WO2021029264A1 - End point detecting device and end point detecting method - Google Patents

End point detecting device and end point detecting method Download PDF

Info

Publication number
WO2021029264A1
WO2021029264A1 PCT/JP2020/029746 JP2020029746W WO2021029264A1 WO 2021029264 A1 WO2021029264 A1 WO 2021029264A1 JP 2020029746 W JP2020029746 W JP 2020029746W WO 2021029264 A1 WO2021029264 A1 WO 2021029264A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
end point
output
point detection
measurement data
Prior art date
Application number
PCT/JP2020/029746
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 尚典
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2021029264A1 publication Critical patent/WO2021029264A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to an end point detection device and an end point detection method.
  • This type of polishing device generally holds a polishing table equipped with a polishing pad for polishing an object to be polished (a substrate such as a wafer) and a wafer to hold the object to be polished and press it against the polishing pad.
  • a polishing table equipped with a polishing pad for polishing an object to be polished (a substrate such as a wafer) and a wafer to hold the object to be polished and press it against the polishing pad.
  • the polishing table and the top ring are each rotationally driven by a drive unit (for example, a motor).
  • the polishing apparatus includes a nozzle for supplying a polishing liquid onto the polishing pad. While supplying the polishing liquid from the nozzle onto the polishing pad, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten its surface.
  • the polishing apparatus In the polishing device, if the object to be polished is not sufficiently polished, the insulation between the circuits cannot be obtained and there is a risk of short circuit. Further, in the case of overpolishing, there arises a problem that the resistance value increases due to the decrease in the cross-sectional area of the wiring, or the wiring itself is completely removed and the circuit itself is not formed. Therefore, the polishing apparatus is required to detect the optimum polishing end point.
  • the polishing end point detecting means As one of the polishing end point detecting means, a method of detecting a change in polishing friction force when polishing is transferred to a substance of a different material is known.
  • the semiconductor wafer which is the object to be polished, has a laminated structure made of different materials such as a semiconductor, a conductor, and an insulator, and has a different coefficient of friction between layers of different materials. Therefore, this is a method of detecting a change in polishing friction force caused by the transfer of polishing to a different material layer. According to this method, the end point of polishing is when the polishing reaches a different material layer.
  • the polishing apparatus can also detect the polishing end point by detecting the change in the polishing friction force when the polishing surface of the object to be polished becomes flat from the non-flat state.
  • the polishing frictional force generated when polishing the object to be polished appears as a drive load of a drive unit that rotationally drives the polishing table or top ring.
  • the drive unit is an electric motor
  • the drive load can be measured as a current flowing through the motor. Therefore, the motor current (torque current) can be detected by the current sensor, and the end point of polishing can be detected based on the change in the detected motor current.
  • polishing end point detecting means a method of detecting a change in a physical quantity of a semiconductor wafer by using an optical sensor or an eddy current type sensor incorporated in a polishing table is known.
  • Torque fluctuation detection (motor current fluctuation measurement) is excellent in detecting the end point of the part where the film quality of the sample to be polished changes.
  • the optical method is excellent in detecting the amount of residual film of an insulating film such as an interlayer insulating film (ILD) and STI (Shallow Trench Isolation) and detecting the end point by the detection.
  • the eddy current method is excellent in detecting the end point at the time when, for example, the plated metal film is polished to the lower insulating film which is the end point.
  • Japanese Unexamined Patent Publication No. 2018-58197 proposes to use a plurality of types of end point detection sensors in combination.
  • the end point detection device is A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. It is provided with a determination unit that outputs the data.
  • a trained model for example, a tuned neural network system
  • the end point detecting device is A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And the remaining time from the present time to the end point timing indicating the end of polishing is estimated by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. It is equipped with a determination unit that outputs data.
  • a trained model for example, a tuned neural network system
  • FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment.
  • FIG. 2 is a perspective view schematically showing the first polishing unit.
  • FIG. 3 is a cross-sectional view schematically showing an example of the structure of the top ring.
  • FIG. 4 is a cross-sectional view schematically showing another example of the structure of the top ring.
  • FIG. 5 is a cross-sectional view for explaining a mechanism for rotating and swinging the top ring.
  • FIG. 6 is a cross-sectional view schematically showing the internal structure of the polishing table.
  • FIG. 7 is a schematic view for explaining an optical sensor provided on the polishing table.
  • FIG. 8 is a schematic view for explaining a microwave sensor provided on the polishing table.
  • FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment.
  • FIG. 2 is a perspective view schematically showing the first polishing unit.
  • FIG. 3 is a cross-sectional view schematically showing an example
  • FIG. 9 is a block diagram showing a configuration of an end point detection unit (end point detection device) according to an embodiment.
  • FIG. 10A is a schematic diagram for explaining an example of the configuration of the trained model in one form.
  • FIG. 10B is a schematic diagram for explaining an example of the configuration of the trained model in another form.
  • FIG. 11A is a schematic diagram for explaining a modified example of the configuration of the trained model in one form.
  • FIG. 11B is a schematic diagram for explaining a modified example of the configuration of the trained model in another form.
  • FIG. 12 is an image diagram for explaining the learning content of the trained model.
  • FIG. 13 is a diagram for explaining an example of processing of the determination unit for real-time measurement data during polishing.
  • FIG. 10A is a schematic diagram for explaining an example of the configuration of the trained model in one form.
  • FIG. 10B is a schematic diagram for explaining an example of the configuration of the trained model in another form.
  • FIG. 11A is a schematic diagram for explaining a modified example
  • FIG. 14 is a diagram for explaining an example of processing of the determination unit for real-time measurement data during polishing.
  • FIG. 15 is a diagram for explaining an example of processing of the determination unit for real-time measurement data during polishing.
  • FIG. 16 is a diagram for explaining an example of processing of the timing adjustment unit.
  • FIG. 17 is a diagram for explaining an example of processing of the timing adjustment unit.
  • FIG. 18A is a flowchart showing an example of the end point detection method according to the embodiment.
  • FIG. 18B is a flowchart showing another example of the end point detection method according to the embodiment.
  • FIG. 19 is a diagram showing overall control by the control unit.
  • FIG. 20 is a diagram showing a configuration according to an embodiment.
  • FIG. 21 is a diagram showing a modified example of the configuration according to one embodiment.
  • FIG. 22 is a diagram showing a modified example of the configuration according to one embodiment.
  • FIG. 23 is a diagram showing a modified example of the configuration according to the embodiment.
  • the end point detection device is A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. It is provided with a determination unit for outputting.
  • a trained model for example, a tuned neural network system
  • end point detection sensor's measurement data is preferentially used for the measurement data output from each of the plurality of types of end point detection sensors provided in one polishing unit at the time of new polishing.
  • the waveform of the measurement data from the start of polishing to the end of polishing output during past polishing was machine-learned without the operator explicitly instructing when to switch the priority between the end point detection sensors.
  • a trained model for example, a tuned neural network system
  • it is estimated and output whether or not the current time is the timing of the end point in view of the similarity with the waveform of the measurement data at the time of past polishing. can do. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors, and it is possible to improve the accuracy of end point detection.
  • the end point detecting device is A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And the remaining time from the present time to the end point timing indicating the end of polishing is estimated by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. It is equipped with a determination unit that outputs data.
  • a trained model for example, a tuned neural network system
  • end point detection sensor's measurement data is preferentially used for the measurement data output from each of the plurality of types of end point detection sensors provided in one polishing unit at the time of new polishing.
  • the waveform of the measurement data from the start of polishing to the end of polishing output during past polishing was machine-learned without the operator explicitly instructing when to switch the priority between the end point detection sensors.
  • a trained model for example, a tuned neural network system
  • the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated in consideration of the similarity with the waveform of the measurement data at the time of past polishing. Can be output. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors, and it is possible to improve the accuracy of end point detection.
  • the end point detecting device is an end point detecting device according to the first aspect.
  • a first polishing stop unit is further provided, which transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current time is the timing of the end point.
  • the end point detecting device is an end point detecting device according to the second aspect.
  • a first polishing stop unit for transmitting a control signal for stopping polishing to the polishing unit when the remaining time estimated by the determination unit has elapsed is further provided.
  • the end point detecting device is an end point detecting device according to the first or third aspect.
  • the determination unit inputs measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, and estimates whether or not the present time is the timing of the end point indicating the end of polishing. At the same time, it is estimated and output whether or not the current polishing conditions are normal.
  • the end point detecting device is an end point detecting device according to a fifth aspect that cites the third aspect.
  • the first polishing stop unit transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current polishing conditions are normal and the current time is the timing of the end point.
  • the end point detection device is the end point detection device according to the second or fourth aspect.
  • the determination unit estimates the time from the present time to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. , Estimates and outputs whether or not the current polishing conditions are normal.
  • the end point detection device is an end point detection device according to the seventh aspect that cites the fourth aspect.
  • the first polishing stop unit transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current polishing conditions are normal and the remaining time is zero.
  • the end point detecting device is an end point detecting device according to any one of the fifth to eighth aspects.
  • the determination unit further includes a second polishing stop unit that transmits a control signal for stopping polishing to the polishing unit and issues an alarm when it is determined that the current polishing state is abnormal.
  • the end point detecting device is an end point detecting device according to any one of the first to ninth aspects.
  • the plurality of types of end point detection sensors are an optical sensor that shines light on an object to be polished and monitors a change in its reflectance, and a vortex current that applies a line of magnetic force to the object to be polished and monitors a change in the line of magnetic force due to a vortex current generated there.
  • Vibration of the sensor rocking torque sensor that monitors the change in torque applied to the rocking mechanism that swings the top ring, rotational torque sensor that monitors the change in torque applied to the rotating mechanism that rotates the polishing table, vibration of the top ring or polishing table
  • vibration sensors There are two or more types of vibration sensors that monitor the change in sound generated from the contact portion between the object to be polished and the polishing pad.
  • the end point detection device is an end point detection device according to the first aspect.
  • the trained model has a waveform of measurement data from each of the plurality of types of end point detection sensors output during past polishing from the start of polishing to the end of polishing, and from the start of polishing to the end of polishing acquired during the past polishing. Machine learning the relationship between the polishing pad temperature, slurry temperature, slurry flow rate, pressure in each pressure chamber of the top ring, and one or more auxiliary information of the number of times the polishing pad has been used.
  • the determination unit receives the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing and the auxiliary information acquired from the start of polishing to the present time, and the present time is It estimates and outputs whether or not it is the timing of the end point.
  • a trained model in which the relationship between the waveform of the measurement data from the start of polishing to the end of polishing and the auxiliary information output from each of the plurality of types of end point detection sensors during past polishing is machine-learned is obtained.
  • the end point detecting device is an end point detecting device according to the second aspect.
  • the trained model has a waveform of measurement data from each of the plurality of types of end point detection sensors output during past polishing from the start of polishing to the end of polishing, and from the start of polishing to the end of polishing acquired during the past polishing. Machine learning the relationship between the polishing pad temperature, slurry temperature, slurry flow rate, pressure in each pressure chamber of the top ring, and one or more auxiliary information of the number of times the polishing pad has been used.
  • the determination unit receives the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing and the auxiliary information acquired from the start of polishing to the present time as input from the present time. The remaining time until the end point timing indicating the end of polishing is estimated and output.
  • a trained model in which the relationship between the waveform of the measurement data from the start of polishing to the end of polishing and the auxiliary information output from each of the plurality of types of end point detection sensors during past polishing is machine-learned is obtained.
  • the remaining time from the present time to the timing of the end point indicating the end of polishing can be estimated and output in consideration of the similarity between the measurement data at the time of past polishing and the auxiliary information. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors and auxiliary information, and it is possible to further improve the accuracy of end point detection.
  • the end point detecting device is an end point detecting device according to any one of the first to twelfth aspects. Further, a timing adjusting unit is further provided, in which the timings between the measurement data output from each of the plurality of types of end point detection sensors are matched and then input to the determination unit.
  • the end point detecting device is an end point detecting device according to the 13th aspect.
  • the timing adjustment unit simultaneously inputs a timing synchronization signal to the plurality of types of end point detection sensors, and determines the timing of a pulse portion caused by the timing synchronization signal in the measurement data output from each of the plurality of end point detection sensors. By matching, the timings between the measurement data are matched.
  • the end point detection device is an end point detection device according to any one of the first to fourteenth aspects.
  • the trained model machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the first polishing unit during the past polishing.
  • the end point detecting device according to the 16th aspect of the embodiment is an end point detecting device according to the 15th aspect.
  • the first polishing unit and the second polishing unit are installed in the same factory.
  • the end point detecting device according to the 17th aspect of the embodiment is an end point detecting device according to the 15th aspect.
  • the first polishing unit and the second polishing unit are installed in different factories.
  • the end point detection method is Using a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, the plurality of types are described.
  • a judgment step is performed in which real-time measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and whether or not the present time is the timing of the end point indicating the end of polishing is estimated and output. Including.
  • the end point detection method is Using a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, the plurality of types are described. It includes a determination step in which the measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated and output.
  • the end point detection program is Computer, It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described.
  • the measurement data from the start of polishing to the present time which is output from each of the end point detection sensors at the time of new polishing, is input, and it is made to function as a judgment unit that estimates and outputs whether or not the present time is the timing of the end point indicating the end of polishing. ..
  • the end point detection program according to the 21st aspect of the embodiment is Computer, It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described.
  • the measurement data from the start of polishing to the present time which is output from each of the end point detection sensors at the time of new polishing, is input, and the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated and output as a judgment unit.
  • the computer-readable recording medium is Computer, It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described.
  • the end point that functions as a judgment unit that estimates and outputs whether or not the current time is the timing of the end point indicating the end of polishing by inputting real-time measurement data during polishing output from each of the end point detection sensors during new polishing.
  • the detection program is recorded non-transitory.
  • the computer-readable recording medium is Computer, It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described.
  • the end point that functions as a judgment unit that estimates and outputs the remaining time from the current point to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing.
  • the detection program is recorded non-transitory.
  • the trained model (tuned neural network system) according to the 24th aspect of the embodiment is It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer, and is past from each of a plurality of types of end point detection sensors provided in one polishing unit.
  • the measurement data from the start of polishing to each time point output during polishing is input to the input layer, and the output result output from the output layer is compared with the information on whether or not the time point is the end point timing.
  • the measurement data from the start of polishing to the present time which is output from each of the plurality of types of end point detection sensors at the time of new polishing, is input to the input layer, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. And make the computer function to output from the output layer.
  • the trained model (tuned neural network system) according to the 25th aspect of the embodiment is It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer, and is past from each of a plurality of types of end point detection sensors provided in one polishing unit.
  • the measurement data from the start of polishing to each time point output during polishing is input to the input layer, and the output result output from the output layer and the information on the remaining time from that time point to the timing of the end point indicating the end of polishing
  • each of the plurality of types of end point detection sensors in the past This is a machine-learned waveform of the measurement data output from the start of polishing to the end of polishing, which is output during polishing.
  • FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment.
  • this substrate processing apparatus includes a substantially rectangular housing 61.
  • the housing 61 has a side wall 700.
  • the inside of the housing 61 is divided into a load / unload portion 62, a polishing portion 63, and a cleaning portion 64 by partition walls 1a and 1b.
  • the load / unload section 62, the polishing section 63, and the cleaning section 64 are assembled independently and exhausted independently.
  • the substrate processing apparatus has a control unit 65 that controls the substrate processing operation.
  • the load / unload section 62 includes two or more (four in this embodiment) front load sections 20 on which wafer cassettes for stocking a large number of wafers (boards) are placed. These front load portions 20 are arranged adjacent to the housing 61, and are arranged along the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus.
  • the front load unit 20 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod).
  • SMIF and FOUP are closed containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
  • a traveling mechanism 21 is laid along the line of the front load section 20.
  • Two transfer robots (loaders) 22 that can move along the arrangement direction of the wafer cassettes are installed on the traveling mechanism 21.
  • the transfer robot 22 can access the wafer cassette mounted on the front load unit 20 by moving on the traveling mechanism 21.
  • Each transfer robot 22 has two hands on the top and bottom. The upper hand is used to return the processed wafer to the wafer cassette. The lower hand is used to remove the unprocessed wafer from the wafer cassette. In this way, the upper and lower hands can be used properly. Further, the lower hand of the transfer robot 22 can invert the wafer by rotating around its axis.
  • the load / unload section 62 is an area that needs to be kept in the cleanest state. Therefore, the inside of the load / unload section 62 is always maintained at a pressure higher than that of the outside of the substrate processing device, the polishing section 63, and the cleaning section 64.
  • the polishing unit 63 is the dirtiest region because a slurry is used as the polishing liquid. Therefore, a negative pressure is formed inside the polishing portion 63, and the pressure is maintained lower than the internal pressure of the cleaning portion 64.
  • the load / unload section 62 is provided with a filter fan unit (not shown) having a clean air filter such as a HEPA filter, a ULPA filter, or a chemical filter. Clean air from which particles, toxic steam, and toxic gas have been removed is constantly blown out from the filter fan unit.
  • the polishing unit 63 is an area where the wafer is polished (flattened), and includes a first polishing unit 3A, a second polishing unit 3B, a third polishing unit 3C, and a fourth polishing unit 3D. As shown in FIG. 1, the first polishing unit 3A, the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D are arranged along the longitudinal direction of the substrate processing apparatus.
  • the first polishing unit 3A includes a polishing table 30A, a top ring 31A, a polishing liquid supply nozzle 32A, a dresser 33A, and an atomizer 34A.
  • a polishing pad 10 having a polishing surface is attached to the polishing table 30A.
  • the top ring (holding portion) 31A holds the wafer and polishes the wafer while pressing it against the polishing pad 10 on the polishing table 30A.
  • the polishing liquid supply nozzle 32A supplies a polishing liquid or a dressing liquid (for example, pure water) to the polishing pad 10.
  • the dresser 33A dresses the polished surface of the polishing pad 10.
  • the atomizer 34A atomizes a mixed fluid of a liquid (for example, pure water) and a gas (for example, nitrogen gas) or a liquid (for example, pure water) and injects it onto the polished surface.
  • the second polishing unit 3B includes a polishing table 30B to which the polishing pad 10 is attached, a top ring 31B, a polishing liquid supply nozzle 32B, a dresser 33B, and an atomizer 34B.
  • the third polishing unit 3C includes a polishing table 30C to which a polishing pad 10 is attached, a top ring 31C, a polishing liquid supply nozzle 32C, a dresser 33C, and an atomizer 34C.
  • the fourth polishing unit 3D includes a polishing table 30D to which a polishing pad 10 is attached, a top ring 31D, a polishing liquid supply nozzle 32D, a dresser 33D, and an atomizer 34D.
  • the unit 3A will be described as a target.
  • FIG. 2 is a perspective view schematically showing the first polishing unit 3A.
  • the top ring 31A is supported by the top ring shaft 636.
  • a polishing pad 10 is attached to the upper surface of the polishing table 30A, and the upper surface of the polishing pad 10 constitutes a polishing surface for polishing the semiconductor wafer 16.
  • fixed abrasive grains can be used instead of the polishing pad 10.
  • the top ring 31A and the polishing table 30A are configured to rotate about their axis, as indicated by the arrows.
  • the semiconductor wafer 16 is held on the lower surface of the top ring 31A by vacuum suction.
  • the polishing liquid is supplied from the polishing liquid supply nozzle 32A to the polishing surface of the polishing pad 10, and the semiconductor wafer 16 to be polished is pressed against the polishing surface by the top ring 31A to be polished.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the top ring 31A.
  • the top ring 31A is connected to the lower end of the top ring shaft 636 via a universal joint 637.
  • the universal joint 637 is a ball joint that transmits the rotation of the top ring shaft 636 to the top ring 31A while allowing the top ring 31A and the top ring shaft 636 to tilt each other.
  • the top ring 31A includes a substantially disk-shaped top ring main body 638 and a retainer ring 640 arranged below the top ring main body 638.
  • the top ring body 638 is formed of a material having high strength and rigidity such as metal and ceramics.
  • the retainer ring 640 is formed of a highly rigid resin material, ceramics, or the like.
  • the retainer ring 640 may be integrally formed with the top ring main body 638.
  • a circular elastic pad 642 that abuts on the semiconductor wafer 16 an annular pressure sheet 643 made of an elastic film, and an elastic pad 642 are held.
  • a roughly disk-shaped chucking plate 644 is housed.
  • the upper peripheral end of the elastic pad 642 is held by the chucking plate 644, and four pressure chambers (airbags) P1, P2, P3, P4 are provided between the elastic pad 642 and the chucking plate 644.
  • the pressure chambers P1, P2, P3, and P4 are formed by an elastic pad 642 and a chucking plate 644.
  • Pressurized fluid such as pressurized air is supplied to the pressure chambers P1, P2, P3, and P4 via the fluid passages 651,652,653,654, respectively, or is evacuated.
  • the central pressure chamber P1 is circular, and the other pressure chambers P2, P3, and P4 are annular. These pressure chambers P1, P2, P3 and P4 are concentrically arranged.
  • the internal pressures of the pressure chambers P1, P2, P3, and P4 can be changed independently of each other by the pressure adjusting unit described later, whereby the four regions of the semiconductor wafer 16, that is, the central portion and the inner intermediate portion, can be changed. , The pressing force on the outer middle part, and the peripheral part can be adjusted independently. Further, by raising and lowering the entire top ring 31A, the retainer ring 640 can be pressed against the polishing pad 10 with a predetermined pressing force.
  • a pressure chamber P5 is formed between the chucking plate 644 and the top ring main body 638, and a pressurized fluid is supplied to the pressure chamber P5 via a fluid passage 655 or is evacuated. There is. As a result, the entire chucking plate 644 and the elastic pad 642 can move in the vertical direction.
  • the peripheral end of the semiconductor wafer 16 is surrounded by a retainer ring 640 so that the semiconductor wafer 16 does not pop out from the top ring 31A during polishing.
  • An opening (not shown) is formed in a portion of the elastic pad 642 constituting the pressure chamber P3 so that the semiconductor wafer 16 is adsorbed and held by the top ring 31A by forming a vacuum in the pressure chamber P3. It has become. Further, the semiconductor wafer 16 is released from the top ring 31A by supplying nitrogen gas, dry air, compressed air, or the like to the pressure chamber P3.
  • FIG. 4 is a cross-sectional view schematically showing another structural example of the top ring 31A.
  • the chucking plate is not provided, and the elastic pad 642 is attached to the lower surface of the top ring body 638.
  • the pressure chamber P5 between the chucking plate and the top ring main body 638 is not provided.
  • an elastic bag 646 is arranged between the retainer ring 640 and the top ring main body 638, and a pressure chamber P6 is formed inside the elastic bag 646.
  • the retainer ring 640 can move up and down relative to the top ring body 638.
  • a fluid passage 656 communicates with the pressure chamber P6, and a pressurized fluid such as pressurized air is supplied to the pressure chamber P6 through the fluid passage 656.
  • the internal pressure of the pressure chamber P6 can be adjusted by a pressure adjusting unit described later. Therefore, the pressing force on the polishing pad 10 of the retainer ring 640 can be adjusted independently of the pressing force on the semiconductor wafer 16.
  • Other configurations and operations are the same as the configuration of the top ring shown in FIG. In this embodiment, either type of top ring of FIG. 3 or FIG. 4 can be used.
  • FIG. 5 is a cross-sectional view for explaining a mechanism for rotating and swinging the top ring 31A.
  • the top ring shaft (eg, spline shaft) 636 is rotatably supported by the top ring head 660. Further, the top ring shaft 636 is connected to the rotating shaft of the motor M1 via pulleys 661 and 662 and the belt 663, and the motor M1 rotates the top ring shaft 636 and the top ring 31A around the axis thereof.
  • the motor M1 is attached to the upper part of the top ring head 660. Further, the top ring head 660 and the top ring shaft 636 are connected by an air cylinder 665 as a vertical drive source.
  • the air (compressed gas) supplied to the air cylinder 665 causes the top ring shaft 636 and the top ring 31A to move up and down integrally.
  • a mechanism having a ball screw and a servomotor may be used as a vertical drive source.
  • the top ring head 660 is rotatably supported by a support shaft 667 via a bearing 672.
  • the support shaft 667 is a fixed shaft and has a structure that does not rotate.
  • a motor M2 is installed on the top ring head 660, and the relative positions of the top ring head 660 and the motor M2 are fixed.
  • the rotation shaft of the motor M2 is connected to the support shaft 667 via a rotation transmission mechanism (gear or the like) (not shown), and by rotating the motor M2, the top ring head 660 swings around the support shaft 667. It is designed to (swing).
  • the swing mechanism for swinging the top ring 31A is composed of the motor M2.
  • a swing torque sensor 26 for detecting torque applied to the swing mechanism is connected to the swing mechanism (motor M2) that swings the top ring 31A.
  • the signal of the oscillating torque sensor 26 is transmitted to the control unit 65, which will be described later.
  • a through hole (not shown) extending in the longitudinal direction thereof is formed.
  • the fluid passages 651, 652, 652, 654, 655, 656 of the top ring 31A described above are connected to the rotary joint 669 provided at the upper end of the top ring shaft 636 through the through holes.
  • a fluid such as pressurized gas (clean air) or nitrogen gas is supplied to the top ring 31A via the rotary joint 669, and the gas is evacuated from the top ring 31A.
  • a plurality of fluid pipes 670 communicating with the fluid passages 651,652,655,654,655,656 are connected to the rotary joint 669, and these fluid pipes 670 are connected to the pressure adjusting unit 675. It is connected.
  • a fluid pipe 671 that supplies pressurized air to the air cylinder 665 is also connected to the pressure adjusting unit 675.
  • the pressure adjusting unit 675 includes an electropneumatic regulator that adjusts the pressure of the fluid supplied to the top ring 31A, pipes connected to the fluid pipes 670 and 671, air operated valves provided in these pipes, and these air operated valves. It has an electropneumatic regulator that adjusts the pressure of air that is the operating source of the above, an ejector that forms a vacuum on the top ring 31A, and the like, and these are collectively formed as one block (unit).
  • the pressure adjusting unit 675 is fixed to the upper part of the top ring head 660.
  • the pressure of the pressurized gas supplied to the pressure chambers P1, P2, P3, P4, P5 see FIG.
  • the electropneumatic regulator and the valve which are pressure adjusting devices, are installed near the top ring 31A, the controllability of the pressure in the top ring 31A is improved. More specifically, since the distance between the electropneumatic regulator and the pressure chambers P1, P2, P3, P4, and P5 is short, the responsiveness to the pressure change command from the control unit 65 is improved. Similarly, since the ejector, which is a vacuum source, is also installed near the top ring 31A, the responsiveness when forming a vacuum in the top ring 31A is improved. Further, the back surface of the pressure adjusting unit 675 can be used as a mounting pedestal for electrical equipment, and a mounting frame, which has been conventionally required, can be eliminated.
  • top ring head 660, top ring 31A, pressure adjusting unit 675, top ring shaft 636, motor M1, motor M2, and air cylinder 665 are configured as one module (hereinafter referred to as top ring assembly). That is, the top ring shaft 636, the motor M1, the motor M2, the pressure adjusting unit 675, and the air cylinder 665 are attached to the top ring head 660.
  • the top ring head 660 is configured to be removable from the support shaft 667. Therefore, the top ring assembly can be removed from the substrate processing apparatus by separating the top ring head 660 and the support shaft 667. According to such a configuration, the maintainability of the support shaft 667 and the top ring head 660 can be improved. For example, when an abnormal noise is generated from the bearing 672, the bearing 672 can be easily replaced, and when the motor M2 or the rotation transmission mechanism (reducer) is replaced, it is not necessary to remove the adjacent device. ..
  • FIG. 6 is a cross-sectional view schematically showing the internal structure of the polishing table 30A.
  • the polishing table 30A is provided with a rotation mechanism (motor 300) for rotationally driving the polishing table 30A.
  • the power of the motor 300 is transmitted to the spindle 320 fixed to the polishing table 310 via the belt 310 to rotate the polishing table 30A.
  • a rotation torque sensor 330 that detects torque applied to the rotation mechanism is connected to a rotation mechanism (motor 300) that rotates the polishing table 30A.
  • the signal of the rotational torque sensor 330 is transmitted to the control unit 65, which will be described later.
  • an eddy current sensor 676A for detecting the state of the film of the semiconductor wafer 16 is embedded inside the polishing table 30A.
  • the signal of the eddy current sensor 676A is transmitted to the control unit 65, and the control unit 65 generates a monitoring signal indicating the film thickness.
  • the value of this monitoring signal (and sensor signal) does not indicate the film thickness itself, but the value of the monitoring signal changes according to the film thickness. Therefore, the monitoring signal can be said to be a signal indicating the film thickness of the semiconductor wafer 16.
  • the control unit 65 determines the internal pressure of each pressure chamber P1, P2, P3, P4 based on the monitoring signal so that the determined internal pressure is formed in each pressure chamber P1, P2, P3, P4. It is designed to issue a command to the pressure adjusting unit 675. As shown in FIG. 6, the control unit 65 includes a pressure control unit 200 that operates the internal pressure of each pressure chamber P1, P2, P3, P4 based on a monitoring signal, and an end point detection unit 100 that detects the polishing end point. have.
  • the eddy current sensor 676A is provided on the polishing table of the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D as well as the first polishing unit 3A.
  • the control unit 65 generates a monitoring signal from the signal sent from the eddy current sensor 676A of each polishing unit 3A to 3D, and monitors the progress of wafer polishing in each polishing unit 3A to 3D.
  • the control unit 5 monitors a monitoring signal indicating the thickness of the wafer during polishing, and based on the monitoring signals, the polishing units 3A to 3D monitor the monitoring signals.
  • the pressing force of the top rings 31A to 31D is controlled so that the polishing times of the top rings are substantially the same.
  • the polishing time in the polishing units 3A to 3D can be leveled.
  • the semiconductor wafer 16 may be polished by any of the first polishing unit 3A, the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D, or is selected in advance from these polishing units 3A to 3D. It may be continuously polished by a plurality of polishing units. For example, the semiconductor wafer 16 may be polished in the order of the first polishing unit 3A ⁇ the second polishing unit 3B, or the semiconductor wafer 16 may be polished in the order of the third polishing unit 3C ⁇ the fourth polishing unit 3D. .. Further, the semiconductor wafer 16 may be polished in the order of the first polishing unit 3A ⁇ the second polishing unit 3B ⁇ the third polishing unit 3C ⁇ the fourth polishing unit 3D. In any case, the throughput can be improved by leveling all the polishing times of the polishing units 3A to 3D.
  • the eddy current sensor 676A is preferably used when the wafer film is a metal film.
  • an optical sensor may be used instead of the eddy current sensor 676A or together with the eddy current sensor 676A.
  • a microwave sensor may be used in place of the eddy current sensor 676A or in combination with the eddy current sensor 676A.
  • the microwave sensor can be used for both metal and non-metal films.
  • FIG. 7 is a schematic view for explaining the optical sensor 676B provided on the polishing table 30A.
  • an optical sensor 676B for detecting the state of the film of the semiconductor wafer 16 is embedded inside the polishing table 30A.
  • the optical sensor 676B irradiates the semiconductor wafer 16 with light and detects the state of the film (thickness, etc.) of the semiconductor wafer 16 from the intensity (reflection intensity or reflectance) of the reflected light from the semiconductor wafer 16.
  • the polishing pad 10 is provided with a light transmitting portion 677 for transmitting light from the optical sensor 676B.
  • the translucent portion 677 is made of a material having a high transmittance, and is formed of, for example, quartz glass, a glass material, pure water (with a flow path), or the like.
  • the light-transmitting portion 677 may be formed by providing a through hole in the polishing pad 10 and allowing a transparent liquid to flow from below while the through hole is closed by the semiconductor wafer 16.
  • the translucent portion 677 is arranged at a position where it passes through the center of the semiconductor wafer 16 held by the top ring 31A.
  • the optical sensor 676B includes a light source 678a, a light emitting optical fiber 678b as a light emitting portion that irradiates the surface to be polished of the semiconductor wafer 16 with light from the light source 678a, and reflected light from the surface to be polished.
  • a light receiving optical fiber 678c as a light receiving unit that receives light, a spectroscope that disperses the light received by the light receiving optical fiber 678c, and a plurality of light receiving elements that store the light dispersed by the spectroscope as electrical information are inside.
  • the light emitting end of the light emitting optical fiber 678b and the light receiving end of the light receiving optical fiber 678c are configured to be substantially perpendicular to the surface to be polished of the semiconductor wafer 16.
  • a 128-element photodiode array can be used as the light receiving element in the spectroscope unit 678d.
  • the spectroscope unit 678d is connected to the operation control unit 678e. Information from the light receiving element in the spectroscope unit 678d is sent to the operation control unit 678e, and spectral data of reflected light is generated based on this information. That is, the motion control unit 678e reads the electrical information stored in the light receiving element and generates the spectrum data of the reflected light. This spectral data shows the intensity of the reflected light decomposed according to the wavelength, and changes depending on the film thickness.
  • the operation control unit 678e is connected to the control unit 65 described above. In this way, the spectrum data generated by the operation control unit 678e is transmitted to the control unit 65.
  • the control unit 65 calculates a characteristic value associated with the film thickness of the semiconductor wafer 16 based on the spectrum data received from the operation control unit 678e, and uses this as a monitoring signal.
  • FIG. 8 is a schematic diagram for explaining the microwave sensor 676C provided on the polishing table 30A.
  • the microwave sensor 676C is a waveguide that connects an antenna 680a that irradiates the surface to be polished of the semiconductor wafer 16 with microwaves, a sensor body 680b that supplies microwaves to the antenna 680a, and the antenna 680a and the sensor body 680b. It is equipped with a tube 681.
  • the antenna 680a is embedded in the polishing table 30A and is arranged so as to face the center position of the semiconductor wafer 16 held by the top ring 31A.
  • the antenna 680a may be located anywhere on the trajectory through which the center of the polishing head 31A passes when the polishing head (top ring) 31A is swung.
  • the sensor body 680b includes a microwave source 680c that generates microwaves and supplies microwaves to the antenna 680a, microwaves (incident waves) generated by the microwave source 680c, and microwaves (reflection) reflected from the surface of the semiconductor wafer 16. It is provided with a separator 680d for separating the wave) and a detection unit 680e for receiving the reflected wave separated by the separator 680d and detecting the amplitude and phase of the reflected wave. As the separator 680d, a directional coupler is preferably used.
  • the antenna 680a is connected to the separator 680d via a waveguide 681.
  • the microwave source 680c is connected to the separator 680d, and the microwave generated by the microwave source 680c is supplied to the antenna 680a via the separator 680d and the waveguide 681.
  • the microwave is irradiated from the antenna 680a toward the semiconductor wafer 16 and passes through (penetrates) the polishing pad 610 to reach the semiconductor wafer 16.
  • the reflected wave from the semiconductor wafer 16 passes through the polishing pad 10 again and is received by the antenna 680a.
  • the reflected wave is sent from the antenna 680a to the separator 680d via the waveguide 681, and the incident wave and the reflected wave are separated by the separator 680d.
  • the reflected wave separated by the separator 680d is transmitted to the detection unit 680e.
  • the detection unit 680e detects the amplitude and phase of the reflected wave.
  • the amplitude of the reflected wave is detected as electric power (dbm or W) or voltage (V), and the phase of the reflected wave is detected by a phase measuring instrument (not shown) built in the detection unit 680e.
  • the amplitude and phase of the reflected wave detected by the detection unit 680e are sent to the control unit 65, where the film thickness of the metal film or non-metal film of the semiconductor wafer 16 is analyzed based on the amplitude and phase of the reflected wave. ..
  • the analyzed value is monitored by the control unit 65 as a monitoring signal.
  • FIG. 9 is a block diagram showing the configuration of the end point detection unit 100.
  • the end point detecting unit 100 includes a timing adjusting unit 110, a determination unit 120, a first polishing stop unit 130, and a second polishing stop unit 140.
  • the determination unit 120 polishes from the start of polishing output from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53 in the illustrated example) provided in one polishing unit 3A during past polishing. It has a trained model 121 (for example, a tuned neural network system) in which the waveform of the measurement data up to the end is machine-learned.
  • a trained model 121 for example, a tuned neural network system
  • the plurality of types of end point detection sensors are an optical sensor 676B (see FIG. 7) that irradiates light on the object to be polished and monitors the change in the reflectance, and magnetic lines of force on the object to be polished.
  • a vortex current sensor 676A (see FIG. 6) that monitors changes in magnetic field lines due to eddy currents generated there, and a swing torque sensor that monitors changes in torque applied to the swing mechanism (motor M2) that swings the top ring 31A. 26 (see FIG. 5), rotational torque sensor 330 (see FIG.
  • the learning method (neural network system tuning method) of the trained model 121 may be supervised learning, unsupervised learning, or reinforcement learning.
  • FIG. 10 is a schematic diagram for explaining an example of the configuration of the trained model 121.
  • the trained model 121 is a hierarchical neural network or quantum neural network having an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It may include a network (QNN).
  • the trained model 121 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • FIG. 10A a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A will be described. ), The measurement data from the start of polishing to each time point output during the past polishing is input to the input layer, and the output result output from the output layer is linked to the measurement data at that time point. Compare the information on whether the polishing conditions at the time point are normal and whether the time point is the timing of the end point (that is, the end of polishing), and the parameters (weights and thresholds) of each node according to the error.
  • the process of updating is repeated for the measurement data from the start of polishing to each time point in the past polishing.
  • the waveform of the measurement data from the start to the end of polishing output from the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing is machined.
  • the trained trained model 121 (tuned neural network system) is generated.
  • FIG. 10B a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A will be described. ), The measurement data from the start of polishing to each time point output during the past polishing is input to the input layer, and the output result output from the output layer is linked to the measurement data at that time point. Compare the information on whether the polishing conditions at that point in time are normal and the remaining time from that point in time to the end point (that is, the end of polishing), and set the parameters (weight, threshold, etc.) of each node according to the error.
  • the process of updating is repeated for the measurement data from the start of polishing to each time point in the past polishing.
  • the waveform of the measurement data from the start to the end of polishing output from the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing is machined.
  • the trained trained model 121 (tuned neural network system) is generated.
  • the measurement data (teacher data) to be learned by the trained model 121, the past from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A.
  • the measurement data when the polishing is completed normally without over-polishing or insufficient polishing is for each time point from the start of polishing to the end of polishing. It may be associated that all the polishing conditions were normal.
  • FIG. 12 is an image diagram for explaining the learning content of the trained model 121.
  • the regions A1 to A3 are each in the past polishing time output from each of the first to third sensors 51 to 53 when the polishing conditions from the start to the end of polishing are normal.
  • the waveform of the measurement data of the above indicates a region that is statistically included with a predetermined probability (for example, a reliability CL of 95% or more).
  • a predetermined probability for example, a reliability CL of 95% or more.
  • the output is output from the first sensor 51 in the time zone close to the polishing start time.
  • the priority of the measurement data to be measured is higher than the priority of the measurement data output from the second and third sensors 52 and 53.
  • the measurement data output from the second sensor 52 is in the time zone near the end of polishing. It can be interpreted that the priority is higher than the priority of the measurement data output from the first and third sensors 51 and 53.
  • the trained model 121 machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the first polishing unit 3A during the past polishing.
  • the first polishing unit 3A and the second polishing unit 3B may be installed in the same factory. Alternatively, although not shown, the first polishing unit 3A and the second polishing unit 3B may be installed in different factories.
  • the determination unit 120 is used for new polishing from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A. Using the output measurement data from the start of polishing to the present time as input, using the trained model 121 according to the above example, whether or not the current polishing conditions are normal, and the timing of the end point indicating the end of polishing at the present time. It is estimated and output whether or not it is. As another form, as shown in FIG. 10B, the determination unit 120 is used during new polishing from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A.
  • the above-mentioned trained model 121 is used to estimate whether or not the current polishing conditions are normal, and the timing of the end point indicating the end of polishing from the present time. The remaining time until is estimated and output.
  • the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are from the start of polishing to the end of polishing, respectively.
  • the determination unit 120 is used as one form. Is output by assuming that the polishing conditions at the present time are normal and the current time is not the timing of the end point indicating the end of polishing.
  • the determination unit 120 may estimate that the polishing conditions at the present time are normal, and estimate and output the remaining time Te from the present time to the timing of the end point indicating the end of polishing.
  • the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are obtained from the start of polishing to the end of polishing, respectively. If it is within the areas A1 to A3 that should be statistically included when the polishing conditions up to are normal, and the current time coincides with the timing of the end of polishing, it is determined as one form.
  • the unit 120 estimates that the current polishing conditions are normal and the current time is the timing of the end point indicating the end of polishing, and outputs the data.
  • the determination unit 120 may estimate that the polishing conditions at the present time are normal, and estimate that the remaining time Te from the present time to the timing of the end point indicating the end of polishing is zero and output. ..
  • any one of the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing (in the illustrated example). If the measurement data D1) of the first sensor 51 deviates from the region A1 that should be statistically included when the polishing conditions from the start to the end of polishing are normal, the determination unit 120 is at the present time. It is estimated that the polishing conditions of the above are abnormal and output. It should be noted that FIGS. 12 to 15 are merely "image diagrams" and are not limited to these, and are normal using a trained model trained using measurement data of normal termination without using statistical processing. -A method of outputting an abnormality judgment may be used.
  • the determination unit 120 may output the probability *% of the current end point detection as the result of the prediction. .. As another form, the determination unit 120 may output, as a result of the prediction, that the end point has a probability of *% or more after * s of the end point detection.
  • the determination unit 120 preferentially uses the measurement data of which end point detection sensor with respect to the measurement data from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing.
  • the above-mentioned trained model 121 see FIG. 10A
  • the current polishing condition is normal and whether or not the current time is the timing of the end point.
  • the above-mentioned trained model 121 is the current polishing condition normal in view of the similarity with the waveform of the measurement data at the time of past polishing? Whether or not, and the remaining time from the current time to the end point timing can be estimated and output.
  • the trained model 121 starts from the polishing start output from each of the plurality of types of end point detection sensors (for example, the first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing.
  • Machine learning may be performed on the relationship with one or more auxiliary information of the number of times the pad 10 is used.
  • FIG. 11A a plurality of types of end point detection sensors (first to first) provided in one polishing unit 3A.
  • the measurement data from the start of polishing to each time point output from each of the 3 sensors 51 to 53) during the past polishing, and the temperature of the polishing pad 10, the temperature of the slurry, and the flow rate of the slurry acquired from the start of polishing to that time point.
  • the pressure of each pressure chamber of the top ring 31A, and one or more auxiliary information of the number of times the polishing pad 10 has been used are input to the input layer, and the output result output from the output layer and the measurement at that time point.
  • a learned model 121 is generated in which the relationship with the auxiliary information from the start of polishing to the end of polishing acquired at the time of the past polishing is machine-learned.
  • the determination unit 120 is output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether or not the current polishing conditions are normal using the learned model 121 according to one modification by inputting the measurement data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. Or, and whether or not the current time is the timing of the end point is estimated and output.
  • FIG. 11B a plurality of types of end point detection sensors (first to first) provided in one polishing unit 3A.
  • the measurement data from the start of polishing to each time point output from each of the 3 sensors 51 to 53) during the past polishing, and the temperature of the polishing pad 10, the temperature of the slurry, and the flow rate of the slurry acquired from the start of polishing to that time point.
  • the pressure of each pressure chamber of the top ring 31A, and one or more auxiliary information of the number of times the polishing pad 10 has been used are input to the input layer, and the output result output from the output layer and the measurement at that time point.
  • a learned model 121 is generated in which the relationship with the auxiliary information from the start of polishing to the end of polishing acquired at the time of the past polishing is machine-learned.
  • the determination unit 120 is output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether or not the current polishing conditions are normal using the learned model 121 according to one modification by inputting the measurement data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. Is estimated, and the remaining time from the current time to the end point timing is estimated and output.
  • the determination unit 120 provides one or more auxiliary information of the temperature of the polishing pad 10, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the number of times the polishing pad 10 is used. It may be obtained from an engineering system (Equipment Engineering System; EES).
  • EES Equipment Engineering System
  • the first polishing stop unit 130 performs polishing when the determination unit 120 determines that the current polishing conditions are normal and the current time is the timing of the end point.
  • a control signal for stopping (stopping the operation of the polishing unit 3A) is transmitted to the polishing unit 3A.
  • the first polishing stop unit 130 may transmit a control signal for stopping polishing to the polishing unit 3A when the remaining time estimated by the determination unit 120 has elapsed.
  • the second polishing stop unit 140 transmits a control signal for stopping polishing (stopping the operation of the polishing unit 3A) to the polishing unit 3A and issues an alarm. Report.
  • the second polishing stop unit 140 may adopt one method of error display, patrol display, and automatic contact, or two of alarm, error display, patrol display, and automatic contact. A method based on the above combination may be adopted.
  • the timing adjusting unit 110 matches the timing between the measurement data D1 to D3 output from each of the plurality of types of end point detection sensors (for example, the first to third sensors 51 to 53) provided in one polishing unit 3A. Is input to the determination unit 120.
  • the timing adjusting unit 110 simultaneously inputs timing synchronization signals to a plurality of types of end point detection sensors (first to third sensors 51 to 53) before starting polishing, and as shown in FIG. , Of the measurement data D1 to D3 output from each of the plurality of end point detection sensors (first to third sensors 51 to 53), the timing of the pulse portion caused by the timing synchronization signal is compared.
  • the pulse portion of the measurement data D2 output from the second sensor 52 and the pulse portion of the measurement data D3 output from the third sensor 53 have the same timing, but are compared with them.
  • the pulse portion of the measurement data D1 output from the first sensor 51 is advanced (earlier) by ⁇ t.
  • the timing adjustment unit 110 may use the pulse portion of the pulse portion. By matching the timings, the timings between the measurement data D1 to D3 are matched. For example, as shown in FIG. 16, when the pulse portion of the measurement data D1 output from the first sensor 51 has the timing advanced by ⁇ t, the timing adjusting unit 110 has the first timing as shown in FIG.
  • the timings of the pulse portions included in each of the measurement data D1 to D3 are matched, and thereby between the measurement data D1 to D3. Adjust the timing of.
  • the end point detection unit 100 may be composed of one computer or a quantum computing system, or a plurality of computers or quantum computing systems connected to each other via a network, but may be composed of one or a plurality of computers.
  • a program for realizing the end point detection unit 100 in a computer or a quantum computing system and a computer-readable recording medium in which the program is recorded non-transitory are also subject to the protection of the present case.
  • FIG. 18A is a flowchart showing an example of the end point detection method.
  • the timing adjusting unit 110 is applied to a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A.
  • the timing synchronization signal is input at the same time (step S11).
  • the timing adjusting unit 110 is caused by the timing synchronization signal of the measurement data D1 to D3 output from each of the plurality of end point detection sensors (first to third sensors 51 to 53).
  • the timings of the pulsed portions are compared (step S12).
  • the pulse portion of the measurement data D2 output from the second sensor 52 and the pulse portion of the measurement data D3 output from the third sensor 53 have the same timing, but are compared with them.
  • the pulse portion of the measurement data D1 output from the first sensor 51 is advanced (earlier) by ⁇ t.
  • the timing adjusting unit 110 adjusts the timing between the measurement data D1 to D3 so that the timings of the pulse portions match (step S13: YES). Step S14). For example, as shown in FIG. 16, when the pulse portion of the measurement data D1 output from the first sensor 51 has the timing advanced by ⁇ t, the timing adjusting unit 110 has the first timing as shown in FIG. By delaying the time axis (reference time) of the measurement data D1 output from the sensor 41 by ⁇ t, the timings of the pulse portions included in each of the measurement data D1 to D3 are matched, and thereby between the measurement data D1 to D3. Adjust the timing of.
  • the polishing start output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A at the time of new polishing is started.
  • the measurement data from to the present time is input to the trained model 121 of the determination unit 120 (step S15).
  • polishing output from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A at the time of new polishing.
  • the temperature of the polishing pad 10 acquired from the start of polishing to the present time the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the number of times the polishing pad 10 has been used.
  • One or more auxiliary information of may be input to the trained model 121 of the determination unit 120.
  • the determination unit 120 refers to FIG. 10A and starts from the start of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Using the trained model 121 as input, it estimates and outputs whether or not the current polishing conditions are normal and whether or not the current time is the timing of the end point indicating the end of polishing. (Step S16).
  • the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are from the start of polishing to the end of polishing, respectively.
  • the determination unit 120 determines the current polishing. It is presumed that the conditions are normal and the current time is not the timing of the end point indicating the end of polishing, and the output is performed.
  • the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are obtained from the start of polishing to the end of polishing, respectively.
  • the determination unit 120 determines the current time. It is estimated that the polishing conditions of the above are normal and the current time is the timing of the end point indicating the end of polishing, and the output is performed.
  • any one of the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing (in the illustrated example). If the measurement data D1) of the first sensor 51 deviates from the region A1 that should be statistically included when the polishing conditions from the start to the end of polishing are normal, the determination unit 120 is at the present time. It is estimated that the polishing conditions of the above are abnormal and output.
  • the determination unit 120 outputs from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether the current polishing conditions are normal using the learned model 121 related to one modification by inputting the measured data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. You may estimate and output whether or not and whether or not the current time is the timing of the end point.
  • step S17 when the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and when it is determined that the current time is the timing of the end point (step S18). : YES), the first polishing stop unit 130 transmits a control signal for stopping the operation of the polishing unit 3A to the polishing unit 3A (step S19).
  • step S17 when the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and when it is determined that the current time is not the timing of the end point (step S17: YES). Step S18: NO), the end point detection unit 100 repeats the process from step S15.
  • step S17 when the determination unit 120 determines that the current polishing condition is abnormal (step S17: NO), the second polishing stop unit 140 stops the operation of the polishing unit 3A. A control signal is transmitted to the polishing unit 3A, and an alarm is issued (step S20).
  • each of the plurality of types of end point detection sensors (for example, the first to third sensors 51 to 53) provided in one polishing unit 3A outputs data at the time of new polishing.
  • the measured data past polishing without the operator explicitly instructing which end point detection sensor's measurement data should be used with priority and when to switch the priority between end point detection sensors.
  • the trained model 121 that machine-learned the waveform of the measurement data from the start of polishing to the end of polishing that was output at times
  • the current polishing conditions are considered in view of the similarity with the waveform of the measurement data at the time of past polishing. Can be estimated and output whether or not is normal and whether or not the current time is the timing of the end point. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors (first to third sensors 51 to 53), and it is possible to improve the accuracy of end point detection.
  • measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) during past polishing.
  • the trained model 121 that machine-learned the relationship with the auxiliary information of, the current polishing conditions are normal in view of the similarity between the waveform of the measurement data at the time of past polishing and the relationship of the auxiliary information.
  • the timing adjusting unit 110 adjusts the timing between the measurement data output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53), and then determines the determination unit. Since the input is input to the 120, the determination unit 120 can more accurately grasp the waveform of the measurement data output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53). This makes it possible to more accurately determine whether or not the current polishing conditions are normal and whether or not the current time is the timing of the end point. Therefore, the accuracy of end point detection can be further improved.
  • FIG. 18B is a flowchart showing another example of the end point detection method.
  • steps S11 to S14 are the same as the end point detection method shown in FIG. 18A, and description thereof will be omitted.
  • step S14 from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A.
  • the measurement data from the start of polishing to the present time which is output at the time of new polishing, is input to the trained model 121 of the determination unit 120 (step S151).
  • polishing output from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A at the time of new polishing.
  • the temperature of the polishing pad 10 acquired from the start of polishing to the present time the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the number of times the polishing pad 10 has been used.
  • One or more auxiliary information of may be input to the trained model 121 of the determination unit 120.
  • the determination unit 120 starts from the start of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing.
  • the measurement data up to the present time is used to estimate and output whether or not the polishing conditions at the present time are normal, and the remaining time from the present time to the timing of the end point indicating the end of polishing ( Step S161).
  • the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are from the start of polishing to the end of polishing, respectively.
  • the determination unit 120 determines the current polishing. It is estimated that the conditions are normal, and the remaining time Te from the present time to the timing of the end point indicating the end of polishing is estimated and output.
  • the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are obtained from the start of polishing to the end of polishing, respectively.
  • the determination unit 120 determines the current time. It is estimated that the polishing conditions of the above are normal, and the remaining time Te from the present time to the timing of the end point indicating the end of polishing is estimated to be zero and output.
  • any one of the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing (in the illustrated example). If the measurement data D1) of the first sensor 51 deviates from the region A1 that should be statistically included when the polishing conditions from the start to the end of polishing are normal, the determination unit 120 is at the present time. It is estimated that the polishing conditions of the above are abnormal and output.
  • the determination unit 120 outputs from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether the current polishing conditions are normal using the learned model 121 related to one modification by inputting the measured data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. In addition to estimating whether or not, the remaining time Te from the current time to the timing of the end point may be estimated and output.
  • Step S17 when the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and the remaining time Te estimated by the determination unit 120 has elapsed. (Step S181: YES), the first polishing stop unit 130 transmits a control signal for stopping the operation of the polishing unit 3A to the polishing unit 3A (step S19).
  • step S17 the case where the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and the remaining time Te estimated by the determination unit 120 has not elapsed.
  • step S181: NO the end point detection unit 100 repeats the process from step S15.
  • step S17 when the determination unit 120 determines that the current polishing condition is abnormal (step S17: NO), the second polishing stop unit 140 stops the operation of the polishing unit 3A. A control signal is transmitted to the polishing unit 3A, and an alarm is issued (step S20).
  • measurement data output from each of a plurality of types of end point detection sensors for example, first to third sensors 51 to 53 provided in one polishing unit 3A at the time of new polishing. Is output during past polishing without the operator explicitly instructing which end point detection sensor measurement data should be used with priority and when to switch the priority order between end point detection sensors.
  • the trained model 121 in which the waveform of the measurement data from the start of polishing to the end of polishing is machine-learned, the current polishing conditions are normal in view of the similarity with the waveform of the measurement data at the time of past polishing. It is possible to estimate whether or not there is, and to estimate and output the remaining time Te from the present time to the timing of the end point. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors (first to third sensors 51 to 53), and it is possible to improve the accuracy of end point detection.
  • the measurement data from the start to the end of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) during the past polishing. Corrugations, the temperature of the polishing pad 10 from the start of polishing to the end of polishing acquired during the past polishing, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, the number of times the polishing pad 10 has been used, etc.
  • the trained model 121 in which the relationship with the auxiliary information is machine-learned, the current polishing conditions are normal in view of the similarity between the waveform of the measurement data at the time of past polishing and the relationship between the auxiliary information.
  • a plurality of types of end point detection sensors (first to first) provided in one polishing unit 3A are used as teacher data when the trained model 121 (tuned neural network system) is generated.
  • the measurement data at each time point from the start of polishing to the end of polishing (that is, the data set of normal end) output from each of the third sensors 51 to 53) during the past "normal end" polishing was used, but the teacher data.
  • the data set of normal termination Is not limited to the data set of normal termination, and may be a data set of abnormal termination, or may be a data set in which a data set of normal termination and a data set of abnormal termination are mixed.
  • a trained model 121 (tuned neural network system) that determines a normal state or condition can be generated.
  • a trained model 121 for determining an abnormal state or condition can be generated.
  • a trained model 121 (tuned neural network system) for judging a normal state or condition and an abnormal state or condition is generated. it can.
  • it is optimal to use the normal termination data set / abnormal termination data set 70% / 30% to 99% / 1% as the ratio of the normal termination data set to the abnormal termination data set.
  • the control unit 65 which is the main controller, has a CPU, a memory, a recording medium, software recorded on the recording medium, and the like.
  • the control unit 65 monitors and controls the entire board processing device, and performs signal transmission / reception, information recording, and calculation for that purpose.
  • the control unit 65 mainly sends and receives signals to and from the unit controller 760.
  • the unit controller 760 also has a CPU, a memory, a recording medium, software recorded on the recording medium, and the like. In the case of FIG.
  • control unit 65 has a built-in program that functions as an end point detecting means for detecting the polishing end point indicating the end of polishing and a control means for controlling polishing by the polishing unit.
  • the unit controller 760 may include a part or all of this program.
  • the program can be updated.
  • the program does not have to be updatable.
  • the following points are problems of the control method of a typical polishing apparatus so far.
  • the end point detection a plurality of tests are performed before polishing the object, the polishing conditions and the end point determination conditions are obtained from the obtained data, and a recipe which is the polishing conditions is created.
  • some signal analysis may be used, the wafer structure is processed to determine the end point detection by using one sensor signal. This did not provide sufficient accuracy for the following requirements.
  • high-speed data processing signal processing of many types and many sensors, standardized data of these signals, and data sets used for learning using artificial intelligence (AI) from data and determining end point detection.
  • AI artificial intelligence
  • High-speed communication processing system, etc. can be realized.
  • the unit controller 760 controls the units 762 (one or more) mounted on the board processing device.
  • the unit controller 760 is provided for each unit 762 in the present embodiment.
  • the unit 762 includes an unloading unit 62, a polishing unit 63, a cleaning unit 64, and the like.
  • the unit controller 760 controls the operation of the unit 762, sends and receives signals to and from the monitoring sensor, sends and receives control signals, and performs high-speed signal processing and the like.
  • the unit controller 760 is composed of an FPGA (field-programmable gate array), an ASIC (application specific integrated circuit, an integrated circuit for a specific application), and the like.
  • the unit 762 operates by a signal from the unit controller 760. Further, the unit 762 receives the sensor signal from the sensor and transmits it to the unit controller 760. The sensor signal may be further sent from the unit controller 760 to the control unit 65. The sensor signal is processed (including arithmetic processing) by the control unit 65 or the unit controller 760, and a signal for the next operation is sent from the unit controller 760. The unit 762 operates accordingly. For example, the unit controller 760 detects the torque fluctuation of the swing arm 110 by the current change of the swing shaft motor 14. The unit controller 760 sends the detection result to the control unit 65. The control unit 65 detects the end point.
  • the software includes, for example, the following.
  • the software determines the type of polishing pad 10 and the amount of slurry supplied from the data recorded in the control device (control unit 65 or unit controller 760). Next, the software identifies the polishing pad 10 that can be used until the maintenance period or the maintenance period of the polishing pad 10, calculates the slurry supply amount, and outputs these.
  • the software may be software that can be installed on the board processing device 764 after the board processing device 764 is shipped.
  • Communication between the control unit 65, the unit controller 760, and the unit 762 can be either wired or wireless. Communication via the Internet and other communication means (high-speed communication by a dedicated line) can be used with the outside of the board processing apparatus 764.
  • Communication via the Internet and other communication means high-speed communication by a dedicated line
  • data communication it is possible to use the cloud by linking with the cloud, and to exchange data via the smartphone in the board processing device by linking with the smartphone. As a result, it is possible to exchange the operating status of the substrate processing apparatus and the setting information of the substrate processing with the outside of the substrate processing apparatus.
  • a communication network may be formed between sensors and this communication network may be used.
  • FIG. 20 shows the configuration of this embodiment.
  • the information acquired from the semiconductor wafer 16 by the sensor can be as follows.
  • -Measurement signal or measurement data related to torque fluctuation of the oscillating shaft motor 14 -Measurement signal or measurement data of SOPM (Spectrum Optical Endpoint Monitoring; optical sensor)
  • SOPM Specific Optical Endpoint Monitoring; optical sensor
  • Measurement signal or measurement data of vibration sensor that monitors vibration-Measurement signal or measurement data of sound sensor (not shown) that monitors changes in sound generated from the contact area between the wafer and the polishing pad-One or more of the above Combination measurement signal or measurement data
  • the functions and configurations of communication means such as the Internet are as follows. -The signal or data including the above-mentioned measurement signal or measurement data is transmitted to the data processing device 768 connected to the network 766. -The network 766 may be a communication means such as the Internet or high-speed communication. For example, a network 766 connected in the order of a substrate processing device, a gateway, the Internet, a cloud, the Internet, and a data processing device is possible.
  • High-speed communication includes high-speed optical communication, high-speed wireless communication, and the like. Further, as high-speed wireless communication, Wi-Fi (registered trademark), Bluetooth (registered trademark), Wi-Max (registered trademark), 3G, 4G, LTE, 5G and the like can be considered.
  • the cloud is also possible to use the cloud as a data processing device. -When the data processing device 768 is installed in the factory, it is possible to process signals from one or more board processing devices in the factory. -When the data processing device 768 is installed outside the factory, it is possible to transmit signals from one or more board processing devices in the factory to the outside of the factory and process them. At this time, it is possible to connect to a data processing device installed in Japan or abroad.
  • the data processing device 768 analyzing the data stored in the cloud or the like and controlling the board processing device 764 according to the analysis result, the following can be performed. -After the measurement signal or measurement data is processed, it can be transmitted to the substrate processing apparatus 764 as a control signal or control data. -The substrate processing device 764 that has received the data updates the polishing parameters related to the polishing process to perform the polishing operation based on the data, and the data from the data processing device 768 indicates that the end point has been detected. / In the case of data, it is judged that the end point has been detected, and polishing is finished.
  • the polishing parameters include (1) pressing force on the four regions of the semiconductor wafer 16, that is, the central portion, the inner intermediate portion, the outer intermediate portion, and the peripheral portion, (2) the polishing time, and (3) the polishing table 30A and the top. There are the number of rotations of the ring 31A, (4) a threshold value for determining the polishing end point, and the like.
  • FIG. 21 is a diagram showing a modified example of the embodiment of FIG.
  • the substrate processing device, the intermediate processing device, the network 766, and the data processing device are connected in this order.
  • the intermediate processing device is composed of, for example, FPGA or ASIC, and has a filtering function, a calculation function, a data processing function, a data set creation function, and the like.
  • the Internet is between the board processing device and the intermediate processing device and the network 766 is the Internet
  • high-speed optical communication is performed between the board processing device and the intermediate processing device
  • the network 766 is high-speed.
  • high-speed optical communication may be performed between the substrate processing device and the intermediate processing device, and the Internet may be outside the intermediate processing device.
  • Case (1) When the data communication speed and data processing speed in the entire system are sufficient as the Internet communication speed.
  • the data sampling speed is about 1 to 1000 mS, and data communication of a plurality of polishing condition parameters can be performed.
  • the intermediate processing device 770 creates a data set to be sent to the data processing device 768. The details of the data set will be described later.
  • the data processing device 768 Upon receiving the data set, the data processing device 768 performs data processing, for example, calculates the change value of the polishing condition parameter up to the end point position, creates a process plan of the polishing process, and returns it to the intermediate processing device 770 through the network 766.
  • the intermediate processing device 770 sends a change value of the polishing condition parameter and a necessary control signal to the substrate processing device 764.
  • Communication between the board processing device and the intermediate processing device, and between the sensor signal between the intermediate processing device and the data processing device and between the state management devices is high-speed communication.
  • high-speed communication communication is possible at a communication speed of 1 to 1000 Gbps.
  • data, datasets, commands, control signals, etc. can be communicated.
  • the intermediate processing device 770 creates a data set and transmits it to the data processing device 768.
  • the intermediate processing device 770 extracts data necessary for processing in the data processing device 768, processes the data, and creates a data set. For example, a plurality of sensor signals for detecting the end point are extracted and created as a data set.
  • the intermediate processing device 770 sends the created data set to the data processing device 768 by high-speed communication.
  • the data processing device 768 calculates the parameter change value up to the polishing end point and creates the process plan based on the data set.
  • the data processing device 768 receives data sets from a plurality of board processing devices 764, calculates parameter update values for the next step and creates a process plan for each device, and uses the updated data sets as an intermediate processing device.
  • Send to 770 Based on the updated data set, the intermediate processing device 770 converts the updated data set into a control signal and transmits the updated data set to the control unit 65 of the board processing device 764 by high-speed communication.
  • the substrate processing apparatus 764 performs polishing in response to the updated control signal, and performs accurate end point detection.
  • the intermediate processing device 770 receives a plurality of sensor signals of the board processing device 764 by high-speed communication.
  • high-speed optical communication communication at a communication speed of 1 to 10000 Gbps is possible.
  • the data processing order is, for example, sensor signal reception (board processing device 764 to intermediate processing device 766), data set creation, data processing, parameter update value calculation, update parameter signal transmission, polishing control by the control unit 65, and update.
  • the order is end point detection.
  • the intermediate processing device 770 performs high-speed end point detection control by the intermediate processing device 770 for high-speed communication.
  • a status signal is periodically transmitted from the intermediate processing device 770 to the data processing device 768, and the control state monitoring process is performed by the data processing device 768.
  • the data processing device 768 receives status signals from the plurality of board processing devices 764, and plans the next process process for each board processing device 764.
  • a planning signal of the process process based on the plan is sent to each substrate processing apparatus 764, and each substrate processing apparatus 764 performs the preparation of the polishing process and the execution of the polishing process independently of each other. In this way, high-speed end point detection control is performed by the intermediate processing device 770 for high-speed communication, and state management of the plurality of board processing devices 764 is performed by the data processing device 768.
  • the data set includes pressing the top ring 31A against the semiconductor wafer 16, the current of the swing shaft motor 14, the motor current of the polishing table 30A, the measurement signal of the optical sensor, the measurement signal of the eddy current sensor, and the polishing pad 10.
  • the position / slurry of the top ring 31A, the flow / type of the chemical solution, the correlation calculation data thereof, and the like can be included.
  • the above types of data sets can be transmitted using a transmission system that transmits one-dimensional data in parallel or a transmission system that transmits one-dimensional data sequentially.
  • a data set the above-mentioned one-dimensional data can be processed into two-dimensional data to form a data set.
  • the X-axis is time and the Y-axis is a large number of data strings
  • a plurality of parameter data at the same time are processed into one data set.
  • Two-dimensional data can be treated as something like two-dimensional image data. This merit is that since the transfer of two-dimensional data is performed, the data can be exchanged and handled as time-related data with less wiring than the transfer of one-dimensional data.
  • FIG. 22 is a diagram showing a modified example of the embodiment of FIG.
  • This embodiment is an example of a semiconductor factory.
  • the substrate processing apparatus 764 that performs polishing and end point detection may have the same equipment and functions as those shown in FIGS. 19 to 21.
  • the amount of sensor signal data is large.
  • communication is performed using the Internet in order to create a data set and perform data analysis and update of polishing condition parameters, communication takes time.
  • the communication line L1 connecting the substrate processing device 764 and the intermediate processing device 770 is performed by using a high-speed communication device that performs high-speed optical communication, high-speed wireless communication, or the like.
  • the intermediate processing device 770 is located near the sensor or the substrate processing device 764 and processes the signal from the sensor or the controller of the sensor at high speed.
  • a signal for performing feedback or feedforward parameter update reflecting the processing result is transmitted to the substrate processing apparatus 764 at high speed.
  • the substrate processing apparatus 764 receives the signal for updating the parameters, performs polishing processing, and detects the end point.
  • the first processing device 772 when there are a plurality of substrate processing devices 764, there may be a first processing device 772 that receives signals from each substrate processing device 764 and performs processing in the factory.
  • the first processing device 772 has a medium-sized memory and a calculation function, and can perform high-speed calculation.
  • the first processing device 772 has an automatic learning function, performs automatic learning while accumulating data, and updates parameters for improving the uniformity of processing amount, improving the end point detection accuracy, and the like. By automatic learning, it is possible to continuously update the parameters to bring the parameters closer to the optimum values.
  • high-speed communication is required when performing online processing in In situ, and the communication line L1 / communication line L2 is, for example, a high-speed optical communication communication line.
  • the data set creation is performed by the intermediate processing device 770, and the data analysis and parameter update can be performed by the first processing device 772. Then, a signal for reflecting the update parameter value to each board processing device 764 is sent to the board processing device 764 by the communication line L1 / communication line L2.
  • the communication line L2 is relatively low speed, such as a communication line for Internet communication. In some cases, a communication line is sufficient.
  • the initial polishing data is processed in the intermediate processing device 770, and the generated data set is sent to the first processing device 772 via the Internet.
  • the first processing device 772 obtains analysis and parameter update values, and creates an update data set.
  • the first processing device 772 sends it to the intermediate processing device 770.
  • the update parameter value reflected from the update data set in the intermediate processing device 770 is sent to the substrate processing device 764, and the polishing is performed accordingly.
  • the network 766 is used from the first processing device 772 to exchange data related to the information with the second processing device 774 outside the factory or a management device such as a personal computer.
  • the data related to the information may be encrypted in order to ensure security.
  • the data related to the information there is data indicating information related to the status of the substrate processing apparatus 764.
  • the replacement time is calculated by the second external processing device 774, and the customer is notified of the replacement time, or the board processing device 764 It can be displayed above.
  • FIG. 23 is a diagram showing a modified example of the embodiment of FIG.
  • This embodiment is an example of a semiconductor factory.
  • the substrate processing apparatus 764 that performs polishing and end point detection may have the same equipment and functions as those shown in FIGS. 19 to 21.
  • the present embodiment is different in that there is a communication line L3 connected from the substrate processing device 764 to the first processing device 772 without going through the intermediate processing device 770.
  • the feature of this embodiment is that communication using high-speed communication line L1 and communication line L2 is used for data communication that is created from data from a large number of sensors and forms a data set that requires high-speed communication for the creation. Is to use.
  • Other control parameter communication that does not require high-speed communication is performed by connecting the board processing device 764 to the first processing device 772 via the communication line L3.
  • the substrate processing device 764 is used as the first processing device 772 by the communication line L3. Connect and do.
  • Parameter signals and sensor signals that require high-speed communication, high-speed analysis, and high-speed communication data sets are variably selected according to the operating status of the board processing device 764, and the signals and the like are selected using the communication line L1 and the communication line L2. It may be transmitted and received.
  • data from the board processing device 764 is sent to the first processing device 772 in the factory using the communication line L2 and the communication line L3, and data analysis, automatic learning, parameter update value creation, and the like are performed. .. Then, the first processing device 772 sends the control parameters of the device in the next step to each substrate processing device 764.
  • the first processing device 772 receives data from the plurality of board processing devices 764, processes the data, and makes each board processing device. The processing result can be sent to 764 via the intermediate processing apparatus 770.
  • a configuration without a communication line L2 is also possible.
  • the data related to the status of the high-speed processing state processed by the intermediate processing device 770 without using the communication line L2, together with the data related to the other device status status, is the first processing device via the communication line L3. It is possible to send to 772.
  • the wiring for the communication line related to the communication line L2 can be reduced. That is, only where high-speed data processing and high-speed control are required, the high-speed communication line and the high-speed intermediate processing device 770 perform data processing, automatic learning, and control parameter update, and send the processing result to the board processing device 764.
  • the status signals related to high-speed data processing and high-speed control and other status signals are sent together on the communication line L3 to the first processing device 772, and the first processing device 772 performs data processing, automatic learning, and control parameter update. Then, it is possible to send a signal including the processing result to each substrate processing apparatus 764.
  • one first processing device 772 can handle a plurality of substrate processing devices 764. In these forms, the communication outside the factory is the same as that in FIG. 22.
  • the data set is a type of sensor suitable for the film when it is created by importing data from all types of sensors and when it is detected of the polishing state of the film. You may want to create a dataset by selecting data from.
  • the detection of the polishing state of the film there are the following data sets when creating a data set by selecting data from a sensor of the type suitable for the film.
  • the value of the calculated data becomes high for the optical sensor signal having high sensitivity to the change in film thickness.
  • the target polishing amount can be achieved and the end point is detected. For example, if the measured value by TCM and the arm torque data with the top ring are stable, it is considered that polishing at the same polishing rate is achieved.
  • the conductive film or the metal film is thinned, so that the calculated data of the eddy current sensor and the optical sensor, which are highly sensitive to the change in the film thickness of the conductive film, are used. It is used as a criterion for determining that the film thickness has reached a certain thickness. Similar to (1), when the measured value by TCM and the arm torque data with top ring are stable, the one with the higher calculated data value at the film thickness close to the target value is mainly selected, and the other is selected as the slave. .. The end point is detected by time counting based on the time when the film thickness reaches a certain thickness, mainly based on the change in film thickness based on the data of the selected sensor. Based on the data of the sensor selected as the slave, it is confirmed that there is no deviation (confirmation that the target area is almost reached), and the detection accuracy is improved.
  • a priority ratio coefficient (weighting coefficient) is provided for the target values of both the main sensor and the slave sensor, and the main sensor and the slave sensor are used. It is also possible to specify the influence ratio, set the target value, and detect the end point. In addition, at this time, the data is used as learning data each time the number of times is repeated, and the judgment function is updated by learning in the judgment function (change of priority ratio coefficient, etc.) to improve the end point detection with higher accuracy. It is possible to continue.
  • the reason for performing overpolishing in this way is as follows.
  • polishing residue for example, if there is a metal-embedded vertical wiring, for example, if an oxide film remains on the bottom of the via or plug, the resistance value of the vertical wiring will increase and the circuit will malfunction. Causes. Therefore, overpolishing is performed so that there is no polishing residue.
  • the oxide film usually has small irregularities and is wavy before polishing.
  • overpolishing is performed with the elapse of the predetermined time as the end point detection time, and the polishing apparatus is stopped.
  • Resetting refers to the following processing method, for example.
  • the threshold value of the signal waveform change amount of the arm torque data with the top ring is set as a provisional reference at the start of polishing, and a predetermined time is set as the number of counts of the remaining polishing time based on the time when the waveform is actually detected. It is possible to perform polishing by setting the count number as an update value of the end point detection time. At this time, among the torque data in the TCM and / or the torque data of the arm with the top ring, the one with the higher sensitivity is the main and the one with the lower sensitivity is the slave, and it is possible to process in the same manner as in (2).
  • learning can be used to set polishing parameters and update the set polishing parameters.
  • a plurality of sensors can be used to improve the accuracy of resetting.
  • learning automatic learning is possible, but complex learning with some manuals is also possible.
  • a data set is created using all the sensor signals related to end point detection, but it is also possible to select valid sensor data at the time of creating the data set and create the data set. This is particularly effective in the case of the simple film structures (1), (2), and (3).

Abstract

This end point detecting device has a trained model obtained by machine learning of waveforms of measurement data between the start of polishing and the end of polishing that have been output during polishing in the past from each of a plurality of types of end point detecting sensors provided in one polishing unit. The end point detecting device is provided with a determination unit that receives, as an input, measurement data between the start of polishing and the current point of time that have been newly output during polishing from each of the plurality of types of end point detecting sensors, and estimates, as an output, whether the current point of time is the timing for an end point indicating the end of polishing.

Description

終点検知装置、終点検知方法End point detection device, end point detection method
 本開示は、終点検知装置および終点検知方法に関する。 The present disclosure relates to an end point detection device and an end point detection method.
 近年、半導体デバイスの高集積化が進むにつれて回路の配線が微細化し、配線間距離もより狭くなりつつある。半導体デバイスの製造では、シリコンウエハの上に多くの種類の材料が膜状に繰り返し形成され、積層構造が形成される。この積層構造を形成するためには、ウエハの表面を平坦にする技術が重要となっている。このようなウエハの表面を平坦化する一手段として、化学機械研磨(CMP)を行う研磨装置(化学的機械的研磨装置ともいう)が広く用いられている。 In recent years, as the integration of semiconductor devices has progressed, the wiring of circuits has become finer and the distance between wirings has become narrower. In the manufacture of semiconductor devices, many types of materials are repeatedly formed in a film shape on a silicon wafer to form a laminated structure. In order to form this laminated structure, a technique for flattening the surface of the wafer is important. As a means for flattening the surface of such a wafer, a polishing apparatus (also referred to as a chemical mechanical polishing apparatus) that performs chemical mechanical polishing (CMP) is widely used.
 この種の研磨装置は、一般に、研磨対象物(ウエハ等の基板)を研磨するための研磨パッドが取り付けられた研磨テーブルと、研磨対象物を保持して研磨パッドに押圧するためにウエハを保持するトップリングとを有している。研磨テーブルおよびトップリングはそれぞれ、駆動部(例えばモータ)によって回転駆動される。さらに、研磨装置は、研磨液を研磨パッド上に供給するノズルを備えている。ノズルから研磨液を研磨パッド上に供給しながら、トップリングによりウエハを研磨パッドに押し付け、さらにトップリングと研磨テーブルとを相対移動させることにより、ウエハを研磨してその表面を平坦にする。 This type of polishing device generally holds a polishing table equipped with a polishing pad for polishing an object to be polished (a substrate such as a wafer) and a wafer to hold the object to be polished and press it against the polishing pad. Has a top ring to polish. The polishing table and the top ring are each rotationally driven by a drive unit (for example, a motor). Further, the polishing apparatus includes a nozzle for supplying a polishing liquid onto the polishing pad. While supplying the polishing liquid from the nozzle onto the polishing pad, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten its surface.
 研磨装置では、研磨対象物の研磨が不十分であると、回路間の絶縁がとれず、ショートするおそれが生じる。また、過研磨となった場合は、配線の断面積が減ることによる抵抗値の上昇、または配線自体が完全に除去され、回路自体が形成されないなどの問題が生じる。このため、研磨装置では、最適な研磨終点を検出することが求められる。 In the polishing device, if the object to be polished is not sufficiently polished, the insulation between the circuits cannot be obtained and there is a risk of short circuit. Further, in the case of overpolishing, there arises a problem that the resistance value increases due to the decrease in the cross-sectional area of the wiring, or the wiring itself is completely removed and the circuit itself is not formed. Therefore, the polishing apparatus is required to detect the optimum polishing end point.
 研磨終点検出手段の一つとして、研磨が異材質の物質へ移行した際の研磨摩擦力の変化を検出する方法が知られている。研磨対象物である半導体ウエハは、半導体、導体、絶縁体の異なる材質からなる積層構造を有しており、異材質層間で摩擦係数が異なる。このため、研磨が異材質層へ移行することによって生じる研磨摩擦力の変化を検出する方法である。この方法によれば、研磨が異材質層に達した時が研磨の終点となる。 As one of the polishing end point detecting means, a method of detecting a change in polishing friction force when polishing is transferred to a substance of a different material is known. The semiconductor wafer, which is the object to be polished, has a laminated structure made of different materials such as a semiconductor, a conductor, and an insulator, and has a different coefficient of friction between layers of different materials. Therefore, this is a method of detecting a change in polishing friction force caused by the transfer of polishing to a different material layer. According to this method, the end point of polishing is when the polishing reaches a different material layer.
 また、研磨装置は、研磨対象物の研磨表面が平坦ではない状態から平坦になった際の研磨摩擦力の変化を検出することにより、研磨終点を検出することもできる。 Further, the polishing apparatus can also detect the polishing end point by detecting the change in the polishing friction force when the polishing surface of the object to be polished becomes flat from the non-flat state.
 ここで、研磨対象物を研磨する際に生じる研磨摩擦力は、研磨テーブルまたはトップリングを回転駆動する駆動部の駆動負荷として現れる。例えば、駆動部が電動モータの場合には、駆動負荷(トルク)はモータに流れる電流として測定することができる。このため、モータ電流(トルク電流)を電流センサで検出し、検出したモータ電流の変化に基づいて研磨の終点を検出することができる。 Here, the polishing frictional force generated when polishing the object to be polished appears as a drive load of a drive unit that rotationally drives the polishing table or top ring. For example, when the drive unit is an electric motor, the drive load (torque) can be measured as a current flowing through the motor. Therefore, the motor current (torque current) can be detected by the current sensor, and the end point of polishing can be detected based on the change in the detected motor current.
 研磨終点検出手段の別の例として、研磨テーブルに組み込まれた光学式センサや渦電流式センサを利用して半導体ウエハの物理量の変化を検出する方法が知られている。 As another example of the polishing end point detecting means, a method of detecting a change in a physical quantity of a semiconductor wafer by using an optical sensor or an eddy current type sensor incorporated in a polishing table is known.
 トルク変動検知(モータ電流変動測定)は、研磨する試料の膜質が変化する部位の終点検知に優れている。光学方式は、層間絶縁膜(ILD)、STI(Shallow Trench Isolation)などの絶縁膜の残膜量の検出と、それによる終点検知に優れている。渦電流方式は、たとえばめっきされた金属膜を研磨して終点である下層の絶縁膜まで研磨した時点の終点検出に優れている。 Torque fluctuation detection (motor current fluctuation measurement) is excellent in detecting the end point of the part where the film quality of the sample to be polished changes. The optical method is excellent in detecting the amount of residual film of an insulating film such as an interlayer insulating film (ILD) and STI (Shallow Trench Isolation) and detecting the end point by the detection. The eddy current method is excellent in detecting the end point at the time when, for example, the plated metal film is polished to the lower insulating film which is the end point.
 特開2018-58197号公報には、複数種類の終点検知センサを組み合わせて利用することが提案されている。 Japanese Unexamined Patent Publication No. 2018-58197 proposes to use a plurality of types of end point detection sensors in combination.
 しかしながら、複数種類の終点検知センサを組み合わせて利用する場合、研磨ユニットごとに個別のチューニング対応にて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示する必要があり、個別対応の作業が多く、個別対応に時間・コストを要していた。また、微細パターンに対応した高精度要求の終点検知に対する精度不足があった。 However, when multiple types of end point detection sensors are used in combination, which end point detection sensor measurement data should be prioritized and when the end point detection sensors should be prioritized by individually tuning each polishing unit. It was necessary for the worker to explicitly instruct whether to switch the order, etc., and there was a lot of work for individual response, which required time and cost for individual response. In addition, there is insufficient accuracy for detecting the end point of a high-precision requirement corresponding to a fine pattern.
 終点検知の精度を向上できる終点検知装置および終点検知方法を提供することが望まれる。 It is desired to provide an end point detection device and an end point detection method that can improve the accuracy of end point detection.
 本開示の一態様に係る終点検知装置は、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル(たとえばチューニングされたニューラルネットワークシステム)を有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
を備える。
The end point detection device according to one aspect of the present disclosure is
A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. It is provided with a determination unit that outputs the data.
 本開示の別の態様に係る終点検知装置は、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル(たとえばチューニングされたニューラルネットワークシステム)を有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
を備える。
The end point detecting device according to another aspect of the present disclosure is
A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And the remaining time from the present time to the end point timing indicating the end of polishing is estimated by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. It is equipped with a determination unit that outputs data.
図1は、一実施の形態に係る基板処理装置の全体構成を示す平面図である。FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment. 図2は、第1研磨ユニットを模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the first polishing unit. 図3は、トップリングの構造の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of the structure of the top ring. 図4は、トップリングの構造の別例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the structure of the top ring. 図5は、トップリングを回転および揺動させる機構を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining a mechanism for rotating and swinging the top ring. 図6は、研磨テーブルの内部構造を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the internal structure of the polishing table. 図7は、研磨テーブルに設けられた光学式センサについて説明するための模式図である。FIG. 7 is a schematic view for explaining an optical sensor provided on the polishing table. 図8は、研磨テーブルに設けられたマイクロ波センサについて説明するための模式図である。FIG. 8 is a schematic view for explaining a microwave sensor provided on the polishing table. 図9は、一実施の形態に係る終点検知部(終点検知装置)の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of an end point detection unit (end point detection device) according to an embodiment. 図10Aは、1つの形態における学習済みモデルの構成の一例を説明するための模式図である。FIG. 10A is a schematic diagram for explaining an example of the configuration of the trained model in one form. 図10Bは、別の形態における学習済みモデルの構成の一例を説明するための模式図である。FIG. 10B is a schematic diagram for explaining an example of the configuration of the trained model in another form. 図11Aは、1つの形態における学習済みモデルの構成の一変形例を説明するための模式図である。FIG. 11A is a schematic diagram for explaining a modified example of the configuration of the trained model in one form. 図11Bは、別の形態における学習済みモデルの構成の一変形例を説明するための模式図である。FIG. 11B is a schematic diagram for explaining a modified example of the configuration of the trained model in another form. 図12は、学習済みモデルの学習内容を説明するためのイメージ図である。FIG. 12 is an image diagram for explaining the learning content of the trained model. 図13は、研磨中のリアルタイムの計測データに対する判定部の処理の一例を説明するための図である。FIG. 13 is a diagram for explaining an example of processing of the determination unit for real-time measurement data during polishing. 図14は、研磨中のリアルタイムの計測データに対する判定部の処理の一例を説明するための図である。FIG. 14 is a diagram for explaining an example of processing of the determination unit for real-time measurement data during polishing. 図15は、研磨中のリアルタイムの計測データに対する判定部の処理の一例を説明するための図である。FIG. 15 is a diagram for explaining an example of processing of the determination unit for real-time measurement data during polishing. 図16は、タイミング調整部の処理の一例を説明するための図である。FIG. 16 is a diagram for explaining an example of processing of the timing adjustment unit. 図17は、タイミング調整部の処理の一例を説明するための図である。FIG. 17 is a diagram for explaining an example of processing of the timing adjustment unit. 図18Aは、一実施の形態に係る終点検知方法の一例を示すフローチャートである。FIG. 18A is a flowchart showing an example of the end point detection method according to the embodiment. 図18Bは、一実施の形態に係る終点検知方法の別例を示すフローチャートである。FIG. 18B is a flowchart showing another example of the end point detection method according to the embodiment. 図19は、制御部による全体の制御を示す図である。FIG. 19 is a diagram showing overall control by the control unit. 図20は、一実施の形態に係る構成を示す図である。FIG. 20 is a diagram showing a configuration according to an embodiment. 図21は、一実施の形態に係る構成の変形例を示す図である。FIG. 21 is a diagram showing a modified example of the configuration according to one embodiment. 図22は、一実施の形態に係る構成の変形例を示す図である。FIG. 22 is a diagram showing a modified example of the configuration according to one embodiment. 図23は、一実施の形態に係る構成の変形例を示す図である。FIG. 23 is a diagram showing a modified example of the configuration according to the embodiment.
 実施形態の第1の態様に係る終点検知装置は、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル(たとえばチューニングされたニューラルネットワークシステム)を有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
を備える。
The end point detection device according to the first aspect of the embodiment is
A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. It is provided with a determination unit for outputting.
 このような態様によれば、1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から新たな研磨時に出力された計測データについて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示しなくても、過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル(たとえばチューニングされたニューラルネットワークシステム)を利用することで、過去の研磨時の計測データの波形との類似性に鑑みて、現時点が終点のタイミングであるか否かを推定して出力することができる。したがって、複数種類の終点検知センサの計測データを最適に組み合わせて利用することが可能となり、終点検知の精度向上が可能となる。 According to such an aspect, which end point detection sensor's measurement data is preferentially used for the measurement data output from each of the plurality of types of end point detection sensors provided in one polishing unit at the time of new polishing. , The waveform of the measurement data from the start of polishing to the end of polishing output during past polishing was machine-learned without the operator explicitly instructing when to switch the priority between the end point detection sensors. By using a trained model (for example, a tuned neural network system), it is estimated and output whether or not the current time is the timing of the end point in view of the similarity with the waveform of the measurement data at the time of past polishing. can do. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors, and it is possible to improve the accuracy of end point detection.
 実施形態の第2の態様に係る終点検知装置は、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル(たとえばチューニングされたニューラルネットワークシステム)を有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
を備える。
The end point detecting device according to the second aspect of the embodiment is
A trained model (for example, a tuned neural network system) that machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the multiple types of end point detection sensors provided in one polishing unit during past polishing. ), And the remaining time from the present time to the end point timing indicating the end of polishing is estimated by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. It is equipped with a determination unit that outputs data.
 このような態様によれば、1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から新たな研磨時に出力された計測データについて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示しなくても、過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル(たとえばチューニングされたニューラルネットワークシステム)を利用することで、過去の研磨時の計測データの波形との類似性に鑑みて、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力することができる。したがって、複数種類の終点検知センサの計測データを最適に組み合わせて利用することが可能となり、終点検知の精度向上が可能となる。 According to such an aspect, which end point detection sensor's measurement data is preferentially used for the measurement data output from each of the plurality of types of end point detection sensors provided in one polishing unit at the time of new polishing. , The waveform of the measurement data from the start of polishing to the end of polishing output during past polishing was machine-learned without the operator explicitly instructing when to switch the priority between the end point detection sensors. By using a trained model (for example, a tuned neural network system), the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated in consideration of the similarity with the waveform of the measurement data at the time of past polishing. Can be output. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors, and it is possible to improve the accuracy of end point detection.
 実施形態の第3の態様に係る終点検知装置は、第1の態様に係る終点検知装置であって、
 前記判定部により現時点が終点のタイミングであると推定された場合に、研磨を止める制御信号を研磨ユニットに送信する第1研磨停止部
をさらに備える。
The end point detecting device according to the third aspect of the embodiment is an end point detecting device according to the first aspect.
A first polishing stop unit is further provided, which transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current time is the timing of the end point.
 実施形態の第4の態様に係る終点検知装置は、第2の態様に係る終点検知装置であって、
 前記判定部により推定された前記残り時間が経過した時に、研磨を止める制御信号を研磨ユニットに送信する第1研磨停止部
をさらに備える。
The end point detecting device according to the fourth aspect of the embodiment is an end point detecting device according to the second aspect.
A first polishing stop unit for transmitting a control signal for stopping polishing to the polishing unit when the remaining time estimated by the determination unit has elapsed is further provided.
 実施形態の第5の態様に係る終点検知装置は、第1または3の態様に係る終点検知装置であって、
 前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定するとともに、現時点の研磨条件が正常であるか否かを推定して出力する。
The end point detecting device according to the fifth aspect of the embodiment is an end point detecting device according to the first or third aspect.
The determination unit inputs measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, and estimates whether or not the present time is the timing of the end point indicating the end of polishing. At the same time, it is estimated and output whether or not the current polishing conditions are normal.
 実施形態の第6の態様に係る終点検知装置は、第3の態様を引用する第5の態様に係る終点検知装置であって、
 前記第1研磨停止部は、前記判定部により、現時点の研磨条件が正常であり、かつ現時点が終点のタイミングであると推定された場合に、研磨を止める制御信号を研磨ユニットに送信する。
The end point detecting device according to the sixth aspect of the embodiment is an end point detecting device according to a fifth aspect that cites the third aspect.
The first polishing stop unit transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current polishing conditions are normal and the current time is the timing of the end point.
 実施形態の第7の態様に係る終点検知装置は、第2または4の態様に係る終点検知装置であって、
 前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの時間を推定するとともに、現時点の研磨条件が正常であるか否かを推定して出力する。
The end point detection device according to the seventh aspect of the embodiment is the end point detection device according to the second or fourth aspect.
The determination unit estimates the time from the present time to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. , Estimates and outputs whether or not the current polishing conditions are normal.
 実施形態の第8の態様に係る終点検知装置は、第4の態様を引用する第7の態様に係る終点検知装置であって、
 前記第1研磨停止部は、前記判定部により、現時点の研磨条件が正常であり、かつ前記残り時間がゼロであると推定された場合に、研磨を止める制御信号を研磨ユニットに送信する。
The end point detection device according to the eighth aspect of the embodiment is an end point detection device according to the seventh aspect that cites the fourth aspect.
The first polishing stop unit transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current polishing conditions are normal and the remaining time is zero.
 実施形態の第9の態様に係る終点検知装置は、第5~8のいずれかの態様に係る終点検知装置であって、
 前記判定部により、現時点の研磨状態が異常であると判定された場合に、研磨を止める制御信号を研磨ユニットに送信するとともに警報を発する第2研磨停止部
をさらに備える。
The end point detecting device according to the ninth aspect of the embodiment is an end point detecting device according to any one of the fifth to eighth aspects.
The determination unit further includes a second polishing stop unit that transmits a control signal for stopping polishing to the polishing unit and issues an alarm when it is determined that the current polishing state is abnormal.
 実施形態の第10の態様に係る終点検知装置は、第1~9のいずれかの態様に係る終点検知装置であって、
 前記複数種類の終点検知センサは、研磨対象物に光を当てその反射率の変化を監視する光学式センサ、研磨対象物に磁力線を当てそこに発生する渦電流による磁力線の変化を監視する渦電流センサ、トップリングを揺動させる揺動機構に加わるトルクの変化を監視する揺動トルクセンサ、研磨テーブルを回転させる回転機構に加わるトルクの変化を監視する回転トルクセンサ、トップリングまたは研磨テーブルの振動を監視する振動センサ、研磨対象物と研磨パッドとの接触部分から発生する音の変化を監視する音センサのうちの2種類以上である。
The end point detecting device according to the tenth aspect of the embodiment is an end point detecting device according to any one of the first to ninth aspects.
The plurality of types of end point detection sensors are an optical sensor that shines light on an object to be polished and monitors a change in its reflectance, and a vortex current that applies a line of magnetic force to the object to be polished and monitors a change in the line of magnetic force due to a vortex current generated there. Vibration of the sensor, rocking torque sensor that monitors the change in torque applied to the rocking mechanism that swings the top ring, rotational torque sensor that monitors the change in torque applied to the rotating mechanism that rotates the polishing table, vibration of the top ring or polishing table There are two or more types of vibration sensors that monitor the change in sound generated from the contact portion between the object to be polished and the polishing pad.
 実施形態の第11の態様に係る終点検知装置は、第1の態様に係る終点検知装置であって、
 前記学習済みモデルは、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッドの温度、スラリの温度、スラリの流量、トップリングの各圧力室の圧力、研磨パッドの使用回数のうちの1つ以上の補助情報との関係性を機械学習しており、
 前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データと研磨開始から現時点までに取得された前記補助情報とを入力として、現時点が終点のタイミングであるか否かを推定して出力する。
The end point detection device according to the eleventh aspect of the embodiment is an end point detection device according to the first aspect.
The trained model has a waveform of measurement data from each of the plurality of types of end point detection sensors output during past polishing from the start of polishing to the end of polishing, and from the start of polishing to the end of polishing acquired during the past polishing. Machine learning the relationship between the polishing pad temperature, slurry temperature, slurry flow rate, pressure in each pressure chamber of the top ring, and one or more auxiliary information of the number of times the polishing pad has been used.
The determination unit receives the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing and the auxiliary information acquired from the start of polishing to the present time, and the present time is It estimates and outputs whether or not it is the timing of the end point.
 このような態様によれば、複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と補助情報との関係性を機械学習した学習済みモデルを利用することで、過去の研磨時の計測データと補助情報の関係性との類似性に鑑みて、現時点が終点のタイミングであるか否かを推定して出力することができる。したがって、複数種類の終点検知センサの計測データと補助情報とを最適に組み合わせて利用することが可能となり、終点検知のさらなる精度向上が可能となる。 According to such an aspect, a trained model in which the relationship between the waveform of the measurement data from the start of polishing to the end of polishing and the auxiliary information output from each of the plurality of types of end point detection sensors during past polishing is machine-learned is obtained. By using it, it is possible to estimate and output whether or not the current time is the timing of the end point in consideration of the similarity between the measurement data at the time of past polishing and the auxiliary information. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors and auxiliary information, and it is possible to further improve the accuracy of end point detection.
 実施形態の第12の態様に係る終点検知装置は、第2の態様に係る終点検知装置であって、
 前記学習済みモデルは、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッドの温度、スラリの温度、スラリの流量、トップリングの各圧力室の圧力、研磨パッドの使用回数のうちの1つ以上の補助情報との関係性を機械学習しており、
 前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データと研磨開始から現時点までに取得された前記補助情報とを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する。
The end point detecting device according to the twelfth aspect of the embodiment is an end point detecting device according to the second aspect.
The trained model has a waveform of measurement data from each of the plurality of types of end point detection sensors output during past polishing from the start of polishing to the end of polishing, and from the start of polishing to the end of polishing acquired during the past polishing. Machine learning the relationship between the polishing pad temperature, slurry temperature, slurry flow rate, pressure in each pressure chamber of the top ring, and one or more auxiliary information of the number of times the polishing pad has been used.
The determination unit receives the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing and the auxiliary information acquired from the start of polishing to the present time as input from the present time. The remaining time until the end point timing indicating the end of polishing is estimated and output.
 このような態様によれば、複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と補助情報との関係性を機械学習した学習済みモデルを利用することで、過去の研磨時の計測データと補助情報の関係性との類似性に鑑みて、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力することができる。したがって、複数種類の終点検知センサの計測データと補助情報とを最適に組み合わせて利用することが可能となり、終点検知のさらなる精度向上が可能となる。 According to such an aspect, a trained model in which the relationship between the waveform of the measurement data from the start of polishing to the end of polishing and the auxiliary information output from each of the plurality of types of end point detection sensors during past polishing is machine-learned is obtained. By using this, the remaining time from the present time to the timing of the end point indicating the end of polishing can be estimated and output in consideration of the similarity between the measurement data at the time of past polishing and the auxiliary information. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors and auxiliary information, and it is possible to further improve the accuracy of end point detection.
 実施形態の第13の態様に係る終点検知装置は、第1~12のいずれかの態様に係る終点検知装置であって、
 前記複数種類の終点検知センサの各々から出力された計測データ間のタイミングを合わせてから判定部に入力するタイミング調整部
をさらに備える。
The end point detecting device according to the thirteenth aspect of the embodiment is an end point detecting device according to any one of the first to twelfth aspects.
Further, a timing adjusting unit is further provided, in which the timings between the measurement data output from each of the plurality of types of end point detection sensors are matched and then input to the determination unit.
 このような態様によれば、複数種類の終点検知センサの各々から出力された計測データの波形をより正確に把握することが可能となり、これにより、現時点が終点のタイミングであるか否かをより正確に判断することが可能となる。したがって、終点検知のさらなる精度向上が可能となる。 According to such an aspect, it becomes possible to more accurately grasp the waveform of the measurement data output from each of the plurality of types of end point detection sensors, thereby making it possible to determine whether or not the current end point timing is reached. It is possible to make an accurate judgment. Therefore, the accuracy of end point detection can be further improved.
 実施形態の第14の態様に係る終点検知装置は、第13の態様に係る終点検知装置であって、
 前記タイミング調整部は、前記複数種類の終点検知センサにタイミング同期信号を同時に入力し、前記複数の終点検知センサの各々から出力された計測データのうち前記タイミング同期信号に起因するパルス部分のタイミングを一致させることにより、前記計測データ間のタイミングを合わせる。
The end point detecting device according to the 14th aspect of the embodiment is an end point detecting device according to the 13th aspect.
The timing adjustment unit simultaneously inputs a timing synchronization signal to the plurality of types of end point detection sensors, and determines the timing of a pulse portion caused by the timing synchronization signal in the measurement data output from each of the plurality of end point detection sensors. By matching, the timings between the measurement data are matched.
 実施形態の第15の態様に係る終点検知装置は、第1~14のいずれかの態様に係る終点検知装置であって、
 前記学習済みモデルは、第1の研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習しているとともに、前記第1の研磨ユニットとは異なる第2の研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習している。
The end point detection device according to the fifteenth aspect of the embodiment is an end point detection device according to any one of the first to fourteenth aspects.
The trained model machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the first polishing unit during the past polishing. Machine learning the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the second polishing unit different from the first polishing unit during the past polishing. There is.
 このような態様によれば、学習済みモデルの学習速度を上げることが可能となり、これにより、終点検知のさらなる精度向上が可能となる。 According to such an aspect, it is possible to increase the learning speed of the trained model, which makes it possible to further improve the accuracy of end point detection.
 実施形態の第16の態様に係る終点検知装置は、第15の態様に係る終点検知装置であって、
 前記第1の研磨ユニットと前記第2の研磨ユニットとは同一の工場内に設置されている。
The end point detecting device according to the 16th aspect of the embodiment is an end point detecting device according to the 15th aspect.
The first polishing unit and the second polishing unit are installed in the same factory.
 実施形態の第17の態様に係る終点検知装置は、第15の態様に係る終点検知装置であって、
 前記第1の研磨ユニットと前記第2の研磨ユニットとは互いに異なる工場内に設置されている。
The end point detecting device according to the 17th aspect of the embodiment is an end point detecting device according to the 15th aspect.
The first polishing unit and the second polishing unit are installed in different factories.
 実施形態の第18の態様に係る終点検知方法は、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを用いて、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までのリアルタイムの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定ステップ
を含む。
The end point detection method according to the eighteenth aspect of the embodiment is
Using a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, the plurality of types are described. A judgment step is performed in which real-time measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and whether or not the present time is the timing of the end point indicating the end of polishing is estimated and output. Including.
 実施形態の第19の態様に係る終点検知方法は、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを用いて、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定ステップ
を含む。
The end point detection method according to the nineteenth aspect of the embodiment is
Using a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, the plurality of types are described. It includes a determination step in which the measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated and output.
 実施形態の第20の態様に係る終点検知プログラムは、
 コンピュータを、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
として機能させる。
The end point detection program according to the twentieth aspect of the embodiment is
Computer,
It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and it is made to function as a judgment unit that estimates and outputs whether or not the present time is the timing of the end point indicating the end of polishing. ..
 実施形態の第21の態様に係る終点検知プログラムは、
 コンピュータを、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
として機能させる。
The end point detection program according to the 21st aspect of the embodiment is
Computer,
It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated and output as a judgment unit.
 実施形態の第22の態様に係るコンピュータ読取可能な記録媒体は、
 コンピュータを、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨中のリアルタイムの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
として機能させる終点検知プログラムを非一時的(non-transitory)に記録している。
The computer-readable recording medium according to the 22nd aspect of the embodiment is
Computer,
It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The end point that functions as a judgment unit that estimates and outputs whether or not the current time is the timing of the end point indicating the end of polishing by inputting real-time measurement data during polishing output from each of the end point detection sensors during new polishing. The detection program is recorded non-transitory.
 実施形態の第23の態様に係るコンピュータ読取可能な記録媒体は、
 コンピュータを、
 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
として機能させる終点検知プログラムを非一時的(non-transitory)に記録している。
The computer-readable recording medium according to the 23rd aspect of the embodiment is
Computer,
It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The end point that functions as a judgment unit that estimates and outputs the remaining time from the current point to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing. The detection program is recorded non-transitory.
 実施形態の第24の態様に係る学習済みモデル(チューニングされたニューラルネットワークシステム)は、
 入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有し、1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から各時点までの計測データを入力層に入力し、それにより出力層から出力される出力結果と、当該時点が終点のタイミングであるか否かの情報とを比較し、その誤差に応じて各ノードのパラメータを更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返すことにより、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習したものであり、
 前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データが入力層に入力されると、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力層から出力するよう、コンピュータを機能させる。
The trained model (tuned neural network system) according to the 24th aspect of the embodiment is
It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer, and is past from each of a plurality of types of end point detection sensors provided in one polishing unit. The measurement data from the start of polishing to each time point output during polishing is input to the input layer, and the output result output from the output layer is compared with the information on whether or not the time point is the end point timing. By repeating the process of updating the parameters of each node according to the error for the measurement data from the start of polishing in the past polishing to each time point, each of the plurality of types of end point detection sensors outputs during the past polishing. This is a machine-learned waveform of the measurement data from the start of polishing to the end of polishing.
When the measurement data from the start of polishing to the present time, which is output from each of the plurality of types of end point detection sensors at the time of new polishing, is input to the input layer, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. And make the computer function to output from the output layer.
 実施形態の第25の態様に係る学習済みモデル(チューニングされたニューラルネットワークシステム)は、
 入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有し、1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から各時点までの計測データを入力層に入力し、それにより出力層から出力される出力結果と、当該時点から研磨終了を示す終点のタイミングまでの残り時間の情報とを比較し、その誤差に応じて各ノードのパラメータを更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返すことにより、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習したものであり、
 前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データが入力層に入力されると、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力層から出力するよう、コンピュータを機能させる。
The trained model (tuned neural network system) according to the 25th aspect of the embodiment is
It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer, and is past from each of a plurality of types of end point detection sensors provided in one polishing unit. The measurement data from the start of polishing to each time point output during polishing is input to the input layer, and the output result output from the output layer and the information on the remaining time from that time point to the timing of the end point indicating the end of polishing By repeating the process of comparing the above and updating the parameters of each node according to the error for the measurement data from the start of polishing to each time point during the past polishing, each of the plurality of types of end point detection sensors in the past This is a machine-learned waveform of the measurement data output from the start of polishing to the end of polishing, which is output during polishing.
When the measurement data from the start of polishing to the present time, which is output from each of the plurality of types of end point detection sensors at the time of new polishing, is input to the input layer, the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated. Make the computer function to output from the output layer.
 以下に、添付の図面を参照して、実施の形態の具体例を詳細に説明する。なお、以下の説明および以下の説明で用いる図面では、同一に構成され得る部分について、同一の符号を用いるとともに、重複する説明を省略する。 The specific examples of the embodiments will be described in detail below with reference to the attached drawings. In the following description and the drawings used in the following description, the same reference numerals are used for parts that can be configured in the same manner, and duplicate description is omitted.
<基板処理装置の全体構成>
 図1は、一実施形態に係る基板処理装置の全体構成を示す平面図である。図1に示すように、この基板処理装置は、略矩形状のハウジング61を備えている。ハウジング61は側壁700を有する。ハウジング61の内部は隔壁1a、1bによってロード/アンロード部62と研磨部63と洗浄部64とに区画されている。これらのロード/アンロード部62、研磨部63、および洗浄部64は、それぞれ独立に組み立てられ、独立に排気される。また、基板処理装置は、基板処理動作を制御する制御部65を有している。
<Overall configuration of board processing equipment>
FIG. 1 is a plan view showing the overall configuration of the substrate processing apparatus according to the embodiment. As shown in FIG. 1, this substrate processing apparatus includes a substantially rectangular housing 61. The housing 61 has a side wall 700. The inside of the housing 61 is divided into a load / unload portion 62, a polishing portion 63, and a cleaning portion 64 by partition walls 1a and 1b. The load / unload section 62, the polishing section 63, and the cleaning section 64 are assembled independently and exhausted independently. Further, the substrate processing apparatus has a control unit 65 that controls the substrate processing operation.
 ロード/アンロード部62は、多数のウエハ(基板)をストックするウエハカセットが載置される2つ以上(本実施形態では4つ)のフロントロード部20を備えている。これらのフロントロード部20はハウジング61に隣接して配置され、基板処理装置の幅方向(長手方向に垂直な方向)に沿って配列されている。フロントロード部20には、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載することができるようになっている。ここで、SMIF、FOUPは、内部にウエハカセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。 The load / unload section 62 includes two or more (four in this embodiment) front load sections 20 on which wafer cassettes for stocking a large number of wafers (boards) are placed. These front load portions 20 are arranged adjacent to the housing 61, and are arranged along the width direction (direction perpendicular to the longitudinal direction) of the substrate processing apparatus. The front load unit 20 can be equipped with an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod). Here, SMIF and FOUP are closed containers that can maintain an environment independent of the external space by storing the wafer cassette inside and covering it with a partition wall.
 また、ロード/アンロード部62には、フロントロード部20の並びに沿って走行機構21が敷設されている。走行機構21上にウエハカセットの配列方向に沿って移動可能な2台の搬送ロボット(ローダー)22が設置されている。搬送ロボット22は走行機構21上を移動することによってフロントロード部20に搭載されたウエハカセットにアクセスできるようになっている。各々の搬送ロボット22は上下に2つのハンドを備えている。上側のハンドは、処理されたウエハをウエハカセットに戻すときに使用される。下側のハンドは、処理前のウエハをウエハカセットから取り出すときに使用される。このように、上下のハンドは使い分けられる。さらに、搬送ロボット22の下側のハンドは、その軸心周りに回転することで、ウエハを反転させることができる。 Further, in the load / unload section 62, a traveling mechanism 21 is laid along the line of the front load section 20. Two transfer robots (loaders) 22 that can move along the arrangement direction of the wafer cassettes are installed on the traveling mechanism 21. The transfer robot 22 can access the wafer cassette mounted on the front load unit 20 by moving on the traveling mechanism 21. Each transfer robot 22 has two hands on the top and bottom. The upper hand is used to return the processed wafer to the wafer cassette. The lower hand is used to remove the unprocessed wafer from the wafer cassette. In this way, the upper and lower hands can be used properly. Further, the lower hand of the transfer robot 22 can invert the wafer by rotating around its axis.
 ロード/アンロード部62は最もクリーンな状態を保つ必要がある領域である。そのため、ロード/アンロード部62の内部は、基板処理装置外部、研磨部63、および洗浄部64のいずれよりも高い圧力に常時維持されている。研磨部63は研磨液としてスラリを用いるため最もダーティな領域である。したがって、研磨部63の内部には負圧が形成され、その圧力は洗浄部64の内部圧力よりも低く維持されている。ロード/アンロード部62には、HEPAフィルタ、ULPAフィルタ、またはケミカルフィルタなどのクリーンエアフィルタを有するフィルタファンユニット(図示せず)が設けられている。フィルタファンユニットからはパーティクルや有毒蒸気、有毒ガスが除去されたクリーンエアが常時吹き出している。 The load / unload section 62 is an area that needs to be kept in the cleanest state. Therefore, the inside of the load / unload section 62 is always maintained at a pressure higher than that of the outside of the substrate processing device, the polishing section 63, and the cleaning section 64. The polishing unit 63 is the dirtiest region because a slurry is used as the polishing liquid. Therefore, a negative pressure is formed inside the polishing portion 63, and the pressure is maintained lower than the internal pressure of the cleaning portion 64. The load / unload section 62 is provided with a filter fan unit (not shown) having a clean air filter such as a HEPA filter, a ULPA filter, or a chemical filter. Clean air from which particles, toxic steam, and toxic gas have been removed is constantly blown out from the filter fan unit.
 研磨部63は、ウエハの研磨(平坦化)が行われる領域であり、第1研磨ユニット3A、第2研磨ユニット3B、第3研磨ユニット3C、第4研磨ユニット3Dを備えている。第1研磨ユニット3A、第2研磨ユニット3B、第3研磨ユニット3C、および第4研磨ユニット3Dは、図1に示すように、基板処理装置の長手方向に沿って配列されている。 The polishing unit 63 is an area where the wafer is polished (flattened), and includes a first polishing unit 3A, a second polishing unit 3B, a third polishing unit 3C, and a fourth polishing unit 3D. As shown in FIG. 1, the first polishing unit 3A, the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D are arranged along the longitudinal direction of the substrate processing apparatus.
 図1に示すように、第1研磨ユニット3Aは、研磨テーブル30Aと、トップリング31Aと、研磨液供給ノズル32Aと、ドレッサ33Aと、アトマイザ34Aとを備えている。研磨テーブル30Aには、研磨面を有する研磨パッド10が取り付けられている。トップリング(保持部)31Aは、ウエハを保持し、かつウエハを研磨テーブル30A上の研磨パッド10に押圧しながら研磨する。研磨液供給ノズル32Aは、研磨パッド10に研磨液やドレッシング液(例えば、純水)を供給する。ドレッサ33Aは、研磨パッド10の研磨面のドレッシングを行う。アトマイザ34Aは、液体(例えば純水)と気体(例えば窒素ガス)の混合流体または液体(例えば純水)を霧状にして研磨面に噴射する。 As shown in FIG. 1, the first polishing unit 3A includes a polishing table 30A, a top ring 31A, a polishing liquid supply nozzle 32A, a dresser 33A, and an atomizer 34A. A polishing pad 10 having a polishing surface is attached to the polishing table 30A. The top ring (holding portion) 31A holds the wafer and polishes the wafer while pressing it against the polishing pad 10 on the polishing table 30A. The polishing liquid supply nozzle 32A supplies a polishing liquid or a dressing liquid (for example, pure water) to the polishing pad 10. The dresser 33A dresses the polished surface of the polishing pad 10. The atomizer 34A atomizes a mixed fluid of a liquid (for example, pure water) and a gas (for example, nitrogen gas) or a liquid (for example, pure water) and injects it onto the polished surface.
 同様に、第2研磨ユニット3Bは、研磨パッド10が取り付けられた研磨テーブル30Bと、トップリング31Bと、研磨液供給ノズル32Bと、ドレッサ33Bと、アトマイザ34Bとを備えている。第3研磨ユニット3Cは、研磨パッド10が取り付けられた研磨テーブル30Cと、トップリング31Cと、研磨液供給ノズル32Cと、ドレッサ33Cと、アトマイザ34Cとを備えている。第4研磨ユニット3Dは、研磨パッド10が取り付けられた研磨テーブル30Dと、トップリング31Dと、研磨液供給ノズル32Dと、ドレッサ33Dと、アトマイザ34Dとを備えている。 Similarly, the second polishing unit 3B includes a polishing table 30B to which the polishing pad 10 is attached, a top ring 31B, a polishing liquid supply nozzle 32B, a dresser 33B, and an atomizer 34B. The third polishing unit 3C includes a polishing table 30C to which a polishing pad 10 is attached, a top ring 31C, a polishing liquid supply nozzle 32C, a dresser 33C, and an atomizer 34C. The fourth polishing unit 3D includes a polishing table 30D to which a polishing pad 10 is attached, a top ring 31D, a polishing liquid supply nozzle 32D, a dresser 33D, and an atomizer 34D.
 第1研磨ユニット3A、第2研磨ユニット3B、第3研磨ユニット3C、および第4研磨ユニット3Dは、互いに同一の構成を有しているので、研磨ユニットの詳細に関しては、以下では、第1研磨ユニット3Aを対象として説明する。 Since the first polishing unit 3A, the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D have the same configuration as each other, the details of the polishing unit will be described below in the first polishing. The unit 3A will be described as a target.
<研磨ユニットの構成>
 図2は、第1研磨ユニット3Aを模式的に示す斜視図である。トップリング31Aは、トップリングシャフト636に支持されている。研磨テーブル30Aの上面には研磨パッド10が貼付されており、この研磨パッド10の上面は半導体ウエハ16を研磨する研磨面を構成する。なお、研磨パッド10に代えて固定砥粒を用いることもできる。トップリング31Aおよび研磨テーブル30Aは、矢印で示すように、その軸心周りに回転するように構成されている。半導体ウエハ16は、トップリング31Aの下面に真空吸着により保持される。研磨時には、研磨液供給ノズル32Aから研磨パッド10の研磨面に研磨液が供給され、研磨対象である半導体ウエハ16がトップリング31Aにより研磨面に押圧されて研磨される。
<Structure of polishing unit>
FIG. 2 is a perspective view schematically showing the first polishing unit 3A. The top ring 31A is supported by the top ring shaft 636. A polishing pad 10 is attached to the upper surface of the polishing table 30A, and the upper surface of the polishing pad 10 constitutes a polishing surface for polishing the semiconductor wafer 16. It should be noted that fixed abrasive grains can be used instead of the polishing pad 10. The top ring 31A and the polishing table 30A are configured to rotate about their axis, as indicated by the arrows. The semiconductor wafer 16 is held on the lower surface of the top ring 31A by vacuum suction. At the time of polishing, the polishing liquid is supplied from the polishing liquid supply nozzle 32A to the polishing surface of the polishing pad 10, and the semiconductor wafer 16 to be polished is pressed against the polishing surface by the top ring 31A to be polished.
 図3は、トップリング31Aの構造を模式的に示す断面図である。トップリング31Aは、トップリングシャフト636の下端に自在継手637を介して連結されている。自在継手637は、トップリング31Aとトップリングシャフト636との互いの傾動を許容しつつ、トップリングシャフト636の回転をトップリング31Aに伝達するボールジョイントである。トップリング31Aは、略円盤状のトップリング本体638と、トップリング本体638の下部に配置されたリテーナリング640とを備えている。トップリング本体638は金属やセラミックス等の強度および剛性が高い材料から形成されている。また、リテーナリング640は、剛性の高い樹脂材またはセラミックス等から形成されている。なお、リテーナリング640をトップリング本体638と一体的に形成することとしてもよい。 FIG. 3 is a cross-sectional view schematically showing the structure of the top ring 31A. The top ring 31A is connected to the lower end of the top ring shaft 636 via a universal joint 637. The universal joint 637 is a ball joint that transmits the rotation of the top ring shaft 636 to the top ring 31A while allowing the top ring 31A and the top ring shaft 636 to tilt each other. The top ring 31A includes a substantially disk-shaped top ring main body 638 and a retainer ring 640 arranged below the top ring main body 638. The top ring body 638 is formed of a material having high strength and rigidity such as metal and ceramics. Further, the retainer ring 640 is formed of a highly rigid resin material, ceramics, or the like. The retainer ring 640 may be integrally formed with the top ring main body 638.
 トップリング本体638およびリテーナリング640の内側に形成された空間内には、半導体ウエハ16に当接する円形の弾性パッド642と、弾性膜からなる環状の加圧シート643と、弾性パッド642を保持する概略円盤状のチャッキングプレート644とが収容されている。弾性パッド642の上周端部はチャッキングプレート644に保持され、弾性パッド642とチャッキングプレート644との間には、4つの圧力室(エアバッグ)P1,P2,P3,P4が設けられている。圧力室P1,P2,P3,P4は弾性パッド642とチャッキングプレート644とによって形成されている。圧力室P1,P2,P3,P4にはそれぞれ流体路651,652,653,654を介して加圧空気等の加圧流体が供給され、あるいは真空引きがされるようになっている。中央の圧力室P1は円形であり、他の圧力室P2,P3,P4は環状である。これらの圧力室P1,P2,P3,P4は、同心上に配列されている。 In the space formed inside the top ring main body 638 and the retainer ring 640, a circular elastic pad 642 that abuts on the semiconductor wafer 16, an annular pressure sheet 643 made of an elastic film, and an elastic pad 642 are held. A roughly disk-shaped chucking plate 644 is housed. The upper peripheral end of the elastic pad 642 is held by the chucking plate 644, and four pressure chambers (airbags) P1, P2, P3, P4 are provided between the elastic pad 642 and the chucking plate 644. There is. The pressure chambers P1, P2, P3, and P4 are formed by an elastic pad 642 and a chucking plate 644. Pressurized fluid such as pressurized air is supplied to the pressure chambers P1, P2, P3, and P4 via the fluid passages 651,652,653,654, respectively, or is evacuated. The central pressure chamber P1 is circular, and the other pressure chambers P2, P3, and P4 are annular. These pressure chambers P1, P2, P3 and P4 are concentrically arranged.
 圧力室P1,P2,P3,P4の内部圧力は後述する圧力調整部により互いに独立して変化させることが可能であり、これにより、半導体ウエハ16の4つの領域、すなわち、中央部、内側中間部、外側中間部、および周縁部に対する押圧力を独立に調整することができる。また、トップリング31Aの全体を昇降させることにより、リテーナリング640を所定の押圧力で研磨パッド10に押圧できるようになっている。チャッキングプレート644とトップリング本体638との間には圧力室P5が形成され、この圧力室P5には流体路655を介して加圧流体が供給され、あるいは真空引きがされるようになっている。これにより、チャッキングプレート644および弾性パッド642全体が上下方向に動くことができる。 The internal pressures of the pressure chambers P1, P2, P3, and P4 can be changed independently of each other by the pressure adjusting unit described later, whereby the four regions of the semiconductor wafer 16, that is, the central portion and the inner intermediate portion, can be changed. , The pressing force on the outer middle part, and the peripheral part can be adjusted independently. Further, by raising and lowering the entire top ring 31A, the retainer ring 640 can be pressed against the polishing pad 10 with a predetermined pressing force. A pressure chamber P5 is formed between the chucking plate 644 and the top ring main body 638, and a pressurized fluid is supplied to the pressure chamber P5 via a fluid passage 655 or is evacuated. There is. As a result, the entire chucking plate 644 and the elastic pad 642 can move in the vertical direction.
 半導体ウエハ16の周端部はリテーナリング640に囲まれており、研磨中に半導体ウエハ16がトップリング31Aから飛び出さないようになっている。圧力室P3を構成する、弾性パッド642の部位には開口(図示せず)が形成されており、圧力室P3に真空を形成することにより半導体ウエハ16がトップリング31Aに吸着保持されるようになっている。また、この圧力室P3に窒素ガス、乾燥空気、圧縮空気等を供給することにより、半導体ウエハ16がトップリング31Aからリリースされるようになっている。 The peripheral end of the semiconductor wafer 16 is surrounded by a retainer ring 640 so that the semiconductor wafer 16 does not pop out from the top ring 31A during polishing. An opening (not shown) is formed in a portion of the elastic pad 642 constituting the pressure chamber P3 so that the semiconductor wafer 16 is adsorbed and held by the top ring 31A by forming a vacuum in the pressure chamber P3. It has become. Further, the semiconductor wafer 16 is released from the top ring 31A by supplying nitrogen gas, dry air, compressed air, or the like to the pressure chamber P3.
 図4は、トップリング31Aの他の構造例を模式的に示す断面図である。この例では、チャッキングプレートは設けられていなく、弾性パッド642はトップリング本体638の下面に取り付けられている。また、チャッキングプレートとトップリング本体638との間の圧力室P5も設けられていない。これに代えて、リテーナリング640とトップリング本体638との間には弾性バッグ646が配置されており、その弾性バッグ646の内部には圧力室P6が形成されている。リテーナリング640はトップリング本体638に対して相対的に上下動可能となっている。圧力室P6には流体路656が連通しており、加圧空気等の加圧流体が流体路656を通じて圧力室P6に供給されるようになっている。圧力室P6の内部圧力は後述する圧力調整部により調整可能となっている。したがって、半導体ウエハ16に対する押圧力とは独立してリテーナリング640の研磨パッド10に対する押圧力を調整することができる。他の構成および動作は、図3に示すトップリングの構成と同一である。本実施形態では、図3または図4のいずれのタイプのトップリングを用いることができる。 FIG. 4 is a cross-sectional view schematically showing another structural example of the top ring 31A. In this example, the chucking plate is not provided, and the elastic pad 642 is attached to the lower surface of the top ring body 638. Further, the pressure chamber P5 between the chucking plate and the top ring main body 638 is not provided. Instead of this, an elastic bag 646 is arranged between the retainer ring 640 and the top ring main body 638, and a pressure chamber P6 is formed inside the elastic bag 646. The retainer ring 640 can move up and down relative to the top ring body 638. A fluid passage 656 communicates with the pressure chamber P6, and a pressurized fluid such as pressurized air is supplied to the pressure chamber P6 through the fluid passage 656. The internal pressure of the pressure chamber P6 can be adjusted by a pressure adjusting unit described later. Therefore, the pressing force on the polishing pad 10 of the retainer ring 640 can be adjusted independently of the pressing force on the semiconductor wafer 16. Other configurations and operations are the same as the configuration of the top ring shown in FIG. In this embodiment, either type of top ring of FIG. 3 or FIG. 4 can be used.
 図5はトップリング31Aを回転および揺動させる機構を説明するための断面図である。トップリングシャフト(例えば、スプラインシャフト)636はトップリングヘッド660に回転自在に支持されている。また、トップリングシャフト636は、プーリ661,662およびベルト663を介してモータM1の回転軸に連結されており、モータM1によってトップリングシャフト636およびトップリング31Aがその軸心周りに回転する。このモータM1はトップリングヘッド660の上部に取り付けられている。また、トップリングヘッド660とトップリングシャフト636とは、上下駆動源としてのエアシリンダ665によって連結されている。このエアシリンダ665に供給されるエア(圧縮気体)によりトップリングシャフト636およびトップリング31Aが一体に上下動する。なお、エアシリンダ665に代えて、ボールねじおよびサーボモータを有する機構を上下駆動源として用いてもよい。 FIG. 5 is a cross-sectional view for explaining a mechanism for rotating and swinging the top ring 31A. The top ring shaft (eg, spline shaft) 636 is rotatably supported by the top ring head 660. Further, the top ring shaft 636 is connected to the rotating shaft of the motor M1 via pulleys 661 and 662 and the belt 663, and the motor M1 rotates the top ring shaft 636 and the top ring 31A around the axis thereof. The motor M1 is attached to the upper part of the top ring head 660. Further, the top ring head 660 and the top ring shaft 636 are connected by an air cylinder 665 as a vertical drive source. The air (compressed gas) supplied to the air cylinder 665 causes the top ring shaft 636 and the top ring 31A to move up and down integrally. Instead of the air cylinder 665, a mechanism having a ball screw and a servomotor may be used as a vertical drive source.
 トップリングヘッド660は、支持軸667に軸受672を介して回転自在に支持されている。この支持軸667は固定軸であり、回転しない構造となっている。トップリングヘッド660にはモータM2が設置されており、トップリングヘッド660とモータM2との相対位置は固定である。このモータM2の回転軸は、図示しない回転伝達機構(歯車など)を介して支持軸667に連結されており、モータM2を回転させることによって、トップリングヘッド660が支持軸667を中心として揺動(スイング)するようになっている。したがって、トップリングヘッド660の揺動運動により、その先端に支持されたトップリング31Aは研磨テーブル30Aの上方の研磨位置と研磨テーブル30Aの側方の搬送位置との間を移動する。なお、本実施形態では、トップリング31Aを揺動させる揺動機構はモータM2から構成される。図5に示すように、トップリング31Aを揺動させる揺動機構(モータM2)には、揺動機構に加わるトルクを検知する揺動トルクセンサ26が接続されている。揺動トルクセンサ26の信号は、後述する制御部65に送信されるようになっている。 The top ring head 660 is rotatably supported by a support shaft 667 via a bearing 672. The support shaft 667 is a fixed shaft and has a structure that does not rotate. A motor M2 is installed on the top ring head 660, and the relative positions of the top ring head 660 and the motor M2 are fixed. The rotation shaft of the motor M2 is connected to the support shaft 667 via a rotation transmission mechanism (gear or the like) (not shown), and by rotating the motor M2, the top ring head 660 swings around the support shaft 667. It is designed to (swing). Therefore, due to the swinging motion of the top ring head 660, the top ring 31A supported at the tip thereof moves between the polishing position above the polishing table 30A and the lateral transport position of the polishing table 30A. In the present embodiment, the swing mechanism for swinging the top ring 31A is composed of the motor M2. As shown in FIG. 5, a swing torque sensor 26 for detecting torque applied to the swing mechanism is connected to the swing mechanism (motor M2) that swings the top ring 31A. The signal of the oscillating torque sensor 26 is transmitted to the control unit 65, which will be described later.
 トップリングシャフト36の内部には、その長手方向に延びる貫通孔(図示せず)が形成されている。上述したトップリング31Aの流体路651,652,653,654,655,656は、この貫通孔を通って、トップリングシャフト636の上端に設けられている回転継手669に接続されている。この回転継手669を介してトップリング31Aに加圧気体(クリーンエア)や窒素ガスなどの流体が供給され、またトップリング31Aから気体が真空排気される。回転継手669には、上記流体通路651,652,653,654,655,656(図3および図4参照)に連通する複数の流体管670が接続され、これら流体管670は圧力調整部675に接続されている。また、エアシリンダ665に加圧空気を供給する流体管671も圧力調整部675に接続されている。 Inside the top ring shaft 36, a through hole (not shown) extending in the longitudinal direction thereof is formed. The fluid passages 651, 652, 652, 654, 655, 656 of the top ring 31A described above are connected to the rotary joint 669 provided at the upper end of the top ring shaft 636 through the through holes. A fluid such as pressurized gas (clean air) or nitrogen gas is supplied to the top ring 31A via the rotary joint 669, and the gas is evacuated from the top ring 31A. A plurality of fluid pipes 670 communicating with the fluid passages 651,652,655,654,655,656 (see FIGS. 3 and 4) are connected to the rotary joint 669, and these fluid pipes 670 are connected to the pressure adjusting unit 675. It is connected. Further, a fluid pipe 671 that supplies pressurized air to the air cylinder 665 is also connected to the pressure adjusting unit 675.
 圧力調整部675は、トップリング31Aに供給される流体の圧力を調整する電空レギュレータや、流体管670,671に接続される配管、これら配管に設けられたエアオペレートバルブ、これらのエアオペレートバルブの作動源となるエアの圧力を調整する電空レギュレータ、トップリング31Aに真空を形成するエジェクタなどを有しており、これらが集合して1つのブロック(ユニット)を構成している。圧力調整部675は、トップリングヘッド660の上部に固定されている。トップリング31Aの圧力室P1,P2,P3,P4,P5(図3参照)に供給される加圧気体や、エアシリンダ665に供給される加圧空気の圧力は、この圧力調整部675の電空レギュレータによって調整される。同様に、圧力調整部675のエジェクタによってトップリング31AのエアバッグP1,P2,P3,P4内や、チャッキングプレート44とトップリング本体38の間の圧力室P5内に真空が形成される。 The pressure adjusting unit 675 includes an electropneumatic regulator that adjusts the pressure of the fluid supplied to the top ring 31A, pipes connected to the fluid pipes 670 and 671, air operated valves provided in these pipes, and these air operated valves. It has an electropneumatic regulator that adjusts the pressure of air that is the operating source of the above, an ejector that forms a vacuum on the top ring 31A, and the like, and these are collectively formed as one block (unit). The pressure adjusting unit 675 is fixed to the upper part of the top ring head 660. The pressure of the pressurized gas supplied to the pressure chambers P1, P2, P3, P4, P5 (see FIG. 3) of the top ring 31A and the pressurized air supplied to the air cylinder 665 is the electric pressure of the pressure adjusting unit 675. Adjusted by an empty regulator. Similarly, a vacuum is formed in the airbags P1, P2, P3, P4 of the top ring 31A and in the pressure chamber P5 between the chucking plate 44 and the top ring main body 38 by the ejector of the pressure adjusting unit 675.
 このように、圧力調整機器である電空レギュレータやバルブがトップリング31Aの近くに設置されているので、トップリング31A内の圧力の制御性が向上される。より具体的には、電空レギュレータと圧力室P1,P2,P3,P4,P5との距離が短いので、制御部65からの圧力変更指令に対する応答性が向上する。同様に、真空源であるエジェクタもトップリング31Aの近くに設置されているので、トップリング31A内に真空を形成するときの応答性が向上する。また、圧力調整部675の裏面を、電装機器の取り付け用台座として利用することができ、従来必要であった取付用のフレームを不要とすることができる。 In this way, since the electropneumatic regulator and the valve, which are pressure adjusting devices, are installed near the top ring 31A, the controllability of the pressure in the top ring 31A is improved. More specifically, since the distance between the electropneumatic regulator and the pressure chambers P1, P2, P3, P4, and P5 is short, the responsiveness to the pressure change command from the control unit 65 is improved. Similarly, since the ejector, which is a vacuum source, is also installed near the top ring 31A, the responsiveness when forming a vacuum in the top ring 31A is improved. Further, the back surface of the pressure adjusting unit 675 can be used as a mounting pedestal for electrical equipment, and a mounting frame, which has been conventionally required, can be eliminated.
 トップリングヘッド660、トップリング31A、圧力調整部675、トップリングシャフト636、モータM1、モータM2、エアシリンダ665は、1つのモジュール(以下、トップリングアッセンブリという)として構成されている。すなわち、トップリングシャフト636、モータM1、モータM2、圧力調整部675、エアシリンダ665は、トップリングヘッド660に取り付けられている。トップリングヘッド660は、支持軸667から取り外しできるように構成されている。したがって、トップリングヘッド660と支持軸667とを分離することにより、トップリングアッセンブリを基板処理装置から取り外すことができる。このような構成によれば、支持軸667やトップリングヘッド660などのメンテナンス性を向上させることができる。例えば、軸受672から異音が発生したときに、軸受672を容易に交換することができ、また、モータM2や回転伝達機構(減速機)を交換する際に、隣接する機器を取り外す必要もない。 The top ring head 660, top ring 31A, pressure adjusting unit 675, top ring shaft 636, motor M1, motor M2, and air cylinder 665 are configured as one module (hereinafter referred to as top ring assembly). That is, the top ring shaft 636, the motor M1, the motor M2, the pressure adjusting unit 675, and the air cylinder 665 are attached to the top ring head 660. The top ring head 660 is configured to be removable from the support shaft 667. Therefore, the top ring assembly can be removed from the substrate processing apparatus by separating the top ring head 660 and the support shaft 667. According to such a configuration, the maintainability of the support shaft 667 and the top ring head 660 can be improved. For example, when an abnormal noise is generated from the bearing 672, the bearing 672 can be easily replaced, and when the motor M2 or the rotation transmission mechanism (reducer) is replaced, it is not necessary to remove the adjacent device. ..
 図6は、研磨テーブル30Aの内部構造を模式的に示す断面図である。図6に示すように、研磨テーブル30Aには、研磨テーブル30Aを回転駆動する回転機構(モータ300)が設けられている。モータ300の動力は、ベルト310を介して研磨テーブル310に固設された主軸320に伝達され、研磨テーブル30Aを回転させる。図6に示すように、研磨テーブル30Aを回転させる回転機構(モータ300)には、回転機構に加わるトルクを検知する回転トルクセンサ330が接続されている。回転トルクセンサ330の信号は、後述する制御部65に送信されるようになっている。 FIG. 6 is a cross-sectional view schematically showing the internal structure of the polishing table 30A. As shown in FIG. 6, the polishing table 30A is provided with a rotation mechanism (motor 300) for rotationally driving the polishing table 30A. The power of the motor 300 is transmitted to the spindle 320 fixed to the polishing table 310 via the belt 310 to rotate the polishing table 30A. As shown in FIG. 6, a rotation torque sensor 330 that detects torque applied to the rotation mechanism is connected to a rotation mechanism (motor 300) that rotates the polishing table 30A. The signal of the rotational torque sensor 330 is transmitted to the control unit 65, which will be described later.
 図6に示すように、研磨テーブル30Aの内部には、半導体ウエハ16の膜の状態を検知する渦電流センサ676Aが埋設されている。渦電流センサ676Aの信号は制御部65に送信され、制御部65によって膜厚を表すモニタリング信号が生成されるようになっている。このモニタリング信号(およびセンサ信号)の値は膜厚自体を示すものではないが、モニタリング信号の値は膜厚に応じて変化する。したがって、モニタリング信号は半導体ウエハ16の膜厚を示す信号ということができる。 As shown in FIG. 6, an eddy current sensor 676A for detecting the state of the film of the semiconductor wafer 16 is embedded inside the polishing table 30A. The signal of the eddy current sensor 676A is transmitted to the control unit 65, and the control unit 65 generates a monitoring signal indicating the film thickness. The value of this monitoring signal (and sensor signal) does not indicate the film thickness itself, but the value of the monitoring signal changes according to the film thickness. Therefore, the monitoring signal can be said to be a signal indicating the film thickness of the semiconductor wafer 16.
 制御部65は、モニタリング信号に基づいて各々の圧力室P1,P2,P3,P4の内部圧力を決定し、決定された内部圧力が各々の圧力室P1,P2,P3,P4に形成されるように圧力調整部675に指令を出すようになっている。図6に示すように、制御部65は、モニタリング信号に基づいて各々の圧力室P1,P2,P3,P4の内部圧力を操作する圧力制御部200と、研磨終点を検知する終点検知部100とを有している。 The control unit 65 determines the internal pressure of each pressure chamber P1, P2, P3, P4 based on the monitoring signal so that the determined internal pressure is formed in each pressure chamber P1, P2, P3, P4. It is designed to issue a command to the pressure adjusting unit 675. As shown in FIG. 6, the control unit 65 includes a pressure control unit 200 that operates the internal pressure of each pressure chamber P1, P2, P3, P4 based on a monitoring signal, and an end point detection unit 100 that detects the polishing end point. have.
 渦電流センサ676Aは、第1研磨ユニット3Aと同様に、第2研磨ユニット3B、第3研磨ユニット3C、および第4研磨ユニット3Dの研磨テーブルにも設けられている。制御部65は、各々の研磨ユニット3A~3Dの渦電流センサ676Aから送られてくる信号からモニタリング信号を生成し、各々の研磨ユニット3A~3Dでのウエハの研磨の進捗を監視する。複数のウエハが研磨ユニット3A~3Dで研磨されている場合、制御部5は、ウエハの膜厚を示すモニタリング信号を研磨中に監視し、それらのモニタリング信号に基づいて、研磨ユニット3A~3Dでの研磨時間がほぼ同一となるようにトップリング31A~31Dの押圧力を制御する。このように研磨中のトップリング31A~31Dの押圧力をモニタリング信号に基づいて調整することで、研磨ユニット3A~3Dでの研磨時間を平準化することができる。 The eddy current sensor 676A is provided on the polishing table of the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D as well as the first polishing unit 3A. The control unit 65 generates a monitoring signal from the signal sent from the eddy current sensor 676A of each polishing unit 3A to 3D, and monitors the progress of wafer polishing in each polishing unit 3A to 3D. When a plurality of wafers are polished by the polishing units 3A to 3D, the control unit 5 monitors a monitoring signal indicating the thickness of the wafer during polishing, and based on the monitoring signals, the polishing units 3A to 3D monitor the monitoring signals. The pressing force of the top rings 31A to 31D is controlled so that the polishing times of the top rings are substantially the same. By adjusting the pressing force of the top rings 31A to 31D during polishing based on the monitoring signal in this way, the polishing time in the polishing units 3A to 3D can be leveled.
 半導体ウエハ16は、第1研磨ユニット3A、第2研磨ユニット3B、第3研磨ユニット3C、第4研磨ユニット3Dのいずれかで研磨されてもよく、またはこれらの研磨ユニット3A~3Dから予め選択された複数の研磨ユニットで連続的に研磨されてもよい。例えば、半導体ウエハ16を第1研磨ユニット3A→第2研磨ユニット3Bの順で研磨してもよく、または半導体ウエハ16を第3研磨ユニット3C→第4研磨ユニット3Dの順で研磨してもよい。さらに、半導体ウエハ16を第1研磨ユニット3A→第2研磨ユニット3B→第3研磨ユニット3C→第4研磨ユニット3Dの順で研磨してもよい。いずれの場合でも、研磨ユニット3A~3Dのすべての研磨時間を平準化することで、スループットを向上させることができる。 The semiconductor wafer 16 may be polished by any of the first polishing unit 3A, the second polishing unit 3B, the third polishing unit 3C, and the fourth polishing unit 3D, or is selected in advance from these polishing units 3A to 3D. It may be continuously polished by a plurality of polishing units. For example, the semiconductor wafer 16 may be polished in the order of the first polishing unit 3A → the second polishing unit 3B, or the semiconductor wafer 16 may be polished in the order of the third polishing unit 3C → the fourth polishing unit 3D. .. Further, the semiconductor wafer 16 may be polished in the order of the first polishing unit 3A → the second polishing unit 3B → the third polishing unit 3C → the fourth polishing unit 3D. In any case, the throughput can be improved by leveling all the polishing times of the polishing units 3A to 3D.
 渦電流センサ676Aは、ウエハの膜が金属膜である場合に好適に用いられる。ウエハの膜が酸化膜などの光透過性を有する膜である場合には、渦電流センサ676Aの代わりに、または渦電流センサ676Aとともに、光学式センサを用いてもよい。あるいは、渦電流センサ676Aの代わりに、または渦電流センサ676Aとともに、マイクロ波センサを用いてもよい。マイクロ波センサは、金属膜および非金属膜のいずれの場合にも用いることができる。以下、光学式センサおよびマイクロ波センサの一例について説明する。 The eddy current sensor 676A is preferably used when the wafer film is a metal film. When the film of the wafer is a film having light transmittance such as an oxide film, an optical sensor may be used instead of the eddy current sensor 676A or together with the eddy current sensor 676A. Alternatively, a microwave sensor may be used in place of the eddy current sensor 676A or in combination with the eddy current sensor 676A. The microwave sensor can be used for both metal and non-metal films. Hereinafter, an example of an optical sensor and a microwave sensor will be described.
 図7は、研磨テーブル30Aに設けられた光学式センサ676Bを説明するための模式図である。図7に示すように、研磨テーブル30Aの内部に、半導体ウエハ16の膜の状態を検知する光学式センサ676Bが埋設されている。この光学式センサ676Bは、半導体ウエハ16に光を照射し、半導体ウエハ16からの反射光の強度(反射強度または反射率)から半導体ウエハ16の膜の状態(膜厚など)を検知する。 FIG. 7 is a schematic view for explaining the optical sensor 676B provided on the polishing table 30A. As shown in FIG. 7, an optical sensor 676B for detecting the state of the film of the semiconductor wafer 16 is embedded inside the polishing table 30A. The optical sensor 676B irradiates the semiconductor wafer 16 with light and detects the state of the film (thickness, etc.) of the semiconductor wafer 16 from the intensity (reflection intensity or reflectance) of the reflected light from the semiconductor wafer 16.
 また、研磨パッド10には、光学式センサ676Bからの光を透過させるための透光部677が取付けられている。この透光部677は、透過率の高い材質で形成されており、例えば、石英ガラス、ガラス材料、純水(流路あり)などにより形成される。あるいは、研磨パッド10に貫通孔を設け、この貫通孔が半導体ウエハ16に塞がれる間下方から透明液を流すことにより、透光部677を構成してもよい。透光部677は、トップリング31Aに保持された半導体ウエハ16の中心を通過する位置に配置される。 Further, the polishing pad 10 is provided with a light transmitting portion 677 for transmitting light from the optical sensor 676B. The translucent portion 677 is made of a material having a high transmittance, and is formed of, for example, quartz glass, a glass material, pure water (with a flow path), or the like. Alternatively, the light-transmitting portion 677 may be formed by providing a through hole in the polishing pad 10 and allowing a transparent liquid to flow from below while the through hole is closed by the semiconductor wafer 16. The translucent portion 677 is arranged at a position where it passes through the center of the semiconductor wafer 16 held by the top ring 31A.
 光学式センサ676Bは、図7に示すように、光源678aと、光源678aからの光を半導体ウエハ16の被研磨面に照射する発光部としての発光光ファイバ678bと、被研磨面からの反射光を受光する受光部としての受光光ファイバ678cと、受光光ファイバ678cにより受光された光を分光する分光器およびこの分光器により分光された光を電気的情報として蓄積する複数の受光素子とを内部に有する分光器ユニット678dと、光源678aの点灯および消灯や分光器ユニット678d内の受光素子の読取開始のタイミングなどの制御を行う動作制御部678eと、動作制御部678eに電力を供給する電源678fとを備えている。なお、光源678aおよび分光器ユニット678dには、動作制御部678eを介して電力が供給される。 As shown in FIG. 7, the optical sensor 676B includes a light source 678a, a light emitting optical fiber 678b as a light emitting portion that irradiates the surface to be polished of the semiconductor wafer 16 with light from the light source 678a, and reflected light from the surface to be polished. A light receiving optical fiber 678c as a light receiving unit that receives light, a spectroscope that disperses the light received by the light receiving optical fiber 678c, and a plurality of light receiving elements that store the light dispersed by the spectroscope as electrical information are inside. The spectroscope unit 678d, the operation control unit 678e that controls the on / off of the light source 678a and the timing of reading start of the light receiving element in the spectroscope unit 678d, and the power supply 678f that supplies power to the operation control unit 678e. And have. Power is supplied to the light source 678a and the spectroscope unit 678d via the operation control unit 678e.
 発光光ファイバ678bの発光端と受光光ファイバ678cの受光端は、半導体ウエハ16の被研磨面に対して略垂直になるように構成されている。分光器ユニット678d内の受光素子としては、例えば128素子のフォトダイオードアレイを用いることができる。分光器ユニット678dは、動作制御部678eに接続されている。分光器ユニット678d内の受光素子からの情報は、動作制御部678eに送られ、この情報に基づいて反射光のスペクトルデータが生成される。すなわち、動作制御部678eは、受光素子に蓄積された電気的情報を読み取って反射光のスペクトルデータを生成する。このスペクトルデータは、波長に従って分解された反射光の強度を示し、膜厚によって変化する。 The light emitting end of the light emitting optical fiber 678b and the light receiving end of the light receiving optical fiber 678c are configured to be substantially perpendicular to the surface to be polished of the semiconductor wafer 16. As the light receiving element in the spectroscope unit 678d, for example, a 128-element photodiode array can be used. The spectroscope unit 678d is connected to the operation control unit 678e. Information from the light receiving element in the spectroscope unit 678d is sent to the operation control unit 678e, and spectral data of reflected light is generated based on this information. That is, the motion control unit 678e reads the electrical information stored in the light receiving element and generates the spectrum data of the reflected light. This spectral data shows the intensity of the reflected light decomposed according to the wavelength, and changes depending on the film thickness.
 動作制御部678eは、上述した制御部65に接続されている。このようにして、動作制御部678eで生成されたスペクトルデータは、制御部65に送信される。制御部65では、動作制御部678eから受信したスペクトルデータに基づいて、半導体ウエハ16の膜厚に関連付けられた特性値を算出して、これをモニタリング信号として使用する。 The operation control unit 678e is connected to the control unit 65 described above. In this way, the spectrum data generated by the operation control unit 678e is transmitted to the control unit 65. The control unit 65 calculates a characteristic value associated with the film thickness of the semiconductor wafer 16 based on the spectrum data received from the operation control unit 678e, and uses this as a monitoring signal.
 図8は、研磨テーブル30Aに設けられたマイクロ波センサ676Cを説明するための模式図である。マイクロ波センサ676Cは、マイクロ波を半導体ウエハ16の被研磨面に向けて照射するアンテナ680aと、アンテナ680aにマイクロ波を供給するセンサ本体680bと、アンテナ680aとセンサ本体680bとを接続する導波管681とを備えている。アンテナ680aは研磨テーブル30Aに埋設されており、トップリング31Aに保持された半導体ウエハ16の中心位置に対向するように配置されている。アンテナ680aは、研磨ヘッド(トップリング)31Aを揺動する時に、研磨ヘッド31Aの中心が通過する軌跡上のいずれかの場所にあってもよい。 FIG. 8 is a schematic diagram for explaining the microwave sensor 676C provided on the polishing table 30A. The microwave sensor 676C is a waveguide that connects an antenna 680a that irradiates the surface to be polished of the semiconductor wafer 16 with microwaves, a sensor body 680b that supplies microwaves to the antenna 680a, and the antenna 680a and the sensor body 680b. It is equipped with a tube 681. The antenna 680a is embedded in the polishing table 30A and is arranged so as to face the center position of the semiconductor wafer 16 held by the top ring 31A. The antenna 680a may be located anywhere on the trajectory through which the center of the polishing head 31A passes when the polishing head (top ring) 31A is swung.
 センサ本体680bは、マイクロ波を生成してアンテナ680aにマイクロ波を供給するマイクロ波源680cと、マイクロ波源680cにより生成されたマイクロ波(入射波)と半導体ウエハ16の表面から反射したマイクロ波(反射波)とを分離させる分離器680dと、分離器680dにより分離された反射波を受信して反射波の振幅および位相を検出する検出部680eとを備えている。なお、分離器680dとしては、方向性結合器が好適に用いられる。 The sensor body 680b includes a microwave source 680c that generates microwaves and supplies microwaves to the antenna 680a, microwaves (incident waves) generated by the microwave source 680c, and microwaves (reflection) reflected from the surface of the semiconductor wafer 16. It is provided with a separator 680d for separating the wave) and a detection unit 680e for receiving the reflected wave separated by the separator 680d and detecting the amplitude and phase of the reflected wave. As the separator 680d, a directional coupler is preferably used.
 アンテナ680aは導波管681を介して分離器680dに接続されている。マイクロ波源680cは分離器680dに接続され、マイクロ波源680cにより生成されたマイクロ波は、分離器680dおよび導波管681を介してアンテナ680aに供給される。マイクロ波はアンテナ680aから半導体ウエハ16に向けて照射され、研磨パッド610を透過(貫通)して半導体ウエハ16に到達する。半導体ウエハ16からの反射波は再び研磨パッド10を透過した後、アンテナ680aにより受信される。 The antenna 680a is connected to the separator 680d via a waveguide 681. The microwave source 680c is connected to the separator 680d, and the microwave generated by the microwave source 680c is supplied to the antenna 680a via the separator 680d and the waveguide 681. The microwave is irradiated from the antenna 680a toward the semiconductor wafer 16 and passes through (penetrates) the polishing pad 610 to reach the semiconductor wafer 16. The reflected wave from the semiconductor wafer 16 passes through the polishing pad 10 again and is received by the antenna 680a.
 反射波はアンテナ680aから導波管681を介して分離器680dに送られ、分離器680dによって入射波と反射波とが分離される。分離器680dにより分離された反射波は検出部680eに送信される。検出部680eでは反射波の振幅および位相が検出される。反射波の振幅は電力(dbmまたはW)または電圧(V)として検出され、反射波の位相は検出部680eに内蔵された位相計測器(図示せず)により検出される。検出部680eによって検出された反射波の振幅および位相は制御部65に送られ、ここで反射波の振幅および位相に基づいて半導体ウエハ16の金属膜や非金属膜などの膜厚が解析される。解析された値は、モニタリング信号として制御部65により監視される。 The reflected wave is sent from the antenna 680a to the separator 680d via the waveguide 681, and the incident wave and the reflected wave are separated by the separator 680d. The reflected wave separated by the separator 680d is transmitted to the detection unit 680e. The detection unit 680e detects the amplitude and phase of the reflected wave. The amplitude of the reflected wave is detected as electric power (dbm or W) or voltage (V), and the phase of the reflected wave is detected by a phase measuring instrument (not shown) built in the detection unit 680e. The amplitude and phase of the reflected wave detected by the detection unit 680e are sent to the control unit 65, where the film thickness of the metal film or non-metal film of the semiconductor wafer 16 is analyzed based on the amplitude and phase of the reflected wave. .. The analyzed value is monitored by the control unit 65 as a monitoring signal.
<終点検知部の構成>
 次に、上述した制御部65が有する終点検知部100(終点検知装置)の構成について説明する。図9は、終点検知部100の構成を示すブロック図である。
<Configuration of end point detector>
Next, the configuration of the end point detection unit 100 (end point detection device) included in the control unit 65 described above will be described. FIG. 9 is a block diagram showing the configuration of the end point detection unit 100.
 図9に示すように、終点検知部100は、タイミング調整部110と、判定部120と、第1研磨停止部130と、第2研磨停止部140とを有している。 As shown in FIG. 9, the end point detecting unit 100 includes a timing adjusting unit 110, a determination unit 120, a first polishing stop unit 130, and a second polishing stop unit 140.
 判定部120は、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(図示された例では第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル121(たとえばチューニングされたニューラルネットワークシステム)を有している。 The determination unit 120 polishes from the start of polishing output from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53 in the illustrated example) provided in one polishing unit 3A during past polishing. It has a trained model 121 (for example, a tuned neural network system) in which the waveform of the measurement data up to the end is machine-learned.
 複数種類の終点検知センサ(第1~第3センサ51~53)は、研磨対象物に光を当てその反射率の変化を監視する光学式センサ676B(図7参照)、研磨対象物に磁力線を当てそこに発生する渦電流による磁力線の変化を監視する渦電流センサ676A(図6参照)、トップリング31Aを揺動させる揺動機構(モータM2)に加わるトルクの変化を監視する揺動トルクセンサ26(図5参照)、研磨テーブル30Aを回転させる回転機構(モータ300)に加わるトルクの変化を監視する回転トルクセンサ330(図6参照)、トップリング31Aまたは研磨テーブル30Aの振動を監視する振動センサ(不図示)、ウエハ16と研磨パッド10との接触部分から発生する音の変化を監視する音センサ(不図示)のうちの2種類以上である。 The plurality of types of end point detection sensors (first to third sensors 51 to 53) are an optical sensor 676B (see FIG. 7) that irradiates light on the object to be polished and monitors the change in the reflectance, and magnetic lines of force on the object to be polished. A vortex current sensor 676A (see FIG. 6) that monitors changes in magnetic field lines due to eddy currents generated there, and a swing torque sensor that monitors changes in torque applied to the swing mechanism (motor M2) that swings the top ring 31A. 26 (see FIG. 5), rotational torque sensor 330 (see FIG. 6) that monitors changes in torque applied to the rotating mechanism (motor 300) that rotates the polishing table 30A, vibration that monitors the vibration of the top ring 31A or polishing table 30A. Two or more of a sensor (not shown) and a sound sensor (not shown) that monitors a change in sound generated from a contact portion between the wafer 16 and the polishing pad 10.
 学習済みモデル121の学習方法(ニューラルネットワークシステムのチューニング方法)は、教師あり学習であってもよいし、教師なし学習であってもよいし、強化学習であってもよい。図10は、学習済みモデル121の構成の一例を説明するための模式図である。図10に示すように、学習済みモデル121は、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいてもよい。学習済みモデル121は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。 The learning method (neural network system tuning method) of the trained model 121 may be supervised learning, unsupervised learning, or reinforcement learning. FIG. 10 is a schematic diagram for explaining an example of the configuration of the trained model 121. As shown in FIG. 10, the trained model 121 is a hierarchical neural network or quantum neural network having an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It may include a network (QNN). The trained model 121 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
 1つの形態として、学習済みモデル121の生成方法の一例について説明すると、図10Aに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から各時点までの計測データを入力層に入力し、それにより出力層から出力される出力結果と、当該時点の計測データに紐づけられた、当該時点の研磨条件が正常であるか否か、および当該時点が終点(すなわち研磨終了)のタイミングであるか否かの情報とを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返す。これにより、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル121(チューニングされたニューラルネットワークシステム)が生成される。 As one form, an example of a method of generating the trained model 121 will be described. As shown in FIG. 10A, a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A will be described. ), The measurement data from the start of polishing to each time point output during the past polishing is input to the input layer, and the output result output from the output layer is linked to the measurement data at that time point. Compare the information on whether the polishing conditions at the time point are normal and whether the time point is the timing of the end point (that is, the end of polishing), and the parameters (weights and thresholds) of each node according to the error. The process of updating) is repeated for the measurement data from the start of polishing to each time point in the past polishing. As a result, the waveform of the measurement data from the start to the end of polishing output from the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing is machined. The trained trained model 121 (tuned neural network system) is generated.
 別の形態として、学習済みモデル121の生成方法の一例について説明すると、図10Bに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から各時点までの計測データを入力層に入力し、それにより出力層から出力される出力結果と、当該時点の計測データに紐づけられた、当該時点の研磨条件が正常であるか否か、および当該時点から終点(すなわち研磨終了)までの残り時間の情報とを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返す。これにより、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル121(チューニングされたニューラルネットワークシステム)が生成される。 As another embodiment, an example of a method of generating the trained model 121 will be described. As shown in FIG. 10B, a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A will be described. ), The measurement data from the start of polishing to each time point output during the past polishing is input to the input layer, and the output result output from the output layer is linked to the measurement data at that time point. Compare the information on whether the polishing conditions at that point in time are normal and the remaining time from that point in time to the end point (that is, the end of polishing), and set the parameters (weight, threshold, etc.) of each node according to the error. The process of updating is repeated for the measurement data from the start of polishing to each time point in the past polishing. As a result, the waveform of the measurement data from the start to the end of polishing output from the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing is machined. The trained trained model 121 (tuned neural network system) is generated.
 なお、学習済みモデル121が学習対象とする計測データ(教師データ)に関し、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データのうち、過研磨や研磨不足とならずに正常に研磨終了となった場合の計測データについては、研磨開始から研磨終了までの各時点の研磨条件がいずれも正常であったと紐づけられていてもよい。 Regarding the measurement data (teacher data) to be learned by the trained model 121, the past from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A. Of the measurement data from the start of polishing to the end of polishing output during polishing, the measurement data when the polishing is completed normally without over-polishing or insufficient polishing is for each time point from the start of polishing to the end of polishing. It may be associated that all the polishing conditions were normal.
 図12は、学習済みモデル121の学習内容を説明するためのイメージ図である。図12に示す例では、領域A1~A3は、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に、第1~第3センサ51~53の各々から出力された過去の研磨時の計測データの波形が、統計的に所定の確率(たとえば95%以上の信頼度CL)で含まれる領域を示している。図12に示す例では、研磨開始時点に近い時間帯では、領域A1の幅が領域A2、A3の幅より狭くなっていることから、研磨開始時点に近い時間帯では、第1センサ51から出力される計測データの優先度が、第2、第3センサ52、53から出力される計測データの優先度より高くなっていると解釈できる。他方、研磨終了時点に近い時間帯では、領域A2の幅が領域A1、A3の幅より狭くなっていることから、研磨終了時点に近い時間帯では、第2センサ52から出力される計測データの優先度が、第1、第3センサ51、53から出力される計測データの優先度より高くなっていると解釈できる。 FIG. 12 is an image diagram for explaining the learning content of the trained model 121. In the example shown in FIG. 12, the regions A1 to A3 are each in the past polishing time output from each of the first to third sensors 51 to 53 when the polishing conditions from the start to the end of polishing are normal. The waveform of the measurement data of the above indicates a region that is statistically included with a predetermined probability (for example, a reliability CL of 95% or more). In the example shown in FIG. 12, since the width of the region A1 is narrower than the widths of the regions A2 and A3 in the time zone close to the polishing start time, the output is output from the first sensor 51 in the time zone close to the polishing start time. It can be interpreted that the priority of the measurement data to be measured is higher than the priority of the measurement data output from the second and third sensors 52 and 53. On the other hand, since the width of the region A2 is narrower than the widths of the regions A1 and A3 in the time zone near the end of polishing, the measurement data output from the second sensor 52 is in the time zone near the end of polishing. It can be interpreted that the priority is higher than the priority of the measurement data output from the first and third sensors 51 and 53.
 学習済みモデル121は、第1の研磨ユニット3Aに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習しているとともに、第1の研磨ユニット3Aとは異なる第2の研磨ユニット3Bに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習していてもよい。この場合、学習済みモデル121の学習速度を上げることが可能となる。ここで、図1に示すように、第1の研磨ユニット3Aと第2の研磨ユニット3Bとは、同一の工場内に設置されていてもよい。あるいは、図示は省略するが、第1の研磨ユニット3Aと第2の研磨ユニット3Bとは、互いに異なる工場内に設置されていてもよい。 The trained model 121 machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the first polishing unit 3A during the past polishing. , Machine learning of the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the second polishing unit 3B, which is different from the first polishing unit 3A, during the past polishing. You may be doing it. In this case, the learning speed of the trained model 121 can be increased. Here, as shown in FIG. 1, the first polishing unit 3A and the second polishing unit 3B may be installed in the same factory. Alternatively, although not shown, the first polishing unit 3A and the second polishing unit 3B may be installed in different factories.
 1つの形態として、判定部120は、図10Aに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、上記した一例に係る学習済みモデル121を用いて、現時点の研磨条件が正常であるか否か、および現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する。別の形態として、判定部120は、図10Bに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、上記した学習済みモデル121を用いて、現時点の研磨条件が正常であるか否かを推定するとともに、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力してもよい。 As one form, as shown in FIG. 10A, the determination unit 120 is used for new polishing from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A. Using the output measurement data from the start of polishing to the present time as input, using the trained model 121 according to the above example, whether or not the current polishing conditions are normal, and the timing of the end point indicating the end of polishing at the present time. It is estimated and output whether or not it is. As another form, as shown in FIG. 10B, the determination unit 120 is used during new polishing from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A. Using the output measurement data from the start of polishing to the present time as input, the above-mentioned trained model 121 is used to estimate whether or not the current polishing conditions are normal, and the timing of the end point indicating the end of polishing from the present time. The remaining time until is estimated and output.
 たとえば、図13に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3が、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1~A3に入っており、かつ現時点の時間が研磨終了のタイミングと一致していない場合に、1つの形態として、判定部120は、現時点の研磨条件が正常であり、かつ現時点が研磨終了を示す終点のタイミングではない、と推測して出力する。別の形態として、判定部120は、現時点の研磨条件が正常であると推定するとともに、現時点から研磨終了を示す終点のタイミングまでの残り時間Teを推定して出力してもよい。 For example, as shown in FIG. 13, the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are from the start of polishing to the end of polishing, respectively. If the area A1 to A3 that should be statistically included when the polishing conditions are normal and the current time does not match the timing of the end of polishing, the determination unit 120 is used as one form. Is output by assuming that the polishing conditions at the present time are normal and the current time is not the timing of the end point indicating the end of polishing. As another form, the determination unit 120 may estimate that the polishing conditions at the present time are normal, and estimate and output the remaining time Te from the present time to the timing of the end point indicating the end of polishing.
 また、たとえば、図14に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3が、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1~A3に入っており、かつ現時点の時間が研磨終了のタイミングと一致している場合に、1つの形態として、判定部120は、現時点の研磨条件が正常であり、かつ現時点が研磨終了を示す終点のタイミングである、と推測して出力する。別の形態として、判定部120は、現時点の研磨条件が正常であると推定するとともに、現時点から研磨終了を示す終点のタイミングまでの残り時間Teがゼロであると推定して出力してもよい。 Further, for example, as shown in FIG. 14, the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are obtained from the start of polishing to the end of polishing, respectively. If it is within the areas A1 to A3 that should be statistically included when the polishing conditions up to are normal, and the current time coincides with the timing of the end of polishing, it is determined as one form. The unit 120 estimates that the current polishing conditions are normal and the current time is the timing of the end point indicating the end of polishing, and outputs the data. As another form, the determination unit 120 may estimate that the polishing conditions at the present time are normal, and estimate that the remaining time Te from the present time to the timing of the end point indicating the end of polishing is zero and output. ..
 また、たとえば、図15に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3のいずれか(図示された例では第1センサ51の計測データD1)が、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1から外れている場合には、判定部120は、現時点の研磨条件が異常である、と推測して出力する。なお、図12~図15は、あくまで「イメージ図」であり、これに限定されるものではなく、統計処理を使用せず、正常終了の計測データを用いて学習させた学習済みモデルを用いて正常・異常の判断を出力する方式を用いてもよい。たとえば、学習することにより波形解析予測する学習済みモデルの構築(チューニング)がなされ、1つの形態として、判定部120は、予測した結果として、現時点の終点検出の確率*%と出力してもよい。別の形態として、判定部120は、予測した結果として、終点検出の*s後に*%以上の確率で終点であると出力してもよい。 Further, for example, as shown in FIG. 15, any one of the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing (in the illustrated example). If the measurement data D1) of the first sensor 51 deviates from the region A1 that should be statistically included when the polishing conditions from the start to the end of polishing are normal, the determination unit 120 is at the present time. It is estimated that the polishing conditions of the above are abnormal and output. It should be noted that FIGS. 12 to 15 are merely "image diagrams" and are not limited to these, and are normal using a trained model trained using measurement data of normal termination without using statistical processing. -A method of outputting an abnormality judgment may be used. For example, a trained model that predicts waveform analysis is constructed (tuned) by learning, and as one form, the determination unit 120 may output the probability *% of the current end point detection as the result of the prediction. .. As another form, the determination unit 120 may output, as a result of the prediction, that the end point has a probability of *% or more after * s of the end point detection.
 判定部120は、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データについて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示しなくても、1つの形態として、上記した学習済みモデル121(図10A参照)を利用することで、過去の研磨時の計測データの波形との類似性に鑑みて、現時点の研磨条件が正常であるか否か、および現時点が終点のタイミングであるか否かを推定して出力することができる。また、別の形態として、上記した学習済みモデル121(図10B参照)を利用することで、過去の研磨時の計測データの波形との類似性に鑑みて、現時点の研磨条件が正常であるか否か、および現時点から終点のタイミングまでの残り時間を推定して出力することができる。 When the determination unit 120 preferentially uses the measurement data of which end point detection sensor with respect to the measurement data from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing. By using the above-mentioned trained model 121 (see FIG. 10A) as one form, even if the operator does not explicitly instruct whether to switch the priority order between the end point detection sensors at the timing, the past In view of the similarity with the waveform of the measurement data at the time of polishing, it is possible to estimate and output whether or not the current polishing condition is normal and whether or not the current time is the timing of the end point. Further, as another form, by using the above-mentioned trained model 121 (see FIG. 10B), is the current polishing condition normal in view of the similarity with the waveform of the measurement data at the time of past polishing? Whether or not, and the remaining time from the current time to the end point timing can be estimated and output.
 一変形として、学習済みモデル121は、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(たとえば第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数のうちの1つ以上の補助情報との関係性を機械学習していてもよい。 As a modification, the trained model 121 starts from the polishing start output from each of the plurality of types of end point detection sensors (for example, the first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing. The waveform of the measurement data until the end of polishing, the temperature of the polishing pad 10 from the start of polishing to the end of polishing acquired during the past polishing, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the polishing. Machine learning may be performed on the relationship with one or more auxiliary information of the number of times the pad 10 is used.
 1つの形態として、一変形例に係る学習済みモデル121の生成方法の一例について説明すると、図11Aに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から各時点までの計測データと、研磨開始から当該時点までに取得された研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数のうちの1つ以上の補助情報とを入力層に入力し、それにより出力層から出力される出力結果と、当該時点の計測データに紐づけられた、当該時点の研磨条件が正常であるか否か、および当該時点が終点(すなわち研磨終了)のタイミングであるか否かの情報とを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返す。これにより、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの補助情報との関係性を機械学習した学習済みモデル121が生成される。 As one embodiment, an example of a method of generating the trained model 121 according to one modification will be described. As shown in FIG. 11A, a plurality of types of end point detection sensors (first to first) provided in one polishing unit 3A. The measurement data from the start of polishing to each time point output from each of the 3 sensors 51 to 53) during the past polishing, and the temperature of the polishing pad 10, the temperature of the slurry, and the flow rate of the slurry acquired from the start of polishing to that time point. , The pressure of each pressure chamber of the top ring 31A, and one or more auxiliary information of the number of times the polishing pad 10 has been used are input to the input layer, and the output result output from the output layer and the measurement at that time point. Compare the information linked to the data whether the polishing conditions at that point in time are normal and whether the point in time is the timing of the end point (that is, the end of polishing), and each according to the error. The process of updating node parameters (weights, thresholds, etc.) is repeated for the measurement data from the start of polishing to each time point during the past polishing. As a result, the waveforms of the measurement data from the start of polishing to the end of polishing output from the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing are obtained. A learned model 121 is generated in which the relationship with the auxiliary information from the start of polishing to the end of polishing acquired at the time of the past polishing is machine-learned.
 この場合、判定部120は、図11Aに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データと、研磨開始から現時点までに取得された補助情報とを入力として、一変形例に係る学習済みモデル121を用いて、現時点の研磨条件が正常であるか否か、および現時点が終点のタイミングであるか否かを推定して出力する。 In this case, as shown in FIG. 11A, the determination unit 120 is output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether or not the current polishing conditions are normal using the learned model 121 according to one modification by inputting the measurement data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. Or, and whether or not the current time is the timing of the end point is estimated and output.
 別の形態として、一変形例に係る学習済みモデル121の生成方法の一例について説明すると、図11Bに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から各時点までの計測データと、研磨開始から当該時点までに取得された研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数のうちの1つ以上の補助情報とを入力層に入力し、それにより出力層から出力される出力結果と、当該時点の計測データに紐づけられた、当該時点の研磨条件が正常であるか否か、および当該時点が終点(すなわち研磨終了)までの残り時間の情報を比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返す。これにより、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの補助情報との関係性を機械学習した学習済みモデル121が生成される。 As another embodiment, an example of a method of generating the trained model 121 according to one modification will be described. As shown in FIG. 11B, a plurality of types of end point detection sensors (first to first) provided in one polishing unit 3A. The measurement data from the start of polishing to each time point output from each of the 3 sensors 51 to 53) during the past polishing, and the temperature of the polishing pad 10, the temperature of the slurry, and the flow rate of the slurry acquired from the start of polishing to that time point. , The pressure of each pressure chamber of the top ring 31A, and one or more auxiliary information of the number of times the polishing pad 10 has been used are input to the input layer, and the output result output from the output layer and the measurement at that time point. Compare the information on whether the polishing conditions at that time point are normal and the remaining time until the end point (that is, the end of polishing) at that point in time, and the parameters of each node (that is, the end of polishing) according to the error. The process of updating (weight, threshold, etc.) is repeated for the measurement data from the start of polishing to each time point in the past polishing. As a result, the waveforms of the measurement data from the start of polishing to the end of polishing output from the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A during the past polishing are obtained. A learned model 121 is generated in which the relationship with the auxiliary information from the start of polishing to the end of polishing acquired at the time of the past polishing is machine-learned.
 この場合、判定部120は、図11Bに示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データと、研磨開始から現時点までに取得された補助情報とを入力として、一変形例に係る学習済みモデル121を用いて、現時点の研磨条件が正常であるか否かを推定するとともに、現時点から終点のタイミングまでの残り時間を推定して出力する。 In this case, as shown in FIG. 11B, the determination unit 120 is output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether or not the current polishing conditions are normal using the learned model 121 according to one modification by inputting the measurement data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. Is estimated, and the remaining time from the current time to the end point timing is estimated and output.
 ここで、判定部120は、研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数のうちの1つ以上の補助情報を、装置エンジニアリングシステム(Equipment Engineering System;EES)から取得してもよい。 Here, the determination unit 120 provides one or more auxiliary information of the temperature of the polishing pad 10, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the number of times the polishing pad 10 is used. It may be obtained from an engineering system (Equipment Engineering System; EES).
 図9を参照し、1つの形態では、第1研磨停止部130は、判定部120により、現時点の研磨条件が正常であり、かつ現時点が終点のタイミングであると判定された場合に、研磨を止める(研磨ユニット3Aの動作を停止させる)制御信号を研磨ユニット3Aに送信する。別の形態では、第1研磨停止部130は、判定部120により推定された残り時間が経過した時に、研磨を止める制御信号を研磨ユニット3Aに送信してもよい。 With reference to FIG. 9, in one embodiment, the first polishing stop unit 130 performs polishing when the determination unit 120 determines that the current polishing conditions are normal and the current time is the timing of the end point. A control signal for stopping (stopping the operation of the polishing unit 3A) is transmitted to the polishing unit 3A. In another embodiment, the first polishing stop unit 130 may transmit a control signal for stopping polishing to the polishing unit 3A when the remaining time estimated by the determination unit 120 has elapsed.
 第2研磨停止部140は、現時点の研磨状態が異常であると判定された場合に、研磨を止める(研磨ユニット3Aの動作を停止させる)制御信号を研磨ユニット3Aに送信するとともに、警報を発報する。第2研磨停止部140は、警報を発報する代わりに、エラー表示、パトライト表示、自動連絡のうちの1つの方式をとってもよいし、警報、エラー表示、パトライト表示、自動連絡のうちの2つ以上の組み合わせによる方式をとってもよい。 When it is determined that the current polishing state is abnormal, the second polishing stop unit 140 transmits a control signal for stopping polishing (stopping the operation of the polishing unit 3A) to the polishing unit 3A and issues an alarm. Report. Instead of issuing an alarm, the second polishing stop unit 140 may adopt one method of error display, patrol display, and automatic contact, or two of alarm, error display, patrol display, and automatic contact. A method based on the above combination may be adopted.
 タイミング調整部110は、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(たとえば第1~第3センサ51~53)の各々から出力された計測データD1~D3間のタイミングを合わせてから判定部120に入力する。 The timing adjusting unit 110 matches the timing between the measurement data D1 to D3 output from each of the plurality of types of end point detection sensors (for example, the first to third sensors 51 to 53) provided in one polishing unit 3A. Is input to the determination unit 120.
 具体的には、たとえば、タイミング調整部110は、研磨開始前に、複数種類の終点検知センサ(第1~第3センサ51~53)にタイミング同期信号を同時に入力し、図16に示すように、複数の終点検知センサ(第1~第3センサ51~53)の各々から出力された計測データD1~D3のうちタイミング同期信号に起因するパルス部分のタイミングを比較する。図16に示す例では、第2センサ52から出力された計測データD2のパルス部分と第3センサ53から出力された計測データD3のパルス部分とはタイミングが一致しているが、それらに比べて、第1センサ51から出力された計測データD1のパルス部分はΔtだけタイミングが進んでいる(早くなっている)。 Specifically, for example, the timing adjusting unit 110 simultaneously inputs timing synchronization signals to a plurality of types of end point detection sensors (first to third sensors 51 to 53) before starting polishing, and as shown in FIG. , Of the measurement data D1 to D3 output from each of the plurality of end point detection sensors (first to third sensors 51 to 53), the timing of the pulse portion caused by the timing synchronization signal is compared. In the example shown in FIG. 16, the pulse portion of the measurement data D2 output from the second sensor 52 and the pulse portion of the measurement data D3 output from the third sensor 53 have the same timing, but are compared with them. , The pulse portion of the measurement data D1 output from the first sensor 51 is advanced (earlier) by Δt.
 複数の終点検知センサ(第1~第3センサ51~53)の各々から出力された計測データD1~D3のパルス部分のタイミングにずれがある場合には、タイミング調整部110は、当該パルス部分のタイミングを一致させることにより、計測データD1~D3間のタイミングを合わせる。たとえば、図16に示すように、第1センサ51から出力された計測データD1のパルス部分がΔtだけタイミングが進んでいた場合には、タイミング調整部110は、図17に示すように、第1センサ41から出力された計測データD1の時間軸(基準時刻)をΔtだけ遅らせることにより、計測データD1~D3の各々に含まれるパルス部分のタイミングを一致させ、これにより、計測データD1~D3間のタイミングを合わせる。 If there is a deviation in the timing of the pulse portion of the measurement data D1 to D3 output from each of the plurality of end point detection sensors (first to third sensors 51 to 53), the timing adjustment unit 110 may use the pulse portion of the pulse portion. By matching the timings, the timings between the measurement data D1 to D3 are matched. For example, as shown in FIG. 16, when the pulse portion of the measurement data D1 output from the first sensor 51 has the timing advanced by Δt, the timing adjusting unit 110 has the first timing as shown in FIG. By delaying the time axis (reference time) of the measurement data D1 output from the sensor 41 by Δt, the timings of the pulse portions included in each of the measurement data D1 to D3 are matched, and thereby between the measurement data D1 to D3. Adjust the timing of.
 なお、本実施の形態に係る終点検知部100は、1つのコンピュータまたは量子コンピューティングシステム、もしくは互いにネットワークを介して接続された複数のコンピュータまたは量子コンピューティングシステムによって構成され得るが、1または複数のコンピュータまたは量子コンピューティングシステムに終点検知部100を実現させるためのプログラム及び当該プログラムを非一時的(non-transitory)に記録したコンピュータ読取可能な記録媒体も、本件の保護対象である。 The end point detection unit 100 according to the present embodiment may be composed of one computer or a quantum computing system, or a plurality of computers or quantum computing systems connected to each other via a network, but may be composed of one or a plurality of computers. A program for realizing the end point detection unit 100 in a computer or a quantum computing system and a computer-readable recording medium in which the program is recorded non-transitory are also subject to the protection of the present case.
<終点検知方法の一例>
 次に、このような構成からなる終点検知部100による終点検知方法の一例について説明する。図18Aは、終点検知方法の一例を示すフローチャートである。
<Example of end point detection method>
Next, an example of the end point detection method by the end point detection unit 100 having such a configuration will be described. FIG. 18A is a flowchart showing an example of the end point detection method.
 図18Aに示すように、まず、研磨開始前に、タイミング調整部110が、対象とする1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)にタイミング同期信号を同時に入力する(ステップS11)。 As shown in FIG. 18A, first, before the start of polishing, the timing adjusting unit 110 is applied to a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A. The timing synchronization signal is input at the same time (step S11).
 そして、タイミング調整部110は、図16に示すように、当該複数の終点検知センサ(第1~第3センサ51~53)の各々から出力された計測データD1~D3のうちタイミング同期信号に起因するパルス部分のタイミングを比較する(ステップS12)。図16に示す例では、第2センサ52から出力された計測データD2のパルス部分と第3センサ53から出力された計測データD3のパルス部分とはタイミングが一致しているが、それらに比べて、第1センサ51から出力された計測データD1のパルス部分はΔtだけタイミングが進んでいる(早くなっている)。 Then, as shown in FIG. 16, the timing adjusting unit 110 is caused by the timing synchronization signal of the measurement data D1 to D3 output from each of the plurality of end point detection sensors (first to third sensors 51 to 53). The timings of the pulsed portions are compared (step S12). In the example shown in FIG. 16, the pulse portion of the measurement data D2 output from the second sensor 52 and the pulse portion of the measurement data D3 output from the third sensor 53 have the same timing, but are compared with them. , The pulse portion of the measurement data D1 output from the first sensor 51 is advanced (earlier) by Δt.
 計測データD1~D3のパルス部分のタイミングが一致しない場合には(ステップS13:YES)、タイミング調整部110は、パルス部分のタイミングが一致するように、計測データD1~D3間のタイミングを合わせる(ステップS14)。たとえば、図16に示すように、第1センサ51から出力された計測データD1のパルス部分がΔtだけタイミングが進んでいた場合には、タイミング調整部110は、図17に示すように、第1センサ41から出力された計測データD1の時間軸(基準時刻)をΔtだけ遅らせることにより、計測データD1~D3の各々に含まれるパルス部分のタイミングを一致させ、これにより、計測データD1~D3間のタイミングを合わせる。 When the timings of the pulse portions of the measurement data D1 to D3 do not match (step S13: YES), the timing adjusting unit 110 adjusts the timing between the measurement data D1 to D3 so that the timings of the pulse portions match (step S13: YES). Step S14). For example, as shown in FIG. 16, when the pulse portion of the measurement data D1 output from the first sensor 51 has the timing advanced by Δt, the timing adjusting unit 110 has the first timing as shown in FIG. By delaying the time axis (reference time) of the measurement data D1 output from the sensor 41 by Δt, the timings of the pulse portions included in each of the measurement data D1 to D3 are matched, and thereby between the measurement data D1 to D3. Adjust the timing of.
 次に、図10Aを参照し、対象とする1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データが、判定部120の学習済みモデル121に入力される(ステップS15)。 Next, with reference to FIG. 10A, the polishing start output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A at the time of new polishing is started. The measurement data from to the present time is input to the trained model 121 of the determination unit 120 (step S15).
 一変形として、図11Aを参照し、対象とする1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データとともに、研磨開始から現時点までに取得された研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数のうちの1つ以上の補助情報とが、判定部120の学習済みモデル121に入力されてもよい。 As a modification, referring to FIG. 11A, polishing output from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A at the time of new polishing. Of the measurement data from the start to the present time, the temperature of the polishing pad 10 acquired from the start of polishing to the present time, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the number of times the polishing pad 10 has been used. One or more auxiliary information of may be input to the trained model 121 of the determination unit 120.
 判定部120は、図10Aを参照し、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、学習済みモデル121を用いて、現時点の研磨条件が正常であるか否か、および現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する(ステップS16)。 The determination unit 120 refers to FIG. 10A and starts from the start of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Using the trained model 121 as input, it estimates and outputs whether or not the current polishing conditions are normal and whether or not the current time is the timing of the end point indicating the end of polishing. (Step S16).
 たとえば、図12に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3が、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1~A3に入っており、かつ現時点の時間が研磨終了のタイミングと一致していない場合に、判定部120は、現時点の研磨条件が正常であり、かつ現時点が研磨終了を示す終点のタイミングではない、と推測して出力する。 For example, as shown in FIG. 12, the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are from the start of polishing to the end of polishing, respectively. When the area A1 to A3 that should be statistically included when the polishing conditions are normal and the current time does not match the timing of the end of polishing, the determination unit 120 determines the current polishing. It is presumed that the conditions are normal and the current time is not the timing of the end point indicating the end of polishing, and the output is performed.
 また、たとえば、図13に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3が、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1~A3に入っており、かつ現時点の時間が研磨終了のタイミングと一致している場合に、判定部120は、現時点の研磨条件が正常であり、かつ現時点が研磨終了を示す終点のタイミングである、と推測して出力する。 Further, for example, as shown in FIG. 13, the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are obtained from the start of polishing to the end of polishing, respectively. When the polishing conditions up to are within the regions A1 to A3 that should be statistically included when the polishing conditions are normal, and the current time coincides with the timing of the end of polishing, the determination unit 120 determines the current time. It is estimated that the polishing conditions of the above are normal and the current time is the timing of the end point indicating the end of polishing, and the output is performed.
 また、たとえば、図14に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3のいずれか(図示された例では第1センサ51の計測データD1)が、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1から外れている場合には、判定部120は、現時点の研磨条件が異常である、と推測して出力する。 Further, for example, as shown in FIG. 14, any one of the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing (in the illustrated example). If the measurement data D1) of the first sensor 51 deviates from the region A1 that should be statistically included when the polishing conditions from the start to the end of polishing are normal, the determination unit 120 is at the present time. It is estimated that the polishing conditions of the above are abnormal and output.
 一変形として、判定部120は、図11に示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データと、研磨開始から現時点までに取得された補助情報とを入力として、一変形例に係る学習済みモデル121を用いて、現時点の研磨条件が正常であるか否か、および現時点が終点のタイミングであるか否かを推定して出力してもよい。 As a modification, as shown in FIG. 11, the determination unit 120 outputs from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether the current polishing conditions are normal using the learned model 121 related to one modification by inputting the measured data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. You may estimate and output whether or not and whether or not the current time is the timing of the end point.
 図14を参照し、判定部120により現時点の研磨条件が正常であると判定された場合であって(ステップS17:YES)、現時点が終点のタイミングであると判定された場合には(ステップS18:YES)、第1研磨停止部130が、研磨ユニット3Aの動作を停止させる制御信号を研磨ユニット3Aに送信する(ステップS19)。 With reference to FIG. 14, when the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and when it is determined that the current time is the timing of the end point (step S18). : YES), the first polishing stop unit 130 transmits a control signal for stopping the operation of the polishing unit 3A to the polishing unit 3A (step S19).
 また、図13を参照し、判定部120により現時点の研磨条件が正常であると判定された場合であって(ステップS17:YES)、現時点が終点のタイミングではないと判定された場合には(ステップS18:NO)、終点検知部100は、ステップS15から処理を繰り返す。 Further, referring to FIG. 13, when the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and when it is determined that the current time is not the timing of the end point (step S17: YES). Step S18: NO), the end point detection unit 100 repeats the process from step S15.
 他方、図15を参照し、判定部120により現時点の研磨条件が異常であると判定された場合には(ステップS17:NO)、第2研磨停止部140が、研磨ユニット3Aの動作を停止させる制御信号を研磨ユニット3Aに送信するとともに、警報を発報する(ステップS20)。 On the other hand, referring to FIG. 15, when the determination unit 120 determines that the current polishing condition is abnormal (step S17: NO), the second polishing stop unit 140 stops the operation of the polishing unit 3A. A control signal is transmitted to the polishing unit 3A, and an alarm is issued (step S20).
 ところで、上述したように、従来、複数種類の終点検知センサを組み合わせて利用する場合には、研磨ユニットごとに個別のチューニング対応にて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示する必要があり、個別対応の作業が多く、個別対応に時間・コストを要していた。また、微細パターンに対応した高精度要求の終点検知に対する精度不足があった。 By the way, as described above, conventionally, when a plurality of types of end point detection sensors are used in combination, which end point detection sensor measurement data is preferentially used by individually tuning each polishing unit. It was necessary for the operator to explicitly instruct when to switch the priority order between the end point detection sensors, and there was a lot of work for individual response, which required time and cost for individual response. In addition, there is insufficient accuracy for detecting the end point of a high-precision requirement corresponding to a fine pattern.
 これに対し、上述した本実施の形態によれば、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(たとえば第1~第3センサ51~53)の各々から新たな研磨時に出力された計測データについて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示しなくても、過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル121を利用することで、過去の研磨時の計測データの波形との類似性に鑑みて、現時点の研磨条件が正常であるか否か、および現時点が終点のタイミングであるか否かを推定して出力することができる。したがって、複数種類の終点検知センサ(第1~第3センサ51~53)の計測データを最適に組み合わせて利用することが可能となり、終点検知の精度向上が可能となる。 On the other hand, according to the above-described embodiment, each of the plurality of types of end point detection sensors (for example, the first to third sensors 51 to 53) provided in one polishing unit 3A outputs data at the time of new polishing. For the measured data, past polishing without the operator explicitly instructing which end point detection sensor's measurement data should be used with priority and when to switch the priority between end point detection sensors. By using the trained model 121 that machine-learned the waveform of the measurement data from the start of polishing to the end of polishing that was output at times, the current polishing conditions are considered in view of the similarity with the waveform of the measurement data at the time of past polishing. Can be estimated and output whether or not is normal and whether or not the current time is the timing of the end point. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors (first to third sensors 51 to 53), and it is possible to improve the accuracy of end point detection.
 また、本実施の形態の一変形例によれば、複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数などの補助情報との関係性を機械学習した学習済みモデル121を利用することで、過去の研磨時の計測データの波形と補助情報の関係性との類似性に鑑みて、現時点の研磨条件が正常であるか否か、および現時点が終点のタイミングであるか否かを推定して出力することができる。したがって、複数種類の終点検知センサの計測データ(第1~第3センサ51~53)と補助情報とを最適に組み合わせて利用することが可能となり、終点検知のさらなる精度向上が可能となる。 Further, according to a modification of the present embodiment, measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) during past polishing. Wave and the temperature of the polishing pad 10 from the start of polishing to the end of polishing acquired during the past polishing, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, the number of times the polishing pad 10 has been used, etc. By using the trained model 121 that machine-learned the relationship with the auxiliary information of, the current polishing conditions are normal in view of the similarity between the waveform of the measurement data at the time of past polishing and the relationship of the auxiliary information. It is possible to estimate and output whether or not it is, and whether or not the current time is the timing of the end point. Therefore, it is possible to optimally combine and use the measurement data (first to third sensors 51 to 53) of the plurality of types of end point detection sensors and the auxiliary information, and it is possible to further improve the accuracy of end point detection.
 また、本実施の形態によれば、タイミング調整部110が、複数種類の終点検知センサ(第1~第3センサ51~53)の各々から出力された計測データ間のタイミングを合わせてから判定部120に入力するため、判定部120は、複数種類の終点検知センサ(第1~第3センサ51~53)の各々から出力された計測データの波形をより正確に把握することが可能となり、これにより、現時点の研磨条件が正常であるか否か、および現時点が終点のタイミングであるか否かをより正確に判断することが可能となる。したがって、終点検知のさらなる精度向上が可能となる。 Further, according to the present embodiment, the timing adjusting unit 110 adjusts the timing between the measurement data output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53), and then determines the determination unit. Since the input is input to the 120, the determination unit 120 can more accurately grasp the waveform of the measurement data output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53). This makes it possible to more accurately determine whether or not the current polishing conditions are normal and whether or not the current time is the timing of the end point. Therefore, the accuracy of end point detection can be further improved.
<終点検知方法の別例>
 次に、終点検知部100による終点検知方法の別例について説明する。図18Bは、終点検知方法の別例を示すフローチャートである。図18Bに示す終点検知方法のうち、ステップS11~S14は、図18Aに示す終点検知方法と同様であり、説明を省略する。
<Another example of end point detection method>
Next, another example of the end point detection method by the end point detection unit 100 will be described. FIG. 18B is a flowchart showing another example of the end point detection method. Of the end point detection methods shown in FIG. 18B, steps S11 to S14 are the same as the end point detection method shown in FIG. 18A, and description thereof will be omitted.
 図18Bに示す例では、ステップS14の後、図10Bを参照し、対象とする1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データが、判定部120の学習済みモデル121に入力される(ステップS151)。 In the example shown in FIG. 18B, after step S14, with reference to FIG. 10B, from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A. The measurement data from the start of polishing to the present time, which is output at the time of new polishing, is input to the trained model 121 of the determination unit 120 (step S151).
 一変形として、図11Bを参照し、対象とする1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データとともに、研磨開始から現時点までに取得された研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数のうちの1つ以上の補助情報とが、判定部120の学習済みモデル121に入力されてもよい。 As a modification, referring to FIG. 11B, polishing output from each of a plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one target polishing unit 3A at the time of new polishing. Of the measurement data from the start to the present time, the temperature of the polishing pad 10 acquired from the start of polishing to the present time, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, and the number of times the polishing pad 10 has been used. One or more auxiliary information of may be input to the trained model 121 of the determination unit 120.
 判定部120は、図10Bを参照し、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、学習済みモデル121を用いて、現時点の研磨条件が正常であるか否か、および現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する(ステップS161)。 With reference to FIG. 10B, the determination unit 120 starts from the start of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Using the trained model 121 as input, the measurement data up to the present time is used to estimate and output whether or not the polishing conditions at the present time are normal, and the remaining time from the present time to the timing of the end point indicating the end of polishing ( Step S161).
 たとえば、図12に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3が、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1~A3に入っており、かつ現時点の時間が研磨終了のタイミングと一致していない場合に、判定部120は、現時点の研磨条件が正常であると推定するとともに、現時点から研磨終了を示す終点のタイミングまでの残り時間Teを推定して出力する。 For example, as shown in FIG. 12, the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are from the start of polishing to the end of polishing, respectively. When the area A1 to A3 that should be statistically included when the polishing conditions are normal and the current time does not match the timing of the end of polishing, the determination unit 120 determines the current polishing. It is estimated that the conditions are normal, and the remaining time Te from the present time to the timing of the end point indicating the end of polishing is estimated and output.
 また、たとえば、図13に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3が、それぞれ、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1~A3に入っており、かつ現時点の時間が研磨終了のタイミングと一致している場合に、判定部120は、現時点の研磨条件が正常であると推定するとともに、現時点から研磨終了を示す終点のタイミングまでの残り時間Teがゼロであると推定して出力する。 Further, for example, as shown in FIG. 13, the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing are obtained from the start of polishing to the end of polishing, respectively. When the polishing conditions up to are in the regions A1 to A3 that should be statistically included when the polishing conditions are normal, and the current time coincides with the timing of the end of polishing, the determination unit 120 determines the current time. It is estimated that the polishing conditions of the above are normal, and the remaining time Te from the present time to the timing of the end point indicating the end of polishing is estimated to be zero and output.
 また、たとえば、図14に示すように、第1~第3センサ51~53の各々から新たな研磨時に出力された研磨開始から現時点までの計測データD1~D3のいずれか(図示された例では第1センサ51の計測データD1)が、研磨開始から研磨終了までの研磨条件が正常である場合に統計的に含まれているべき領域A1から外れている場合には、判定部120は、現時点の研磨条件が異常である、と推測して出力する。 Further, for example, as shown in FIG. 14, any one of the measurement data D1 to D3 from the start of polishing to the present time output from each of the first to third sensors 51 to 53 at the time of new polishing (in the illustrated example). If the measurement data D1) of the first sensor 51 deviates from the region A1 that should be statistically included when the polishing conditions from the start to the end of polishing are normal, the determination unit 120 is at the present time. It is estimated that the polishing conditions of the above are abnormal and output.
 一変形として、判定部120は、図11に示すように、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から新たな研磨時に出力された研磨開始から現時点までの計測データと、研磨開始から現時点までに取得された補助情報とを入力として、一変形例に係る学習済みモデル121を用いて、現時点の研磨条件が正常であるか否かを推定するとともに、現時点から終点のタイミングまでの残り時間Teを推定して出力してもよい。 As a modification, as shown in FIG. 11, the determination unit 120 outputs from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Whether the current polishing conditions are normal using the learned model 121 related to one modification by inputting the measured data from the start of polishing to the present time and the auxiliary information acquired from the start of polishing to the present time. In addition to estimating whether or not, the remaining time Te from the current time to the timing of the end point may be estimated and output.
 図14を参照し、判定部120により現時点の研磨条件が正常であると判定された場合であって(ステップS17:YES)、判定部120により推定された残り時間Teが経過している場合には(ステップS181:YES)、第1研磨停止部130が、研磨ユニット3Aの動作を停止させる制御信号を研磨ユニット3Aに送信する(ステップS19)。 With reference to FIG. 14, when the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and the remaining time Te estimated by the determination unit 120 has elapsed. (Step S181: YES), the first polishing stop unit 130 transmits a control signal for stopping the operation of the polishing unit 3A to the polishing unit 3A (step S19).
 また、図13を参照し、判定部120により現時点の研磨条件が正常であると判定された場合であって(ステップS17:YES)、判定部120により推定された残り時間Teが経過していない場合には(ステップS181:NO)、終点検知部100は、ステップS15から処理を繰り返す。 Further, referring to FIG. 13, the case where the determination unit 120 determines that the current polishing condition is normal (step S17: YES), and the remaining time Te estimated by the determination unit 120 has not elapsed. In the case (step S181: NO), the end point detection unit 100 repeats the process from step S15.
 他方、図15を参照し、判定部120により現時点の研磨条件が異常であると判定された場合には(ステップS17:NO)、第2研磨停止部140が、研磨ユニット3Aの動作を停止させる制御信号を研磨ユニット3Aに送信するとともに、警報を発報する(ステップS20)。 On the other hand, referring to FIG. 15, when the determination unit 120 determines that the current polishing condition is abnormal (step S17: NO), the second polishing stop unit 140 stops the operation of the polishing unit 3A. A control signal is transmitted to the polishing unit 3A, and an alarm is issued (step S20).
 以上のような実施の形態によれば、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(たとえば第1~第3センサ51~53)の各々から新たな研磨時に出力された計測データについて、どの終点検知センサの計測データを優先して利用するか、いつのタイミングで終点検知センサ間の優先順位を切り替えるかなどを作業者が明示的に指示しなくても、過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデル121を利用することで、過去の研磨時の計測データの波形との類似性に鑑みて、現時点の研磨条件が正常であるか否を推定するとともに、現時点から終点のタイミングまでの残り時間Teを推定して出力することができる。したがって、複数種類の終点検知センサ(第1~第3センサ51~53)の計測データを最適に組み合わせて利用することが可能となり、終点検知の精度向上が可能となる。 According to the above-described embodiment, measurement data output from each of a plurality of types of end point detection sensors (for example, first to third sensors 51 to 53) provided in one polishing unit 3A at the time of new polishing. Is output during past polishing without the operator explicitly instructing which end point detection sensor measurement data should be used with priority and when to switch the priority order between end point detection sensors. By using the trained model 121 in which the waveform of the measurement data from the start of polishing to the end of polishing is machine-learned, the current polishing conditions are normal in view of the similarity with the waveform of the measurement data at the time of past polishing. It is possible to estimate whether or not there is, and to estimate and output the remaining time Te from the present time to the timing of the end point. Therefore, it is possible to optimally combine and use the measurement data of a plurality of types of end point detection sensors (first to third sensors 51 to 53), and it is possible to improve the accuracy of end point detection.
 また、実施の形態の一変形例によれば、複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッド10の温度、スラリの温度、スラリの流量、トップリング31Aの各圧力室の圧力、研磨パッド10の使用回数などの補助情報との関係性を機械学習した学習済みモデル121を利用することで、過去の研磨時の計測データの波形と補助情報の関係性との類似性に鑑みて、現時点の研磨条件が正常であるか否かを推定するとともに、現時点から終点のタイミングまでの残り時間Teを推定して出力することができる。したがって、複数種類の終点検知センサの計測データ(第1~第3センサ51~53)と補助情報とを最適に組み合わせて利用することが可能となり、終点検知のさらなる精度向上が可能となる。 Further, according to a modification of the embodiment, the measurement data from the start to the end of polishing output from each of the plurality of types of end point detection sensors (first to third sensors 51 to 53) during the past polishing. Corrugations, the temperature of the polishing pad 10 from the start of polishing to the end of polishing acquired during the past polishing, the temperature of the slurry, the flow rate of the slurry, the pressure in each pressure chamber of the top ring 31A, the number of times the polishing pad 10 has been used, etc. By using the trained model 121 in which the relationship with the auxiliary information is machine-learned, the current polishing conditions are normal in view of the similarity between the waveform of the measurement data at the time of past polishing and the relationship between the auxiliary information. It is possible to estimate whether or not there is, and to estimate and output the remaining time Te from the present time to the timing of the end point. Therefore, it is possible to optimally combine and use the measurement data (first to third sensors 51 to 53) of the plurality of types of end point detection sensors and the auxiliary information, and it is possible to further improve the accuracy of end point detection.
 なお、上述した実施の形態では、学習済みモデル121(チューニングされたニューラルネットワークシステム)の生成時に使用される教師データとして、1つの研磨ユニット3Aに設けられた複数種類の終点検知センサ(第1~第3センサ51~53)の各々から過去の「正常終了の」研磨時に出力された研磨開始から研磨終了までの各時点の計測データ(すなわち正常終了のデータセット)が用いられたが、教師データは、正常終了のデータセットに限定されるものではなく、異常終了のデータセットでもよいし、正常終了のデータセットと異常終了のデータセットとが混在したデータセットであってもよい。正常終了のデータセットを使用した学習では、正常状態または条件を判断する学習済みモデル121(チューニングされたニューラルネットワークシステム)を生成できる。異常終了のデータセットを使用した学習では、異常状態または条件を判断する学習済みモデル121(チューニングされたニューラルネットワークシステム)を生成できる。正常終了のデータセットと異常終了のデータセットとが混在したデータセットを使用した学習では、正常状態または条件と異常状態または条件とを判断する学習済みモデル121(チューニングされたニューラルネットワークシステム)を生成できる。この場合、正常終了のデータセットと異常終了のデータセットの割合は、正常終了のデータセット/異常終了のデータセット=70%/30%~99%/1%を用いると最適である。 In the above-described embodiment, a plurality of types of end point detection sensors (first to first) provided in one polishing unit 3A are used as teacher data when the trained model 121 (tuned neural network system) is generated. The measurement data at each time point from the start of polishing to the end of polishing (that is, the data set of normal end) output from each of the third sensors 51 to 53) during the past "normal end" polishing was used, but the teacher data. Is not limited to the data set of normal termination, and may be a data set of abnormal termination, or may be a data set in which a data set of normal termination and a data set of abnormal termination are mixed. In training using a normally completed dataset, a trained model 121 (tuned neural network system) that determines a normal state or condition can be generated. In training using the abend data set, a trained model 121 (tuned neural network system) for determining an abnormal state or condition can be generated. In training using a data set in which a normal termination data set and an abnormal termination data set are mixed, a trained model 121 (tuned neural network system) for judging a normal state or condition and an abnormal state or condition is generated. it can. In this case, it is optimal to use the normal termination data set / abnormal termination data set = 70% / 30% to 99% / 1% as the ratio of the normal termination data set to the abnormal termination data set.
<基板処理装置全体の制御>
 次に、図19により、制御部65による基板処理装置全体の制御について説明する。メインコントローラである制御部65は、CPUとメモリと記録媒体と、記録媒体に記録されたソフトウェア等とを有する。制御部65は、基板処理装置全体の監視・制御を行い、そのための信号の授受、情報記録、演算を行う。制御部65は主にユニットコントローラ760との間で信号の授受を行う。ユニットコントローラ760も、CPUとメモリと記録媒体と、記録媒体に記録されたソフトウェア等とを有する。図19の場合、制御部65は、研磨の終了を示す研磨終点を検出する終点検出手段、研磨ユニットによる研磨を制御する制御手段として機能するプログラムを内蔵する。なお、ユニットコントローラ760が、このプログラムの一部または全部を内蔵してもよい。プログラムは更新可能である。なお、プログラムは更新可能でなくてもよい。
<Control of the entire board processing device>
Next, with reference to FIG. 19, the control of the entire substrate processing apparatus by the control unit 65 will be described. The control unit 65, which is the main controller, has a CPU, a memory, a recording medium, software recorded on the recording medium, and the like. The control unit 65 monitors and controls the entire board processing device, and performs signal transmission / reception, information recording, and calculation for that purpose. The control unit 65 mainly sends and receives signals to and from the unit controller 760. The unit controller 760 also has a CPU, a memory, a recording medium, software recorded on the recording medium, and the like. In the case of FIG. 19, the control unit 65 has a built-in program that functions as an end point detecting means for detecting the polishing end point indicating the end of polishing and a control means for controlling polishing by the polishing unit. The unit controller 760 may include a part or all of this program. The program can be updated. The program does not have to be updatable.
 図19~図23により説明する実施形態によれば、以下の課題を解決することができる。これまでの典型的な研磨装置の制御方式の課題として、以下の点がある。終点検出について、対象物の研磨を行う前に、複数のテストを行い、得られたデータから研磨条件や終点判定条件を求めて、研磨条件であるレシピ作成を行う。一部信号解析を用いていることもあるが、ウエハ構造に対して、1つのセンサ信号を用いて、終点検出を判断する処理を行う。これでは次のような要求に対して十分な精度が得られなかった。製作するデバイスやチップの歩留まり向上のために、デバイスやチップの製作において更に高精度の終点検出と、ロット間やチップ間のばらつきを小さく抑える必要がある。それを実現するため、図19~図23に示す実施例を適用した終点検知を行うシステムを用いることにより、より高精度の終点検出を行うことが可能となり、歩留まり向上やチップ間の研磨量バラツキを低減することが可能となる。 According to the embodiments described with reference to FIGS. 19 to 23, the following problems can be solved. The following points are problems of the control method of a typical polishing apparatus so far. Regarding the end point detection, a plurality of tests are performed before polishing the object, the polishing conditions and the end point determination conditions are obtained from the obtained data, and a recipe which is the polishing conditions is created. Although some signal analysis may be used, the wafer structure is processed to determine the end point detection by using one sensor signal. This did not provide sufficient accuracy for the following requirements. In order to improve the yield of the device or chip to be manufactured, it is necessary to detect the end point with higher accuracy in the manufacture of the device or chip and to suppress the variation between lots or chips to be small. In order to realize this, by using a system for detecting the end point to which the examples shown in FIGS. 19 to 23 are applied, it is possible to detect the end point with higher accuracy, and the yield is improved and the amount of polishing between chips varies. Can be reduced.
 特に、高速のデータ処理、多数種類かつ多数のセンサの信号処理、これらの信号を規格化したデータ、データから人工知能(Artificial Intelligence;AI)を利用した学習及び終点検出の判定に用いるデータセットの作成と、作成されたデータセットによる判定例の蓄積による学習と、学習効果による精度向上、学習された判定機能により判断され更新された研磨パラメータ、この研磨パラメータの高速な制御系への反映を実現する高速通信処理系、等が実現できる。これらは、図19以前に示した全ての実施例に対して適用可能である。 In particular, high-speed data processing, signal processing of many types and many sensors, standardized data of these signals, and data sets used for learning using artificial intelligence (AI) from data and determining end point detection. Realization of learning by creating and accumulating judgment examples by the created data set, improving accuracy by learning effect, polishing parameters judged and updated by the learned judgment function, and reflecting these polishing parameters in the high-speed control system. High-speed communication processing system, etc. can be realized. These are applicable to all the embodiments shown prior to FIG.
 ユニットコントローラ760は、基板処理装置に搭載されているユニット762(1個もしくは複数)の制御を行う。ユニットコントローラ760は、各々のユニット762ごとに本実施形態では設けられる。ユニット762としては、アンロード部62、研磨部63、洗浄部64等がある。ユニットコントローラ760は、ユニット762の動作制御、監視用センサとの信号授受、制御信号の授受、高速な信号処理等を行う。ユニットコントローラ760は、FPGA(field-programmable gate array)や、ASIC(application specific integrated circuit、特定用途向け集積回路)等から構成されている。 The unit controller 760 controls the units 762 (one or more) mounted on the board processing device. The unit controller 760 is provided for each unit 762 in the present embodiment. The unit 762 includes an unloading unit 62, a polishing unit 63, a cleaning unit 64, and the like. The unit controller 760 controls the operation of the unit 762, sends and receives signals to and from the monitoring sensor, sends and receives control signals, and performs high-speed signal processing and the like. The unit controller 760 is composed of an FPGA (field-programmable gate array), an ASIC (application specific integrated circuit, an integrated circuit for a specific application), and the like.
 ユニット762は、ユニットコントローラ760からの信号により動作を行う。また、ユニット762は、センサ信号をセンサから受信し、ユニットコントローラ760に送信する。センサ信号は、ユニットコントローラ760から、さらに制御部65に送られることもある。センサ信号が制御部65又はユニットコントローラ760により処理(演算処理含む)され、次の動作のための信号がユニットコントローラ760から送られてくる。それに従ってユニット762は動作を行う。例えば、ユニットコントローラ760は、揺動アーム110のトルク変動を揺動軸モータ14の電流変化により検知する。ユニットコントローラ760は検知結果を制御部65に送る。制御部65は、終点検知を行う。 The unit 762 operates by a signal from the unit controller 760. Further, the unit 762 receives the sensor signal from the sensor and transmits it to the unit controller 760. The sensor signal may be further sent from the unit controller 760 to the control unit 65. The sensor signal is processed (including arithmetic processing) by the control unit 65 or the unit controller 760, and a signal for the next operation is sent from the unit controller 760. The unit 762 operates accordingly. For example, the unit controller 760 detects the torque fluctuation of the swing arm 110 by the current change of the swing shaft motor 14. The unit controller 760 sends the detection result to the control unit 65. The control unit 65 detects the end point.
 ソフトウェアとしては、例えば以下のものがある。ソフトウェアは、コントロール機器(制御部65又はユニットコントローラ760)内に記録されているデータにより、研磨パッド10の種類とスラリ供給量を求める。次に、ソフトウェアは、研磨パッド10のメンテナンス時期又はメンテナンス時期まで使用できる研磨パッド10を特定し、スラリ供給量を演算し、これらを出力する。ソフトウェアは、基板処理装置764を出荷後に、基板処理装置764にインストール可能なソフトウェアであってもよい。 The software includes, for example, the following. The software determines the type of polishing pad 10 and the amount of slurry supplied from the data recorded in the control device (control unit 65 or unit controller 760). Next, the software identifies the polishing pad 10 that can be used until the maintenance period or the maintenance period of the polishing pad 10, calculates the slurry supply amount, and outputs these. The software may be software that can be installed on the board processing device 764 after the board processing device 764 is shipped.
 制御部65、ユニットコントローラ760、ユニット762の間における通信は、有線、無線のいずれも可能である。基板処理装置764の外部との間ではインターネットを介した通信や他の通信手段(専用回線による高速通信)が使用可能である。データの通信に関しては、クラウド連携によりクラウドを利用すること、スマートフォン連携により基板処理装置においてスマートフォン経由でのデータの交換等を行うことが可能である。これらにより、基板処理装置の運転状況、基板処理の設定情報を基板処理装置の外部とやり取りを行うことが可能である。通信機器として、センサ間に通信ネットワークを形成して、この通信ネットワークを利用してもよい。 Communication between the control unit 65, the unit controller 760, and the unit 762 can be either wired or wireless. Communication via the Internet and other communication means (high-speed communication by a dedicated line) can be used with the outside of the board processing apparatus 764. Regarding data communication, it is possible to use the cloud by linking with the cloud, and to exchange data via the smartphone in the board processing device by linking with the smartphone. As a result, it is possible to exchange the operating status of the substrate processing apparatus and the setting information of the substrate processing with the outside of the substrate processing apparatus. As a communication device, a communication network may be formed between sensors and this communication network may be used.
 上記の制御機能、通信機能を用いて、基板処理装置の自動化運転を行うことも可能である。自動化運転のために、基板処理装置の制御パターンの規格化や、研磨終点の判断における閾値の利用が可能である。 It is also possible to perform automated operation of the board processing device by using the above control function and communication function. For automated operation, it is possible to standardize the control pattern of the substrate processing device and use the threshold value in determining the polishing end point.
 基板処理装置の異常/寿命の予測/判断/表示を行うことが可能である。また、性能安定化のための制御を行うことも可能である。 It is possible to predict / judge / display the abnormality / life of the board processing device. It is also possible to perform control for performance stabilization.
 基板処理装置の運転時の種々のデータや研磨データ(膜厚や研磨の終点)の特徴量を自動的に抽出して、運転状態や研磨状態を自動学習することや、制御パターンの自動規格化を行い、異常/寿命の予測/判断/表示を行うことが可能である。 Automatically extracts various data during operation of the substrate processing device and feature quantities of polishing data (thickness and end point of polishing) to automatically learn the operating state and polishing state, and automatically standardize control patterns. It is possible to predict / judge / display an abnormality / life.
 通信方式、機器インターフェース等において、例えばフォーマット等の規格化を行い、装置・機器相互の情報通信に用いて、装置・機器の管理を行うことが可能である。 It is possible to manage devices / devices by standardizing, for example, formats in communication methods, device interfaces, etc., and using them for information communication between devices / devices.
 次に、基板処理装置764において、センサで半導体ウエハ16から情報を取得し、インターネット等の通信手段を経由して、基板処理装置が設置された工場内/工場外に設置されたデータ処理装置(クラウド等)にデータを蓄積し、クラウド等に蓄積されたデータを分析し、分析結果に応じて基板処理装置を制御する実施形態について説明する。図20は、この実施形態の構成を示す。 Next, in the board processing device 764, information is acquired from the semiconductor wafer 16 by a sensor, and a data processing device installed inside / outside the factory where the board processing device is installed via a communication means such as the Internet ( An embodiment in which data is stored in a cloud or the like, the data stored in the cloud or the like is analyzed, and the substrate processing apparatus is controlled according to the analysis result will be described. FIG. 20 shows the configuration of this embodiment.
1.センサで半導体ウエハ16から取得する情報としては、以下が可能である。
・ 揺動軸モータ14のトルク変動に関する測定信号又は測定データ
・ SOPM(Spectrum Optical Endpoint Monitoring;光学式センサ)の測定信号又は測定データ
・ 渦電流センサの測定信号又は測定データ
・トップリングまたは研磨テーブルの振動を監視する振動センサの測定信号又は測定データ
・ウエハと研磨パッドとの接触部分から発生する音の変化を監視する音センサ(不図示)の測定信号又は測定データ
・ 上記の1つ又は複数の組合せの測定信号又は測定データ
1. 1. The information acquired from the semiconductor wafer 16 by the sensor can be as follows.
-Measurement signal or measurement data related to torque fluctuation of the oscillating shaft motor 14-Measurement signal or measurement data of SOPM (Spectrum Optical Endpoint Monitoring; optical sensor) -Measurement signal or measurement data of vortex current sensor-Top ring or polishing table Measurement signal or measurement data of vibration sensor that monitors vibration-Measurement signal or measurement data of sound sensor (not shown) that monitors changes in sound generated from the contact area between the wafer and the polishing pad-One or more of the above Combination measurement signal or measurement data
2.インターネット等の通信手段の機能及び構成としては、以下が可能である。
・ 上記の測定信号又は測定データを含む信号又はデータを、ネットワーク766に接続されたデータ処理装置768に伝送する。
・ ネットワーク766は、インターネット又は高速通信等の通信手段でよい。例えば、基板処理装置、ゲートウェイ、インターネット、クラウド、インターネット、データ処理装置という順序で接続されたネットワーク766が可能である。高速通信としては、高速光通信、高速無線通信等がある。また、高速無線通信としては、Wi-Fi(登録商標),Bluetooth(登録商標),Wi-Max(登録商標),3G,4G,LTE,5G等が考えられる。これ以外の高速無線通信も適用可能である。なお、クラウドをデータ処理装置とすることも可能である。
・ データ処理装置768が、工場内に設置される場合は、工場内にある1台もしくは複数の基板処理装置からの信号を処理することが可能である。
・ データ処理装置768が、工場外に設置される場合は、工場内にある1台もしくは複数の基板処理装置からの信号を、工場外部に伝達し、処理することが可能である。このときは、国内又は外国に設置されたデータ処理装置との接続が可能である。
2. 2. The functions and configurations of communication means such as the Internet are as follows.
-The signal or data including the above-mentioned measurement signal or measurement data is transmitted to the data processing device 768 connected to the network 766.
-The network 766 may be a communication means such as the Internet or high-speed communication. For example, a network 766 connected in the order of a substrate processing device, a gateway, the Internet, a cloud, the Internet, and a data processing device is possible. High-speed communication includes high-speed optical communication, high-speed wireless communication, and the like. Further, as high-speed wireless communication, Wi-Fi (registered trademark), Bluetooth (registered trademark), Wi-Max (registered trademark), 3G, 4G, LTE, 5G and the like can be considered. Other high-speed wireless communication is also applicable. It is also possible to use the cloud as a data processing device.
-When the data processing device 768 is installed in the factory, it is possible to process signals from one or more board processing devices in the factory.
-When the data processing device 768 is installed outside the factory, it is possible to transmit signals from one or more board processing devices in the factory to the outside of the factory and process them. At this time, it is possible to connect to a data processing device installed in Japan or abroad.
3.クラウド等に蓄積されたデータをデータ処理装置768が分析し、分析結果に応じて基板処理装置764を制御することに関しては、以下のようなことが可能である。
・ 測定信号又は測定データが処理された後に、制御信号又は制御データとして基板処理装置764に伝達することができる。
・ データを受取った基板処理装置764はそのデータに基づいて、研磨処理に関する研磨パラメータを更新して研磨動作を行う、また、データ処理装置768からのデータが、終点が検知されたことを示す信号/データの場合、終点が検知されたと判断して、研磨を終了する。研磨パラメータとしては、(1)半導体ウエハ16の4つの領域、すなわち、中央部、内側中間部、外側中間部、および周縁部に対する押圧力、(2)研磨時間、(3)研磨テーブル30Aやトップリング31Aの回転数、(4)研磨終点の判定のための閾値等がある。
3. 3. Regarding the data processing device 768 analyzing the data stored in the cloud or the like and controlling the board processing device 764 according to the analysis result, the following can be performed.
-After the measurement signal or measurement data is processed, it can be transmitted to the substrate processing apparatus 764 as a control signal or control data.
-The substrate processing device 764 that has received the data updates the polishing parameters related to the polishing process to perform the polishing operation based on the data, and the data from the data processing device 768 indicates that the end point has been detected. / In the case of data, it is judged that the end point has been detected, and polishing is finished. The polishing parameters include (1) pressing force on the four regions of the semiconductor wafer 16, that is, the central portion, the inner intermediate portion, the outer intermediate portion, and the peripheral portion, (2) the polishing time, and (3) the polishing table 30A and the top. There are the number of rotations of the ring 31A, (4) a threshold value for determining the polishing end point, and the like.
 次に、図21により別の実施形態を説明する。図21は、図20の実施形態の変形例を示す図である。本実施形態は、基板処理装置、中間処理装置、ネットワーク766、データ処理装置という順に接続された構成である。中間処理装置は、例えば、FPGAやASICで構成され、フィルタリング機能、演算機能、データ加工機能、データセット作成機能等を有する。 Next, another embodiment will be described with reference to FIG. FIG. 21 is a diagram showing a modified example of the embodiment of FIG. In this embodiment, the substrate processing device, the intermediate processing device, the network 766, and the data processing device are connected in this order. The intermediate processing device is composed of, for example, FPGA or ASIC, and has a filtering function, a calculation function, a data processing function, a data set creation function, and the like.
 インターネットと高速光通信をどのように使用するかによって、以下の3ケースに分ける。(1)基板処理装置と中間処理装置との間がインターネットであり、ネットワーク766がインターネットである場合、(2)基板処理装置と中間処理装置との間が高速光通信であり、ネットワーク766が高速光通信である場合、(3)基板処理装置と中間処理装置との間が高速光通信であり、中間処理装置から外側がインターネットである場合がある。 It is divided into the following three cases depending on how to use the Internet and high-speed optical communication. When (1) the Internet is between the board processing device and the intermediate processing device and the network 766 is the Internet, (2) high-speed optical communication is performed between the board processing device and the intermediate processing device, and the network 766 is high-speed. In the case of optical communication, (3) high-speed optical communication may be performed between the substrate processing device and the intermediate processing device, and the Internet may be outside the intermediate processing device.
 (1)の場合:全体システムにおけるデータ通信速度とデータ処理速度が、インターネット通信速度でよい場合である。データサンプリング速度1~1000mS程度であり、複数の研磨条件パラメータのデータ通信を行うことができる。この場合は、中間処理装置770は、データ処理装置768に送るデータセットの作成を行う。データセットの詳細は後述する。データセットを受領したデータ処理装置768はデータ処理を行い、例えば、終点位置までの研磨条件パラメータの変更値の算出と、研磨プロセスの工程計画を作成し、ネットワーク766を通じて中間処理装置770に返す。中間処理装置770は研磨条件パラメータの変更値と、必要な制御信号を基板処理装置764に送る。 Case (1): When the data communication speed and data processing speed in the entire system are sufficient as the Internet communication speed. The data sampling speed is about 1 to 1000 mS, and data communication of a plurality of polishing condition parameters can be performed. In this case, the intermediate processing device 770 creates a data set to be sent to the data processing device 768. The details of the data set will be described later. Upon receiving the data set, the data processing device 768 performs data processing, for example, calculates the change value of the polishing condition parameter up to the end point position, creates a process plan of the polishing process, and returns it to the intermediate processing device 770 through the network 766. The intermediate processing device 770 sends a change value of the polishing condition parameter and a necessary control signal to the substrate processing device 764.
 (2)の場合:基板処理装置-中間処理装置間、中間処理装置-データ処理装置間のセンサ信号や状態管理機器間の通信が高速通信である。高速通信では、通信速度1~1000Gbpsで通信が可能である。高速通信では、データ・データセット・ コマンド・ 制御信号等が通信できる。この場合、中間処理装置770にてデータセットの作成を行い、それをデータ処理装置768に送信する。中間処理装置770は、データ処理装置768における処理に必要なデータを抽出して、加工を行い、データセットとして作成する。例えば、終点検出用の複数のセンサ信号を抽出してデータセットとして作成する。 In the case of (2): Communication between the board processing device and the intermediate processing device, and between the sensor signal between the intermediate processing device and the data processing device and between the state management devices is high-speed communication. In high-speed communication, communication is possible at a communication speed of 1 to 1000 Gbps. In high-speed communication, data, datasets, commands, control signals, etc. can be communicated. In this case, the intermediate processing device 770 creates a data set and transmits it to the data processing device 768. The intermediate processing device 770 extracts data necessary for processing in the data processing device 768, processes the data, and creates a data set. For example, a plurality of sensor signals for detecting the end point are extracted and created as a data set.
 中間処理装置770は、作成したデータセットを高速通信にてデータ処理装置768に送る。データ処理装置768は、データセットに基づいて、研磨終点までのパラメータ変更値の算出・工程計画作成を行う。データ処理装置768は、複数の基板処理装置764からのデータセットを受領し、夫々の装置に対する、次のステップのパラメータ更新値の算出と工程計画作成を行い、更新されたデータセットを中間処理装置770に送信する。中間処理装置770は、更新されたデータセットに基づいて、更新されたデータセットを制御信号に変換して、基板処理装置764の制御部65に高速通信にて送信する。基板処理装置764は、更新された制御信号に応じて研磨を実施し、精度のよい終点検出を行う。 The intermediate processing device 770 sends the created data set to the data processing device 768 by high-speed communication. The data processing device 768 calculates the parameter change value up to the polishing end point and creates the process plan based on the data set. The data processing device 768 receives data sets from a plurality of board processing devices 764, calculates parameter update values for the next step and creates a process plan for each device, and uses the updated data sets as an intermediate processing device. Send to 770. Based on the updated data set, the intermediate processing device 770 converts the updated data set into a control signal and transmits the updated data set to the control unit 65 of the board processing device 764 by high-speed communication. The substrate processing apparatus 764 performs polishing in response to the updated control signal, and performs accurate end point detection.
 (3)の場合:中間処理装置770は、基板処理装置764の複数のセンサ信号を高速通信により受領する。高速光通信では、通信速度1~10000Gbpsの通信が可能である。この場合、基板処理装置764、センサ、制御部65と、中間処理装置770との間は、高速通信によるオンラインの研磨条件の制御を行うことが可能である。データの処理順序は、例えば、センサ信号受領(基板処理装置764から中間処理装置766)、データセット作成、 データ処理、パラメータ更新値算出、更新パラメータ信号の送信、制御部65による研磨制御、更新した終点検知という順序である。 In the case of (3): The intermediate processing device 770 receives a plurality of sensor signals of the board processing device 764 by high-speed communication. In high-speed optical communication, communication at a communication speed of 1 to 10000 Gbps is possible. In this case, it is possible to control online polishing conditions by high-speed communication between the substrate processing device 764, the sensor, the control unit 65, and the intermediate processing device 770. The data processing order is, for example, sensor signal reception (board processing device 764 to intermediate processing device 766), data set creation, data processing, parameter update value calculation, update parameter signal transmission, polishing control by the control unit 65, and update. The order is end point detection.
 この時、中間処理装置770は、高速の終点検出制御を高速通信の中間処理装置770で行う。中間処理装置770からは、ステータス信号をデータ処理装置768に定期的に送信し、制御状態のモニタリング処理をデータ処理装置768で行う。データ処理装置768は、複数の基板処理装置764からのステータス信号を受領し、それぞれの基板処理装置764に対して、次のプロセス工程の計画作成を行う。計画に基づいたプロセス工程の計画信号をそれぞれの基板処理装置764に送り、それぞれの基板処理装置764において、互いに独立に、研磨プロセスの準備・研磨プロセスの実施を行う。この様に、高速の終点検出制御を高速通信の中間処理装置770で行い、複数の基板処理装置764の状態管理をデータ処理装置768にて行う。 At this time, the intermediate processing device 770 performs high-speed end point detection control by the intermediate processing device 770 for high-speed communication. A status signal is periodically transmitted from the intermediate processing device 770 to the data processing device 768, and the control state monitoring process is performed by the data processing device 768. The data processing device 768 receives status signals from the plurality of board processing devices 764, and plans the next process process for each board processing device 764. A planning signal of the process process based on the plan is sent to each substrate processing apparatus 764, and each substrate processing apparatus 764 performs the preparation of the polishing process and the execution of the polishing process independently of each other. In this way, high-speed end point detection control is performed by the intermediate processing device 770 for high-speed communication, and state management of the plurality of board processing devices 764 is performed by the data processing device 768.
 次に、データセットの例について説明する。センサ信号と必要な制御パラメータをデータセットにすることが可能である。データセットは、トップリング31Aの半導体ウエハ16への押圧・揺動軸モータ14の電流・ 研磨テーブル30Aのモータ電流・光学式センサの測定信号・ 渦電流センサの測定信号・研磨パッド10上でのトップリング31Aの位置・スラリと薬液の流量/種類、それらの相関算出データ等を含むことができる。 Next, an example of a data set will be described. It is possible to make a data set of sensor signals and required control parameters. The data set includes pressing the top ring 31A against the semiconductor wafer 16, the current of the swing shaft motor 14, the motor current of the polishing table 30A, the measurement signal of the optical sensor, the measurement signal of the eddy current sensor, and the polishing pad 10. The position / slurry of the top ring 31A, the flow / type of the chemical solution, the correlation calculation data thereof, and the like can be included.
 上記の種類のデータセットは、1次元データをパラレルに送信する送信システムや、1次元データをシーケンシャルに送信する送信システムを用いて、送信することが可能である。データセットとして、上記1次元データを2次元データに加工して、データセットにすることが可能である。例えば、X軸を時間とし、Y軸が多数のデータ列とすると、同時刻における複数のパラメータデータが、一つのデータセットに加工処理される。2次元データは、2次元の画像データのようなものとして扱える。このメリットは、2次元データの転送とするため、1次元データの転送よりも少ない配線で、時間に関連付けられたデータとして授受でき、かつ、取扱いができることである。具体的には、1次元データをそのまま1信号1ラインにすると、多数の配線が必要となるが、2次元データの転送の場合、1本のラインにより複数の信号を送ることができる。また、複数本のラインを用いると、送信されたデータを受けるデータ処理装置768とのインターフェースが複雑となり、データ処理装置768におけるデータ再組立てが複雑となる。 The above types of data sets can be transmitted using a transmission system that transmits one-dimensional data in parallel or a transmission system that transmits one-dimensional data sequentially. As a data set, the above-mentioned one-dimensional data can be processed into two-dimensional data to form a data set. For example, assuming that the X-axis is time and the Y-axis is a large number of data strings, a plurality of parameter data at the same time are processed into one data set. Two-dimensional data can be treated as something like two-dimensional image data. This merit is that since the transfer of two-dimensional data is performed, the data can be exchanged and handled as time-related data with less wiring than the transfer of one-dimensional data. Specifically, if one-dimensional data is directly converted into one signal and one line, a large number of wires are required, but in the case of two-dimensional data transfer, a plurality of signals can be sent by one line. Further, when a plurality of lines are used, the interface with the data processing device 768 that receives the transmitted data becomes complicated, and the data reassembly in the data processing device 768 becomes complicated.
 また、このような時間に関連付けられた2次元データセットがあると、以前に行った標準的な研磨条件による研磨時のデータセットと、現時点で行っている標準的な研磨条件のデータセットの比較が容易となる。また、2次元データ相互の相違点を差分処理等により容易に知ることが可能となる。差があるところを抽出して、異常が起こっているセンサやパラメータ信号を検出することも容易となる。また、以前の標準的な研磨条件と現時点の研磨中のデータセットの比較を行い、周囲との差分が異なる部位のパラメータ信号の抽出による異常検知も容易となる。 In addition, if there is a two-dimensional data set associated with such time, a comparison between the data set at the time of polishing under the standard polishing conditions performed before and the data set at the current standard polishing conditions is performed. Becomes easier. In addition, the differences between the two-dimensional data can be easily known by difference processing or the like. It is also easy to extract the difference and detect the sensor or parameter signal in which an abnormality occurs. In addition, it is easy to detect anomalies by extracting the parameter signal of the part where the difference from the surroundings is different by comparing the previous standard polishing conditions with the data set during the current polishing.
 次に、図22により別の実施形態を説明する。図22は、図20の実施形態の変形例を示す図である。本実施形態は、半導体工場の例である。複数の基板処理装置764が工場内にある。研磨や終点検知を行う基板処理装置764に関しては、図19~図21に示した機器や機能と同じものを有することができる。例えば、多数のセンサ(10個以上で、種類数≧3  である。)を用いる終点検知では、センサ信号のデータ量が多量となる。このときに、データセットを作成して、データ解析及び研磨条件パラメータの更新を行うために、インターネットを用いて通信を行うと、通信に時間が掛る。そこで基板処理装置764と中間処理装置770を接続する通信回線L1は、高速光通信や高速無線通信等を行う高速通信機器を用いて行う。中間処理装置770は、センサ又は基板処理装置764の近くにあり、高速でセンサ又はセンサのコントローラからの信号を処理する。処理結果を反映したフィードバック又はフィードフォワードのパラメータ更新を行うための信号を基板処理装置764に高速で伝達する。基板処理装置764は、パラメータ更新の信号を受取って研磨処理を行い、また終点検知を行う。 Next, another embodiment will be described with reference to FIG. FIG. 22 is a diagram showing a modified example of the embodiment of FIG. This embodiment is an example of a semiconductor factory. There are a plurality of substrate processing devices 764 in the factory. The substrate processing apparatus 764 that performs polishing and end point detection may have the same equipment and functions as those shown in FIGS. 19 to 21. For example, in end point detection using a large number of sensors (10 or more, the number of types ≥ 3), the amount of sensor signal data is large. At this time, if communication is performed using the Internet in order to create a data set and perform data analysis and update of polishing condition parameters, communication takes time. Therefore, the communication line L1 connecting the substrate processing device 764 and the intermediate processing device 770 is performed by using a high-speed communication device that performs high-speed optical communication, high-speed wireless communication, or the like. The intermediate processing device 770 is located near the sensor or the substrate processing device 764 and processes the signal from the sensor or the controller of the sensor at high speed. A signal for performing feedback or feedforward parameter update reflecting the processing result is transmitted to the substrate processing apparatus 764 at high speed. The substrate processing apparatus 764 receives the signal for updating the parameters, performs polishing processing, and detects the end point.
 基板処理装置764が、図22に示すように、複数ある場合、工場内では各々の基板処理装置764からの信号を受取って、処理を行う第1の処理装置772があってもよい。第1の処理装置772は、中型のメモリと演算機能を有し、高速計算を行うことが可能である。第1の処理装置772は、自動学習機能を有して、データを蓄積しながら自動学習を行い、加工量均一性の向上や、終点検出精度向上等のためのパラメータ更新を行う。自動学習により、パラメータを最適値に近づけるパラメータ更新を継続して行うことが可能である。この場合、Insituでオンライン処理を行う時は高速通信が必要であり、通信回線L1/通信回線L2は、例えば、高速光通信用通信回線である。この時例えば、データセット作成が中間処理装置770で行われ、データ解析やパラメータ更新は第1の処理装置772において行うことができる。そして、各々の基板処理装置764に更新パラメータ値を反映させるための信号を通信回線L1/通信回線L2により、基板処理装置764に送る。 As shown in FIG. 22, when there are a plurality of substrate processing devices 764, there may be a first processing device 772 that receives signals from each substrate processing device 764 and performs processing in the factory. The first processing device 772 has a medium-sized memory and a calculation function, and can perform high-speed calculation. The first processing device 772 has an automatic learning function, performs automatic learning while accumulating data, and updates parameters for improving the uniformity of processing amount, improving the end point detection accuracy, and the like. By automatic learning, it is possible to continuously update the parameters to bring the parameters closer to the optimum values. In this case, high-speed communication is required when performing online processing in In situ, and the communication line L1 / communication line L2 is, for example, a high-speed optical communication communication line. At this time, for example, the data set creation is performed by the intermediate processing device 770, and the data analysis and parameter update can be performed by the first processing device 772. Then, a signal for reflecting the update parameter value to each board processing device 764 is sent to the board processing device 764 by the communication line L1 / communication line L2.
 又、研磨部相互の間を移動する間に均一性測定等を行うInlineモニタリングのような、それほど高速性が必要とされない場合では、通信回線L2がインターネット通信用通信回線等の、比較的低速な通信回線で済む場合もある。初期研磨のデータを中間処理装置770において処理し、生成されたデータセットをインターネットにより第1の処理装置772に送る。第1の処理装置772は、解析及びパラメータ更新値を求め、更新データセットを作成する。第1の処理装置772は、それを中間処理装置770に送る。次の研磨部で本研磨を行う場合に、中間処理装置770にある更新データセットから反映された更新パラメータ値が基板処理装置764に送られ、それに従って研磨を行う。 In addition, when high speed is not required, such as Inline monitoring, which measures uniformity while moving between polishing parts, the communication line L2 is relatively low speed, such as a communication line for Internet communication. In some cases, a communication line is sufficient. The initial polishing data is processed in the intermediate processing device 770, and the generated data set is sent to the first processing device 772 via the Internet. The first processing device 772 obtains analysis and parameter update values, and creates an update data set. The first processing device 772 sends it to the intermediate processing device 770. When the main polishing is performed in the next polishing unit, the update parameter value reflected from the update data set in the intermediate processing device 770 is sent to the substrate processing device 764, and the polishing is performed accordingly.
 工場外部と情報の授受を行う時は、第1の処理装置772からネットワーク766を用いて、工場外の第2の処理装置774又はパソコンなどの管理機器と、当該情報に関するデータのやり取りを行う。この場合、工場外の第2の処理装置774と通信を行う場合は、セキュリティを確保するために、当該情報に関するデータは暗号化される場合がある。又、当該情報に関するデータとしては、基板処理装置764のステータスに関連した情報を示すデータがある。又、基板処理装置764の消耗品の状態に関する情報のデータの授受を行い、その交換時期を外部の第2の処理装置774にて算出し、交換時期を顧客に知らせること、又は基板処理装置764上に表示することが可能である。 When exchanging information with the outside of the factory, the network 766 is used from the first processing device 772 to exchange data related to the information with the second processing device 774 outside the factory or a management device such as a personal computer. In this case, when communicating with the second processing device 774 outside the factory, the data related to the information may be encrypted in order to ensure security. Further, as the data related to the information, there is data indicating information related to the status of the substrate processing apparatus 764. In addition, data on the state of consumables of the board processing device 764 is exchanged, the replacement time is calculated by the second external processing device 774, and the customer is notified of the replacement time, or the board processing device 764 It can be displayed above.
 次に、図23により別の実施形態を説明する。図23は、図20の実施形態の変形例を示す図である。本実施形態は、半導体工場の例である。複数の基板処理装置764が工場内にある。研磨や終点検知を行う基板処理装置764に関しては、図19~図21に示した機器や機能と同じものを有することができる。図22の実施形態と比べると、本実施形態では、基板処理装置764から、中間処理装置770を介さないで第1の処理装置772に接続される通信回線L3がある点で異なる。本形態の特徴は、多量のセンサ群からのデータから作成され、その作成に高速通信が必要なデータセットを形成するデータの通信に関しては、高速である通信回線L1および通信回線L2を用いた通信を利用することである。その他の、高速通信を必要としない制御パラメータの通信は、通信回線L3により、基板処理装置764を第1の処理装置772に接続して行う。例えば、搬送系・洗浄系・乾燥系等は、高速制御が必要でないパラメータ群を用いることができるため、これらの系に関しては、通信回線L3により、基板処理装置764を第1の処理装置772に接続して行う。基板処理装置764の稼働状況に応じて、高速通信・高速解析・高速通信用データセットが必要なパラメータ信号やセンサ信号を可変的に選んで、当該信号等を通信回線L1および通信回線L2を用いて送受信することとしてもよい。 Next, another embodiment will be described with reference to FIG. FIG. 23 is a diagram showing a modified example of the embodiment of FIG. This embodiment is an example of a semiconductor factory. There are a plurality of substrate processing devices 764 in the factory. The substrate processing apparatus 764 that performs polishing and end point detection may have the same equipment and functions as those shown in FIGS. 19 to 21. Compared with the embodiment of FIG. 22, the present embodiment is different in that there is a communication line L3 connected from the substrate processing device 764 to the first processing device 772 without going through the intermediate processing device 770. The feature of this embodiment is that communication using high-speed communication line L1 and communication line L2 is used for data communication that is created from data from a large number of sensors and forms a data set that requires high-speed communication for the creation. Is to use. Other control parameter communication that does not require high-speed communication is performed by connecting the board processing device 764 to the first processing device 772 via the communication line L3. For example, since a parameter group that does not require high-speed control can be used for the transport system, the cleaning system, the drying system, etc., for these systems, the substrate processing device 764 is used as the first processing device 772 by the communication line L3. Connect and do. Parameter signals and sensor signals that require high-speed communication, high-speed analysis, and high-speed communication data sets are variably selected according to the operating status of the board processing device 764, and the signals and the like are selected using the communication line L1 and the communication line L2. It may be transmitted and received.
 本実施形態では、工場内にある第1の処理装置772に、通信回線L2と通信回線L3を用いて基板処理装置764からのデータを送り、データ解析・自動学習・パラメータ更新値作成等を行う。そして、第1の処理装置772は、各々の基板処理装置764に対して、次の工程における当該装置の制御パラメータを送る。本実施形態によれば、工場内に複数の基板処理装置764があるとき、第1の処理装置772は、複数の基板処理装置764からデータを受取り、データを処理して、各々の基板処理装置764に中間処理装置770を介して、処理結果を送ることが可能となる。 In the present embodiment, data from the board processing device 764 is sent to the first processing device 772 in the factory using the communication line L2 and the communication line L3, and data analysis, automatic learning, parameter update value creation, and the like are performed. .. Then, the first processing device 772 sends the control parameters of the device in the next step to each substrate processing device 764. According to the present embodiment, when there are a plurality of board processing devices 764 in the factory, the first processing device 772 receives data from the plurality of board processing devices 764, processes the data, and makes each board processing device. The processing result can be sent to 764 via the intermediate processing apparatus 770.
 本実施形態を変更した別の形態としては、通信回線L2が無い形態も可能である。通信回線L2を用いないで、中間処理装置770にて処理が行われた高速処理状態のステータスに関するデータを、他の装置状態ステータスに関するデータと一緒に、通信回線L3を介して第1の処理装置772に送ることが可能である。この場合、通信回線L2に関する通信回線用配線が削減できる。つまり、高速データ処理及び高速制御を行う必要のあるところだけ、高速通信回線と高速の中間処理装置770によりデータ処理・自動学習・制御パラメータ更新を行い、基板処理装置764に処理結果を送る。高速データ処理及び高速制御に関するステータス信号と他のステータス信号を一緒にして、通信回線L3にて第1の処理装置772に送り、第1の処理装置772でデータ処理・自動学習・制御パラメータ更新を行い、各々の基板処理装置764に、処理結果を含む信号を送ることが可能である。図23に示す形態およびそれを変更した別の形態では、複数の基板処理装置764に対して1個の第1の処理装置772により対応可能である。これらの形態では、工場外への通信については、図22の形態と同様である。 As another embodiment in which this embodiment is modified, a configuration without a communication line L2 is also possible. The data related to the status of the high-speed processing state processed by the intermediate processing device 770 without using the communication line L2, together with the data related to the other device status status, is the first processing device via the communication line L3. It is possible to send to 772. In this case, the wiring for the communication line related to the communication line L2 can be reduced. That is, only where high-speed data processing and high-speed control are required, the high-speed communication line and the high-speed intermediate processing device 770 perform data processing, automatic learning, and control parameter update, and send the processing result to the board processing device 764. The status signals related to high-speed data processing and high-speed control and other status signals are sent together on the communication line L3 to the first processing device 772, and the first processing device 772 performs data processing, automatic learning, and control parameter update. Then, it is possible to send a signal including the processing result to each substrate processing apparatus 764. In the form shown in FIG. 23 and another form in which the same is changed, one first processing device 772 can handle a plurality of substrate processing devices 764. In these forms, the communication outside the factory is the same as that in FIG. 22.
 次に、前述の図19~図23に示すデータ処理及び制御形態におけるデータセットと自動学習、及びそれに関する演算の例について説明する。最初にデータセットの1例に関して説明する。データセットに関しては、研磨等の処理の進行に伴い、有効な制御パラメータの更新を行うために、処理に応じたデータセットを作成する必要がある。例えば、終点検出には、半導体の膜の特徴を効果的にとらえたセンサ信号を選択したデータセットを用いるとよい。研磨レシピを利用して、ウエハ上に形成された膜構造に対応したレシピ(研磨条件)選択が行われる。その時、膜構造に関して、次の特徴により、膜の分類を行うことが可能である。(1)酸化膜または絶縁膜を薄くする、(2)金属膜または導電膜を薄くする、(3)下層との境界面まで研磨する(導電層と絶縁層の境界面等)、(4)成膜部をパターン境界部まで研磨する(配線材料や絶縁材料の成膜後の不要部の研磨等)。この分類に対応して、データセットとしては、センサの種類について、全ての種類のセンサからのデータを取込んで作成する場合と、当該膜の研磨状態の検知に関して、膜に適した種類のセンサからのデータを選択して、データセットを作成する場合がある。 Next, an example of the data set and automatic learning in the data processing and control modes shown in FIGS. 19 to 23 described above, and the calculation related thereto will be described. First, an example of a data set will be described. Regarding the data set, it is necessary to create a data set according to the processing in order to update effective control parameters as the processing such as polishing progresses. For example, for end point detection, it is preferable to use a data set in which a sensor signal that effectively captures the characteristics of the semiconductor film is selected. Using the polishing recipe, the recipe (polishing condition) corresponding to the film structure formed on the wafer is selected. At that time, it is possible to classify the membrane according to the following characteristics regarding the membrane structure. (1) Thinning the oxide film or insulating film, (2) Thinning the metal film or conductive film, (3) Polishing to the interface with the lower layer (the interface between the conductive layer and the insulating layer, etc.), (4) Polish the film-forming part to the pattern boundary (polishing of unnecessary parts after film-forming of wiring materials and insulating materials, etc.). Corresponding to this classification, the data set is a type of sensor suitable for the film when it is created by importing data from all types of sensors and when it is detected of the polishing state of the film. You may want to create a dataset by selecting data from.
 全ての種類のセンサからのデータを取込んで作成する場合のデータセットとしては、以下がある。例えば、TCM(モータ電流変動測定)におけるトルクデータ(モータ電流等)、トップリング付アームのトルクデータ(搖動モータ電流等)、光学式センサ(SOPM等)データ、渦電流センサデータ、等のデータと、それらのデータを演算したデータ(微分データ等)、相関データ(微分したデータの絶対値等の高いデータと、低いデータの差分データ等)をセットにしたデータセットなどを作成する。 There are the following data sets when creating by importing data from all types of sensors. For example, with data such as torque data (motor current, etc.) in TCM (motor current fluctuation measurement), torque data of arm with top ring (swing motor current, etc.), optical sensor (SOPM, etc.) data, eddy current sensor data, etc. , Create a data set that is a set of data obtained by calculating those data (differential data, etc.) and correlation data (high data such as absolute value of differentiated data and difference data of low data).
 膜の研磨状態の検知に関して、膜に適した種類のセンサからのデータを選択して、データセットを作成する場合のデータセットとしては、以下がある。(1)酸化膜または絶縁膜を薄くする場合、膜厚変化に対して感度の高い光学式センサ信号は、演算したデータの値が高くなる。この場合、複数のデータを評価することにより、例えば、研磨時間を加算することにより、目標の研磨量を達成できたことと、終点の検知を行う。例えば、TCMによる測定値およびトップリング付アームトルクデータが安定していると、同一研磨レートによる研磨が達成されていると考えられる。光学式センサデータによる膜厚変化により、膜厚が、ある厚さに達した時点を基準とした時間カウントによる終点検知が精度よくできる。 Regarding the detection of the polishing state of the film, there are the following data sets when creating a data set by selecting data from a sensor of the type suitable for the film. (1) When the oxide film or the insulating film is thinned, the value of the calculated data becomes high for the optical sensor signal having high sensitivity to the change in film thickness. In this case, by evaluating a plurality of data, for example, by adding the polishing time, the target polishing amount can be achieved and the end point is detected. For example, if the measured value by TCM and the arm torque data with the top ring are stable, it is considered that polishing at the same polishing rate is achieved. By changing the film thickness based on the optical sensor data, it is possible to accurately detect the end point by time counting based on the time when the film thickness reaches a certain thickness.
 (2)金属膜または導電膜を薄くする場合は、導電膜や金属膜の薄膜化を行うため、導電膜の膜厚変化に対して感度の高い渦電流センサと光学式センサの演算データが、膜厚が、ある厚さに達したことを判定する基準として用いられる。(1)と同様に、TCMによる測定値およびトップリング付アームトルクデータが安定している場合、目標値に近い膜厚での演算データ値の高い方を主として選択し、他方を従として選択する。主として選択したセンサのデータによる膜厚変化により、膜厚が、ある厚さに達した時点を基準とした時間カウントによる終点検知を行う。従として選択したセンサのデータにより、ズレなし確認(ほぼ目標領域に到達していることの確認)を行い、検知精度を高める。 (2) When the metal film or the conductive film is thinned, the conductive film or the metal film is thinned, so that the calculated data of the eddy current sensor and the optical sensor, which are highly sensitive to the change in the film thickness of the conductive film, are used. It is used as a criterion for determining that the film thickness has reached a certain thickness. Similar to (1), when the measured value by TCM and the arm torque data with top ring are stable, the one with the higher calculated data value at the film thickness close to the target value is mainly selected, and the other is selected as the slave. .. The end point is detected by time counting based on the time when the film thickness reaches a certain thickness, mainly based on the change in film thickness based on the data of the selected sensor. Based on the data of the sensor selected as the slave, it is confirmed that there is no deviation (confirmation that the target area is almost reached), and the detection accuracy is improved.
 従として選択したセンサのデータの使用方法としては、主であるセンサと従であるセンサの両方の目標値に優先割合係数(重み係数)を設けて、主であるセンサと従であるセンサとの影響割合を規定して、目標値を設定して終点検知を行うことも可能である。又、この時、回数を重ねるごとにデータを学習データとして利用して、判断機能(優先割合係数の変更等)において、学習による判断機能の更新を行い、より高い精度の終点検知となるよう改良していくことが可能である。 As a method of using the data of the sensor selected as the slave, a priority ratio coefficient (weighting coefficient) is provided for the target values of both the main sensor and the slave sensor, and the main sensor and the slave sensor are used. It is also possible to specify the influence ratio, set the target value, and detect the end point. In addition, at this time, the data is used as learning data each time the number of times is repeated, and the judgment function is updated by learning in the judgment function (change of priority ratio coefficient, etc.) to improve the end point detection with higher accuracy. It is possible to continue.
 (3)下層との境界面まで研磨(過研磨)する場合は、TCMにおけるトルクデータ、トップリング付アームのトルクデータ、光学式センサのデータ、渦電流式センサのデータの全てにおいて変化が生じる。この時、TCMにおけるトルクデータとトップリング付アームトルクデータは、演算データでみると、境界面付近で急激な変化(パルス的な変化)を発生する。従って、境界面付近の研磨領域に近づいたことの判定を光学式センサのデータおよび/または渦電流式センサのデータで行う。次に、TCMにおけるトルクデータおよび/またはトップリング付アームのトルクデータの変化を確認した時点を基準に、所定時間経過後を終点検知時刻として再設定することが可能となる。このように過研磨を行う理由は、以下のとおりである。境界面まで研磨した時に、研磨残りがあると、例えば金属が埋め込まれた縦配線、例えばビアやプラグの底に酸化膜が残留していると、縦配線の抵抗値が高くなり、回路動作不良の原因となる。そのため、研磨残りがないように過研磨を行う。境界面において酸化膜は、研磨前は通常、小さな凹凸を有し、波状である。従って、小さな凹凸が存在することを考慮して、過研磨を行い、境界面にある酸化膜を除去する必要がある。過研磨を行う他の理由としては、研磨装置を、境界面に到達した時に急激に停止させることは、できないためである。そこで、前述の所定時間経過後を終点検知時刻として、過研磨を行い、研磨装置を停止させる。 (3) When polishing (over-polishing) to the interface with the lower layer, changes occur in all of the torque data in the TCM, the torque data of the arm with the top ring, the data of the optical sensor, and the data of the eddy current sensor. At this time, the torque data in the TCM and the arm torque data with the top ring generate a sudden change (pulse-like change) in the vicinity of the boundary surface in terms of the calculated data. Therefore, it is determined that the polishing region near the boundary surface is approached based on the data of the optical sensor and / or the data of the eddy current sensor. Next, it is possible to reset the end point detection time after a predetermined time has elapsed, based on the time when the change in the torque data and / or the torque data of the arm with the top ring is confirmed in the TCM. The reason for performing overpolishing in this way is as follows. When polishing to the boundary surface, if there is polishing residue, for example, if there is a metal-embedded vertical wiring, for example, if an oxide film remains on the bottom of the via or plug, the resistance value of the vertical wiring will increase and the circuit will malfunction. Causes. Therefore, overpolishing is performed so that there is no polishing residue. At the interface, the oxide film usually has small irregularities and is wavy before polishing. Therefore, considering the existence of small irregularities, it is necessary to perform overpolishing to remove the oxide film on the interface. Another reason for overpolishing is that the polishing device cannot be stopped abruptly when it reaches the interface. Therefore, over-polishing is performed with the elapse of the predetermined time as the end point detection time, and the polishing apparatus is stopped.
 再設定とは例えば、以下のような処理方法を指す。トップリング付アームトルクデータの信号波形変化量の閾値を、研磨開始時に仮基準として設定し、実際に波形検知を行った時点を基準として、所定時間を残りの研磨時間のカウント数として設定し、カウント数を、終点検知時刻の更新値として設定して、研磨を行うことが可能である。この時、TCMにおけるトルクデータおよび/またはトップリング付アームのトルクデータの内、感度の高い方を主、低い方を従として、(2)と同様に処理することが可能である。再設定の精度を上げるために、学習を利用して、研磨パラメータを設定することや、設定された研磨パラメータを更新することができる。また、再設定の精度を上げるために、複数のセンサを用いることができる。学習は、自動学習が可能であるが、一部マニュアルによる複合式の学習も可能である。 Resetting refers to the following processing method, for example. The threshold value of the signal waveform change amount of the arm torque data with the top ring is set as a provisional reference at the start of polishing, and a predetermined time is set as the number of counts of the remaining polishing time based on the time when the waveform is actually detected. It is possible to perform polishing by setting the count number as an update value of the end point detection time. At this time, among the torque data in the TCM and / or the torque data of the arm with the top ring, the one with the higher sensitivity is the main and the one with the lower sensitivity is the slave, and it is possible to process in the same manner as in (2). In order to improve the accuracy of resetting, learning can be used to set polishing parameters and update the set polishing parameters. In addition, a plurality of sensors can be used to improve the accuracy of resetting. As for learning, automatic learning is possible, but complex learning with some manuals is also possible.
 (4)成膜部をパターン境界部まで研磨(配線材料や絶縁材料の成膜後の不要部の研磨等)する場合は、(3)と同様である。但し、成膜部では、金属膜と絶縁膜が混在しているため、境界部のパターンと材料の影響を受けて、境界部以降の波形の変動は他に比べて大きい。渦電流センサのみ、又は光学式センサのみでは、終点検知が困難である。この様なときに、複数センサのデータから作成したデータセットと、それを用いた学習機能による精度改良と、優先割合係数による終点検知用カウント数の更新が有効となる。一つ又は2つのセンサ信号だけを用いた場合は、終点付近の精度の高いモニタリングが難しいので、複数種(3種以上)のセンサデータと、これらのデータから作成したデータセットを用いた終点検出が大変有効となる。このような多くのデータを利用するときは、学習により、精度改良作業の効率が向上する。 (4) The same as (3) is used when the film-forming portion is polished to the pattern boundary portion (polishing of unnecessary parts after film formation of wiring material or insulating material, etc.). However, since the metal film and the insulating film are mixed in the film-forming portion, the fluctuation of the waveform after the boundary portion is larger than the others due to the influence of the pattern and the material of the boundary portion. It is difficult to detect the end point with only the eddy current sensor or the optical sensor. In such a case, it is effective to improve the accuracy by the data set created from the data of a plurality of sensors and the learning function using the data set, and to update the count number for end point detection by the priority ratio coefficient. When only one or two sensor signals are used, it is difficult to monitor the vicinity of the end point with high accuracy. Therefore, end point detection using multiple types (three or more types) of sensor data and a data set created from these data. Is very effective. When using such a large amount of data, learning improves the efficiency of accuracy improvement work.
 (4)の場合、全ての終点検知に係わるセンサ信号を用いてデータセットを作成するが、データセット作成時に有効なセンサデータを選択して、データセットを作成することも可能である。(1)、(2)、(3)の単純な膜構造の場合は特に有効となる。 In the case of (4), a data set is created using all the sensor signals related to end point detection, but it is also possible to select valid sensor data at the time of creating the data set and create the data set. This is particularly effective in the case of the simple film structures (1), (2), and (3).
 以上、実施の形態および変形例を例示により説明したが、本技術の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。また、各実施の形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Although the embodiments and modifications have been described above by way of example, the scope of the present technology is not limited to these, and can be changed or modified according to the purpose within the scope described in the claims. is there. In addition, each embodiment and modification can be appropriately combined as long as the processing contents do not contradict each other.

Claims (25)

  1.  1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
    を備えたことを特徴とする終点検知装置。
    It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. It is equipped with a judgment unit that estimates and outputs whether or not the current time is the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing. An end point detection device characterized by this.
  2.  1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
    を備えたことを特徴とする終点検知装置。
    It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. It is equipped with a judgment unit that estimates and outputs the remaining time from the current point to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing. An end point detection device characterized by.
  3.  前記判定部により現時点が終点のタイミングであると推定された場合に、研磨を止める制御信号を研磨ユニットに送信する第1研磨停止部
    をさらに備えたことを特徴とする請求項1に記載の終点検知装置。
    The end point according to claim 1, further comprising a first polishing stop unit that transmits a control signal for stopping polishing to the polishing unit when the timing of the end point is estimated by the determination unit. Detection device.
  4.  前記判定部により推定された前記残り時間が経過した時に、研磨を止める制御信号を研磨ユニットに送信する第1研磨停止部
    をさらに備えたことを特徴とする請求項3に記載の終点検知装置。
    The end point detecting device according to claim 3, further comprising a first polishing stop unit that transmits a control signal for stopping polishing to the polishing unit when the remaining time estimated by the determination unit has elapsed.
  5.  前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定するとともに、現時点の研磨条件が正常であるか否かを推定して出力する
    ことを特徴とする請求項1または3に記載の終点検知装置。
    The determination unit inputs measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing, and estimates whether or not the present time is the timing of the end point indicating the end of polishing. The end point detection device according to claim 1 or 3, further comprising estimating and outputting whether or not the current polishing conditions are normal.
  6.  前記第1研磨停止部は、前記判定部により、現時点の研磨条件が正常であり、かつ現時点が終点のタイミングであると推定された場合に、研磨を止める制御信号を研磨ユニットに送信する
    ことを特徴とする請求項3を引用する請求項5に記載の終点検知装置。
    The first polishing stop unit transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current polishing conditions are normal and the current time is the timing of the end point. The end point detecting device according to claim 5, wherein the characteristic claim 3 is cited.
  7.  前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの時間を推定するとともに、現時点の研磨条件が正常であるか否かを推定して出力する
    ことを特徴とする請求項2または4に記載の終点検知装置。
    The determination unit estimates the time from the present time to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing. The end point detecting device according to claim 2 or 4, wherein it estimates and outputs whether or not the current polishing conditions are normal.
  8.  前記第1研磨停止部は、前記判定部により、現時点の研磨条件が正常であり、かつ前記残り時間がゼロであると推定された場合に、研磨を止める制御信号を研磨ユニットに送信する
    ことを特徴とする請求項4を引用する請求項7に記載の終点検知装置。
    The first polishing stop unit transmits a control signal for stopping polishing to the polishing unit when it is estimated by the determination unit that the current polishing conditions are normal and the remaining time is zero. The end point detecting device according to claim 7, wherein the characteristic claim 4 is cited.
  9.  前記判定部により、現時点の研磨状態が異常であると判定された場合に、研磨を止める制御信号を研磨ユニットに送信するとともに警報を発する第2研磨停止部
    をさらに備えたことを特徴とする請求項5~8のいずれかに記載の終点検知装置。
    The claim is further provided with a second polishing stop unit that transmits a control signal for stopping polishing to the polishing unit and issues an alarm when the determination unit determines that the current polishing state is abnormal. Item 4. The end point detecting device according to any one of Items 5 to 8.
  10.  前記複数種類の終点検知センサは、研磨対象物に光を当てその反射率の変化を監視する光学式センサ、研磨対象物に磁力線を当てそこに発生する渦電流による磁力線の変化を監視する渦電流センサ、トップリングを揺動させる揺動機構に加わるトルクの変化を監視する揺動トルクセンサ、研磨テーブルを回転させる回転機構に加わるトルクの変化を監視する回転トルクセンサ、トップリングまたは研磨テーブルの振動を監視する振動センサ、研磨対象物と研磨パッドとの接触部分から発生する音の変化を監視する音センサのうちの2種類以上である
    ことを特徴とする請求項1~9のいずれかに記載の終点検知装置。
    The plurality of types of end point detection sensors are an optical sensor that shines light on an object to be polished and monitors a change in its reflectance, and a vortex current that applies a line of magnetic force to the object to be polished and monitors a change in the line of magnetic force due to a vortex current generated there. Vibration of the sensor, rocking torque sensor that monitors the change in torque applied to the rocking mechanism that swings the top ring, rotational torque sensor that monitors the change in torque applied to the rotating mechanism that rotates the polishing table, vibration of the top ring or polishing table The invention according to any one of claims 1 to 9, wherein the vibration sensor for monitoring and the sound sensor for monitoring the change in the sound generated from the contact portion between the object to be polished and the polishing pad are two or more types. End point detection device.
  11.  前記学習済みモデルは、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッドの温度、スラリの温度、スラリの流量、トップリングの各圧力室の圧力、研磨パッドの使用回数のうちの1つ以上の補助情報との関係性を機械学習しており、
     前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データと研磨開始から現時点までに取得された前記補助情報とを入力として、現時点が終点のタイミングであるか否かを推定して出力する
    ことを特徴とする請求項1に記載の終点検知装置。
    The trained model has a waveform of measurement data from each of the plurality of types of end point detection sensors output during past polishing from the start of polishing to the end of polishing, and from the start of polishing to the end of polishing acquired during the past polishing. Machine learning the relationship between the polishing pad temperature, slurry temperature, slurry flow rate, pressure in each pressure chamber of the top ring, and one or more auxiliary information of the number of times the polishing pad has been used.
    The determination unit receives the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing and the auxiliary information acquired from the start of polishing to the present time, and the present time is The end point detecting device according to claim 1, wherein the timing of the end point is estimated and output.
  12.  前記学習済みモデルは、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形と、当該過去の研磨時に取得された研磨開始から研磨終了までの研磨パッドの温度、スラリの温度、スラリの流量、トップリングの各圧力室の圧力、研磨パッドの使用回数のうちの1つ以上の補助情報との関係性を機械学習しており、
     前記判定部は、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データと研磨開始から現時点までに取得された前記補助情報とを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する
    ことを特徴とする請求項2に記載の終点検知装置。
    The trained model has a waveform of measurement data from each of the plurality of types of end point detection sensors output during past polishing from the start of polishing to the end of polishing, and from the start of polishing to the end of polishing acquired during the past polishing. Machine learning the relationship between the polishing pad temperature, slurry temperature, slurry flow rate, pressure in each pressure chamber of the top ring, and one or more auxiliary information of the number of times the polishing pad has been used.
    The determination unit receives the measurement data from the start of polishing to the present time output from each of the plurality of types of end point detection sensors at the time of new polishing and the auxiliary information acquired from the start of polishing to the present time as input from the present time. The end point detection device according to claim 2, wherein the remaining time until the end point timing indicating the end of polishing is estimated and output.
  13.  前記複数種類の終点検知センサの各々から出力された計測データ間のタイミングを合わせてから判定部に入力するタイミング調整部
    をさらに備えたことを特徴とする請求項1~12のいずれかに記載の終点検知装置。
    The invention according to any one of claims 1 to 12, further comprising a timing adjusting unit that adjusts the timing between the measurement data output from each of the plurality of types of end point detection sensors and then inputs the timing to the determination unit. End point detection device.
  14.  前記タイミング調整部は、前記複数種類の終点検知センサにタイミング同期信号を同時に入力し、前記複数の終点検知センサの各々から出力された計測データのうち前記タイミング同期信号に起因するパルス部分のタイミングを一致させることにより、前記計測データ間のタイミングを合わせる
    ことを特徴とする請求項13に記載の終点検知装置。
    The timing adjusting unit simultaneously inputs a timing synchronization signal to the plurality of types of end point detection sensors, and determines the timing of a pulse portion caused by the timing synchronization signal in the measurement data output from each of the plurality of end point detection sensors. The end point detection device according to claim 13, wherein the timings between the measurement data are matched by matching the measurement data.
  15.  前記学習済みモデルは、第1の研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習しているとともに、前記第1の研磨ユニットとは異なる第2の研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習している
    ことを特徴とする請求項1~14のいずれかに記載の終点検知装置。
    The trained model machine-learns the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the first polishing unit during the past polishing. Machine learning the waveform of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in the second polishing unit different from the first polishing unit during the past polishing. The end point detecting device according to any one of claims 1 to 14, wherein the end point detecting device is provided.
  16.  前記第1の研磨ユニットと前記第2の研磨ユニットとは同一の工場内に設置されていることを特徴とする請求項15に記載の終点検知装置。 The end point detecting device according to claim 15, wherein the first polishing unit and the second polishing unit are installed in the same factory.
  17.  前記第1の研磨ユニットと前記第2の研磨ユニットとは互いに異なる工場内に設置されている
    ことを特徴とする請求項15に記載の終点検知装置。
    The end point detecting device according to claim 15, wherein the first polishing unit and the second polishing unit are installed in different factories.
  18. 1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを用いて、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定ステップ
    を含むことを特徴とする終点検知方法。
    Using a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, the plurality of types are described. Includes a judgment step that estimates and outputs whether or not the current time is the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing. An end point detection method characterized by.
  19.  1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを用いて、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定ステップ
    を含むことを特徴とする終点検知方法。
    Using a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, the plurality of types are described. It includes a judgment step that estimates and outputs the remaining time from the current point to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing. Characteristic end point detection method.
  20.  コンピュータを、
     1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
    として機能させることを特徴とする終点検知プログラム。
    Computer,
    It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and it is made to function as a judgment unit that estimates and outputs whether or not the present time is the timing of the end point indicating the end of polishing. An end point detection program characterized by this.
  21.  コンピュータを、
     1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
    として機能させることを特徴とする終点検知プログラム。
    Computer,
    It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The measurement data from the start of polishing to the present time, which is output from each of the end point detection sensors at the time of new polishing, is input, and the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated and output as a judgment unit. An end point detection program featuring.
  22.  コンピュータを、
     1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨中のリアルタイムの計測データを入力として、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力する判定部
    として機能させる終点検知プログラムを記録したコンピュータ読取可能な記録媒体。
    Computer,
    It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The end point that functions as a judgment unit that estimates and outputs whether or not the current time is the timing of the end point indicating the end of polishing by inputting real-time measurement data during polishing output from each of the end point detection sensors during new polishing. A computer-readable recording medium on which the detection program is recorded.
  23.  コンピュータを、
     1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習した学習済みモデルを有し、前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データを入力として、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力する判定部
    として機能させる終点検知プログラムを記録したコンピュータ読取可能な記録媒体。
    Computer,
    It has a learned model in which the waveforms of the measurement data from the start of polishing to the end of polishing output from each of the plurality of types of end point detection sensors provided in one polishing unit during past polishing are machine-learned, and the plurality of types are described. The end point that functions as a judgment unit that estimates and outputs the remaining time from the current point to the timing of the end point indicating the end of polishing by inputting the measurement data from the start of polishing to the present time output from each of the end point detection sensors at the time of new polishing. A computer-readable recording medium on which the detection program is recorded.
  24.  入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有し、1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から各時点までの計測データを入力層に入力し、それにより出力層から出力される出力結果と、当該時点が終点のタイミングであるか否かの情報とを比較し、その誤差に応じて各ノードのパラメータを更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返すことにより、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習したものであり、
     前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データが入力層に入力されると、現時点が研磨終了を示す終点のタイミングであるか否かを推定して出力層から出力するよう、コンピュータを機能させるための学習済みモデル。
    It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer, and is past from each of a plurality of types of end point detection sensors provided in one polishing unit. The measurement data from the start of polishing to each time point output during polishing is input to the input layer, and the output result output from the output layer is compared with the information on whether or not the time point is the end point timing. By repeating the process of updating the parameters of each node according to the error for the measurement data from the start of polishing in the past polishing to each time point, each of the plurality of types of end point detection sensors outputs during the past polishing. This is a machine-learned waveform of the measurement data from the start of polishing to the end of polishing.
    When the measurement data from the start of polishing to the present time, which is output from each of the plurality of types of end point detection sensors at the time of new polishing, is input to the input layer, it is estimated whether or not the present time is the timing of the end point indicating the end of polishing. A trained model for making a computer work so that it outputs from the output layer.
  25.  入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有し、1つの研磨ユニットに設けられた複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から各時点までの計測データを入力層に入力し、それにより出力層から出力される出力結果と、当該時点から研磨終了を示す終点のタイミングまでの残り時間の情報とを比較し、その誤差に応じて各ノードのパラメータを更新する処理を、過去の研磨時の研磨開始から各時点までの計測データについて繰り返すことにより、前記複数種類の終点検知センサの各々から過去の研磨時に出力された研磨開始から研磨終了までの計測データの波形を機械学習したものであり、
     前記複数種類の終点検知センサの各々から新たな研磨時に出力された研磨開始から現時点までの計測データが入力層に入力されると、現時点から研磨終了を示す終点のタイミングまでの残り時間を推定して出力層から出力するよう、コンピュータを機能させるための学習済みモデル。
    It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer, and is past from each of a plurality of types of end point detection sensors provided in one polishing unit. The measurement data from the start of polishing to each time point output during polishing is input to the input layer, and the output result output from the output layer and the information on the remaining time from that time point to the timing of the end point indicating the end of polishing By repeating the process of comparing the above and updating the parameters of each node according to the error for the measurement data from the start of polishing to each time point during the past polishing, each of the plurality of types of end point detection sensors in the past This is a machine-learned waveform of the measurement data output from the start of polishing to the end of polishing, which is output during polishing.
    When the measurement data from the start of polishing to the present time, which is output from each of the plurality of types of end point detection sensors at the time of new polishing, is input to the input layer, the remaining time from the present time to the timing of the end point indicating the end of polishing is estimated. A trained model for making a computer work so that it outputs from the output layer.
PCT/JP2020/029746 2019-08-09 2020-08-04 End point detecting device and end point detecting method WO2021029264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147856A JP2021028099A (en) 2019-08-09 2019-08-09 Endpoint detection device, endpoint detection method
JP2019-147856 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029264A1 true WO2021029264A1 (en) 2021-02-18

Family

ID=74569438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029746 WO2021029264A1 (en) 2019-08-09 2020-08-04 End point detecting device and end point detecting method

Country Status (2)

Country Link
JP (1) JP2021028099A (en)
WO (1) WO2021029264A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240024919A (en) * 2021-06-22 2024-02-26 가부시키가이샤 에바라 세이사꾸쇼 Polishing method and polishing device
WO2023153208A1 (en) * 2022-02-09 2023-08-17 株式会社荏原製作所 Information processing device, inference device, machine learning device, information processing method, inference method, and machine learning method
JP2023148614A (en) * 2022-03-30 2023-10-13 株式会社荏原製作所 Information processing device, inference device, machine learning device, information processing method, inference method, and machine learning method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004442A (en) * 2007-06-19 2009-01-08 Renesas Technology Corp Polishing method for semiconductor wafer
JP2017515307A (en) * 2014-04-30 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Continuous feature tracking for endpoint detection
JP2018058197A (en) * 2016-09-30 2018-04-12 株式会社荏原製作所 Polishing apparatus and polishing method
WO2018102222A1 (en) * 2016-11-30 2018-06-07 Applied Materials, Inc. Spectrographic monitoring using a neural network
WO2018194929A1 (en) * 2017-04-21 2018-10-25 Applied Materials, Inc. Polishing apparatus using neural network for monitoring
US20190143474A1 (en) * 2017-11-13 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for monitoring chemical mechanical polishing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004442A (en) * 2007-06-19 2009-01-08 Renesas Technology Corp Polishing method for semiconductor wafer
JP2017515307A (en) * 2014-04-30 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Continuous feature tracking for endpoint detection
JP2018058197A (en) * 2016-09-30 2018-04-12 株式会社荏原製作所 Polishing apparatus and polishing method
WO2018102222A1 (en) * 2016-11-30 2018-06-07 Applied Materials, Inc. Spectrographic monitoring using a neural network
WO2018194929A1 (en) * 2017-04-21 2018-10-25 Applied Materials, Inc. Polishing apparatus using neural network for monitoring
US20190143474A1 (en) * 2017-11-13 2019-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for monitoring chemical mechanical polishing

Also Published As

Publication number Publication date
JP2021028099A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7182653B2 (en) Polishing device and polishing method
US11027395B2 (en) Polishing apparatus, polishing method, and machine learning apparatus
WO2021029264A1 (en) End point detecting device and end point detecting method
TW201828388A (en) Rfid part authentication and tracking of processing components
US20130087098A1 (en) Method and system for endpoint detection
KR102622803B1 (en) Polishing apparatus and polishing method
KR20140007753A (en) Polishing method
CN110030918B (en) Magnetic element, eddy current sensor using same, polishing apparatus, polishing method, and computer-readable recording medium
TWI496661B (en) Automatic generation of reference spectra for optical monitoring
TWI831836B (en) Polishing apparatus, polishing method, and machine learning apparatus
JP7244250B2 (en) Magnetic element and eddy current sensor using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852268

Country of ref document: EP

Kind code of ref document: A1