WO2021029065A1 - Management server and management system for flying object - Google Patents

Management server and management system for flying object Download PDF

Info

Publication number
WO2021029065A1
WO2021029065A1 PCT/JP2019/032055 JP2019032055W WO2021029065A1 WO 2021029065 A1 WO2021029065 A1 WO 2021029065A1 JP 2019032055 W JP2019032055 W JP 2019032055W WO 2021029065 A1 WO2021029065 A1 WO 2021029065A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
route
flight route
management server
flying
Prior art date
Application number
PCT/JP2019/032055
Other languages
French (fr)
Japanese (ja)
Inventor
智史 岡村
兼太郎 深見
高橋 和也
Original Assignee
株式会社センシンロボティクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社センシンロボティクス filed Critical 株式会社センシンロボティクス
Priority to PCT/JP2019/032055 priority Critical patent/WO2021029065A1/en
Priority to JP2019569844A priority patent/JP6678983B1/en
Publication of WO2021029065A1 publication Critical patent/WO2021029065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to an air vehicle management server and a management system.
  • Patent Document 1 discloses a system in which an air vehicle sequentially shoots an imaged object at a plurality of waypoints set in advance.
  • Patent Document 1 it is necessary to manually set and memorize all waypoints in order to create a flight route of an air vehicle. Therefore, when the flight route becomes long, it takes time and effort to set waypoints for the entire flight route, and it lacks speed, especially in situations where the work time is short and limited. It was.
  • the present invention has been made in view of such a background, and in particular, in the work of creating a flight route of an air vehicle, it is not necessary to manually set waypoints for at least a part of the flight route.
  • the purpose is to provide a management server and a management system.
  • the main invention of the present invention for solving the above problems is a management server that manages the flight route of the flying object, which is connected to the user terminal and the flying object via a network, and is imaged from a satellite or the flying object.
  • a first flight route acquisition unit that acquires a first flight route from a flight start position to an object from outside the management server, which is generated based on a bird's-eye view image or a diagram showing the bird's-eye view image on a plane, and the target.
  • a third flight route that combines a second flight route generator that generates a second flight route for acquiring information about an object, the first flight route, and the second flight route to generate a third flight route. It is a management server characterized by including a generation unit.
  • a management server and a management system that do not require manual input or the like to set waypoints for at least a part of the flight route, particularly in the work of creating a flight route of an air vehicle. it can.
  • FIG. 1 It is a figure which shows the structure of the management system which concerns on embodiment of this invention. It is a block diagram which shows the hardware configuration of the management server of FIG. It is a block diagram which shows the hardware configuration of the user terminal of FIG. It is a block diagram which shows the hardware composition of the flying object of FIG. It is a block diagram which shows the function of the management server of FIG. It is a block diagram which shows the structure of the storage part of FIG.
  • This is an example of a display screen according to the embodiment of the present invention.
  • the flight management server and flight management system have the following configurations.
  • [Item 1] A management server that manages the flight route of the aircraft, which is connected to the user terminal and the aircraft via a network.
  • the first flight to acquire the first flight route from the flight start position to the object, which is generated based on the bird's-eye view image taken from the satellite or the flying object or the figure showing the bird's-eye view image on a plane, from outside the management server.
  • a third flight route generator that combines the first flight route and the second flight route to generate a third flight route, Management server with.
  • the first flight route is a movement route along a path through which animals including humans and moving objects having a different form from the flying object can move.
  • the management server according to item 1 characterized in that.
  • the object is the last object to reach among the plurality of objects.
  • the first flight route is a route that passes through other objects other than the last object among the plurality of objects as transit points.
  • the management server Further provided with a flight route dividing unit that sequentially divides the first flight route from the flight start position to each waypoint.
  • the third flight route generation unit sequentially connects each of the divided first flight routes and the second flight route in each of the plurality of objects from the flight start position, and the third flight route.
  • the management server according to item 1 or 2 characterized in that.
  • the third flight route generation unit generates a plurality of flight routes as the third flight route, and generates a plurality of flight routes.
  • the management server It further includes a candidate flight route setting unit that sets the plurality of flight routes as a plurality of candidate flight routes so as to be selectable.
  • the management server according to items 1 to 3, characterized in that.
  • the candidate flight route setting unit sets information related to each candidate flight route so that the plurality of candidate flight routes can be displayed on the user terminal in a distinctive manner.
  • the management server according to item 4 characterized in that.
  • the candidate flight route related information is color information.
  • a route editorial unit for changing a part of the third flight route to another route is further provided.
  • the management server according to items 1 to 6, characterized in that.
  • [Item 8] Further provided with a return route generation unit that generates a return route from the flight end point of the second flight route in the object to the flight start position or a flight end position different from the flight start position.
  • the third flight route further includes the return route.
  • the management server generates a third flight route based on the flight start position and the position of the object selected by the user terminal.
  • the management server according to items 1 to 8, characterized in that.
  • the second flight route is a route that turns around the center coordinates of the object.
  • the management server according to items 1 to 9, wherein the management server is characterized by the above.
  • [Item 11] A past flight route storage unit that stores the third flight route as a past flight route, The management server according to items 1 to 10, wherein the management server further includes a past flight route calling unit that sets a past flight route stored in the past flight route storage unit as the third flight route. ..
  • [Item 12] The information is a still image or a moving image.
  • the management server according to items 1 to 11, characterized in that.
  • An air vehicle management system that includes a management server that manages the flight route of the air vehicle, which is connected to the user terminal and the air vehicle via a network.
  • the management server is;
  • the first flight route from the flight start position to the object, which is generated based on the bird's-eye view image taken from the satellite or the aircraft or the bird's-eye view image on a plane, is acquired from outside the management server;
  • the first flight route and the second flight route are combined to generate a third flight route;
  • Management system is;
  • the management server and the management system of the unmanned aircraft according to the embodiment of the present invention will be described in particular, the embodiment of the management system (hereinafter referred to as “the present system”).
  • the present system the embodiment of the management system
  • the same or similar elements are given the same or similar reference numerals and names, and duplicate description of the same or similar elements may be omitted in the description of each embodiment.
  • the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
  • this system includes a management server 1, a plurality of user terminals 2 and 3, one or more flying objects 4, and one or more flying object storage devices 5.
  • the management server 1, the user terminals 2, 3 and the flying object 4 and the flying object storage device 5 are connected to each other so as to be able to communicate with each other via a network.
  • the illustrated configuration is an example, and is not limited to this. For example, a configuration may be carried by a user without having the flying object storage device 5.
  • FIG. 2 is a diagram showing a hardware configuration of the management server 1.
  • the illustrated configuration is an example, and may have other configurations.
  • the management server 1 is connected to a plurality of user terminals 2 and 3, an air vehicle 4, and an air vehicle storage device 5 to form a part of this system.
  • the management server 1 may be a general-purpose computer such as a workstation or a personal computer, or may be logically realized by cloud computing.
  • the management server 1 includes at least a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14, and the like, and these are electrically connected to each other through a bus 15.
  • the processor 10 is an arithmetic unit that controls the operation of the entire management server 1, controls the transmission and reception of data between each element, and performs information processing necessary for application execution and authentication processing.
  • the processor 10 is a CPU (Central Processing Unit), and executes each information processing by executing a program or the like for the system stored in the storage 12 and expanded in the memory 11.
  • CPU Central Processing Unit
  • the memory 11 includes a main memory composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) and an auxiliary memory composed of a non-volatile storage device such as a flash memory or an HDD (Hard Disk Drive). ..
  • the memory 11 is used as a work area of the processor 10, and also stores a BIOS (Basic Input / Output System) executed when the management server 1 is started, various setting information, and the like.
  • BIOS Basic Input / Output System
  • the storage 12 stores various programs such as application programs.
  • a database storing data used for each process may be built in the storage 12.
  • the transmission / reception unit 13 connects the management server 1 to the network and the blockchain network.
  • the transmission / reception unit 13 may be provided with a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
  • the input / output unit 14 is an information input device such as a keyboard and a mouse, and an output device such as a display.
  • the bus 15 is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
  • the user terminals 2 and 3 shown in FIG. 3 also include a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, and the like, which are electrically connected to each other through a bus 25. Since the functions of each element can be configured in the same manner as the management server 1 described above, detailed description of each element will be omitted.
  • FIG. 4 is a block diagram showing a hardware configuration of the flying object 4.
  • the flight controller 41 can have one or more processors such as a programmable processor (eg, a central processing unit (CPU)).
  • a programmable processor eg, a central processing unit (CPU)
  • the flight controller 41 has a memory 411 and can access the memory.
  • Memory 411 stores logic, code, and / or program instructions that the flight controller can execute to perform one or more steps.
  • the flight controller 41 may include sensors 412 such as an inertial sensor (accelerometer, gyro sensor), GPS sensor, proximity sensor (for example, rider) and the like.
  • the memory 411 may include, for example, a separable medium such as an SD card or a random access memory (RAM) or an external storage device.
  • the data acquired from the cameras / sensors 42 may be directly transmitted and stored in the memory 411.
  • still image / moving image data taken by a camera or the like may be recorded in the internal memory or an external memory, but the present invention is not limited to this, and at least the management server 1 or the management server 1 or the internal memory may be recorded from the camera / sensor 42 or the internal memory via the network NW. It may be recorded in one of the user terminals 2, 3 and the air vehicle storage device 5.
  • the camera 42 is installed on the aircraft 4 via the gimbal 43.
  • the flight controller 41 includes a control module (not shown) configured to control the state of the flying object.
  • the control module adjusts the spatial placement, velocity, and / or acceleration of an air vehicle with six degrees of freedom (translational motion x, y and z, and rotational motion ⁇ x , ⁇ y and ⁇ z ).
  • ESC44 Electric Speed Controller
  • the propulsion mechanism (motor 45, etc.) of the flying object.
  • the propeller 46 is rotated by the motor 45 supplied from the battery 48 to generate lift of the flying object.
  • the control module can control one or more of the states of the mounting unit and the sensors.
  • the flight controller 41 is configured to transmit and / or receive data from one or more external devices (eg, transmitter / receiver (propo) 49, terminal, display device, or other remote control). It is possible to communicate with the unit 47.
  • the transmitter / receiver 49 can use any suitable communication means such as wired communication or wireless communication.
  • the transmission / reception unit 47 uses one or more of a local area network (LAN), a wide area network (WAN), infrared rays, wireless, WiFi, a point-to-point (P2P) network, a telecommunications network, and cloud communication. can do.
  • LAN local area network
  • WAN wide area network
  • infrared rays wireless
  • WiFi wireless
  • P2P point-to-point
  • telecommunications network telecommunications network
  • cloud communication can do.
  • the transmission / reception unit 47 transmits and / or receives one or more of the data acquired by the sensors 42, the processing result generated by the flight controller 41, the predetermined control data, the user command from the terminal or the remote controller, and the like. be able to.
  • Sensors 42 may include an inertial sensor (accelerometer, gyro sensor), GPS sensor, proximity sensor (eg, rider), or vision / image sensor (eg, camera).
  • inertial sensor accelerelerometer, gyro sensor
  • GPS sensor GPS sensor
  • proximity sensor eg, rider
  • vision / image sensor eg, camera
  • FIG. 5 is a block diagram illustrating the functions implemented in the management server 1.
  • the management server 1 includes a communication unit 110, a flight mission generation unit 120, a first flight route acquisition unit 130, a flight route division unit 140, a past flight route calling unit 150, a storage unit 160, and a report generation unit. It has 170.
  • the flight mission generation unit 120 includes a second flight route generation unit 121, a third flight route generation unit 123, a candidate flight route setting unit 125, a route editing unit 127, and a return route generation unit 129.
  • the storage unit 160 includes various databases of the flight route storage unit 162, the flight log storage unit 164, and the interface information storage unit 166.
  • the flight route storage unit 162 includes a first flight route storage unit 1621, a second flight route storage unit 1623, a third flight route storage unit 1625, a return route storage unit 1627, and a past flight route storage unit. Includes part 1629.
  • the communication unit 110 communicates with the user terminals 2 and 3, the flying object 4, and the flying object storage device 5.
  • the communication unit 110 also functions as a reception unit that receives flight requests from the user terminals 2 and 3.
  • the flight request may include any of the flight location, flight purpose, and number of flying objects.
  • Flight mission generation unit 120 generates flight missions. Flight missions include at least flight routes.
  • the flight route is generated as a third flight route by the third flight route generation unit 123 with reference to the first flight route storage unit 1621 and the second flight route storage unit 1623.
  • the first flight route will be described later.
  • the second flight route is generated by the second flight route generation unit 121, and is automatically generated by setting the target turning radius, the number of waypoints (WP) during turning, and the like, as shown in FIG. 7, for example. It may be a generated configuration, it may be a configuration that calls a preset route and / or waypoint, or it may manually set a waypoint according to the shape of the object or the route length and working time of the second flight route. You may do so.
  • the second flight route is a turning route as a specific example of the present embodiment, the route is not limited to this and may be an arbitrarily generated route.
  • the third flight route generation unit 123 generates a third flight route by combining the first flight route and the second flight route.
  • each flight route is composed of a plurality of waypoints (including position coordinate information), and the closest waypoints (position coordinates) of the first flight route and the second flight route. ) Can be used as a connection point to generate a third flight route so as to fly continuously on both flight routes, but the present invention is not limited to this.
  • the candidate flight route setting unit 125 When there are a plurality of first flight routes searched or generated, the candidate flight route setting unit 125 generates a third flight route corresponding to each of the first flight routes, so that the plurality of third flight routes can be selected. Each can be selected and set as multiple candidate flight routes. As a more specific example, for example, as shown in FIG. 10, the flight time of each candidate flight route is displayed, and the candidate flight route related information (for example, color information) so that each route can be selected is displayed. Etc.) are set, and the user can select one of the flight routes.
  • the candidate flight route related information for example, color information
  • the route editing unit 127 changes a part of the route to a desired route according to the user's instruction after the third flight route is generated and selected by the user as described above.
  • the first flight route searched or generated by the method described later does not satisfy all the route conditions, or when you want to create a new flight route based on the third flight route used in the past as described later.
  • the return route generation unit 129 generates a return route from the flight end point of the second flight route in the object to the flight start position or the flight end position different from the flight start position, and stores it in the return route storage unit 1627. .. This return route is combined with the first flight route and the second flight route when the third flight route is generated by the third flight route generation unit 123.
  • the return route generation unit 129 does not necessarily have to be provided.
  • the flight start position may be automatically set as the flight end position, or the flight may be acquired from outside the management server 1 as in the first flight route. It may be configured.
  • the flight route may be, for example, a configuration in which the position where the aircraft is carried by the user is set as the flight start position or the user collects the aircraft at the flight end position without having the flight object storage device 5. Then, based on the information of the flight object storage device 5 managed by the management server 1 (for example, position information, storage state information, storage device information, etc.), the flight object storage device selected as the flight start position or flight end position.
  • the configuration may be generated as a flight route including the position of 5.
  • the first flight route acquisition unit 130 acquires the first flight route generated outside the management server 1 via the communication unit 110 and stores it in the first flight route storage unit 1621.
  • the first flight route is based on, for example, a bird's-eye view image (for example, a satellite photograph or an aerial photograph) taken from a satellite or an air vehicle or a map (for example, a map or a route map) showing the bird's-eye view image on a plane. It was generated.
  • the first flight route is a movement route (for example, a roadway, a railroad track, a route, a sidewalk, a mountain road) along a route in which an animal including a moving body or an animal including a human can move. , Paint trail, etc.).
  • the flight start position, the waypoint, the position of the object, etc. are determined based on the above-mentioned images and figures by using API (Application Programming Network) or application software on the user terminals 2 and 3.
  • API Application Programming Network
  • the location information is transmitted directly or via the management server 1 to an external server or the like (not shown) via the network NW, and the moving body based on the location information searches for a movable route.
  • the result is transmitted to the management server 1.
  • the management server 1 can acquire the route of the search result as the first flight route and store it in the first flight route storage unit 1621. This eliminates the need to manually set all waypoints for the movement route to the object, reducing the work load and work time.
  • the flight is performed on the movement route, it is possible to acquire not only the information on the object but also the information on the movement route to the object. Therefore, it can be used in various situations such as confirmation of traffic congestion on the road to the object, confirmation of the route to the object in the event of a disaster, and search for a mountain road when searching for a victim.
  • the acquired information on the movement route at this time may be a moving image, or may be an image captured at an appropriate number of waypoints automatically generated.
  • the first flight route is defined as a movement route along a path in which a moving body different from the flying body or an animal including a human can move, but the first flight route is not limited to this.
  • It may be a route obtained by image recognition (for example, a ridge such as a mountain range, a fence, a roof, an electric wire, etc.), a general search method (for example, Dijkstra's algorithm, best-first search, A algorithm, etc.), AI, etc. It is possible to target all routes that can be searched using.
  • image recognition for example, a ridge such as a mountain range, a fence, a roof, an electric wire, etc.
  • a general search method for example, Dijkstra's algorithm, best-first search, A algorithm, etc.
  • AI etc. It is possible to target all routes that can be searched using.
  • the flight route dividing unit 140 sets a flight start position on a first flight route that passes through a first flight route as a transit point, except for the object that reaches the end of the plurality of objects. Divide sequentially for each waypoint from. In line with this, in the third flight route generation unit, each of the divided first flight routes and the second flight route in each of the plurality of objects are sequentially combined from the flight start position to form the third flight. Generate a route.
  • the past flight route calling unit 150 calls the past flight route as the third flight route with reference to the past flight route storage unit 1629.
  • the third flight route generated in the past is manually or automatically stored in the past flight route storage unit 1629.
  • a part of the past flight route can be changed by the route editorial unit 127 before or after the call.
  • the interface information storage unit 166 stores various control information for display on the display units (displays and the like) of the user terminals 2 and 3.
  • the report generation unit 170 generates report information to be transmitted to the user terminals 2 and 3 based on the flight log storage unit 164.
  • it is acquired by the aircraft 4 on the flight route (on the first flight route and / or on the second flight route) and / or on the return route set in the flight mission.
  • Information (still image, moving image, sound and other information) is stored in the flight log storage unit 164.
  • FIGS. 7 and 8 A specific display example of this system is shown with reference to FIGS. 7 and 8.
  • parameters such as the flight speed and altitude of the flying object, the turning radius of the object, and the number of waypoints (WP) during turning may be set, and the right side of the display screen may be set.
  • the flight start position illustration of the drone
  • the object position number 1
  • the flight start position illustration of the drone
  • the object position number 1
  • the object position number 1
  • the acquired first flight route is the part shown by the solid line
  • the generated second flight route is the part shown by the dotted line
  • the generated return route is one point.
  • the route display does not have to be divided in this way, and it is continuously displayed as the third flight route with a solid line of a predetermined color or the like. You may.
  • the route edit button for changing a part of the generated third flight route, the route save button for saving the third flight route in the past flight route storage unit 1629, and the aircraft are A route execution button or the like for starting the flight of the third flight route may be arranged.
  • FIGS. 9 and 10 A specific display example of this system is shown with reference to FIGS. 9 and 10.
  • the parameters such as the speed and altitude of the flying object, the turning radius of the object, and the number of waypoints (WP) during turning may be set, and the right side of the display screen may be set.
  • the flight start position (illustration of the drone)
  • the object position (numbers 1 and 2)
  • the flight end position (illustration of the flying object storage device)
  • a route creation button for starting route creation based on the selected flight start position and object position, a route call button for calling a route created in the past, etc. are arranged. Good.
  • the acquired first flight route is the part shown by the solid line
  • the generated second flight route is the part shown by the dotted line
  • the generated return route is one point.
  • the route display does not have to be divided in this way, and it is continuously displayed as the third flight route with a solid line of a predetermined color or the like. You may.
  • when there are a plurality of third flight routes they are displayed as candidate flight routes 1 and 2 together with each flight time, and each route is displayed in a different color and can be selected. May be good.
  • a route execution button or the like for the aircraft to start flying on the third flight route may be arranged.
  • the air vehicle of the present invention can be used in an airplane-related industry such as a multicopter drone, and further, the present invention can be suitably used as an air vehicle for aerial photography equipped with a camera or the like. It can also be used in various industries such as security, agriculture, infrastructure monitoring, surveying, sports venue inspections such as golf courses and tennis courts, roof inspections of buildings such as factories and warehouses, disaster response, and disaster response.

Abstract

[Problem] To provide a management server and a management system that do not require, in operation of creating a flying route of a flying object, setting a waypoint by a hand or the like to at least a part of the flying route. [Solution] A management server according to the present invention is a management server that is connected to a user terminal and a flying object via a network and manages a flying route of the flying object, the management server comprising: a first flying route acquisition unit that acquires, from outside the management server, a first flying route from a flying start position to a target object, the first flying route being created on the basis of an overhead view image photographed from a satellite or the flying object or a figure showing the overhead view image on a plane; a second flying route creation unit that creates a second flying route for acquiring information about the target object; and a third flying route creation unit that combines the first flying route with the second flying route to create a third flying route.

Description

飛行体の管理サーバ及び管理システムAircraft management server and management system
 本発明は、飛行体の管理サーバ及び管理システムに関する。 The present invention relates to an air vehicle management server and a management system.
 近年、ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)が産業に利用され始めている。こうした中で、特許文献1には、飛行体が予め設定された複数のウェイポイントにおいて撮影対象を順次撮影するシステムが開示されている。 In recent years, flying objects (hereinafter collectively referred to as "aircraft") such as drones and unmanned aerial vehicles (UAVs) have begun to be used in industry. Under these circumstances, Patent Document 1 discloses a system in which an air vehicle sequentially shoots an imaged object at a plurality of waypoints set in advance.
特開2014-089160号公報Japanese Unexamined Patent Publication No. 2014-089160
 しかしながら、上記特許文献1の開示技術では、飛行体の飛行ルートを作成するために、全てのウェイポイントを手入力等で予め設定して記憶させる必要がある。そのため、飛行ルートが長くなった際には、飛行ルート全域に対してウェイポイントを設定することは手間がかかるものとなり、特に作業時間が短く限定されている状況では、迅速性に欠けるものであった。 However, in the disclosed technology of Patent Document 1, it is necessary to manually set and memorize all waypoints in order to create a flight route of an air vehicle. Therefore, when the flight route becomes long, it takes time and effort to set waypoints for the entire flight route, and it lacks speed, especially in situations where the work time is short and limited. It was.
 本発明はこのような背景を鑑みてなされたものであり、特に、飛行体の飛行ルートを作成する作業において、飛行ルートの少なくとも一部に対して手入力等によりウェイポイントを設定する必要のない管理サーバ及び管理システムを提供することを目的とする。 The present invention has been made in view of such a background, and in particular, in the work of creating a flight route of an air vehicle, it is not necessary to manually set waypoints for at least a part of the flight route. The purpose is to provide a management server and a management system.
 上記課題を解決するための本発明の主たる発明は、ネットワークを介してユーザ端末と飛行体と接続された、前記飛行体の飛行ルートを管理する管理サーバであって、衛星または飛行体から撮像した俯瞰画像または当該俯瞰画像を平面上に表した図に基づいて生成された、飛行開始位置から対象物までの第1飛行ルートを前記管理サーバ外から取得する第1飛行ルート取得部と、前記対象物に関する情報を取得するための第2飛行ルートを生成する第2飛行ルート生成部と、前記第1飛行ルートと前記第2飛行ルートとを結合し、第3飛行ルートを生成する第3飛行ルート生成部と、を備えることを特徴とする管理サーバ、である。 The main invention of the present invention for solving the above problems is a management server that manages the flight route of the flying object, which is connected to the user terminal and the flying object via a network, and is imaged from a satellite or the flying object. A first flight route acquisition unit that acquires a first flight route from a flight start position to an object from outside the management server, which is generated based on a bird's-eye view image or a diagram showing the bird's-eye view image on a plane, and the target. A third flight route that combines a second flight route generator that generates a second flight route for acquiring information about an object, the first flight route, and the second flight route to generate a third flight route. It is a management server characterized by including a generation unit.
 本発明によれば、特に、飛行体の飛行ルートを作成する作業において、飛行ルートの少なくとも一部に対して手入力等によりウェイポイントを設定する必要のない管理サーバ及び管理システムを提供することができる。 According to the present invention, it is possible to provide a management server and a management system that do not require manual input or the like to set waypoints for at least a part of the flight route, particularly in the work of creating a flight route of an air vehicle. it can.
本発明の実施の形態にかかる管理システムの構成を示す図である。It is a figure which shows the structure of the management system which concerns on embodiment of this invention. 図1の管理サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware configuration of the management server of FIG. 図1のユーザ端末のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware configuration of the user terminal of FIG. 図1の飛行体のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the flying object of FIG. 図1の管理サーバの機能を示すブロック図である。It is a block diagram which shows the function of the management server of FIG. 図5の記憶部の構造を示すブロック図である。It is a block diagram which shows the structure of the storage part of FIG. 本発明の実施の形態にかかる表示画面の一例である。This is an example of a display screen according to the embodiment of the present invention. 本発明の実施の形態にかかる表示画面の一例である。This is an example of a display screen according to the embodiment of the present invention. 本発明の実施の形態にかかる表示画面の他の例である。It is another example of the display screen which concerns on embodiment of this invention. 本発明の実施の形態にかかる表示画面の他の例である。It is another example of the display screen which concerns on embodiment of this invention.
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態によるフライト管理サーバ及びフライト管理システムは、以下のような構成を備える。
[項目1]
 ネットワークを介してユーザ端末と飛行体と接続された、前記飛行体の飛行ルートを管理する管理サーバであって、
 衛星または飛行体から撮像した俯瞰画像または当該俯瞰画像を平面上に表した図に基づいて生成された、飛行開始位置から対象物までの第1飛行ルートを前記管理サーバ外から取得する第1飛行ルート取得部と、
 前記対象物に関する情報を取得するための第2飛行ルートを生成する第2飛行ルート生成部と、
 前記第1飛行ルートと前記第2飛行ルートとを結合し、第3飛行ルートを生成する第3飛行ルート生成部と、
 を備える管理サーバ。
[項目2]
 前記第1飛行ルートは、前記飛行体とは異なる形態の移動体やヒトを含む動物が移動可能な経路に沿った移動ルートである、
 ことを特徴とする項目1に記載の管理サーバ。
[項目3]
 前記対象物は、複数の対象物のうちの最後に到達する対象物であり、
 前記第1飛行ルートは、前記複数の対象物のうちの最後に到達する対象物を除く他の対象物を経由地点として経由するルートであり、
 前記管理サーバは、
 前記第1飛行ルートを前記飛行開始位置から前記経由地点ごとに順次分割する飛行ルート分割部をさらに備え、
 前記第3飛行ルート生成部は、前記分割された第1飛行ルートのそれぞれと、前記複数の対象物のそれぞれにおける前記第2飛行ルートとを前記飛行開始位置から順次結合し、前記第3飛行ルートを生成する、
 ことを特徴とする項目1または2に記載の管理サーバ。
[項目4]
 前記第3飛行ルート生成部は、前記第3飛行ルートとして複数の飛行ルートを生成し、
 前記管理サーバは、
 前記複数の飛行ルートをそれぞれ選択可能に複数の候補飛行ルートとして設定する候補飛行ルート設定部とをさらに備える、
 ことを特徴とする項目1乃至3に記載の管理サーバ。
[項目5]
 前記候補飛行ルート設定部は、前記複数の候補飛行ルートを前記ユーザ端末にそれぞれ区別可能に表示させるように各候補飛行ルート関連情報を設定する、
 ことを特徴とする項目4に記載の管理サーバ。
[項目6]
 前記候補飛行ルート関連情報は、色情報である、
 ことを特徴とする項目5に記載の管理サーバ。
[項目7]
 前記第3飛行ルートの一部を他のルートに変更するルート編集部をさらに備える、
 ことを特徴とする項目1乃至6に記載の管理サーバ。
[項目8]
 前記対象物における前記第2飛行ルートの飛行終了地点から、前記飛行開始位置または前記飛行開始位置とは異なる飛行終了位置への帰還ルートを生成する帰還ルート生成部をさらに備え、
 前記第3飛行ルートは、前記帰還ルートをさらに含む、
 ことを特徴とする項目1乃至7に記載の管理サーバ。
[項目9]
 前記管理サーバは、前記ユーザ端末により選択された前記飛行開始位置、前記対象物の位置を基に第3飛行ルートを生成する、
 ことを特徴とする項目1乃至8に記載の管理サーバ。
[項目10]
 前記第2飛行ルートは、前記対象物の中心座標を中心に旋回するルートである、
 ことを特徴とする項目1乃至9に記載の管理サーバ。
[項目11]
 前記第3飛行ルートを過去飛行ルートとして記憶する過去飛行ルート記憶部と、
 前記管理サーバは、前記過去飛行ルート記憶部に記憶される過去飛行ルートを前記第3飛行ルートとして設定する過去飛行ルート呼出部とをさらに備える
 ことを特徴とする項目1乃至10に記載の管理サーバ。
[項目12]
 前記情報は、静止画像または動画像である、
 ことを特徴とする項目1乃至11に記載の管理サーバ。
[項目13]
 ネットワークを介してユーザ端末と飛行体と接続された、前記飛行体の飛行ルートを管理する管理サーバを含む、飛行体の管理システムであって、
 前記管理サーバは;
 衛星または飛行体から撮像した俯瞰画像または当該俯瞰画像を平面上に表した図に基づいて生成された、飛行開始位置から対象物までの第1飛行ルートを前記管理サーバ外から取得し;
 前記対象物に関する情報を取得するための第2飛行ルートを生成し;
 前記第1飛行ルートと前記第2飛行ルートとを結合し、第3飛行ルートを生成する;
 管理システム。
The contents of the embodiments of the present invention will be described in a list. The flight management server and flight management system according to the embodiment of the present invention have the following configurations.
[Item 1]
A management server that manages the flight route of the aircraft, which is connected to the user terminal and the aircraft via a network.
The first flight to acquire the first flight route from the flight start position to the object, which is generated based on the bird's-eye view image taken from the satellite or the flying object or the figure showing the bird's-eye view image on a plane, from outside the management server. Route acquisition department and
A second flight route generator that generates a second flight route for acquiring information about the object,
A third flight route generator that combines the first flight route and the second flight route to generate a third flight route,
Management server with.
[Item 2]
The first flight route is a movement route along a path through which animals including humans and moving objects having a different form from the flying object can move.
The management server according to item 1, characterized in that.
[Item 3]
The object is the last object to reach among the plurality of objects.
The first flight route is a route that passes through other objects other than the last object among the plurality of objects as transit points.
The management server
Further provided with a flight route dividing unit that sequentially divides the first flight route from the flight start position to each waypoint.
The third flight route generation unit sequentially connects each of the divided first flight routes and the second flight route in each of the plurality of objects from the flight start position, and the third flight route. To generate,
The management server according to item 1 or 2, characterized in that.
[Item 4]
The third flight route generation unit generates a plurality of flight routes as the third flight route, and generates a plurality of flight routes.
The management server
It further includes a candidate flight route setting unit that sets the plurality of flight routes as a plurality of candidate flight routes so as to be selectable.
The management server according to items 1 to 3, characterized in that.
[Item 5]
The candidate flight route setting unit sets information related to each candidate flight route so that the plurality of candidate flight routes can be displayed on the user terminal in a distinctive manner.
The management server according to item 4, characterized in that.
[Item 6]
The candidate flight route related information is color information.
The management server according to item 5, characterized in that.
[Item 7]
A route editorial unit for changing a part of the third flight route to another route is further provided.
The management server according to items 1 to 6, characterized in that.
[Item 8]
Further provided with a return route generation unit that generates a return route from the flight end point of the second flight route in the object to the flight start position or a flight end position different from the flight start position.
The third flight route further includes the return route.
The management server according to items 1 to 7, characterized in that.
[Item 9]
The management server generates a third flight route based on the flight start position and the position of the object selected by the user terminal.
The management server according to items 1 to 8, characterized in that.
[Item 10]
The second flight route is a route that turns around the center coordinates of the object.
The management server according to items 1 to 9, wherein the management server is characterized by the above.
[Item 11]
A past flight route storage unit that stores the third flight route as a past flight route,
The management server according to items 1 to 10, wherein the management server further includes a past flight route calling unit that sets a past flight route stored in the past flight route storage unit as the third flight route. ..
[Item 12]
The information is a still image or a moving image.
The management server according to items 1 to 11, characterized in that.
[Item 13]
An air vehicle management system that includes a management server that manages the flight route of the air vehicle, which is connected to the user terminal and the air vehicle via a network.
The management server is;
The first flight route from the flight start position to the object, which is generated based on the bird's-eye view image taken from the satellite or the aircraft or the bird's-eye view image on a plane, is acquired from outside the management server;
Generate a second flight route to obtain information about the object;
The first flight route and the second flight route are combined to generate a third flight route;
Management system.
<実施の形態の詳細>
 以下、本発明の実施の形態による無人飛行体の管理サーバ及び管理システムについて、特に、管理システム(以下「本システム」という)の実施の形態を説明する。添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
<Details of the embodiment>
Hereinafter, the management server and the management system of the unmanned aircraft according to the embodiment of the present invention will be described in particular, the embodiment of the management system (hereinafter referred to as “the present system”). In the accompanying drawings, the same or similar elements are given the same or similar reference numerals and names, and duplicate description of the same or similar elements may be omitted in the description of each embodiment. In addition, the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
<構成>
 図1に示されるように、本システムは、管理サーバ1と、複数のユーザ端末2、3と、一以上の飛行体4と、一以上の飛行体格納装置5とを有している。管理サーバ1と、ユーザ端末2、3と、飛行体4と、飛行体格納装置5は、ネットワークを介して互いに通信可能に接続されている。なお、図示された構成は一例であり、これに限らず、例えば、飛行体格納装置5を有さずに、ユーザにより持ち運びされる構成などでもよい。
<Composition>
As shown in FIG. 1, this system includes a management server 1, a plurality of user terminals 2 and 3, one or more flying objects 4, and one or more flying object storage devices 5. The management server 1, the user terminals 2, 3 and the flying object 4 and the flying object storage device 5 are connected to each other so as to be able to communicate with each other via a network. The illustrated configuration is an example, and is not limited to this. For example, a configuration may be carried by a user without having the flying object storage device 5.
<管理サーバ1>
 図2は、管理サーバ1のハードウェア構成を示す図である。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。
<Management server 1>
FIG. 2 is a diagram showing a hardware configuration of the management server 1. The illustrated configuration is an example, and may have other configurations.
 図示されるように、管理サーバ1は、複数のユーザ端末2、3と、飛行体4、飛行体格納装置5と接続され本システムの一部を構成する。管理サーバ1は、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。 As shown in the figure, the management server 1 is connected to a plurality of user terminals 2 and 3, an air vehicle 4, and an air vehicle storage device 5 to form a part of this system. The management server 1 may be a general-purpose computer such as a workstation or a personal computer, or may be logically realized by cloud computing.
 管理サーバ1は、少なくとも、プロセッサ10、メモリ11、ストレージ12、送受信部13、入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。 The management server 1 includes at least a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14, and the like, and these are electrically connected to each other through a bus 15.
 プロセッサ10は、管理サーバ1全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えばプロセッサ10はCPU(Central Processing Unit)であり、ストレージ12に格納されメモリ11に展開された本システムのためのプログラム等を実行して各情報処理を実施する。 The processor 10 is an arithmetic unit that controls the operation of the entire management server 1, controls the transmission and reception of data between each element, and performs information processing necessary for application execution and authentication processing. For example, the processor 10 is a CPU (Central Processing Unit), and executes each information processing by executing a program or the like for the system stored in the storage 12 and expanded in the memory 11.
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、管理サーバ1の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納する。 The memory 11 includes a main memory composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) and an auxiliary memory composed of a non-volatile storage device such as a flash memory or an HDD (Hard Disk Drive). .. The memory 11 is used as a work area of the processor 10, and also stores a BIOS (Basic Input / Output System) executed when the management server 1 is started, various setting information, and the like.
 ストレージ12は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ12に構築されていてもよい。 The storage 12 stores various programs such as application programs. A database storing data used for each process may be built in the storage 12.
 送受信部13は、管理サーバ1をネットワークおよびブロックチェーンネットワークに接続する。なお、送受信部13は、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インターフェースを備えていてもよい。 The transmission / reception unit 13 connects the management server 1 to the network and the blockchain network. The transmission / reception unit 13 may be provided with a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
 入出力部14は、キーボード・マウス類等の情報入力機器、及びディスプレイ等の出力機器である。 The input / output unit 14 is an information input device such as a keyboard and a mouse, and an output device such as a display.
 バス15は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 The bus 15 is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
<ユーザ端末2、3>
 図3に示されるユーザ端末2、3もまた、プロセッサ20、メモリ21、ストレージ22、送受信部23、入出力部24等を備え、これらはバス25を通じて相互に電気的に接続される。各要素の機能は、上述した管理サーバ1と同様に構成することが可能であることから、各要素の詳細な説明は省略する。
< User terminals 2, 3>
The user terminals 2 and 3 shown in FIG. 3 also include a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, and the like, which are electrically connected to each other through a bus 25. Since the functions of each element can be configured in the same manner as the management server 1 described above, detailed description of each element will be omitted.
<飛行体4>
 図4は、飛行体4のハードウェア構成を示すブロック図である。フライトコントローラ41は、プログラマブルプロセッサ(例えば、中央演算処理装置(CPU))などの1つ以上のプロセッサを有することができる。
<Flight 4>
FIG. 4 is a block diagram showing a hardware configuration of the flying object 4. The flight controller 41 can have one or more processors such as a programmable processor (eg, a central processing unit (CPU)).
 また、フライトコントローラ41は、メモリ411を有しており、当該メモリにアクセス可能である。メモリ411は、1つ以上のステップを行うためにフライトコントローラが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。また、フライトコントローラ41は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)等のセンサ類412を含みうる。 Further, the flight controller 41 has a memory 411 and can access the memory. Memory 411 stores logic, code, and / or program instructions that the flight controller can execute to perform one or more steps. Further, the flight controller 41 may include sensors 412 such as an inertial sensor (accelerometer, gyro sensor), GPS sensor, proximity sensor (for example, rider) and the like.
 メモリ411は、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラ/センサ類42から取得したデータは、メモリ411に直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録されてもよいが、これに限らず、カメラ/センサ42または内蔵メモリからネットワークNWを介して、少なくとも管理サーバ1やユーザ端末2、3、飛行体格納装置5のいずれかに1つに記録されてもよい。カメラ42は飛行体4にジンバル43を介して設置される。 The memory 411 may include, for example, a separable medium such as an SD card or a random access memory (RAM) or an external storage device. The data acquired from the cameras / sensors 42 may be directly transmitted and stored in the memory 411. For example, still image / moving image data taken by a camera or the like may be recorded in the internal memory or an external memory, but the present invention is not limited to this, and at least the management server 1 or the management server 1 or the internal memory may be recorded from the camera / sensor 42 or the internal memory via the network NW. It may be recorded in one of the user terminals 2, 3 and the air vehicle storage device 5. The camera 42 is installed on the aircraft 4 via the gimbal 43.
 フライトコントローラ41は、飛行体の状態を制御するように構成された図示しない制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する飛行体の空間的配置、速度、および/または加速度を調整するために、ESC44(Electric Speed Controller)を経由して飛行体の推進機構(モータ45等)を制御する。バッテリー48から給電されるモータ45によりプロペラ46が回転することで飛行体の揚力を生じさせる。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。 The flight controller 41 includes a control module (not shown) configured to control the state of the flying object. For example, the control module adjusts the spatial placement, velocity, and / or acceleration of an air vehicle with six degrees of freedom (translational motion x, y and z, and rotational motion θ x , θ y and θ z ). , ESC44 (Electric Speed Controller) to control the propulsion mechanism (motor 45, etc.) of the flying object. The propeller 46 is rotated by the motor 45 supplied from the battery 48 to generate lift of the flying object. The control module can control one or more of the states of the mounting unit and the sensors.
 フライトコントローラ41は、1つ以上の外部のデバイス(例えば、送受信機(プロポ)49、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部47と通信可能である。送受信機49は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。 The flight controller 41 is configured to transmit and / or receive data from one or more external devices (eg, transmitter / receiver (propo) 49, terminal, display device, or other remote control). It is possible to communicate with the unit 47. The transmitter / receiver 49 can use any suitable communication means such as wired communication or wireless communication.
 例えば、送受信部47は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。 For example, the transmission / reception unit 47 uses one or more of a local area network (LAN), a wide area network (WAN), infrared rays, wireless, WiFi, a point-to-point (P2P) network, a telecommunications network, and cloud communication. can do.
 送受信部47は、センサ類42で取得したデータ、フライトコントローラ41が生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。 The transmission / reception unit 47 transmits and / or receives one or more of the data acquired by the sensors 42, the processing result generated by the flight controller 41, the predetermined control data, the user command from the terminal or the remote controller, and the like. be able to.
 本実施の形態によるセンサ類42は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。 Sensors 42 according to this embodiment may include an inertial sensor (accelerometer, gyro sensor), GPS sensor, proximity sensor (eg, rider), or vision / image sensor (eg, camera).
<管理サーバの機能>
 図5は、管理サーバ1に実装される機能を例示したブロック図である。本実施の形態においては、管理サーバ1は、通信部110、フライトミッション生成部120、第1飛行ルート取得部130、飛行ルート分割部140、過去飛行ルート呼出部150、記憶部160、レポート生成部170を備えている。フライトミッション生成部120は、第2飛行ルート生成部121、第3飛行ルート生成部123、候補飛行ルート設定部125、ルート編集部127、帰還ルート生成部129を含む。また、記憶部160は、飛行ルート記憶部162、フライトログ記憶部164、インターフェース情報記憶部166の各種データベースを含む。さらに、図6に示すように、飛行ルート記憶部162は、第1飛行ルート記憶部1621、第2飛行ルート記憶部1623、第3飛行ルート記憶部1625、帰還ルート記憶部1627、過去飛行ルート記憶部1629を含む。
<Management server function>
FIG. 5 is a block diagram illustrating the functions implemented in the management server 1. In the present embodiment, the management server 1 includes a communication unit 110, a flight mission generation unit 120, a first flight route acquisition unit 130, a flight route division unit 140, a past flight route calling unit 150, a storage unit 160, and a report generation unit. It has 170. The flight mission generation unit 120 includes a second flight route generation unit 121, a third flight route generation unit 123, a candidate flight route setting unit 125, a route editing unit 127, and a return route generation unit 129. Further, the storage unit 160 includes various databases of the flight route storage unit 162, the flight log storage unit 164, and the interface information storage unit 166. Further, as shown in FIG. 6, the flight route storage unit 162 includes a first flight route storage unit 1621, a second flight route storage unit 1623, a third flight route storage unit 1625, a return route storage unit 1627, and a past flight route storage unit. Includes part 1629.
 通信部110は、ユーザ端末2、3や、飛行体4、飛行体格納装置5と通信を行う。通信部110は、ユーザ端末2、3から、フライト依頼を受け付ける受付部としても機能する。なお、フライト依頼として、飛行場所や飛行目的、飛行体の数のいずれかを含んでもよい。 The communication unit 110 communicates with the user terminals 2 and 3, the flying object 4, and the flying object storage device 5. The communication unit 110 also functions as a reception unit that receives flight requests from the user terminals 2 and 3. The flight request may include any of the flight location, flight purpose, and number of flying objects.
 フライトミッション生成部120は、フライトミッションを生成する。フライトミッションは、少なくとも飛行ルートを含む。飛行ルートは、第1飛行ルート記憶部1621及び第2飛行ルート記憶部1623を参照して第3飛行ルート生成部123により第3飛行ルートとして生成される。第1飛行ルートについては、後述する。第2飛行ルートについては、第2飛行ルート生成部121により生成され、例えば図7に記載されるように、対象旋回半径や旋回中のウェイポイント(WP)数等を設定することで自動的に生成される構成でもよいし、予め設定済みのルートおよび/またはウェイポイントを呼び出す構成でもよいし、対象物の形状若しくは第2飛行ルートの経路長や作業時間に応じて手動でウェイポイントを設定するようにしてもよい。なお、本実施の形態の具体例として第2飛行ルートを旋回ルートとしているが、これに限らず、任意に生成されるルートであってよい。 Flight mission generation unit 120 generates flight missions. Flight missions include at least flight routes. The flight route is generated as a third flight route by the third flight route generation unit 123 with reference to the first flight route storage unit 1621 and the second flight route storage unit 1623. The first flight route will be described later. The second flight route is generated by the second flight route generation unit 121, and is automatically generated by setting the target turning radius, the number of waypoints (WP) during turning, and the like, as shown in FIG. 7, for example. It may be a generated configuration, it may be a configuration that calls a preset route and / or waypoint, or it may manually set a waypoint according to the shape of the object or the route length and working time of the second flight route. You may do so. Although the second flight route is a turning route as a specific example of the present embodiment, the route is not limited to this and may be an arbitrarily generated route.
 第3飛行ルート生成部123は、第1飛行ルートと第2飛行ルートを結合することで、第3飛行ルートを生成する。具体的な生成例の一つとしては、各飛行ルートが複数のウェイポイント(位置座標情報を含む)から構成されており、第1飛行ルートと第2飛行ルートの最も近接したウェイポイント(位置座標)同士を接続点として、両飛行ルートを連続して飛行するように第3飛行ルートを生成することができるが、これに限定されない。 The third flight route generation unit 123 generates a third flight route by combining the first flight route and the second flight route. As one of the specific generation examples, each flight route is composed of a plurality of waypoints (including position coordinate information), and the closest waypoints (position coordinates) of the first flight route and the second flight route. ) Can be used as a connection point to generate a third flight route so as to fly continuously on both flight routes, but the present invention is not limited to this.
 候補飛行ルート設定部125は、後述するように検索または生成された第1飛行ルートが複数存在する場合に、それぞれに対応した第3飛行ルートが生成されるので、それら複数の第3飛行ルートをそれぞれ選択可能に複数の候補飛行ルートとして設定する。より具体的な例としては、例えば、図10に記載されるように、各候補飛行ルートの飛行時間が表示されており、各ルートが選択可能なように候補飛行ルート関連情報(例えば、色情報など)が設定されていて、ユーザはいずれかの飛行ルートを選択することができる。 When there are a plurality of first flight routes searched or generated, the candidate flight route setting unit 125 generates a third flight route corresponding to each of the first flight routes, so that the plurality of third flight routes can be selected. Each can be selected and set as multiple candidate flight routes. As a more specific example, for example, as shown in FIG. 10, the flight time of each candidate flight route is displayed, and the candidate flight route related information (for example, color information) so that each route can be selected is displayed. Etc.) are set, and the user can select one of the flight routes.
 ルート編集部127は、上述のように第3飛行ルートが生成され、ユーザにより選択された後に、必要に応じてルートの一部をユーザの指示に従い、所望の経路に変更する。これにより、後述の方法で検索または生成された第1飛行ルートが経路条件をすべて満たしていない場合や、後述のように過去に用いた第3飛行ルートをベースに新規の飛行ルートを作成したい場合(例えば、前回の飛行結果を踏まえて、対象物を増減するなど)においても、最終的な飛行ルートとしてユーザにより修正された飛行ルートを生成することが可能である。 The route editing unit 127 changes a part of the route to a desired route according to the user's instruction after the third flight route is generated and selected by the user as described above. As a result, when the first flight route searched or generated by the method described later does not satisfy all the route conditions, or when you want to create a new flight route based on the third flight route used in the past as described later. Even in (for example, increasing or decreasing the number of objects based on the previous flight result), it is possible to generate a flight route modified by the user as the final flight route.
 帰還ルート生成部129は、対象物における第2飛行ルートの飛行終了地点から、飛行開始位置または当該飛行開始位置とは異なる飛行終了位置への帰還ルートを生成し、帰還ルート記憶部1627に記憶する。この帰還ルートは、第3飛行ルート生成部123により第3飛行ルートが生成される際に、第1飛行ルート及び第2飛行ルートとあわせて結合される。なお、帰還ルート生成部129を必ずしも備えている必要はなく、例えば、飛行開始位置を飛行終了位置として自動的に設定する構成でもよいし、第1飛行ルートと同様に管理サーバ1外から取得する構成でもよい。 The return route generation unit 129 generates a return route from the flight end point of the second flight route in the object to the flight start position or the flight end position different from the flight start position, and stores it in the return route storage unit 1627. .. This return route is combined with the first flight route and the second flight route when the third flight route is generated by the third flight route generation unit 123. The return route generation unit 129 does not necessarily have to be provided. For example, the flight start position may be automatically set as the flight end position, or the flight may be acquired from outside the management server 1 as in the first flight route. It may be configured.
 なお、飛行ルートは、例えば、飛行体格納装置5を有さずに、ユーザにより機体を持ち運びされた位置を飛行開始位置としたり、飛行終了位置においてユーザが機体を回収したりする構成などでもよいし、管理サーバ1により管理された飛行体格納装置5の情報(例えば、位置情報や格納状態情報、格納機情報など)を基に、飛行開始位置または飛行終了位置として選択された飛行体格納装置5の位置も含めた飛行ルートとして生成される構成でもよい。 The flight route may be, for example, a configuration in which the position where the aircraft is carried by the user is set as the flight start position or the user collects the aircraft at the flight end position without having the flight object storage device 5. Then, based on the information of the flight object storage device 5 managed by the management server 1 (for example, position information, storage state information, storage device information, etc.), the flight object storage device selected as the flight start position or flight end position. The configuration may be generated as a flight route including the position of 5.
 第1飛行ルート取得部130は、通信部110を介して管理サーバ1外で生成された第1飛行ルートを取得し、第1飛行ルート記憶部1621に記憶する。第1飛行ルートは、例えば、衛星または飛行体から撮像した俯瞰画像(例えば、衛星写真や航空写真など)または当該俯瞰画像を平面上に表した図(例えば、地図や路線図など)に基づいて生成されたものである。より具体的な例としては、第1飛行ルートは、飛行体とは異なる形態の移動体またはヒトを含む動物が移動可能な経路に沿った移動ルート(例えば、車道や線路、航路、歩道、山道、獣道など)であり得る。この移動ルートは、例えば、ユーザ端末2、3上でAPI(Application Programming Interface)やアプリケーションソフトなどを用いて、上述の画像や図を基に、飛行開始位置や経由位置、対象物の位置などを指定すると、その位置情報が直接または管理サーバ1を経由して外部のサーバ等(不図示)にネットワークNWを介して送信され、当該位置情報に基づいた移動体が移動可能な経路を検索し、その結果を管理サーバ1に送信する。管理サーバ1は、その検索結果の経路を第1飛行ルートとして取得し、第1飛行ルート記憶部1621に記憶することができる。これにより、対象物までの移動経路のためのウェイポイントをすべて手作業で設定する必要がなくなるため、作業負担と作業時間が減少する。さらに、移動ルート上を飛行することになるため、対象物の情報のみならず、対象物までの移動ルート上の情報も取得することが可能となる。そのため、例えば、対象物までの道路の渋滞状況確認や、災害時における対象物までの経路状況確認、遭難者捜索時における山道捜索など、様々な状況において利用可能である。なお、この時の移動ルート上の取得情報は動画像であってもよいし、適切な数に自動的に生成されたウェイポイントでの撮像画像であってもよい。 The first flight route acquisition unit 130 acquires the first flight route generated outside the management server 1 via the communication unit 110 and stores it in the first flight route storage unit 1621. The first flight route is based on, for example, a bird's-eye view image (for example, a satellite photograph or an aerial photograph) taken from a satellite or an air vehicle or a map (for example, a map or a route map) showing the bird's-eye view image on a plane. It was generated. As a more specific example, the first flight route is a movement route (for example, a roadway, a railroad track, a route, a sidewalk, a mountain road) along a route in which an animal including a moving body or an animal including a human can move. , Beast trail, etc.). For this movement route, for example, the flight start position, the waypoint, the position of the object, etc. are determined based on the above-mentioned images and figures by using API (Application Programming Network) or application software on the user terminals 2 and 3. If specified, the location information is transmitted directly or via the management server 1 to an external server or the like (not shown) via the network NW, and the moving body based on the location information searches for a movable route. The result is transmitted to the management server 1. The management server 1 can acquire the route of the search result as the first flight route and store it in the first flight route storage unit 1621. This eliminates the need to manually set all waypoints for the movement route to the object, reducing the work load and work time. Further, since the flight is performed on the movement route, it is possible to acquire not only the information on the object but also the information on the movement route to the object. Therefore, it can be used in various situations such as confirmation of traffic congestion on the road to the object, confirmation of the route to the object in the event of a disaster, and search for a mountain road when searching for a victim. The acquired information on the movement route at this time may be a moving image, or may be an image captured at an appropriate number of waypoints automatically generated.
 また、上述の具体例では管理サーバ1外にてルート検索を行うことで管理サーバ1の負荷を減らすことが可能であるが、もし管理サーバ1の記憶容量や処理能力などが許すならば、管理サーバ1内でルート検索を行うことも可能である。さらに、上述の具体例では、飛行体とは異なる形態の移動体またはヒトを含む動物が移動可能な経路に沿った移動ルートを第1飛行ルートとすることとしていたが、これに限らず、例えば画像認識により得られるルート(例えば、山脈等の尾根やフェンス、屋根、電線など)であってもよいし、一般的な検索方法(例えば、ダイクストラ法や最良優先探索、Aアルゴリズムなど)やAIなどを用いて検索可能なルートであれば、そのすべてを対象とすることが可能である。 Further, in the above-mentioned specific example, it is possible to reduce the load of the management server 1 by performing a route search outside the management server 1, but if the storage capacity and processing capacity of the management server 1 allow, it is managed. It is also possible to perform a route search within the server 1. Further, in the above-mentioned specific example, the first flight route is defined as a movement route along a path in which a moving body different from the flying body or an animal including a human can move, but the first flight route is not limited to this. It may be a route obtained by image recognition (for example, a ridge such as a mountain range, a fence, a roof, an electric wire, etc.), a general search method (for example, Dijkstra's algorithm, best-first search, A algorithm, etc.), AI, etc. It is possible to target all routes that can be searched using.
 飛行ルート分割部140は、対象物が複数である場合に、複数の対象物のうちの最後に到達する対象物を除く他の対象物を経由地点として経由する第1飛行ルートを、飛行開始位置から経由地点ごとに順次分割する。これにあわせて、第3飛行ルート生成部では、分割された第1飛行ルートのそれぞれと、複数の対象物のそれぞれにおける第2飛行ルートとを飛行開始位置から順次結合することで、第3飛行ルートを生成する。 When there are a plurality of objects, the flight route dividing unit 140 sets a flight start position on a first flight route that passes through a first flight route as a transit point, except for the object that reaches the end of the plurality of objects. Divide sequentially for each waypoint from. In line with this, in the third flight route generation unit, each of the divided first flight routes and the second flight route in each of the plurality of objects are sequentially combined from the flight start position to form the third flight. Generate a route.
 過去飛行ルート呼出部150は、過去飛行ルート記憶部1629を参照して、過去飛行ルートを第3飛行ルートとして呼び出す。過去に生成された第3飛行ルートは、過去飛行ルート記憶部1629に手動または自動で保存されている。なお、過去飛行ルートは、呼出前または呼出後にルート編集部127にて一部を変更可能である。 The past flight route calling unit 150 calls the past flight route as the third flight route with reference to the past flight route storage unit 1629. The third flight route generated in the past is manually or automatically stored in the past flight route storage unit 1629. A part of the past flight route can be changed by the route editorial unit 127 before or after the call.
 インターフェース情報記憶部166は、ユーザ端末2、3の表示部(ディスプレイ等)に表示するための各種制御情報を格納している。 The interface information storage unit 166 stores various control information for display on the display units (displays and the like) of the user terminals 2 and 3.
 レポート生成部170は、フライトログ記憶部164に基づいてユーザ端末2、3に送信するためのレポート情報を生成する。本実施の形態においては、例えば、フライトミッションにて設定された飛行ルート上(第1飛行ルート上および/または第2飛行ルート上)および/または帰還ルート上にて、飛行体4により取得された情報(静止画像、動画像、音声その他の情報)が、フライトログ記憶部164に蓄積される。 The report generation unit 170 generates report information to be transmitted to the user terminals 2 and 3 based on the flight log storage unit 164. In the present embodiment, for example, it is acquired by the aircraft 4 on the flight route (on the first flight route and / or on the second flight route) and / or on the return route set in the flight mission. Information (still image, moving image, sound and other information) is stored in the flight log storage unit 164.
 図7及び図8を参照して、本システムの具体的な表示例を示す。図7及び図8では、対象が1つの場合を想定している。まず、図7のように表示画面左側では、例えば飛行体の飛行速度や高度、対象物旋回半径、旋回中ウェイポイント(WP)数などのパラメータが設定可能になっていてもよく、表示画面右側の画像上では、飛行開始位置(ドローンのイラスト)及び対象物位置(番号1)がポインタやタッチ操作等で選択可能になっていてもよい。そして、表示画面左下側では、選択した飛行開始位置及び対象物位置に基づくルート作成を開始するためのルート作成ボタンや、過去に作成したルートを呼び出すためのルート呼出ボタンなどが配置されていてもよい。 A specific display example of this system is shown with reference to FIGS. 7 and 8. In FIGS. 7 and 8, it is assumed that there is one target. First, as shown in FIG. 7, on the left side of the display screen, parameters such as the flight speed and altitude of the flying object, the turning radius of the object, and the number of waypoints (WP) during turning may be set, and the right side of the display screen may be set. On the image of, the flight start position (illustration of the drone) and the object position (number 1) may be selectable by a pointer, a touch operation, or the like. And on the lower left side of the display screen, even if a route creation button for starting route creation based on the selected flight start position and object position, a route call button for calling a route created in the past, etc. are arranged. Good.
 次に、図8では、取得された第1飛行ルートが実線で示されている部分であり、生成された第2飛行ルートが点線で示されている部分であり、生成された帰還ルートが一点鎖線で示されている部分であるが、実際の表示画面上においては、このようにルート表示が分かれている必要はなく、第3飛行ルートとして所定の色の実線等で一続きに表示されていてもよい。図8に示されるように、生成された第3飛行ルートの一部を変更するためのルート編集ボタンや、第3飛行ルートを過去飛行ルート記憶部1629に保存するためのルート保存ボタン、機体が第3飛行ルートを飛行開始するためのルート実行ボタンなどが配置されていてもよい。 Next, in FIG. 8, the acquired first flight route is the part shown by the solid line, the generated second flight route is the part shown by the dotted line, and the generated return route is one point. Although it is the part shown by the chain line, on the actual display screen, the route display does not have to be divided in this way, and it is continuously displayed as the third flight route with a solid line of a predetermined color or the like. You may. As shown in FIG. 8, the route edit button for changing a part of the generated third flight route, the route save button for saving the third flight route in the past flight route storage unit 1629, and the aircraft are A route execution button or the like for starting the flight of the third flight route may be arranged.
 図9及び図10を参照して、本システムの具体的な表示例を示す。図9及び図10では、対象が2つの場合、第1飛行ルートが2つの場合を想定している。まず、図9のように表示画面左側では、例えば飛行体の速度や高度、対象物旋回半径、旋回中ウェイポイント(WP)数などのパラメータが設定可能になっていてもよく、表示画面右側の画像上では、飛行開始位置(ドローンのイラスト)及び対象物位置(番号1、2)、飛行終了位置(飛行体格納装置のイラスト)がポインタやタッチ操作等で選択可能になっていてもよい。そして、表示画面左下側では、選択した飛行開始位置及び対象物位置に基づくルート作成を開始するためのルート作成ボタンや、過去に作成したルートを呼び出すためのルート呼出ボタンなどが配置されていてもよい。 A specific display example of this system is shown with reference to FIGS. 9 and 10. In FIGS. 9 and 10, it is assumed that there are two targets and two first flight routes. First, as shown in FIG. 9, on the left side of the display screen, parameters such as the speed and altitude of the flying object, the turning radius of the object, and the number of waypoints (WP) during turning may be set, and the right side of the display screen may be set. On the image, the flight start position (illustration of the drone), the object position (numbers 1 and 2), and the flight end position (illustration of the flying object storage device) may be selectable by a pointer or a touch operation. And on the lower left side of the display screen, even if a route creation button for starting route creation based on the selected flight start position and object position, a route call button for calling a route created in the past, etc. are arranged. Good.
 次に、図10では、取得された第1飛行ルートが実線で示されている部分であり、生成された第2飛行ルートが点線で示されている部分であり、生成された帰還ルートが一点鎖線で示されている部分であるが、実際の表示画面上においては、このようにルート表示が分かれている必要はなく、第3飛行ルートとして所定の色の実線等で一続きに表示されていてもよい。また、図10に示されるように、第3飛行ルートが複数ある場合には、候補飛行ルート1、2として各飛行時間と共に表示されており、各ルートが異なる色で選択可能に表示されていてもよい。さらに、図10に示されるように、生成された第3飛行ルートの一部を変更するためのルート編集ボタンや、第3飛行ルートを過去飛行ルート記憶部1629に保存するためのルート保存ボタン、機体が第3飛行ルートを飛行開始するためのルート実行ボタンなどが配置されていてもよい。 Next, in FIG. 10, the acquired first flight route is the part shown by the solid line, the generated second flight route is the part shown by the dotted line, and the generated return route is one point. Although it is the part shown by the chain line, on the actual display screen, the route display does not have to be divided in this way, and it is continuously displayed as the third flight route with a solid line of a predetermined color or the like. You may. Further, as shown in FIG. 10, when there are a plurality of third flight routes, they are displayed as candidate flight routes 1 and 2 together with each flight time, and each route is displayed in a different color and can be selected. May be good. Further, as shown in FIG. 10, a route edit button for changing a part of the generated third flight route and a route save button for saving the third flight route in the past flight route storage unit 1629, A route execution button or the like for the aircraft to start flying on the third flight route may be arranged.
 本発明の飛行体は、マルチコプター・ドローン等の飛行機関連産業において利用することができ、さらに、本発明は、カメラ等を搭載した空撮用の飛行体としても好適に使用することができる他、セキュリティ分野、農業、インフラ監視、測量、ゴルフ場やテニス場などのスポーツ会場点検、工場・倉庫等建物の屋根の点検、災害対応、遭難対応等の様々な産業にも利用することができる。 The air vehicle of the present invention can be used in an airplane-related industry such as a multicopter drone, and further, the present invention can be suitably used as an air vehicle for aerial photography equipped with a camera or the like. It can also be used in various industries such as security, agriculture, infrastructure monitoring, surveying, sports venue inspections such as golf courses and tennis courts, roof inspections of buildings such as factories and warehouses, disaster response, and disaster response.
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The above-described embodiment is merely an example for facilitating the understanding of the present invention, and is not intended to limit the interpretation of the present invention. It goes without saying that the present invention can be modified and improved without departing from the spirit thereof, and the present invention includes an equivalent thereof.
 1    管理サーバ
 2    ユーザ端末
 4    飛行体
 

 
1 Management server 2 User terminal 4 Aircraft

Claims (13)

  1.  ネットワークを介してユーザ端末と飛行体と接続された、前記飛行体の飛行ルートを管理する管理サーバであって、
     衛星または飛行体から撮像した俯瞰画像または当該俯瞰画像を平面上に表した図に基づいて生成された、飛行開始位置から対象物までの第1飛行ルートを前記管理サーバ外から取得する第1飛行ルート取得部と、
     前記対象物に関する情報を取得するための第2飛行ルートを生成する第2飛行ルート生成部と、
     前記第1飛行ルートと前記第2飛行ルートとを結合し、第3飛行ルートを生成する第3飛行ルート生成部と、
     を備える管理サーバ。
    A management server that manages the flight route of the aircraft, which is connected to the user terminal and the aircraft via a network.
    The first flight to acquire the first flight route from the flight start position to the object, which is generated based on the bird's-eye view image taken from the satellite or the flying object or the view showing the bird's-eye view image on a plane, from outside the management server. Route acquisition department and
    A second flight route generator that generates a second flight route for acquiring information about the object,
    A third flight route generator that combines the first flight route and the second flight route to generate a third flight route,
    Management server with.
  2.  前記第1飛行ルートは、前記飛行体とは異なる形態の移動体やヒトを含む動物が移動可能な経路に沿った移動ルートである、
     ことを特徴とする請求項1に記載の管理サーバ。
    The first flight route is a movement route along a path through which animals including humans and moving objects having a different form from the flying object can move.
    The management server according to claim 1.
  3.  前記対象物は、複数の対象物のうちの最後に到達する対象物であり、
     前記第1飛行ルートは、前記複数の対象物のうちの最後に到達する対象物を除く他の対象物を経由地点として経由するルートであり、
     前記管理サーバは、
     前記第1飛行ルートを前記飛行開始位置から前記経由地点ごとに順次分割する飛行ルート分割部をさらに備え、
     前記第3飛行ルート生成部は、前記分割された第1飛行ルートのそれぞれと、前記複数の対象物のそれぞれにおける前記第2飛行ルートとを前記飛行開始位置から順次結合し、前記第3飛行ルートを生成する、
     ことを特徴とする請求項1または2に記載の管理サーバ。 
    The object is the last object to reach among the plurality of objects.
    The first flight route is a route that passes through other objects other than the last object among the plurality of objects as transit points.
    The management server
    Further provided with a flight route dividing unit that sequentially divides the first flight route from the flight start position to each waypoint.
    The third flight route generation unit sequentially connects each of the divided first flight routes and the second flight route in each of the plurality of objects from the flight start position, and the third flight route. To generate,
    The management server according to claim 1 or 2.
  4.  前記第3飛行ルート生成部は、前記第3飛行ルートとして複数の飛行ルートを生成し、
     前記管理サーバは、
     前記複数の飛行ルートをそれぞれ選択可能に複数の候補飛行ルートとして設定する候補飛行ルート設定部とをさらに備える、
     ことを特徴とする請求項1乃至3に記載の管理サーバ。
    The third flight route generation unit generates a plurality of flight routes as the third flight route, and generates a plurality of flight routes.
    The management server
    It further includes a candidate flight route setting unit that sets the plurality of flight routes as a plurality of candidate flight routes so as to be selectable.
    The management server according to claim 1 to 3.
  5.  前記候補飛行ルート設定部は、前記複数の候補飛行ルートを前記ユーザ端末にそれぞれ区別可能に表示させるように各候補飛行ルート関連情報を設定する、
     ことを特徴とする請求項4に記載の管理サーバ。
    The candidate flight route setting unit sets information related to each candidate flight route so that the plurality of candidate flight routes can be displayed on the user terminal in a distinctive manner.
    The management server according to claim 4.
  6.  前記候補飛行ルート関連情報は、色情報である、
     ことを特徴とする請求項5に記載の管理サーバ。
    The candidate flight route related information is color information.
    The management server according to claim 5.
  7.  前記第3飛行ルートの一部を他のルートに変更するルート編集部をさらに備える、
     ことを特徴とする請求項1乃至6に記載の管理サーバ。
    A route editorial unit for changing a part of the third flight route to another route is further provided.
    The management server according to claim 1 to 6.
  8.  前記対象物における前記第2飛行ルートの飛行終了地点から、前記飛行開始位置または前記飛行開始位置とは異なる飛行終了位置への帰還ルートを生成する帰還ルート生成部をさらに備え、
     前記第3飛行ルートは、前記帰還ルートをさらに含む、
     ことを特徴とする請求項1乃至7に記載の管理サーバ。
    Further provided with a return route generation unit that generates a return route from the flight end point of the second flight route in the object to the flight start position or a flight end position different from the flight start position.
    The third flight route further includes the return route.
    The management server according to claim 1 to 7.
  9.  前記管理サーバは、前記ユーザ端末により選択された前記飛行開始位置、前記対象物の位置を基に第3飛行ルートを生成する、
     ことを特徴とする請求項1乃至8に記載の管理サーバ。
    The management server generates a third flight route based on the flight start position and the position of the object selected by the user terminal.
    The management server according to claim 1 to 8.
  10.  前記第2飛行ルートは、前記対象物の中心座標を中心に旋回するルートである、
     ことを特徴とする請求項1乃至9に記載の管理サーバ。
    The second flight route is a route that turns around the center coordinates of the object.
    The management server according to claim 1 to 9.
  11.  前記第3飛行ルートを過去飛行ルートとして記憶する過去飛行ルート記憶部と、
     前記管理サーバは、前記過去飛行ルート記憶部に記憶される過去飛行ルートを前記第3飛行ルートとして設定する過去飛行ルート呼出部とをさらに備える
     ことを特徴とする請求項1乃至10に記載の管理サーバ。
    A past flight route storage unit that stores the third flight route as a past flight route,
    The management according to claim 1 to 10, wherein the management server further includes a past flight route calling unit that sets a past flight route stored in the past flight route storage unit as the third flight route. server.
  12.  前記情報は、静止画像または動画像である、
     ことを特徴とする請求項1乃至11に記載の管理サーバ。
    The information is a still image or a moving image.
    The management server according to claim 1 to 11.
  13.  ネットワークを介してユーザ端末と飛行体と接続された、前記飛行体の飛行ルートを管理する管理サーバを含む、飛行体の管理システムであって、
     前記管理サーバは;
     衛星または飛行体から撮像した俯瞰画像または当該俯瞰画像を平面上に表した図に基づいて生成された、飛行開始位置から対象物までの第1飛行ルートを前記管理サーバ外から取得し;
     前記対象物に関する情報を取得するための第2飛行ルートを生成し;
     前記第1飛行ルートと前記第2飛行ルートとを結合し、第3飛行ルートを生成する;
     管理システム。

     
    An air vehicle management system that includes a management server that manages the flight route of the air vehicle, which is connected to the user terminal and the air vehicle via a network.
    The management server is;
    The first flight route from the flight start position to the object, which is generated based on the bird's-eye view image taken from the satellite or the aircraft or the bird's-eye view image on a plane, is acquired from outside the management server;
    Generate a second flight route to obtain information about the object;
    The first flight route and the second flight route are combined to generate a third flight route;
    Management system.

PCT/JP2019/032055 2019-08-15 2019-08-15 Management server and management system for flying object WO2021029065A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/032055 WO2021029065A1 (en) 2019-08-15 2019-08-15 Management server and management system for flying object
JP2019569844A JP6678983B1 (en) 2019-08-15 2019-08-15 Aircraft management server and management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032055 WO2021029065A1 (en) 2019-08-15 2019-08-15 Management server and management system for flying object

Publications (1)

Publication Number Publication Date
WO2021029065A1 true WO2021029065A1 (en) 2021-02-18

Family

ID=70166393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032055 WO2021029065A1 (en) 2019-08-15 2019-08-15 Management server and management system for flying object

Country Status (2)

Country Link
JP (1) JP6678983B1 (en)
WO (1) WO2021029065A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810494B1 (en) * 2020-03-04 2021-01-06 株式会社センシンロボティクス Aircraft management server and management system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295098A (en) * 1998-04-10 1999-10-29 Nec Corp Flight route-creating device and its method
JP2000180100A (en) * 1998-12-17 2000-06-30 Nec Corp Unattended night reconnaissance airplane
JP2005049142A (en) * 2003-07-30 2005-02-24 Pioneer Electronic Corp Guidance apparatus, its system, its method, its program, and record medium recording the program
JP2019006356A (en) * 2017-06-28 2019-01-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight body, collection support device, collection control method, collection support method, program, and recording medium
US20190101934A1 (en) * 2017-10-04 2019-04-04 Here Global B.V. Link level wind factor computation for efficient drone routing using 3d city map data
JP2019117211A (en) * 2019-04-10 2019-07-18 Kddi株式会社 Determination device, determination method, and program
US20190228573A1 (en) * 2018-01-25 2019-07-25 General Electric Company Automated and adaptive three-dimensional robotic site surveying
WO2019146580A1 (en) * 2018-01-23 2019-08-01 株式会社Nttドコモ Information processing device and information processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636552A (en) * 2016-09-27 2018-01-26 深圳市大疆创新科技有限公司 A kind of flight control method and device, control device
JP6811483B2 (en) * 2017-03-30 2021-01-13 株式会社スカイマティクス Systems and methods to support work with drones
JP2019120986A (en) * 2017-12-28 2019-07-22 エヌ・ティ・ティ・データ・カスタマサービス株式会社 Flight course control system for unmanned aircraft and flight course control method for unmanned aircraft

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295098A (en) * 1998-04-10 1999-10-29 Nec Corp Flight route-creating device and its method
JP2000180100A (en) * 1998-12-17 2000-06-30 Nec Corp Unattended night reconnaissance airplane
JP2005049142A (en) * 2003-07-30 2005-02-24 Pioneer Electronic Corp Guidance apparatus, its system, its method, its program, and record medium recording the program
JP2019006356A (en) * 2017-06-28 2019-01-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight body, collection support device, collection control method, collection support method, program, and recording medium
US20190101934A1 (en) * 2017-10-04 2019-04-04 Here Global B.V. Link level wind factor computation for efficient drone routing using 3d city map data
WO2019146580A1 (en) * 2018-01-23 2019-08-01 株式会社Nttドコモ Information processing device and information processing method
US20190228573A1 (en) * 2018-01-25 2019-07-25 General Electric Company Automated and adaptive three-dimensional robotic site surveying
JP2019117211A (en) * 2019-04-10 2019-07-18 Kddi株式会社 Determination device, determination method, and program

Also Published As

Publication number Publication date
JPWO2021029065A1 (en) 2021-09-13
JP6678983B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6829513B1 (en) Position calculation method and information processing system
JP6807129B1 (en) Flight path generation method and flight reservation method, program, management server of the aircraft
JP6810494B1 (en) Aircraft management server and management system
JP6966810B2 (en) Management server and management system, display information generation method, program
WO2021029065A1 (en) Management server and management system for flying object
WO2021079516A1 (en) Flight route creation method for flying body and management server
JP2021140388A (en) Management server and management system for flying object
JP6786140B1 (en) Aircraft management server and management system
JP6777962B1 (en) Aircraft management server and management system
JP6876354B1 (en) Aircraft management server and management system
JP6800505B1 (en) Aircraft management server and management system
JP6818379B1 (en) Flight route creation method and management server for aircraft
JP6730764B1 (en) Flight route display method and information processing apparatus
JP2021002345A (en) Flight management server and flight management system for unmanned flying body
JP6771253B1 (en) Aircraft management server and management system
JP6786138B1 (en) Aircraft management server and management system
JP6810497B1 (en) Flight route creation method and management server for aircraft
JP6810498B1 (en) Flight route creation method and management server for aircraft
JP6715541B1 (en) Aircraft management server and management system
JP6765738B1 (en) Flight management server and flight management system for unmanned aerial vehicles
JP2021015590A (en) Management server and management system for flight vehicle
JP2021067670A (en) Method of creating flight route for flying object and management server

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569844

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941318

Country of ref document: EP

Kind code of ref document: A1