WO2021028157A1 - Sensor zum nachweis für auf seine oberfläche einfallende photonen und/oder sich auf seiner oberfläche anlagernde fremdstoffe - Google Patents

Sensor zum nachweis für auf seine oberfläche einfallende photonen und/oder sich auf seiner oberfläche anlagernde fremdstoffe Download PDF

Info

Publication number
WO2021028157A1
WO2021028157A1 PCT/EP2020/070460 EP2020070460W WO2021028157A1 WO 2021028157 A1 WO2021028157 A1 WO 2021028157A1 EP 2020070460 W EP2020070460 W EP 2020070460W WO 2021028157 A1 WO2021028157 A1 WO 2021028157A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
layer
photons
foreign substances
barrier
Prior art date
Application number
PCT/EP2020/070460
Other languages
English (en)
French (fr)
Inventor
Daniel Neumaier
Zhenxing WANG
Stijn Goossens
Frank KOPPENS
Domenico DE DE FAZIO
Hasan Burkay UZLU
Original Assignee
Amo Gmbh
Icfo – The Institute Of Photonic Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amo Gmbh, Icfo – The Institute Of Photonic Sciences filed Critical Amo Gmbh
Priority to EP20743672.6A priority Critical patent/EP4014260A1/de
Publication of WO2021028157A1 publication Critical patent/WO2021028157A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/129Diode type sensors, e.g. gas sensitive Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System

Definitions

  • the invention is based on a previously known sensor which has a vertical diode with a two-dimensional, two-dimensional transition and based on a layer arrangement of a metal electrode, a dielectric barrier and a graphene layer.
  • graphene phototransistors and photodetectors which have a double-layer heterostructure, see for example US 8 344 358 B2, US 2014/0264275 A1. These sensors provide a very short response time and a higher sensitivity compared to conventional, semiconductor-based sensors.
  • such sensors are ideal for application to any surface, such as curved surfaces such as skin and the like, to detect light. They are well suited for healthcare applications.
  • a disadvantage of the known sensors is that they have high dark currents in the range of pA and high noise levels.
  • the high noise levels limit the specific sensitivity and the signal / noise ratio.
  • the object of the invention is to further develop a sensor of the previously known type in such a way that it is sensitive to light and / or accumulating and adsorbed foreign substances, is easy to manufacture, has a low dark current and exhibits high sensitivity with a quick response time.
  • a sensor for detecting photons incident on its surface and / or foreign matter deposited / deposited on its surface the sensor a) being a diode with a two-dimensional barrier layer based on a layer arrangement of a metal electrode, egg ner dielectric barrier and a graphene layer, and b) a surface layer which is located above and on the graphene layer and electrically reacts to photons and / or deposited / deposited foreign substances and which forms the surface of the sensor.
  • the object is achieved by a method for detecting photons and / or foreign substances that accumulate and / or are accumulated, with the sensor according to the previous paragraph, by measuring the change in resistance and / or capacitance between the two Connections of the diode.
  • This sensor can be easily manufactured, for example, using thin-film technology. It has a high sensitivity with low self-noise. The dark currents are very low. This enables use with low power requirements and high specific sensitivity. A sensitivity of up to 103 A / W for light with a wavelength of 633 nm with currents in the nA range was achieved, using a surface layer with PbS colloidal quantum dots.
  • the sensor can be used for optical communication systems, for image recording and also for photovoltaic systems.
  • Photons are preferably understood to mean photons in the visible spectral range, in the near UV and in the infrared range.
  • one or more photoactive layers in particular quantum dots, J-aggregates and / or chalcogenides such as HgS (Zin nober), CdS (cadmium yellow), CdSe and especially transition metal dichalcogenides, are used for the surface layer.
  • the graphene layer can be used as the surface layer, in particular a top layer of the multilayer graphene layer.
  • the surface layer can also be formed by modified or functionalized graphene.
  • the surface layers specified in the previous paragraph for the absorption of photons can be used to detect foreign substances.
  • linker biomolecules can be used as a surface layer.
  • Foreign substances are typically atoms or molecules. In particular, they reach the surface by themselves, without solvents or the like. For example, it can be micro-dust, fine dust, gas.
  • the foreign substances can also enter into chemical reactions with the surface layer or with another partner. They are preferably adsorbed, that is, kept on the surface via so-called Van der Waals forces.
  • the foreign substances can be chemically and / or bioactive.
  • a surface layer that reacts electrically to deposited foreign matter
  • cleaning methods or means are provided in order to detach the foreign matter from the surface layer again after accumulation has taken place.
  • neural signals can also be recorded.
  • One application is in the area of direct detection of in vivo electrical signals
  • another application is in the area of implemented biosensors that use chemically bound linker molecules that increase the selectivity of specific biomolecules.
  • a molecule to be detected docks or binds to the linker, it transfers a charge into the graphene layer or induces an electric field in it, so that the charge distribution in the graphene layer is influenced.
  • the graphene layer preferably has dimensions in the range from 1 ⁇ 1 to 15 ⁇ 15 ⁇ m, for example approximately 10 ⁇ 10 ⁇ m.
  • the area of the barrier is preferably between 1 pm2 and 400 pm2, preferably in the range below 120 pm2.
  • the material of the barrier can be an insulator or a semiconductor. For example, SiO 2, Al 2 O 3, hBN, SiN, MoS 2 or the like are possible.
  • the diode has a two-dimensional barrier layer. When illuminated, the surface layer absorbs light.
  • the surface layer has quantum dots, for example, electron-hole pairs are generated in the quantum dots, depending on the quantum dots used.
  • the electron or the hole is transferred to the graphene and changes the charge distribution and / or doping there. This can be read out electrically, for example by measuring the resistance or capacitance of the diode.
  • Corresponding processes take place when a chemoactive or bioactive graphene diode is used. You can follow an adsorption process during the adsorption process. Due to foreign substances that increasingly reach the surface, a charge shift takes place, which leads to a change in the resistance and the capacity of the diode. This change can be verified using suitable measuring methods. For example, the resistance can be measured.
  • the diode can also be connected to an inductance, so that an oscillating circuit is formed which has a resonant frequency which changes when the capacitance of the diode changes.
  • Figure 1 a basic sectional view across the barrier layer through the sensor and with a detection device
  • FIG. 2 shows a sectional view like FIG. 1, but now with a surface layer formed by at least one top layer of a graphene layer.
  • the diode of the sensor has a metal electrode 20, a barrier 22 and a Gra phen für 24.
  • This arrangement is also referred to as MIG (metal-insulator-graphene). It forms a two-dimensional transition.
  • MIG metal-insulator-graphene
  • photosensitive Surface layer 26 are in particular photoactive materials, for example quantum dots, J-aggregates, in particular in the form of dye molecules (for example merocyanines, rhodamine) and chalcogenides, in particular metal chalcogenides and here preferably transition metal chalcogenides.
  • the task of the surface layer is to give the sensor a light sensitivity and / or sensitivity for the adsorption of foreign substances. When light is absorbed or a foreign substance is adsorbed, free charge carriers are released from the surface layer into the graphene layer 24 and / or the charge distribution in the surface layer changes, for example due to the dipole moments. This leads to a change in the charge distribution in the graphene layer 24, for example the doping and / or the distribution of the charge carriers. This changes the resistance and capacitance of the MIG diode.
  • the metal for the metal electrode 20 can be Al, Ti, Au or a ferromagnetic material such as Ni, Fe, Co.
  • the metal electrode has a thickness of typically 1 nm to a few millimeters, for example 3 mm.
  • the barrier 22 is made of insulating or semiconducting material. It typically has a thickness of 1 to 15 nm.
  • the metal electrode 20 can be arranged on a substrate (not shown) in order to fix it mechanically.
  • This substrate does not add functionality. It can be rigid or flexible. It is preferably very thin, in particular a film a few ⁇ m thick or a rigid carrier.
  • the diode is connected in a known manner by means of contacts on the graph layer 24 and on the metal electrode 20.
  • a detection device is also shown that uses these contacts. It has a voltage source 28 and an ammeter 30. The ohmic resistance of the diode is measured in each case.
  • the voltage source 28 is connected to the metal electrode 20.
  • the voltage source 28 is in turn connected to the current measuring device 30, which in turn is connected to the graphene layer 24.
  • the sensor for detecting photons incident on its surface and / or foreign matter accumulating on its surface has a) a diode with a two-dimensional barrier layer based on a layer arrangement of a metal electrode 20, a dielectric barrier 22 and a graphene layer 24, and b) a via the surface layer 26 located under the graphene layer 24, which reacts electrically to photons and / or accumulated foreign substances and which forms the surface of the sensor.

Abstract

Der Sensor zum Nachweis für auf seine Oberfläche einfallende Photonen und/oder sich auf seiner Oberfläche anlagernde Fremd Stoffe hat a) eine Diode mit einer zweidimensionalen Sperrschicht basierend auf einer Schichtanordnung aus einer Metallelektrode (20), einer dielektrischen Barriere (22) und einer Graphenschicht (24), und b) eine über und auf der Graphenschicht (24) befindliche, auf Photonen und/oder angelagerte Fremd Stoffe elektrisch reagierende Oberflächenschicht (26), die die Oberfläche des Sensors bildet.

Description

Sensor zum Nachweis für auf seine Oberfläche einfallende Photonen und/oder sich auf seiner Oberfläche anlagernde Fremdstoffe
Die Erfindung geht aus von einem vorbekannten Sensor, der eine vertikale Diode mit einem zweidimensionalen, flächigen Übergang und basierend auf einer Schichtanordnung aus einer Metallelektrode, einer dielektrischen Barriere und ei ner Graphenschicht aufweist.
Neben auf Halbleitern basierenden Sensoren sind Graphen-Phototransistoren und Photodetektoren bekannt, die eine doppellagige Heterostruktur aufweisen, siehe zum Beispiel US 8 344 358 B2, US 2014/0264275 Al. Diese Sensoren liefern eine ausgesprochen kurze Ansprechzeit und eine höhere Empfindlichkeit im Vergleich zu konventionellen, auf Halbleitern basierenden Sensoren.
Aus Nat. Nanotechnol, 7, 2012, 363 ist ein Graphen-FET mit einer elektrisch rea gierenden Oberflächenschicht in Form von Quantenpunkten (quantum dots) be kannt. Er ist nur für Photonen empfindlich und hat eine Ansprechempfindlichkeit von 108 A/W bei 25 % externem Quantenwirkungsgrad gezeigt.
Der Inhalt dieser drei Vorveröffentlichung gehört vollinhaltlich zum Offenbarungs gehalt der vorliegenden Anmeldung.
Aufgrund der Transparenz und Biegsamkeit von Graphen sind derartige Sensoren ideal für das Aufbringen auf einer beliebigen Oberfläche, beispielsweise auf ge krümmte Oberflächen, wie z.B. Haut und dergleichen, um Licht zu erfassen. Sie sind gut geeignet für Anwendungen im Gesundheitsbereich.
Ein Nachteil der vorbekannten Sensoren liegt darin, dass sie hohe Dunkelströme im Bereich von pA und hohe Rauschpegel aufweisen. Die hohen Rauschpegel be grenzen die spezifische Empfindlichkeit und das Signal/Rausch-Verhältnis.
Aufgabe der Erfindung ist es, einen Sensor der vorbekannten Art dahingehend weiterzuentwickeln, dass er für Licht und/oder sich anlagernde sowie adsorbierte Fremdstoffe empfindlich ist, einfach zu fertigen ist, einen geringen Dunkelstrom aufweist und eine hohe Empfindlichkeit bei rascher Ansprechzeit zeigt. Diese Aufgabe wird gelöst durch einen Sensor zum Nachweis für auf seine Ober fläche einfallende Photonen und/oder sich auf seiner Oberfläche anlagernde/ange lagerte Fremdstoffe, wobei der Sensor a) eine Diode mit einer zweidimensionalen Sperrschicht basierend auf einer Schichtanordnung aus einer Metallelektrode, ei ner dielektrischen Barriere und einer Graphenschicht, und b) eine über und auf der Graphenschicht befindliche, auf Photonen und/oder sich anlagernde/angelagerte Fremdstoffe elektrisch reagierende Oberflächenschicht, die die Oberfläche des Sensors bildet, aufweist.
Weiterhin wird die Aufgabe gelöst durch ein Verfahren zum Nachweis von Photonen und/oder Fremdstoffen, die sich anlagern und/oder angelagert sind, mit dem Sen sor nach dem vorangegangenen Absatz, durch eine Messung der Änderung des Widerstandes und/oder der Kapazität zwischen den beiden Anschlüssen der Diode.
Weiterbildungen finden sich in den Unteransprüchen.
Dieser Sensor lässt sich einfach zum Beispiel in Dünnschichttechnologie hersteilen. Er hat eine hohe Empfindlichkeit bei geringem Eigenrauschen. Die Dunkelströme sind sehr gering. Dies ermöglicht einen Einsatz bei geringem Leistungsbedarf und hoher spezifischer Empfindlichkeit. Es wurden eine Empfindlichkeit von bis zu 103 A/W bei Licht mit 633 nm Wellenlänge mit Strömen im Bereich von nA erzielt, dabei wurde eine Oberflächenschicht mit PbS kolloidalen Quantenpunkten (quan- tum dots) verwendet.
Der Sensor kann für optische Kommunikationssysteme, für Bildaufnahmen und auch für photovoltaische Anlagen eingesetzt werden.
Unter Photonen werden vorzugsweise Photonen im sichtbaren Spektralbereich, im nahen UV und im Infrarotbereich verstanden. Für die Absorption von Photonen werden für die Oberflächenschicht eine oder mehrere photoaktive Schichten, ins besondere Quantenpunkte, J-Aggregate und/oder Chalkogenide wie z.B. HgS (Zin nober), CdS (Cadmiumgelb), CdSe und insbesondere Übergangsmetalldichalko- genide eingesetzt. Es kann als Oberflächenschicht die Graphenschicht verwendet werden, insbesondere eine oberste Lage der mehrlagigen Graphenschicht. Die Oberflächenschicht kann auch durch modifiziertes oder funktionalisiertes Graphen gebildet sein.
Für den Nachweis von Fremdstoffen können die für die Absorption von Photonen im vorangegangenen Absatz angegebenen Oberflächenschichten eingesetzt wer den. Zudem können Linker-Biomoleküle als Oberflächenschicht eingesetzt werden. Fremdstoffe sind typischerweise Atome oder Moleküle. Sie gelangen insbesondere für sich allein, ohne Lösungsmittel oder dergleichen, auf die Oberfläche. Es kann sich zum Beispiel um Mikrostaub, Feinstaub, Gas handeln. Die Fremdstoffe können auch chemische Reaktionen mit der Oberflächenschicht oder mit einem anderen Partner eingehen. Vorzugsweise werden sie adsorbiert, also über sog. Van-der- Waals Kräfte an der Oberfläche gehalten. Die Fremdstoffe können chemo- und/o der bioaktiv sein.
Bei einer auf angelagerte Fremdstoffe elektrisch reagierenden Oberflächenschicht ist es vorteilhaft, dass Reinigungsverfahren oder -mittel vorgesehen sind, um nach einer erfolgten Anlagerung die Fremdstoffe wieder von der Oberflächenschicht zu lösen. Es können beispielsweise auch neuronale Signale erfasst werden. Eine An wendung ist im Bereich direkter Erfassung von in vivo elektrischen Signalen, eine andere Anwendung ist im Bereich von implementierten Biosensoren, die chemisch gebundene Linker-Moleküle verwenden, welche die Selektivität von spezifischen Biomolekülen erhöhen. Wenn ein nachzuweisendes Molekül an den Linker andockt bzw. an ihn bindet, überträgt es eine Ladung in die Graphenschicht oder induziert ein elektrisches Feld in dieser, so dass die Ladungsverteilung in der Graphenschicht beeinflusst wird.
Die Graphenschicht hat vorzugsweise Abmessungen im Bereich lxl bis 15x15 pm, beispielsweise etwa 10x10 pm. Die Fläche der Barriere liegt vorzugsweise zwischen 1 pm2 und 400 pm2, vorzugsweise im Bereich unter 120 pm2. Die Graphenschicht weist vorzugsweise n = l bis 15, insbesondere n = l bis 10 und besonders bevorzugt n = l bis 5 Monolagen Graphen auf. Das Material der Barriere kann ein Isolator oder ein Halbleiter sein. Es kommen beispielsweise Si02, AI203, hBN, SiN, MoS2 oder dergleichen infrage. Die Diode hat eine zweidimensionale Sperrschicht. Unter Beleuchtung absorbiert die Oberflächenschicht Licht. Wenn die Oberflächen schicht beispielsweise Quantenpunkte aufweist, werden Elektronen-Loch-Paare in den Quantenpunkten erzeugt, je nach verwendeten Quantenpunkten. Das Elektron oder das Loch geht an das Graphen über und ändert dort die Ladungsverteilung und/oder Dotierung. Dies kann man elektrisch auslesen, indem man zum Beispiel den Widerstand oder die Kapazität der Diode misst.
Entsprechende Vorgänge laufen ab, wenn eine chemo- bzw. bioaktiver Graphen- Diode verwendet wird. Man kann einen Adsorptionsvorgang während des Adsorp tionsvorgangs mitverfolgen. Durch Fremdstoffe, die zunehmend auf die Oberfläche gelangen, erfolgt eine Ladungsverschiebung, die zu einer Änderung des Wider standes und der Kapazität der Diode führt. Diese Änderung kann durch geeignete Messverfahren nachgewiesen werden. Es kann beispielsweise der Widerstand ge messen werden. Die Diode kann auch mit einer Induktivität verbunden werden, sodass ein Schwingkreis gebildet wird, der eine Resonanzfrequenz hat, welche sich bei Ändern der Kapazität der Diode verändert.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den übrigen An sprüchen und aus der nun folgenden Beschreibung eines Ausführungsbeispiels der Erfindung, das nicht einschränkend zu verstehen ist. Hierzu wird Bezug auf die Zeichnung genommen, in dieser zeigen
Figur 1: ein prinzipielles Schnittbild quer zur Sperrschicht durch den Sensor und mit einer Nachweiseinrichtung, und
Figur 2 ein Schnittbild wie Figur 1, jedoch nun mit einer durch mindestens eine oberste Lage einer Graphenschicht gebildeten Oberflächenschicht.
Die Diode des Sensors hat eine Metallelektrode 20, eine Barriere 22 und eine Gra phenschicht 24. Diese Anordnung wird auch als MIG (metal-insulator-graphene) bezeichnet. Sie bildet einen zweidimensionalen Übergang. Auf der von der Barriere 22 abgewandten Seite der Graphenschicht 24 befindet sich eine Oberflächen schicht 26. Sie kann sich in einer Alternative auch zwischen der Barriere 22 und der Graphenschicht 24 befinden. Sie ist speziell ausgelegt für das Ereignis, für das der Sensor empfindlich ist, also Licht und/oder Fremdstoffe. Als lichtempfindliche Oberflächenschicht 26 kommen insbesondere photoaktive Materialien, beispiels weise Quantenpunkte, J-Aggregate, ins besondere in Form von Farbstoffmolekülen (z.B. Merocyanine, Rhodamin) und Chalkogenide, insbesondere Metallchalko- genide und hier vorzugsweise Übergangsmetall-chalkogenide. Aufgabe der Ober flächenschicht ist es, dem Sensor eine Lichtempfindlichkeit und/oder Empfindlich keit für die Adsorption von Fremdstoffen zu geben. Bei Absorption von Licht oder Adsorption eines Fremdstoffs werden freie Ladungsträger aus der Oberflächen schicht in die Graphenschicht 24 abgegeben und/oder ändert sich die Ladungsver teilung in der Oberflächenschicht, zum Beispiel durch die Dipolmomente. Dies führt jeweils zu einer Änderung der Ladungsverteilung in der Graphenschicht 24, bei spielsweise der Dotierung und oder der Verteilung der Ladungsträger. Dadurch ändern sich der Widerstand und die Kapazität der MIG Diode.
Als Metall für die Metallelektrode 20 kommt jedes beliebige Metall infrage, bei spielsweise AI, Ti, Au oder auch ein ferromagnetisches Material wie zum Beispiel Ni, Fe, Co. die Metallelektrode hat eine Dicke von typischerweise 1 nm bis zu eini gen Millimetern, beispielsweise 3 mm. Die Barriere 22 ist aus isolierendem oder halbleitendem Material. Sie hat typischerweise eine Dicke von 1 bis 15 nm.
Die Metallelektrode 20 kann auf einem Substrat (nicht dargestellt) angeordnet sein, um sie mechanisch zu fixieren. Dieses Substrat trägt nicht zur Funktionalität bei. Es kann starr oder flexibel sein. Vorzugsweise ist es sehr dünn, insbesondere eine wenige pm dicke Folie oder ein starrer Träger.
Der Anschluss der Diode erfolgt in bekannter Weise durch Kontakte an der Gra phenschicht 24 und an der Metallelektrode 20. In beiden Figuren ist auch jeweils eine Nachweiseinrichtung eingezeichnet, die diese Kontakte verwendet. Sie hat eine Spannungsquelle 28 und ein Strommessgerät 30. Es wird jeweils der ohmsche Widerstand der Diode gemessen. Hierzu ist die Spannungsquelle 28 mit der Me tallelektrode 20 verbunden. Die Spannungsquelle 28 ist ihrerseits mit dem Strom messgerät 30 verbunden, das seinerseits an die Graphenschicht 24 angeschlossen ist.
In der Ausführung nach Figur 1 fällt Licht von oben auf die Oberflächenschicht 26 und wird dort absorbiert. In der Ausführung nach Figur 2 wird die Oberflächenschicht 26 durch eine oder mehrere oberste Lagen der mehrlagigen Graphenschicht 24 gebildet. Durch einen Pfeil 32 ist die Adsorption eines Gasmo leküls angedeutet.
Der Sensor zum Nachweis für auf seine Oberfläche einfallende Photonen und/oder sich auf seiner Oberfläche anlagernde Fremdstoffe hat a) eine Diode mit einer zweidimensionalen Sperrschicht basierend auf einer Schichtanordnung aus einer Metallelektrode 20, einer dielektrischen Barriere 22 und einer Graphenschicht 24, und b) eine über unter der Graphenschicht 24 befindliche, auf Photonen und/oder angelagerte Fremdstoffe elektrisch reagierende Oberflächenschicht 26, die die Oberfläche des Sensors bildet.
Begriffe wie im Wesentlichen, vorzugsweise und dergleichen sowie möglicherweise als ungenau zu verstehende Angaben sind so zu verstehen, dass eine Abweichung um plusminus 5 %, vorzugsweise plusminus 2 % und insbesondere plusminus ein Prozent vom Normalwert möglich ist. Die Anmelderin behält sich vor, beliebige Merkmale und auch Untermerkmale aus den Ansprüchen und/oder beliebige Merk male und auch Teilmerkmale aus einem Satz der Beschreibung in beliebiger Art mit anderen Merkmalen, Untermerkmalen oder Teilmerkmalen zu kombinieren, dies auch außerhalb der Merkmale unabhängiger Ansprüche. Die Anmelderin be hält sich weiterhin vor, beliebige Merkmale und auch Teilmerkmale zu streichen.
Hinweis auf Förderung
Das Projekt, das zu diesem Antrag geführt hat, wurde im Rahmen der Finanzhil fevereinbarung Nr. 649953 und der entsprechenden Teilprojekte aus dem For- schungs- und Innovationsprogramm „Horizont 2020" der Europäischen Union fi nanziert. Bezugszeichen Metallelektrode Barriere Graphenschicht Oberflächenschicht Spannungsquelle Strommessgerät Pfeil

Claims

1 Patentansprüche
1. Sensor zum Nachweis für auf seine Oberfläche einfallende Photonen und/oder sich auf seiner Oberfläche anlagernde Fremdstoffe, wobei der Sensor a) eine Diode mit einer zweidimensionalen Sperrschicht basierend auf einer Schichtanordnung aus einer Metallelektrode (20), einer die lektrischen Barriere (22) und einer Graphenschicht (24), und b) eine über und auf der Graphenschicht (24) befindliche, auf Photonen und/o der angelagerte Fremdstoffe elektrisch reagierende Oberflächenschicht (26), die die Oberfläche des Sensors bildet, aufweist.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass die Oberflächen schicht (26) bei Absorption von Photonen und/oder Anlagerung eines Fremdstoffs mit einer Verschiebung elektrischer Ladungsträger reagiert, insbesondere freie Ladungsträger in die Graphenschicht (24) abgibt.
3. Sensor nach einem der vorangegangenen Ansprüche, dadurch gekenn zeichnet, dass der Sensor Photonen nachweist, und dass die Oberflä chenschicht (26) Quantenpunkte (quantum dots), J-Aggregate, insbe sondere J-Aggregate in Form von organischen Farbstoffmolekülen, und/oder Chalkogenide aufweist.
4. Sensor nach einem der vorangegangenen Ansprüche, dadurch gekenn zeichnet, dass die Barriere (22) aus einem isolierenden oder halbleiten den Material hergestellt ist.
5. Sensor nach einem der vorangegangenen Ansprüche, dadurch gekenn zeichnet, dass die Barriere (22) eine Dicke von größer null und kleiner 20 nm, insbesondere 1 bis 15 nm aufweist.
6. Sensor nach einem der vorangegangenen Ansprüche, dadurch gekenn zeichnet, dass die Fläche der Barriere (22) zwischen 1 und 400 pm2, insbesondere 4 bis 120 pm2 beträgt und besonders bevorzugt kleiner als 100 pm2 ist. 2
7. Sensor nach einem der vorangegangenen Ansprüche, dadurch gekenn zeichnet, dass die Graphenschicht (24) n = l bis 20, insbesondere n = l bis 10 Monolagen Graphen aufweist.
8. Verfahren zum Nachweis von Photonen und/oder sich anlagernden oder angelagerter Fremdstoffe mit einem Sensor nach einem der vorangegan genen Ansprüche, gekennzeichnet durch eine Messung der Änderung des Widerstandes und/oder der Kapazität zwischen den Anschlüssen der Di ode.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass eine Null- Messung durchgeführt wird, bevor der Sensor mit Photonen bestrahlt wird und/oder bevor sich Fremdstoffe auf der Oberfläche des Sensors anlagern, und dass danach mindestens eine weitere Messung durchge führt wird.
10. Verfahren nach einem der vorangegangenen Verfahrensansprüche, dadurch gekennzeichnet, dass eine Messung durchgeführt wird, während der Sensor mit Photonen bestrahlt wird und/oder während sich Fremd stoffe auf der Oberfläche des Sensors anlagern.
11. Verfahren nach einem der vorangegangenen Verfahrensansprüche, dadurch gekennzeichnet, dass nach einer Adsorption von Fremdstoffen und durchgeführten Messung die Oberfläche des Sensors von den Fremd stoffen gereinigt wird.
PCT/EP2020/070460 2019-08-15 2020-07-20 Sensor zum nachweis für auf seine oberfläche einfallende photonen und/oder sich auf seiner oberfläche anlagernde fremdstoffe WO2021028157A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20743672.6A EP4014260A1 (de) 2019-08-15 2020-07-20 Sensor zum nachweis für auf seine oberfläche einfallende photonen und/oder sich auf seiner oberfläche anlagernde fremdstoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019122009.2 2019-08-15
DE102019122009 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021028157A1 true WO2021028157A1 (de) 2021-02-18

Family

ID=71738146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070460 WO2021028157A1 (de) 2019-08-15 2020-07-20 Sensor zum nachweis für auf seine oberfläche einfallende photonen und/oder sich auf seiner oberfläche anlagernde fremdstoffe

Country Status (2)

Country Link
EP (1) EP4014260A1 (de)
WO (1) WO2021028157A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344358B2 (en) 2010-09-07 2013-01-01 International Business Machines Corporation Graphene transistor with a self-aligned gate
US20130162333A1 (en) * 2011-12-23 2013-06-27 Nokia Corporation Apparatus and associated methods
US20140264275A1 (en) 2013-03-13 2014-09-18 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
JP2016151456A (ja) * 2015-02-17 2016-08-22 富士通株式会社 ガスセンサ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344358B2 (en) 2010-09-07 2013-01-01 International Business Machines Corporation Graphene transistor with a self-aligned gate
US20130162333A1 (en) * 2011-12-23 2013-06-27 Nokia Corporation Apparatus and associated methods
US20140264275A1 (en) 2013-03-13 2014-09-18 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
JP2016151456A (ja) * 2015-02-17 2016-08-22 富士通株式会社 ガスセンサ及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GERASIMOS KONSTANTATOS ET AL: "Hybrid graphene-quantum dot phototransistors with ultrahigh gain", NATURE NANOTECHNOLOGY, vol. 7, no. 6, 6 May 2012 (2012-05-06), pages 363 - 368, XP055039980, ISSN: 1748-3387, DOI: 10.1038/nnano.2012.60 *
NAT. NANOTECHNOL, vol. 7, 2012, pages 363
ROBERTO URCUYO ET AL: "High Performance Graphene-Oxide-Metal Diode through Bias-Induced Barrier Height Modulation", ADVANCED ELECTRONIC MATERIALS, vol. 2, no. 9, 21 July 2016 (2016-07-21), pages 1600223, XP055309138, ISSN: 2199-160X, DOI: 10.1002/aelm.201600223 *

Also Published As

Publication number Publication date
EP4014260A1 (de) 2022-06-22

Similar Documents

Publication Publication Date Title
DE112016000504B4 (de) Detektor für elektromagnetische wellen und detektorarray für elektromagnetische wellen
EP2188855B1 (de) Organischer photodetektor zur detektion infraroter strahlung, verfahren zur herstellung dazu und verwendung
EP2065698B1 (de) Chip zum Analysieren eines Mediums mit integriertem organischem Lichtemitter und Verfahren zur Herstellung eines solchen Chips
DE102014118917B4 (de) Detektoren aus hochreinem Germanium
Grotevent et al. Temperature-dependent charge carrier transfer in colloidal quantum dot/graphene infrared photodetectors
DE2949862A1 (de) Festkoerperstrahlungsdetektor und anordnungen derselben
DE112021002426T5 (de) Verfahren und vorrichtung
Benlamri et al. Planar microwave resonator with electrodeposited ZnO thin film for ultraviolet detection
WO2021028157A1 (de) Sensor zum nachweis für auf seine oberfläche einfallende photonen und/oder sich auf seiner oberfläche anlagernde fremdstoffe
EP2406828A1 (de) Strahlungsempfangendes halbleiterbauelement und optoelektronisches bauteil
DE102011077961A1 (de) Schwachlichtdetektion mit organischem fotosensitivem Bauteil
WO2010079206A1 (de) Akkumulierender feuchtesensor
KR101658896B1 (ko) 근적외선용 디텍터소자 및 그 제조방법
WO2008152071A1 (de) Ionensensitiver halbleitersensor
DE102007038905A1 (de) Optischer Positionssensor auf organischer Basis
DE102006013461B3 (de) Photodetektoranordnung, Messanordnung mit einer Photodetektoranordnung und Verfahren zum Betrieb einer Messanordnung
DE102006013460B3 (de) Photodetektoranordnung, Messanordnung mit einer Photodetektoranordnung und Verfahren zum Betrieb einer Messanordnung
DE102020200357B4 (de) Detektionseinrichtung für einen mikromechanischen Kombinationssensor
WO2016020240A1 (de) Sensor zum erfassen zumindest einer chemischen spezies und verfahren zu dessen herstellung
DE102014200352A1 (de) Strahlungsdetektorvorrichtung und Verfahren zum Betreiben einer Strahlungsdetektorvorrichtung
EP4014261A1 (de) Drahtloser sensor für photonen und/oder fremdstoffe mit einem graphen-fet
WO2022253733A1 (de) Photonendetektionselement, verfahren zum betrieb eines photonendetektionselements, und verfahren zur herstellung eines bildsensors
DE102016220086A1 (de) Mikrostrukturiertes organisches Sensorbauelement und Verfahren zu dessen Herstellung
DE102017206279A1 (de) Verfahren zum Fertigen einer Kristallkörpereinheit für eine Sensorvorrichtung, Verfahren zum Herstellen einer Sensorvorrichtung, Verfahren zum Erfassen einer Messgröße, Kristallkörpereinheit und Sensorvorrichtung
Grotevent Nanoprinted Quantum DOT/Graphene Infrared Photodetectors, and their Temperature-Dependent Mechanism of Charge Carrier Transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20743672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020743672

Country of ref document: EP

Effective date: 20220315