WO2021027002A1 - 一种超低温介质动密封试验装置 - Google Patents

一种超低温介质动密封试验装置 Download PDF

Info

Publication number
WO2021027002A1
WO2021027002A1 PCT/CN2019/105933 CN2019105933W WO2021027002A1 WO 2021027002 A1 WO2021027002 A1 WO 2021027002A1 CN 2019105933 W CN2019105933 W CN 2019105933W WO 2021027002 A1 WO2021027002 A1 WO 2021027002A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
sensor
seal
medium
Prior art date
Application number
PCT/CN2019/105933
Other languages
English (en)
French (fr)
Inventor
王永青
韩灵生
刘阔
孔繁泽
刘海波
甘涌泉
戴明华
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US15/734,881 priority Critical patent/US11333571B2/en
Publication of WO2021027002A1 publication Critical patent/WO2021027002A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/025Details with respect to the testing of engines or engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/36Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested

Definitions

  • the invention belongs to the technical field of sealing tests, and specifically relates to an ultra-low temperature medium dynamic sealing test device.
  • ultra-low temperature media such as liquid hydrogen, liquid oxygen, and liquid nitrogen have been widely used in aerospace engine fuel supply, ultra-low temperature cooling processing, and low-temperature minimally invasive surgery.
  • the liquid rocket engine turbo pump, liquid nitrogen internal injection type ultra-low temperature processing spindle, hollow transmission type ultra-low temperature processing tool holder and other key components all involve ultra-low temperature medium dynamic sealing technology.
  • Reliable sealing is the key to ensuring the safe, efficient and stable operation of the above components.
  • the failures caused by sealing problems account for about 12.5% of the total failures of the rocket engine, and the leakage causes fuel consumption to increase by 3%-10%; the leakage of liquid nitrogen causes the ultra-low temperature machining spindle and tool holder to fail to cooperate, lubricate, and rotate, and cause serious damage.
  • the stability of liquid nitrogen transmission cannot guarantee the continuous and stable jet of the tool tip. Therefore, it is very important to design a reasonable sealing structure to obtain excellent sealing performance.
  • the low temperature characteristics of the ultra-low temperature medium can easily lead to structural deformation, loss of accuracy, and even leakage in the intermediate links of the sealing test device; at the same time, the ultra-low temperature medium is very easy to vaporize, making its leakage difficult to measure with conventional flowmeters.
  • the above-mentioned problems put forward high requirements on the heat insulation capacity, structural stability, low temperature resistance of the sensor, acquisition of measurement information and accuracy guarantee of the ultra-low temperature medium dynamic seal test device.
  • the above research fails to fully reflect the influence of the sealing structure on the sealing characteristics of the ultra-low temperature medium.
  • the area in contact with the fluid in the test device is not insulated, and the method for measuring a small amount of leakage or the leakage of the ultra-low temperature medium after gasification is not clear.
  • the present invention aims at the problem in the prior art that it is difficult for the testing device to achieve multi-level and high-precision testing of the ultra-low temperature medium dynamic seal, and the present invention proposes an ultra-low temperature medium dynamic seal test device.
  • the dynamic sealing test device adopts a vacuum rotor and a heat-insulated stator to prevent gasification of ultra-low temperature medium caused by external heat input to the greatest extent; ultra-low temperature resistant pressure, temperature, displacement, gas concentration and motor power sensors are installed in the device to obtain a full range of Seal performance characterization data; the device structure is highly adaptable, and it can complete the experimental research on multiple radial seals such as labyrinth, brush, honeycomb, lip seal, etc.; by replacing the rotor end sleeve, the seal gap and surface texture are studied
  • the influence of sealing performance Servo motor is used to control the test speed to realize the sealing test under multiple working conditions.
  • An ultra-low temperature medium dynamic seal test device characterized in that the ultra-low temperature medium dynamic seal test device includes a stator assembly, a rotor assembly, a sliding table 5.2, a servo motor assembly and a sensor assembly; the stator assembly and the rotor assembly cooperate to form a dynamic seal test Structure, the servo motor assembly provides power for the rotor assembly, and the sensor assembly is used to detect the sealing state;
  • the stator assembly includes vacuum hose 1.1, nut 1.2, metal stator 1.3, heat insulation sleeve 1.4, gland 1.6, countersunk screw one 1.7, countersunk screw two 1.8, static sealing ring 1.9, dynamic sealing ring 1.10 and measuring Cavity 1.11;
  • the metal stator 1.3 is a variable-diameter cylindrical structure, and its small diameter section is used as the medium inlet pipe 1.a.
  • the variable-diameter end surface of the metal stator 1.3 is provided with a displacement sensor installation hole 1.c, the metal stator 1.3
  • the circumferential surface is provided with a sensor installation port;
  • the vacuum hose 1.1 is connected with the medium inlet pipe 1.a of the metal stator 1.3 through a nut 1.2;
  • the heat insulation sleeve 1.4 is a cylindrical structure, one end is closed and the medium inlet is located in the center, and the isolation
  • the closed end of the heat sleeve 1.4 has a displacement sensor installation hole 2.d at the non-circular center.
  • the heat insulation sleeve 1.4 is assembled into the metal stator 1.3 by interference fit, and the displacement sensor installation hole 1.c is installed on the axis of the displacement sensor.
  • the axis of hole 2. 1.d coincides, the medium inlet of the heat insulation sleeve 1.4 is connected to the medium inlet pipe 1.a; the seal 1.5 is assembled into the metal stator 1.3 by interference fit; the heat insulation sleeve 1.4 and the seal 1.5 are assembled in parallel ; The axis of the metal stator 1.3, the heat insulation sleeve 1.4 and the seal 1.5 are coincident; the gland 1.6 is installed on the open end of the metal stator 1.3 through the countersunk head screw 1.7 and the countersunk screw two 1.8 to compress the heat insulation sleeve 1.4 and The seal 1.5 and the gland 1.6 have a through hole; the measuring chamber 1.11 is a hollow thin-walled cylindrical structure with two through holes of different sizes on the two end faces, corresponding to the metal stator 1.3 large diameter end and vacuum The outer diameter size of the rotor 2.1; the static sealing ring 1.9 is glued to the through hole corresponding to the position of the metal stator 1.3 to ensure static sealing; the dynamic
  • the sliding table 5.2 is installed on the base 5.1 through four bolts-5.5; the sliding table 5.2 includes a sliding seat 5.3 and a threaded rod; the sliding seat 5.3 moves in a direction under the action of the threaded rod; the stator assembly is installed through the support 1.12 On the sliding seat 5.3, the support 1.12 and the sliding seat 5.3 are fixed by four bolts and two 5.6; the stator assembly moves in the direction of the sliding seat 5.3;
  • the rotor assembly includes a vacuum rotor 2.1, a shaft sleeve 2.2, a screw 2.3, a screw 2.4, a front bearing 2.5, a rear bearing 2.6, and a coupling 2.8;
  • the vacuum rotor 2.1 is a cylindrical hollow structure with variable outer diameter, along the axis There is an internal rotor channel 2.a for medium circulation;
  • the vacuum rotor 2.1 has a ring-shaped vacuum cavity 2.b inside, and the vacuum cavity 2.b is coaxial with the vacuum rotor 2.1 to create heat insulation for the vacuum rotor 2.1
  • the vacuum rotor 2.1 has a rotor outer hole 2.7 in the middle, which communicates with the rotor inner channel 2.a for discharging medium;
  • the shaft sleeve 2.2 is a thin-walled sleeve structure with one end closed, and the closed end is open The through hole communicates with the rotor inner channel 2.a for medium circulation;
  • the shaft sleeve 2.2
  • the stator assembly is pushed by the sliding table 5.2, so that the shaft sleeve 2.2 passes through the measurement cavity 1.11 and the gland 1.6 into the metal stator 1.3, so that the stator assembly is sleeved outside the rotor assembly; the medium inlet pipe 1.a
  • the stator inner channel 1.b, the medium inlet of the heat insulation sleeve 1.4, the through hole of the shaft sleeve 2.2, and the rotor inner channel 2.a together constitute a medium flow channel; the measuring chamber 1.11 and the rotor assembly are moved by a movable sealing ring 1.10 seal;
  • the servo motor components include a motor 3.1, a servo driver 3.2 and a cable 3.3; the motor 3.1 is directly connected to the vacuum rotor 2.1 through a coupling 2.8, and the two are coaxial; the motor 3.1 and the servo driver 3.2 are connected through a cable 3.3 , Used to transmit signals and realize motor control; motor 3.1 is installed on the motor support 5.13 through four bolts, 5.15; motor support 5.13 is installed on the motor base 5.11 through four bolts, 5.14; motor base 5.11 is installed on the motor base 5.11 through four bolts, 5.12 Installed on the base 5.1;
  • the sensor components include low temperature resistant displacement sensor 4.1, temperature sensor one 4.2, temperature sensor two 4.3, temperature sensor three 4.4, temperature sensor four 4.5, temperature sensor five 4.6, temperature sensor six 4.7, temperature sensor seven 4.8, temperature sensor Eight 4.9, temperature sensor nine 4.10, temperature sensor ten 4.11, temperature sensor eleven 4.12, temperature sensor twelve 4.13, pressure sensor one 4.14, pressure sensor two 4.15, pressure sensor three 4.16, pressure sensor four 4.17, pressure sensor five 4.18, Pressure sensor 6 4.19, pressure sensor 7 4.20, gas concentration sensor 4.21 and power sensor 4.22; displacement sensor 4.1 is installed in displacement sensor mounting hole 1.c and displacement sensor mounting hole 2.
  • the temperature sensor 4.2 is at Mounting point one 4.a is installed on the outside of the metal stator 1.3 to measure the temperature of the outer surface of the metal stator 1.3; temperature sensor two 4.3 is installed on the outside of the metal stator 1.3 at mounting point two 4.b, the mounting hole of the temperature sensor two 4.3 is Blind hole, the distance between the bottom of the blind hole and the inner surface of the metal stator 1.3 is 0.5mm, which is used to measure the temperature of the inner surface of the metal stator 1.3; the temperature sensor three 4.4 is installed at the installation point three 4.c outside the metal stator 1.3 and inserted In the heat insulation sleeve 1.4, the mounting hole of the temperature sensor 34.4 is a blind hole, and the distance between the bottom of the blind hole and the outer surface of
  • the mounting hole of the temperature sensor four 4.5 is a blind hole.
  • the distance between the bottom of the blind hole and the inner surface of the thermal insulation sleeve 1.4 is 0.5mm, It is used to measure the temperature of the inner surface of the heat insulation sleeve 1.4;
  • the temperature sensor 54.6 is installed at the installation point 5 4.e on the outside of the metal stator 1.3 and passes through the heat insulation sleeve 1.4 to measure the temperature of the ultra-low temperature medium before sealing;
  • temperature sensor 64.7, temperature sensor 74.8, temperature sensor 84.9, temperature sensor 9 4.10, temperature sensor 10 4.11, temperature sensor 11 4.12 and temperature sensor 12 4.13 are respectively at installation point 6 4. f.
  • Installation point seven 4.g, installation point eight 4.h, installation point nine 4.i, installation point ten 4.j, installation point eleven 4.k, and installation point twelve 4.l are installed in the seal 1.5
  • the outside, and through the seal 1.5, is used to measure the temperature change of the ultra-low temperature medium at different positions; in the sensor installation port of the metal stator 1.3, pressure sensor one 4.14, pressure sensor two 4.15, and pressure sensor three 4.16, pressure sensor four 4.17, pressure sensor five 4.18, pressure sensor six 4.19 and pressure sensor seven 4.20 respectively at installation point thirteen 4.m, installation point fourteen 4.n, installation point fifteen 4.o, and installation point ten
  • Six 4.p, installation point seventeen 4.q, installation point eighteen 4.r and installation point nineteen 4.s are installed outside the seal 1.5 and pass through the seal 1.5 for measuring ultra-low temperature media at different positions
  • the pressure changes of each temperature sensor and pressure sensor are sealed with adhesive to prevent leakage; the gas concentration sensor 4.21 is installed on the end surface of the measuring chamber 1.11, and the measuring surface of the gas concentration sensor 4.21 passes through The
  • the ultra-low temperature medium When carrying out the ultra-low temperature medium dynamic sealing test, the ultra-low temperature medium enters the medium inlet pipe 1.a from the vacuum hose 1.1, and the medium passes through the stator inner channel 1.b and the rotor inner channel 2.a, and is ejected from the rotor outer hole 2.7; The medium enters the leakage cavity 1.e through the gap between the heat insulation sleeve 1.4 and the end face of the shaft sleeve 2.2, and leaks into the measuring cavity 1.11 after passing through the seal 1.5; the gas concentration sensor 4.21 measures the gas concentration in the measuring cavity 1.11 to determine the seal 1.5 sealing performance.
  • the beneficial effect of the invention is that the vacuum rotor and the low thermal conductivity stator structure are adopted, the heat insulation capacity of the test device is greatly improved, the ultra-low temperature medium evaporation caused by external heat transmission is avoided, and the interference of the evaporation phenomenon on the cavitation result is eliminated;
  • the seal and the shaft sleeve can be flexibly replaced, which is conducive to the study of different sealing structures without modifying the test device;
  • the metal stator circumference The structural design of partial hollowing out on the surface facilitates the adjustment of the sensor installation position due to the replacement of the seal; taking into account the characteristics of ultra-low temperature media that are very easy to vaporize at room temperature and pressure, the gas concentration sensor is used to measure the leakage, with simple principle and high measurement accuracy;
  • the servo motor is used to control the rotor speed, which realizes the experimental measurement of the sealing characteristics in multiple working conditions and instantaneous start and stop.
  • Figure 1 is a schematic diagram of the structure of the ultra-low temperature medium dynamic seal test device
  • Figure 2 is a schematic diagram of the sensor arrangement in the stator and the seal
  • Figure 3 is a schematic diagram of the sealing test structure.
  • the ultra-low temperature medium is liquid nitrogen, the temperature is lower than -180°C, and the supply pressure is 0.5 MPa;
  • the metal stator 1.3 material is 316L stainless steel, and the mounting port for sensor installation is 66mm high and 1/3 circumference wide;
  • the shaft sleeve 2.2 is made of cemented carbide, the outer diameter is 30mm, the hardness is 55HRC, and the roughness after fine grinding is Ra0.5;
  • the support components such as the base 5.1 are all 45 steel;
  • the material of the measuring cavity 1.11 is acrylic; static sealing ring 1.9
  • the material of the dynamic seal ring 1.10 is fluorine rubber, and the working temperature range is -20 ⁇ 280°C;
  • the front bearing 2.5 and the rear bearing 2.6 are NSK angular contact ball bearings with an inner diameter of 35mm;
  • the thermal conductivity of the vacuum chamber 2.b is 0;
  • the material of the heat insulation sleeve 1.4 is polyimide, its thermal conductivity is 0.29W/(m•
  • the installation process of the ultra-low temperature medium dynamic seal test device is as follows: as shown in Figures 1, 2, and 3, the first step is to process the temperature measurement hole and the pressure measurement hole according to the design, and then install the heat insulation sleeve 1.4 and the seal 1.5 through interference fit.
  • the metal stator 1.3 Into the metal stator 1.3, ensure that the measuring hole is aligned, use the gland 1.6 to compress the heat sleeve 1.4 and the sealing element 1.5, and use the countersunk screw 1.7 and countersunk screw 2 1.8 to fasten the gland 1.6 and the metal stator 1.3 ; Then fix the metal stator 1.3 on the sliding table 5.2 placed on the base 5.1 with four bolts two 5.6; then glue the static sealing ring 1.9 and the dynamic sealing ring 1.10 to the inner holes on both sides of the measuring chamber 1.11 with adhesive In the groove, the static seal ring 1.9 is fixed on the circumferential surface of the right end of the metal stator 1.3 by interference fit, 15mm from the right end surface, and no relative rotation is guaranteed;
  • the second step is to install the front bearing seat 5.7, the rear bearing seat 5.8, the motor seat 5.11, and the servo driver 3.2 on the base 5.1 in sequence, and connect the motor 3.1 and the servo driver 3.2 through the cable 3.3; then use the smaller bushing 2.2
  • the surplus is installed on the left end of the vacuum rotor 2.1, and fastened with screw 2.3 and screw 2.4 on the contact end surface;
  • the vacuum rotor 2.1 is placed in the inner holes of the front bearing seat 5.7 and the rear bearing seat 5.8, and the front bearing 2.5 and the rear bearing 2.6 are respectively assembled on the vacuum rotor 2.1, the front bearing seat 5.7, and the rear bearing seat 5.8.
  • the coaxiality between the front and rear bearings and the stator is required to reach 5 ⁇ m; then the motor bracket 5.13 is installed on the motor base 5.11, and the motor 3.1 is installed on the motor bracket 5.13; the coupling 2.8 is used to connect the motor 3.1 and the vacuum rotor 2.1, and ensure that the coaxiality of the two is 5 ⁇ m;
  • the fourth step is to install the displacement sensor 4.1 in the displacement sensor installation hole 1.c and displacement sensor installation hole 2. 1.d, ensure that its measuring surface is flush with the inner end surface of the heat insulation sleeve 1.4, and seal the gap with adhesive Dead; Put the temperature sensors 4.2 ⁇ 4.13 into the temperature measuring holes of the metal stator 1.3, heat insulation sleeve 1.4, and seal 1.5 in sequence, and seal the gap with adhesive; put the pressure sensors 4.14 ⁇ 4.20 into the seal 1.5 in sequence The middle and temperature sensors 4.7 ⁇ 4.13 are located in the pressure measuring hole on the same circumference, and the gap is sealed with adhesive; the gas concentration sensor 4.21 is installed in the measuring chamber 1.11, and the measuring surface is inside the measuring chamber 1.11. The gap is sealed; install the power sensor 4.22 on the servo driver 3.2;
  • the invention in this paper effectively simulates the approximate adiabatic environment in practical engineering applications, makes the source of ultra-low temperature medium gasification closer to the real situation, and eliminates the interference effect of evaporation and mass transfer on cavitation and mass transfer in the dynamic seal research; the thermal insulation design is beneficial to reduce The low temperature deformation of the small structure ensures the stability of the test device; the type and structure of the seal are easy to replace, achieving the purpose of testing a variety of sealed structures without changing the test device; the rational selection and arrangement of multiple sensors realizes the ultra-low temperature medium
  • the dynamic sealing characteristics are comprehensive, accurate and efficient.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

一种超低温介质动密封试验装置,包括定子组件、转子组件、滑台(5.2)、伺服电机组件和传感器组件。被测密封件(1.5)安装在定子内,隔热定子与真空转子(2.1)配合形成动密封试验结构;密封件(1.5)与轴套(2.2)可作灵活更换,便于研究不同密封类型、结构、表面织构对密封特性的影响;伺服电机为真空转子(2.1)提供动力并实现转速控制。该装置大幅提升了隔热能力,避免了外界热传输造成的超低温介质蒸发气化,保证了试验装置运行的稳定性,达到了多种密封结构多工况测试的目的,实现了超低温介质动密封特性全面、准确、高效试验测试。

Description

一种超低温介质动密封试验装置 技术领域
本发明属于密封试验技术领域,具体涉及一种超低温介质动密封试验装置。
背景技术
近年来,液氢、液氧、液氮等超低温介质广泛应用于航天发动机燃料供给、超低温冷却加工、低温微创手术等领域。其中,液体火箭发动机涡轮泵、液氮内喷式超低温加工主轴、中空传输式超低温加工刀柄等关键部件均涉及超低温介质动密封技术。
可靠密封是保证上述部件安全、高效、稳定运行的关键。研究表明,密封问题引起的故障约占火箭发动机总故障的12.5%,泄漏导致燃料消耗增加3%~10%;液氮泄漏致使超低温加工主轴及刀柄出现配合、润滑、转动失效,同时严重破坏液氮传输的稳定性,进而无法保证刀尖持续稳定射流。因此,设计合理的密封结构,获得优异的密封性能至关重要。超低温介质的低温特性易导致密封试验装置结构变形、精度丧失,甚至在中间环节产生泄漏等问题;同时超低温介质极易气化,导致其泄漏量难以使用常规流量计测量。上述问题对超低温介质动密封试验装置的隔热能力、结构稳定性、传感器耐低温性、测量信息获取与精度保障等方面提出了很高的要求。
目前,国内外机构针对超低温介质,研制出多种动密封试验装置。2018年,张国渊在《航空动力学报》第33卷第5期发表文章《高速低温动静结合型机械密封结构优化及运转试验》中介绍了一种机械密封试验装置,该装置中液氮流经密封结构,测得密封端面之间的摩擦力与泄漏量,获悉密封面的接触状态与密封性能,但未能得到密封中流体压力与温度的变化规律。2018年,北京航天动力研究所在发明专利201810352843.6中公开了“一种液体火箭发动机涡轮泵用低温高速端面密封试验装置”,该装置模拟涡轮泵的工作环境,保证了足够的工作精度与低温稳定性,可测量液氮的压力、温度、泄漏量、转子转速与系统功率,但未考虑试验装置内部的隔热问题,也未说明泄漏量的具体测量方法。
上述研究未能全面反映密封结构对超低温介质密封特性的影响规律,未对试验装置内与流体接触的区域进行隔热处理,未明确少许泄漏或超低温介质气化后泄漏量的测量方法,同时对密封类型的研究存在一定的局限性。
技术问题
本发明针对现有技术中存在试验装置难以实现超低温介质动密封多层次、高精度测试的问题,本发明提出了一种超低温介质动密封试验装置。该动密封试验装置采用真空转子与隔热定子,最大限度地防止外界热量输入引发的超低温介质气化;装置内安装耐超低温的压力、温度、位移、气体浓度与电机功率传感器,获取全方位的密封性能表征数据;装置结构适应性强,可完成对迷宫、刷式、蜂窝、唇形密封等多种径向密封形式的试验研究;通过更换转子末端轴套,研究密封间隙及表面织构对密封性能的影响;采用伺服电机控制试验转速,实现多工况条件下的密封测试。
技术解决方案
为实现上述目的,本发明采用的技术方案是:
一种超低温介质动密封试验装置,其特征在于,该超低温介质动密封试验装置包括定子组件、转子组件、滑台5.2、伺服电机组件和传感器组件;所述定子组件与转子组件配合形成动密封试验结构,伺服电机组件为转子组件提供动力,传感器组件用于检测密封状态;
所述的定子组件包括真空软管1.1、螺母1.2、金属定子1.3、隔热套1.4、压盖1.6、沉头螺钉一1.7、沉头螺钉二1.8、静密封圈1.9、动密封圈1.10和测量腔1.11;金属定子1.3为变直径的圆筒形结构,其小直径段作为介质入口管1.a,金属定子1.3的变直径处端面开有位移传感器安装孔一1.c,金属定子1.3的圆周表面开有传感器安装口;真空软管1.1与金属定子1.3的介质入口管1.a通过螺母1.2连接;隔热套1.4为圆筒形结构,一端封闭并在中心处设有介质入口,隔热套1.4的封闭端非圆心处开有位移传感器安装孔二1.d,隔热套1.4采取过盈配合方式装配到金属定子1.3内,位移传感器安装孔一1.c的轴线和位移传感器安装孔二1.d的轴线重合,隔热套1.4的介质入口与介质入口管1.a连通;密封件1.5采取过盈配合方式装配到金属定子1.3内;隔热套1.4和密封件1.5并列装配;金属定子1.3、隔热套1.4和密封件1.5的轴线重合;压盖1.6通过沉头螺钉一1.7、沉头螺钉二1.8安装在金属定子1.3的开放端,用于压紧隔热套1.4和密封件1.5,压盖1.6上开有通孔;测量腔1.11为空心的薄壁圆柱形结构,在两个端面分别开有大小不同的两个通孔,分别对应金属定子1.3大直径端和真空转子2.1的外径尺寸;静密封圈1.9粘在金属定子1.3所在位置对应的通孔处,保证静密封;动密封圈1.10粘在真空转子2.1所在位置对应的通孔处,保证动密封;所述测量腔1.11通过压紧静密封圈1.9固定在金属定子1.3外侧;
所述的滑台5.2通过四个螺栓一5.5安装在底座5.1上;滑台5.2包括滑座5.3和螺纹杆;所述滑座5.3在螺纹杆的作用下定向移动;定子组件通过支座1.12安装在滑座5.3上,支座1.12和滑座5.3间由四个螺栓二5.6固定;定子组件随滑座5.3定向移动;
所述的转子组件包括真空转子2.1、轴套2.2、螺钉一2.3、螺钉二2.4、前轴承2.5、后轴承2.6和联轴器2.8;真空转子2.1为变外径的圆柱形中空结构,沿轴线开有转子内通道2.a,用于介质流通;所述真空转子2.1内部开有环形的真空腔2.b,真空腔2.b与真空转子2.1同轴,用于为真空转子2.1创造绝热条件;真空转子2.1中部开有转子外孔2.7,转子外孔2.7与转子内通道2.a连通,用于排放介质;轴套2.2为一端封闭的薄壁套筒结构,其封闭端开有通孔,该通孔与转子内通道2.a相连通,用于介质流通;轴套2.2套装在真空转子2.1的小直径段外侧,轴套2.2和真空转子2.1间为过盈配合,其端部通过螺钉一2.3和螺钉二2.4固定;在真空转子2.1总长度的1/3处和2/3处安装前轴承2.5和后轴承2.6,前轴承2.5装配在前轴承座5.7中;后轴承2.6装配在后轴承座5.8中;轴承座5.7通过两个螺栓三5.9安装在底座5.1上;后轴承座5.8通过两个螺栓四5.10安装在底座5.1上;前轴承2.5与后轴承2.6同轴;真空转子2.1的轴线与金属定子1.3的轴线重合;
所述的定子组件在滑台5.2的推动下,使轴套2.2穿过测量腔1.11和压盖1.6进入金属定子1.3内部,使定子组件套装在转子组件外侧;所述介质入口管1.a的定子内通道1.b、隔热套1.4的介质入口、轴套2.2的通孔和转子内通道2.a共同组成介质的流通通道;所述测量腔1.11和转子组件间由动密封圈1.10动密封;
所述的伺服电机组件包括电机3.1、伺服驱动器3.2和缆线3.3;电机3.1通过联轴器2.8与真空转子2.1直连,并保证两者同轴;电机3.1与伺服驱动器3.2通过缆线3.3相连,用于传输信号,实现电机控制;电机3.1通过四个螺栓七5.15安装在电机支架5.13上;电机支架5.13通过四个螺栓六5.14安装在电机座5.11上;电机座5.11通过四个螺栓五5.12安装在底座5.1上;
所述的传感器组件包括耐低温的位移传感器4.1、温度传感器一4.2、温度传感器二4.3、温度传感器三4.4、温度传感器四4.5、温度传感器五4.6、温度传感器六4.7、温度传感器七4.8、温度传感器八4.9、温度传感器九4.10、温度传感器十4.11、温度传感器十一4.12、温度传感器十二4.13、压力传感器一4.14、压力传感器二4.15、压力传感器三4.16、压力传感器四4.17、压力传感器五4.18、压力传感器六4.19、压力传感器七4.20、气体浓度传感器4.21和功率传感器4.22;位移传感器4.1安装在位移传感器安装孔一1.c和位移传感器安装孔二1.d内,用于测量超低温下真空转子2.1的轴向变形,位移传感器4.1与位移传感器安装孔一1.c、移传感器安装孔二1.d之间的缝隙用粘结剂封死,防止超低温介质泄漏;所述温度传感器一4.2于安装点一4.a安装在金属定子1.3外侧,用于测量金属定子1.3外表面的温度;温度传感器二4.3于安装点二4.b安装在金属定子1.3外侧,温度传感器二4.3的安装孔为盲孔,该盲孔底部与金属定子1.3内表面的距离为0.5mm,用于测量金属定子1.3内表面的温度;温度传感器三4.4于安装点三4.c安装在金属定子1.3外侧,并插入隔热套1.4内,温度传感器三4.4的安装孔为盲孔,该盲孔底部与隔热套1.4外表面的距离为0.5mm,用于测量隔热套1.4外表面的温度;温度传感器四4.5于安装点四4.d安装在金属定子1.3外侧,并插入隔热套1.4内,温度传感器四4.5的安装孔为盲孔,该盲孔底部与隔热套1.4内表面的距离为0.5mm,用于测量隔热套1.4内表面的温度;温度传感器五4.6于安装点五4.e安装在金属定子1.3外侧,并穿过隔热套1.4,用于测量密封前超低温介质的温度;在金属定子1.3的传感器安装口内,温度传感器六4.7、温度传感器七4.8、温度传感器八4.9、温度传感器九4.10、温度传感器十4.11、温度传感器十一4.12和温度传感器十二4.13分别于安装点六4.f、安装点七4.g、安装点八4.h、安装点九4.i、安装点十4.j、安装点十一4.k和安装点十二4.l安装在密封件1.5外侧,并穿过密封件1.5,用于测量不同位置处超低温介质的温度变化情况;在金属定子1.3的传感器安装口内,压力传感器一4.14、压力传感器二4.15、压力传感器三4.16、压力传感器四4.17、压力传感器五4.18、压力传感器六4.19和压力传感器七4.20分别于安装点十三4.m、安装点十四4.n、安装点十五4.o、安装点十六4.p、安装点十七4.q、安装点十八4.r和安装点十九4.s安装在密封件1.5外侧,并穿过密封件1.5,用于测量不同位置处超低温介质的压力变化情况;每个温度传感器和压力传感器的安装点的缝隙都用粘结剂封死,防止泄漏;气体浓度传感器4.21安装在测量腔1.11的端面上,气体浓度传感器4.21的测量面穿过测量腔1.11位于测量腔1.11内部,用于实现超低温介质泄漏量的实时测量;功率传感器4.22安装在伺服驱动器3.2上,用于测量电机3.1的负载功率;
开展超低温介质动密封测试试验时,超低温介质从真空软管1.1进入介质入口管1.a,介质通过定子内通道1.b与转子内通道2.a,从转子外孔2.7喷出;少部分介质通过隔热套1.4与轴套2.2端面的间隙进入泄漏腔1.e中,经密封件1.5后泄漏至测量腔1.11中;通过气体浓度传感器4.21测量测量腔1.11内气体的浓度来确定密封件1.5的密封性能。
有益效果
本发明的有益效果是采用真空转子与低热导率定子结构,大幅提升试验装置的隔热能力,避免了外界热传输造成的超低温介质蒸发,从而消除了蒸发现象对空化结果的干扰;试验装置内表征密封状态的传感器种类齐全,保证了密封特征参数测量的全面性;密封件与轴套可作灵活更换,有利于在不改造试验装置的前提下对不同的密封结构进行研究;金属定子圆周表面局部挖空的结构设计,便于因密封件更换而调整传感器的安装位置;虑及超低温介质室温常压下极易气化的特性,采用气体浓度传感器测量泄漏量,原理简单且测量精度高;采用伺服电机控制转子速度,实现了多工况及启停瞬间密封特性的试验测量。
附图说明
图1为超低温介质动密封试验装置的结构示意图;
图2为定子与密封件中传感器布置示意图;
图3为密封测试结构示意图。
图中:1.1-真空软管;1.2-螺母;1.3-金属定子;1.4-隔热套;1.5-密封件;1.6-压盖;1.7-沉头螺钉一;1.8-沉头螺钉二;1.9-静密封圈;1.10-动密封圈;1.11-测量腔;1.12-支座;1.a-介质入口管;1.b-定子内通道;1.c-位移传感器安装孔一;1.d-位移传感器安装孔二;1.e-泄漏腔;2.1-真空转子;2.2-轴套;2.3-螺钉一;2.4-螺钉二;2.5-前轴承;2.6-后轴承;2.7-转子外孔;2.8-联轴器;2.a-转子内通道;2.b-真空腔;3.1-电机;3.2-伺服驱动器;3.3-缆线;4.1-位移传感器;4.2-温度传感器一;4.3-温度传感器二;4.4-温度传感器三;4.5-温度传感器四;4.6-温度传感器五;4.7-温度传感器六;4.8-温度传感器七;4.9-温度传感器八;4.10-温度传感器九;4.11-温度传感器十;4.12-温度传感器十一;4.13-温度传感器十二;4.14-压力传感器一;4.15-压力传感器二;4.16-压力传感器三;4.17-压力传感器四;4.18-压力传感器五;4.19-压力传感器六;4.20-压力传感器七;4.21-气体浓度传感器;4.22-功率传感器;4.a-安装点一;4.b-安装点二;4.c-安装点三;4.d-安装点四;4.e-安装点五;4.f-安装点六;4.g-安装点七;4.h-安装点八;4.i-安装点九;4.j-安装点十;4.k-安装点十一;4.l-安装点十二;4.m-安装点十三;4.n-安装点十四;4.o-安装点十五;4.p-安装点十六;4.q-安装点十七;4.r-安装点十八;4.s-安装点十九;5.1-底座;5.2-滑台;5.3-滑座;5.4-刻度尺;5.5-螺栓一;5.6-螺栓二;5.7-前轴承座;5.8-后轴承座;5.9-螺栓三;5.10-螺栓四;5.11-电机座;5.12-螺栓五;5.13-电机支架;5.14-螺栓六;5.15-螺栓七。
本发明的实施方式
下面结合附图和技术方案详细说明本发明的具体实施方式:
本实施例中,超低温介质为液氮,温度低于-180℃,供给压力为0.5MPa;金属定子1.3材料为316L不锈钢,用于传感器安装的安装口高为66mm、宽为1/3圆周;轴套2.2材料为硬质合金,外径为30mm,硬度为55HRC,精磨后粗糙度为Ra0.5;底座5.1等支撑组件材料均为45钢;测量腔1.11的材料为亚克力;静密封圈1.9与动密封圈1.10的材料为氟橡胶,工作温度范围-20~280℃;前轴承2.5与后轴承2.6为NSK角接触球轴承,内径为35mm;真空腔2.b的导热率为0;隔热套1.4的材料为聚酰亚胺,其导热系数为0.29W/(m•K),线膨胀系数为2×10 -5/℃;实施例中待测试密封性的密封件1.5为迷宫型密封件,材料为聚酰亚胺,结构参数包括:内径30.2mm、外径55mm、齿数6、齿高5mm、齿距5.8mm、齿尖宽0.8mm、前倾角80°、后倾角60°;位移传感器4.1量程为0.5~1.5mm,分辨率为0.001mm,外形尺寸为Φ6×10mm;所有温度传感器量程为-220~100℃;所有压力传感器量程为0.1~1.6MPa,精度为0.5%FS;测温孔与测压孔的直径均为1mm;实施例中气体浓度传感器4.21采用氮气浓度传感器,分辨率为0.01%VOL;功率传感器4.22精度为0.2%FS;上述传感器均可在-200℃环境中正常工作,输出均为4~20mA信号;电机3.1最高转速为12000rpm;伺服驱动器3.2可实现电机启停、正反转控制以及无极调速;滑台5.2最大移动范围为274mm,最小分辨率为0.01mm;刻度尺5.4量程为300mm,分辨率为0.5mm。
超低温介质动密封试验装置安装过程如下:如附图1、2、3所示,第一步按设计加工测温孔与测压孔,依次将隔热套1.4与密封件1.5通过过盈配合装配到金属定子1.3内,保证测量孔对正,用压盖1.6将热套1.4和密封件1.5压紧,并使用沉头螺钉一1.7、沉头螺钉二1.8将压盖1.6与金属定子1.3紧固;再通过四个螺栓二5.6将金属定子1.3固定在安置于底座5.1上的滑台5.2上;然后将静密封圈1.9与动密封圈1.10用粘结剂粘在测量腔1.11的两侧内孔凹槽中,通过过盈配合将静密封圈1.9固定在金属定子1.3右端圆周表面上,距离右端面15mm,并保证无相对转动;
第二步,将前轴承座5.7、后轴承座5.8、电机座5.11、伺服驱动器3.2依次安装在底座5.1上,通过缆线3.3连接电机3.1与伺服驱动器3.2;再将轴套2.2采用较小过盈量安装在真空转子2.1左端,并在接触端面上用螺钉一2.3、螺钉二2.4紧固;
第三步,将真空转子2.1置于前轴承座5.7与后轴承座5.8的内孔中,并将前轴承2.5与后轴承2.6分别装配在真空转子2.1、前轴承座5.7、后轴承座5.8对应的配合面中,要求前后轴承与定子的同轴度达到5μm;之后顺次将电机支架5.13安装在电机座5.11,电机3.1安装在电机支架5.13上;采用联轴器2.8连接电机3.1与真空转子2.1,并保证两者同轴度为5μm;
第四步,将位移传感器4.1安装在位移传感器安装孔一1.c和位移传感器安装孔二1.d内,保证其测量面与隔热套1.4内侧端面平齐,并用粘结剂将缝隙封死;将温度传感器4.2~4.13依次装入金属定子1.3、隔热套1.4、密封件1.5的测温孔内,用粘结剂将缝隙封死;将压力传感器4.14~4.20依次装入密封件1.5中与温度传感器4.7~4.13位于同一圆周的测压孔内,用粘结剂将缝隙封死;将气体浓度传感器4.21安装在测量腔1.11中,测量面处于测量腔1.11内部,用粘结剂将缝隙封死;将功率传感器4.22安装在伺服驱动器3.2上;
开展超低温介质动密封测试试验时,先通过螺母1.2将真空软管1.1与金属定子1.3的介质入口管1.a连接;然后摇动滑台5.2,将真空转子2.1的左端插入金属定子1.3的内孔中,通过滑台5.2上的刻度尺5.4读取移动距离,直至轴套2.2与隔热套1.4端面间隙值达到1mm,之后将滑台5.2锁死,同时保证动密封圈1.10与真空转子2.1外表面稍许过盈且可以相对转动;通过伺服驱动器3.2完成转速设置,并启动电机3.1;超低温介质从真空软管1.1进入介质入口管1.a,介质通过定子内通道1.b与转子内通道2.a,从转子外孔2.7喷出;少部分介质通过隔热套1.4与轴套2.2端面间隙进入泄漏腔1.e,经密封件1.5的密封作用后泄漏至测量腔1.11中;此时,通过位移传感器4.1、温度传感器4.2~4.13、压力传感器4.14~4.20、气体浓度传感器4.21、功率传感器4.22,获得密封过程中转子轴向低温变形量、定子与液氮介质温度场、液氮介质压力场、液氮泄漏量和电机负载功率,完成该密封结构的密封特性测试试验研究。
本文发明有效地模拟了实际工程应用中的近似绝热环境,使得超低温介质气化来源更接近真实情况,消除了动密封研究中蒸发传质对空化传质的干扰影响;隔热设计有利于减小结构的低温变形,保证了试验装置运行的稳定性;密封件类型与结构更换方便,达到了无需改动试验装置即可测试多种密封结构的目的;多传感器合理选取与布置,实现了超低温介质动密封特性全面、准确、高效试验测试。

Claims (1)

  1. 一种超低温介质动密封试验装置,其特征在于,该超低温介质动密封试验装置包括定子组件、转子组件、滑台(5.2)、伺服电机组件和传感器组件;所述定子组件与转子组件配合形成动密封试验结构,伺服电机组件为转子组件提供动力,传感器组件用于检测密封状态;
    所述的定子组件包括真空软管(1.1)、螺母(1.2)、金属定子(1.3)、隔热套(1.4)、压盖(1.6)、沉头螺钉一(1.7)、沉头螺钉二(1.8)、静密封圈(1.9)、动密封圈(1.10)和测量腔(1.11);金属定子(1.3)为变直径的圆筒形结构,其小直径段作为介质入口管(1.a),金属定子(1.3)的变直径处端面开有位移传感器安装孔一(1.c),金属定子(1.3)的圆周表面开有传感器安装口;真空软管(1.1)与金属定子(1.3)的介质入口管(1.a)通过螺母(1.2)连接;隔热套(1.4)为圆筒形结构,一端封闭并在中心处设有介质入口,隔热套(1.4)的封闭端非圆心处开有位移传感器安装孔二(1.d),隔热套(1.4)采取过盈配合方式装配到金属定子(1.3)内,位移传感器安装孔一(1.c)的轴线和位移传感器安装孔二(1.d)的轴线重合,隔热套(1.4)的介质入口与介质入口管(1.a)连通;密封件(1.5)采取过盈配合方式装配到金属定子(1.3)内;隔热套(1.4)和密封件(1.5)并列装配;金属定子(1.3)、隔热套(1.4)和密封件(1.5)的轴线重合;压盖(1.6)通过沉头螺钉一(1.7)、沉头螺钉二(1.8)安装在金属定子(1.3)的开放端,用于压紧隔热套(1.4)和密封件(1.5),压盖(1.6)上开有通孔;测量腔(1.11)为空心的薄壁圆柱形结构,在两个端面分别开有大小不同的两个通孔,分别对应金属定子(1.3)大直径端和真空转子(2.1)的尺寸;静密封圈(1.9)粘在金属定子(1.3)所在位置对应的通孔处,保证静密封;动密封圈(1.10)粘在真空转子(2.1)所在位置对应的通孔处,保证动密封;所述测量腔(1.11)通过压紧静密封圈(1.9)固定在金属定子(1.3)外侧;
    所述的滑台(5.2)通过四个螺栓一(5.5)安装在底座(5.1)上;滑台(5.2)包括滑座(5.3)和螺纹杆;所述滑座(5.3)在螺纹杆的作用下定向移动;定子组件通过支座(1.12)安装在滑座(5.3)上,支座(1.12)和滑座(5.3)间由四个螺栓二(5.6)固定;定子组件随滑座(5.3)定向移动;
    所述的转子组件包括真空转子(2.1)、轴套(2.2)、螺钉一(2.3)、螺钉二(2.4)、前轴承(2.5)、后轴承(2.6)和联轴器(2.8);真空转子(2.1)为变外径的圆柱形中空结构,沿轴线开有转子内通道(2.a),用于介质流通;所述真空转子(2.1)内部开有环形的真空腔(2.b),真空腔(2.b)与真空转子(2.1)同轴,用于为真空转子(2.1)创造绝热条件;真空转子(2.1)中部开有转子外孔(2.7),转子外孔(2.7)与转子内通道(2.a)连通,用于排放介质;轴套(2.2)为一端封闭的薄壁套筒结构,其封闭端开有通孔,该通孔与转子内通道(2.a)相连通,用于介质流通;轴套(2.2)套装在真空转子(2.1)的小直径段外侧,轴套(2.2)和真空转子(2.1)间为过盈配合,其端部通过螺钉一(2.3)和螺钉二(2.4)固定;在真空转子(2.1)总长度的1/3处和2/3处安装前轴承(2.5)和后轴承(2.6),前轴承(2.5)装配在前轴承座(5.7)中;后轴承(2.6)装配在后轴承座(5.8)中;轴承座(5.7)通过两个螺栓三(5.9)安装在底座(5.1)上;后轴承座(5.8)通过两个螺栓四(5.10)安装在底座(5.1)上;前轴承(2.5)与后轴承(2.6)同轴;真空转子(2.1)的轴线与金属定子(1.3)的轴线重合;
    所述的定子组件在滑台(5.2)的推动下,使轴套(2.2)穿过测量腔(1.11)和压盖(1.6)进入金属定子(1.3)内部,使定子组件套装在转子组件外侧;所述介质入口管(1.a)的定子内通道(1.b)、隔热套(1.4)的介质入口、轴套(2.2)的通孔和转子内通道(2.a)共同组成介质的流通通道;所述测量腔(1.11)和转子组件间由动密封圈(1.10)动密封;
    所述的伺服电机组件包括电机(3.1)、伺服驱动器(3.2)和缆线(3.3);电机(3.1)通过联轴器(2.8)与真空转子(2.1)直连,并保证两者同轴;电机(3.1)与伺服驱动器(3.2)通过缆线(3.3)相连,用于传输信号,实现电机控制;电机(3.1)通过四个螺栓七(5.15)安装在电机支架(5.13)上;电机支架(5.13)通过四个螺栓六(5.14)安装在电机座(5.11)上;电机座(5.11)通过四个螺栓五(5.12)安装在底座(5.1)上;
    所述温度传感器一(4.2)安装在金属定子(1.3)外侧、与隔热套(1.4)对应的区域,用于测量金属定子(1.3)外表面的温度;温度传感器二(4.3)安装在金属定子(1.3)外侧、与隔热套(1.4)对应的区域,温度传感器二(4.3)的安装孔为盲孔,该盲孔底部与金属定子(1.3)内表面的距离为0.5mm,用于测量距离金属定子(1.3)内表面的温度;温度传感器三(4.4)安装在金属定子(1.3)外侧、与隔热套(1.4)对应的区域,用于测量隔热套(1.4)外表面的温度;温度传感器四(4.5)安装在金属定子(1.3)外侧、与隔热套(1.4)对应的区域,并插入隔热套(1.4)内,用于测量隔热套(1.4)外表面的温度;温度传感器五(4.6)安装在金属定子(1.3)外侧、与隔热套(1.4)对应的区域,并穿过隔热套(1.4),用于测量密封前超低温介质的温度;温度传感器六(4.7)、温度传感器七(4.8)、温度传感器八(4.9)、温度传感器九(4.10)、温度传感器十(4.11)、温度传感器十一(4.12)和温度传感器十二(4.13)穿过金属定子(1.3)的安装口安装在密封件(1.5)外侧,并穿过密封件(1.5),用于测量不同位置处的超低温介质的温度变化情况;压力传感器一(4.14)、压力传感器二(4.15)、压力传感器三(4.16)、压力传感器四(4.17)、压力传感器五(4.18)、压力传感器六(4.19)和压力传感器七(4.20)穿过金属定子(1.3)的安装口安装在密封件(1.5)外侧,并穿过密封件(1.5),用于测量不同位置处的超低温介质的压力变化情况;每个温度传感器和压力传感器的安装点的缝隙都用粘结剂封死,防止泄露;气体浓度传感器(4.21)安装在测量腔(1.11)的端面上,气体浓度传感器(4.21)的测量点穿过测量腔(1.11)位于测量腔(1.11)内部,用于实现超低温介质泄漏量的实时测量;功率传感器(4.22)安装在伺服驱动器(3.2)上,用于测量电机(3.1)的负载功率;
    开展超低温介质动密封测试试验时,超低温介质从真空软管(1.1)进入介质入口管(1.a),介质通过定子内通道(1.b)与转子内通道(2.a),从转子外孔(2.7)喷出;少部分介质通过隔热套(1.4)与轴套(2.2)端面的间隙进入泄漏腔(1.e)中,经密封件(1.5)后泄漏至测量腔(1.11)中;通过气体浓度传感器(4.21)测量测量腔(1.11)内气体的浓度来确定密封件(1.5)的密封性能。
PCT/CN2019/105933 2019-08-12 2019-09-16 一种超低温介质动密封试验装置 WO2021027002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/734,881 US11333571B2 (en) 2019-08-12 2019-09-16 Dynamic seal test device for cryogenic fluid medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910737681.2 2019-08-12
CN201910737681.2A CN110514357B (zh) 2019-08-12 2019-08-12 一种超低温介质动密封试验装置

Publications (1)

Publication Number Publication Date
WO2021027002A1 true WO2021027002A1 (zh) 2021-02-18

Family

ID=68625511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105933 WO2021027002A1 (zh) 2019-08-12 2019-09-16 一种超低温介质动密封试验装置

Country Status (3)

Country Link
US (1) US11333571B2 (zh)
CN (1) CN110514357B (zh)
WO (1) WO2021027002A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848036A (zh) * 2021-09-23 2021-12-28 合肥工业大学 低粘润滑介质动压承载液膜生成转速测试台及测试方法
CN114486080A (zh) * 2021-12-24 2022-05-13 中国空间技术研究院 一种防结霜的通用型热流仪密封测试转换工装
CN116447407A (zh) * 2023-04-10 2023-07-18 连云港师范高等专科学校 一种直通阀密封性测试用接头装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413093B (zh) * 2020-03-20 2021-04-16 蓝箭航天空间科技股份有限公司 用于低温轴承和动密封的集成试验系统
CN111947933B (zh) * 2020-07-07 2022-04-22 南京航空航天大学 一种航空发动机动密封泄漏、传热、摩擦、磨损特性综合试验装置及试验方法
CN112502859B (zh) * 2020-10-09 2022-03-04 蓝箭航天技术有限公司 一种火箭发动机用高速动密封件试验装置
CN113503995B (zh) * 2021-07-05 2023-06-23 西安航天动力研究所 一种大功率燃气涡轮性能测试装置
CN113916679B (zh) * 2021-09-30 2023-12-15 石河子大学 一种低温根系抗拉力自动测试系统与试验方法
CN114088046B (zh) * 2021-11-15 2023-03-24 北京航空航天大学 航空发动机检测装置
CN114659746B (zh) * 2022-03-18 2022-12-02 西安交通大学 一种环形动密封动力特性系数实验测量系统及方法
CN116718361A (zh) * 2023-05-19 2023-09-08 江苏海洋大学 一种自冲击密封实验装置
CN116773098B (zh) * 2023-08-24 2023-11-03 山东冠卓重工科技有限公司 一种装卸臂旋转接头的气体泄漏检测设备
CN117091476B (zh) * 2023-10-17 2024-01-19 普瑞奇科技(北京)股份有限公司 一种基于真空滤油机的控制组件测试器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825083A (zh) * 2006-03-27 2006-08-30 南京化工职业技术学院 多参数可测控高转速机械密封性能试验装置
DE102013225235A1 (de) * 2013-12-09 2015-06-11 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Prüfung der dynamischen Eigenschaften einer Elastomerprobe bei tiefen Temperaturen
CN105277323A (zh) * 2015-11-13 2016-01-27 沈阳航天新光集团有限公司 密封试验台
CN105628309A (zh) * 2015-12-25 2016-06-01 大连理工大学 一种橡胶圈极端条件下高压动密封试验装置
CN108332959A (zh) * 2018-01-26 2018-07-27 广州机械科学研究院有限公司 一种高低温密封测试实验台
CN108708802A (zh) * 2018-04-19 2018-10-26 北京航天动力研究所 一种液体火箭发动机涡轮泵用低温高速端面密封试验装置
CN108775988A (zh) * 2018-08-24 2018-11-09 电子科技大学 一种航空泵机械密封试验装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984465B2 (en) * 2002-09-05 2006-01-10 Donaldson Company, Inc Seal-leak detector arrangement for compressors and other equipment
JP5860696B2 (ja) * 2011-01-05 2016-02-16 ゼネラル・エレクトリック・カンパニイ 発電機のシール漏れとシールオイル汚染の検出
IN2014DN01806A (zh) * 2011-08-11 2015-05-15 Mol Belting Systems Inc
KR20160031089A (ko) * 2014-09-11 2016-03-22 주식회사 아이엘엔지니어링 축 크랙 감지 모니터링 시스템 및 축 제조방법
EP3118583B1 (en) * 2015-07-16 2019-03-27 ENDRESS + HAUSER WETZER GmbH + Co. KG Modular sealing apparatus with failure detection unit
KR20170040478A (ko) * 2015-10-05 2017-04-13 한국수력원자력 주식회사 펌프 메카니컬씰 수명평가 시험장치 및 방법
CN105387975B (zh) * 2015-12-31 2017-08-15 无锡宝牛阀业有限公司 超低温平衡密封环泄漏量测试装置
CN206074195U (zh) * 2016-08-25 2017-04-05 上海航天设备制造总厂 一种低温密封试验测试装置
CN106932157B (zh) * 2017-03-23 2023-08-11 北京航天动力研究所 一种用于高速液氧涡轮泵的机械式端面密封比压测量装置
CN109282944B (zh) * 2018-10-29 2020-08-14 航天材料及工艺研究所 一种超低温环境用复合密封件密封可靠性验证方法
CN109211771B (zh) * 2018-11-30 2020-12-15 中国工程物理研究院材料研究所 一种活性金属表面腐蚀行为测定装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825083A (zh) * 2006-03-27 2006-08-30 南京化工职业技术学院 多参数可测控高转速机械密封性能试验装置
DE102013225235A1 (de) * 2013-12-09 2015-06-11 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Prüfung der dynamischen Eigenschaften einer Elastomerprobe bei tiefen Temperaturen
CN105277323A (zh) * 2015-11-13 2016-01-27 沈阳航天新光集团有限公司 密封试验台
CN105628309A (zh) * 2015-12-25 2016-06-01 大连理工大学 一种橡胶圈极端条件下高压动密封试验装置
CN108332959A (zh) * 2018-01-26 2018-07-27 广州机械科学研究院有限公司 一种高低温密封测试实验台
CN108708802A (zh) * 2018-04-19 2018-10-26 北京航天动力研究所 一种液体火箭发动机涡轮泵用低温高速端面密封试验装置
CN108775988A (zh) * 2018-08-24 2018-11-09 电子科技大学 一种航空泵机械密封试验装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848036A (zh) * 2021-09-23 2021-12-28 合肥工业大学 低粘润滑介质动压承载液膜生成转速测试台及测试方法
CN113848036B (zh) * 2021-09-23 2023-06-27 合肥工业大学 低粘润滑介质动压承载液膜生成转速测试台及测试方法
CN114486080A (zh) * 2021-12-24 2022-05-13 中国空间技术研究院 一种防结霜的通用型热流仪密封测试转换工装
CN116447407A (zh) * 2023-04-10 2023-07-18 连云港师范高等专科学校 一种直通阀密封性测试用接头装置
CN116447407B (zh) * 2023-04-10 2023-11-28 连云港师范高等专科学校 一种直通阀密封性测试用接头装置

Also Published As

Publication number Publication date
CN110514357A (zh) 2019-11-29
US20210190627A1 (en) 2021-06-24
US11333571B2 (en) 2022-05-17
CN110514357B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021027002A1 (zh) 一种超低温介质动密封试验装置
CN109406152B (zh) 一种航空发动机对转双转子动力学特性实验平台
CN211318152U (zh) 一种高低温真空摩擦磨损试验机
CN108708802A (zh) 一种液体火箭发动机涡轮泵用低温高速端面密封试验装置
CN2896257Y (zh) 多参数可测控高转速机械密封性能试验装置
Li et al. Research development of preload technology on angular contact ball bearing of high speed spindle: a review
CN209485687U (zh) 用于超低温高dn值轴承疲劳寿命的试验装置
CN111636981A (zh) 一种火箭涡轮泵浮动环密封测试试验台
CN110988029A (zh) 内置平行轴旋转热管的高速转轴的热-结构特性测试系统
CN107063668B (zh) 一种适用于多工况的干气密封实验系统
CN111947855A (zh) 一种低温动密封试验台及试验方法
CN109238710B (zh) 一种超导轴承承载性能测试系统及测试方法
CN207623192U (zh) 一种高温高压和低温高压流变仪
CN106909177A (zh) 基于压电作动器在线监测与控制主轴‑轴承系统预紧力和预紧位移的高速精密主轴系统
CN206305887U (zh) 一种高速精密主轴预紧力和预紧位移智能监控系统
CN110426207B (zh) 滑动轴承和推力轴承用的综合性能测试试验台
CN109323861B (zh) 径向型高温超导磁悬浮轴承承载性能测试装置及测试平台
CN114878163B (zh) 一种高精度动压止推箔片轴承动静同步加载测试装置
CN207456708U (zh) 机械密封泄漏测试装置
CN202074014U (zh) 一种新型滚珠丝杠传动冷却装置
CN212296350U (zh) 注水井测调仪输出轴高压动密封装置
CN209387290U (zh) 可实现超高速液膜剪切特性和静压轴承特性测试的装置
CN209954118U (zh) 一种用于异形曲面加工的超声滚压装置
CN113188892A (zh) 一种具有介质注压功能的摩擦磨损试验机及其试验方法
CN113607412B (zh) 一种测量滚动轴承能耗系数的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941128

Country of ref document: EP

Kind code of ref document: A1