WO2021024794A1 - Flexible tube production apparatus - Google Patents

Flexible tube production apparatus Download PDF

Info

Publication number
WO2021024794A1
WO2021024794A1 PCT/JP2020/028248 JP2020028248W WO2021024794A1 WO 2021024794 A1 WO2021024794 A1 WO 2021024794A1 JP 2020028248 W JP2020028248 W JP 2020028248W WO 2021024794 A1 WO2021024794 A1 WO 2021024794A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
gear pump
kneading mechanism
valve
state
Prior art date
Application number
PCT/JP2020/028248
Other languages
French (fr)
Japanese (ja)
Inventor
良治 菊澤
Original Assignee
株式会社プラ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プラ技研 filed Critical 株式会社プラ技研
Priority to JP2020572563A priority Critical patent/JP6916564B2/en
Publication of WO2021024794A1 publication Critical patent/WO2021024794A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle

Definitions

  • the present invention relates to a flexible tube manufacturing apparatus for extrusion-molding a flexible tube formed by coating the outer surface of a blade wire with a resin.
  • catheters In medical institutions, tube-shaped medical devices called catheters are used to inject drug solutions, contrast media, etc. into a predetermined part of the patient's body, and to take out body fluids, etc. in the body. Since this catheter is inserted into the living body through a bent blood vessel or the like, flexibility is required in the distal end side portion so as not to damage the blood vessel or the like and to easily bend along the bent portion such as the blood vessel or the like. Be done. On the other hand, the portion of the catheter that is not inserted into the living body is required to have appropriate rigidity so that the catheter can be easily operated. Therefore, various catheter manufacturing devices have been proposed in which the hardness is gradually changed along the length direction so that the tip side is soft and the hand side is hard. For example, Patent Document 1 describes a catheter tube having a tilting property in which the flexural modulus continuously increases from the distal end side to the proximal end side.
  • Patent Document 1 as one of the methods for melt-extruding by changing the mixing ratio of two or more kinds of synthetic resins, at least one supply rate of the melt-synthesized resin supplied from two or more extruders is changed over time. A method of continuously changing, mixing and extruding is described. However, when the resin supply speed from the extruder, that is, the extrusion speed of the extruder is changed, the flow rate of the resin does not change immediately because the pressure of the resin existing in the flow path remains. As a result, there is a problem that the mixing ratio of two or more kinds of resins does not change continuously.
  • an object of the present invention is to provide a flexible tube manufacturing apparatus capable of changing the mixing ratio of two kinds of resins precisely and with good response.
  • the flexible tube manufacturing apparatus includes a first extruder that extrudes a first resin, a second extruder that extrudes a second resin that is more flexible than the first resin, and a first extruder. It has a first resin supply path to which the first resin is supplied from the extruder and a second resin supply path to which the second resin is supplied from the second extruder, and the supplied resin is bladed.
  • a molding device for extrusion molding on the surface of the wire, a first gear pump provided in the middle of the first resin supply path, and a second gear pump provided in the middle of the second resin supply path are provided.
  • the first gear pump and the second gear pump are provided integrally with the molding apparatus.
  • the flexible tube manufacturing apparatus includes a first extruder that extrudes a first resin, a second extruder that extrudes a second resin that is more flexible than the first resin, and a second extruder.
  • FIG. 1 is a front view showing a schematic configuration of a flexible tube manufacturing apparatus according to an embodiment.
  • FIG. 2 is a right side view of the flexible tube manufacturing apparatus shown in FIG.
  • FIG. 3 is a top view of the flexible tube manufacturing apparatus shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the IV-IV line shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the VV line shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the VI-VI line shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the VII-VII line shown in FIG.
  • FIG. 8A is a schematic view showing an example of a flexible tube that can be manufactured by the flexible tube manufacturing apparatus according to the embodiment.
  • FIG. 8B is a schematic view showing another example of the flexible tube that can be manufactured by the flexible tube manufacturing apparatus according to the embodiment.
  • FIG. 2 and FIG. 3 are a front view, a right side view, and a top view showing a schematic configuration of a flexible tube manufacturing apparatus according to an embodiment, respectively.
  • the flexible tube manufacturing apparatus 100 is an apparatus for extruding a flexible tube 7 using a resin, and includes a first extruder 1a, a second extruder 1b, a third extruder 1c, and a molding apparatus. 2, a first gear pump 3a, a second gear pump 3b, a third gear pump 3c, and a control device 4 for controlling the molding device 2.
  • a drive mechanism 5a, a drive mechanism 5b, and a drive mechanism 5c for driving each of the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c are attached.
  • the drive mechanisms 5a to 5c include, for example, a motor and a speed reducer.
  • Each device constituting the flexible tube manufacturing device 100 is attached to the housing 8 and fixed on a predetermined stand or the like. Further, although not shown, on the upstream side and the downstream side of the molding device 2, a supply device for supplying the blade wire 6, a cooling device for cooling the extruded flexible tube, and extrusion molding were performed. A pick-up device or the like for picking up the flexible tube 7 is appropriately provided.
  • the blade wire 6 is conveyed from the right direction to the left direction in FIGS. 1 and 3.
  • the blade wire 6 is, for example, in a state where a blade (net tube) is provided on an inner layer tube and a core wire (guide wire) is inserted through a hollow portion in the middle of the inner layer.
  • the flexible tube 7 is provided with an outer layer tube on the surface of the blade wire 6, and a catheter shaft can be obtained by extracting the core wire of the blade wire 6 after molding the outer layer tube.
  • the first extruder 1a, the second extruder 1b, and the third extruder 1c are, for example, screw extruders, which melt resin pellets and extrude them from a discharge port at the tip.
  • the first extruder 2a, the second extruder 2b, and the third extruder 2c include a first resin, a second resin, and a second resin having different characteristics such as hardness, color, elastic modulus, strength, and chemical resistance.
  • a third resin is supplied, respectively.
  • the first resin is the resin having the highest hardness
  • the second resin is a resin that is more flexible than the first resin
  • the third resin is a resin that is more flexible than the second resin. ..
  • the molten resin extruded from the first extruder 1a and the second extruder 1b is kneaded at a predetermined mixing ratio by the kneading mechanism 16 described later.
  • the molten resin extruded from the third extruder 1c is supplied to the third valve 18, which will be described later.
  • the molding device 2 is a device that extrudes the resin supplied from the first extruder 1a, the second extruder 1b, and the third extruder 1c onto the surface of the blade wire 6.
  • the detailed configuration of the molding apparatus 2 will be described later with reference to FIGS. 1 to 7.
  • the molding apparatus 2 is composed of the divided bodies 26 and 27.
  • the split body 26 is a unit that selects, switches, and mixes the resin to be used, and extrudes the resin onto the surface of the blade wire 6.
  • the split body 27 is provided on the upstream side in the resin flow direction with respect to the split body 26, and includes the split body 26, the first extruder 1a, the second extruder 1b, and the third extruder 1c. It is a unit for connecting.
  • FIG. 4 is a cross-sectional view taken along the IV-IV line shown in FIG. 1
  • FIG. 5 is a cross-sectional view taken along the VV line shown in FIG. 1
  • FIG. 6 is a cross-sectional view taken along the VI line shown in FIG. -It is a cross-sectional view along the VI line.
  • the divided body 27 is divided into three metal blocks 25a to 25c stacked vertically.
  • the metal blocks 25a to 25c are fixed and integrated by a fixture such as a bolt (not shown).
  • FIG. 4 corresponds to a top view of the metal block 25a (divided body 27)
  • FIG. 5 corresponds to a top view of the metal block 25b.
  • the split body 27 has a first resin supply path 19a to which the first resin is supplied from the first extruder 1a and a second resin supply passage 19a from the second extruder 1b to the second.
  • a second resin supply path 19b to which the resin is supplied and a third resin supply path 19c to which the third resin is supplied from the third extruder 1c are provided.
  • the first resin supply path 19a, the second resin supply path 19b, and the third resin supply path 19c all pass from the side surface of the metal block 25b through the inside of the metal blocks 25b and 25a to the upper surface of the metal block 25a. It is a flow path leading to.
  • openings 28a, openings 28b and openings 28c corresponding to the first resin supply 19a, the second resin supply path 19b and the third resin supply path 19c are provided on the side surface of the metal block 25b.
  • a first extruder 1a, a second extruder 1b, and a third extruder 1c are connected to the opening 28a, the opening 28b, and the opening 28c, respectively.
  • On the upper surface of the metal block 25a openings 29a, openings 29b, and openings 29c corresponding to the first resin supply path 19a, the second resin supply path 19b, and the third resin supply path 19c are provided. ..
  • the openings 29a to 29c on the upper surface of the metal block 25a are openings for supplying resin to the divided body 26, and are provided in the flow path provided in the divided body 26 in a state where the divided bodies 26 and 27 are integrated. Be connected.
  • FIG. 6 shows a cross section of the third resin supply path 19c.
  • the first resin supply path 19a and the second resin supply path 19b are configured in substantially the same manner as the third resin supply path 19 shown in FIG. 6, except that the flow path lengths are different.
  • a first gear pump 3a, a second gear pump 3b, and a third gear pump 3c are provided in the middle of each of the first resin supply path 19a, the second resin supply path 19b, and the third resin supply path 19c. ing.
  • the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c have two gears 31 that mesh with each other in the gear accommodating portion 30 provided in the metal block 25b. It is rotatably housed and is configured by sealing the upper and lower surfaces of the metal block 25b with the metal blocks 25a and 25c, respectively.
  • the gear 31 constituting the first gear pump 3a is connected to the drive mechanism 5a shown in FIG. 1
  • the gear 31 constituting the second gear pump 3b is connected to the drive mechanism 5b shown in FIG. 1
  • the gear 31 constituting the 3c is connected to the drive mechanism 5c shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the VII-VII line shown in FIG.
  • the split body 26 includes a die 10, a kneading mechanism 16, a first valve 17a, a second valve 17b, and a third valve 18.
  • the divided body 26 is divided into three metal blocks 24a to 24c, the metal block 24a is provided with a die 10 and a third valve 18, and the metal block 24b is provided with a first valve.
  • the valve 17a and the second valve 17b are provided, and the kneading mechanism 16 is provided on the metal blocks 24b and 24c.
  • the die 10 is a mold for extruding resin onto the outer surface of the blade wire 6, and includes an inner mold 11 and an outer mold 12.
  • the inner mold 11 is provided with a through hole 13 through which the blade wire 6 is inserted in the central shaft portion.
  • the outer mold 12 is formed of a part of the metal block 24a and has a hollow portion for accommodating the inner mold 11.
  • a resin flow path 15 formed of a predetermined gap is formed between the outer peripheral surface of the inner mold 11 and the inner peripheral surface of the hollow portion of the outer mold 12.
  • the outer mold 12 has an extrusion port 14 coaxial with the central axis of the inner mold 11.
  • the extrusion port 14 constitutes the front end portion of the flow path 15.
  • the flow path 15 is connected to a flow path connected to a third valve 18, which will be described later.
  • the resin supplied from the third valve 18 to the flow path 15 flows to the extrusion port 14 side and is extruded to the surface of the blade wire 6 which passes through the through hole 13 of the inner die 11 and the extrusion port 14 and is fed forward. Is done.
  • the inner mold 11 is fixed to the outer mold 12.
  • the kneading mechanism 16 includes a screw 21 and a motor 22.
  • the screw 21 is housed in a hollow portion provided in the metal blocks 24b and 24c.
  • a flow path 23 formed of a predetermined gap is formed between the outer peripheral surface of the screw 21 and the inner peripheral surface of the hollow portion of the metal blocks 24b and 24c.
  • One or both of the first resin and the second resin are supplied to the flow path 23 of the kneading mechanism 16.
  • a plurality of protrusions or pins are provided on the outer peripheral surface of the screw 21, and the kneading mechanism 16 is one type or two existing in the flow path 23 by rotating around the central axis by the rotational force of the motor 22.
  • Various types of resins can be kneaded and discharged.
  • the present invention is not particularly limited as long as the resin in the flow path can be kneaded, and a kneader may be used instead of the screw 21. good.
  • the rotation of the motor 22 is controlled by the control device 4.
  • the first valve 17a is provided between the kneading mechanism 16 and the first gear pump 3a, and controls the supply of the first resin to the kneading mechanism 16.
  • the first valve 17a has a columnar valve body having a flow path (not shown) for flowing the resin inside.
  • the valve body of the first valve 17a is connected to a drive mechanism 20a such as a motor and is rotatable around its central axis.
  • the first valve 17a has a state in which the first gear pump 3a and the kneading mechanism 16 communicate with each other and a state in which the first gear pump 3a and the kneading mechanism 16 are cut off according to the rotational position of the valve body. Can be switched.
  • the first resin supply path 19a and the flow path 23 of the kneading mechanism 16 are connected by a flow path (not shown) provided in the valve body.
  • the second valve 17b is provided between the kneading mechanism 16 and the second gear pump 3b, and controls the supply of the second resin to the kneading mechanism 16.
  • the second valve 17b has the same configuration as the first valve 17. That is, the second valve 17b has a columnar valve body having a flow path (not shown) for flowing the resin inside, and the valve body of the second valve 17b is attached to a drive mechanism 20b such as a motor. It is connected and is rotatable around its central axis.
  • the second valve 17b has a state in which the second gear pump 3b and the kneading mechanism 16 communicate with each other and a state in which the second gear pump 3b and the kneading mechanism 16 are cut off according to the rotational position of the valve body. Can be switched.
  • the second resin supply path 19a and the flow path 23 of the kneading mechanism 16 are connected by a flow path (not shown) provided in the valve body.
  • the third valve 18 selectively dies one of the resin extruded from the kneading mechanism 16 and the third resin supplied from the third extruder 1c via the third resin supply path 19c. It can be supplied to 10.
  • the third valve 18 has a columnar valve body having a flow path (not shown) for flowing resin inside, and the valve body of the third valve 18 is connected to a drive mechanism 20c such as a motor. , Is rotatable around its central axis.
  • the third valve 18 has a state in which the flow path 23 of the kneading mechanism 16 and the flow path 15 of the die 10 communicate with each other according to the rotation position of the valve body, and the third gear pump 3c and the flow path 15 of the die 10.
  • the control device 4 includes a computer, and by controlling the driving amounts of the driving devices 5a to 5c, the discharge amounts of the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c (per unit time). The flow rate of the resin) can be adjusted. Further, the control device 5 can switch the states of the first valve 17a, the second valve 17b, and the third valve 18 by controlling the driving amounts of the driving mechanisms 20a to 20c. Further, the control device 4 rotates the motor 22 constituting the kneading mechanism 16 during the execution of extrusion molding, and controls the rotation speed to a predetermined value.
  • FIGS. 8A and 8B are schematic views showing an example of a flexible tube that can be manufactured by the flexible tube manufacturing apparatus according to the embodiment.
  • the flexible tube 70 shown in FIG. 8A is formed by coating a blade wire 6 having a blade (net tube) on the outer surface of the inner layer tube with an outer layer tube made of a resin layer, and the hardness of the resin of the outer layer tube gradually becomes flexible. It includes a hardness transition portion 71 and a soft chip 72 made of a resin that is connected to the tip portion of the hardness transition portion 71 and is more flexible than the resin that covers the tip of the hardness transition portion 71.
  • the soft tip 72 is provided at the tip (insertion side) of the catheter, which can suppress damage to blood vessels and further improve safety.
  • the length of the soft chip 72 is, for example, several mm to several cm, and the hardness of the resin layer (outer layer tube) constituting the soft chip 72 is constant.
  • the flexible tube shown in FIG. 8A is manufactured by separately molding a hardness transition portion 71 and a flexible tube to be a soft tip 72, and joining the soft tip 72 to the tip of the hardness transition portion 71 by heat welding.
  • the hardness transition portion 71 and the soft tip 72 can be continuously extruded, and the hardness transition portion 71 and the soft tip 72 are smoothed.
  • the length of the soft chip 72 can be freely changed as well as being completely connected.
  • the control device 4 determines the state (rotational position) of the first valve 17a and the second valve 17b so that both the first gear pump 3a and the second gear pump 3b communicate with the kneading mechanism 16.
  • the state (rotational position) of the third valve 18 is controlled so that the kneading mechanism 16 communicates with the die 10.
  • the control device 4 controls the drive devices 5a and 5b to continuously reduce the discharge amount of the first resin by the first gear pump 3a at a predetermined rate of change, and the second gear pump 3b.
  • the discharge amount of the second resin is continuously increased at the same rate of change as the change rate of the discharge amount of the first resin.
  • the control unit 4 matches the rate of change in the discharge amount of the first gear pump 3a with the rate of change in the discharge amount of the second gear pump 3b.
  • the control device 4 uses the first gear pump 3a and the second gear pump. Before communicating both of 3b with the kneading mechanism 16, the first gear pump 3a and the kneading mechanism 16 communicate with each other, and the first gear pump 3b and the kneading mechanism 16 are cut off from each other. Assuming that the state (rotational position) of the valve 17a and the second valve 17b is controlled, the discharge amount of the first gear pump 3a is controlled to a predetermined discharge amount.
  • the control device 4 uses the first gear pump 3a and the second gear pump.
  • the state in which both 3b are communicated with the kneading mechanism 16 is changed to a state in which the second gear pump 3b and the kneading mechanism 16 are communicated with each other and the first gear pump 3a and the kneading mechanism 16 are cut off.
  • the discharge amount of the second gear pump 3b is controlled to a predetermined discharge amount, assuming that the state (rotation position) of the first valve 17a and the second valve 17b is controlled.
  • the control device 4 controls the discharge amounts of the first gear pump 3a and the second gear pump 3b, and after the ratio of the first resin reaches a predetermined target value, the third gear pump 3c is at a predetermined timing. Controls the state (rotational position) of the third valve so that the third valve communicates with the die 10, and controls the discharge amount of the third gear pump 3c to a predetermined discharge amount.
  • the control device 4 determines the discharge amounts of the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c, and the rotational positions of the first valve 17a, the second valve 17b, and the third valve 18. By controlling as shown in FIG. 8A, the flexible tube 70 shown in FIG. 8A can be manufactured.
  • the flexible tube manufacturing apparatus 100 can also manufacture a flexible tube 73 having a hardness transition portion 74 without a soft chip as shown in FIG. 8B.
  • the flexible tube shown in FIG. 8B is formed by not switching the rotation position of the third valve 18 (that is, not communicating the third valve 18 and the die 10). 73 can be obtained.
  • the initial value and the target value (minimum value) of the ratio of the first resin when molding the hardness transition portion 71 are arbitrary.
  • the flexible tube manufacturing apparatus 100 has the middle of the first resin supply passage 19a in the molding apparatus 2, the middle of the second resin supply passage 19b, and the third resin supply.
  • a first gear pump 3a, a second gear pump 3b, and a third gear pump 3c are provided in the middle of the road 19c, respectively.
  • the gear pump to the die 10 are compared with the case where the gear pump is provided outside the molding apparatus.
  • the flow path length to the extrusion port 14 can be shortened.
  • the split body 27 constituting the molding apparatus 2 according to the present embodiment is a connection unit for connecting the first extruder 1a, the second extruder 1b, and the third extruder 1c, but is a flexible tube manufacturing. This is a part necessary for avoiding interference between a plurality of devices constituting the device 100 and arranging each device at a position excellent in maintainability.
  • Flexible tube manufacturing equipment that can change the mixing ratio of two or more types of resin is equipped with many equipment such as valves, kneading mechanisms, and drive mechanisms for these, so the same number of extruders as the types of resin are arranged without interference.
  • the split body 27 is required in order to connect to the molding apparatus.
  • the gear pump is built in the split body 27 required for arranging the extruder and connecting the extruder and the molding apparatus, from the gear pump to the die as compared with the same type of apparatus.
  • the flow path of the above can be shortened, and the above-mentioned response can be improved.
  • the gear pump is a device capable of precisely controlling the discharge amount
  • the resin supply amount to the kneading mechanism 16 and the die 10 can be precisely controlled by incorporating the gear pump in the molding device 2. it can. Therefore, in the flexible tube manufacturing apparatus 100 according to the present embodiment, the mixing ratio of the first resin and the second resin constituting the hardness transition portion 71 can be continuously changed, and the dimensional stability of the flexible tube 7 can be changed. Also excellent.
  • the first valve 17a, the second valve 17b, and the third valve 18 are used to connect the flow path 23 of the kneading mechanism 16 and the first gear pump 3a.
  • Between the flow path 23 of the kneading mechanism 16 and the second gear pump 3b, between the kneading mechanism 16 and the flow path 15 of the die 10, and between the third gear pump 3c and the flow path 15 of the die 10. Can be cut off as appropriate. Therefore, it is possible to prevent the resin from flowing back from the kneading mechanism 16 or the die 10 toward the upstream side while the resin is not supplied to the kneading mechanism 16 or the die 10.
  • the first gear pump 3a and the second gear pump 3b are provided in the middle of the first resin supply path 19a and the middle of the second resin supply path 19b in the molding apparatus 2, respectively.
  • the flow path from the gear pump to the extrusion port 14 of the die 10 can be shortened to improve the response of the above-mentioned mixing ratio change.
  • the structures of the first valve 17a, the second valve 17b, and the third valve 18 are not particularly limited, and may have a structure capable of realizing the functions of the above-mentioned valves. ..
  • the present invention can be used as a flexible tube manufacturing apparatus such as a catheter shaft used for manufacturing a medical catheter and a tube used for an endoscope.

Abstract

Provided is a flexible tube production apparatus capable of precisely changing the mixing ratio of two types of resin with a good response. The flexible tube production apparatus according to one embodiment of the present invention is provided with: a molding device which extrudes and molds supplied resins on the surface of a braid wire and has a first extruder for extruding a first resin, a second extruder for extruding a second resin softer than the first resin, a first resin supply path to which the first resin is supplied from the first extruder, and a second resin supply path to which the second resin is supplied from the second extruder; a first gear pump provided in the middle of the first resin supply path; and a second gear pump provided in the middle of the second resin supply path. The first gear pump and the second gear pump are integrally formed with the molding device.

Description

フレキシブルチューブ製造装置Flexible tube manufacturing equipment
 本発明は、ブレード線の外面を樹脂で被覆してなるフレキシブルチューブを押出成形するためのフレキシブルチューブ製造装置に関する。 The present invention relates to a flexible tube manufacturing apparatus for extrusion-molding a flexible tube formed by coating the outer surface of a blade wire with a resin.
 医療機関において患者の生体内の所定部位に薬液や造影剤等を注入したり、生体内の体液等を取り出したりするためにカテーテルと呼ばれるチューブ状の医療器具が用いられている。このカテーテルは、屈曲した血管等を通じて生体内に挿入されるため、先端側部分には、血管等を傷つけないように、また、血管等の屈曲部分に沿って曲がりやすいように、柔軟性が求められる。一方、カテーテルのうち生体内に挿入されない部分には、カテーテルの操作がしやすくなるよう、適度な剛性が求められる。そこで、先端側が柔らかく、手元側が硬くなるように、長さ方向に沿って徐々に硬度を変化させたカテーテルの製造装置が種々提案されている。例えば、特許文献1には、先端側から基端側方向に連続的に曲げ弾性率が増加する傾斜特性を有するカテーテルチューブが記載されている。 In medical institutions, tube-shaped medical devices called catheters are used to inject drug solutions, contrast media, etc. into a predetermined part of the patient's body, and to take out body fluids, etc. in the body. Since this catheter is inserted into the living body through a bent blood vessel or the like, flexibility is required in the distal end side portion so as not to damage the blood vessel or the like and to easily bend along the bent portion such as the blood vessel or the like. Be done. On the other hand, the portion of the catheter that is not inserted into the living body is required to have appropriate rigidity so that the catheter can be easily operated. Therefore, various catheter manufacturing devices have been proposed in which the hardness is gradually changed along the length direction so that the tip side is soft and the hand side is hard. For example, Patent Document 1 describes a catheter tube having a tilting property in which the flexural modulus continuously increases from the distal end side to the proximal end side.
特開平8-57035号公報Japanese Unexamined Patent Publication No. 8-57035
 特許文献1には、2種類以上の合成樹脂の混合比を変えて溶融押し出しする方法の1つとして、2台以上の押出機から供給される溶融合成樹脂の少なくとも1つの供給速度を経時的に連続して変えて混合して押し出す方法が記載されている。しかしながら、押出機からの樹脂の供給速度、すなわち、押出機の押出速度を変化させた場合、流路内に存在する樹脂の圧力が残っているために樹脂の流量がすぐには変化せず、この結果、2種類以上の樹脂の混合比が連続的に変化しないという問題がある。 In Patent Document 1, as one of the methods for melt-extruding by changing the mixing ratio of two or more kinds of synthetic resins, at least one supply rate of the melt-synthesized resin supplied from two or more extruders is changed over time. A method of continuously changing, mixing and extruding is described. However, when the resin supply speed from the extruder, that is, the extrusion speed of the extruder is changed, the flow rate of the resin does not change immediately because the pressure of the resin existing in the flow path remains. As a result, there is a problem that the mixing ratio of two or more kinds of resins does not change continuously.
 樹脂の流量を精密に制御する手法として、押出機と成型装置との間にギヤポンプを設け、押出機の押出速度の代わりに、ギヤポンプの吐出量を制御する手法も考えられる。ただし、この場合、押出機とギヤポンプと成型装置とを直列に接続したことにより、樹脂の供給路が長くなり、ギヤポンプにより樹脂の流量を変化させてから、実際にダイから押し出される樹脂の混合比が変化するまでのレスポンスが悪化するという問題がある。 As a method of precisely controlling the flow rate of the resin, a method of providing a gear pump between the extruder and the molding device and controlling the discharge amount of the gear pump instead of the extrusion speed of the extruder can be considered. However, in this case, by connecting the extruder, the gear pump, and the molding device in series, the resin supply path becomes long, and the resin flow rate is changed by the gear pump, and then the mixing ratio of the resin actually extruded from the die is changed. There is a problem that the response until the change is deteriorated.
 それ故に、本発明は、2種類の樹脂の混合比を精密かつレスポンス良く変化させることができるフレキシブルチューブ製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a flexible tube manufacturing apparatus capable of changing the mixing ratio of two kinds of resins precisely and with good response.
 本発明の一実施態様に係るフレキシブルチューブ製造装置は、第1の樹脂を押し出す第1の押出機と、第1の樹脂より柔軟な第2の樹脂を押し出す第2の押出機と、第1の押出機から第1の樹脂が供給される第1の樹脂供給路と、第2の押出機から第2の樹脂が供給される第2の樹脂供給路とを有し、供給された樹脂をブレード線の表面に押出成形する成型装置と、第1の樹脂供給路の途中に設けられた第1のギヤポンプと、第2の樹脂供給路の途中に設けられた第2のギヤポンプとを備え、第1のギヤポンプ及び第2のギヤポンプが成型装置と一体的に設けられる。 The flexible tube manufacturing apparatus according to one embodiment of the present invention includes a first extruder that extrudes a first resin, a second extruder that extrudes a second resin that is more flexible than the first resin, and a first extruder. It has a first resin supply path to which the first resin is supplied from the extruder and a second resin supply path to which the second resin is supplied from the second extruder, and the supplied resin is bladed. A molding device for extrusion molding on the surface of the wire, a first gear pump provided in the middle of the first resin supply path, and a second gear pump provided in the middle of the second resin supply path are provided. The first gear pump and the second gear pump are provided integrally with the molding apparatus.
 また、本発明の他の実施態様に係るフレキシブルチューブ製造装置は、第1の樹脂を押し出す第1の押出機と、第1の樹脂より柔軟な第2の樹脂を押し出す第2の押出機と、第2の樹脂より柔軟な第3の樹脂を押し出す第3の押出機と、第1の押出機から第1の樹脂が供給される第1の樹脂供給路と、第2の押出機から第2の樹脂が供給される第2の樹脂供給路と、第3の押出機から第3の樹脂が供給される第3の樹脂供給路とを有し、供給された樹脂をブレード線の表面に押出成形する成型装置と、第1の樹脂供給路の途中に設けられた第1のギヤポンプと、第2の樹脂供給路の途中に設けられた第2のギヤポンプと、第3の樹脂供給路の途中に設けられた第3のギヤポンプとを備え、第1のギヤポンプ、第2のギヤポンプ及び第3のギヤポンプが成型装置と一体的に設けられる。 Further, the flexible tube manufacturing apparatus according to another embodiment of the present invention includes a first extruder that extrudes a first resin, a second extruder that extrudes a second resin that is more flexible than the first resin, and a second extruder. A third extruder that extrudes a third resin that is more flexible than the second resin, a first resin supply path in which the first resin is supplied from the first extruder, and a second from the second extruder. Has a second resin supply path to which the resin of the above is supplied and a third resin supply path to which the third resin is supplied from the third extruder, and the supplied resin is extruded onto the surface of the blade wire. A molding device for molding, a first gear pump provided in the middle of the first resin supply path, a second gear pump provided in the middle of the second resin supply path, and a middle of the third resin supply path. A third gear pump is provided in the above, and a first gear pump, a second gear pump, and a third gear pump are integrally provided with the molding apparatus.
 本発明によれば、2種類の樹脂の混合比を精密かつレスポンス良く変化させることができるフレキシブルチューブ製造装置を提供できる。 According to the present invention, it is possible to provide a flexible tube manufacturing apparatus capable of changing the mixing ratio of two types of resins precisely and with good response.
図1は、実施形態に係るフレキシブルチューブ製造装置の概略構成を示す正面図である。FIG. 1 is a front view showing a schematic configuration of a flexible tube manufacturing apparatus according to an embodiment. 図2は、図1に示したフレキシブルチューブ製造装置の右側面図である。FIG. 2 is a right side view of the flexible tube manufacturing apparatus shown in FIG. 図3は、図1に示したフレキシブルチューブ製造装置の上面図である。FIG. 3 is a top view of the flexible tube manufacturing apparatus shown in FIG. 図4は、図1に示したIV-IVラインに沿う断面図である。FIG. 4 is a cross-sectional view taken along the IV-IV line shown in FIG. 図5は、図1に示したV-Vラインに沿う断面図である。FIG. 5 is a cross-sectional view taken along the VV line shown in FIG. 図6は、図4に示したVI-VIラインに沿う断面図である。FIG. 6 is a cross-sectional view taken along the VI-VI line shown in FIG. 図7は、図1に示したVII-VIIラインに沿う断面図である。FIG. 7 is a cross-sectional view taken along the VII-VII line shown in FIG. 図8Aは、実施形態に係るフレキシブルチューブ製造装置で製造可能なフレキシブルチューブの一例を示す模式図である。FIG. 8A is a schematic view showing an example of a flexible tube that can be manufactured by the flexible tube manufacturing apparatus according to the embodiment. 図8Bは、実施形態に係るフレキシブルチューブ製造装置で製造可能なフレキシブルチューブの他の一例を示す模式図である。FIG. 8B is a schematic view showing another example of the flexible tube that can be manufactured by the flexible tube manufacturing apparatus according to the embodiment.
 以下、本発明の実施形態を説明する。以下の説明では、樹脂層である内層チューブの外面にブレード(網管)を設け、更に、ブレードを樹脂層である外層チューブで覆った構成のフレキシブルチューブの製造装置に本発明を適用した例を説明する。このようなフレキシブルチューブの一例として、カテーテルシャフトを挙げることができる。しかしながら、カテーテルシャフトは、フレキシブルチューブの一例に過ぎず、本発明は、内視鏡に用いるフレキシブルチューブ等の他の用途のフレキシブルチューブの製造装置にも適用可能である。 Hereinafter, embodiments of the present invention will be described. In the following description, an example in which the present invention is applied to a flexible tube manufacturing apparatus in which a blade (net tube) is provided on the outer surface of an inner layer tube which is a resin layer and the blade is covered with an outer layer tube which is a resin layer will be described. To do. An example of such a flexible tube is a catheter shaft. However, the catheter shaft is only an example of a flexible tube, and the present invention is also applicable to a flexible tube manufacturing apparatus for other purposes such as a flexible tube used for an endoscope.
 図1、図2及び図3は、それぞれ、実施形態に係るフレキシブルチューブ製造装置の概略構成を示す正面図、右側面図及び上面図である。 1, FIG. 2 and FIG. 3 are a front view, a right side view, and a top view showing a schematic configuration of a flexible tube manufacturing apparatus according to an embodiment, respectively.
 フレキシブルチューブ製造装置100は、樹脂を用いてフレキシブルチューブ7を押出成形するための装置であり、第1の押出機1aと、第2の押出機1bと、第3の押出機1cと、成型装置2と、第1のギヤポンプ3aと、第2のギヤポンプ3bと、第3のギヤポンプ3cと、成型装置2を制御するための制御装置4とを備える。第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cには、それぞれを駆動するための駆動機構5a、駆動機構5b及び駆動機構5cが取り付けられている。駆動機構5a~5cは、例えば、モータと減速機とを含む。尚、フレキシブルチューブ製造装置100を構成する各装置は筐体8に取り付けられ、所定の架台等の上に固定される。また、図示は省略しているが、成型装置2の上流側及び下流側には、ブレード線6を供給するための供給装置や、押出成形されたフレキシブルチューブを冷却する冷却装置、押出成形されたフレキシブルチューブ7を引き取る引取装置等が適宜設けられる。ブレード線6は、図1及び図3における右方向から左方向へと搬送される。ブレード線6は、例えば、内層チューブ上にブレード(網管)を設け、内層中部の中空部に芯線(ガイドワイヤー)を挿通させた状態のものである。フレキシブルチューブ7は、ブレード線6の表面に外層チューブを設けたものであり、外層チューブの成形後にブレード線6の芯線を抜き取ることによって、カテーテルシャフトを得ることができる。 The flexible tube manufacturing apparatus 100 is an apparatus for extruding a flexible tube 7 using a resin, and includes a first extruder 1a, a second extruder 1b, a third extruder 1c, and a molding apparatus. 2, a first gear pump 3a, a second gear pump 3b, a third gear pump 3c, and a control device 4 for controlling the molding device 2. A drive mechanism 5a, a drive mechanism 5b, and a drive mechanism 5c for driving each of the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c are attached. The drive mechanisms 5a to 5c include, for example, a motor and a speed reducer. Each device constituting the flexible tube manufacturing device 100 is attached to the housing 8 and fixed on a predetermined stand or the like. Further, although not shown, on the upstream side and the downstream side of the molding device 2, a supply device for supplying the blade wire 6, a cooling device for cooling the extruded flexible tube, and extrusion molding were performed. A pick-up device or the like for picking up the flexible tube 7 is appropriately provided. The blade wire 6 is conveyed from the right direction to the left direction in FIGS. 1 and 3. The blade wire 6 is, for example, in a state where a blade (net tube) is provided on an inner layer tube and a core wire (guide wire) is inserted through a hollow portion in the middle of the inner layer. The flexible tube 7 is provided with an outer layer tube on the surface of the blade wire 6, and a catheter shaft can be obtained by extracting the core wire of the blade wire 6 after molding the outer layer tube.
 第1の押出機1a、第2の押出機1b及び第3の押出機1cは、例えば、スクリュー押出機であり、樹脂のペレットを溶融させて、先端の吐出口から押し出す。第1の押出機2a、第2の押出機2b及び第3の押出機2cには、硬度、色、弾性率、強度、耐薬品性等の特性の異なる第1の樹脂、第2の樹脂及び第3の樹脂がそれぞれ供給される。本実施形態では、第1の樹脂は硬度が最も高い樹脂であり、第2の樹脂は第1の樹脂より柔軟な樹脂であり、第3の樹脂は第2の樹脂より更に柔軟な樹脂である。第1の押出機1a及び第2の押出機1bから押し出された溶融樹脂は、後述する混練機構16において所定の混合比で混練される。一方、第3の押出機1cから押し出された溶融樹脂は、後述する第3のバルブ18に供給される。 The first extruder 1a, the second extruder 1b, and the third extruder 1c are, for example, screw extruders, which melt resin pellets and extrude them from a discharge port at the tip. The first extruder 2a, the second extruder 2b, and the third extruder 2c include a first resin, a second resin, and a second resin having different characteristics such as hardness, color, elastic modulus, strength, and chemical resistance. A third resin is supplied, respectively. In the present embodiment, the first resin is the resin having the highest hardness, the second resin is a resin that is more flexible than the first resin, and the third resin is a resin that is more flexible than the second resin. .. The molten resin extruded from the first extruder 1a and the second extruder 1b is kneaded at a predetermined mixing ratio by the kneading mechanism 16 described later. On the other hand, the molten resin extruded from the third extruder 1c is supplied to the third valve 18, which will be described later.
 成型装置2は、第1の押出機1a、第2の押出機1b及び第3の押出機1cから供給される樹脂をブレード線6の表面に押出成形する装置である。以下、図1~図7を併せて参照しながら、成型装置2の詳細な構成を後述する。 The molding device 2 is a device that extrudes the resin supplied from the first extruder 1a, the second extruder 1b, and the third extruder 1c onto the surface of the blade wire 6. Hereinafter, the detailed configuration of the molding apparatus 2 will be described later with reference to FIGS. 1 to 7.
 本実施形態においては、成型装置2は、分割体26及び27から構成される。分割体26は、使用する樹脂の選択、切り替え及び混合と、ブレード線6の表面への樹脂の押し出しを行うユニットである。一方、分割体27は、分割体26よりも、樹脂の流れ方向における上流側に設けられ、分割体26と、第1の押出機1a、第2の押出機1b及び第3の押出機1cと接続するためのユニットである。 In the present embodiment, the molding apparatus 2 is composed of the divided bodies 26 and 27. The split body 26 is a unit that selects, switches, and mixes the resin to be used, and extrudes the resin onto the surface of the blade wire 6. On the other hand, the split body 27 is provided on the upstream side in the resin flow direction with respect to the split body 26, and includes the split body 26, the first extruder 1a, the second extruder 1b, and the third extruder 1c. It is a unit for connecting.
 まず、分割体27について説明する。 First, the split body 27 will be described.
 図4は、図1に示したIV-IVラインに沿う断面図であり、図5は、図1に示したV-Vラインに沿う断面図であり、図6は、図4に示したVI-VIラインに沿う断面図である。 FIG. 4 is a cross-sectional view taken along the IV-IV line shown in FIG. 1, FIG. 5 is a cross-sectional view taken along the VV line shown in FIG. 1, and FIG. 6 is a cross-sectional view taken along the VI line shown in FIG. -It is a cross-sectional view along the VI line.
 本実施形態では、分割体27は、一例として、上下に積層された3つの金属ブロック25a~25cに分けて構成されている。金属ブロック25a~25cは、図示しないボルト等の固定具により固定されて一体化されている。尚、図4は、金属ブロック25a(分割体27)の上面図に相当し、図5は、金属ブロック25bの上面図に相当する。図5及び図6に示すように、分割体27には、第1の押出機1aから第1の樹脂が供給される第1の樹脂供給路19aと、第2の押出機1bから第2の樹脂が供給される第2の樹脂供給路19bと、第3の押出機1cから第3の樹脂が供給される第3の樹脂供給路19cとが設けられている。第1の樹脂供給路19a、第2の樹脂供給路19b及び第3の樹脂供給路19cはいずれも、金属ブロック25bの側面から、金属ブロック25b及び25aの内部を通過して金属ブロック25aの上面まで至る流路である。金属ブロック25bの側面には、第1の樹脂供給19a、第2の樹脂供給路19b及び第3の樹脂供給路19cのそれぞれに対応する開口部28a、開口部28b及び開口部28cが設けられる。これらの開口部28a、開口部28b及び開口部28cには、それぞれ、第1の押出機1a、第2の押出機1b及び第3の押出機1cが接続される。金属ブロック25aの上面には、第1の樹脂供給路19a、第2の樹脂供給路19b及び第3の樹脂供給路19cのそれぞれに対応する開口部29a、開口部29b及び開口部29cが設けられる。金属ブロック25aの上面の開口部29a~29cは、分割体26に樹脂を供給するための開口部であり、分割体26及び27を一体化した状態において、分割体26に設けられた流路に接続される。 In the present embodiment, as an example, the divided body 27 is divided into three metal blocks 25a to 25c stacked vertically. The metal blocks 25a to 25c are fixed and integrated by a fixture such as a bolt (not shown). Note that FIG. 4 corresponds to a top view of the metal block 25a (divided body 27), and FIG. 5 corresponds to a top view of the metal block 25b. As shown in FIGS. 5 and 6, the split body 27 has a first resin supply path 19a to which the first resin is supplied from the first extruder 1a and a second resin supply passage 19a from the second extruder 1b to the second. A second resin supply path 19b to which the resin is supplied and a third resin supply path 19c to which the third resin is supplied from the third extruder 1c are provided. The first resin supply path 19a, the second resin supply path 19b, and the third resin supply path 19c all pass from the side surface of the metal block 25b through the inside of the metal blocks 25b and 25a to the upper surface of the metal block 25a. It is a flow path leading to. On the side surface of the metal block 25b, openings 28a, openings 28b and openings 28c corresponding to the first resin supply 19a, the second resin supply path 19b and the third resin supply path 19c are provided. A first extruder 1a, a second extruder 1b, and a third extruder 1c are connected to the opening 28a, the opening 28b, and the opening 28c, respectively. On the upper surface of the metal block 25a, openings 29a, openings 29b, and openings 29c corresponding to the first resin supply path 19a, the second resin supply path 19b, and the third resin supply path 19c are provided. .. The openings 29a to 29c on the upper surface of the metal block 25a are openings for supplying resin to the divided body 26, and are provided in the flow path provided in the divided body 26 in a state where the divided bodies 26 and 27 are integrated. Be connected.
 一例として、第3の樹脂供給路19cの断面を図6に示す。第1の樹脂供給路19a及び第2の樹脂供給路19bは、流路長が異なる以外は、図6に示す第3の樹脂供給路19とほぼ同様に構成されている。 As an example, FIG. 6 shows a cross section of the third resin supply path 19c. The first resin supply path 19a and the second resin supply path 19b are configured in substantially the same manner as the third resin supply path 19 shown in FIG. 6, except that the flow path lengths are different.
 第1の樹脂供給路19a、第2の樹脂供給路19b及び第3の樹脂供給路19cのそれぞれの途中には、第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cが設けられている。図5及び図6に示すように、第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cは、金属ブロック25bに設けられたギヤ収容部30内に、互いに噛み合う2つのギヤ31を回転可能に収容し、金属ブロック25bの上面及び下面をそれぞれ金属ブロック25a及び25cで封止することによって構成されている。第1のギヤポンプ3aを構成するギヤ31は図1に示した駆動機構5aに接続され、第2のギヤポンプ3bを構成するギヤ31は図1に示した駆動機構5bに接続され、第3のギヤポンプ3cを構成するギヤ31は図1に示した駆動機構5cに接続されている。 A first gear pump 3a, a second gear pump 3b, and a third gear pump 3c are provided in the middle of each of the first resin supply path 19a, the second resin supply path 19b, and the third resin supply path 19c. ing. As shown in FIGS. 5 and 6, the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c have two gears 31 that mesh with each other in the gear accommodating portion 30 provided in the metal block 25b. It is rotatably housed and is configured by sealing the upper and lower surfaces of the metal block 25b with the metal blocks 25a and 25c, respectively. The gear 31 constituting the first gear pump 3a is connected to the drive mechanism 5a shown in FIG. 1, the gear 31 constituting the second gear pump 3b is connected to the drive mechanism 5b shown in FIG. 1, and the third gear pump The gear 31 constituting the 3c is connected to the drive mechanism 5c shown in FIG.
 次に、分割体26について説明する。 Next, the split body 26 will be described.
 図7は、図1に示したVII-VIIラインに沿う断面図である。 FIG. 7 is a cross-sectional view taken along the VII-VII line shown in FIG.
 図7に示すように、分割体26は、ダイ10と、混練機構16と、第1のバルブ17aと、第2のバルブ17bと、第3のバルブ18とを備える。本実施形態では、一例として、分割体26は、3つの金属ブロック24a~24cに分けて構成されており、金属ブロック24aにダイ10及び第3のバルブ18が設けられ、金属ブロック24bに第1のバルブ17a及び第2のバルブ17bが設けられ、金属ブロック24b及び24cに混練機構16が設けられている。 As shown in FIG. 7, the split body 26 includes a die 10, a kneading mechanism 16, a first valve 17a, a second valve 17b, and a third valve 18. In the present embodiment, as an example, the divided body 26 is divided into three metal blocks 24a to 24c, the metal block 24a is provided with a die 10 and a third valve 18, and the metal block 24b is provided with a first valve. The valve 17a and the second valve 17b are provided, and the kneading mechanism 16 is provided on the metal blocks 24b and 24c.
 ダイ10は、ブレード線6の外面に樹脂を押し出すための金型であり、内型11と外型12とを備える。内型11には、中心軸部分にブレード線6を挿通させる貫通孔13が設けられている。外型12は、金属ブロック24aの一部からなり、内型11を収容する中空部を有する。内型11の外周面と、外型12の中空部の内周面との間には所定の隙間からなる樹脂の流路15が形成されている。外型12は、内型11の中心軸と同軸の押出口14を有する。この押出口14は、流路15の前端部を構成する。流路15は、後述する第3のバルブ18に繋がる流路に接続されている。第3のバルブ18から流路15に供給された樹脂は、押出口14側へと流れ、内型11の貫通孔13及び押出口14を通過して前方に繰り出されるブレード線6の表面に押し出される。尚、内型11は、外型12に対して固定されている。 The die 10 is a mold for extruding resin onto the outer surface of the blade wire 6, and includes an inner mold 11 and an outer mold 12. The inner mold 11 is provided with a through hole 13 through which the blade wire 6 is inserted in the central shaft portion. The outer mold 12 is formed of a part of the metal block 24a and has a hollow portion for accommodating the inner mold 11. A resin flow path 15 formed of a predetermined gap is formed between the outer peripheral surface of the inner mold 11 and the inner peripheral surface of the hollow portion of the outer mold 12. The outer mold 12 has an extrusion port 14 coaxial with the central axis of the inner mold 11. The extrusion port 14 constitutes the front end portion of the flow path 15. The flow path 15 is connected to a flow path connected to a third valve 18, which will be described later. The resin supplied from the third valve 18 to the flow path 15 flows to the extrusion port 14 side and is extruded to the surface of the blade wire 6 which passes through the through hole 13 of the inner die 11 and the extrusion port 14 and is fed forward. Is done. The inner mold 11 is fixed to the outer mold 12.
 混練機構16は、スクリュー21とモータ22とを備える。スクリュー21は、金属ブロック24b及び24cに設けられた中空部に収容されている。スクリュー21の外周面と金属ブロック24b及び24cの中空部の内周面との間には所定の隙間からなる流路23が形成されている。混練機構16の流路23には、第1の樹脂及び第2の樹脂の一方または両方が供給される。スクリュー21の外周面には、複数の突起またはピンが設けられており、モータ22の回転力によって中心軸周りに回転することにより、混練機構16は、流路23内に存在する1種類または2種類の樹脂を混練して吐出することができる。本実施形態では、混練機構16がスクリュー21を用いて構成される例を説明したが、流路内の樹脂を混練できるものであれば特に限定されず、スクリュー21に替えてニーダーを用いても良い。尚、モータ22の回転は、制御装置4によって制御される。 The kneading mechanism 16 includes a screw 21 and a motor 22. The screw 21 is housed in a hollow portion provided in the metal blocks 24b and 24c. A flow path 23 formed of a predetermined gap is formed between the outer peripheral surface of the screw 21 and the inner peripheral surface of the hollow portion of the metal blocks 24b and 24c. One or both of the first resin and the second resin are supplied to the flow path 23 of the kneading mechanism 16. A plurality of protrusions or pins are provided on the outer peripheral surface of the screw 21, and the kneading mechanism 16 is one type or two existing in the flow path 23 by rotating around the central axis by the rotational force of the motor 22. Various types of resins can be kneaded and discharged. In the present embodiment, an example in which the kneading mechanism 16 is configured by using the screw 21 has been described, but the present invention is not particularly limited as long as the resin in the flow path can be kneaded, and a kneader may be used instead of the screw 21. good. The rotation of the motor 22 is controlled by the control device 4.
 第1のバルブ17aは、混練機構16と第1のギヤポンプ3aとの間に設けられ、混練機構16に対する第1の樹脂の供給を制御する。第1のバルブ17aは、内部に樹脂を流動させる流路(図示せず)を有する円柱状の弁体を有する。第1のバルブ17aの弁体は、モータ等の駆動機構20aに接続され、その中心軸の周りに回転可能である。第1のバルブ17aは、弁体の回転位置に応じて、第1のギヤポンプ3aと混練機構16とが連通した状態と、第1のギヤポンプ3aと混練機構16との間が遮断された状態とを切り替え可能である。第1のギヤポンプ3aと混練機構16とが連通した状態では、第1の樹脂供給路19aと混練機構16の流路23とが、弁体内に設けられた図示しない流路によって接続される。 The first valve 17a is provided between the kneading mechanism 16 and the first gear pump 3a, and controls the supply of the first resin to the kneading mechanism 16. The first valve 17a has a columnar valve body having a flow path (not shown) for flowing the resin inside. The valve body of the first valve 17a is connected to a drive mechanism 20a such as a motor and is rotatable around its central axis. The first valve 17a has a state in which the first gear pump 3a and the kneading mechanism 16 communicate with each other and a state in which the first gear pump 3a and the kneading mechanism 16 are cut off according to the rotational position of the valve body. Can be switched. In a state where the first gear pump 3a and the kneading mechanism 16 communicate with each other, the first resin supply path 19a and the flow path 23 of the kneading mechanism 16 are connected by a flow path (not shown) provided in the valve body.
 第2のバルブ17bは、混練機構16と第2のギヤポンプ3bとの間に設けられ、混練機構16に対する第2の樹脂の供給を制御する。第2のバルブ17bは、第1のバルブ17と同一構成である。すなわち、第2のバルブ17bは、内部に樹脂を流動させる流路(図示せず)を有する円柱状の弁体を有し、第2のバルブ17bの弁体は、モータ等の駆動機構20bに接続され、その中心軸の周りに回転可能である。第2のバルブ17bは、弁体の回転位置に応じて、第2のギヤポンプ3bと混練機構16とが連通した状態と、第2のギヤポンプ3bと混練機構16との間が遮断された状態とを切り替え可能である。第2のギヤポンプ3bと混練機構16とが連通した状態では、第2の樹脂供給路19aと混練機構16の流路23とが、弁体内に設けられた図示しない流路によって接続される。 The second valve 17b is provided between the kneading mechanism 16 and the second gear pump 3b, and controls the supply of the second resin to the kneading mechanism 16. The second valve 17b has the same configuration as the first valve 17. That is, the second valve 17b has a columnar valve body having a flow path (not shown) for flowing the resin inside, and the valve body of the second valve 17b is attached to a drive mechanism 20b such as a motor. It is connected and is rotatable around its central axis. The second valve 17b has a state in which the second gear pump 3b and the kneading mechanism 16 communicate with each other and a state in which the second gear pump 3b and the kneading mechanism 16 are cut off according to the rotational position of the valve body. Can be switched. In a state where the second gear pump 3b and the kneading mechanism 16 communicate with each other, the second resin supply path 19a and the flow path 23 of the kneading mechanism 16 are connected by a flow path (not shown) provided in the valve body.
 第3のバルブ18は、混練機構16から押し出された樹脂と、第3の樹脂供給路19cを介して第3の押出機1cから供給された第3の樹脂とのいずれかを選択的にダイ10に供給可能である。第3のバルブ18は、内部に樹脂を流動させる流路(図示せず)を有する円柱状の弁体を有し、第3のバルブ18の弁体は、モータ等の駆動機構20cに接続され、その中心軸の周りに回転可能である。第3のバルブ18は、弁体の回転位置に応じて、混練機構16の流路23とダイ10の流路15とが連通した状態と、第3のギヤポンプ3cとダイ10の流路15とが連通した状態とを切り替え可能である。尚、混練機構16の流路23とダイ10の流路15とが連通した状態では、流路23と流路15とが弁体内に設けられた図示しない流路によって接続され、第3のギヤポンプ3cとダイ10の流路15との間は遮断される。第3のギヤポンプ3cとダイ10の流路15とが連通した状態では、第3のギヤポンプ3cに繋がる第3の樹脂供給路19cと流路15とが弁体内に設けられる図示しない流路によって接続され、混練機構16の流路23とダイ10の流路15との間は遮断される。 The third valve 18 selectively dies one of the resin extruded from the kneading mechanism 16 and the third resin supplied from the third extruder 1c via the third resin supply path 19c. It can be supplied to 10. The third valve 18 has a columnar valve body having a flow path (not shown) for flowing resin inside, and the valve body of the third valve 18 is connected to a drive mechanism 20c such as a motor. , Is rotatable around its central axis. The third valve 18 has a state in which the flow path 23 of the kneading mechanism 16 and the flow path 15 of the die 10 communicate with each other according to the rotation position of the valve body, and the third gear pump 3c and the flow path 15 of the die 10. It is possible to switch between the communication state and the communication state. In a state where the flow path 23 of the kneading mechanism 16 and the flow path 15 of the die 10 communicate with each other, the flow path 23 and the flow path 15 are connected by a flow path (not shown) provided inside the valve body, and a third gear pump is used. The communication between 3c and the flow path 15 of the die 10 is cut off. In a state where the third gear pump 3c and the flow path 15 of the die 10 communicate with each other, the third resin supply path 19c and the flow path 15 connected to the third gear pump 3c are connected by a flow path (not shown) provided in the valve body. Then, the flow path 23 of the kneading mechanism 16 and the flow path 15 of the die 10 are blocked from each other.
 制御装置4は、コンピュータを含み、駆動装置5a~5cの駆動量を制御することにより、第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cのそれぞれの吐出量(単位時間あたりの樹脂の流量)を調整可能である。また、制御装置5は、駆動機構20a~20cの駆動量を制御することにより、第1のバルブ17a、第2のバルブ17b及び第3のバルブ18のそれぞれの状態を切り替え可能である。更に、制御装置4は、押出成形の実行中に、混練機構16を構成するモータ22を回転させ、回転数を所定の値に制御する。 The control device 4 includes a computer, and by controlling the driving amounts of the driving devices 5a to 5c, the discharge amounts of the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c (per unit time). The flow rate of the resin) can be adjusted. Further, the control device 5 can switch the states of the first valve 17a, the second valve 17b, and the third valve 18 by controlling the driving amounts of the driving mechanisms 20a to 20c. Further, the control device 4 rotates the motor 22 constituting the kneading mechanism 16 during the execution of extrusion molding, and controls the rotation speed to a predetermined value.
 以下、本実施形態に係るフレキシブルチューブ製造装置100を用いてフレキシブルチューブを製造する方法を説明する。 Hereinafter, a method of manufacturing a flexible tube using the flexible tube manufacturing apparatus 100 according to the present embodiment will be described.
 図8A及び図8Bは、実施形態に係るフレキシブルチューブ製造装置で製造可能なフレキシブルチューブの一例を示す模式図である。 8A and 8B are schematic views showing an example of a flexible tube that can be manufactured by the flexible tube manufacturing apparatus according to the embodiment.
 図8Aに示すフレキシブルチューブ70は、内層チューブの外面にブレード(網管)を設けたブレード線6を樹脂層からなる外層チューブで被覆したものであり、外層チューブの樹脂の硬度が徐々に柔軟になる硬度遷移部71と、硬度遷移部71の先端部に接続され、硬度遷移部71の先端を覆う樹脂よりも更に柔軟な樹脂からなるソフトチップ72とを備える。ソフトチップ72は、血管の損傷を抑制して更に安全性を向上できるカテーテルの先端部(挿入側)に設けられるものである。ソフトチップ72の長さは、例えば、数mm~数cmであり、ソフトチップ72を構成する樹脂層(外層チューブ)の硬度は一定である。従来、図8Aに示すフレキシブルチューブは、硬度遷移部71とソフトチップ72となる柔軟なチューブとを別個に成型し、硬度遷移部71の先端にソフトチップ72を熱溶着により接合することにより製造されることが一般的であった。これに対して、本実施形態に係るフレキシブルチューブ製造装置100は、硬度遷移部71とソフトチップ72とを連続して押出成形することが可能であり、硬度遷移部71とソフトチップ72とを滑らかにかつ完全に接続できると共に、ソフトチップ72の長さを自在に変化させることができる。 The flexible tube 70 shown in FIG. 8A is formed by coating a blade wire 6 having a blade (net tube) on the outer surface of the inner layer tube with an outer layer tube made of a resin layer, and the hardness of the resin of the outer layer tube gradually becomes flexible. It includes a hardness transition portion 71 and a soft chip 72 made of a resin that is connected to the tip portion of the hardness transition portion 71 and is more flexible than the resin that covers the tip of the hardness transition portion 71. The soft tip 72 is provided at the tip (insertion side) of the catheter, which can suppress damage to blood vessels and further improve safety. The length of the soft chip 72 is, for example, several mm to several cm, and the hardness of the resin layer (outer layer tube) constituting the soft chip 72 is constant. Conventionally, the flexible tube shown in FIG. 8A is manufactured by separately molding a hardness transition portion 71 and a flexible tube to be a soft tip 72, and joining the soft tip 72 to the tip of the hardness transition portion 71 by heat welding. Was common. On the other hand, in the flexible tube manufacturing apparatus 100 according to the present embodiment, the hardness transition portion 71 and the soft tip 72 can be continuously extruded, and the hardness transition portion 71 and the soft tip 72 are smoothed. The length of the soft chip 72 can be freely changed as well as being completely connected.
 本実施形態に係るフレキシブルチューブ製造装置100を用いて、フレキシブルチューブ70を製造する場合、まず、第1の樹脂と第1の樹脂より柔軟な第2の樹脂とを用い、混練機構16において相対的に硬い第1の樹脂の割合を減少させながらブレード線6上に樹脂を押し出すことにより、硬度遷移部71を押出成型する。より詳細には、制御装置4は、第1のギヤポンプ3a及び第2のギヤポンプ3bの両方が混練機構16と連通するように第1のバルブ17a及び第2のバルブ17bの状態(回転位置)を制御し、かつ、混練機構16がダイ10と連通するように第3のバルブ18の状態(回転位置)を制御する。この状態で、制御装置4は、駆動装置5a及び5bを制御して、第1のギヤポンプ3aによる第1の樹脂の吐出量を所定の変化率で連続的に減少させ、第2のギヤポンプ3bによる第2の樹脂の吐出量を、第1の樹脂の吐出量の変化率と同じ変化率で連続的に増加させる。第1の樹脂及び第2の樹脂の混合比を変化させる過程では、混練機構16からダイ10に至る流路内の樹脂の圧力変動を抑制し、成型されたフレキシブルチューブの寸法安定性を維持するため、混練機構16に供給される第1の樹脂及び第2の樹脂の総量を一定とする。そのために、制御部4は、第1のギヤポンプ3aの吐出量の変化率と、第2のギヤポンプ3bの吐出量の変化率とを一致させている。 When the flexible tube 70 is manufactured by using the flexible tube manufacturing apparatus 100 according to the present embodiment, first, a first resin and a second resin that is more flexible than the first resin are used, and the kneading mechanism 16 is relative. The hardness transition portion 71 is extruded by extruding the resin onto the blade wire 6 while reducing the proportion of the first hard resin. More specifically, the control device 4 determines the state (rotational position) of the first valve 17a and the second valve 17b so that both the first gear pump 3a and the second gear pump 3b communicate with the kneading mechanism 16. The state (rotational position) of the third valve 18 is controlled so that the kneading mechanism 16 communicates with the die 10. In this state, the control device 4 controls the drive devices 5a and 5b to continuously reduce the discharge amount of the first resin by the first gear pump 3a at a predetermined rate of change, and the second gear pump 3b. The discharge amount of the second resin is continuously increased at the same rate of change as the change rate of the discharge amount of the first resin. In the process of changing the mixing ratio of the first resin and the second resin, the pressure fluctuation of the resin in the flow path from the kneading mechanism 16 to the die 10 is suppressed, and the dimensional stability of the molded flexible tube is maintained. Therefore, the total amount of the first resin and the second resin supplied to the kneading mechanism 16 is kept constant. Therefore, the control unit 4 matches the rate of change in the discharge amount of the first gear pump 3a with the rate of change in the discharge amount of the second gear pump 3b.
 尚、硬度遷移部71の末端部(使用時における手元側部分)に、第1の樹脂のみからなる外層チューブを押出成形する場合は、制御装置4は、第1のギヤポンプ3a及び第2のギヤポンプ3bの両方を混練機構16と連通させる前に、第1のギヤポンプ3aと混練機構16とが連通し、かつ、第2のギヤポンプ3bと混練機構16との間が遮断されるように第1のバルブ17a及び第2のバルブ17bの状態(回転位置)を制御した状態として、第1のギヤポンプ3aの吐出量を所定の吐出量に制御する。また、硬度遷移部71の先端部(使用時における挿入側部分)に、第2の樹脂のみからなる外層チューブを押出成形する場合は、制御装置4は、第1のギヤポンプ3a及び第2のギヤポンプ3bの両方を混練機構16と連通させた状態から、第2のギヤポンプ3bと混練機構16とが連通し、かつ、第1のギヤポンプ3aと混練機構16との間が遮断された状態に遷移するよう、第1のバルブ17a及び第2のバルブ17bの状態(回転位置)を制御した状態として、第2のギヤポンプ3bの吐出量を所定の吐出量に制御する。 When an outer layer tube made of only the first resin is extruded at the end portion (hand side portion at the time of use) of the hardness transition portion 71, the control device 4 uses the first gear pump 3a and the second gear pump. Before communicating both of 3b with the kneading mechanism 16, the first gear pump 3a and the kneading mechanism 16 communicate with each other, and the first gear pump 3b and the kneading mechanism 16 are cut off from each other. Assuming that the state (rotational position) of the valve 17a and the second valve 17b is controlled, the discharge amount of the first gear pump 3a is controlled to a predetermined discharge amount. Further, when an outer layer tube made of only the second resin is extruded at the tip portion (insertion side portion at the time of use) of the hardness transition portion 71, the control device 4 uses the first gear pump 3a and the second gear pump. The state in which both 3b are communicated with the kneading mechanism 16 is changed to a state in which the second gear pump 3b and the kneading mechanism 16 are communicated with each other and the first gear pump 3a and the kneading mechanism 16 are cut off. As described above, the discharge amount of the second gear pump 3b is controlled to a predetermined discharge amount, assuming that the state (rotation position) of the first valve 17a and the second valve 17b is controlled.
 次に、ソフトチップ72を成型する。制御装置4は、第1のギヤポンプ3a及び第2のギヤポンプ3bの吐出量を制御して、第1の樹脂の割合が所定の目標値に達した後、所定のタイミングで、第3のギヤポンプ3cがダイ10と連通するように第3のバルブの状態(回転位置)を制御し、第3のギヤポンプ3cの吐出量を所定の吐出量に制御する。 Next, the soft tip 72 is molded. The control device 4 controls the discharge amounts of the first gear pump 3a and the second gear pump 3b, and after the ratio of the first resin reaches a predetermined target value, the third gear pump 3c is at a predetermined timing. Controls the state (rotational position) of the third valve so that the third valve communicates with the die 10, and controls the discharge amount of the third gear pump 3c to a predetermined discharge amount.
 制御装置4が、第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cの吐出量と、第1のバルブ17a、第2のバルブ17b及び第3のバルブ18の回転位置とを上記のように制御することによって、図8Aに示したフレキシブルチューブ70を製造することができる。 The control device 4 determines the discharge amounts of the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c, and the rotational positions of the first valve 17a, the second valve 17b, and the third valve 18. By controlling as shown in FIG. 8A, the flexible tube 70 shown in FIG. 8A can be manufactured.
 また、本実施形態に係るフレキシブルチューブ製造装置100は、図8Bに示すような、ソフトチップがなく、硬度遷移部74を備えたフレキシブルチューブ73を製造することもできる。具体的には、上述した制御装置4による制御において、第3のバルブ18の回転位置を切り替えない(つまり、第3のバルブ18とダイ10とを連通させない)ことによって、図8Bに示すフレキシブルチューブ73を得ることができる。 Further, the flexible tube manufacturing apparatus 100 according to the present embodiment can also manufacture a flexible tube 73 having a hardness transition portion 74 without a soft chip as shown in FIG. 8B. Specifically, in the control by the control device 4 described above, the flexible tube shown in FIG. 8B is formed by not switching the rotation position of the third valve 18 (that is, not communicating the third valve 18 and the die 10). 73 can be obtained.
 尚、硬度遷移部71を成型する際の第1の樹脂の割合の初期値及び目標値(最小値)は任意である。 The initial value and the target value (minimum value) of the ratio of the first resin when molding the hardness transition portion 71 are arbitrary.
 以上説明したように、本実施形態に係るフレキシブルチューブ製造装置100は、成型装置2内の第1の樹脂供給路19aの途中と、第2の樹脂供給路19bの途中と、第3の樹脂供給路19cの途中とに、それぞれ、第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cが設けられている。本実施形態のように成型装置2に第1のギヤポンプ3a、第2のギヤポンプ3b及び第3のギヤポンプ3cを内蔵した場合、成型装置の外部にギヤポンプを設ける場合と比べて、ギヤポンプからダイ10の押出口14までの流路長を短くすることができる。したがって、本実施形態に係るフレキシブルチューブ製造装置100においては、ギヤポンプの吐出量を調整してから、実際にダイから押し出される樹脂の混合比が変化するまでのレスポンスを向上させることができる。本実施形態に係る成型装置2を構成する分割体27は、第1の押出機1a、第2の押出機1b及び第3の押出機1cを接続するための接続ユニットであるが、フレキシブルチューブ製造装置100を構成する複数の装置の干渉を避け、各装置をメンテナンス性に優れた位置に配置するために必要な部分である。2種類以上の樹脂の混合比を変化させることができるフレキシブルチューブ製造装置は、バルブや混練機構及びこれらの駆動機構など、多くの装置を備えるため、樹脂の種類と同数の押出機を干渉なく配置し、成型装置に接続するためには、分割体27が必要である。本実施形態に係るフレキシブルチューブ製造装置100では、押出機の配置や押出機と成型装置の接続に必要な分割体27内にギヤポンプを内蔵しているため、同種の装置と比べてギヤポンプからダイまでの流路を短くすることができ、上述したレスポンス向上を図ることができる。また、ギヤポンプは、吐出量の制御を精密に制御できる装置であるので、成型装置2内にギヤポンプを内蔵したことにより、混練機構16及びダイ10への樹脂供給量の制御を精密に行うことができる。したがって、本実施形態に係るフレキシブルチューブ製造装置100において、硬度遷移部71を構成する第1の樹脂及び第2の樹脂の混合比を連続的に変化させることができ、フレキシブルチューブ7の寸法安定性にも優れる。 As described above, the flexible tube manufacturing apparatus 100 according to the present embodiment has the middle of the first resin supply passage 19a in the molding apparatus 2, the middle of the second resin supply passage 19b, and the third resin supply. A first gear pump 3a, a second gear pump 3b, and a third gear pump 3c are provided in the middle of the road 19c, respectively. When the first gear pump 3a, the second gear pump 3b, and the third gear pump 3c are built in the molding apparatus 2 as in the present embodiment, the gear pump to the die 10 are compared with the case where the gear pump is provided outside the molding apparatus. The flow path length to the extrusion port 14 can be shortened. Therefore, in the flexible tube manufacturing apparatus 100 according to the present embodiment, it is possible to improve the response from adjusting the discharge amount of the gear pump until the mixing ratio of the resin actually extruded from the die changes. The split body 27 constituting the molding apparatus 2 according to the present embodiment is a connection unit for connecting the first extruder 1a, the second extruder 1b, and the third extruder 1c, but is a flexible tube manufacturing. This is a part necessary for avoiding interference between a plurality of devices constituting the device 100 and arranging each device at a position excellent in maintainability. Flexible tube manufacturing equipment that can change the mixing ratio of two or more types of resin is equipped with many equipment such as valves, kneading mechanisms, and drive mechanisms for these, so the same number of extruders as the types of resin are arranged without interference. However, in order to connect to the molding apparatus, the split body 27 is required. In the flexible tube manufacturing apparatus 100 according to the present embodiment, since the gear pump is built in the split body 27 required for arranging the extruder and connecting the extruder and the molding apparatus, from the gear pump to the die as compared with the same type of apparatus. The flow path of the above can be shortened, and the above-mentioned response can be improved. Further, since the gear pump is a device capable of precisely controlling the discharge amount, the resin supply amount to the kneading mechanism 16 and the die 10 can be precisely controlled by incorporating the gear pump in the molding device 2. it can. Therefore, in the flexible tube manufacturing apparatus 100 according to the present embodiment, the mixing ratio of the first resin and the second resin constituting the hardness transition portion 71 can be continuously changed, and the dimensional stability of the flexible tube 7 can be changed. Also excellent.
 また、本実施形態に係るフレキシブルチューブ製造装置100では、第1のバルブ17a、第2のバルブ17b及び第3のバルブ18を用いて、混練機構16の流路23と第1のギヤポンプ3aとの間、混練機構16の流路23と第2のギヤポンプ3bとの間、混練機構16とダイ10の流路15との間、及び、第3のギヤポンプ3cとダイ10の流路15との間を適宜遮断することができる。したがって、混練機構16またはダイ10に対して樹脂を供給していない間に、混練機構16またはダイ10から上流側に向けて樹脂が逆流することを防止できる。 Further, in the flexible tube manufacturing apparatus 100 according to the present embodiment, the first valve 17a, the second valve 17b, and the third valve 18 are used to connect the flow path 23 of the kneading mechanism 16 and the first gear pump 3a. Between the flow path 23 of the kneading mechanism 16 and the second gear pump 3b, between the kneading mechanism 16 and the flow path 15 of the die 10, and between the third gear pump 3c and the flow path 15 of the die 10. Can be cut off as appropriate. Therefore, it is possible to prevent the resin from flowing back from the kneading mechanism 16 or the die 10 toward the upstream side while the resin is not supplied to the kneading mechanism 16 or the die 10.
 また、第1のギヤポンプ3a及び第2のギヤポンプ3bの両方と混練機構16とが連通した状態で、第1のギヤポンプ3a及び第2のギヤポンプ3bの吐出量を制御することにより、2種類の樹脂の混合比を連続的かつ精密に変化させることができる。 Further, by controlling the discharge amounts of the first gear pump 3a and the second gear pump 3b in a state where both the first gear pump 3a and the second gear pump 3b and the kneading mechanism 16 are in communication with each other, two kinds of resins are used. The mixing ratio of can be changed continuously and precisely.
 (変形例)
 上記の実施形態では、図8Aに示したソフトチップを有するフレキシブルチューブを製造可能な装置を説明した。ただし、図8Bに示すソフトチップのないフレキシブルチューブを製造する装置を構成る場合は、上述したフレキシブルチューブ製造装置100から、第3の押出機1c、第3の樹脂供給路19c、第3のギヤポンプ3c、駆動機構5c、第3のバルブ18、駆動機構20cを省略し、混練機構16の流路23をダイ10の流路15に接続すれば良い。この構成においても、第1のギヤポンプ3a及び第2のギヤポンプ3bが、それぞれ、成型装置2内の第1の樹脂供給路19aの途中及び第2の樹脂供給路19bの途中に設けられることにより、ギヤポンプからダイ10の押出口14までの流路を短くし、上述した混合比変化のレスポンスを向上できる。
(Modification example)
In the above embodiment, an apparatus capable of manufacturing a flexible tube having the soft chip shown in FIG. 8A has been described. However, when configuring an apparatus for manufacturing a flexible tube without a soft tip shown in FIG. 8B, the third extruder 1c, the third resin supply path 19c, and the third gear pump are used from the above-mentioned flexible tube manufacturing apparatus 100. The 3c, the drive mechanism 5c, the third valve 18, and the drive mechanism 20c may be omitted, and the flow path 23 of the kneading mechanism 16 may be connected to the flow path 15 of the die 10. Also in this configuration, the first gear pump 3a and the second gear pump 3b are provided in the middle of the first resin supply path 19a and the middle of the second resin supply path 19b in the molding apparatus 2, respectively. The flow path from the gear pump to the extrusion port 14 of the die 10 can be shortened to improve the response of the above-mentioned mixing ratio change.
 また、上記の実施形態において、第1のバルブ17a、第2のバルブ17b及び第3のバルブ18の構造は特に限定されず、上述した各バルブの機能を実現できる構造を有していれば良い。 Further, in the above embodiment, the structures of the first valve 17a, the second valve 17b, and the third valve 18 are not particularly limited, and may have a structure capable of realizing the functions of the above-mentioned valves. ..
 本発明は、医療用のカテーテルの作製に用いるカテーテルシャフトや内視鏡に用いるチューブ等のフレキシブルチューブ製造装置として利用できる。 The present invention can be used as a flexible tube manufacturing apparatus such as a catheter shaft used for manufacturing a medical catheter and a tube used for an endoscope.
1a 第1の押出機
1b 第2の押出機
1c 第3の押出機
2 成型装置
3a 第1のギヤポンプ
3b 第2のギヤポンプ
3c 第3のギヤポンプ
4 制御装置
6 ブレード線
7 フレキシブルチューブ
10 ダイ
13 貫通孔
14 押出口
16 混練機構
17a 第1のバルブ
17b 第2のバルブ
18 第3のバルブ
19a 第1の樹脂供給路
19b 第2の樹脂供給路
19c 第3の樹脂供給路
100 フレキシブルチューブ製造装置
1a 1st extruder 1b 2nd extruder 1c 3rd extruder 2 Molding device 3a 1st gear pump 3b 2nd gear pump 3c 3rd gear pump 4 Control device 6 Blade wire 7 Flexible tube 10 Die 13 Through hole 14 Extrusion port 16 Kneading mechanism 17a 1st valve 17b 2nd valve 18 3rd valve 19a 1st resin supply path 19b 2nd resin supply path 19c 3rd resin supply path 100 Flexible tube manufacturing apparatus

Claims (7)

  1.  フレキシブルチューブ製造装置であって、
     第1の樹脂を押し出す第1の押出機と、
     前記第1の樹脂より柔軟な第2の樹脂を押し出す第2の押出機と、
     前記第1の押出機から前記第1の樹脂が供給される第1の樹脂供給路と、前記第2の押出機から前記第2の樹脂が供給される第2の樹脂供給路とを有し、供給された樹脂をブレード線の表面に押出成形する成型装置と、
     前記第1の樹脂供給路の途中に設けられた第1のギヤポンプと、
     前記第2の樹脂供給路の途中に設けられた第2のギヤポンプとを備え、
     前記第1のギヤポンプ及び前記第2のギヤポンプが前記成型装置と一体的に設けられる、フレキシブルチューブ製造装置。
    Flexible tube manufacturing equipment
    A first extruder that extrudes the first resin,
    A second extruder that extrudes a second resin that is more flexible than the first resin, and
    It has a first resin supply path to which the first resin is supplied from the first extruder, and a second resin supply path to which the second resin is supplied from the second extruder. , A molding device that extrudes the supplied resin onto the surface of the blade wire,
    A first gear pump provided in the middle of the first resin supply path and
    A second gear pump provided in the middle of the second resin supply path is provided.
    A flexible tube manufacturing apparatus in which the first gear pump and the second gear pump are integrally provided with the molding apparatus.
  2.  前記成型装置は、
      前記ブレード線を挿通させる貫通孔と、前記貫通孔を通過する前記ブレード線の表面に樹脂を押し出す押出口とを有するダイと、
      前記第1の樹脂と前記第2の樹脂とを混練して前記ダイに押し出し可能な混練機構と、
      前記混練機構と前記第1のギヤポンプとの間に設けられ、前記第1のギヤポンプと前記混練機構とが連通した状態と、前記第1のギヤポンプと前記混練機構との間が遮断された状態との切り替え可能な第1のバルブと、
      前記混練機構と前記第2のギヤポンプとの間に設けられ、前記第2のギヤポンプと前記混練機構とが連通した状態と、前記第2のギヤポンプと前記混練機構との間が遮断された状態との切り替え可能な第2のバルブと、
      制御装置とを備え、
     前記制御装置は、前記フレキシブルチューブの押し出し成形時に、前記第1のギヤポンプと前記混練機構とが連通し、かつ、前記第2のギヤポンプと前記混練機構との間が遮断された第1の状態と、前記第1のギヤポンプ及び前記第2のギヤポンプの両方が前記混練機構と連通した第2の状態と、前記第2のギヤポンプと前記混練機構とが連通し、かつ、前記第1のギヤポンプと前記混練機構との間が遮断された第3の状態との間で、前記第1のバルブ及び前記第2のバルブの状態を切り替え可能である、請求項1に記載のフレキシブルチューブ製造装置。
    The molding device is
    A die having a through hole through which the blade wire is inserted and an extrusion port for extruding resin onto the surface of the blade wire passing through the through hole.
    A kneading mechanism capable of kneading the first resin and the second resin and extruding them into the die.
    A state in which the kneading mechanism and the first gear pump are provided so that the first gear pump and the kneading mechanism communicate with each other and a state in which the first gear pump and the kneading mechanism are cut off from each other. The first switchable valve and
    A state in which the kneading mechanism and the second gear pump are provided so that the second gear pump and the kneading mechanism communicate with each other and a state in which the second gear pump and the kneading mechanism are cut off from each other. With a switchable second valve,
    Equipped with a control device
    The control device has a first state in which the first gear pump and the kneading mechanism communicate with each other and the second gear pump and the kneading mechanism are cut off at the time of extrusion molding of the flexible tube. , The second state in which both the first gear pump and the second gear pump communicate with the kneading mechanism, the second gear pump and the kneading mechanism communicate with each other, and the first gear pump and the kneading mechanism are communicated with each other. The flexible tube manufacturing apparatus according to claim 1, wherein the states of the first valve and the second valve can be switched between the state of the first valve and the state of the second valve, which is cut off from the kneading mechanism.
  3.  前記制御装置は、前記第1のバルブ及び前記第2のバルブが前記第2の状態にある時に、前記第1のギヤポンプによる前記第1の樹脂の吐出量と、前記第2のギヤポンプによる前記第2の樹脂の吐出量とを連続的に変化させることにより、前記混練機構に供給される前記第1の樹脂の割合を連続的に増加または減少させる、請求項2に記載のフレキシブルチューブ製造装置。 In the control device, when the first valve and the second valve are in the second state, the discharge amount of the first resin by the first gear pump and the second by the second gear pump. The flexible tube manufacturing apparatus according to claim 2, wherein the ratio of the first resin supplied to the kneading mechanism is continuously increased or decreased by continuously changing the discharge amount of the resin of 2.
  4.  フレキシブルチューブ製造装置であって、
     第1の樹脂を押し出す第1の押出機と、
     前記第1の樹脂より柔軟な第2の樹脂を押し出す第2の押出機と、
     前記第2の樹脂より柔軟な第3の樹脂を押し出す第3の押出機と、
     前記第1の押出機から前記第1の樹脂が供給される第1の樹脂供給路と、前記第2の押出機から前記第2の樹脂が供給される第2の樹脂供給路と、前記第3の押出機から前記第3の樹脂が供給される第3の樹脂供給路とを有し、供給された樹脂をブレード線の表面に押出成形する成型装置と、
     前記第1の樹脂供給路の途中に設けられた第1のギヤポンプと、
     前記第2の樹脂供給路の途中に設けられた第2のギヤポンプと、
     前記第3の樹脂供給路の途中に設けられた第3のギヤポンプとを備え、
     前記第1のギヤポンプ、第2のギヤポンプ及び前記第3のギヤポンプが前記成型装置と一体的に設けられる、フレキシブルチューブ製造装置。
    Flexible tube manufacturing equipment
    A first extruder that extrudes the first resin,
    A second extruder that extrudes a second resin that is more flexible than the first resin, and
    A third extruder that extrudes a third resin that is more flexible than the second resin,
    A first resin supply path to which the first resin is supplied from the first extruder, a second resin supply path to which the second resin is supplied from the second extruder, and the first. A molding apparatus having a third resin supply path to which the third resin is supplied from the extruder of No. 3 and extruding the supplied resin onto the surface of the blade wire.
    A first gear pump provided in the middle of the first resin supply path and
    A second gear pump provided in the middle of the second resin supply path and
    A third gear pump provided in the middle of the third resin supply path is provided.
    A flexible tube manufacturing apparatus in which the first gear pump, the second gear pump, and the third gear pump are integrally provided with the molding apparatus.
  5.  前記成型装置は、
      前記ブレード線を挿通させる貫通孔と、前記貫通孔を通過する前記ブレード線の表面に樹脂を押し出す押出口とを有するダイと、
      前記第1の樹脂と前記第2の樹脂とを混練して押し出し可能な混練機構と、
      前記混練機構と前記第1のギヤポンプとの間に設けられ、前記第1のギヤポンプと前記混練機構とが連通した状態と、前記第1のギヤポンプと前記混練機構との間が遮断された状態との切り替え可能な第1のバルブと、
      前記混練機構と前記第2のギヤポンプとの間に設けられ、前記第2のギヤポンプと前記混練機構とが連通した状態と、前記第2のギヤポンプと前記混練機構との間が遮断された状態との切り替え可能な第2のバルブと、
      前記混練機構から吐出された樹脂と、前記第3の押出機から押し出された前記第3の樹脂とのいずれかを選択的に前記ダイに供給可能な第3のバルブと、
      制御装置とを備え、
     前記制御装置は、前記フレキシブルチューブの押し出し成形時に、前記第1のギヤポンプと前記混練機構とが連通し、かつ、前記第2のギヤポンプと前記混練機構との間が遮断された第1の状態と、前記第1のギヤポンプ及び前記第2のギヤポンプの両方が前記混練機構と連通した第2の状態と、前記第2のギヤポンプと前記混練機構とが連通し、かつ、前記第1のギヤポンプと前記混練機構との間が遮断された第3の状態との間で、前記第1のバルブ及び前記第2のバルブの状態を切り替え可能であり、更に、前記混練機構と前記ダイとが連通した第4の状態と、前記第3のギヤポンプ前記ダイとが連通した第5の状態との間で、前記第3のバルブの状態を切り替え可能である、請求項4に記載のフレキシブルチューブ製造装置。
    The molding device is
    A die having a through hole through which the blade wire is inserted and an extrusion port for extruding resin onto the surface of the blade wire passing through the through hole.
    A kneading mechanism capable of kneading and extruding the first resin and the second resin,
    A state in which the kneading mechanism and the first gear pump are provided so that the first gear pump and the kneading mechanism communicate with each other and a state in which the first gear pump and the kneading mechanism are cut off from each other. The first switchable valve and
    A state in which the kneading mechanism and the second gear pump are provided so that the second gear pump and the kneading mechanism communicate with each other and a state in which the second gear pump and the kneading mechanism are cut off from each other. With a switchable second valve,
    A third valve capable of selectively supplying any of the resin discharged from the kneading mechanism and the third resin extruded from the third extruder to the die.
    Equipped with a control device
    The control device has a first state in which the first gear pump and the kneading mechanism communicate with each other and the second gear pump and the kneading mechanism are cut off at the time of extrusion molding of the flexible tube. , The second state in which both the first gear pump and the second gear pump communicate with the kneading mechanism, the second gear pump and the kneading mechanism communicate with each other, and the first gear pump and the kneading mechanism are communicated with each other. The states of the first valve and the second valve can be switched between the third state in which the kneading mechanism and the kneading mechanism are cut off, and further, the kneading mechanism and the die communicate with each other. The flexible tube manufacturing apparatus according to claim 4, wherein the state of the third valve can be switched between the state of 4 and the fifth state in which the die of the third gear pump communicates with the die.
  6.  前記制御装置は、前記第1のバルブ及び前記第2のバルブが前記第2の状態にある時に、前記第1のギヤポンプによる前記第1の樹脂の吐出量と、前記第2のギヤポンプによる前記第2の樹脂の吐出量とを連続的に変化させることにより、前記混練機構に供給される前記第1の樹脂の割合を連続的に増加または減少させる、請求項5に記載のフレキシブルチューブ製造装置。 In the control device, when the first valve and the second valve are in the second state, the discharge amount of the first resin by the first gear pump and the second by the second gear pump. The flexible tube manufacturing apparatus according to claim 5, wherein the ratio of the first resin supplied to the kneading mechanism is continuously increased or decreased by continuously changing the discharge amount of the resin of 2.
  7.  前記制御装置は、前記混練機構に供給される前記第1の樹脂の割合が所定値に達した後に、前記第3のバルブの状態を前記第4の状態から前記第5の状態に切り替える、請求項6に記載のフレキシブルチューブ製造装置。
     
    The control device claims that the state of the third valve is switched from the fourth state to the fifth state after the ratio of the first resin supplied to the kneading mechanism reaches a predetermined value. Item 6. The flexible tube manufacturing apparatus according to Item 6.
PCT/JP2020/028248 2019-08-02 2020-07-21 Flexible tube production apparatus WO2021024794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572563A JP6916564B2 (en) 2019-08-02 2020-07-21 Flexible tube manufacturing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-143210 2019-08-02
JP2019143210 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024794A1 true WO2021024794A1 (en) 2021-02-11

Family

ID=74503796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028248 WO2021024794A1 (en) 2019-08-02 2020-07-21 Flexible tube production apparatus

Country Status (3)

Country Link
JP (1) JP6916564B2 (en)
TW (1) TWI760798B (en)
WO (1) WO2021024794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210362393A1 (en) * 2019-06-26 2021-11-25 Pla Giken Co., Ltd. Flexible tube production apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0154803B2 (en) * 1985-12-25 1989-11-21 Shikoku Denryoku Kk
US5695789A (en) * 1995-06-07 1997-12-09 Harrel, Inc. Apparatus for extrusion of an article of varying content
WO2001089802A1 (en) * 2000-05-26 2001-11-29 Gma Co., Ltd. Hardness taper tube and production method and device therefor
JP2002103413A (en) * 2000-09-28 2002-04-09 Mitsuba Mfg Co Ltd Apparatus for molding molded article having plural layers
JP2009078369A (en) * 2007-09-25 2009-04-16 Pura Giken:Kk Extrusion molding apparatus for plastic multiplex pipe
WO2018002975A1 (en) * 2016-06-28 2018-01-04 株式会社プラ技研 Flexible tube and manufacturing device therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3177636A1 (en) * 2011-06-03 2012-12-06 Fisher & Paykel Healthcare Limited Medical tubes and methods of manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0154803B2 (en) * 1985-12-25 1989-11-21 Shikoku Denryoku Kk
US5695789A (en) * 1995-06-07 1997-12-09 Harrel, Inc. Apparatus for extrusion of an article of varying content
WO2001089802A1 (en) * 2000-05-26 2001-11-29 Gma Co., Ltd. Hardness taper tube and production method and device therefor
JP2002103413A (en) * 2000-09-28 2002-04-09 Mitsuba Mfg Co Ltd Apparatus for molding molded article having plural layers
JP2009078369A (en) * 2007-09-25 2009-04-16 Pura Giken:Kk Extrusion molding apparatus for plastic multiplex pipe
WO2018002975A1 (en) * 2016-06-28 2018-01-04 株式会社プラ技研 Flexible tube and manufacturing device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210362393A1 (en) * 2019-06-26 2021-11-25 Pla Giken Co., Ltd. Flexible tube production apparatus
EP3904067A4 (en) * 2019-06-26 2022-03-23 Pla Giken Co., Ltd. Flexible tube manufacturing device

Also Published As

Publication number Publication date
JPWO2021024794A1 (en) 2021-09-13
TWI760798B (en) 2022-04-11
JP6916564B2 (en) 2021-08-11
TW202118526A (en) 2021-05-16

Similar Documents

Publication Publication Date Title
TWI656010B (en) Hose and method of manufacturing same
WO2021024794A1 (en) Flexible tube production apparatus
US11597132B2 (en) Flexible tube production apparatus
US10350808B2 (en) Flexible tube and production apparatus therefor
JP6765136B2 (en) Flexible tube manufacturing equipment
JP6916563B2 (en) Flexible tube manufacturing equipment
EP1658951B1 (en) Extrusion molding apparatus for resin tube
JP2019155737A (en) Flexible tube manufacturing apparatus
TWI788663B (en) Flexible tube manufacturing apparatus
US20240075670A1 (en) Mold for extrusion molding flexible tube and flexible tube producing apparatus
WO2005023514A1 (en) Extrusion molding apparatus for resin multi-layer tube
US20230249387A1 (en) Flexible tube production apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020572563

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849019

Country of ref document: EP

Kind code of ref document: A1