WO2021028979A1 - Control device, controlled device, and method for controlling controlled device - Google Patents

Control device, controlled device, and method for controlling controlled device Download PDF

Info

Publication number
WO2021028979A1
WO2021028979A1 PCT/JP2019/031691 JP2019031691W WO2021028979A1 WO 2021028979 A1 WO2021028979 A1 WO 2021028979A1 JP 2019031691 W JP2019031691 W JP 2019031691W WO 2021028979 A1 WO2021028979 A1 WO 2021028979A1
Authority
WO
WIPO (PCT)
Prior art keywords
target device
control target
control
unit
controlled
Prior art date
Application number
PCT/JP2019/031691
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 河尻
一貴 平嶋
將 白石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021539713A priority Critical patent/JP6987319B2/en
Priority to PCT/JP2019/031691 priority patent/WO2021028979A1/en
Publication of WO2021028979A1 publication Critical patent/WO2021028979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot

Definitions

  • the present invention relates to a control device that controls a device to be controlled.
  • Non-Patent Document 1 proposes a control device using a control algorithm that extends a bird's behavior model to control at least one unmanned aerial vehicle that constitutes a group of unmanned aerial vehicles.
  • the control device divides the search area into minute area cells, calculates an evaluation function for each area cell to obtain a priority, and then controls the controlled device so as to search for the area cell having the highest priority. Control the target device.
  • the variables of the evaluation function are 1) the position vector of the controlled device, 2) the position vector from the controlled device to the area cell, and 3) the elapsed time from the time when the controlled device, etc. last stayed in the area cell. There are three.
  • Non-Patent Document 1 In the control by the control device described in Non-Patent Document 1 described above, when the controlled device and the non-controlled device controlled by another control device approach each other, these devices simultaneously search for the same region cell. There is a problem that the search mission cannot be performed efficiently.
  • the present invention has been made to solve the above-mentioned problems, and provides a technique for suppressing the simultaneous search of the same region cell between the controlled target device and the non-controlled target device. With the goal.
  • the control device is based on the control target device information regarding the control target device to be controlled and the non-control target device information regarding the non-control target device controlled by another control device.
  • a control device that controls the control target device so as to search a search area divided into a plurality of area cells, and a control target device information acquisition unit that acquires control target device information including at least the position of the control target device.
  • the uncontrolled device information acquisition unit that acquires the non-controlled device information including at least the position of the uncontrolled device, and the area elapsed from the time when the controlled device or the uncontrolled device last stayed in the area cell.
  • the priority map generation unit that generates a priority map that shows the priority for the controlled device to search for the area cell for each area cell based on the position of the device, and the priority map generated by the priority map generation unit. It also includes a control execution unit that controls the device to be controlled.
  • the present invention it is possible to prevent the controlled target device and the non-controlled target device from simultaneously searching for the same region cell.
  • FIG. It is a block diagram which shows the structure of the control target apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the control method of the control target device by the control device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the detail of step ST4 in the control method of the control target device by the control device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the detail of step ST8 in the control method of the control target apparatus by the control device which concerns on Embodiment 1.
  • FIG. It is a figure which shows the AGE map of the search area which the controlled object apparatus which concerns on Embodiment 1 searches.
  • FIG. 10A is a block diagram showing a hardware configuration that realizes the functions of the control device.
  • FIG. 10B is a block diagram showing a hardware configuration for executing software that realizes the functions of the control device.
  • FIG. 1 is a block diagram showing a configuration of a controlled target device 100 including the control device 1 according to the first embodiment.
  • the control target device 100 includes a sensor 2, a communication unit 3, a storage unit 4, a control device 1, and a drive unit 5.
  • the control device 1 includes a control target device information acquisition unit 11, a non-control target device information acquisition unit 12, an information processing unit 13, an information output unit 14, an AGE map generation unit 15, a priority map generation unit 16, and a control vector calculation unit 17. , And a control execution unit 18.
  • control target device 100 searches for a search area based on the control target device information regarding the control target device 100 that is the control target and the non-control target device information regarding the non-control target device controlled by another control device. Control to search for.
  • the search area to be searched by the control target device 100 is divided into a plurality of area cells. Further, the plurality of area cells are individually associated with the AGE and the priority described later in the AGE map described later. Further, in the first embodiment, it is assumed that the position vector of each region cell is stored in the storage unit 4.
  • the sensor 2 acquires the control target device information related to the control target device 100 by detecting the environment around the control target device 100.
  • the sensor 2 outputs the acquired control target device information to the control target device information acquisition unit 11.
  • the sensor 2 is, for example, a GPS that detects the position of the control target device 100, a speed detector that detects the speed of the control target device 100, or the like.
  • the control target device information includes at least the position of the control target device 100.
  • position information regarding the position of the controlled device 100 is simply referred to as the position of the controlled device 100.
  • control target device information further includes, for example, the speed of the control target device 100 and the like.
  • the communication unit 3 wirelessly communicates with the communication unit of a control device other than the control device 1 to send and receive information.
  • the other control devices here may be plural. More specifically, the communication unit 3 receives the non-control target device information regarding the non-control target device controlled by the other control device from the communication unit of the other control device.
  • the uncontrolled device information includes at least the position of the uncontrolled device.
  • the communication unit 3 includes not only the position of the non-control target device at the present time, but also the position acquired by the sensor of the non-control target device in the past and the information indicating how many steps before the sensor acquired the position.
  • the combined information may be received from the communication unit of another control device.
  • the communication unit 3 further receives the AGE map generated by the other control device from the communication unit of the other control device.
  • the communication unit 3 outputs the received non-control target device information and the received AGE map to the non-control target device information acquisition unit 12.
  • the AGE map received by the communication unit 3 is referred to as a received AGE map.
  • the “AGE” in the received AGE map and the generated AGE map described later means the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the region cell.
  • the "AGE map” in the received AGE map and the generated AGE map described later means information indicating the AGE for each of the above-mentioned area cells.
  • AGE is a value set in each region cell in the AGE map, and for example, a sensor mounted on either the controlled target device 100 or the non-controlled target device is finally set in the region cell. It is a value indicating the elapsed time from the time when the position was observed.
  • the value is a value in units of one time step.
  • One time step means a unit of a time interval in which the AGE map generation unit 15 described later updates the AGE map.
  • One time step is, for example, a preset time interval.
  • the communication unit 3 acquires the control target device information from the control target device information acquisition unit 11 described later, and transmits the acquired control target device information to the communication unit of another control device.
  • the control target device information includes at least the position of the control target device 100.
  • the communication unit 3 combines not only the position of the control target device 100 at the present time but also the position acquired by the sensor 2 in the past with the information indicating how many steps before the sensor 2 acquired the position, and buffers the position. Etc., and may be appropriately transmitted to the communication unit of another control device. Further, in the first embodiment, the communication unit 3 further transmits the AGE map generated by the AGE map generation unit 15 described later to the communication unit of another control device.
  • the control target device information acquisition unit 11 acquires the control target device information from the sensor 2.
  • the control target device information acquisition unit 11 outputs the acquired control target device information to the communication unit 3 and the information processing unit 13.
  • the non-control target device information acquisition unit 12 acquires the non-control target device information from the communication unit 3.
  • the non-control target device information acquisition unit 12 outputs the acquired non-control target device information to the information processing unit 13. Further, in the first embodiment, the non-control target device information acquisition unit 12 acquires the received AGE map from the communication unit 3.
  • the non-control target device information acquisition unit 12 outputs the acquired received AGE map to the AGE map generation unit 15.
  • the information processing unit 13 has an AGE map generation unit 15 which will be described later with respect to the control target device information acquired from the control target device information acquisition unit 11 and the non-control target device information acquired from the non-control target device information acquisition unit 12.
  • the priority map generation unit 16 and the control vector calculation unit 17 perform processing in a format that can be calculated, respectively.
  • the information processing unit 13 calculates the position vector of the control target device 100 based on the position of the control target device 100 indicated by the control target device information.
  • the information processing unit 13 outputs the processed control target device information including at least the position vector of the control target device 100 to the AGE map generation unit 15, the priority map generation unit 16, and the control vector calculation unit 17, respectively.
  • the information processing unit 13 calculates the position vector of the non-control target device 101 based on the position of the non-control target device indicated by the non-control target device information acquired from the non-control target device information acquisition unit 12.
  • the information processing unit 13 outputs the processed non-control target device information including the position vector of the non-control target device to the priority map generation unit 16 and the control vector calculation unit 17, respectively.
  • the AGE map generation unit 15 generates an AGE map based on the control target device information acquired by the control target device information acquisition unit 11. As described above, the AGE map shows the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the area cell for each area cell.
  • the AGE map generation unit 15 stores the generated AGE map in the storage unit 4. In the present specification, the AGE map generated by the AGE map generation unit 15 is referred to as a "generated AGE map".
  • the AGE map generation unit 15 includes information indicating the passage of time, a position vector of the control target device 100 acquired from the information processing unit 13, and a position vector. Based on the received AGE map acquired from the non-control target device information acquisition unit 12 and the generated AGE map one time step before acquired from the information output unit 14 described later, the AGE is calculated for each area cell and the generated AGE is generated. Generate a map.
  • the communication unit 3 receives the received AGE map from the communication unit of another control device, and the AGE map generation unit 15 generates the generated AGE map based on the received AGE map.
  • the communication unit 3 may not receive the received AGE map, and the AGE map generation unit 15 may generate the generated AGE map without being based on the received AGE map. That is, the control device 1 may generate the AGE map independently without sharing it with other control devices.
  • the AGE map generation unit 15 has a plurality of control target devices 100 described above based on the position of the control target device 100 indicated by the control target device information. It is determined whether or not the user has stayed in any of the area cells of. Then, when the AGE map generation unit 15 determines that the control target device 100 has stayed in any of the plurality of area cells, the AGE map generation unit 15 lowers the AGE value of the corresponding area cell in the generation AGE map to generate the AGE map. To update.
  • the AGE map generation unit 15 has the corresponding AGE value in the generated AGE map from the time when the controlled device 100 last stayed in the corresponding area cell to the AGE value corresponding to the elapsed time from the current time. Decrease the AGE value of the region cell.
  • the AGE map generation unit 15 determines whether or not any AGE of the plurality of area cells is updated in the received AGE map. When the AGE map generation unit 15 determines that the AGE of any of the plurality of area cells has been updated, the AGE map generation unit 15 determines the AGE value of the corresponding area cell in the generated AGE map based on the updated AGE. The generated AGE map is updated by lowering it. Further, in the first embodiment, the AGE map generation unit 15 adds "1" to the value of each AGE of all the area cells in each time step in the generated generated AGE map.
  • the information output unit 14 reads the generated AGE map stored in the storage unit 4 and outputs the read AGE map to the AGE map generation unit 15. Further, the information output unit 14 outputs the read generated AGE map to the communication unit of another control device via the communication unit 3.
  • the timing at which the information output unit 14 outputs the generated AGE map to the communication unit of another control device via the communication unit 3 can be appropriately set. Examples of the timing include preset timings, timings requested by other control devices, and the like.
  • the priority map generation unit 16 includes an AGE map, a position of the control target device 100 indicated by the control target device information acquired by the control target device information acquisition unit 11, and a non-control target acquired by the non-control target device information acquisition unit 12. Based on the position of the non-control target device indicated by the device information, a priority map showing the priority for the control target device 100 to search for the area cell is generated for each area cell. In the first embodiment, the higher the priority, the higher the degree to which the controlled device 100 should search for the corresponding area cell.
  • the priority map generation unit 16 is a generation AGE map stored in the storage unit 4 by the AGE map generation unit 15, and a position vector of each region cell stored in the storage unit 4. , And the priority map is generated based on the position vector of the control target device 100 and the position vector of the non-control target device 101 acquired from the information processing unit 13.
  • the priority map generation unit 16 sets the output value of the evaluation function as the priority.
  • the output value of the evaluation function increases as the AGE increases for each region cell, and the output value increases as the first distance from the position of the controlled device 100 to the position of the region cell decreases.
  • the output value of the evaluation function increases as the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the corresponding area cell increases, and the controlled device device The output value increases as 100 approaches the corresponding region cell.
  • the influence of the first distance on the output value changes relatively based on the second distance from the position of the controlled target device 100 to the position of the non-controlled target device 101.
  • the influence of the first distance on the output value becomes larger, so that the influence of the first distance on the output value becomes relatively larger.
  • the influence of AGE on the output value becomes smaller, so that the influence of the first distance on the output value becomes relatively larger.
  • the degree to which the output value increases as the first distance decreases is adjusted.
  • the degree to which the output value increases as the first distance decreases is simply referred to as "the above degree”.
  • the evaluation function increases the above degree as the second distance decreases, and decreases as the second distance increases.
  • the evaluation function increases the above degree as the second distance decreases, and decreases as the second distance increases.
  • the merit function is a power whose numerator is AGE and whose denominator is the base of the first distance and the function based on the second distance as the power exponent. More specifically, in the first embodiment, the priority map generation unit 16 uses a predetermined evaluation function J when calculating the priority for each area cell.
  • the evaluation function J is represented by the following equation (1).
  • A indicates the AGE of a certain area cell
  • X indicates the position vector of the area cell
  • x indicates the position vector of the controlled device 100
  • x N indicates a communicable uncontrolled device.
  • the position vector of the nearest uncontrolled target device having the closest distance to the control target device 100 is shown, and
  • indicates the Euclidean norm. That is,
  • Equation (2) g () of g (
  • X and x are standardized respectively, and
  • the output value of the evaluation function J as described above increases as A increases and the output value increases as the first distance
  • the merit function J has a numerator of AGE and a denominator based on the first distance
  • ) is a power with a power index.
  • the evaluation function J As the controlled device 100 and the nearest non-controlled device 101 approach each other and the second distance
  • the non-controlled device when the non-controlled device also receives the same control as the control based on the evaluation function J as described above, the area cell closer to itself is preferentially searched. In this way, when the controlled target device 100 and the non-controlled target device approach each other, each of them preferentially searches for a region cell closer to itself, so that it is possible to search for the same region cell. The sex becomes low.
  • the priority map generation unit 16 of the evaluation function J You may replace g (
  • the value is, for example, the value of g (
  • of x N which is input to the evaluation function J is set to the position vector of the uncontrolled devices nearest other uncontrolled evaluation function J Any number of device position vectors may be added as variables.
  • the control vector calculation unit 17 calculates the control vector for the control target device 100 based on the priority map generated by the priority map generation unit 16.
  • the control vector means a vector indicating a direction and a distance in which the drive unit 5 moves the control target device 100 under the control of the control execution unit 18, which will be described later.
  • the control vector calculation unit 17 refers to the priority map generated by the priority map generation unit 16, and has a priority among a plurality of area cells included in the priority map. Detect the largest region cell. Further, the control vector calculation unit 17 sets the detected area cell as the target area cell to which the controlled device 100 should go.
  • control vector calculation unit 17 controls based on the derived position vector of the target area cell and the position vector of the control target device 100 indicated by the processed control target device information acquired from the information processing unit 13.
  • a search direction vector indicating the direction and distance from the position of the target device 100 to the position of the target area cell is calculated. More specifically, the control vector calculation unit 17 calculates a vector from the position of the control target device 100 to the position of the target area cell by subtracting the position vector of the control target device 100 from the position vector of the target area cell.
  • the search direction vector is calculated by calculating and setting the length of the vector to 1.
  • control vector calculation unit 17 includes a position vector of the control target device 100 indicated by the processed control target device information acquired from the information processing unit 13 and a position vector of the non-control target device indicated by the processed non-control target device information. Based on the above, a repulsive force vector indicating an acting force for avoiding a collision between the controlled target device 100 and the non-controlled target device is calculated.
  • the control vector calculation unit 17 applies a repulsive force according to the distance between the control target device 100 and the communicable non-control target device.
  • the control vector calculation unit 17 determines the control target device 100 and the non-control target device based on the set repulsive force, the processed control target device information acquired from the information processing unit 13, and the processed non-control target device information.
  • the repulsive force vector is calculated based on the positional relationship.
  • control vector calculation unit 17 calculates an obstacle vector indicating an acting force for the controlled device 100 to move away from the obstacle based on the information about the obstacle.
  • the obstacle is, for example, a wall existing in the search area or a no-entry area.
  • the information about the obstacle may be registered in advance in the AGE map together with the position of the obstacle, or may be stored in advance in the storage unit 4.
  • control vector calculation unit 17 refers to the obstacle information and determines whether or not the controlled device 100 has approached the position where the obstacle exists. Then, when the control vector calculation unit 17 determines that the control target device 100 has approached the position where the obstacle exists, the control target device 100 fails based on the same method as the above-described repulsive force vector calculation method. Calculate an obstacle vector that indicates the acting force to move away from the object.
  • control vector calculation unit 17 determines the speed of the control target device 100 based on the position vector of the control target device 100 or the speed vector of the control target device 100 indicated by the processed control target device information acquired from the information processing unit 13. Calculates a speed adjustment vector indicating the acting force for suppressing the excessiveness of.
  • the control vector calculation unit 17 may calculate the acting force by referring to a discrete table showing the correspondence between the velocity and the acting force.
  • control vector calculation unit 17 may calculate an adjustment vector for adjusting the search direction searched by the control target device 100. Then, the control vector calculation unit 17 calculates the control vector by multiplying each of the calculated search direction vector, repulsive force vector, obstacle vector, and speed adjustment vector by a weighting coefficient and adding each of the multiplied vectors. ..
  • the weighting coefficient is preset depending on which of the search direction vector, the repulsive force vector, the obstacle vector, and the speed adjustment vector is emphasized.
  • the control vector calculation unit 17 outputs the calculated control vector to the control execution unit 18.
  • the control execution unit 18 controls the control target device 100 based on the control vector acquired from the control vector calculation unit 17. More specifically, the control execution unit 18 controls the drive unit 5 so that the drive unit 5 moves the control target device 100 by the distance indicated by the control vector in the direction indicated by the control vector.
  • FIG. 2 is a flowchart showing a control method of the control target device 100 by the control device 1 according to the first embodiment.
  • the sensor 2 acquires the control target device information regarding the control target device 100 by detecting the environment around the control target device 100, and the communication unit 3 receives the control target device information.
  • the non-control target device information and the received AGE map regarding the non-control target device controlled by the other control device are received from the communication unit of the other control device.
  • the control target device information acquired by the sensor 2 includes the position of the control target device 100 and the image around the control target device 100, and the non-control target device information received by the communication unit 3 is the non-control target device. It shall include the position.
  • control target device information acquisition unit 11 acquires the control target device information from the sensor 2 (step ST1).
  • the control target device information acquisition unit 11 outputs the acquired control target device information to the communication unit 3 and the information processing unit 13.
  • the non-control target device information acquisition unit 12 acquires the non-control target device information and the received AGE map from the communication unit 3 (step ST2).
  • the non-control target device information acquisition unit 12 outputs the acquired non-control target device information to the information processing unit 13, and outputs the acquired received AGE map to the AGE map generation unit 15.
  • step ST3 the information processing unit 13 calculates the position vector of the control target device 100 based on the position of the control target device 100 indicated by the control target device information acquired from the control target device information acquisition unit 11. Further, in step ST3, the information processing unit 13 calculates the position vector of the non-control target device based on the position of the non-control target device indicated by the non-control target device information acquired from the non-control target device information acquisition unit 12. ..
  • the information processing unit 13 outputs the processed control target device information including the position vector of the control target device 100 to the AGE map generation unit 15, the priority map generation unit 16, and the control vector calculation unit 17, respectively, and the non-control target device.
  • the processed non-control target device information including the position vector of is output to the priority map generation unit 16 and the control vector calculation unit 17, respectively.
  • the information output unit 14 reads the generated AGE map one time step before from the storage unit 4 and outputs it to the AGE map generation unit 15.
  • the AGE map generation unit 15 outputs information, the passage of time information, the position vector of the control target device 100 acquired from the information processing unit 13, the received AGE map acquired from the non-control target device information acquisition unit 12. Based on the generated AGE map one time step before acquired from the unit 14, the AGE is calculated for each area cell, and the generated AGE map of the current time step is generated (step ST4).
  • the AGE map generation unit 15 stores the generated generated AGE map in the storage unit 4 (step ST5).
  • the information output unit 14 outputs the generated AGE map stored in the storage unit 4 by the AGE map generation unit 15 to the communication unit of another control device via the communication unit 3 (step ST6).
  • the priority map generation unit 16 starts with the generation AGE map stored in the storage unit 4 by the AGE map generation unit 15, the position vector of each area cell stored in the storage unit 4, and the information processing unit 13.
  • a priority map is generated based on the acquired position vector of the control target device 100 and the position vector of the non-control target device 101 (step ST7).
  • the priority map generation unit 16 outputs the generated priority map to the control vector calculation unit 17.
  • control vector calculation unit 17 calculates the above-mentioned search direction vector based on the position vector of the control target device 100 acquired from the information processing unit 13 and the priority map generated by the priority map generation unit 16. (Step ST8).
  • control vector calculation unit 17 calculates the above-mentioned repulsive force vector, obstacle vector, and speed adjustment vector, respectively, based on the position vector of the control target device 100 acquired from the information processing unit 13 (step ST9).
  • control vector calculation unit 17 calculates the above-mentioned control vector based on the calculated search direction vector, repulsive force vector, obstacle vector, and speed adjustment vector (step ST10).
  • the control vector calculation unit 17 outputs the calculated control vector to the control execution unit 18.
  • control execution unit 18 controls the control target device 100 based on the control vector acquired from the control vector calculation unit 17 (step ST11).
  • the control device 1 returns to the process of step ST1 and repeatedly executes the processes after step ST1.
  • FIG. 3 is a flowchart showing the details of step ST4 in the control method of the control target device 100 by the control device 1 according to the first embodiment.
  • the AGE map generation unit 15 reads the generated AGE map generated in the previous step ST4 and stored in the storage unit 4 in the previous step ST5 from the storage unit 4, and the read generated AGE map is generated. It is determined whether or not a preset one time step has elapsed since the generation or update (step ST21).
  • step ST21 When the AGE map generation unit 15 determines that one time step has elapsed (YES in step ST21), "1" is added to the value of each AGE of all the area cells in the generated AGE map (step ST22). On the other hand, when it is determined that one time step has not elapsed (NO in step ST21), the AGE map generation unit 15 proceeds to the process of step ST23.
  • step ST21 or step ST22 the AGE map generation unit 15 recognizes the position where the control target device 100 exists based on the position vector of the control target device 100 acquired from the information processing unit 13, and controls the control target. It is determined whether or not the device 100 has stayed in any of the plurality of region cells described above (step ST23).
  • step ST23 When the AGE map generation unit 15 determines that the controlled device 100 has stayed in any of the plurality of region cells described above (YES in step ST23), "1" is added to the value of each AGE in step ST22. In the generated AGE map generated or the generated AGE map read from the storage unit 4 in step ST21, the AGE value of the corresponding area cell is lowered (step ST24). On the other hand, when the AGE map generation unit 15 determines that the control target device 100 does not stay in any of the plurality of region cells described above (NO in step ST23), the process proceeds to the process of step ST25.
  • the AGE map generation unit 15 refers to the information of the received AGE map acquired from the information processing unit 13, and whether any AGE of the plurality of area cells is updated. It is determined whether or not (step ST25).
  • step ST25 When the AGE map generation unit 15 determines that the AGE of any of the plurality of area cells has been updated (YES in step ST25), the generated AGE map in which the AGE value is lowered in step ST24, in step ST22. In the generated AGE map in which "1" is added to the value of each AGE, or in the generated AGE map read from the storage unit 4 in step ST21, the AGE value of the corresponding area cell is lowered (step ST26). On the other hand, when the AGE map generation unit 15 determines that none of the AGEs in the plurality of region cells has been updated (NO in step ST25), the AGE map generation unit 15 proceeds to the process of step ST5 described above.
  • step ST5 described above as the next step of step ST25 or step ST26, the AGE map generation unit 15 has a generated AGE map in which the AGE value is lowered in step ST26, and a generated AGE map in which the AGE value is lowered in step ST24.
  • the storage unit 4 stores the generated AGE map obtained by adding "1" to the value of each AGE in step ST22, or the generated AGE map read from the storage unit 4 in step ST21.
  • FIG. 4 is a flowchart showing the details of step ST8 in the control method of the control target device 100 by the control device 1 according to the first embodiment.
  • control vector calculation unit 17 refers to the priority map acquired from the priority map generation unit 16, and has the highest priority among the plurality of area cells included in the priority map. A large region cell is detected (step ST31).
  • control vector calculation unit 17 sets the detected region cell to the target region cell to which the controlled device 100 should go (step ST32).
  • the control vector calculation unit 17 subtracts the position vector of the control target device 100 acquired from the information processing unit 13 from the derived position vector of the target area cell to obtain the target area from the position of the control target device 100. Calculate the vector up to the cell position (step ST33).
  • control vector calculation unit 17 calculates the search direction vector by setting the calculated vector length to 1 (step ST34). Next, the control vector calculation unit 17 proceeds to the process of step ST9 described above.
  • control target device 100 by the control device 1 according to the first embodiment
  • the control target device 100 and the plurality of non-control target devices 101 coordinately patrol one search area A
  • the plurality of non-control target devices 101 each have the same configuration as the control target device 100.
  • FIG. 5 is a diagram showing an AGE map of the search area A.
  • FIG. 6 is a diagram showing a state in which the communication unit 3 of the control target device 100 and the communication unit of the non-control target device 101 shown in FIG. 5 are wirelessly communicating with each other.
  • FIG. 7 is a diagram showing a priority map generated by the controlled device 100 shown in FIG.
  • FIG. 8 is a diagram showing a system including a controlled target device 100 and a plurality of non-controlled target devices 101 that search the search area A, respectively.
  • the total number of the controlled target device 100 and the plurality of non-controlled target devices 101 is 6. is there. That is, the total number of the controlled target device 100 and the plurality of non-controlled target devices 101 is not particularly limited.
  • the search area A is divided into a plurality of area cells in a grid pattern.
  • the dots indicate the position of the control target device 100 or the position of the non-control target device 101, and the dotted line around the dots can communicate with the communication unit 3 of the control target device 100 or the communication unit of the non-control target device 101. Indicates a range.
  • the shade of color of each region cell indicates AGE, which is the elapsed time from the time when the sensor 2 of the control target device 100 or the sensor of the non-control target device 101 last observed the position of the region cell. ..
  • the shade of the color indicates that the darker the color, the larger the AGE, and the lighter the color, the smaller the AGE.
  • the color of the region cell B is darker than the color of the region cell C. This means that the region cell B has a longer time than the region cell C since the position of the region cell was observed by the sensor 2 of the control target device 100 or the sensor of the non-control target device 101. Shown.
  • the communication unit 3 of the controlled target device 100 sets the received AGE map D on the non-controlled target device 101. Received from the communication unit of the control device of. At that time, the communication unit 3 of the control target device 100 further receives the non-control target device information regarding the non-control target device 101 from the communication unit of the control device of the non-control target device 101.
  • the communication unit 3 of the control target device 100 transmits the generated AGE map E generated by the above-mentioned AGE map generation unit 15 to the communication unit of the control device of the non-control target device 101. At that time, the communication unit 3 of the control target device 100 further transmits the control target device information regarding the control target device 100 to the communication unit of the control device of the non-control target device 101.
  • the sensor 2 of the control target device 100 acquires the control target device information regarding the control target device 100 by detecting the environment around the control target device 100.
  • step ST1 the control target device information acquisition unit 11 acquires the control target device information from the sensor 2.
  • step ST2 the non-control target device information acquisition unit 12 acquires the reception AGE map D from the communication unit 3.
  • step ST3 the information processing unit 13 calculates the position vector of the control target device 100 based on the position of the control target device 100 indicated by the control target device information acquired from the control target device information acquisition unit 11.
  • the AGE map generation unit 15 receives the time passage information, the position vector of the control target device 100 acquired from the information processing unit 13, and the reception acquired from the non-control target device information acquisition unit 12. Based on the AGE map D and the generated AGE map E one time step before acquired from the information output unit 14, the AGE is calculated for each area cell, and the generated AGE map F of the current time step is generated.
  • each region cell of the generated AGE map F is a corresponding region cell of the generated AGE map and a received AGE map.
  • the area cells having a smaller AGE are selected and updated.
  • step ST5 the AGE map generation unit 15 stores the generated generated AGE map F in the storage unit 4.
  • step ST6 the information output unit 14 communicates the generated AGE map F stored in the storage unit 4 by the AGE map generation unit 15 with the control device of the non-control target device 101 via the communication unit 3. Output to the unit.
  • the priority map generation unit 16 includes the generated AGE map F stored in the storage unit 4 by the AGE map generation unit 15, and the position vector of each region cell stored in the storage unit 4.
  • the priority map G shown in FIG. 7 is generated based on the position vector of the control target device 100 and the position vector of the non-control target device 101 acquired from the information processing unit 13. In FIG. 7, the shade of the color of each region cell indicates that the darker the color, the higher the priority.
  • control vector calculation unit 17 is indicated by an arrow in FIG. 7 based on the position vector of the control target device 100 acquired from the information processing unit 13 and the priority map G generated by the priority map generation unit 16. Calculate the search direction vector. More specifically, as shown in FIG. 7, the control vector calculation unit 17 sets the region cell having the highest priority among the plurality of region cells included in the priority map G as the target region cell H. .. Further, as shown in FIG. 7, the search direction vector calculated by the control vector calculation unit 17 is a vector in the direction from the position of the controlled device 100 to the position of the target region cell H.
  • control vector calculation unit 17 calculates the above-mentioned control vector by performing the above-mentioned steps ST9 and ST10.
  • control execution unit 18 controls the control target device 100 based on the control vector acquired from the control vector calculation unit 17. As a result, the control target device 100 is controlled to move to the position of the target area cell.
  • each step as described above is also performed in each control device of the plurality of non-controlled target devices 101.
  • the priority map generation unit 16 generates the priority map G based on the position of the non-control target device 101.
  • the control device of the uncontrolled device 101 also generates a priority map based on the position of a device other than itself.
  • the control device 1 of the control target device 100 and each control device of the plurality of non-control target devices 101 have a priority map based on the positions of devices other than themselves. And control its own equipment based on the priority map.
  • the control device 1 of the control target device 100 and each control device of the plurality of non-control target devices 101 become the control target device 100 and the non-control target device 101, respectively, based on the positions of devices different from their own. Can suppress the search for the same area cell at the same time, and the search mission can be performed efficiently.
  • FIG. 9 is a diagram for explaining a specific example in the case where the priority map generation unit 16 calculates the priority using the evaluation function.
  • gives the output value of the evaluation function J as the second distance
  • the configuration was described in which the influence of AGE on the output value of the evaluation function J becomes relatively large as the influence becomes relatively large and the second distance
  • FIG. 9 (1) shows an example in which the non-control target device 101 exists outside the communication range of the communication unit 3 of the control target device 100.
  • the value of AGE is 1, and the first distance
  • ) is 1. Is set to.
  • FIG. 9 (2) shows an example in which the non-control target device 101 exists within the communication range of the communication unit 3 of the control target device 100 and outside the sensing range of the sensor 2 of the control target device 100.
  • the value of AGE is 1, and the first distance from the position of the control target device 100 to the position of the region cell
  • is 0.1, but from the position of the control target device 100.
  • ) is set to 2 based on the second distance
  • FIG. 9 (3) shows an example in which the non-control target device 101 exists within the sensing range of the sensor 2 of the control target device 100. Also in this example, the value of AGE is 1, and the first distance from the position of the control target device 100 to the position of the region cell
  • is 0.1, but from the position of the control target device 100.
  • ) is set to 3 based on the second distance
  • are common, but the second distance
  • the second distance in the example of (1) of FIG. 9 is the second distance in the example of (2) of FIG. It is larger than the distance of 2, and the second distance in the example of FIG. 9 (2) is larger than the second distance in the example of FIG. 9 (3).
  • the output value of the evaluation function J is 10 in the example of (1) of FIG. 9, and the output value of the evaluation function J is 10 in the example of (2) of FIG.
  • the output value is 100, and in the example of (3) of FIG. 9, the output value of the evaluation function J is 1000. That is, it can be seen that the output value of the evaluation function J increases as the second distance
  • the output value of the evaluation function J is It goes from 1 to 100, and the difference is 99.
  • the output value of the evaluation function J is from 100 to 10000, and the difference is 9900.
  • the output value of the evaluation function J is from 1000 to 1000000. The difference is 999000.
  • the priority map generation unit 16 calculates the priority using the evaluation function J as described above in step ST6 described above, the priority map is generated as the controlled target device 100 and the non-controlled target device 101 approach each other.
  • the non-controlled device 101 when the non-controlled device 101 also receives the same control as the control based on the evaluation function J as described above, the area cell closer to itself is preferentially searched. In this way, when the controlled target device 100 and the non-controlled target device approach each other, each of them preferentially searches for a region cell closer to itself, so that it is possible to search for the same region cell. The sex becomes low.
  • control target device 100 and the nearest non-control target device 101 move away from each other, such as when there is no communicable non-control target device 101, the larger the AGE, the higher the priority of each area cell. It tends to be expensive. That is, the control target device 100 preferentially searches for a region cell having a larger AGE.
  • each function of the control execution unit 18 is realized by the processing circuit. That is, the control device 1 performs the processing from step ST1 to step ST11 shown in FIG. 2, the processing from step ST21 to step ST26 shown in FIG. 3, and the processing from step ST31 to step ST34 shown in FIG. It has a processing circuit to execute.
  • This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • CPU Central Processing Unit
  • FIG. 10A is a block diagram showing a hardware configuration that realizes the function of the control device 1.
  • FIG. 10B is a block diagram showing a hardware configuration for executing software that realizes the functions of the control device 1.
  • the detection device 111 shown in FIGS. 10A and 10B functions as the sensor 2 described above.
  • the transmission / reception device 112 shown in FIGS. 10A and 10B functions as the communication unit 3 described above.
  • the storage device 113 shown in FIGS. 10A and 10B functions as the storage unit 4 described above.
  • the drive device 114 shown in FIGS. 10A and 10B functions as the drive unit 5 described above.
  • the processing circuit 110 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
  • ASIC Application Specific Integrated
  • FPGA Field-Programmable Gate Array
  • Control target device information acquisition unit 11 non-control target device information acquisition unit 12, information processing unit 13, information output unit 14, AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17 in the control device 1.
  • each function of the control execution unit 18 may be realized by a separate processing circuit, or these functions may be collectively realized by one processing circuit.
  • the control target device information acquisition unit 11 When the processing circuit is the processor 115 shown in FIG. 10B, the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, the information output unit 14, and the AGE map generation unit in the control device 1
  • the functions of 15, the priority map generation unit 16, the control vector calculation unit 17, and the control execution unit 18 are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 116.
  • the processor 115 By reading and executing the program stored in the memory 116, the processor 115 reads and executes the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, and the information output unit 14 in the control device 1. , AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17, and control execution unit 18 are realized. That is, when the control device 1 is executed by the processor 115, the processes from step ST1 to step ST11 shown in FIG. 2, the processes from steps ST21 to ST26 shown in FIG. 3, and the steps shown in FIG. 4 A memory 116 for storing a program in which the processes from ST31 to step ST34 are executed as a result is provided.
  • These programs include the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, the information output unit 14, the AGE map generation unit 15, and the priority map generation unit 16 in the control device 1.
  • the memory 116 uses the computer as a control target device information acquisition unit 11, a non-control target device information acquisition unit 12, an information processing unit 13, an information output unit 14, an AGE map generation unit 15, a priority map generation unit 16, and a control vector calculation. It may be a computer-readable storage medium in which a program for functioning as the unit 17 and the control execution unit 18 is stored.
  • the memory 116 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile) semiconductor, or an EPROM (Electrically-EROM).
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically-volatile semiconductor
  • EPROM Electrically-EROM
  • Control target device information acquisition unit 11 non-control target device information acquisition unit 12, information processing unit 13, information output unit 14, AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17, and control execution unit
  • a part of each function of 18 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, the information output unit 14, and the AGE map generation unit 15 realize the functions by a processing circuit as dedicated hardware.
  • the functions of the priority map generation unit 16, the control vector calculation unit 17, and the control execution unit 18 may be realized by the processor 115 reading and executing the program stored in the memory 116. In this way, the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof.
  • control device 1 includes the control target device information regarding the control target device 100 to be controlled and the non-control target device information regarding the non-control target device controlled by another control device.
  • Control device 1 that controls the control target device 100 so that the control target device 100 searches for a search area divided into a plurality of area cells based on the above, and controls including at least the position of the control target device 100.
  • the control target device information acquisition unit 11 that acquires the target device information
  • the non-control target device information acquisition unit 12 that acquires the non-control target device information including at least the position of the non-control target device 101
  • the control target device 100 or the non-control An AGE map showing the elapsed time from the time when the target device 101 last stayed in the area cell for each area cell, the position of the control target device 100 indicated by the control target device information acquired by the control target device information acquisition unit 11, and the control target device 100.
  • Priority map showing the priority of the control target device 100 to search for the area cell based on the position of the non-control target device 101 indicated by the non-control target device information acquired by the non-control target device information acquisition unit 12 for each area cell.
  • a priority map generation unit 16 for generating the above device and a control execution unit 18 for controlling the control target device 100 based on the priority map generated by the priority map generation unit 16 are provided.
  • a priority map is generated based on the position of the non-controlled device, and the controlled device 100 is controlled based on the priority map.
  • the control target device 100 is appropriately generated by generating a priority map having a priority different from the priority of the priority map used by the control device of the non-control target device based on the position of the non-control target device. It is possible to prevent the uncontrolled device from searching for the same area cell at the same time. Therefore, the search mission can be performed efficiently.
  • the priority map generation unit 16 of the control device 1 uses the output value of the evaluation function as the priority, and the output value of the evaluation function increases as the elapsed time increases for each area cell.
  • the output value increases as the first distance from the position of the controlled device 100 to the position of the region cell decreases, and is based on the second distance from the position of the controlled device 100 to the position of the non-controlled device 101. Therefore, the influence of the first distance on the output value changes relatively.
  • the output value of the evaluation function increases as the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the corresponding area cell becomes longer, and the controlled target device 100 increases.
  • the output value increases as it approaches the corresponding region cell.
  • the influence of the first distance from the position of the controlled target device 100 to the position of the region cell on the output value changes relatively. ..
  • a priority map whose priority is different from the priority of the priority map used by the control device of the non-control target device is generated. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell. Therefore, the search mission can be performed efficiently.
  • the degree to which the output value increases as the first distance decreases is adjusted based on the second distance. As the second distance decreases, the degree increases, and as the second distance increases, the degree decreases.
  • the control target device 100 approaches the non-control target device, the degree to which the output value increases as the control target device 100 approaches the corresponding area cell increases.
  • the control target device 100 and the nearest non-control target device approach each other, the closer each area cell shown in the priority map is to the control target device 100, the higher the priority tends to be. That is, the control target device 100 preferentially searches for a region cell closer to itself. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell, and the search mission can be efficiently performed.
  • the evaluation function used by the priority map generation unit 16 of the control device 1 according to the first embodiment is a function in which the numerator is the elapsed time and the denominator is the base of the first distance and is based on the second distance. Is a power that should be an exponent. According to the above configuration, each configuration and each effect related to the above evaluation function can be suitably realized.
  • control device 1 further includes a control vector calculation unit 17 that calculates a control vector for the control target device 100 based on the priority map generated by the priority map generation unit 16, and controls execution.
  • the unit 18 controls the control target device 100 based on the control vector generated by the control vector calculation unit 17.
  • control target device 100 can be controlled based on the control vector reflecting the priority map in each of the above configurations. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell, and the search mission can be efficiently performed.
  • control device 1 further includes an AGE map generation unit 15 that generates an AGE map based on the control target device information acquired by the control target device information acquisition unit 11.
  • the priority map in each of the above configurations can be generated based on the generated AGE map. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell, and the search mission can be efficiently performed.
  • control target device 100 includes a control device 1 having any one of the above configurations. According to the above configuration, the effect of each configuration of the control device 1 described above can be realized in the control target device 100.
  • control target device 100 is the control target device information regarding the control target device 100 which is the control target and the non-control target device information regarding the non-control target device controlled by another control device.
  • the control target device 100 is a control method of the control target device 100 that controls the control target device 100 so that the control target device 100 searches for a search area divided into a plurality of area cells.
  • the control target device information acquisition step for acquiring the control target device information including at least the position of the non-control target device
  • the non-control target device information acquisition step for acquiring the non-control target device information including at least the position of the non-control target device, and the control target device 100.
  • an AGE map showing the elapsed time from the time when the non-control target device last stayed in the area cell for each area cell, the position of the control target device 100 indicated by the control target device information acquired in the control target device information acquisition step, and , A priority map showing the priority of the control target device 100 to search for the area cell based on the position of the non-control target device indicated by the non-control target device information acquired in the non-control target device information acquisition step is provided for each area cell. It includes a priority map generation step to be generated, and a control execution step to control the controlled target device 100 based on the priority map generated in the priority map generation step. According to the above configuration, the same effect as that of each configuration of the control device 1 described above is obtained. In the present invention, within the scope of the invention, it is possible to modify any component of the embodiment or omit any component of the embodiment.
  • the control device according to the present invention can be used for the controlled device because it can prevent the controlled device and the non-controlled device from searching for the same area cell at the same time, and can be used for monitoring work and observation. It is preferable to apply it to a control system or the like that controls the device group in a field where unmanned devices are utilized such as work or maintenance work.
  • Control device 1 Control device, 2 Sensor, 3 Communication unit, 4 Storage unit, 5 Drive unit, 11 Control target device information acquisition unit, 12 Non-control target device information acquisition unit, 13 Information processing unit, 14 Information output unit, 15 AGE map generation Unit, 16 priority map generation unit, 17 control vector calculation unit, 18 control execution unit, 100 control target device, 101 non-control target device, 110 processing circuit, 111 detection device, 112 transmission / reception device, 113 storage device, 114 drive device , 115 processor, 116 memory.

Abstract

This control device (1) comprises: a priority map generating unit (16) that generates a priority map indicating for each region cell the priority of a controlled device (100) to search the region cell, on the basis of an AGE map showing the elapsed time from the time that a controlled device (100) or an uncontrolled device last stayed in the region cell, the position of the controlled device indicated by the controlled device information acquired by a controlled device information acquisition unit (11), and the position of the uncontrolled device indicated by the uncontrolled device information acquired by an uncontrolled device information acquisition unit (12); and a control execution unit (18) that controls the controlled device (100) on the basis of the priority map generated by the priority map generating unit (16).

Description

制御装置、制御対象機器、及び制御対象機器の制御方法Control device, control target device, and control method of control target device
 本発明は、制御対象機器を制御する制御装置に関する。 The present invention relates to a control device that controls a device to be controlled.
 防衛、防災、セキュリティ又は清掃等の分野において、監視作業、観測作業、又は保守作業等は、高い危険度を有し且つ長時間の作業であることが一般的である。そのため、これらの分野における監視作業、観測作業、又は保守作業等に対して、無人機の活用が検討されている。通常、無人機のセンシング範囲には限界があるため、複数の無人機が協調動作により作業を効率的に実現するための開発が盛んに行われている。 In the fields of defense, disaster prevention, security, cleaning, etc., monitoring work, observation work, maintenance work, etc. are generally high-risk and long-time work. Therefore, the use of unmanned aerial vehicles is being considered for monitoring work, observation work, maintenance work, etc. in these fields. Normally, since the sensing range of an unmanned aerial vehicle is limited, development is being actively carried out for a plurality of unmanned aerial vehicles to efficiently realize work by cooperative operation.
 例えば、非特許文献1では、無人機群を構成する少なくとも1機の無人機を制御する、鳥の行動モデルを拡張した制御アルゴリズムを用いた制御装置が提案されている。当該制御装置は、探索エリアを微小領域セルに区切り、その領域セル毎に評価関数を計算して優先度を求めた後、制御対象機器が最も優先度の高い領域セルを探索するように当該制御対象機器を制御する。その評価関数の変数は、1)制御対象機器の位置ベクトル、2)制御対象機器から領域セルまでの位置ベクトル、及び3)制御対象機器等が最後にその領域セルに滞在した時刻からの経過時間の3つである。 For example, Non-Patent Document 1 proposes a control device using a control algorithm that extends a bird's behavior model to control at least one unmanned aerial vehicle that constitutes a group of unmanned aerial vehicles. The control device divides the search area into minute area cells, calculates an evaluation function for each area cell to obtain a priority, and then controls the controlled device so as to search for the area cell having the highest priority. Control the target device. The variables of the evaluation function are 1) the position vector of the controlled device, 2) the position vector from the controlled device to the area cell, and 3) the elapsed time from the time when the controlled device, etc. last stayed in the area cell. There are three.
 上述の非特許文献1に記載の制御装置による制御では、制御対象機器と、他の制御装置によって制御されている非制御対象機器とが近づいた場合、これらの機器が同一の領域セルを同時に探索してしまうことがあり、探索任務が効率的に行えないという問題がある。 In the control by the control device described in Non-Patent Document 1 described above, when the controlled device and the non-controlled device controlled by another control device approach each other, these devices simultaneously search for the same region cell. There is a problem that the search mission cannot be performed efficiently.
 この発明は、上記のような問題点を解決するためになされたものであり、制御対象機器と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制する技術を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a technique for suppressing the simultaneous search of the same region cell between the controlled target device and the non-controlled target device. With the goal.
 この発明に係る制御装置は、制御対象である制御対象機器に関する制御対象機器情報と、他の制御装置によって制御される非制御対象機器に関する非制御対象機器情報とに基づいて、当該制御対象機器が複数の領域セルに区分された探索エリアを探索するように当該制御対象機器を制御する制御装置であって、制御対象機器の位置を少なくとも含む制御対象機器情報を取得する制御対象機器情報取得部と、非制御対象機器の位置を少なくとも含む非制御対象機器情報を取得する非制御対象機器情報取得部と、制御対象機器又は非制御対象機器が最後に領域セルに滞在した時刻からの経過時間を領域セル毎に示すAGEマップ、制御対象機器情報取得部が取得した制御対象機器情報が示す制御対象機器の位置、及び、非制御対象機器情報取得部が取得した非制御対象機器情報が示す非制御対象機器の位置に基づいて、制御対象機器が領域セルを探索する優先度を領域セル毎に示す優先度マップを生成する優先度マップ生成部と、優先度マップ生成部が生成した優先度マップに基づいて、前記制御対象機器を制御する制御実行部と、を備えている。 The control device according to the present invention is based on the control target device information regarding the control target device to be controlled and the non-control target device information regarding the non-control target device controlled by another control device. A control device that controls the control target device so as to search a search area divided into a plurality of area cells, and a control target device information acquisition unit that acquires control target device information including at least the position of the control target device. , The uncontrolled device information acquisition unit that acquires the non-controlled device information including at least the position of the uncontrolled device, and the area elapsed from the time when the controlled device or the uncontrolled device last stayed in the area cell. The AGE map shown for each cell, the position of the control target device indicated by the control target device information acquired by the control target device information acquisition unit, and the non-control target indicated by the non-control target device information acquired by the non-control target device information acquisition unit. Based on the priority map generation unit that generates a priority map that shows the priority for the controlled device to search for the area cell for each area cell based on the position of the device, and the priority map generated by the priority map generation unit. It also includes a control execution unit that controls the device to be controlled.
 この発明によれば、制御対象機器と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができる。 According to the present invention, it is possible to prevent the controlled target device and the non-controlled target device from simultaneously searching for the same region cell.
実施の形態1に係る制御対象機器の構成を示すブロック図である。It is a block diagram which shows the structure of the control target apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る制御装置による制御対象機器の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the control target device by the control device which concerns on Embodiment 1. FIG. 実施の形態1に係る制御装置による制御対象機器の制御方法におけるステップST4の詳細を示すフローチャートである。It is a flowchart which shows the detail of step ST4 in the control method of the control target device by the control device which concerns on Embodiment 1. FIG. 実施の形態1に係る制御装置による制御対象機器の制御方法におけるステップST8の詳細を示すフローチャートである。It is a flowchart which shows the detail of step ST8 in the control method of the control target apparatus by the control device which concerns on Embodiment 1. FIG. 実施の形態1に係る制御対象機器が探索する探索エリアのAGEマップを示す図である。It is a figure which shows the AGE map of the search area which the controlled object apparatus which concerns on Embodiment 1 searches. 実施の形態1に係る制御対象機器の通信部と非制御対象機器の通信部とが互いに無線通信を行っている様子を示す図である。It is a figure which shows the state in which the communication part of the control target device and the communication part of a non-control target device perform wireless communication with each other according to Embodiment 1. 実施の形態1に係る制御対象機器が生成した優先度マップを示す図である。It is a figure which shows the priority map generated by the control target apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る制御対象機器及び複数の非制御対象機器を含むシステムを示す図である。It is a figure which shows the system which includes the control target device and a plurality of non-control target devices which concern on Embodiment 1. FIG. 実施の形態1に係る制御装置が評価関数を用いて優先度を算出する場合の具体例を説明するための図である。It is a figure for demonstrating a specific example in the case where the control apparatus which concerns on Embodiment 1 calculates priority using an evaluation function. 図10Aは、制御装置の機能を実現するハードウェア構成を示すブロック図である。図10Bは、制御装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。FIG. 10A is a block diagram showing a hardware configuration that realizes the functions of the control device. FIG. 10B is a block diagram showing a hardware configuration for executing software that realizes the functions of the control device.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る制御装置1を備えている制御対象機器100の構成を示すブロック図である。図1が示すように、制御対象機器100は、センサ2、通信部3、記憶部4、制御装置1、及び駆動部5を備えている。制御装置1は、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18を備えている。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a controlled target device 100 including the control device 1 according to the first embodiment. As shown in FIG. 1, the control target device 100 includes a sensor 2, a communication unit 3, a storage unit 4, a control device 1, and a drive unit 5. The control device 1 includes a control target device information acquisition unit 11, a non-control target device information acquisition unit 12, an information processing unit 13, an information output unit 14, an AGE map generation unit 15, a priority map generation unit 16, and a control vector calculation unit 17. , And a control execution unit 18.
 制御装置1は、制御対象である制御対象機器100に関する制御対象機器情報と、他の制御装置によって制御される非制御対象機器に関する非制御対象機器情報とに基づいて、制御対象機器100が探索エリアを探索するように制御する。 In the control device 1, the control target device 100 searches for a search area based on the control target device information regarding the control target device 100 that is the control target and the non-control target device information regarding the non-control target device controlled by another control device. Control to search for.
 なお、実施の形態1では、制御対象機器100が探索する対象である探索エリアは、複数の領域セルに区分される。また、当該複数の領域セルは、後述するAGEマップにおいて、個々に、後述するAGE及び優先度がそれぞれ対応付けられる。また、実施の形態1では、各領域セルの位置ベクトルは、記憶部4に記憶されているものとする。 In the first embodiment, the search area to be searched by the control target device 100 is divided into a plurality of area cells. Further, the plurality of area cells are individually associated with the AGE and the priority described later in the AGE map described later. Further, in the first embodiment, it is assumed that the position vector of each region cell is stored in the storage unit 4.
 センサ2は、制御対象機器100周囲の環境を検知することにより制御対象機器100に関する制御対象機器情報を取得する。センサ2は、取得した制御対象機器情報を制御対象機器情報取得部11に出力する。センサ2は、例えば、制御対象機器100の位置を検出するGPS、又は制御対象機器100の速度を検出する速度検出器等である。制御対象機器情報は、少なくとも、制御対象機器100の位置を含む。 The sensor 2 acquires the control target device information related to the control target device 100 by detecting the environment around the control target device 100. The sensor 2 outputs the acquired control target device information to the control target device information acquisition unit 11. The sensor 2 is, for example, a GPS that detects the position of the control target device 100, a speed detector that detects the speed of the control target device 100, or the like. The control target device information includes at least the position of the control target device 100.
 なお、本明細書において、簡略化のため、「制御対象機器100の位置に関する位置情報」を単に制御対象機器100の位置と呼称する。また、制御対象機器情報は、例えば、制御対象機器100の速度等をさらに含む。 In this specification, for simplification, "position information regarding the position of the controlled device 100" is simply referred to as the position of the controlled device 100. Further, the control target device information further includes, for example, the speed of the control target device 100 and the like.
 通信部3は、制御装置1以外の他の制御装置の通信部と無線通信を行い、情報の送受信を行う。ここにおける他の制御装置は、複数であり得る。より詳細には、通信部3は、他の制御装置が制御する非制御対象機器に関する非制御対象機器情報を他の制御装置の通信部から受信する。非制御対象機器情報は、少なくとも、非制御対象機器の位置を含む。 The communication unit 3 wirelessly communicates with the communication unit of a control device other than the control device 1 to send and receive information. The other control devices here may be plural. More specifically, the communication unit 3 receives the non-control target device information regarding the non-control target device controlled by the other control device from the communication unit of the other control device. The uncontrolled device information includes at least the position of the uncontrolled device.
 なお、通信部3は、現時点の非制御対象機器の位置のみならず、過去に非制御対象機器のセンサが取得した位置と、何ステップ前に当該センサが取得した位置であるかを示す情報とが組み合わさった情報を、他の制御装置の通信部から受信してもよい。 In addition, the communication unit 3 includes not only the position of the non-control target device at the present time, but also the position acquired by the sensor of the non-control target device in the past and the information indicating how many steps before the sensor acquired the position. The combined information may be received from the communication unit of another control device.
 また、実施の形態1では、通信部3は、他の制御装置によって生成されたAGEマップを、他の制御装置の通信部からさらに受信する。通信部3は、受信した非制御対象機器情報及び受信AGEマップを、非制御対象機器情報取得部12に出力する。 Further, in the first embodiment, the communication unit 3 further receives the AGE map generated by the other control device from the communication unit of the other control device. The communication unit 3 outputs the received non-control target device information and the received AGE map to the non-control target device information acquisition unit 12.
 なお、本明細書において、通信部3が受信するAGEマップを、受信AGEマップと呼称する。受信AGEマップ及び後述する生成AGEマップにおける「AGE」とは、制御対象機器100又は非制御対象機器が最後に領域セルに滞在した時刻からの経過時間を意味する。受信AGEマップ及び後述する生成AGEマップにおける「AGEマップ」とは、AGEを、上述の領域セル毎に示す情報を意味する。 In this specification, the AGE map received by the communication unit 3 is referred to as a received AGE map. The “AGE” in the received AGE map and the generated AGE map described later means the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the region cell. The "AGE map" in the received AGE map and the generated AGE map described later means information indicating the AGE for each of the above-mentioned area cells.
 より詳細には、AGEは、AGEマップにおいて、各領域セルに設定された値であり、例えば、制御対象機器100又は非制御対象機器のいずれかの機器に搭載されたセンサが最後に領域セルの位置を観測した時刻からの経過時間を示す値である。実施の形態1では、当該値は、1タイムステップを単位とする値である。1タイムステップとは、後述するAGEマップ生成部15がAGEマップを更新する時間間隔の単位を意味する。1タイムステップは、例えば、予め設定された時間間隔である。 More specifically, AGE is a value set in each region cell in the AGE map, and for example, a sensor mounted on either the controlled target device 100 or the non-controlled target device is finally set in the region cell. It is a value indicating the elapsed time from the time when the position was observed. In the first embodiment, the value is a value in units of one time step. One time step means a unit of a time interval in which the AGE map generation unit 15 described later updates the AGE map. One time step is, for example, a preset time interval.
 また、通信部3は、後述する制御対象機器情報取得部11から制御対象機器情報を取得し、取得した制御対象機器情報を、他の制御装置の通信部に送信する。上述の通り、当該制御対象機器情報は、少なくとも、制御対象機器100の位置を含む。 Further, the communication unit 3 acquires the control target device information from the control target device information acquisition unit 11 described later, and transmits the acquired control target device information to the communication unit of another control device. As described above, the control target device information includes at least the position of the control target device 100.
 なお、通信部3は、現時点の制御対象機器100の位置のみならず、過去にセンサ2が取得した位置を、何ステップ前にセンサ2が取得した位置であるかを示す情報と組み合わせて、バッファ等に蓄積し、適宜、他の制御装置の通信部に送信してもよい。また、実施の形態1では、通信部3は、後述するAGEマップ生成部15が生成したAGEマップを、他の制御装置の通信部にさらに送信する。 In addition, the communication unit 3 combines not only the position of the control target device 100 at the present time but also the position acquired by the sensor 2 in the past with the information indicating how many steps before the sensor 2 acquired the position, and buffers the position. Etc., and may be appropriately transmitted to the communication unit of another control device. Further, in the first embodiment, the communication unit 3 further transmits the AGE map generated by the AGE map generation unit 15 described later to the communication unit of another control device.
 制御対象機器情報取得部11は、センサ2から、制御対象機器情報を取得する。制御対象機器情報取得部11は、取得した制御対象機器情報を通信部3及び情報処理部13に出力する。 The control target device information acquisition unit 11 acquires the control target device information from the sensor 2. The control target device information acquisition unit 11 outputs the acquired control target device information to the communication unit 3 and the information processing unit 13.
 非制御対象機器情報取得部12は、通信部3から、非制御対象機器情報を取得する。非制御対象機器情報取得部12は、取得した非制御対象機器情報を情報処理部13に出力する。また、実施の形態1では、非制御対象機器情報取得部12は、受信AGEマップを通信部3から取得する。非制御対象機器情報取得部12は、取得した受信AGEマップをAGEマップ生成部15に出力する。 The non-control target device information acquisition unit 12 acquires the non-control target device information from the communication unit 3. The non-control target device information acquisition unit 12 outputs the acquired non-control target device information to the information processing unit 13. Further, in the first embodiment, the non-control target device information acquisition unit 12 acquires the received AGE map from the communication unit 3. The non-control target device information acquisition unit 12 outputs the acquired received AGE map to the AGE map generation unit 15.
 情報処理部13は、制御対象機器情報取得部11から取得した制御対象機器情報と、非制御対象機器情報取得部12から取得した非制御対象機器情報とに対して、後述するAGEマップ生成部15、優先度マップ生成部16及び制御ベクトル算出部17がそれぞれ計算処理可能な形式とする処理を行う。 The information processing unit 13 has an AGE map generation unit 15 which will be described later with respect to the control target device information acquired from the control target device information acquisition unit 11 and the non-control target device information acquired from the non-control target device information acquisition unit 12. , The priority map generation unit 16 and the control vector calculation unit 17 perform processing in a format that can be calculated, respectively.
 より詳細には、情報処理部13は、制御対象機器情報が示す制御対象機器100の位置に基づいて、制御対象機器100の位置ベクトルを算出する。情報処理部13は、制御対象機器100の位置ベクトルを少なくとも含む処理済の制御対象機器情報をAGEマップ生成部15、優先度マップ生成部16及び制御ベクトル算出部17にそれぞれ出力する。 More specifically, the information processing unit 13 calculates the position vector of the control target device 100 based on the position of the control target device 100 indicated by the control target device information. The information processing unit 13 outputs the processed control target device information including at least the position vector of the control target device 100 to the AGE map generation unit 15, the priority map generation unit 16, and the control vector calculation unit 17, respectively.
 また、情報処理部13は、非制御対象機器情報取得部12から取得した非制御対象機器情報が示す非制御対象機器の位置に基づいて、非制御対象機器101の位置ベクトルを算出する。情報処理部13は、非制御対象機器の位置ベクトルを含む処理済の非制御対象機器情報を優先度マップ生成部16及び制御ベクトル算出部17にそれぞれ出力する。 Further, the information processing unit 13 calculates the position vector of the non-control target device 101 based on the position of the non-control target device indicated by the non-control target device information acquired from the non-control target device information acquisition unit 12. The information processing unit 13 outputs the processed non-control target device information including the position vector of the non-control target device to the priority map generation unit 16 and the control vector calculation unit 17, respectively.
 AGEマップ生成部15は、制御対象機器情報取得部11が取得した制御対象機器情報に基づいて、AGEマップを生成する。当該AGEマップは、上述の通り、制御対象機器100又は非制御対象機器が最後に領域セルに滞在した時刻からの経過時間を領域セル毎に示す。AGEマップ生成部15は、生成したAGEマップを記憶部4に記憶させる。なお、本明細書において、AGEマップ生成部15が生成したAGEマップを、「生成AGEマップ」と呼称する。 The AGE map generation unit 15 generates an AGE map based on the control target device information acquired by the control target device information acquisition unit 11. As described above, the AGE map shows the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the area cell for each area cell. The AGE map generation unit 15 stores the generated AGE map in the storage unit 4. In the present specification, the AGE map generated by the AGE map generation unit 15 is referred to as a "generated AGE map".
 AGEマップ生成部15の構成についてより詳細には、実施の形態1では、AGEマップ生成部15は、時間の経過を示す情報と、情報処理部13から取得した制御対象機器100の位置ベクトルと、非制御対象機器情報取得部12から取得した受信AGEマップと、後述する情報出力部14から取得した1タイムステップ前の生成AGEマップと、に基づいて、領域セル毎にAGEを算出し、生成AGEマップを生成する。 More specifically about the configuration of the AGE map generation unit 15, in the first embodiment, the AGE map generation unit 15 includes information indicating the passage of time, a position vector of the control target device 100 acquired from the information processing unit 13, and a position vector. Based on the received AGE map acquired from the non-control target device information acquisition unit 12 and the generated AGE map one time step before acquired from the information output unit 14 described later, the AGE is calculated for each area cell and the generated AGE is generated. Generate a map.
 また、実施の形態1では、通信部3が他の制御装置の通信部から受信AGEマップを受信し、AGEマップ生成部15が受信AGEマップに基づいて生成AGEマップを生成する構成について説明するが、通信部3は、受信AGEマップを受信せずに、AGEマップ生成部15は、受信AGEマップに基づかずに生成AGEマップを生成してもよい。つまり、制御装置1は、AGEマップを他の制御装置と共有せずに、単独で生成してもよい。 Further, in the first embodiment, a configuration will be described in which the communication unit 3 receives the received AGE map from the communication unit of another control device, and the AGE map generation unit 15 generates the generated AGE map based on the received AGE map. , The communication unit 3 may not receive the received AGE map, and the AGE map generation unit 15 may generate the generated AGE map without being based on the received AGE map. That is, the control device 1 may generate the AGE map independently without sharing it with other control devices.
 AGEマップ生成部15の構成についてさらに詳細には、実施の形態1では、AGEマップ生成部15は、制御対象機器情報が示す制御対象機器100の位置に基づいて、制御対象機器100が上述の複数の領域セルのうちの何れかに滞在したか否かを判定する。そして、AGEマップ生成部15は、制御対象機器100が複数の領域セルのうちの何れかに滞在したと判定した場合、生成AGEマップにおいて対応する領域セルのAGEの値を下げることにより生成AGEマップを更新する。より詳細には、AGEマップ生成部15は、制御対象機器100が最後に該当の領域セルに滞在した時刻から現在時刻までの経過時間に対応するAGEの値まで、生成AGEマップにおいて、当該該当の領域セルのAGEの値を下げる。 More specifically about the configuration of the AGE map generation unit 15, in the first embodiment, the AGE map generation unit 15 has a plurality of control target devices 100 described above based on the position of the control target device 100 indicated by the control target device information. It is determined whether or not the user has stayed in any of the area cells of. Then, when the AGE map generation unit 15 determines that the control target device 100 has stayed in any of the plurality of area cells, the AGE map generation unit 15 lowers the AGE value of the corresponding area cell in the generation AGE map to generate the AGE map. To update. More specifically, the AGE map generation unit 15 has the corresponding AGE value in the generated AGE map from the time when the controlled device 100 last stayed in the corresponding area cell to the AGE value corresponding to the elapsed time from the current time. Decrease the AGE value of the region cell.
 また、実施の形態1では、AGEマップ生成部15は、受信AGEマップにおいて、複数の領域セルのうちの何れかのAGEが更新されているか否かを判定する。AGEマップ生成部15は、複数の領域セルのうちの何れかのAGEが更新されていると判定した場合、更新されているAGEに基づいて、生成AGEマップにおいて対応する領域セルのAGEの値を下げることにより生成AGEマップを更新する。
 また、実施の形態1では、AGEマップ生成部15は、生成した生成AGEマップにおいて、1タイムステップ毎に、全ての領域セルの各AGEの値に「1」を加算する。
Further, in the first embodiment, the AGE map generation unit 15 determines whether or not any AGE of the plurality of area cells is updated in the received AGE map. When the AGE map generation unit 15 determines that the AGE of any of the plurality of area cells has been updated, the AGE map generation unit 15 determines the AGE value of the corresponding area cell in the generated AGE map based on the updated AGE. The generated AGE map is updated by lowering it.
Further, in the first embodiment, the AGE map generation unit 15 adds "1" to the value of each AGE of all the area cells in each time step in the generated generated AGE map.
 情報出力部14は、記憶部4に記憶された生成AGEマップを読み込み、読み込んだAGEマップをAGEマップ生成部15に出力する。また、情報出力部14は、読み込んだ生成AGEマップを、通信部3を介して他の制御装置の通信部に出力する。情報出力部14が生成AGEマップを通信部3を介して他の制御装置の通信部に出力するタイミングは、適宜設定可能である。当該タイミングの例として、予め設定されたタイミング、又は他の制御装置から要求を受けたタイミング等が挙げられる。 The information output unit 14 reads the generated AGE map stored in the storage unit 4 and outputs the read AGE map to the AGE map generation unit 15. Further, the information output unit 14 outputs the read generated AGE map to the communication unit of another control device via the communication unit 3. The timing at which the information output unit 14 outputs the generated AGE map to the communication unit of another control device via the communication unit 3 can be appropriately set. Examples of the timing include preset timings, timings requested by other control devices, and the like.
 優先度マップ生成部16は、AGEマップ、制御対象機器情報取得部11が取得した制御対象機器情報が示す制御対象機器100の位置、及び、非制御対象機器情報取得部12が取得した非制御対象機器情報が示す非制御対象機器の位置に基づいて、制御対象機器100が領域セルを探索する優先度を領域セル毎に示す優先度マップを生成する。なお、実施の形態1では、当該優先度が高いほど、制御対象機器100が対応する領域セルを探索するべき度合いが高いものとする。 The priority map generation unit 16 includes an AGE map, a position of the control target device 100 indicated by the control target device information acquired by the control target device information acquisition unit 11, and a non-control target acquired by the non-control target device information acquisition unit 12. Based on the position of the non-control target device indicated by the device information, a priority map showing the priority for the control target device 100 to search for the area cell is generated for each area cell. In the first embodiment, the higher the priority, the higher the degree to which the controlled device 100 should search for the corresponding area cell.
 より詳細には、実施の形態1では、優先度マップ生成部16は、AGEマップ生成部15が記憶部4に記憶させた生成AGEマップ、記憶部4に記憶されている各領域セルの位置ベクトル、並びに、情報処理部13から取得した制御対象機器100の位置ベクトル及び非制御対象機器101の位置ベクトルに基づいて、優先度マップを生成する。 More specifically, in the first embodiment, the priority map generation unit 16 is a generation AGE map stored in the storage unit 4 by the AGE map generation unit 15, and a position vector of each region cell stored in the storage unit 4. , And the priority map is generated based on the position vector of the control target device 100 and the position vector of the non-control target device 101 acquired from the information processing unit 13.
 さらに詳細には、優先度マップ生成部16は、評価関数の出力値を優先度とする。当該評価関数は、領域セル毎に、AGEが大きくなるに従って出力値が大きくなり、制御対象機器100の位置から領域セルの位置までの第1の距離が小さくなるに従って出力値が大きくなる。これを具体的に説明すると、当該評価関数は、制御対象機器100又は非制御対象機器が対応する領域セルに最後に滞在した時刻からの経過時間が長くなるに従って出力値が大きくなり、制御対象機器100が対応する領域セルに近づくに従って出力値が大きくなる。 More specifically, the priority map generation unit 16 sets the output value of the evaluation function as the priority. The output value of the evaluation function increases as the AGE increases for each region cell, and the output value increases as the first distance from the position of the controlled device 100 to the position of the region cell decreases. To explain this concretely, the output value of the evaluation function increases as the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the corresponding area cell increases, and the controlled device device The output value increases as 100 approaches the corresponding region cell.
 また、当該評価関数は、制御対象機器100の位置から非制御対象機器101の位置までの第2の距離に基づいて、第1の距離が出力値に与える影響が相対的に変化する。例えば、当該評価関数は、第2の距離が小さくなるに従って、第1の距離が出力値に与える影響が大きくなることにより、第1の距離が出力値に与える影響が相対的に大きくなる。または、例えば、当該評価関数は、第2の距離が小さくなるに従って、AGEが出力値に与える影響が小さくなることにより、第1の距離が出力値に与える影響が相対的に大きくなる。 Further, in the evaluation function, the influence of the first distance on the output value changes relatively based on the second distance from the position of the controlled target device 100 to the position of the non-controlled target device 101. For example, in the evaluation function, as the second distance becomes smaller, the influence of the first distance on the output value becomes larger, so that the influence of the first distance on the output value becomes relatively larger. Alternatively, for example, in the evaluation function, as the second distance becomes smaller, the influence of AGE on the output value becomes smaller, so that the influence of the first distance on the output value becomes relatively larger.
 さらに詳細には、当該評価関数は、第1の距離が小さくなるに従って出力値が大きくなる度合いが調整されている。なお、以下では、簡略化のため、「第1の距離が小さくなるに従って出力値が大きくなる度合い」を、単に「上記の度合い」と呼称する。 More specifically, in the evaluation function, the degree to which the output value increases as the first distance decreases is adjusted. In the following, for simplification, "the degree to which the output value increases as the first distance decreases" is simply referred to as "the above degree".
 さらに詳細には、当該評価関数は、第2の距離が小さくなるに従って、上記の度合いが大きくなり、第2の距離が大きくなるに従って、上記の度合いが小さくなる。これを具体的に説明すると、当該評価関数は、制御対象機器100が非制御対象機器に近づくに従って、制御対象機器100が対応する領域セルに近づくことにより出力値が大きくなる度合いが大きくなり、制御対象機器100が非制御対象機器から遠ざかるに従って、制御対象機器100が対応する領域セルに近づくことにより評価関数の出力値が大きくなる度合いが小さくなる。 More specifically, the evaluation function increases the above degree as the second distance decreases, and decreases as the second distance increases. To explain this concretely, in the evaluation function, as the control target device 100 approaches the non-control target device, the output value becomes larger as the control target device 100 approaches the corresponding area cell, and the control is performed. As the target device 100 moves away from the non-control target device, the degree to which the output value of the evaluation function increases as the control target device 100 approaches the corresponding region cell decreases.
 さらに詳細には、当該評価関数は、分子がAGEであり、分母が、第1の距離を底とし、第2の距離に基づいた関数をべき指数としたべき乗である。
 より具体的には、実施形態1では、優先度マップ生成部16は、領域セル毎の優先度を算出する際に、予め定めておいた評価関数Jを用いる。
 評価関数Jは、下記の式(1)で示される。
Figure JPOXMLDOC01-appb-I000001
More specifically, the merit function is a power whose numerator is AGE and whose denominator is the base of the first distance and the function based on the second distance as the power exponent.
More specifically, in the first embodiment, the priority map generation unit 16 uses a predetermined evaluation function J when calculating the priority for each area cell.
The evaluation function J is represented by the following equation (1).
Figure JPOXMLDOC01-appb-I000001
 上記の式(1)において、Aはある領域セルのAGEを示し、Xはその領域セルの位置ベクトルを示し、xは制御対象機器100の位置ベクトルを示し、xNは、通信可能な非制御対象機器のうち、制御対象機器100と距離が最も近い最近傍の非制御対象機器の位置ベクトルを示し、|| ||は、ユークリッドノルムを示す。つまり、||X-x||は、制御対象機器100の位置から領域セルの位置までの第1の距離を示し、||xN-x||は、制御対象機器100の位置から非制御対象機器の位置までの第2の距離を示す。上記の式(1)において、g(||xN-x||)のg( )は、広義単調減少関数である。なお、X及びxはそれぞれ規格化されており、||X-x||は、以下の式(2)の条件を満たすものとする。
0 < ||X - x|| < 1 …式(2)
In the above equation (1), A indicates the AGE of a certain area cell, X indicates the position vector of the area cell, x indicates the position vector of the controlled device 100, and x N indicates a communicable uncontrolled device. Among the target devices, the position vector of the nearest uncontrolled target device having the closest distance to the control target device 100 is shown, and || || indicates the Euclidean norm. That is, || Xx || indicates the first distance from the position of the controlled device 100 to the position of the region cell, and || x N -x || indicates the non-controlled device from the position of the controlled device 100. Indicates the second distance to the position of. In the above equation (1), g () of g (|| x N -x ||) is a broadly monotonous decreasing function. In addition, X and x are standardized respectively, and || Xx || shall satisfy the condition of the following equation (2).
0 <|| X --x || <1… Equation (2)
 以上のような評価関数Jは、領域セル毎に、Aが大きくなるに従って出力値が大きくなり、第1の距離||X-x||が小さくなるに従って出力値が大きくなる。また、当該評価関数Jは、第2の距離||xN-x||に基づいて、第1の距離||X-x||が出力値に与える影響が相対的に変化する。
 より詳細には、評価関数Jは、第1の距離||X-x||が小さくなるに従って出力値が大きくなる度合いが調整されている。さらに詳細には、評価関数Jは、第2の距離||xN-x||が小さくなるに従って、上記の度合いが大きくなり、第2の距離||xN-x||が大きくなるに従って、上記の度合いが小さくなる。
 さらに詳細には、評価関数Jは、分子がAGEであり、分母が、第1の距離||X-x||を底とし、第2の距離||xN-x||に基づいた関数g(||xN-x||)をべき指数としたべき乗である。
The output value of the evaluation function J as described above increases as A increases and the output value increases as the first distance || Xx || decreases for each region cell. Further, in the evaluation function J, the influence of the first distance || Xx || on the output value changes relatively based on the second distance || x N -x ||.
More specifically, the evaluation function J adjusts the degree to which the output value increases as the first distance || Xx || decreases. More specifically, the evaluation function J increases the above degree as the second distance || x N -x || decreases, and increases as the second distance || x N -x || increases. , The above degree becomes smaller.
More specifically, the merit function J has a numerator of AGE and a denominator based on the first distance || Xx || and the second distance || x N -x ||. || x N -x ||) is a power with a power index.
 以上のような評価関数Jを具体的に説明すると、制御対象機器100と最近傍の非制御対象機器101とが近づき、第2の距離||xN-x||が小さくなるに従って、g(||xN-x||)は、広義単調減少関数であることから大きくなる。これにより、評価関数Jは、上記の度合いが大きくなる。よって、制御対象機器100と最近傍の非制御対象機器101とが近づくに従って、優先度マップが示す各領域セルは、制御対象機器100に近ければ近いほど、優先度が高くなりやすくなる。つまり、制御対象機器100は、自身により近い領域セルを優先して探索するようになる。 To specifically explain the evaluation function J as described above, as the controlled device 100 and the nearest non-controlled device 101 approach each other and the second distance || x N -x || becomes smaller, g ( || x N -x ||) is large because it is a broadly monotonous decreasing function. As a result, the evaluation function J has a large degree of the above. Therefore, as the control target device 100 and the nearest non-control target device 101 approach each other, the closer each area cell shown in the priority map is to the control target device 100, the higher the priority tends to be. That is, the control target device 100 preferentially searches for a region cell closer to itself.
 そして、非制御対象機器も、上記のような評価関数Jに基づいた制御と同様の制御を受けた場合、自身により近い領域セルを優先して探索するようになる。このように、制御対象機器100と非制御対象機器とは、互いに近づいた場合、それぞれが、自身により近い領域セルを優先して探索するようになるため、同一の領域セルを探索してしまう可能性が低くなる。 Then, when the non-controlled device also receives the same control as the control based on the evaluation function J as described above, the area cell closer to itself is preferentially searched. In this way, when the controlled target device 100 and the non-controlled target device approach each other, each of them preferentially searches for a region cell closer to itself, so that it is possible to search for the same region cell. The sex becomes low.
 一方で、制御対象機器100と最近傍の非制御対象機器101とが遠ざかり、第2の距離||xN-x||が大きくなるに従って、g(||xN-x||)は、広義単調減少関数であることから小さくなる。これにより、評価関数Jは、上記の度合いが小さくなる。よって、制御対象機器100と最近傍の非制御対象機器101とが遠ざかるに従って、各領域セルは、AGEが大きければ大きいほど、優先度が高くなりやすくなる。つまり、制御対象機器100は、AGEがより大きい領域セルを優先して探索するようになる。 On the other hand, as the controlled device 100 and the nearest non-controlled device 101 move away from each other and the second distance || x N -x || increases, g (|| x N -x ||) becomes. Since it is a monotonous decrease function in a broad sense, it becomes smaller. As a result, the evaluation function J has a smaller degree than the above. Therefore, as the controlled target device 100 and the nearest non-controlled target device 101 move away from each other, the larger the AGE, the higher the priority of each region cell. That is, the control target device 100 preferentially searches for a region cell having a larger AGE.
 なお、通信部3が通信可能な非制御対象機器を検出できず、非制御対象機器の位置を示す非制御対象機器情報を受信できない場合には、優先度マップ生成部16は、評価関数Jのg(||xN-x||)を、第1の距離||X-x||が評価関数Jの出力値に与える影響が相対的に小さくなるのに十分な小さい値に置き換えてもよい。当該値は、例えば、制御対象機器100と最近傍の非制御対象機器であるドローンとの距離が通信可能距離の限界に一致するときのg(||xN-x||)の値をαとしたとき、α以下の値であり得る。 If the communication unit 3 cannot detect the non-control target device that can communicate and cannot receive the non-control target device information indicating the position of the non-control target device, the priority map generation unit 16 of the evaluation function J You may replace g (|| x N -x ||) with a value small enough to have a relatively small effect of the first distance || Xx || on the output value of the merit function J. The value is, for example, the value of g (|| x N -x ||) when the distance between the controlled device 100 and the drone which is the nearest non-controlled device matches the limit of the communicable distance. When, it can be a value less than or equal to α.
 また、上記の評価関数Jに入力される第2の距離||xN-x||のxNを最近傍の非制御対象機器の位置ベクトルとしたが、評価関数Jにその他の非制御対象機器の位置ベクトルを任意の個数だけ変数として加えてもよい。 Further, the second distance || x N -x || of x N which is input to the evaluation function J is set to the position vector of the uncontrolled devices nearest other uncontrolled evaluation function J Any number of device position vectors may be added as variables.
 制御ベクトル算出部17は、優先度マップ生成部16が生成した優先度マップに基づいて、制御対象機器100に対する制御ベクトルを算出する。なお、制御ベクトルとは、後述する制御実行部18による制御により駆動部5が制御対象機器100を移動させる方向及び距離を示すベクトルを意味する。 The control vector calculation unit 17 calculates the control vector for the control target device 100 based on the priority map generated by the priority map generation unit 16. The control vector means a vector indicating a direction and a distance in which the drive unit 5 moves the control target device 100 under the control of the control execution unit 18, which will be described later.
 まず、制御ベクトルを算出するために、制御ベクトル算出部17は、優先度マップ生成部16が生成した優先度マップを参照して、優先度マップに含まれる複数の領域セルのうち、優先度が最も大きい領域セルを検出する。また制御ベクトル算出部17は、検出した領域セルを、制御対象機器100が向かうべき目的の領域セルに設定する。 First, in order to calculate the control vector, the control vector calculation unit 17 refers to the priority map generated by the priority map generation unit 16, and has a priority among a plurality of area cells included in the priority map. Detect the largest region cell. Further, the control vector calculation unit 17 sets the detected area cell as the target area cell to which the controlled device 100 should go.
 次に、制御ベクトル算出部17は、導出した目的の領域セルの位置ベクトルと、情報処理部13から取得した処理済の制御対象機器情報が示す制御対象機器100の位置ベクトルとに基づいて、制御対象機器100の位置から目的の領域セルの位置までの方向と距離を示す探索方向ベクトルを算出する。より詳細には、制御ベクトル算出部17は、目的の領域セルの位置ベクトルから、制御対象機器100の位置ベクトルを減算することにより制御対象機器100の位置から目的の領域セルの位置までのベクトルを算出し、当該ベクトルの長さを1とすることにより探索方向ベクトルを算出する。 Next, the control vector calculation unit 17 controls based on the derived position vector of the target area cell and the position vector of the control target device 100 indicated by the processed control target device information acquired from the information processing unit 13. A search direction vector indicating the direction and distance from the position of the target device 100 to the position of the target area cell is calculated. More specifically, the control vector calculation unit 17 calculates a vector from the position of the control target device 100 to the position of the target area cell by subtracting the position vector of the control target device 100 from the position vector of the target area cell. The search direction vector is calculated by calculating and setting the length of the vector to 1.
 また、制御ベクトル算出部17は、情報処理部13から取得した処理済の制御対象機器情報が示す制御対象機器100の位置ベクトルと処理済の非制御対象機器情報が示す非制御対象機器の位置ベクトルとに基づいて、制御対象機器100と非制御対象機器との衝突を回避するための作用力を示す斥力ベクトルを算出する。 Further, the control vector calculation unit 17 includes a position vector of the control target device 100 indicated by the processed control target device information acquired from the information processing unit 13 and a position vector of the non-control target device indicated by the processed non-control target device information. Based on the above, a repulsive force vector indicating an acting force for avoiding a collision between the controlled target device 100 and the non-controlled target device is calculated.
 より詳細には、通信部3が通信可能な非制御対象機器を検出できる場合に、制御ベクトル算出部17は、制御対象機器100と当該通信可能な非制御対象機器との距離に応じた斥力を設定する。当該斥力は、例えば、当該距離をxとしたフックの法則F=-kx(kは定数)のような関数の出力値として算出される。制御ベクトル算出部17は、設定した斥力、並びに、情報処理部13から取得した処理済の制御対象機器情報及び処理済の非制御対象機器情報に基づいた制御対象機器100と非制御対象機器との位置関係とに基づいて、斥力ベクトルを算出する。 More specifically, when the communication unit 3 can detect a communicable non-control target device, the control vector calculation unit 17 applies a repulsive force according to the distance between the control target device 100 and the communicable non-control target device. Set. The repulsive force is calculated as the output value of a function such as Hooke's law F = -kx (k is a constant) with the distance as x. The control vector calculation unit 17 determines the control target device 100 and the non-control target device based on the set repulsive force, the processed control target device information acquired from the information processing unit 13, and the processed non-control target device information. The repulsive force vector is calculated based on the positional relationship.
 また、制御ベクトル算出部17は、障害物に関する情報に基づいて、制御対象機器100が障害物から離れるための作用力を示す障害物ベクトルを算出する。当該障害物は、例えば、探索エリア内に存在する壁、又は進入禁止領域である。障害物に関する情報は、障害物の位置と共に、AGEマップに予め登録されていてもよいし、記憶部4に予め記憶されていてもよい。 Further, the control vector calculation unit 17 calculates an obstacle vector indicating an acting force for the controlled device 100 to move away from the obstacle based on the information about the obstacle. The obstacle is, for example, a wall existing in the search area or a no-entry area. The information about the obstacle may be registered in advance in the AGE map together with the position of the obstacle, or may be stored in advance in the storage unit 4.
 より詳細には、制御ベクトル算出部17は、障害物の情報を参照し、制御対象機器100が障害物が存在する位置に近づいたか否かを判定する。そして、制御ベクトル算出部17は、制御対象機器100が、障害物が存在する位置に近づいたと判定した場合に、上述した斥力ベクトルの算出方法と同様の方法に基づいて、制御対象機器100が障害物から離れるための作用力を示す障害物ベクトルを算出する。 More specifically, the control vector calculation unit 17 refers to the obstacle information and determines whether or not the controlled device 100 has approached the position where the obstacle exists. Then, when the control vector calculation unit 17 determines that the control target device 100 has approached the position where the obstacle exists, the control target device 100 fails based on the same method as the above-described repulsive force vector calculation method. Calculate an obstacle vector that indicates the acting force to move away from the object.
 また、制御ベクトル算出部17は、情報処理部13から取得した処理済の制御対象機器情報が示す制御対象機器100の位置ベクトル又は制御対象機器100の速度ベクトルに基づいて、制御対象機器100の速度が過大になるのを抑制するための作用力を示す速度調整ベクトルを算出する。 Further, the control vector calculation unit 17 determines the speed of the control target device 100 based on the position vector of the control target device 100 or the speed vector of the control target device 100 indicated by the processed control target device information acquired from the information processing unit 13. Calculates a speed adjustment vector indicating the acting force for suppressing the excessiveness of.
 当該速度調整ベクトルが示す作用力は、例えば、当該速度をvとしたF=-kv(kは定数)のような関数の出力値として算出される。または、制御ベクトル算出部17は、当該速度と当該作用力との対応を示す離散的なテーブルを参照して、当該作用力を算出してもよい。 The acting force indicated by the speed adjustment vector is calculated as the output value of a function such as F = -kv (k is a constant) with the speed as v. Alternatively, the control vector calculation unit 17 may calculate the acting force by referring to a discrete table showing the correspondence between the velocity and the acting force.
 制御ベクトル算出部17は、上記の各ベクトル以外にも、制御対象機器100が探索する探索方向を調整する調整ベクトルを算出してもよい。そして、制御ベクトル算出部17は、算出した探索方向ベクトル、斥力ベクトル、障害物ベクトル及び速度調整ベクトルのそれぞれに重み付け係数を乗算し、乗算後の各ベクトルを加算することにより、制御ベクトルを算出する。当該重み付け係数は、探索方向ベクトル、斥力ベクトル、障害物ベクトル及び速度調整ベクトルの何れを重視するかによって予め設定される。制御ベクトル算出部17は、算出した制御ベクトルを制御実行部18に出力する。 In addition to the above vectors, the control vector calculation unit 17 may calculate an adjustment vector for adjusting the search direction searched by the control target device 100. Then, the control vector calculation unit 17 calculates the control vector by multiplying each of the calculated search direction vector, repulsive force vector, obstacle vector, and speed adjustment vector by a weighting coefficient and adding each of the multiplied vectors. .. The weighting coefficient is preset depending on which of the search direction vector, the repulsive force vector, the obstacle vector, and the speed adjustment vector is emphasized. The control vector calculation unit 17 outputs the calculated control vector to the control execution unit 18.
 制御実行部18は、制御ベクトル算出部17から取得した制御ベクトルに基づいて、制御対象機器100を制御する。より詳細には、制御実行部18は、制御ベクトルが示す方向に、制御ベクトルが示す距離の分、駆動部5が制御対象機器100を移動させるように駆動部5を制御する。 The control execution unit 18 controls the control target device 100 based on the control vector acquired from the control vector calculation unit 17. More specifically, the control execution unit 18 controls the drive unit 5 so that the drive unit 5 moves the control target device 100 by the distance indicated by the control vector in the direction indicated by the control vector.
 次に、実施の形態1に係る制御装置1による制御対象機器100の制御方法について図面を参照して説明する。図2は、実施の形態1に係る制御装置1による制御対象機器100の制御方法を示すフローチャートである。図2が示す制御対象機器100の制御方法が行われる前に、センサ2は、制御対象機器100周囲の環境を検知することにより制御対象機器100に関する制御対象機器情報を取得し、通信部3は、他の制御装置が制御する非制御対象機器に関する非制御対象機器情報と受信AGEマップとを他の制御装置の通信部から受信したものとする。なお、センサ2が取得する制御対象機器情報は、制御対象機器100の位置と、制御対象機器100周囲の画像とを含み、通信部3が受信する非制御対象機器情報は、非制御対象機器の位置を含むものとする。 Next, a method of controlling the controlled device 100 by the control device 1 according to the first embodiment will be described with reference to the drawings. FIG. 2 is a flowchart showing a control method of the control target device 100 by the control device 1 according to the first embodiment. Before the control method of the control target device 100 shown in FIG. 2 is performed, the sensor 2 acquires the control target device information regarding the control target device 100 by detecting the environment around the control target device 100, and the communication unit 3 receives the control target device information. , It is assumed that the non-control target device information and the received AGE map regarding the non-control target device controlled by the other control device are received from the communication unit of the other control device. The control target device information acquired by the sensor 2 includes the position of the control target device 100 and the image around the control target device 100, and the non-control target device information received by the communication unit 3 is the non-control target device. It shall include the position.
 まず、図2が示すように、制御対象機器情報取得部11は、センサ2から、制御対象機器情報を取得する(ステップST1)。制御対象機器情報取得部11は、取得した制御対象機器情報を通信部3及び情報処理部13に出力する。 First, as shown in FIG. 2, the control target device information acquisition unit 11 acquires the control target device information from the sensor 2 (step ST1). The control target device information acquisition unit 11 outputs the acquired control target device information to the communication unit 3 and the information processing unit 13.
 次に、非制御対象機器情報取得部12は、通信部3から、非制御対象機器情報及び受信AGEマップを取得する(ステップST2)。非制御対象機器情報取得部12は、取得した非制御対象機器情報を情報処理部13に出力し、取得した受信AGEマップをAGEマップ生成部15に出力する。 Next, the non-control target device information acquisition unit 12 acquires the non-control target device information and the received AGE map from the communication unit 3 (step ST2). The non-control target device information acquisition unit 12 outputs the acquired non-control target device information to the information processing unit 13, and outputs the acquired received AGE map to the AGE map generation unit 15.
 次に、ステップST3において、情報処理部13は、制御対象機器情報取得部11から取得した制御対象機器情報が示す制御対象機器100の位置に基づいて、制御対象機器100の位置ベクトルを算出する。また、ステップST3において、情報処理部13は、非制御対象機器情報取得部12から取得した非制御対象機器情報が示す非制御対象機器の位置に基づいて、非制御対象機器の位置ベクトルを算出する。 Next, in step ST3, the information processing unit 13 calculates the position vector of the control target device 100 based on the position of the control target device 100 indicated by the control target device information acquired from the control target device information acquisition unit 11. Further, in step ST3, the information processing unit 13 calculates the position vector of the non-control target device based on the position of the non-control target device indicated by the non-control target device information acquired from the non-control target device information acquisition unit 12. ..
 情報処理部13は、制御対象機器100の位置ベクトルを含む処理済の制御対象機器情報をAGEマップ生成部15、優先度マップ生成部16及び制御ベクトル算出部17にそれぞれ出力し、非制御対象機器の位置ベクトルを含む処理済の非制御対象機器情報を優先度マップ生成部16及び制御ベクトル算出部17にそれぞれ出力する。また、次のステップST4の前に、情報出力部14は、1タイムステップ前の生成AGEマップを記憶部4から読み込み、AGEマップ生成部15に出力したものとする。 The information processing unit 13 outputs the processed control target device information including the position vector of the control target device 100 to the AGE map generation unit 15, the priority map generation unit 16, and the control vector calculation unit 17, respectively, and the non-control target device. The processed non-control target device information including the position vector of is output to the priority map generation unit 16 and the control vector calculation unit 17, respectively. Further, before the next step ST4, it is assumed that the information output unit 14 reads the generated AGE map one time step before from the storage unit 4 and outputs it to the AGE map generation unit 15.
 次に、AGEマップ生成部15は、時間の経過情報と、情報処理部13から取得した制御対象機器100の位置ベクトルと、非制御対象機器情報取得部12から取得した受信AGEマップと、情報出力部14から取得した1タイムステップ前の生成AGEマップと、に基づいて、領域セル毎にAGEを算出し、現在のタイムステップの生成AGEマップを生成する(ステップST4)。 Next, the AGE map generation unit 15 outputs information, the passage of time information, the position vector of the control target device 100 acquired from the information processing unit 13, the received AGE map acquired from the non-control target device information acquisition unit 12. Based on the generated AGE map one time step before acquired from the unit 14, the AGE is calculated for each area cell, and the generated AGE map of the current time step is generated (step ST4).
 次に、AGEマップ生成部15は、生成した生成AGEマップを記憶部4に記憶させる(ステップST5)。
 次に、情報出力部14は、AGEマップ生成部15が記憶部4に記憶させた生成AGEマップを、通信部3を介して他の制御装置の通信部に出力する(ステップST6)。
Next, the AGE map generation unit 15 stores the generated generated AGE map in the storage unit 4 (step ST5).
Next, the information output unit 14 outputs the generated AGE map stored in the storage unit 4 by the AGE map generation unit 15 to the communication unit of another control device via the communication unit 3 (step ST6).
 次に、優先度マップ生成部16は、AGEマップ生成部15が記憶部4に記憶させた生成AGEマップ、記憶部4が記憶している各領域セルの位置ベクトル、並びに、情報処理部13から取得した制御対象機器100の位置ベクトル及び非制御対象機器101の位置ベクトルに基づいて、優先度マップを生成する(ステップST7)。優先度マップ生成部16は、生成した優先度マップを制御ベクトル算出部17に出力する。 Next, the priority map generation unit 16 starts with the generation AGE map stored in the storage unit 4 by the AGE map generation unit 15, the position vector of each area cell stored in the storage unit 4, and the information processing unit 13. A priority map is generated based on the acquired position vector of the control target device 100 and the position vector of the non-control target device 101 (step ST7). The priority map generation unit 16 outputs the generated priority map to the control vector calculation unit 17.
 次に、制御ベクトル算出部17は、情報処理部13から取得した制御対象機器100の位置ベクトルと、優先度マップ生成部16が生成した優先度マップとに基づいて、上述の探索方向ベクトルを算出する(ステップST8)。 Next, the control vector calculation unit 17 calculates the above-mentioned search direction vector based on the position vector of the control target device 100 acquired from the information processing unit 13 and the priority map generated by the priority map generation unit 16. (Step ST8).
 次に、制御ベクトル算出部17は、情報処理部13から取得した制御対象機器100の位置ベクトルに基づいて、上述の斥力ベクトル、障害物ベクトル及び速度調整ベクトルをそれぞれ算出する(ステップST9)。 Next, the control vector calculation unit 17 calculates the above-mentioned repulsive force vector, obstacle vector, and speed adjustment vector, respectively, based on the position vector of the control target device 100 acquired from the information processing unit 13 (step ST9).
 次に、制御ベクトル算出部17は、算出した探索方向ベクトル、斥力ベクトル、障害物ベクトル及び速度調整ベクトルに基づいて、上述の制御ベクトルを算出する(ステップST10)。制御ベクトル算出部17は、算出した制御ベクトルを制御実行部18に出力する。 Next, the control vector calculation unit 17 calculates the above-mentioned control vector based on the calculated search direction vector, repulsive force vector, obstacle vector, and speed adjustment vector (step ST10). The control vector calculation unit 17 outputs the calculated control vector to the control execution unit 18.
 次に、制御実行部18は、制御ベクトル算出部17から取得した制御ベクトルに基づいて、制御対象機器100を制御する(ステップST11)。次に、制御装置1は、ステップST1の処理に戻り、ステップST1以降の処理を繰り返し実行する。 Next, the control execution unit 18 controls the control target device 100 based on the control vector acquired from the control vector calculation unit 17 (step ST11). Next, the control device 1 returns to the process of step ST1 and repeatedly executes the processes after step ST1.
 次に、AGEマップ生成部15による上述のステップST4の詳細な処理動作について図面を参照して説明する。図3は、実施の形態1に係る制御装置1による制御対象機器100の制御方法におけるステップST4の詳細を示すフローチャートである。 Next, the detailed processing operation of step ST4 described above by the AGE map generation unit 15 will be described with reference to the drawings. FIG. 3 is a flowchart showing the details of step ST4 in the control method of the control target device 100 by the control device 1 according to the first embodiment.
 図3が示すように、AGEマップ生成部15は、前回のステップST4で生成し、前回のステップST5で記憶部4に記憶させた生成AGEマップを記憶部4から読み込み、読み込んだ生成AGEマップが生成又は更新されてから、予め設定された1タイムステップ経過したか否かを判定する(ステップST21)。 As shown in FIG. 3, the AGE map generation unit 15 reads the generated AGE map generated in the previous step ST4 and stored in the storage unit 4 in the previous step ST5 from the storage unit 4, and the read generated AGE map is generated. It is determined whether or not a preset one time step has elapsed since the generation or update (step ST21).
 AGEマップ生成部15は、1タイムステップ経過したと判定した場合(ステップST21のYES)、当該生成AGEマップにおける全ての領域セルの各AGEの値に「1」を加算する(ステップST22)。一方、AGEマップ生成部15は、1タイムステップ経過していないと判定した場合(ステップST21のNO)、ステップST23の処理に進む。 When the AGE map generation unit 15 determines that one time step has elapsed (YES in step ST21), "1" is added to the value of each AGE of all the area cells in the generated AGE map (step ST22). On the other hand, when it is determined that one time step has not elapsed (NO in step ST21), the AGE map generation unit 15 proceeds to the process of step ST23.
 ステップST21又はステップST22の次のステップとして、AGEマップ生成部15は、情報処理部13から取得した制御対象機器100の位置ベクトルに基づいて、制御対象機器100が存在する位置を認識し、制御対象機器100が上述の複数の領域セルのうちの何れかに滞在したか否か判定を行う(ステップST23)。 As a next step of step ST21 or step ST22, the AGE map generation unit 15 recognizes the position where the control target device 100 exists based on the position vector of the control target device 100 acquired from the information processing unit 13, and controls the control target. It is determined whether or not the device 100 has stayed in any of the plurality of region cells described above (step ST23).
 AGEマップ生成部15は、制御対象機器100が上述の複数の領域セルのうちの何れかに滞在したと判定した場合(ステップST23のYES)、ステップST22で各AGEの値に「1」を加算した生成AGEマップ、又はステップST21で記憶部4から読み込んだ生成AGEマップにおいて、対応する領域セルのAGEの値を下げる(ステップST24)。一方、AGEマップ生成部15は、制御対象機器100が上述の複数の領域セルのうちの何れにも滞在していないと判定した場合(ステップST23のNO)、ステップST25の処理に進む。 When the AGE map generation unit 15 determines that the controlled device 100 has stayed in any of the plurality of region cells described above (YES in step ST23), "1" is added to the value of each AGE in step ST22. In the generated AGE map generated or the generated AGE map read from the storage unit 4 in step ST21, the AGE value of the corresponding area cell is lowered (step ST24). On the other hand, when the AGE map generation unit 15 determines that the control target device 100 does not stay in any of the plurality of region cells described above (NO in step ST23), the process proceeds to the process of step ST25.
 ステップST23又はステップST24の次のステップとして、AGEマップ生成部15は、情報処理部13から取得した受信AGEマップの情報を参照し、複数の領域セルのうちの何れかのAGEが更新されているか否かを判定する(ステップST25)。 As the next step of step ST23 or step ST24, the AGE map generation unit 15 refers to the information of the received AGE map acquired from the information processing unit 13, and whether any AGE of the plurality of area cells is updated. It is determined whether or not (step ST25).
 AGEマップ生成部15は、複数の領域セルのうちの何れかのAGEが更新されていると判定した場合(ステップST25のYES)、ステップST24でAGEの値を下げた生成AGEマップ、ステップST22で各AGEの値に「1」を加算した生成AGEマップ、又はステップST21で記憶部4から読み込んだ生成AGEマップにおいて、対応する領域セルのAGEの値を下げる(ステップST26)。
 一方、AGEマップ生成部15は、複数の領域セルのうちの何れのAGEも更新されていないと判定した場合(ステップST25のNO)、上述のステップST5の処理に進む。
When the AGE map generation unit 15 determines that the AGE of any of the plurality of area cells has been updated (YES in step ST25), the generated AGE map in which the AGE value is lowered in step ST24, in step ST22. In the generated AGE map in which "1" is added to the value of each AGE, or in the generated AGE map read from the storage unit 4 in step ST21, the AGE value of the corresponding area cell is lowered (step ST26).
On the other hand, when the AGE map generation unit 15 determines that none of the AGEs in the plurality of region cells has been updated (NO in step ST25), the AGE map generation unit 15 proceeds to the process of step ST5 described above.
 ステップST25又はステップST26の次のステップとしての上述のステップST5において、AGEマップ生成部15は、ステップST26でAGEの値を下げた生成AGEマップ、ステップST24でAGEの値を下げた生成AGEマップ、ステップST22で各AGEの値に「1」を加算した生成AGEマップ、又はステップST21で記憶部4から読み込んだ生成AGEマップを記憶部4に記憶させる。 In step ST5 described above as the next step of step ST25 or step ST26, the AGE map generation unit 15 has a generated AGE map in which the AGE value is lowered in step ST26, and a generated AGE map in which the AGE value is lowered in step ST24. The storage unit 4 stores the generated AGE map obtained by adding "1" to the value of each AGE in step ST22, or the generated AGE map read from the storage unit 4 in step ST21.
 次に、制御ベクトル算出部17による上述のステップST8の詳細な処理動作について図面を参照して説明する。図4は、実施の形態1に係る制御装置1による制御対象機器100の制御方法におけるステップST8の詳細を示すフローチャートである。 Next, the detailed processing operation of step ST8 described above by the control vector calculation unit 17 will be described with reference to the drawings. FIG. 4 is a flowchart showing the details of step ST8 in the control method of the control target device 100 by the control device 1 according to the first embodiment.
 図4が示すように、まず、制御ベクトル算出部17は、優先度マップ生成部16から取得した優先度マップを参照して、優先度マップに含まれる複数の領域セルのうち、優先度が最も大きい領域セルを検出する(ステップST31)。 As shown in FIG. 4, first, the control vector calculation unit 17 refers to the priority map acquired from the priority map generation unit 16, and has the highest priority among the plurality of area cells included in the priority map. A large region cell is detected (step ST31).
 次に、制御ベクトル算出部17は、検出した領域セルを、制御対象機器100が向かうべき目的の領域セルに設定する(ステップST32)。
 次に、制御ベクトル算出部17は、導出した目的の領域セルの位置ベクトルから、情報処理部13から取得した制御対象機器100の位置ベクトルを減算することにより制御対象機器100の位置から目的の領域セルの位置までのベクトルを算出する(ステップST33)。
Next, the control vector calculation unit 17 sets the detected region cell to the target region cell to which the controlled device 100 should go (step ST32).
Next, the control vector calculation unit 17 subtracts the position vector of the control target device 100 acquired from the information processing unit 13 from the derived position vector of the target area cell to obtain the target area from the position of the control target device 100. Calculate the vector up to the cell position (step ST33).
 次に、制御ベクトル算出部17は、算出したベクトルの長さを1とすることにより探索方向ベクトルを算出する(ステップST34)。次に、制御ベクトル算出部17は、上述のステップST9の処理に進む。 Next, the control vector calculation unit 17 calculates the search direction vector by setting the calculated vector length to 1 (step ST34). Next, the control vector calculation unit 17 proceeds to the process of step ST9 described above.
 次に、実施の形態1に係る制御装置1による制御対象機器100の制御方法の具体例について図面を参照して説明する。なお、当該具体例では、制御対象機器100と複数の非制御対象機器101とが1つの探索エリアAを協調して巡回する場合を例にして説明する。なお、複数の非制御対象機器101は、それぞれ、制御対象機器100と同様の構成を有しているものとする。 Next, a specific example of the control method of the control target device 100 by the control device 1 according to the first embodiment will be described with reference to the drawings. In the specific example, a case where the control target device 100 and the plurality of non-control target devices 101 coordinately patrol one search area A will be described as an example. It is assumed that the plurality of non-control target devices 101 each have the same configuration as the control target device 100.
 図5は、探索エリアAのAGEマップを示す図である。図6は、図5が示す制御対象機器100の通信部3と非制御対象機器101の通信部とが互いに無線通信を行っている様子を示す図である。図7は、図5が示す制御対象機器100が生成した優先度マップを示す図である。図8は、探索エリアAをそれぞれ探索する制御対象機器100及び複数の非制御対象機器101を含むシステムを示す図である。なお、図8では、図5が示す制御対象機器100と複数の非制御対象機器101との合計の数と異なり、制御対象機器100と複数の非制御対象機器101との合計の数が6である。つまり、制御対象機器100と複数の非制御対象機器101との合計の数は、特に限定はない。 FIG. 5 is a diagram showing an AGE map of the search area A. FIG. 6 is a diagram showing a state in which the communication unit 3 of the control target device 100 and the communication unit of the non-control target device 101 shown in FIG. 5 are wirelessly communicating with each other. FIG. 7 is a diagram showing a priority map generated by the controlled device 100 shown in FIG. FIG. 8 is a diagram showing a system including a controlled target device 100 and a plurality of non-controlled target devices 101 that search the search area A, respectively. In FIG. 8, unlike the total number of the controlled target device 100 and the plurality of uncontrolled target devices 101 shown in FIG. 5, the total number of the controlled target device 100 and the plurality of non-controlled target devices 101 is 6. is there. That is, the total number of the controlled target device 100 and the plurality of non-controlled target devices 101 is not particularly limited.
 図5が示すように、探索エリアAは、グリッド状に複数の領域セルに区分されている。図5において、ドットは、制御対象機器100の位置又は非制御対象機器101の位置を示し、ドット周囲の点線は、制御対象機器100の通信部3又は非制御対象機器101の通信部が通信可能な範囲を示す。 As shown in FIG. 5, the search area A is divided into a plurality of area cells in a grid pattern. In FIG. 5, the dots indicate the position of the control target device 100 or the position of the non-control target device 101, and the dotted line around the dots can communicate with the communication unit 3 of the control target device 100 or the communication unit of the non-control target device 101. Indicates a range.
 また、図5において、各領域セルの色の濃淡は、制御対象機器100のセンサ2又は非制御対象機器101のセンサが最後に領域セルの位置を観測した時刻からの経過時間であるAGEを示す。当該色の濃淡は、色が濃ければ濃いほど、AGEが大きいことを示しており、色が薄ければ薄いほど、AGEが小さいことを示している。例えば、図5が示す領域セルBと領域セルCの色の濃淡を比較すると、領域セルBの色が領域セルCの色よりも濃い。これは、領域セルBのほうが、領域セルCよりも、制御対象機器100のセンサ2又は非制御対象機器101のセンサによって領域セルの位置が観測されてからより長い時間が経過していることを示している。 Further, in FIG. 5, the shade of color of each region cell indicates AGE, which is the elapsed time from the time when the sensor 2 of the control target device 100 or the sensor of the non-control target device 101 last observed the position of the region cell. .. The shade of the color indicates that the darker the color, the larger the AGE, and the lighter the color, the smaller the AGE. For example, comparing the shades of the colors of the region cell B and the region cell C shown in FIG. 5, the color of the region cell B is darker than the color of the region cell C. This means that the region cell B has a longer time than the region cell C since the position of the region cell was observed by the sensor 2 of the control target device 100 or the sensor of the non-control target device 101. Shown.
 図6が示すように、制御対象機器100と非制御対象機器101とが互いに通信可能な範囲に入った場合、制御対象機器100の通信部3は、受信AGEマップDを、非制御対象機器101の制御装置の通信部から受信する。その際、制御対象機器100の通信部3は、非制御対象機器101に関する非制御対象機器情報を非制御対象機器101の制御装置の通信部からさらに受信する。 As shown in FIG. 6, when the controlled target device 100 and the non-controlled target device 101 are within a communicable range, the communication unit 3 of the controlled target device 100 sets the received AGE map D on the non-controlled target device 101. Received from the communication unit of the control device of. At that time, the communication unit 3 of the control target device 100 further receives the non-control target device information regarding the non-control target device 101 from the communication unit of the control device of the non-control target device 101.
 また、制御対象機器100の通信部3は、上述のAGEマップ生成部15が生成した生成AGEマップEを、非制御対象機器101の制御装置の通信部に送信する。その際、制御対象機器100の通信部3は、制御対象機器100に関する制御対象機器情報を非制御対象機器101の制御装置の通信部にさらに送信する。また、一方で、制御対象機器100のセンサ2は、制御対象機器100周囲の環境を検知することにより制御対象機器100に関する制御対象機器情報を取得する。 Further, the communication unit 3 of the control target device 100 transmits the generated AGE map E generated by the above-mentioned AGE map generation unit 15 to the communication unit of the control device of the non-control target device 101. At that time, the communication unit 3 of the control target device 100 further transmits the control target device information regarding the control target device 100 to the communication unit of the control device of the non-control target device 101. On the other hand, the sensor 2 of the control target device 100 acquires the control target device information regarding the control target device 100 by detecting the environment around the control target device 100.
 そして上述のステップST1において、制御対象機器情報取得部11は、センサ2から、制御対象機器情報を取得する。次に、上述のステップST2において、非制御対象機器情報取得部12は、通信部3から、受信AGEマップDを取得する。次に、ステップST3において、情報処理部13は、制御対象機器情報取得部11から取得した制御対象機器情報が示す制御対象機器100の位置に基づいて、制御対象機器100の位置ベクトルを算出する。 Then, in step ST1 described above, the control target device information acquisition unit 11 acquires the control target device information from the sensor 2. Next, in step ST2 described above, the non-control target device information acquisition unit 12 acquires the reception AGE map D from the communication unit 3. Next, in step ST3, the information processing unit 13 calculates the position vector of the control target device 100 based on the position of the control target device 100 indicated by the control target device information acquired from the control target device information acquisition unit 11.
 次に、上述のステップST4において、AGEマップ生成部15は、時間の経過情報と、情報処理部13から取得した制御対象機器100の位置ベクトルと、非制御対象機器情報取得部12から取得した受信AGEマップDと、情報出力部14から取得した1タイムステップ前の生成AGEマップEと、に基づいて、領域セル毎にAGEを算出し、現在のタイムステップの生成AGEマップFを生成する。 Next, in step ST4 described above, the AGE map generation unit 15 receives the time passage information, the position vector of the control target device 100 acquired from the information processing unit 13, and the reception acquired from the non-control target device information acquisition unit 12. Based on the AGE map D and the generated AGE map E one time step before acquired from the information output unit 14, the AGE is calculated for each area cell, and the generated AGE map F of the current time step is generated.
 なお、当該具体例では、図6の生成AGEマップFにおける各領域セルの色の濃淡が示すように、生成AGEマップFの各領域セルは、生成AGEマップの対応する領域セル、及び受信AGEマップDの対応する領域セルのうち、AGEがより小さい領域セルが選択されて更新されたものである。 In the specific example, as shown by the shade of color of each region cell in the generated AGE map F in FIG. 6, each region cell of the generated AGE map F is a corresponding region cell of the generated AGE map and a received AGE map. Among the corresponding area cells of D, the area cells having a smaller AGE are selected and updated.
 次に、上述のステップST5において、AGEマップ生成部15は、生成した生成AGEマップFを記憶部4に記憶させる。次に、上述のステップST6において、情報出力部14は、AGEマップ生成部15が記憶部4に記憶させた生成AGEマップFを、通信部3を介して非制御対象機器101の制御装置の通信部に出力する。 Next, in step ST5 described above, the AGE map generation unit 15 stores the generated generated AGE map F in the storage unit 4. Next, in step ST6 described above, the information output unit 14 communicates the generated AGE map F stored in the storage unit 4 by the AGE map generation unit 15 with the control device of the non-control target device 101 via the communication unit 3. Output to the unit.
 次に、上述のステップST6において、優先度マップ生成部16は、AGEマップ生成部15が記憶部4に記憶させた生成AGEマップF、記憶部4が記憶している各領域セルの位置ベクトル、並びに、情報処理部13から取得した制御対象機器100の位置ベクトル及び非制御対象機器101の位置ベクトルに基づいて、図7が示す優先度マップGを生成する。なお、図7において、各領域セルの色の濃淡は、色が濃ければ濃いほど、優先度が高いことを示す。 Next, in step ST6 described above, the priority map generation unit 16 includes the generated AGE map F stored in the storage unit 4 by the AGE map generation unit 15, and the position vector of each region cell stored in the storage unit 4. In addition, the priority map G shown in FIG. 7 is generated based on the position vector of the control target device 100 and the position vector of the non-control target device 101 acquired from the information processing unit 13. In FIG. 7, the shade of the color of each region cell indicates that the darker the color, the higher the priority.
 次に、制御ベクトル算出部17は、情報処理部13から取得した制御対象機器100の位置ベクトルと、優先度マップ生成部16が生成した優先度マップGとに基づいて、図7の矢印が示す探索方向ベクトルを算出する。より詳細には、図7が示すように、制御ベクトル算出部17は、優先度マップGに含まれる複数の領域セルのうち、優先度が最も大きい領域セルを、目的の領域セルHに設定する。また、図7が示すように、制御ベクトル算出部17が算出する探索方向ベクトルは、制御対象機器100の位置から当該目的の領域セルHの位置に向かう方向のベクトルである。 Next, the control vector calculation unit 17 is indicated by an arrow in FIG. 7 based on the position vector of the control target device 100 acquired from the information processing unit 13 and the priority map G generated by the priority map generation unit 16. Calculate the search direction vector. More specifically, as shown in FIG. 7, the control vector calculation unit 17 sets the region cell having the highest priority among the plurality of region cells included in the priority map G as the target region cell H. .. Further, as shown in FIG. 7, the search direction vector calculated by the control vector calculation unit 17 is a vector in the direction from the position of the controlled device 100 to the position of the target region cell H.
 次に、制御ベクトル算出部17は、上述のステップST9及びステップST10を行うことにより、上述の制御ベクトルを算出する。次に、上述のステップST11において、制御実行部18は、制御ベクトル算出部17から取得した制御ベクトルに基づいて、制御対象機器100を制御する。これにより、制御対象機器100は、目的の領域セルの位置に移動するように制御される。 Next, the control vector calculation unit 17 calculates the above-mentioned control vector by performing the above-mentioned steps ST9 and ST10. Next, in step ST11 described above, the control execution unit 18 controls the control target device 100 based on the control vector acquired from the control vector calculation unit 17. As a result, the control target device 100 is controlled to move to the position of the target area cell.
 なお、上記のような各ステップは、複数の非制御対象機器101の各制御装置においても行われる。上述のように、ステップST6で優先度マップ生成部16は、非制御対象機器101の位置に基づいて優先度マップGを生成する。非制御対象機器101の制御装置もまた、自身とは別の機器の位置に基づいて優先度マップを生成する。 Note that each step as described above is also performed in each control device of the plurality of non-controlled target devices 101. As described above, in step ST6, the priority map generation unit 16 generates the priority map G based on the position of the non-control target device 101. The control device of the uncontrolled device 101 also generates a priority map based on the position of a device other than itself.
 よって、図8に示すようなシステムでは、制御対象機器100の制御装置1及び複数の非制御対象機器101の各制御装置は、それぞれ、自身とは別の機器の位置に基づいて、優先度マップを生成し、当該優先度マップに基づいて、自身の機器を制御する。これにより、制御対象機器100の制御装置1及び複数の非制御対象機器101の各制御装置は、それぞれ、自身とは別の機器の位置に基づいて、制御対象機器100と非制御対象機器101とが同一の領域セルを同時に探索してしまうことを抑制することができ、探索任務を効率的に行うことができる。 Therefore, in the system as shown in FIG. 8, the control device 1 of the control target device 100 and each control device of the plurality of non-control target devices 101 have a priority map based on the positions of devices other than themselves. And control its own equipment based on the priority map. As a result, the control device 1 of the control target device 100 and each control device of the plurality of non-control target devices 101 become the control target device 100 and the non-control target device 101, respectively, based on the positions of devices different from their own. Can suppress the search for the same area cell at the same time, and the search mission can be performed efficiently.
 次に、上述のステップST6において優先度マップ生成部16が評価関数を用いて優先度を算出する場合の具体例を、図面を参照して説明する。図9は、優先度マップ生成部16が評価関数を用いて優先度を算出する場合の具体例を説明するための図である。 Next, a specific example of the case where the priority map generation unit 16 calculates the priority using the evaluation function in step ST6 described above will be described with reference to the drawings. FIG. 9 is a diagram for explaining a specific example in the case where the priority map generation unit 16 calculates the priority using the evaluation function.
 上述の式(1)が示す評価関数Jの説明では、第2の距離||xN-x||が小さくなるに従って、第1の距離||X-x||が評価関数Jの出力値に与える影響が相対的に大きくなり、第2の距離||xN-x||が大きくなるに従って、AGEが評価関数Jの出力値に与える影響が相対的に大きくなる構成を説明した。以下では、当該構成を、図9を参照してより具体的に説明する。 In the explanation of the evaluation function J shown by the above equation (1), the first distance || Xx || gives the output value of the evaluation function J as the second distance || x N -x || becomes smaller. The configuration was described in which the influence of AGE on the output value of the evaluation function J becomes relatively large as the influence becomes relatively large and the second distance || x N -x || becomes large. In the following, the configuration will be described more specifically with reference to FIG.
 図9の(1)では、非制御対象機器101が制御対象機器100の通信部3の通信範囲外に存在する場合の例を示している。当該例では、AGEの値が1であり、制御対象機器100の位置から領域セルの位置までの第1の距離||X-x||が0.1である。また、制御対象機器100の位置から非制御対象機器101の位置までの第2の距離||xN-x||は、不明であるため、g(||xN-x||)が1に設定されている。 FIG. 9 (1) shows an example in which the non-control target device 101 exists outside the communication range of the communication unit 3 of the control target device 100. In this example, the value of AGE is 1, and the first distance || Xx || from the position of the controlled device 100 to the position of the region cell is 0.1. Further, since the second distance || x N -x || from the position of the controlled target device 100 to the position of the non-controlled target device 101 is unknown, g (|| x N -x ||) is 1. Is set to.
 図9の(2)では、非制御対象機器101が制御対象機器100の通信部3の通信範囲内且つ制御対象機器100のセンサ2のセンシング範囲外に存在する場合の例を示している。当該例においても、AGEの値が1であり、制御対象機器100の位置から領域セルの位置までの第1の距離||X-x||は0.1であるが、制御対象機器100の位置から非制御対象機器101の位置までの第2の距離||xN-x||に基づいて、g(||xN-x||)が2に設定されている。 FIG. 9 (2) shows an example in which the non-control target device 101 exists within the communication range of the communication unit 3 of the control target device 100 and outside the sensing range of the sensor 2 of the control target device 100. Also in this example, the value of AGE is 1, and the first distance from the position of the control target device 100 to the position of the region cell || Xx || is 0.1, but from the position of the control target device 100. G (|| x N -x ||) is set to 2 based on the second distance || x N -x || to the position of the uncontrolled device 101.
 図9の(3)では、非制御対象機器101が制御対象機器100のセンサ2のセンシング範囲内に存在する場合の例を示している。当該例においても、AGEの値が1であり、制御対象機器100の位置から領域セルの位置までの第1の距離||X-x||は0.1であるが、制御対象機器100の位置から非制御対象機器101の位置までの第2の距離||xN-x||に基づいて、g(||xN-x||)が3に設定されている。 FIG. 9 (3) shows an example in which the non-control target device 101 exists within the sensing range of the sensor 2 of the control target device 100. Also in this example, the value of AGE is 1, and the first distance from the position of the control target device 100 to the position of the region cell || Xx || is 0.1, but from the position of the control target device 100. G (|| x N -x ||) is set to 3 based on the second distance || x N -x || to the position of the uncontrolled device 101.
 つまり、これらの例では、AGEの値と第1の距離||X-x||とは、それぞれ共通であるが、第2の距離||xN-x||がそれぞれ異なる。上述の通り、g(||xN-x||)は広義単調減少関数であることから、図9の(1)の例における第2の距離は、図9の(2)の例における第2の距離よりも大きく、図9の(2)の例における第2の距離は、図9の(3)の例における第2の距離よりも大きい。 That is, in these examples, the AGE value and the first distance || Xx || are common, but the second distance || x N -x || is different. As described above, since g (|| x N -x ||) is a monotonous decreasing function in a broad sense, the second distance in the example of (1) of FIG. 9 is the second distance in the example of (2) of FIG. It is larger than the distance of 2, and the second distance in the example of FIG. 9 (2) is larger than the second distance in the example of FIG. 9 (3).
 以上のように評価関数Jの各パラメータを設定した場合、図9の(1)の例では、評価関数Jの出力値は、10となり、図9の(2)の例では、評価関数Jの出力値は、100となり、図9の(3)の例では、評価関数Jの出力値は、1000となる。つまり、評価関数Jは、第2の距離||xN-x||が小さくなるに従って、出力値が高くなることがわかる。 When each parameter of the evaluation function J is set as described above, the output value of the evaluation function J is 10 in the example of (1) of FIG. 9, and the output value of the evaluation function J is 10 in the example of (2) of FIG. The output value is 100, and in the example of (3) of FIG. 9, the output value of the evaluation function J is 1000. That is, it can be seen that the output value of the evaluation function J increases as the second distance || x N -x || decreases.
 ここで、これらの例における第1の距離||X-x||が0.1から0.01に変化した場合を想定すると、図9の(1)の例では、評価関数Jの出力値は、1から100となり、その差は99である。図9の(2)の例では、評価関数Jの出力値は、100から10000となり、その差は、9900である。図9の(3)の例では、評価関数Jの出力値は、1000から1000000となる。その差は、999000である。 Here, assuming that the first distance || Xx || in these examples changes from 0.1 to 0.01, in the example of (1) of FIG. 9, the output value of the evaluation function J is It goes from 1 to 100, and the difference is 99. In the example of (2) of FIG. 9, the output value of the evaluation function J is from 100 to 10000, and the difference is 9900. In the example of (3) of FIG. 9, the output value of the evaluation function J is from 1000 to 1000000. The difference is 999000.
 つまり、第2の距離||xN-x||が小さくなるに従って、第1の距離||X-x||が評価関数Jの出力値に与える影響が相対的に大きくなり、第1の距離が小さくなるに従って評価関数Jの出力値が大きくなる度合いが大きくなることがわかる。また、反対に言えば、第2の距離||xN-x||が大きくなるに従って、第1の距離||X-x||が評価関数Jの出力値に与える影響が相対的に小さくなり、第1の距離||X-x||が小さくなるに従って評価関数Jの出力値が大きくなる度合いが小さくなることがわかる。 That is, as the second distance || x N -x || becomes smaller, the influence of the first distance || Xx || on the output value of the evaluation function J becomes relatively large, and the first distance becomes smaller. It can be seen that the degree to which the output value of the evaluation function J increases increases as it decreases. Conversely, as the second distance || x N -x || increases, the influence of the first distance || Xx || on the output value of the evaluation function J becomes relatively small. It can be seen that the degree to which the output value of the evaluation function J increases decreases as the first distance || Xx || decreases.
 つまり、上述のステップST6において優先度マップ生成部16が上記のような評価関数Jを用いて優先度を算出した場合、制御対象機器100と非制御対象機器101とが近づくに従って、優先度マップが示す各領域セルは、制御対象機器100に近ければ近いほど、優先度が高くなりやすくなる。つまり、制御対象機器100は、自身により近い領域セルを優先して探索するようになる。 That is, when the priority map generation unit 16 calculates the priority using the evaluation function J as described above in step ST6 described above, the priority map is generated as the controlled target device 100 and the non-controlled target device 101 approach each other. The closer each region cell shown is to the control target device 100, the higher the priority tends to be. That is, the control target device 100 preferentially searches for a region cell closer to itself.
 そして、非制御対象機器101も、上記のような評価関数Jに基づいた制御と同様の制御を受けた場合、自身により近い領域セルを優先して探索するようになる。このように、制御対象機器100と非制御対象機器とは、互いに近づいた場合、それぞれが、自身により近い領域セルを優先して探索するようになるため、同一の領域セルを探索してしまう可能性が低くなる。 Then, when the non-controlled device 101 also receives the same control as the control based on the evaluation function J as described above, the area cell closer to itself is preferentially searched. In this way, when the controlled target device 100 and the non-controlled target device approach each other, each of them preferentially searches for a region cell closer to itself, so that it is possible to search for the same region cell. The sex becomes low.
 一方で、通信可能な非制御対象機器101が存在しない場合など、制御対象機器100と最近傍の非制御対象機器101とが遠ざかるに従って、各領域セルは、AGEが大きければ大きいほど、優先度が高くなりやすくなる。つまり、制御対象機器100は、AGEがより大きい領域セルを優先して探索するようになる。 On the other hand, as the control target device 100 and the nearest non-control target device 101 move away from each other, such as when there is no communicable non-control target device 101, the larger the AGE, the higher the priority of each area cell. It tends to be expensive. That is, the control target device 100 preferentially searches for a region cell having a larger AGE.
 制御装置1における、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18のそれぞれの機能は、処理回路により実現される。すなわち、制御装置1は、図2に示したステップST1からステップST11までの処理と図3に示したステップST21からステップST26までの処理と図4に示したステップST31からステップST34までの処理とを実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。 Control target device information acquisition unit 11, non-control target device information acquisition unit 12, information processing unit 13, information output unit 14, AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17 in the control device 1. , And each function of the control execution unit 18 is realized by the processing circuit. That is, the control device 1 performs the processing from step ST1 to step ST11 shown in FIG. 2, the processing from step ST21 to step ST26 shown in FIG. 3, and the processing from step ST31 to step ST34 shown in FIG. It has a processing circuit to execute. This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
 図10Aは、制御装置1の機能を実現するハードウェア構成を示すブロック図である。図10Bは、制御装置1の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図10A及び図10Bに示す検知装置111は、上述のセンサ2として機能する。図10A及び図10Bに示す送受信装置112は、上述の通信部3として機能する。図10A及び図10Bに示す記憶装置113は、上述の記憶部4として機能する。図10A及び図10Bに示す駆動装置114は、上述の駆動部5として機能する。 FIG. 10A is a block diagram showing a hardware configuration that realizes the function of the control device 1. FIG. 10B is a block diagram showing a hardware configuration for executing software that realizes the functions of the control device 1. The detection device 111 shown in FIGS. 10A and 10B functions as the sensor 2 described above. The transmission / reception device 112 shown in FIGS. 10A and 10B functions as the communication unit 3 described above. The storage device 113 shown in FIGS. 10A and 10B functions as the storage unit 4 described above. The drive device 114 shown in FIGS. 10A and 10B functions as the drive unit 5 described above.
 上記処理回路が図10Aに示す専用のハードウェアの処理回路110である場合、処理回路110は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はこれらを組み合わせたものが該当する。 When the processing circuit is the processing circuit 110 of the dedicated hardware shown in FIG. 10A, the processing circuit 110 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
 制御装置1における、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18のそれぞれの機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。 Control target device information acquisition unit 11, non-control target device information acquisition unit 12, information processing unit 13, information output unit 14, AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17 in the control device 1. , And each function of the control execution unit 18 may be realized by a separate processing circuit, or these functions may be collectively realized by one processing circuit.
 上記処理回路が図10Bに示すプロセッサ115である場合、制御装置1における、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18のそれぞれの機能は、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組み合わせによって実現される。
 なお、ソフトウェア又はファームウェアは、プログラムとして記述されてメモリ116に記憶される。
When the processing circuit is the processor 115 shown in FIG. 10B, the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, the information output unit 14, and the AGE map generation unit in the control device 1 The functions of 15, the priority map generation unit 16, the control vector calculation unit 17, and the control execution unit 18 are realized by software, firmware, or a combination of software and firmware.
The software or firmware is described as a program and stored in the memory 116.
 プロセッサ115は、メモリ116に記憶されたプログラムを読み出して実行することにより、制御装置1における、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18のそれぞれの機能を実現する。すなわち、制御装置1は、プロセッサ115によって実行されるときに、図2に示したステップST1からステップST11までの処理と図3に示したステップST21からステップST26までの処理と図4に示したステップST31からステップST34までの処理とが結果的に実行されるプログラムを記憶するためのメモリ116を備える。 By reading and executing the program stored in the memory 116, the processor 115 reads and executes the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, and the information output unit 14 in the control device 1. , AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17, and control execution unit 18 are realized. That is, when the control device 1 is executed by the processor 115, the processes from step ST1 to step ST11 shown in FIG. 2, the processes from steps ST21 to ST26 shown in FIG. 3, and the steps shown in FIG. 4 A memory 116 for storing a program in which the processes from ST31 to step ST34 are executed as a result is provided.
 これらのプログラムは、制御装置1における、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18の手順又は方法をコンピュータに実行させる。メモリ116は、コンピュータを、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。 These programs include the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, the information output unit 14, the AGE map generation unit 15, and the priority map generation unit 16 in the control device 1. Have the computer execute the procedure or method of the control vector calculation unit 17 and the control execution unit 18. The memory 116 uses the computer as a control target device information acquisition unit 11, a non-control target device information acquisition unit 12, an information processing unit 13, an information output unit 14, an AGE map generation unit 15, a priority map generation unit 16, and a control vector calculation. It may be a computer-readable storage medium in which a program for functioning as the unit 17 and the control execution unit 18 is stored.
 メモリ116には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。 The memory 116 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile) semiconductor, or an EPROM (Electrically-EROM). This includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like.
 制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15、優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18のそれぞれの機能について一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現してもよい。 Control target device information acquisition unit 11, non-control target device information acquisition unit 12, information processing unit 13, information output unit 14, AGE map generation unit 15, priority map generation unit 16, control vector calculation unit 17, and control execution unit A part of each function of 18 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 例えば、制御対象機器情報取得部11、非制御対象機器情報取得部12、情報処理部13、情報出力部14、AGEマップ生成部15は、専用のハードウェアとしての処理回路で機能を実現する。優先度マップ生成部16、制御ベクトル算出部17、及び制御実行部18については、プロセッサ115がメモリ116に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせにより上記機能のそれぞれを実現することができる。
For example, the control target device information acquisition unit 11, the non-control target device information acquisition unit 12, the information processing unit 13, the information output unit 14, and the AGE map generation unit 15 realize the functions by a processing circuit as dedicated hardware. The functions of the priority map generation unit 16, the control vector calculation unit 17, and the control execution unit 18 may be realized by the processor 115 reading and executing the program stored in the memory 116.
In this way, the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof.
 以上のように、実施の形態1に係る制御装置1は、制御対象である制御対象機器100に関する制御対象機器情報と、他の制御装置によって制御される非制御対象機器に関する非制御対象機器情報とに基づいて、当該制御対象機器100が複数の領域セルに区分された探索エリアを探索するように当該制御対象機器100を制御する制御装置1であって、制御対象機器100の位置を少なくとも含む制御対象機器情報を取得する制御対象機器情報取得部11と、非制御対象機器101の位置を少なくとも含む非制御対象機器情報を取得する非制御対象機器情報取得部12と、制御対象機器100又は非制御対象機器101が最後に領域セルに滞在した時刻からの経過時間を領域セル毎に示すAGEマップ、制御対象機器情報取得部11が取得した制御対象機器情報が示す制御対象機器100の位置、及び、非制御対象機器情報取得部12が取得した非制御対象機器情報が示す非制御対象機器101の位置に基づいて、制御対象機器100が領域セルを探索する優先度を領域セル毎に示す優先度マップを生成する優先度マップ生成部16と、優先度マップ生成部16が生成した優先度マップに基づいて、制御対象機器100を制御する制御実行部18と、を備えている。 As described above, the control device 1 according to the first embodiment includes the control target device information regarding the control target device 100 to be controlled and the non-control target device information regarding the non-control target device controlled by another control device. Control device 1 that controls the control target device 100 so that the control target device 100 searches for a search area divided into a plurality of area cells based on the above, and controls including at least the position of the control target device 100. The control target device information acquisition unit 11 that acquires the target device information, the non-control target device information acquisition unit 12 that acquires the non-control target device information including at least the position of the non-control target device 101, and the control target device 100 or the non-control An AGE map showing the elapsed time from the time when the target device 101 last stayed in the area cell for each area cell, the position of the control target device 100 indicated by the control target device information acquired by the control target device information acquisition unit 11, and the control target device 100. Priority map showing the priority of the control target device 100 to search for the area cell based on the position of the non-control target device 101 indicated by the non-control target device information acquired by the non-control target device information acquisition unit 12 for each area cell. A priority map generation unit 16 for generating the above device and a control execution unit 18 for controlling the control target device 100 based on the priority map generated by the priority map generation unit 16 are provided.
 上記の構成によれば、非制御対象機器の位置に基づいて優先度マップを生成し、当該優先度マップに基づいて制御対象機器100を制御する。これにより、適宜、非制御対象機器の位置に基づいて、非制御対象機器の制御装置が用いる優先度マップの優先度とは異なる優先度を有する優先度マップを生成することで、制御対象機器100と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができる。よって、探索任務を効率的に行うことができる。 According to the above configuration, a priority map is generated based on the position of the non-controlled device, and the controlled device 100 is controlled based on the priority map. As a result, the control target device 100 is appropriately generated by generating a priority map having a priority different from the priority of the priority map used by the control device of the non-control target device based on the position of the non-control target device. It is possible to prevent the uncontrolled device from searching for the same area cell at the same time. Therefore, the search mission can be performed efficiently.
 また、実施の形態1に係る制御装置1の優先度マップ生成部16は、評価関数の出力値を優先度とし、評価関数は、領域セル毎に、経過時間が大きくなるに従って出力値が大きくなり、制御対象機器100の位置から領域セルの位置までの第1の距離が小さくなるに従って出力値が大きくなり、制御対象機器100の位置から非制御対象機器101の位置までの第2の距離に基づいて、第1の距離が出力値に与える影響が相対的に変化する。 Further, the priority map generation unit 16 of the control device 1 according to the first embodiment uses the output value of the evaluation function as the priority, and the output value of the evaluation function increases as the elapsed time increases for each area cell. The output value increases as the first distance from the position of the controlled device 100 to the position of the region cell decreases, and is based on the second distance from the position of the controlled device 100 to the position of the non-controlled device 101. Therefore, the influence of the first distance on the output value changes relatively.
 上記の構成によれば、評価関数は、制御対象機器100又は非制御対象機器が対応する領域セルに最後に滞在した時刻からの経過時間が長くなるに従って出力値が大きくなり、制御対象機器100が対応する領域セルに近づくに従って出力値が大きくなる。また、評価関数は、制御対象機器100と非制御対象機器101とが近づくに従って、制御対象機器100の位置から領域セルの位置までの第1の距離が出力値に与える影響が相対的に変化する。これにより、適宜、制御対象機器100と非制御対象機器101とが近づく場合に、優先度が、非制御対象機器の制御装置が用いる優先度マップの優先度とは異なる優先度マップを生成することで、制御対象機器100と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができる。よって、探索任務を効率的に行うことができる。 According to the above configuration, the output value of the evaluation function increases as the elapsed time from the time when the controlled target device 100 or the non-controlled target device last stayed in the corresponding area cell becomes longer, and the controlled target device 100 increases. The output value increases as it approaches the corresponding region cell. Further, in the evaluation function, as the controlled target device 100 and the non-controlled target device 101 approach each other, the influence of the first distance from the position of the controlled target device 100 to the position of the region cell on the output value changes relatively. .. As a result, when the control target device 100 and the non-control target device 101 approach each other as appropriate, a priority map whose priority is different from the priority of the priority map used by the control device of the non-control target device is generated. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell. Therefore, the search mission can be performed efficiently.
 また、実施の形態1に係る制御装置1の優先度マップ生成部16が用いる評価関数は、第2の距離に基づいて、第1の距離が小さくなるに従って出力値が大きくなる度合いが調整され、前記第2の距離が小さくなるに従って、当該度合いが大きくなり、前記第2の距離が大きくなるに従って、当該度合いが小さくなる。 Further, in the evaluation function used by the priority map generation unit 16 of the control device 1 according to the first embodiment, the degree to which the output value increases as the first distance decreases is adjusted based on the second distance. As the second distance decreases, the degree increases, and as the second distance increases, the degree decreases.
 上記の構成によれば、制御対象機器100が非制御対象機器に近づくに従って、制御対象機器100が対応する領域セルに近づくことにより出力値が大きくなる度合いが大きくなる。これにより、制御対象機器100と最近傍の非制御対象機器とが近づくに従って、優先度マップが示す各領域セルは、制御対象機器100に近ければ近いほど、優先度が高くなりやすくなる。つまり、制御対象機器100は、自身により近い領域セルを優先して探索するようになる。よって、制御対象機器100と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができ、探索任務を効率的に行うことができる。 According to the above configuration, as the control target device 100 approaches the non-control target device, the degree to which the output value increases as the control target device 100 approaches the corresponding area cell increases. As a result, as the control target device 100 and the nearest non-control target device approach each other, the closer each area cell shown in the priority map is to the control target device 100, the higher the priority tends to be. That is, the control target device 100 preferentially searches for a region cell closer to itself. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell, and the search mission can be efficiently performed.
 また、実施の形態1に係る制御装置1の優先度マップ生成部16が用いる評価関数は、分子が経過時間であり、分母が、第1の距離を底とし、第2の距離に基づいた関数をべき指数としたべき乗である。
 上記の構成によれば、上述の評価関数に関する各構成及び各効果を好適に実現することができる。
Further, the evaluation function used by the priority map generation unit 16 of the control device 1 according to the first embodiment is a function in which the numerator is the elapsed time and the denominator is the base of the first distance and is based on the second distance. Is a power that should be an exponent.
According to the above configuration, each configuration and each effect related to the above evaluation function can be suitably realized.
 また、実施の形態1に係る制御装置1は、優先度マップ生成部16が生成した優先度マップに基づいて、制御対象機器100に対する制御ベクトルを算出する制御ベクトル算出部17をさらに備え、制御実行部18は、制御ベクトル算出部17が生成した制御ベクトルに基づいて、制御対象機器100を制御する。 Further, the control device 1 according to the first embodiment further includes a control vector calculation unit 17 that calculates a control vector for the control target device 100 based on the priority map generated by the priority map generation unit 16, and controls execution. The unit 18 controls the control target device 100 based on the control vector generated by the control vector calculation unit 17.
 上記の構成によれば、上述の各構成における優先度マップが反映された制御ベクトルに基づいて、制御対象機器100を制御することができる。よって、制御対象機器100と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができ、探索任務を効率的に行うことができる。 According to the above configuration, the control target device 100 can be controlled based on the control vector reflecting the priority map in each of the above configurations. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell, and the search mission can be efficiently performed.
 また、実施の形態1に係る制御装置1は、制御対象機器情報取得部11が取得した制御対象機器情報に基 づいて、AGEマップを生成するAGEマップ生成部15をさらに備えている。
 上記の構成によれば、生成したAGEマップに基づいて、上述の各構成における優先度マップを生成することができる。よって、制御対象機器100と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができ、探索任務を効率的に行うことができる。
Further, the control device 1 according to the first embodiment further includes an AGE map generation unit 15 that generates an AGE map based on the control target device information acquired by the control target device information acquisition unit 11.
According to the above configuration, the priority map in each of the above configurations can be generated based on the generated AGE map. Therefore, it is possible to prevent the controlled target device 100 and the non-controlled target device from simultaneously searching for the same region cell, and the search mission can be efficiently performed.
 また、実施の形態1に係る制御対象機器100は、上記の各構成の何れか1つの制御装置1を備えている。
 上記の構成によれば、上述の制御装置1の各構成が奏する効果を制御対象機器100において実現することができる。
Further, the control target device 100 according to the first embodiment includes a control device 1 having any one of the above configurations.
According to the above configuration, the effect of each configuration of the control device 1 described above can be realized in the control target device 100.
 また、実施の形態1に係る制御対象機器100の制御方法は、制御対象である制御対象機器100に関する制御対象機器情報と、他の制御装置によって制御される非制御対象機器に関する非制御対象機器情報とに基づいて、当該制御対象機器100が複数の領域セルに区分された探索エリアを探索するように当該制御対象機器100を制御する、制御対象機器100の制御方法であって、制御対象機器100の位置を少なくとも含む制御対象機器情報を取得する制御対象機器情報取得ステップと、非制御対象機器の位置を少なくとも含む非制御対象機器情報を取得する非制御対象機器情報取得ステップと、制御対象機器100又は非制御対象機器が最後に領域セルに滞在した時刻からの経過時間を領域セル毎に示すAGEマップ、制御対象機器情報取得ステップで取得した制御対象機器情報が示す制御対象機器100の位置、及び、非制御対象機器情報取得ステップで取得した非制御対象機器情報が示す非制御対象機器の位置に基づいて、制御対象機器100が領域セルを探索する優先度を領域セル毎に示す優先度マップを生成する優先度マップ生成ステップと、優先度マップ生成ステップで生成した優先度マップに基づいて、制御対象機器100を制御する制御実行ステップと、を含む。
 上記の構成によれば、上述の制御装置1の各構成が奏する効果と同様の効果を奏する。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
Further, the control method of the control target device 100 according to the first embodiment is the control target device information regarding the control target device 100 which is the control target and the non-control target device information regarding the non-control target device controlled by another control device. Based on the above, the control target device 100 is a control method of the control target device 100 that controls the control target device 100 so that the control target device 100 searches for a search area divided into a plurality of area cells. The control target device information acquisition step for acquiring the control target device information including at least the position of the non-control target device, the non-control target device information acquisition step for acquiring the non-control target device information including at least the position of the non-control target device, and the control target device 100. Alternatively, an AGE map showing the elapsed time from the time when the non-control target device last stayed in the area cell for each area cell, the position of the control target device 100 indicated by the control target device information acquired in the control target device information acquisition step, and , A priority map showing the priority of the control target device 100 to search for the area cell based on the position of the non-control target device indicated by the non-control target device information acquired in the non-control target device information acquisition step is provided for each area cell. It includes a priority map generation step to be generated, and a control execution step to control the controlled target device 100 based on the priority map generated in the priority map generation step.
According to the above configuration, the same effect as that of each configuration of the control device 1 described above is obtained.
In the present invention, within the scope of the invention, it is possible to modify any component of the embodiment or omit any component of the embodiment.
 この発明に係る制御装置は、制御対象機器と非制御対象機器とが同一の領域セルを同時に探索してしまうことを抑制することができるため、制御対象機器に利用可能であり、監視作業、観測作業又は保守作業等の無人の機器が活用される分野における、当該機器群を制御する制御システム等に適用するのが好ましい。 The control device according to the present invention can be used for the controlled device because it can prevent the controlled device and the non-controlled device from searching for the same area cell at the same time, and can be used for monitoring work and observation. It is preferable to apply it to a control system or the like that controls the device group in a field where unmanned devices are utilized such as work or maintenance work.
 1 制御装置、2 センサ、3 通信部、4 記憶部、5 駆動部、11 制御対象機器情報取得部、12 非制御対象機器情報取得部、13 情報処理部、14 情報出力部、15 AGEマップ生成部、16 優先度マップ生成部、17 制御ベクトル算出部、18 制御実行部、100 制御対象機器、101 非制御対象機器、110 処理回路、111 検知装置、112 送受信装置、113 記憶装置、114 駆動装置、115 プロセッサ、116 メモリ。 1 Control device, 2 Sensor, 3 Communication unit, 4 Storage unit, 5 Drive unit, 11 Control target device information acquisition unit, 12 Non-control target device information acquisition unit, 13 Information processing unit, 14 Information output unit, 15 AGE map generation Unit, 16 priority map generation unit, 17 control vector calculation unit, 18 control execution unit, 100 control target device, 101 non-control target device, 110 processing circuit, 111 detection device, 112 transmission / reception device, 113 storage device, 114 drive device , 115 processor, 116 memory.

Claims (8)

  1.  制御対象である制御対象機器に関する制御対象機器情報と、他の制御装置によって制御される非制御対象機器に関する非制御対象機器情報とに基づいて、当該制御対象機器が複数の領域セルに区分された探索エリアを探索するように当該制御対象機器を制御する制御装置であって、
     前記制御対象機器の位置を少なくとも含む制御対象機器情報を取得する制御対象機器情報取得部と、
     前記非制御対象機器の位置を少なくとも含む非制御対象機器情報を取得する非制御対象機器情報取得部と、
     前記制御対象機器又は前記非制御対象機器が最後に領域セルに滞在した時刻からの経過時間を領域セル毎に示すAGEマップ、前記制御対象機器情報取得部が取得した制御対象機器情報が示す前記制御対象機器の位置、及び、前記非制御対象機器情報取得部が取得した非制御対象機器情報が示す前記非制御対象機器の位置に基づいて、前記制御対象機器が領域セルを探索する優先度を領域セル毎に示す優先度マップを生成する優先度マップ生成部と、
     前記優先度マップ生成部が生成した優先度マップに基づいて、前記制御対象機器を制御する制御実行部と、を備えていることを特徴とする、制御装置。
    The control target device is divided into a plurality of region cells based on the control target device information regarding the control target device that is the control target and the non-control target device information regarding the non-control target device controlled by another control device. A control device that controls the controlled device so as to search the search area.
    A control target device information acquisition unit that acquires control target device information including at least the position of the control target device,
    The non-control target device information acquisition unit that acquires the non-control target device information including at least the position of the non-control target device, and
    An AGE map showing the elapsed time from the time when the control target device or the non-control target device last stayed in the area cell for each area cell, and the control indicated by the control target device information acquired by the control target device information acquisition unit. Based on the position of the target device and the position of the non-control target device indicated by the non-control target device information acquired by the non-control target device information acquisition unit, the priority for the control target device to search the area cell is set as an area. A priority map generator that generates a priority map shown for each cell,
    A control device including a control execution unit that controls the controlled device based on a priority map generated by the priority map generation unit.
  2.  前記優先度マップ生成部は、評価関数の出力値を前記優先度とし、
     前記評価関数は、領域セル毎に、前記経過時間が大きくなるに従って前記出力値が大きくなり、前記制御対象機器の位置から領域セルの位置までの第1の距離が小さくなるに従って前記出力値が大きくなり、前記制御対象機器の位置から前記非制御対象機器の位置までの第2の距離に基づいて、前記第1の距離が前記出力値に与える影響が相対的に変化することを特徴とする、請求項1に記載の制御装置。
    The priority map generator sets the output value of the evaluation function as the priority.
    In the evaluation function, the output value increases as the elapsed time increases for each region cell, and the output value increases as the first distance from the position of the controlled device to the position of the region cell decreases. Therefore, the influence of the first distance on the output value changes relatively based on the second distance from the position of the controlled target device to the position of the non-controlled target device. The control device according to claim 1.
  3.  前記評価関数は、前記第2の距離に基づいて、前記第1の距離が小さくなるに従って前記出力値が大きくなる度合いが調整され、前記第2の距離が小さくなるに従って、当該度合いが大きくなり、前記第2の距離が大きくなるに従って、当該度合いが小さくなることを特徴とする、請求項2に記載の制御装置。 Based on the second distance, the evaluation function adjusts the degree to which the output value increases as the first distance decreases, and increases the degree as the second distance decreases. The control device according to claim 2, wherein the degree decreases as the second distance increases.
  4.  前記評価関数は、分子が前記経過時間であり、分母が、前記第1の距離を底とし、前記第2の距離に基づいた関数をべき指数としたべき乗であることを特徴とする、請求項3に記載の制御装置。 The evaluation function is characterized in that the numerator is the elapsed time and the denominator is a power with the first distance as the base and the function based on the second distance as the power index. The control device according to 3.
  5.  前記優先度マップ生成部が生成した優先度マップに基づいて、前記制御対象機器に対する制御ベクトルを算出する制御ベクトル算出部をさらに備え、
     前記制御実行部は、前記制御ベクトル算出部が生成した制御ベクトルに基づいて、前記制御対象機器を制御することを特徴とする、請求項1に記載の制御装置。
    A control vector calculation unit that calculates a control vector for the controlled device based on the priority map generated by the priority map generation unit is further provided.
    The control device according to claim 1, wherein the control execution unit controls the control target device based on a control vector generated by the control vector calculation unit.
  6.  前記制御対象機器情報取得部が取得した制御対象機器情報に基づいて、前記AGEマップを生成するAGEマップ生成部をさらに備えていることを特徴とする、請求項1に記載の制御装置。 The control device according to claim 1, further comprising an AGE map generation unit that generates the AGE map based on the control target device information acquired by the control target device information acquisition unit.
  7.  請求項1から請求項6の何れか1項に記載の制御装置を備えていることを特徴とする、制御対象機器。 A device to be controlled, characterized in that the control device according to any one of claims 1 to 6 is provided.
  8.  制御対象である制御対象機器に関する制御対象機器情報と、他の制御装置によって制御される非制御対象機器に関する非制御対象機器情報とに基づいて、当該制御対象機器が複数の領域セルに区分された探索エリアを探索するように当該制御対象機器を制御する、制御対象機器の制御方法であって、
     前記制御対象機器の位置を少なくとも含む制御対象機器情報を取得する制御対象機器情報取得ステップと、
     前記非制御対象機器の位置を少なくとも含む非制御対象機器情報を取得する非制御対象機器情報取得ステップと、
     前記制御対象機器又は前記非制御対象機器が最後に領域セルに滞在した時刻からの経過時間を領域セル毎に示すAGEマップ、前記制御対象機器情報取得ステップで取得した制御対象機器情報が示す制御対象機器の位置、及び、前記非制御対象機器情報取得ステップで取得した非制御対象機器情報が示す非制御対象機器の位置に基づいて、前記制御対象機器が領域セルを探索する優先度を領域セル毎に示す優先度マップを生成する優先度マップ生成ステップと、
     前記優先度マップ生成ステップで生成した優先度マップに基づいて、前記制御対象機器を制御する制御実行ステップと、を含むことを特徴とする、制御対象機器の制御方法。
    The control target device is divided into a plurality of region cells based on the control target device information regarding the control target device that is the control target and the non-control target device information regarding the non-control target device controlled by another control device. A control method for a controlled device that controls the controlled device so as to search the search area.
    A control target device information acquisition step for acquiring control target device information including at least the position of the control target device, and
    The non-control target device information acquisition step for acquiring the non-control target device information including at least the position of the non-control target device, and
    An AGE map showing the elapsed time from the time when the control target device or the non-control target device last stayed in the area cell for each area cell, and a control target indicated by the control target device information acquired in the control target device information acquisition step. Based on the position of the device and the position of the non-control target device indicated by the non-control target device information acquired in the non-control target device information acquisition step, the priority for the control target device to search for the area cell is set for each area cell. The priority map generation step to generate the priority map shown in
    A control method for a control target device, which comprises a control execution step for controlling the control target device based on the priority map generated in the priority map generation step.
PCT/JP2019/031691 2019-08-09 2019-08-09 Control device, controlled device, and method for controlling controlled device WO2021028979A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539713A JP6987319B2 (en) 2019-08-09 2019-08-09 Control device, controlled device, and control method of controlled device
PCT/JP2019/031691 WO2021028979A1 (en) 2019-08-09 2019-08-09 Control device, controlled device, and method for controlling controlled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031691 WO2021028979A1 (en) 2019-08-09 2019-08-09 Control device, controlled device, and method for controlling controlled device

Publications (1)

Publication Number Publication Date
WO2021028979A1 true WO2021028979A1 (en) 2021-02-18

Family

ID=74569528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031691 WO2021028979A1 (en) 2019-08-09 2019-08-09 Control device, controlled device, and method for controlling controlled device

Country Status (2)

Country Link
JP (1) JP6987319B2 (en)
WO (1) WO2021028979A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154633A1 (en) * 2017-02-21 2018-08-30 日本電気株式会社 Control device, control method, and program recording medium
JP2018180604A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Monitoring device, monitoring object tracking control device of mobile body, and monitoring object tracking control program
JP2019101770A (en) * 2017-12-04 2019-06-24 株式会社Subaru Operation control device of mobile object, operation control method of mobile object, and operation control program of mobile object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899668B2 (en) * 2017-03-01 2021-07-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Self-propelled vacuum cleaner control method, control device, control program and self-propelled vacuum cleaner
JP2018147359A (en) * 2017-03-08 2018-09-20 富士ゼロックス株式会社 Service providing system and request reception robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154633A1 (en) * 2017-02-21 2018-08-30 日本電気株式会社 Control device, control method, and program recording medium
JP2018180604A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Monitoring device, monitoring object tracking control device of mobile body, and monitoring object tracking control program
JP2019101770A (en) * 2017-12-04 2019-06-24 株式会社Subaru Operation control device of mobile object, operation control method of mobile object, and operation control program of mobile object

Also Published As

Publication number Publication date
JP6987319B2 (en) 2021-12-22
JPWO2021028979A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US10514711B2 (en) Flight control using computer vision
EP3521158B1 (en) Flight control device, unmanned aerial vehicle, flight control method, and computer program
US20210248183A1 (en) Acoustic monitoring system
US20190243376A1 (en) Actively Complementing Exposure Settings for Autonomous Navigation
KR102263307B1 (en) System and method for controlling cluster flight of unmanned aerial vehicle
US20210221402A1 (en) Prediction control device
WO2016166983A1 (en) Control apparatus, instrument, information processing system, control method, and storage medium
EP3735621A1 (en) Adjustable object avoidance proximity threshold based on classification of detected objects
US10725479B2 (en) Aerial vehicle landing method, aerial vehicle, and computer readable storage medium
KR20180074593A (en) System and method for connecting a drone through a network using multiple network modules
JP2019537140A (en) Vehicle collision avoidance
CN111862154B (en) Robot vision tracking method and device, robot and storage medium
KR20190073689A (en) Remote controller system with force feedback using electromagnets and metod thereof
Khan et al. Multiscale observation of multiple moving targets using micro aerial vehicles
Sun et al. Escaping local optima in a class of multi-agent distributed optimization problems: A boosting function approach
WO2019133344A1 (en) System and method for detecting remote intrusion of an autonomous vehicle based on flightpath deviations
WO2021028979A1 (en) Control device, controlled device, and method for controlling controlled device
US20200393832A1 (en) Mobile body control device, mobile body control method, and recording medium
KR102464667B1 (en) Server of controlling air conditioner with area recognition based on artificial intelligence and air conditioner
Lu et al. Trajectory design for unmanned aerial vehicles via meta-reinforcement learning
CN113126652B (en) Dispatching method and device for unmanned aerial vehicle cluster cooperative electronic reconnaissance
WO2020183608A1 (en) Control device and control method
KR101888584B1 (en) CDL system based adaptive power control and method thereof
KR20210014951A (en) Method and system for detecting aerial vehicle
JP2019027909A (en) Method for estimating position of target by unmanned mobile body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941631

Country of ref document: EP

Kind code of ref document: A1