WO2021027026A1 - Procédé de reconnaissance de la nature de vibrations d'ondes sismiques, basé sur l'apprentissage automatique - Google Patents

Procédé de reconnaissance de la nature de vibrations d'ondes sismiques, basé sur l'apprentissage automatique Download PDF

Info

Publication number
WO2021027026A1
WO2021027026A1 PCT/CN2019/107486 CN2019107486W WO2021027026A1 WO 2021027026 A1 WO2021027026 A1 WO 2021027026A1 CN 2019107486 W CN2019107486 W CN 2019107486W WO 2021027026 A1 WO2021027026 A1 WO 2021027026A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
seismic
model
training
data
Prior art date
Application number
PCT/CN2019/107486
Other languages
English (en)
Chinese (zh)
Inventor
刘昕靓
任涛
王柳婷
杨丹丹
商冰冰
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021027026A1 publication Critical patent/WO2021027026A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology

Definitions

  • the present invention relates to the technical field of machine learning, in particular to a method for identifying seismic wave vibration properties based on machine learning.
  • Natural earthquakes are squeezing and collision between the earth's plates and plates, causing dislocations and ruptures on the edges and inside of the plates.
  • Unnatural earthquakes also known as induced earthquakes, refer to abnormal seismic activities in a local area caused by human activities, such as artificial nuclear explosion tests or collapses. Observing the seismic wave signals of natural and non-natural earthquakes recorded at each station of the Seismic Network Center, it is found that the waveforms of the two are very similar. If they are not distinguished and screened, the natural and artificial seismic waveforms will be mixed to study the earthquake. The scholars mislead and influence the research work of seismology.
  • Machine learning theory and application research began in 1986. With the rapid development of artificial intelligence, it has a wide range of applications in the fields of image recognition, signal processing, predictive evaluation, combinatorial optimization, and knowledge engineering. In recent years, machine learning methods have begun to be used to analyze and process seismic waveform data. How to apply the ever-changing computer frontier technology to the classification of seismic events so as to improve the accuracy and stability of recognition is still one of the topics that need to be studied. . Domestic experts and scholars combined genetic algorithm (GA) with BP neural network when identifying natural earthquakes and unnatural earthquakes, and established a genetic BP network (GA-BP network). The genetic algorithm is used to optimize the neural network globally, and then Use the BP backpropagation algorithm to accurately train the neural network. Dowla et al.
  • MLP multilayer perceptron
  • HHT Hilbert Huang Transform
  • the present invention provides a method for identifying seismic wave vibration properties based on machine learning.
  • the present invention classifies waveforms based on waveform data to identify natural earthquakes and non-natural earthquakes.
  • the Python programming language is mainly used to process the waveform data
  • the machine learning method-artificial neural network is used to classify and recognize seismic waves.
  • the invention adopts the supervised learning method to obtain the seismic property classifier, that is, the artificial neural network model is trained with data of known categories.
  • the input of the model is a feature vector, including features that can reflect the nature of the earthquake.
  • the present invention considers both the time domain and the frequency domain to ensure that comprehensive features of the waveform are obtained.
  • the technical solution adopted by the present invention is: a method for identifying the nature of seismic wave vibration based on machine learning; including the following steps:
  • Step 1 Read the original seismic waveform data and determine the epicenter distance of the seismic waveform that needs to be classified and identified;
  • step 1 The specific steps of step 1 are:
  • Step 1.1 Use the Python library obspy in Anaconda for the seismic field to read the original seismic waveform data, and select the waveform according to the spherical distance between the seismic source and the station;
  • Step 1.2 Use the STA/LTA algorithm to find the interval containing the earthquake starting point, and use the AIC algorithm to accurately locate the time of the first arrival of the P wave;
  • Step 1.3 After determining the first arrival of the P wave, intercept the seismic waveform to a uniform length to facilitate the extraction of waveform characteristics for subsequent analysis and processing;
  • Step 2 Perform time-frequency domain analysis on the natural earthquake and unnatural seismic waveforms respectively, the time-domain analysis obtains the waveform complexity characteristics, the frequency domain analysis obtains the spectral ratio characteristics, and the two characteristic values are calculated to obtain the time-frequency domain comprehensive characteristics Value waveform complexity/spectrum ratio;
  • the waveform complexity and spectral ratio characteristics are respectively the characteristic quantities that can characterize the waveform trend in the time domain and the frequency domain;
  • Step 3 Use the artificial neural network to train the model.
  • the model input is the feature vector of the waveform instance, that is, the feature vector composed of the three feature values obtained in step 2.
  • the output result is calculated by two hidden layers, and the output result is "1 "Indicates that the category of the waveform is natural earthquake, and the output result of "0" indicates that the category of the waveform is non-natural earthquake;
  • Step 4 Divide the seismic waveform data into two disjoint data sets, the training set and the test set, use the backpropagation algorithm to update the model parameters, continuously fit the training data, and reduce the value of the loss function; test must be used during model training Collect data to evaluate the effect of the model. After a specified number of iterations of training or the model's test accuracy reaches a certain standard, it means that the model training is completed;
  • Step 5 Save the model.
  • the output result of the saved model can be directly called for subsequent seismic waveform classification problems, without tedious training.
  • the beneficial effects of using the above technical solutions are: the intensity and impact of non-natural earthquakes are smaller than those of natural earthquakes. If the non-natural earthquakes cannot be identified and screened out in time, people will mistakenly believe that these events are strong earthquakes. The precursors of confuses the earthquake catalogue established based on this record, which will affect the future research work of seismology. Therefore, the classification and identification of natural earthquakes and non-natural earthquakes in seismic signals are helpful for monitoring and early warning of destructive tectonic earthquakes, for small-equivalent nuclear test reconnaissance, for the study of seismology, for protecting human property and safeguarding national interests. World peace has important meaning.
  • Fig. 1 is a flowchart of waveform complexity feature extraction according to the present invention
  • Figure 2 is a flow chart of the spectral ratio feature extraction of the present invention
  • Fig. 3 is a structural diagram of a model constructed by an artificial neural network used in the present invention.
  • the software environment of this embodiment is the WINDOWS 7 system, and the integrated development environment selects Pycharm IDE.
  • the identification method of seismic wave vibration properties based on machine learning includes the following steps:
  • Step 1 Read the original seismic waveform data and determine the epicenter distance of the seismic waveform that needs to be classified and identified;
  • the epicenter distance is the spherical distance between the station that recorded the waveform and the epicenter;
  • step 1 The specific steps of step 1 are:
  • Step 1.1 Use the Python library obspy in Anaconda for the seismic field to read the original seismic waveform data, and select the local seismic waveform according to the spherical distance between the source and the station;
  • Step 1.2 Use the STA/LTA algorithm to find the interval containing the earthquake starting point, and use the AIC algorithm to accurately locate the time of the first arrival of the P wave;
  • Step 1.3 After determining the first arrival of the P wave, intercept the seismic waveform to a uniform length to facilitate the extraction of waveform characteristics for subsequent analysis and processing;
  • the seismic wave transmission file ".mseed” is read through the obspy library and used to find the starting point by combining STA/LTA and AIC; the data is intercepted to a uniform length to facilitate the extraction of waveform features.
  • This embodiment determines that the seismic wave determines the P wave first arrival After the earthquake's starting point, the data of 3 seconds before the starting point and the data of 160 seconds after the starting point are intercepted, a total of 163s of data are processed for subsequent analysis;
  • Step 2 Perform time-frequency domain analysis on the natural earthquake and unnatural seismic waveforms respectively, the time-domain analysis obtains the waveform complexity characteristics, the frequency domain analysis obtains the spectral ratio characteristics, and the two characteristic values are calculated to obtain the time-frequency domain comprehensive characteristics Value waveform complexity/spectrum ratio;
  • the waveform complexity and spectral ratio characteristics are the characteristic quantities that can characterize the waveform trend at the time domain level and the frequency domain level, respectively, and the extraction process is shown in Figure 1 and Figure 2;
  • Step 3 Use the artificial neural network to train the model.
  • the model input is the feature vector of the waveform instance, that is, the feature vector composed of the three feature values obtained in step 2, and the output result is calculated through two hidden layers ,
  • the output result of "1" indicates that the category of the waveform is natural earthquake, and the output result of "0" indicates that the category of the waveform is non-natural earthquake;
  • Hidden layers 2 Number of hidden layer neurons 6 Prevent overfitting L2 regularization Learning rate Exponential decay algorithm update Loss function Binary cross entropy loss function Number of training iterations 500,000
  • Step 4 Divide the seismic waveform data into two disjoint data sets, the training set and the test set, use the backpropagation algorithm to update the model parameters, continuously fit the training data, and reduce the value of the loss function; test must be used during model training Collect data to evaluate the effect of the model. After a specified number of iterations of training or the model's test accuracy reaches a certain standard, it means that the model training is completed;
  • the setting standard for the number of training iterations in this embodiment is 500,000;
  • Step 5 Save the model.
  • the output result of the saved model can be directly called for subsequent seismic waveform classification problems, without tedious training.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geophysics (AREA)
  • Software Systems (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention concerne un procédé de reconnaissance de la nature de vibrations d'ondes sismiques, basé sur l'apprentissage automatique, ledit procédé ayant trait au domaine technique de l'apprentissage automatique. La mise en oeuvre du procédé selon l'invention comprend quatre étapes : le traitement de formes d'ondes sismiques, l'extraction de valeurs de caractéristiques, l'entraînement de modèle et l'application de modèle, ces étapes consistant : à calculer la distance entre une source sismique et une station, à examiner une distance épicentrale, à lire des données de formes d'ondes sismiques à trois composantes de la distance épicentrale examinée, au moyen d'un algorithme à fenêtre temporelle longue/fenêtre temporelle courte (STA/LTA) et d'un procédé AIC permettant de déterminer avec précision l'emplacement d'un premier mouvement d'ondes sismiques, puis d'intercepter une longueur de données sismiques ; à effectuer respectivement une analyse de domaine temporel et une analyse de domaine fréquentiel sur une forme d'onde sismique ; à extraire trois complexités de forme d'onde caractéristiques, un rapport de spectre et un rapport complexité de forme d'onde/spectre comme entrée d'un modèle de réseau neuronal artificiel ; et à entraîner un modèle de réseau neuronal artificiel avec deux couches cachées utilisées pour identifier un problème à deux classifications, et à émettre en sortie la probabilité d'une catégorie à laquelle appartient la forme d'onde. Le modèle entraîné par le procédé selon l'invention peut déterminer avec précision et efficacité une catégorie à laquelle appartient une forme d'onde.
PCT/CN2019/107486 2019-08-15 2019-09-24 Procédé de reconnaissance de la nature de vibrations d'ondes sismiques, basé sur l'apprentissage automatique WO2021027026A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910752213.2A CN110488351A (zh) 2019-08-15 2019-08-15 基于机器学习的地震波震动性质识别方法
CN201910752213.2 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027026A1 true WO2021027026A1 (fr) 2021-02-18

Family

ID=68551095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107486 WO2021027026A1 (fr) 2019-08-15 2019-09-24 Procédé de reconnaissance de la nature de vibrations d'ondes sismiques, basé sur l'apprentissage automatique

Country Status (2)

Country Link
CN (1) CN110488351A (fr)
WO (1) WO2021027026A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210117737A1 (en) * 2019-10-18 2021-04-22 Korea University Research And Business Foundation Earthquake event classification method using attention-based convolutional neural network, recording medium and device for performing the method
CN113671564A (zh) * 2021-08-11 2021-11-19 西安石油大学 基于narx动态神经网络的微地震有效事件自动拾取方法
CN115963548A (zh) * 2023-01-16 2023-04-14 中国矿业大学 一种基于反绎学习的矿井微震p波到时拾取模型构建方法
CN116047604A (zh) * 2023-02-23 2023-05-02 成都理工大学 基于振幅统计和时频分析的深度震相快速拾取方法
CN116046307A (zh) * 2022-12-12 2023-05-02 中铁西北科学研究院有限公司 一种适用于振动台含隧道边坡地震破坏模式的识别方法
CN116502154A (zh) * 2023-04-25 2023-07-28 中国地震局地球物理研究所 基于多维特征提取和XGBoost的地震分类方法及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257934B (zh) * 2020-01-17 2022-03-11 哈尔滨工业大学 基于二阶神经元深度神经网络的地震动峰值加速度预测方法
CN113960657A (zh) * 2020-07-20 2022-01-21 中国石油天然气股份有限公司 地震数据特征获取方法及系统
CN112230275B (zh) * 2020-09-14 2024-01-26 河南省地震局 地震波形的识别方法、装置及电子设备
CN112686315A (zh) * 2020-12-31 2021-04-20 山西三友和智慧信息技术股份有限公司 一种基于深度学习的非自然地震分类方法
CN112782762A (zh) * 2021-01-29 2021-05-11 东北大学 一种基于深度学习的地震震级判定方法
CN112799130A (zh) * 2021-02-03 2021-05-14 东北大学 一种基于深度学习的地震波振幅预测方法
CN112799128B (zh) * 2021-02-03 2021-10-22 北京航空航天大学 一种地震信号检测和震相提取的方法
CN113341459B (zh) * 2021-05-12 2022-04-12 北京大学 基于机器学习和动力学计算融合的地震定位方法与设备
CN114509811B (zh) * 2022-01-28 2022-12-02 中国地震局地球物理研究所 一种基于深度学习的单台站后方位角估计方法与装置
CN115421188B (zh) * 2022-08-23 2024-02-20 宿州学院 基于人工智能的微地震事件实时识别系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617513A (en) * 1992-03-06 1997-04-01 Schnitta; Bonnie S. Method for analyzing activity in a signal
CN102495425A (zh) * 2011-11-14 2012-06-13 北京科技大学 一种基于能量的微地震震源自动定位方法
CN107300715A (zh) * 2017-06-22 2017-10-27 禁核试北京国家数据中心 一种识别核爆炸地震事件的方法
CN107818309A (zh) * 2017-11-02 2018-03-20 中国地震局地壳应力研究所 一种基于信噪比分析的地震动p波在线自动提取方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108805269B (zh) * 2018-06-28 2021-11-30 杭州叙简科技股份有限公司 一种基于lstm循环神经网络拾取震相到时的方法
CN110082822B (zh) * 2019-04-09 2020-07-28 中国科学技术大学 利用卷积神经网络进行地震检测的方法
CN110032975B (zh) * 2019-04-15 2021-09-07 禁核试北京国家数据中心 一种地震震相的拾取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617513A (en) * 1992-03-06 1997-04-01 Schnitta; Bonnie S. Method for analyzing activity in a signal
CN102495425A (zh) * 2011-11-14 2012-06-13 北京科技大学 一种基于能量的微地震震源自动定位方法
CN107300715A (zh) * 2017-06-22 2017-10-27 禁核试北京国家数据中心 一种识别核爆炸地震事件的方法
CN107818309A (zh) * 2017-11-02 2018-03-20 中国地震局地壳应力研究所 一种基于信噪比分析的地震动p波在线自动提取方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210117737A1 (en) * 2019-10-18 2021-04-22 Korea University Research And Business Foundation Earthquake event classification method using attention-based convolutional neural network, recording medium and device for performing the method
US11947061B2 (en) * 2019-10-18 2024-04-02 Korea University Research And Business Foundation Earthquake event classification method using attention-based convolutional neural network, recording medium and device for performing the method
CN113671564A (zh) * 2021-08-11 2021-11-19 西安石油大学 基于narx动态神经网络的微地震有效事件自动拾取方法
CN116046307A (zh) * 2022-12-12 2023-05-02 中铁西北科学研究院有限公司 一种适用于振动台含隧道边坡地震破坏模式的识别方法
CN115963548A (zh) * 2023-01-16 2023-04-14 中国矿业大学 一种基于反绎学习的矿井微震p波到时拾取模型构建方法
CN115963548B (zh) * 2023-01-16 2024-01-23 中国矿业大学 一种基于反绎学习的矿井微震p波到时拾取模型构建方法
CN116047604A (zh) * 2023-02-23 2023-05-02 成都理工大学 基于振幅统计和时频分析的深度震相快速拾取方法
CN116047604B (zh) * 2023-02-23 2023-10-17 成都理工大学 基于振幅统计和时频分析的深度震相快速拾取方法
CN116502154A (zh) * 2023-04-25 2023-07-28 中国地震局地球物理研究所 基于多维特征提取和XGBoost的地震分类方法及系统

Also Published As

Publication number Publication date
CN110488351A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021027026A1 (fr) Procédé de reconnaissance de la nature de vibrations d'ondes sismiques, basé sur l'apprentissage automatique
CN109473120A (zh) 一种基于卷积神经网络的异常声音信号识别方法
Ruano et al. Seismic detection using support vector machines
Del Pezzo et al. Discrimination of earthquakes and underwater explosions using neural networks
Chin et al. Intelligent real-time earthquake detection by recurrent neural networks
Lin et al. Detection of gravitational waves using Bayesian neural networks
Riggelsen et al. A machine learning approach for improving the detection capabilities at 3C seismic stations
Cai et al. Anomaly detection of earthquake precursor data using long short-term memory networks
Liao et al. ARRU phase picker: Attention recurrent‐residual U‐Net for picking seismic P‐and S‐phase arrivals
Kim et al. Graph convolution networks for seismic events classification using raw waveform data from multiple stations
CN111814699A (zh) 一种面向swarm电磁卫星数据的深度学习地震预测方法
CN112799130A (zh) 一种基于深度学习的地震波振幅预测方法
Zhu et al. An STFT-LSTM system for P-wave identification
Liu et al. Intrusion detection based on IDBM
CN112526606A (zh) 一种基于异构多分类模型的震源类型预测方法和系统
Liu et al. Discrimination between earthquake P waves and microtremors via a generative adversarial network
Whitehill et al. Whosecough: In-the-wild cougher verification using multitask learning
Frost et al. TB or not TB? Acoustic cough analysis for tuberculosis classification
Madureira et al. A neural network seismic detector
León et al. Small-layered Feed-Forward and Convolutional neural networks for efficient P wave earthquake detection
CN113782051B (zh) 广播效果分类方法及系统、电子设备和存储介质
Yue et al. Seismic event classification based on a two-step convolutional neural network
Garcıa et al. Automatic detection of long period events based on subband-envelope processing
Sya’bani et al. Implementation of automatic first arrival picking on P-Wave seismic signal using logistic regression method
Sun et al. Micro‐seismic Event Detection of Hot Dry Rock based on the Gated Recurrent Unit Model and a Support Vector Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941340

Country of ref document: EP

Kind code of ref document: A1