(2)
       P=軸部を構成する樹脂の25℃におけるヤング率×軸部を構成する樹脂の断面積×(軸部成形収縮率-チューブ部収縮率)
    The following formula (1) is satisfied by controlling the molding shrinkage force P, the area A of the portion where the resin portion contacts both end surfaces of the tube portion in the previous period, and the Young's modulus E of the resin constituting the tube portion. The method for manufacturing a transport roller according to claim 4 or 5.
    Equation (1)
    ε = P / AE <0.17
    (In the formula (1), ε represents the strain of the tube portion due to molding. P represents the molding shrinkage force represented by the following formula (2). A represents the resin portion in contact with both end surfaces of the tube portion. Represents the area of the portion. E represents the Young's modulus of the resin constituting the tube portion at 25 ° C.)
    Equation (2)
    P = Young's modulus of the resin constituting the shaft at 25 ° C. × Cross-sectional area of the resin constituting the shaft × (Shaft molding shrinkage-Tube shrinkage)
  7.  前記チューブ部の25℃における撥水角を、90°以上にすることを特徴とする請求項1から請求項6までのいずれか一項に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to any one of claims 1 to 6, wherein the water repellency angle of the tube portion at 25 ° C. is 90 ° or more.
  8.  前記チューブ部に、構成材料としてポリオレフィン系樹脂を用いることを特徴とする請求項1から請求項7までのいずれか一項に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to any one of claims 1 to 7, wherein a polyolefin-based resin is used as a constituent material for the tube portion.
  9.  前記チューブ部に、構成材料としてポリプロピレンを用い、前記軸部にポリアセタールを用いることを特徴とする請求項1から請求項8までのいずれか一項に記載の搬送用ローラーの製造方法。 The method for manufacturing a transport roller according to any one of claims 1 to 8, wherein polypropylene is used as a constituent material for the tube portion and polyacetal is used for the shaft portion.
  10.  被搬送物を搬送する搬送用ローラーであって、
    前記搬送用ローラーが、樹脂製のチューブ部と前記チューブ部にインサート成形された構造を有する樹脂製の軸部を備えていることを特徴とする搬送用ローラー。
    A transport roller that transports the object to be transported.
    A transport roller, characterized in that the transport roller includes a resin tube portion and a resin shaft portion having a structure in which the tube portion is insert-molded.
  11.  前記チューブ部を構成する樹脂の25℃におけるヤング率が、100MPa以上であることを特徴とする請求項10に記載の搬送用ローラー。 The transport roller according to claim 10, wherein the Young's modulus of the resin constituting the tube portion at 25 ° C. is 100 MPa or more.
  12.  前記チューブ部の両端面に前記軸部を構成する樹脂部が接していることを特徴とする請求項10又は請求項11に記載の搬送用ローラー。 The transport roller according to claim 10 or 11, wherein the resin portions constituting the shaft portion are in contact with both end surfaces of the tube portion.
  13.  下記式(1)を満足することを特徴とする請求項12に記載の搬送用ローラー。
      式(1)
       ε=P/AE<0.17
     (式(1)中、εは、成形によるチューブ部のひずみを表す。Pは、下記式(2)で表される成形収縮力を表す。Aは、チューブ部の両端面に樹脂部が接する部分の面積を表す。Eは、25℃におけるチューブ部を構成する樹脂のヤング率を表す。)
      式(2)
       P=軸部を構成する樹脂の25℃におけるヤング率×軸部を構成する樹脂の断面積×(軸部成形収縮率-チューブ部収縮率)
    The transport roller according to claim 12, wherein the following formula (1) is satisfied.
    Equation (1)
    ε = P / AE <0.17
    (In the formula (1), ε represents the strain of the tube portion due to molding. P represents the molding shrinkage force represented by the following formula (2). A represents the resin portion in contact with both end surfaces of the tube portion. Represents the area of the portion. E represents the Young's modulus of the resin constituting the tube portion at 25 ° C.)
    Equation (2)
    P = Young's modulus of the resin constituting the shaft at 25 ° C. × Cross-sectional area of the resin constituting the shaft × (Shaft molding shrinkage-Tube shrinkage)
  14.  請求項10から請求項13までのいずれか一項に記載の搬送用ローラーを具備することを特徴とする電子写真画像形成装置。 An electrophotographic image forming apparatus comprising the transport roller according to any one of claims 10 to 13.
PCT/JP2020/030046 2019-08-09 2020-08-05 Method for manufacturing conveyance roller, conveyance roller, and electrophotography image forming apparatus WO2021029300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539236A JPWO2021029300A1 (en) 2019-08-09 2020-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146991 2019-08-09
JP2019-146991 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029300A1 true WO2021029300A1 (en) 2021-02-18

Family

ID=74570374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030046 WO2021029300A1 (en) 2019-08-09 2020-08-05 Method for manufacturing conveyance roller, conveyance roller, and electrophotography image forming apparatus

Country Status (2)

Country Link
JP (1) JPWO2021029300A1 (en)
WO (1) WO2021029300A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091136A (en) * 2001-07-13 2003-03-28 Bridgestone Corp Semiconductive roller and electrophotographic device
JP2003160254A (en) * 2001-11-28 2003-06-03 Nippo Ltd Recording paper conveying roller and its manufacturing method
JP2003260723A (en) * 2002-03-08 2003-09-16 Konica Corp Mold and method for manufacturing rubber-covered roller, and image forming device
JP2012236402A (en) * 2011-04-26 2012-12-06 Shin Etsu Polymer Co Ltd Forming mold and method for manufacturing roller
JP2019051730A (en) * 2019-01-15 2019-04-04 キヤノン株式会社 Method of manufacturing roller member, roller member mold, roller shaft, and roller member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003091136A (en) * 2001-07-13 2003-03-28 Bridgestone Corp Semiconductive roller and electrophotographic device
JP2003160254A (en) * 2001-11-28 2003-06-03 Nippo Ltd Recording paper conveying roller and its manufacturing method
JP2003260723A (en) * 2002-03-08 2003-09-16 Konica Corp Mold and method for manufacturing rubber-covered roller, and image forming device
JP2012236402A (en) * 2011-04-26 2012-12-06 Shin Etsu Polymer Co Ltd Forming mold and method for manufacturing roller
JP2019051730A (en) * 2019-01-15 2019-04-04 キヤノン株式会社 Method of manufacturing roller member, roller member mold, roller shaft, and roller member

Also Published As

Publication number Publication date
JPWO2021029300A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US8050604B2 (en) Belt member and image forming apparatus using the belt member
US20060078353A1 (en) Charging device, process unit, image forming apparatus, and method for producing rotating member
US10031454B2 (en) Fixing belt, fixing device, image forming apparatus and image formation method
US5744238A (en) Dimensionally stable sheet handling shaft assembly and method of making same
US20090202281A1 (en) Image forming apparatus
KR100506437B1 (en) Electrophotographic endless belt, process cartridge and electrophotographic apparatus
US7700255B2 (en) Intermediate transfer material, image forming method and image forming apparatus
WO2021029300A1 (en) Method for manufacturing conveyance roller, conveyance roller, and electrophotography image forming apparatus
WO2001028897A1 (en) Belt and image forming device with the belt
US10365575B2 (en) Charging member, process cartridge, and image forming apparatus
JP2007179013A (en) Endless belt for image forming apparatus and image forming apparatus with same
WO2013094167A1 (en) Developing device and process cartridge
US8290417B2 (en) Belt device and image forming apparatus
US10139760B2 (en) Fixing belt, fixing device, and image forming apparatus
JP5635278B2 (en) Fixing apparatus and image forming apparatus
CN111856909B (en) Electrophotographic belt and electrophotographic image forming apparatus
JP2008238552A (en) Manufacturing method of intermediate transfer belt for electronic photography
US10429785B2 (en) Fixing belt having high separability, fixing device, and image forming apparatus
WO2021029281A1 (en) Conveyance roller and method for manufacturing same
US9417564B2 (en) Image forming apparatus having rollers, belt and a tension applying unit
US20150004416A1 (en) Belt assembly, image-forming apparatus, and method for manufacturing the belt assembly
US10289045B2 (en) Fixing belt and fixing device and image forming apparatus using the same
US9811032B2 (en) Fixing belt, fixing device, and image forming apparatus
JP2792359B2 (en) Seamless belt
JP2015223840A (en) Non-sticking roller production method and non-sticking roller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852403

Country of ref document: EP

Kind code of ref document: A1