WO2021026877A1 - Multi-subscriber identity module (msim) power saving - Google Patents

Multi-subscriber identity module (msim) power saving Download PDF

Info

Publication number
WO2021026877A1
WO2021026877A1 PCT/CN2019/100770 CN2019100770W WO2021026877A1 WO 2021026877 A1 WO2021026877 A1 WO 2021026877A1 CN 2019100770 W CN2019100770 W CN 2019100770W WO 2021026877 A1 WO2021026877 A1 WO 2021026877A1
Authority
WO
WIPO (PCT)
Prior art keywords
sim
sims
receive
network
indication
Prior art date
Application number
PCT/CN2019/100770
Other languages
French (fr)
Inventor
Tom Chin
Ajith Tom Payyappilly
Thawatt Gopal
Ling Xie
Xiaochen Chen
Xipeng Zhu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/100770 priority Critical patent/WO2021026877A1/en
Publication of WO2021026877A1 publication Critical patent/WO2021026877A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques that may optimize performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) .
  • SIMs subscriber identity modules
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a BS or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to a BS or DU) .
  • New radio e.g., 5G NR
  • 5G NR is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects provide a method for wireless communication by a user-equipment (UE) .
  • the method generally includes determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • SIMs subscriber identification modules
  • Certain aspects provide a method for wireless communication by a network entity.
  • the method generally includes receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and taking one or more actions, based on the indication.
  • SIMs subscriber identification modules
  • aspects of the present disclosure provide means for, apparatus, processors, and computer-readable mediums for performing the methods described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 illustrates example operations for wireless communication by a user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • UE user equipment
  • FIG. 4 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
  • FIG. 5 is a diagram illustrating example operations for RAN sharing for an MSIM UE, in accordance with certain aspects of the present disclosure.
  • FIG. 6 is a call flow diagram illustrating example operations for power saving for an MSIM UE, in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) .
  • SIMs subscriber identity modules
  • the UE may be configured to share RF components.
  • an RF chain of a first SIM e.g., a Master
  • a second SIM e.g., a Slave
  • PHY physical
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • network and “system” are often used interchangeably.
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc.
  • NR e.g. 5G RA
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • LTE and LTE-A are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • NR access e.g., 5G NR
  • 5G NR may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 (e.g., a 5G NR network) in which aspects of the present disclosure may be performed.
  • the UE 120a may support multiple subscriber identity modules (SIMs) and may have an MSIM controller that may be configured to use RF components of a first SIM for performing operations related to a second SIM (e.g., paging detection and reference signal measurement) , allowing the second SIM to keep its RF components in a low power state.
  • SIMs subscriber identity modules
  • a BS 110 may also have an MSIM controller which, in some cases, may help configure an MSIM UE 120 in a manner that allows RF sharing between SIMs.
  • the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities.
  • a BS may be a station that communicates with user equipments (UEs) .
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • AP access point
  • DU distributed unit
  • carrier or transmission reception point
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (e.g., 6 RBs) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • the basic transmission time interval (TTI) or packet duration is the 1 ms subframe.
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, ... slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. In some examples, MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. In some examples, multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates potentially interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates example components of BS 110 and UE 120 (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 252, processors 266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234, processors 220, 230, 238, and/or controller/processor 240 of the BS 110 may be used to perform the various techniques and methods described herein.
  • the controller/processor 240 of the BS 110 has a multi-subscriber identify module (SIM) controller that may be configured for receive and register information regarding MSIM capability of the UE 120, according to aspects described herein.
  • SIM multi-subscriber identify module
  • the controller/processor 280 of the UE 120 also includes an MSIM controller that may configure the UE 120 for sharing RF components between SIMs, according to aspects described herein.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110 and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the BS 110 and the UE 120, respectively.
  • the controller/processor 240 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein.
  • the controller/processor 280 of the UE 120 and/or the controller/processor 240 of the BS 110 may include an MSIM controller that may configure the UE 120 for sharing RF components between SIMs, according to aspects described herein.
  • the memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • New radio (NR) concurrent radio-access technology (RAT) operation generally refers to operating multiple simultaneous active connections with at least one connection being on NR.
  • the two connections may involve LTE and NR connections, or both NR connections.
  • Multi-subscriber identify module (SIM) devices are able to connect to multiple networks independently without network awareness. Different UE behaviors may occur based on different implementations like dual-SIM dual active (DSDA) or dual-SIM dual standby (DSDS) .
  • DSDS generally refers to a dual-SIM deployment where the two SIM cards of the UE may be unable to simultaneously generate traffic.
  • DSDA on the other hand refers to a dual-SIM deployment where both SIM cards of the UE may be active at the same time.
  • a SIM generally refers to both virtual and hardware implementations of a SIM. In other words, each SIM may be implemented using hardware (e.g., a physical SIM card) on the multi-SIM device, or implemented virtually using a remote database.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) .
  • SIMs subscriber identity modules
  • the UE may be configured to share RF components.
  • an RF chain of a first SIM e.g., a Master
  • a second SIM e.g., a Slave
  • PHY physical
  • MSIM UE RF chains may include multiple antenna paths that can be used to enhance various operations. For example, idle-mode operations may make use of primary and diversity antennas for paging message demodulation and MIB/SIB reading, based on RF chain hardware support.
  • Dual SIM receivers allow the different SIMs to support a variety of different combination options.
  • dual-SIM (DSIM) devices could support the following:
  • SA-NR + SA-NR both SIMs could support standalone (SA) NR (SA-NR) ;
  • NSA-NR + LTE one SIM supports non-standalone (NSA) while another SIM supports LTE;
  • LTE + LTE both SIMs support LTE
  • LTE + W one SIM supports LTE, the other supports wideband CDMA; or
  • any other combination (X RAT + X RAT both SIMs the same RAT or X RAT + Y RAT the SIMs support different RATs) .
  • both sub1 and sub2 can have paging cycles which are multiples of N*320ms which means there is a certain probability that each subscriber paging cycle can collide persistently in commercial networks.
  • DSIM device dual-receive concurrency functionality may use the alternative antenna paths, if such alternative antenna paths are available for the operating frequency bands using RF front-end signal-path and antenna-path configuration information.
  • Alternative antenna paths other than primary and diversity antenna paths, are possible for devices supporting high order receive diversity (HORxD) and/or 4x4 MIMO on certain frequency bands in connected mode.
  • HORxD high order receive diversity
  • 4x4 MIMO on certain frequency bands in connected mode.
  • aspects of the present disclosure provide techniques that may reduce power consumption in certain cases, by sharing RF processing across SIMs in an MSIM deployment.
  • the techniques may be used in a multi-SIM deployment, where each SIM of the UE belongs to the same network carrier.
  • the techniques presented herein may be used to reduce power consumption when 2 or more SIMs (subscribers or SUBs) belonging to the same operator are in the following modes:
  • an RF chain of a first SIM may be used to take measurements and decode paging messages for a second SIM (e.g., a Slave) , allowing physical (PHY) layer components for the second SIM to be kept in a low power state.
  • a first SIM e.g., a Master
  • a second SIM e.g., a Slave
  • PHY physical
  • FIG. 3 is a flow diagram illustrating example operations 300 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 300 may be performed, for example, by a UE (e.g., such as a UE 120 of FIGs. 1, 2, 5, or 6) to share RF processing between SIMs.
  • a UE e.g., such as a UE 120 of FIGs. 1, 2, 5, or 6
  • RF processing between SIMs.
  • Operations 300 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) . Further, the transmission and reception of signals by the UE in operations 300 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
  • processors e.g., controller/processor 280
  • Operations 300 begin, at 302, by determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths.
  • SIMs subscriber identification modules
  • the UE utilizes a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • FIG. 4 is a flow diagram illustrating example operations 400 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 400 may be performed, for example, by a network entity (e.g., such as base station/NB/gNB of FIGs. 1, 2, 5, or 6) to communicate with (or configure) a UE performing operations 300 of FIG. 3.
  • a network entity e.g., such as base station/NB/gNB of FIGs. 1, 2, 5, or 6
  • Operations 400 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) . Further, the transmission and reception of signals by the BS in operations 400 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
  • processors e.g., controller/processor 240
  • the operations 400 begin, at 402, by receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths.
  • the network entity takes one or more actions, based on the indication.
  • the RF sharing across SIMs described herein may be performed after detecting a UE has 2 SIMs (SUBs belonging to a same operator) and is operating in a dual-receive chain mode.
  • the UE may operating with 2 antennas (a primary and diversity antenna path) or 4 antennas (with primary, diversity, and higher order antenna paths) .
  • a paging message can be decoded via (an RF chain of) one SUB by forcing 2 or more SUBs to camp on the same serving cell.
  • a measurement result can be shared via one SUB by forcing the 2 or more SUBs to camp on the same serving cell.
  • a SUB designated as a master SUB may be used for decoding paging message and/or sharing measurements with one or more other SUBs designated as slave SUBs.
  • RF resources may be allocated to a master SUB based on various factors (e.g., in an effort to conserve power while providing adequate performance) .
  • 1, 2 or more antennas may be assigned to the master SUB based on the channel quality conditions, for example, based on signal to noise ratio (SNR) , filtered reference signal received power (RSRP) , paging block error rate (BLER) metric, and/or UE Power Consumption (e.g., battery life) measurements.
  • SNR signal to noise ratio
  • RSRP filtered reference signal received power
  • BLER paging block error rate
  • UE Power Consumption e.g., battery life
  • RF processing may be shared across SIMs for decoding system information.
  • the 2 or more SUBs may camp on the same cell and can share master information block or system information block (MIB/SIBs) decoding results.
  • MIB/SIBs master information block or system information block
  • only the master SUB may need to acquire/monitor MIB/SIBs and share with other SUB (s) , which may keep their RF components in low power state.
  • idle activities can be performed via one stack by forcing 2 or more SUBs to camp on the same serving cell.
  • UE-specific paging messages may be decoded by one stack and the cell level information can be shared between the 2 or more SUBs.
  • a master SUB may be defined for a dedicated data subscription (DDS) and a slave SUB may be defined for a non-DDS (nDDS) SUB.
  • DDS dedicated data subscription
  • nDDS non-DDS
  • the master-slave mode can be further separated, according to various modes, such as:
  • Proxy page demod mode The slave SUB leverages the master SUB protocol stack for page demod purpose;
  • Proxy idle mobility mode The slave SUB leverages the Master SUB protocol stack for idle mobility procedures, including serving cell measurement, intra/inter frequency and IRAT measurement, and system information updates.
  • the BWP configurations for the different SUBs can be different.
  • the master SUB and slave SUB may need to combine the BWPs of both configurations.
  • the master and slave SUBs may need to combine the measurement configurations and different BWP configurations of both SUBs.
  • the slave SUB may leverage the master SUB protocol stack for paging message demodulation.
  • the slave SUB may also leverage the master SUB protocol stack for Idle mobility procedures, including serving cell measurement, intra/inter frequency and IRAT measurement and system information updates.
  • the separate measurements on each SUB could be saved as well (e.g., for SA+SA with multiple BWPs configured) .
  • RF resources may be assigned to the master SUB based on channel quality metrics (such as SNR, filtered RSRP, Paging BLER metric) and/or UE Power Consumption.
  • the assignments may be designed to reduce power consumption when possible, for example, by assigning a fewest number of antennas when possible. The following are examples of possible assignments:
  • Assign 1 antenna to the master SUB when one channel quality metric e.g., based on SNR, filtered RSRP
  • one channel quality metric e.g., based on SNR, filtered RSRP
  • good e.g., above a threshold
  • Assign 1 antenna to the master SUB when another channel quality metric e.g., Paging BLER metric
  • another channel quality metric e.g., Paging BLER metric
  • both UE power consumption and a channel quality metric may be used to decide whether to assign 1, 2 or more antennas to the master SUB.
  • one active protocol stack/SUB may be used to perform idle activities of one or more other SUBs camping on the same cell, which may help avoid conflict in the RF sharing.
  • the techniques proposed herein may also apply to RAN sharing scenarios where 2 or more SUBs camp on the same cell which is shared by multiple public land mobile networks (PLMNs) , with each belonging to their home PLMN (HPLMN) .
  • PLMNs public land mobile networks
  • HPLMN home PLMN
  • an MSIM UE may provide the network an indication of its SUB associations.
  • the network may take one or more actions designed to optimize the performance of the multi-SIM UE. For example, the network may share measurements (e.g., RRM/RLM/CSI) measurement results, reported by the UE for one SIM, with a process for another SIM.
  • the network may schedule and coordinate discontinuous reception (DRX) cycles for different SIMs (e.g., so the UE may monitor for paging in both SIMs at a same period) .
  • the network entity UE may send paging to both SIMs in the same paging occasion and/or in the same paging message.
  • FIG. 6 is a call flow diagram illustrating example operations for power saving for an MSIM UE, in accordance with certain aspects of the present disclosure.
  • the UE may first provide an indication of its MSIM capability to the network.
  • the UE may indicate Multi-SIM capability, a Number of Rx chains, a number of Tx chains, concurrent Tx capability, concurrent Rx capability.
  • the UE may also indicate a number (and which combinations) of concurrent RATs the UE can support.
  • a 1xSRLTE + GSM dual SIM UE may support 3 concurrent RATs: SIM1 CDMA1x, SIM1 LTE, and SIM2 GSM.
  • the UE may also provide a list of the associated SIMs (e.g., which SIMs have been designated in a master-slave arrangement for RF sharing purposes) .
  • the UE and/or the network may take action to force SIM1 and SIM2 to camp on a same cell. For example, the UE may reselect one or more of the SIMs to the same cell. Alternatively, or additionally, the network may detects 2 or more SIMs belong to the same UE (e.g., based on the indication provided by the UE) and handover/redirect the SIMs to the same cell.
  • the UE may designate a master SUB (SIM1 in this example) and assign antennas based on channel conditions and/or UE power consumption.
  • SIM1 master SUB
  • the network may page SIM2 in a manner that allows the UE to decode the page using the SIM1 RF chain.
  • the UE may also share measurements taken with SIM1 RF chain with SIM2.
  • the network may use measurements taken by the UE with the SIM1 RF chain for SIM2 processing.
  • Multi-SIM capability can be indicated in a UE radio capability container (e.g., UE-NR-Capability IE or a new Multi-SIM capability IE) .
  • Associated SIMs can be indicated by RRC.
  • RRC e.g., a newly defined RRC message or new parameters in an existing message (e.g., UEAssistanceInformation message) may be used to indicate associated SIMs.
  • a UE may indicate the S-TMSI or IMSI of other SIMs to the gNB.
  • each SIM may indicate a common IMEI or device ID (of the UE) to the gNB.
  • SIM association may be signaled via non-access stratum (NAS) signaling.
  • NAS non-access stratum
  • a new NAS message may be defined or add new parameters may be added into existing NAS messages to indicate the associated SIMs by 5G-GUTI or IMEI (or device ID) .
  • the Access and Mobility Management function may sends the common IMEI or device ID to RAN.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) .
  • SIMs subscriber identity modules
  • the UE may be configured to share RF components.
  • an RF chain of a first SIM e.g., a Master
  • a second SIM e.g., a Slave
  • PHY physical
  • Embodiment 1 A method for wireless communications by a user equipment (UE) , comprising determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • SIMs subscriber identification modules
  • Embodiment 2 The method of Embodiment 1, further comprising taking one or more actions to cause the first and second SIMs to camp on the same serving cell.
  • Embodiment 3 The method of any of Embodiments 1-2, wherein the utilizing comprises utilizing the receive chain associated with the first SIM to decode a paging message for the second SIM.
  • Embodiment 4 The method of any of Embodiments 1-3, wherein the utilizing comprises sharing a measurement taken with the receive chain associated with the first SIM with the second SIM.
  • Embodiment 5 The method of any of Embodiments 1-4, further comprising determining, based on one or more conditions, how many of the antenna paths to assign to the first SIM for monitoring downlink transmissions in the serving cell to assist the second SIM.
  • Embodiment 6 The method of Embodiment 5, wherein the one or more conditions comprise at least a first condition related to a receive signal metric; a second condition related to power consumption of the UE.
  • Embodiment 7 The method of any of Embodiments 1-6, wherein the utilizing comprises utilizing the receive chain associated with the first SIM to monitor for downlink transmissions in a bandwidth part (BWP) to assist the second SIM.
  • BWP bandwidth part
  • Embodiment 8 The method of any of Embodiments 1-7, wherein the utilizing comprises utilizing the receive chain associated with the first SIM to decode system information (SI) and sharing the system information with the second SIM.
  • SI system information
  • Embodiment 9 The method of any of Embodiments 1-8, further comprising designating the first SIM a master SIM and the second SIM a slave SIM.
  • Embodiment 10 The method of Embodiment 9, wherein the utilizing comprises utilizing a protocol stack of the master SIM for processing paging messages of the slave SIM.
  • Embodiment 11 The method of any of Embodiments 1-10, wherein the utilizing comprises utilizing a protocol stack of the master SIM for idle mobility procedures of the slave SIM.
  • Embodiment 12 The method of Embodiment 11, wherein the master SIM and slave SIM have different measurement configurations for idle and connected modes; and the maser SIM takes measurements according to both configurations are combined when the slave SIM is in an idle mode.
  • Embodiment 13 The method of any of Embodiments 1-12, wherein the master SIM and slave SIM have different bandwidth part (BWP) configurations and the master SIM monitors for downlink transmissions according to both BWP configurations in order to assist the second SIM.
  • BWP bandwidth part
  • Embodiment 14 The method of any of Embodiments 1-13, wherein the two or more SIMs are camped on a same serving cell which is shared by multiple PLMNs, including home PLMNs of the first and second SUBs.
  • Embodiment 15 The method of any of Embodiments 1-14, further comprising providing an indication to the network of the UE capability to support multiple SIMs.
  • Embodiment 16 The method of Embodiment 15, wherein the indication includes at least one of a number of receive chains and/or transmit chains supported, a number of receive chains and/or transmit chains concurrently supported, a number of radio access technologies (RATs) supported concurrently, or a list of SIMs associated with the UE.
  • RATs radio access technologies
  • Embodiment 17 The method of any of Embodiments 1-16, wherein the indication is provided via at least one of radio resource control (RRC) signaling or non-access stratum (NAS) signaling.
  • RRC radio resource control
  • NAS non-access stratum
  • Embodiment 18 A method for wireless communications by a network entity, comprising receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and taking one or more actions, based on the indication.
  • SIMs subscriber identification modules
  • Embodiment 19 The method of Embodiment 18, wherein the indication includes at least one of a number of receive chains and/or transmit chains supported, a number of receive chains and/or transmit chains concurrently supported, a number of radio access technologies (RATs) supported concurrently, or a list of SIMs associated with the UE.
  • RATs radio access technologies
  • Embodiment 20 The method of any of Embodiments 18-19, wherein the indication is received via at least one of radio resource control (RRC) signaling or non-access stratum (NAS) signaling.
  • RRC radio resource control
  • NAS non-access stratum
  • Embodiment 21 The method of any of Embodiments 18-20, wherein the one or more actions are designed to allow the UE to utilize a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • Embodiment 22 The method of Embodiment 21, wherein the one or more actions comprise one or more actions to cause the first and second SIMs to camp on the same serving cell.
  • Embodiment 23 The method of any of Embodiments 18-22, wherein the one or more actions comprise applying measurement results, taken by the UE with the receive chain associated with the first SIM, to decisions related to the second SIM.
  • Embodiment 24 The method of any of Embodiments 18-23, wherein the one or more actions comprise coordinating discontinuous reception (DRX) scheduling for both the first and second SIMs.
  • DRX discontinuous reception
  • Embodiment 25 The method of any of Embodiments 18-24, wherein the one or more actions comprise sending a paging message for the second SIM in at least one of a same paging occasion or paging message for the first SIM.
  • Embodiment 26 An apparatus for wireless communications by a user equipment (UE) , comprising means for determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and means for utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • SIMs subscriber identification modules
  • Embodiment 27 An apparatus for wireless communications by a network entity, comprising means for receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and means for taking one or more actions, based on the indication.
  • UE user equipment
  • SIMs subscriber identification modules
  • Embodiment 28 An apparatus for wireless communications by a user equipment (UE) , comprising at least one processor and a memory configured to determine the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and a receiver configured to utilize a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • SIMs subscriber identification modules
  • Embodiment 29 An apparatus for wireless communications by a network entity, comprising a receiver configured to receive, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and a processor configured to take one or more actions, based on the indication.
  • SIMs subscriber identification modules
  • Embodiment 30 A computer readable medium having instructions stored thereon for determining a user equipment (UE) is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  • SIMs subscriber identification modules
  • Embodiment 31 A computer readable medium having instructions stored thereon for receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and taking one or more actions, based on the indication.
  • SIMs subscriber identification modules
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • instructions for performing the operations described herein may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure are generally directed to techniques for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs). In some cases, a UE may be configured to share RF components and processing between multiple SIMs belonging to a same operator.

Description

MULTI-SUBSCRIBER IDENTITY MODULE (MSIM) POWER SAVING BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques that may optimize performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) .
Description of  Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more DUs, in communication with a CU, may define an access node (e.g., which may be referred to as a BS, next generation NodeB (gNB or gNodeB) , TRP, etc. ) . A BS or DU may communicate with a set of UEs on downlink  channels (e.g., for transmissions from a BS or DU to a UE) and uplink channels (e.g., for transmissions from a UE to a BS or DU) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New radio (e.g., 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects provide a method for wireless communication by a user-equipment (UE) . The method generally includes determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
Certain aspects provide a method for wireless communication by a network entity. The method generally includes receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and taking one or more actions, based on the indication.
Aspects of the present disclosure provide means for, apparatus, processors, and computer-readable mediums for performing the methods described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
FIG. 3 illustrates example operations for wireless communication by a user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 4 illustrates example operations for wireless communication by a network entity, in accordance with certain aspects of the present disclosure.
FIG. 5 is a diagram illustrating example operations for RAN sharing for an MSIM UE, in accordance with certain aspects of the present disclosure.
FIG. 6 is a call flow diagram illustrating example operations for power saving for an MSIM UE, in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) . As will be described in greater detail below, if the multiple SIMs belong to a same operator, the UE may be configured to share RF components. For example, an RF chain of a first SIM (e.g., a Master) may be used to take measurements and decode paging messages for a second SIM (e.g., a Slave) , allowing physical (PHY) layer components for the second SIM to be kept in a low power state.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as 3GPP Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single-carrier frequency division multiple access (SC-FDMA) , time division synchronous code division multiple access (TD-SCDMA) , and other networks. The terms “network” and “system” are often used interchangeably.
A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . LTE and LTE-A are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . NR access (e.g., 5G NR) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio  technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
FIG. 1 illustrates an example wireless communication network 100 (e.g., a 5G NR network) in which aspects of the present disclosure may be performed. For example, as shown in FIG. 1, the UE 120a may support multiple subscriber identity modules (SIMs) and may have an MSIM controller that may be configured to use RF components of a first SIM for performing operations related to a second SIM (e.g., paging detection and reference signal measurement) , allowing the second SIM to keep its RF components in a low power state. As illustrated, a BS 110 may also have an MSIM controller which, in some cases, may help configure an MSIM UE 120 in a manner that allows RF sharing between SIMs.
As illustrated in FIG. 1, the wireless communication network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipments (UEs) . Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and BS, next generation NodeB (gNB or gNodeB) , access point (AP) , distributed unit (DU) , carrier, or transmission reception point (TRP) may be used interchangeably. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a  single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless communication network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless communication network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame  timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into  multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (e.g., 6 RBs) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively. In LTE, the basic transmission time interval (TTI) or packet duration is the 1 ms subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, ... slots) depending on the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. In some examples, MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. In some examples, multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and  may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
In some examples, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates potentially interfering transmissions between a UE and a BS.
FIG. 2 illustrates example components of BS 110 and UE 120 (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 252,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120 and/or antennas 234,  processors  220, 230, 238, and/or controller/processor 240 of the BS 110 may be used to perform the various techniques and methods described herein. For example, as shown in FIG. 2, the controller/processor 240 of the BS 110 has a multi-subscriber identify module (SIM) controller that may be configured for receive and register information regarding MSIM capability of the UE 120, according to aspects described herein. The controller/processor 280 of the UE 120 also includes an MSIM controller that may configure the UE 120 for sharing RF components between SIMs, according to aspects described herein.
At the BS 110, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120, the antennas 252a-252r may receive the downlink signals from the BS 110 and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120, a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The  symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the demodulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the BS 110 and the UE 120, respectively. The controller/processor 240 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein. For example, the controller/processor 280 of the UE 120 and/or the controller/processor 240 of the BS 110 may include an MSIM controller that may configure the UE 120 for sharing RF components between SIMs, according to aspects described herein. The  memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
EXAMPLE POWER SAVING FOR MULTI-SUBSCRIBER IDENTITY MODULE (MSIM) UE DEPLOYMENT
New radio (NR) concurrent radio-access technology (RAT) operation generally refers to operating multiple simultaneous active connections with at least one connection being on NR. For example, the two connections may involve LTE and NR connections, or both NR connections. Multi-subscriber identify module (SIM) devices are able to connect to multiple networks independently without network awareness. Different UE behaviors may occur based on different implementations like dual-SIM dual active (DSDA) or dual-SIM dual standby (DSDS) . DSDS generally refers to a dual-SIM deployment where the two SIM cards of the UE may be unable to simultaneously generate traffic. DSDA on the other hand refers to a dual-SIM deployment where both SIM cards of the UE may be active at the same time. As used herein, a SIM generally refers to both virtual and hardware implementations of a SIM. In other words, each SIM may be implemented using hardware (e.g., a physical SIM card) on the multi-SIM device, or implemented virtually using a remote database.
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) . As will be described in greater detail below, if the multiple SIMs belong to a same operator, the UE may be configured to share RF components. For example, an RF chain of a first SIM (e.g., a Master) may be used to take measurements and decode paging messages for a second SIM (e.g., a Slave) , allowing physical (PHY) layer components for the second SIM to be kept in a low power state.
MSIM UE RF chains may include multiple antenna paths that can be used to enhance various operations. For example, idle-mode operations may make use of primary and diversity antennas for paging message demodulation and MIB/SIB reading, based on RF chain hardware support.
Dual SIM receivers allow the different SIMs to support a variety of different combination options. For example, dual-SIM (DSIM) devices could support the following:
SA-NR + SA-NR: both SIMs could support standalone (SA) NR (SA-NR) ;
NSA-NR + LTE: one SIM supports non-standalone (NSA) while another SIM supports LTE;
LTE + LTE: both SIMs support LTE;
LTE + W: one SIM supports LTE, the other supports wideband CDMA; or
any other combination (X RAT + X RAT both SIMs the same RAT or X RAT + Y RAT the SIMs support different RATs) .
With dual-sim (DSIM) devices, one potential problem is the possibility of persistent paging occasion (PO) collision when both subscribers (e.g., sub1 and sub2) are in idle mode, which will lead to a paging message miss by the subscribers. As an example, for SA-NR + SA-NR or LTE + LTE, both sub1 and sub2 can have paging cycles which are multiples of N*320ms which means there is a certain probability that each subscriber paging cycle can collide persistently in commercial networks.
If the DSIM device supports dual-receive concurrency across dual-sim (DR-DSDS) feature, this (PO collision) problem can be reduced. However, dual-receive scenarios typically rely on redundancy in RF front-end capability, due to support of  carrier-aggregation (e.g., diplexers and RF front-end switching/routing are needed to support concurrent receive operation as is required during carrier-aggregation usage in NR or LTE connected mode) .
Further, DSIM device dual-receive concurrency functionality may use the alternative antenna paths, if such alternative antenna paths are available for the operating frequency bands using RF front-end signal-path and antenna-path configuration information. Alternative antenna paths, other than primary and diversity antenna paths, are possible for devices supporting high order receive diversity (HORxD) and/or 4x4 MIMO on certain frequency bands in connected mode.
Unfortunately, making use of higher-order antennas for features such as paging demodulation and MIB/SIB reading consumes a significant amount of power. Aspects of the present disclosure, however, provide techniques that may reduce power consumption in certain cases, by sharing RF processing across SIMs in an MSIM deployment.
In some cases, the techniques may be used in a multi-SIM deployment, where each SIM of the UE belongs to the same network carrier. For example, the techniques presented herein may be used to reduce power consumption when 2 or more SIMs (subscribers or SUBs) belonging to the same operator are in the following modes:
Idle + Idle : 2 or more SUBs in Idle camp to the same cell 
Connected + Idle : 1 SUB in Idle and 1 Sub Connected camp to the same cell
As will be described in greater detail below, an RF chain of a first SIM (e.g., a Master) may be used to take measurements and decode paging messages for a second SIM (e.g., a Slave) , allowing physical (PHY) layer components for the second SIM to be kept in a low power state.
FIG. 3 is a flow diagram illustrating example operations 300 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 300 may be performed, for example, by a UE (e.g., such as a UE 120 of FIGs. 1, 2, 5, or 6) to share RF processing between SIMs.
Operations 300 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) . Further, the transmission and reception of signals by the UE in operations 300 may be  enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
Operations 300 begin, at 302, by determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths. At 304, the UE utilizes a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
FIG. 4 is a flow diagram illustrating example operations 400 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 400 may be performed, for example, by a network entity (e.g., such as base station/NB/gNB of FIGs. 1, 2, 5, or 6) to communicate with (or configure) a UE performing operations 300 of FIG. 3.
Operations 400 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) . Further, the transmission and reception of signals by the BS in operations 400 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals. 
The operations 400 begin, at 402, by receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths. At 404, the network entity takes one or more actions, based on the indication.
In some cases, the RF sharing across SIMs described herein may be performed after detecting a UE has 2 SIMs (SUBs belonging to a same operator) and is operating in a dual-receive chain mode. For example, the UE may operating with 2 antennas (a  primary and diversity antenna path) or 4 antennas (with primary, diversity, and higher order antenna paths) .
In some cases, when 2 or more SUBs belong to the same carrier (operator) and camp on the cell belongs to the same TAC, a paging message can be decoded via (an RF chain of) one SUB by forcing 2 or more SUBs to camp on the same serving cell. Similarly, when 2 or more SUBs belong to the same carrier and camp on a cell that belong to the same TAC, a measurement result can be shared via one SUB by forcing the 2 or more SUBs to camp on the same serving cell.
In some cases, a SUB designated as a master SUB may be used for decoding paging message and/or sharing measurements with one or more other SUBs designated as slave SUBs.
In such cases, RF resources may be allocated to a master SUB based on various factors (e.g., in an effort to conserve power while providing adequate performance) . For example, 1, 2 or more antennas may be assigned to the master SUB based on the channel quality conditions, for example, based on signal to noise ratio (SNR) , filtered reference signal received power (RSRP) , paging block error rate (BLER) metric, and/or UE Power Consumption (e.g., battery life) measurements. In some cases, both UE power consumption and a channel quality metric (e.g., SNR, filtered RSRP, or Paging BLER metric) may be used to decide the Assignment of 1, 2 or more antennas to the master SUB.
In addition to paging message decoding, separate measurements on each SUB could be saved as well. This may be especially useful for a UE configured for SA + SA with multiple bandwidth parts (BWP) configured.
In some cases, RF processing may be shared across SIMs for decoding system information. For example, the 2 or more SUBs may camp on the same cell and can share master information block or system information block (MIB/SIBs) decoding results. In this case, only the master SUB may need to acquire/monitor MIB/SIBs and share with other SUB (s) , which may keep their RF components in low power state.
When 2 or more SUBs belong to the same carrier and camp on the same RAT, as proposed herein, idle activities (page + idle mobility) can be performed via one stack by forcing 2 or more SUBs to camp on the same serving cell. In some cases, UE-specific  paging messages may be decoded by one stack and the cell level information can be shared between the 2 or more SUBs.
In some cases, a master SUB may be defined for a dedicated data subscription (DDS) and a slave SUB may be defined for a non-DDS (nDDS) SUB. In such cases, the master-slave mode can be further separated, according to various modes, such as:
Proxy page demod mode: The slave SUB leverages the master SUB protocol stack for page demod purpose; and
Proxy idle mobility mode: The slave SUB leverages the Master SUB protocol stack for idle mobility procedures, including serving cell measurement, intra/inter frequency and IRAT measurement, and system information updates.
As noted above, in addition to the page decoding, separate measurements on each SUB could be saved as well especially for SA+SA with multiple BWP configured. In some cases, intra/inter/IRAT measurement configurations in IDLE and connected modes for the different SUBs could be different. In case the Mater SUB is in connected mode, it may need to combine the different periods of the different configurations to cover the IDLE configuration for the slave SUB.
The BWP configurations for the different SUBs can be different. In case the master SUB and slave SUB have different BWP configurations, the master SUB may need to combine the BWPs of both configurations.
Similarly, in the case the master and slave SUBs have different intra/inter/IRAT measurement configurations and different BWP configurations for both Idle + Idle (master and slave SUBs both in Idle) and Connected + Idle (master SUB Connected, slave SUB in Idle) , the master SUB may need to combine the measurement configurations and different BWP configurations of both SUBs. 
In the case of Idle + Idle, 2 or more SUBs may camp on the same cell. In the case of Connected + Idle, 2 or more SUBs may also camp to the same cell. In either case, the slave SUB may leverage the master SUB protocol stack for paging message demodulation. The slave SUB may also leverage the master SUB protocol stack for Idle mobility procedures, including serving cell measurement, intra/inter frequency and IRAT measurement and system information updates. As noted above, the separate  measurements on each SUB could be saved as well (e.g., for SA+SA with multiple BWPs configured) .
As noted above, RF resources may be assigned to the master SUB based on channel quality metrics (such as SNR, filtered RSRP, Paging BLER metric) and/or UE Power Consumption. The assignments may be designed to reduce power consumption when possible, for example, by assigning a fewest number of antennas when possible. The following are examples of possible assignments:
Assign 1 antenna to the master SUB when one channel quality metric (e.g., based on SNR, filtered RSRP) is good (e.g., above a threshold) ;
Assign 1 antenna to the master SUB when another channel quality metric (e.g., Paging BLER metric) is above a Page Decode Success Rate threshold;
Assign 1 antenna to the master SUB when (UE Battery Level) is below a threshold (e.g., fairly low) ;
Assign 2 antennas to the master SUB when (SNR, filtered RSRP) is moderate (e.g., between two thresholds) ;
Assign 2 antennas to the master SUB when (Paging BLER metric) is within a Page Decode Success Rate range of thresholds;
Assign 2 antennas to the master SUB when (UE Battery Level) is within a range of thresholds;
Assign 4 or more antennas to the master SUB when (SNR, filtered RSRP) is low (e.g., below a threshold) ; or 
Assign 4 or more antennas to the master SUB when (Paging BLER metric) is below a Page Decode Success Rate threshold.
In some cases, both UE power consumption and a channel quality metric (SNR, filtered RSRP, Paging BLER metric) may be used to decide whether to assign 1, 2 or more antennas to the master SUB.
In some cases, one active protocol stack/SUB may be used to perform idle activities of one or more other SUBs camping on the same cell, which may help avoid conflict in the RF sharing.
As illustrated in FIG. 5, the techniques proposed herein may also apply to RAN sharing scenarios where 2 or more SUBs camp on the same cell which is shared by multiple public land mobile networks (PLMNs) , with each belonging to their home PLMN (HPLMN) . In the example shown in FIG. 5, SIM1 belongs to HPLMN Id=x, while SIM2 belongs to HPMLN ID=y.
In some cases, an MSIM UE may provide the network an indication of its SUB associations. In such cases, if the network knows two SIMs belong to the same UE, the network may take one or more actions designed to optimize the performance of the multi-SIM UE. For example, the network may share measurements (e.g., RRM/RLM/CSI) measurement results, reported by the UE for one SIM, with a process for another SIM. In some cases, the network may schedule and coordinate discontinuous reception (DRX) cycles for different SIMs (e.g., so the UE may monitor for paging in both SIMs at a same period) . The network entity UE may send paging to both SIMs in the same paging occasion and/or in the same paging message.
FIG. 6 is a call flow diagram illustrating example operations for power saving for an MSIM UE, in accordance with certain aspects of the present disclosure. As illustrated, the UE may first provide an indication of its MSIM capability to the network. For example, the UE may indicate Multi-SIM capability, a Number of Rx chains, a number of Tx chains, concurrent Tx capability, concurrent Rx capability. The UE may also indicate a number (and which combinations) of concurrent RATs the UE can support. For example, a 1xSRLTE + GSM dual SIM UE may support 3 concurrent RATs: SIM1 CDMA1x, SIM1 LTE, and SIM2 GSM. The UE may also provide a list of the associated SIMs (e.g., which SIMs have been designated in a master-slave arrangement for RF sharing purposes) .
As illustrated in FIG. 6, if 2 or more SIMs of the same UE camps on different cells, the UE and/or the network may take action to force SIM1 and SIM2 to camp on a same cell. For example, the UE may reselect one or more of the SIMs to the same cell. Alternatively, or additionally, the network may detects 2 or more SIMs belong to the same UE (e.g., based on the indication provided by the UE) and handover/redirect the SIMs to the same cell.
As described above, the UE may designate a master SUB (SIM1 in this example) and assign antennas based on channel conditions and/or UE power  consumption. As illustrated in FIG. 6, given the UEs MSIM capability and SIM association, the network may page SIM2 in a manner that allows the UE to decode the page using the SIM1 RF chain. The UE may also share measurements taken with SIM1 RF chain with SIM2. Similarly, given the SIM association, the network may use measurements taken by the UE with the SIM1 RF chain for SIM2 processing.
There are various signaling options for indicating MSIM capability. For example, Multi-SIM capability can be indicated in a UE radio capability container (e.g., UE-NR-Capability IE or a new Multi-SIM capability IE) . Associated SIMs can be indicated by RRC. For example, a newly defined RRC message or new parameters in an existing message (e.g., UEAssistanceInformation message) may be used to indicate associated SIMs. A UE may indicate the S-TMSI or IMSI of other SIMs to the gNB. Alternatively, each SIM may indicate a common IMEI or device ID (of the UE) to the gNB. In some cases, SIM association may be signaled via non-access stratum (NAS) signaling. For example, a new NAS message may be defined or add new parameters may be added into existing NAS messages to indicate the associated SIMs by 5G-GUTI or IMEI (or device ID) . In such cases, the Access and Mobility Management function (AMF) may sends the common IMEI or device ID to RAN.
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for optimizing performance (e.g., to save power) for UEs with multiple subscriber identity modules (SIMs) . As will be described in greater detail below, if the multiple SIMs belong to a same operator, the UE may be configured to share RF components. For example, an RF chain of a first SIM (e.g., a Master) may be used to take measurements and decode paging messages for a second SIM (e.g., a Slave) , allowing physical (PHY) layer components for the second SIM to be kept in a low power state.
Example Embodiments
Embodiment 1: A method for wireless communications by a user equipment (UE) , comprising determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
Embodiment 2: The method of Embodiment 1, further comprising taking one or more actions to cause the first and second SIMs to camp on the same serving cell.
Embodiment 3: The method of any of Embodiments 1-2, wherein the utilizing comprises utilizing the receive chain associated with the first SIM to decode a paging message for the second SIM.
Embodiment 4: The method of any of Embodiments 1-3, wherein the utilizing comprises sharing a measurement taken with the receive chain associated with the first SIM with the second SIM.
Embodiment 5: The method of any of Embodiments 1-4, further comprising determining, based on one or more conditions, how many of the antenna paths to assign to the first SIM for monitoring downlink transmissions in the serving cell to assist the second SIM.
Embodiment 6: The method of Embodiment 5, wherein the one or more conditions comprise at least a first condition related to a receive signal metric; a second condition related to power consumption of the UE.
Embodiment 7: The method of any of Embodiments 1-6, wherein the utilizing comprises utilizing the receive chain associated with the first SIM to monitor for downlink transmissions in a bandwidth part (BWP) to assist the second SIM.
Embodiment 8: The method of any of Embodiments 1-7, wherein the utilizing comprises utilizing the receive chain associated with the first SIM to decode system information (SI) and sharing the system information with the second SIM.
Embodiment 9: The method of any of Embodiments 1-8, further comprising designating the first SIM a master SIM and the second SIM a slave SIM.
Embodiment 10: The method of Embodiment 9, wherein the utilizing comprises utilizing a protocol stack of the master SIM for processing paging messages of the slave SIM.
Embodiment 11: The method of any of Embodiments 1-10, wherein the utilizing comprises utilizing a protocol stack of the master SIM for idle mobility procedures of the slave SIM.
Embodiment 12: The method of Embodiment 11, wherein the master SIM and slave SIM have different measurement configurations for idle and connected modes; and the maser SIM takes measurements according to both configurations are combined when the slave SIM is in an idle mode.
Embodiment 13: The method of any of Embodiments 1-12, wherein the master SIM and slave SIM have different bandwidth part (BWP) configurations and the master SIM monitors for downlink transmissions according to both BWP configurations in order to assist the second SIM.
Embodiment 14: The method of any of Embodiments 1-13, wherein the two or more SIMs are camped on a same serving cell which is shared by multiple PLMNs, including home PLMNs of the first and second SUBs.
Embodiment 15: The method of any of Embodiments 1-14, further comprising providing an indication to the network of the UE capability to support multiple SIMs.
Embodiment 16: The method of Embodiment 15, wherein the indication includes at least one of a number of receive chains and/or transmit chains supported, a number of receive chains and/or transmit chains concurrently supported, a number of radio access technologies (RATs) supported concurrently, or a list of SIMs associated with the UE.
Embodiment 17: The method of any of Embodiments 1-16, wherein the indication is provided via at least one of radio resource control (RRC) signaling or non-access stratum (NAS) signaling.
Embodiment 18: A method for wireless communications by a network entity, comprising receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and taking one or more actions, based on the indication. 
Embodiment 19: The method of Embodiment 18, wherein the indication includes at least one of a number of receive chains and/or transmit chains supported, a number of receive chains and/or transmit chains concurrently supported, a number of  radio access technologies (RATs) supported concurrently, or a list of SIMs associated with the UE.
Embodiment 20: The method of any of Embodiments 18-19, wherein the indication is received via at least one of radio resource control (RRC) signaling or non-access stratum (NAS) signaling.
Embodiment 21: The method of any of Embodiments 18-20, wherein the one or more actions are designed to allow the UE to utilize a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
Embodiment 22: The method of Embodiment 21, wherein the one or more actions comprise one or more actions to cause the first and second SIMs to camp on the same serving cell.
Embodiment 23: The method of any of Embodiments 18-22, wherein the one or more actions comprise applying measurement results, taken by the UE with the receive chain associated with the first SIM, to decisions related to the second SIM.
Embodiment 24: The method of any of Embodiments 18-23, wherein the one or more actions comprise coordinating discontinuous reception (DRX) scheduling for both the first and second SIMs.
Embodiment 25: The method of any of Embodiments 18-24, wherein the one or more actions comprise sending a paging message for the second SIM in at least one of a same paging occasion or paging message for the first SIM.
Embodiment 26: An apparatus for wireless communications by a user equipment (UE) , comprising means for determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and means for utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
Embodiment 27: An apparatus for wireless communications by a network entity, comprising means for receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and  the UE supports dual receive concurrency using at least two antenna paths and means for taking one or more actions, based on the indication.
Embodiment 28: An apparatus for wireless communications by a user equipment (UE) , comprising at least one processor and a memory configured to determine the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and a receiver configured to utilize a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
Embodiment 29: An apparatus for wireless communications by a network entity, comprising a receiver configured to receive, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and a processor configured to take one or more actions, based on the indication.
Embodiment 30: A computer readable medium having instructions stored thereon for determining a user equipment (UE) is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
Embodiment 31: A computer readable medium having instructions stored thereon for receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths and taking one or more actions, based on the indication.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.  Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase  access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2019100770-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.  Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (31)

  1. A method for wireless communications by a user equipment (UE) , comprising:
    determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  2. The method of claim 1, further comprising taking one or more actions to cause the first and second SIMs to camp on the same serving cell.
  3. The method of claim 1, wherein the utilizing comprises:
    utilizing the receive chain associated with the first SIM to decode a paging message for the second SIM.
  4. The method of claim 1, wherein the utilizing comprises:
    sharing a measurement taken with the receive chain associated with the first SIM with the second SIM.
  5. The method of claim 1, further comprising determining, based on one or more conditions, how many of the antenna paths to assign to the first SIM for monitoring downlink transmissions in the serving cell to assist the second SIM.
  6. The method of claim 5, wherein the one or more conditions comprise at least:
    a first condition related to a receive signal metric; and
    a second condition related to power consumption of the UE.
  7. The method of claim 1, wherein the utilizing comprises:
    utilizing the receive chain associated with the first SIM to monitor for downlink transmissions in a bandwidth part (BWP) to assist the second SIM.
  8. The method of claim 1, wherein the utilizing comprises:
    utilizing the receive chain associated with the first SIM to decode system information (SI) ; and
    sharing the system information with the second SIM.
  9. The method of claim 1, further comprising:
    designating the first SIM a master SIM and the second SIM a slave SIM.
  10. The method of claim 9, wherein the utilizing comprises:
    utilizing a protocol stack of the master SIM for processing paging messages of the slave SIM.
  11. The method of claim 9, wherein the utilizing comprises:
    utilizing a protocol stack of the master SIM for idle mobility procedures of the slave SIM.
  12. The method of claim 11, wherein:
    the master SIM and slave SIM have different measurement configurations for idle and connected modes; and
    the maser SIM takes measurements according to both configurations are combined when the slave SIM is in an idle mode.
  13. The method of claim 11, wherein:
    the master SIM and slave SIM have different bandwidth part (BWP) configurations; and
    the master SIM monitors for downlink transmissions according to both BWP configurations in order to assist the second SIM.
  14. The method of claim 1, wherein:
    the two or more SIMs are camped on a same serving cell which is shared by multiple PLMNs, including home PLMNs of the first and second SUBs.
  15. The method of claim 1, further comprising:
    providing an indication to the network of the UE capability to support multiple SIMs.
  16. The method of claim 15, wherein the indication includes at least one of:
    a number of receive chains and/or transmit chains supported;
    a number of receive chains and/or transmit chains concurrently supported;
    a number of radio access technologies (RATs) supported concurrently; or
    a list of SIMs associated with the UE.
  17. The method of claim 15, wherein the indication is provided via at least one of:
    radio resource control (RRC) signaling; or
    non-access stratum (NAS) signaling.
  18. A method for wireless communications by a network entity, comprising:
    receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    taking one or more actions, based on the indication.
  19. The method of claim 18, wherein the indication includes at least one of:
    a number of receive chains and/or transmit chains supported;
    a number of receive chains and/or transmit chains concurrently supported;
    a number of radio access technologies (RATs) supported concurrently; or
    a list of SIMs associated with the UE.
  20. The method of claim 18, wherein the indication is received via at least one of:
    radio resource control (RRC) signaling; or
    non-access stratum (NAS) signaling.
  21. The method of claim 18, wherein the one or more actions are designed to allow the UE to utilize a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  22. The method of claim 21, wherein the one or more actions comprise one or more actions to cause the first and second SIMs to camp on the same serving cell.
  23. The method of claim 21, wherein the one or more actions comprise:
    applying measurement results, taken by the UE with the receive chain associated with the first SIM, to decisions related to the second SIM.
  24. The method of claim 21, wherein the one or more actions comprise:
    coordinating discontinuous reception (DRX) scheduling for both the first and second SIMs.
  25. The method of claim 21, wherein the one or more actions comprise:
    sending a paging message for the second SIM in at least one of a same paging occasion or paging message for the first SIM.
  26. An apparatus for wireless communications by a user equipment (UE) , comprising:
    means for determining the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    means for utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  27. An apparatus for wireless communications by a network entity, comprising:
    means for receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    means for taking one or more actions, based on the indication.
  28. An apparatus for wireless communications by a user equipment (UE) , comprising:
    at least one processor and a memory configured to determine the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    a receiver configured to utilize a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  29. An apparatus for wireless communications by a network entity, comprising:
    a receiver configured to receive, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    a processor configured to take one or more actions, based on the indication.
  30. A computer readable medium having instructions stored thereon for:
    determining a user equipment (UE) is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    utilizing a receive chain associated with the first SIM to monitor for downlink transmissions in a serving cell to assist the second SIM.
  31. A computer readable medium having instructions stored thereon for:
    receiving, from a user equipment (UE) , an indication that the UE is operating with at least first and second subscriber identification modules (SIMs) of a same operator of a network, wherein at least one of the SIMs is in an idle mode and the UE supports dual receive concurrency using at least two antenna paths; and
    taking one or more actions, based on the indication.
PCT/CN2019/100770 2019-08-15 2019-08-15 Multi-subscriber identity module (msim) power saving WO2021026877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100770 WO2021026877A1 (en) 2019-08-15 2019-08-15 Multi-subscriber identity module (msim) power saving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100770 WO2021026877A1 (en) 2019-08-15 2019-08-15 Multi-subscriber identity module (msim) power saving

Publications (1)

Publication Number Publication Date
WO2021026877A1 true WO2021026877A1 (en) 2021-02-18

Family

ID=74570833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100770 WO2021026877A1 (en) 2019-08-15 2019-08-15 Multi-subscriber identity module (msim) power saving

Country Status (1)

Country Link
WO (1) WO2021026877A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285953A (en) * 2021-12-14 2022-04-05 中国联合网络通信集团有限公司 Method, device, equipment and storage medium for determining service state of communication identifier
CN114827984A (en) * 2022-04-08 2022-07-29 维沃移动通信有限公司 Communication method and communication device
CN115134802A (en) * 2021-03-26 2022-09-30 西安中诺通讯有限公司 Dual-card network attachment method and device
WO2022222076A1 (en) * 2021-04-21 2022-10-27 Oppo广东移动通信有限公司 Cooperative communication method and apparatus for multi-card terminal device
WO2022226992A1 (en) * 2021-04-30 2022-11-03 Qualcomm Incorporated A framework for shared rf components in endc and msim
WO2022245601A1 (en) * 2021-05-21 2022-11-24 Qualcomm Incorporated Opportunistic dual sim dual active operation in multi-subscriber identity module devices
WO2024000144A1 (en) * 2022-06-28 2024-01-04 Qualcomm Incorporated Full concurrency reception in co-band dual subscriber identification module dual active mode
WO2024111853A1 (en) * 2022-11-24 2024-05-30 삼성전자 주식회사 Electronic device supporting multi-sim and method for operating electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077031A1 (en) * 2009-09-28 2011-03-31 Samsung Electronics Co. Ltd. Apparatus and method for reducing power consumption in multi-mode portable terminal
CN104982050A (en) * 2013-02-11 2015-10-14 苹果公司 Facilitating multiple subscriber identity support in a wireless device
WO2015156913A1 (en) * 2014-04-09 2015-10-15 Qualcomm Incorporated Increasing efficiency of a public land mobile network search in service acquisition on a multi-sim wireless device
WO2016077151A1 (en) * 2014-11-11 2016-05-19 Qualcomm Incorporated Dynamically managing receive modes to enhance paging performance on a multi-subscriber identity module (sim) wireless communication device
CN105873195A (en) * 2015-02-06 2016-08-17 苹果公司 Power Reduction Techniques for Dual-SIM Devices
US20170048773A1 (en) * 2014-05-30 2017-02-16 Apple Inc. Methods and apparatus to manage data connections for multiple subscriber identities in a wireless communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077031A1 (en) * 2009-09-28 2011-03-31 Samsung Electronics Co. Ltd. Apparatus and method for reducing power consumption in multi-mode portable terminal
CN104982050A (en) * 2013-02-11 2015-10-14 苹果公司 Facilitating multiple subscriber identity support in a wireless device
WO2015156913A1 (en) * 2014-04-09 2015-10-15 Qualcomm Incorporated Increasing efficiency of a public land mobile network search in service acquisition on a multi-sim wireless device
US20170048773A1 (en) * 2014-05-30 2017-02-16 Apple Inc. Methods and apparatus to manage data connections for multiple subscriber identities in a wireless communication device
WO2016077151A1 (en) * 2014-11-11 2016-05-19 Qualcomm Incorporated Dynamically managing receive modes to enhance paging performance on a multi-subscriber identity module (sim) wireless communication device
CN105873195A (en) * 2015-02-06 2016-08-17 苹果公司 Power Reduction Techniques for Dual-SIM Devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134802A (en) * 2021-03-26 2022-09-30 西安中诺通讯有限公司 Dual-card network attachment method and device
CN115134802B (en) * 2021-03-26 2024-03-26 西安中诺通讯有限公司 Dual-card network attachment method and device
WO2022222076A1 (en) * 2021-04-21 2022-10-27 Oppo广东移动通信有限公司 Cooperative communication method and apparatus for multi-card terminal device
WO2022226992A1 (en) * 2021-04-30 2022-11-03 Qualcomm Incorporated A framework for shared rf components in endc and msim
WO2022245601A1 (en) * 2021-05-21 2022-11-24 Qualcomm Incorporated Opportunistic dual sim dual active operation in multi-subscriber identity module devices
US11641622B2 (en) 2021-05-21 2023-05-02 Qualcomm Incorporated Opportunistic dual SIM dual active operation in multi-subscriber identity module devices
CN117378249A (en) * 2021-05-21 2024-01-09 高通股份有限公司 Opportunistic dual SIM dual active operation in a multi-subscriber identity module device
CN114285953A (en) * 2021-12-14 2022-04-05 中国联合网络通信集团有限公司 Method, device, equipment and storage medium for determining service state of communication identifier
CN114827984A (en) * 2022-04-08 2022-07-29 维沃移动通信有限公司 Communication method and communication device
CN114827984B (en) * 2022-04-08 2023-12-19 维沃移动通信有限公司 Communication method and communication device
WO2024000144A1 (en) * 2022-06-28 2024-01-04 Qualcomm Incorporated Full concurrency reception in co-band dual subscriber identification module dual active mode
WO2024111853A1 (en) * 2022-11-24 2024-05-30 삼성전자 주식회사 Electronic device supporting multi-sim and method for operating electronic device

Similar Documents

Publication Publication Date Title
CN113302978B (en) Early measurement reporting
CN111345051B (en) Method and apparatus for reducing UE capability information message size
WO2021026877A1 (en) Multi-subscriber identity module (msim) power saving
CN113170303A (en) Solution to paging collision in multi-SIM and C-RAT operation
US11765717B2 (en) Enhanced coordination of communication on links for multiple subscriber identification modules (SIMs)
US11700599B2 (en) Beam switching gap
CN114097287A (en) Determining a set of parameters for sidelink communications
CN114830808A (en) Communication cycles for multiple USIM and dual connectivity operations
CN114208061A (en) Mobility aware access control
CN110622590B (en) Use of multiple paging radio network temporary identifiers (P-RNTIs) for reducing paging collisions
WO2019157896A1 (en) System information acquisition over bandwidth parts
CN112673588A (en) UE indication of number of supported trigger states
WO2020199227A1 (en) Tracking area update (tau) procedure for signaling change in capability dual connectivity (dc) devices
CN115720714A (en) Security keys in layer 1 (L1) and layer 2 (L2) based mobility
WO2021208011A1 (en) Solution for pdu session graceful leaving status indication
WO2021097739A1 (en) Prioritization of activities on subscriber identity modules
CN114788402A (en) Responding to pages by a multi-generic subscription identity module device
WO2019210504A1 (en) Channel quality for multi-beam operation introduction
WO2022027632A1 (en) A method of ue assisted enablement from ue to network on preferred resource in a multi-sim device
WO2021203306A1 (en) Optimization method for dual subscriber identity module data service
WO2021248358A1 (en) Wireless communications by dual sim device
US20230118538A1 (en) Mitigating limited service in multi-sim mode due to temperature rise
WO2021146974A1 (en) Techniques for network registration
US20230217545A1 (en) Method for improved emergency call
WO2021212467A1 (en) Enhanced service stability for dual subscriber identity module phone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941581

Country of ref document: EP

Kind code of ref document: A1