WO2021024563A1 - Secondary cell, cell pack, electronic device, electric tool, and electric vehicle - Google Patents

Secondary cell, cell pack, electronic device, electric tool, and electric vehicle Download PDF

Info

Publication number
WO2021024563A1
WO2021024563A1 PCT/JP2020/018691 JP2020018691W WO2021024563A1 WO 2021024563 A1 WO2021024563 A1 WO 2021024563A1 JP 2020018691 W JP2020018691 W JP 2020018691W WO 2021024563 A1 WO2021024563 A1 WO 2021024563A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
secondary battery
fixing tape
winding body
battery
Prior art date
Application number
PCT/JP2020/018691
Other languages
French (fr)
Japanese (ja)
Inventor
袖山 国雄
雅文 梅川
幸雄 笹川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021024563A1 publication Critical patent/WO2021024563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery, a battery pack, an electronic device, an electric tool, and an electric vehicle.
  • lithium-ion batteries are expanding to electric tools, electric vehicles (including hybrid vehicles), electric aircraft (so-called drones), etc. Since the batteries of electronic devices including these large devices may be damaged by external impact, the impact resistance of the batteries is one of the important factors, and various development studies have been conducted. There is.
  • Patent Document 1 discloses that the electrode assembly fixing tape fixes the electrode assembly inside a can by, for example, embodying a three-dimensional shape with an electrolyte.
  • one of the objects of the present invention is to provide a battery that is resistant to external impact.
  • the present invention relates to a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and an electrode winding body having a wound structure and an electrolytic solution are housed in an outer can.
  • the outer peripheral surface of the electrode winding body is covered with fixing tape,
  • the fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peel test.
  • the tape sticking ratio is defined as the ratio of the length of the fixed tape along the axial direction to the axial length of the electrode winding body, the secondary battery has the tape sticking ratio of 87% or more.
  • the present invention relates to a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and an electrode winding body having a wound structure and an electrolytic solution are housed in an outer can.
  • the outer peripheral surface of the electrode winding body is covered with a fixing tape for one or more turns.
  • the fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peel test.
  • the tape coverage is defined as the length of the fixing tape on the second lap that covers the fixing tape on the first lap, the secondary battery has the tape coverage of 5% or more.
  • the present invention relates to a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and an electrode winding body having a wound structure and an electrolytic solution are housed in an outer can.
  • the outer peripheral surface of the electrode winding body is covered with a fixing tape for one or more turns.
  • the fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peel test.
  • the tape sticking ratio is defined as the ratio of the length of the fixed tape along the axial direction to the axial length of the electrode winding body, the tape sticking ratio is 87% or more.
  • the tape coverage is defined as the length of the fixing tape on the second lap that covers the fixing tape on the first lap, the secondary battery has the tape coverage of 5% or more.
  • the present invention it is possible to realize a battery having high impact resistance, which is particularly suitable for relatively large electronic devices such as electric tools, electric vehicles, and electric aircraft. It should be noted that the contents of the present invention are not limitedly interpreted by the effects exemplified in the present specification.
  • FIG. 1 is a cross-sectional view of a battery according to an embodiment.
  • FIG. 2 is a front view of the electrode winding body to which the fixing tape is attached.
  • FIG. 3 is a diagram used for explaining the amount of tape covering of the fixing tape attached to the electrode winding body.
  • FIG. 4 is a diagram used to explain the height of wrinkles on the fixing tape.
  • FIG. 5 is a connection diagram used for explaining a battery pack as an application example of the present invention.
  • FIG. 6 is a connection diagram used for explaining a power tool as an application example of the present invention.
  • FIG. 7 is a connection diagram used for explaining an unmanned aerial vehicle as an application example of the present invention.
  • FIG. 8 is a connection diagram used for explaining an electric vehicle as an application example of the present invention.
  • a cylindrical lithium ion battery will be described as an example of the secondary battery.
  • FIG. 1 is a schematic cross-sectional view of the lithium ion battery 1.
  • the lithium ion battery 1 is a cylindrical lithium ion battery 1 in which an electrode winding body 20 is housed inside a battery can 11 (outer can).
  • the lithium ion battery 1 includes a pair of insulators 12 and 13 and an electrode winding body 20 inside a cylindrical battery can 11.
  • the lithium ion battery 1 may further include any one or more of a heat-sensitive resistance (PTC) element, a reinforcing member, and the like inside the battery can 11.
  • PTC heat-sensitive resistance
  • the battery can 11 is mainly a member for accommodating the electrode winding body 20.
  • the battery can 11 is a cylindrical container in which one end is opened and the other end is closed. That is, the battery can 11 has an open end portion (open end portion 11N).
  • the battery can 11 contains any one or more of metal materials such as iron, aluminum and alloys thereof. However, on the surface of the battery can 11, any one or more of the metal materials such as nickel may be plated.
  • the insulators 12 and 13 are sheet-like members having a surface substantially perpendicular to the winding axis direction (vertical direction in FIG. 1) of the electrode winding body 20.
  • the insulators 12 and 13 are arranged so as to sandwich the electrode winding body 20 with each other.
  • Bakelite includes paper bakelite and cloth bakelite, which are produced by applying phenolic resin to paper or cloth and then heating it.
  • a battery lid 14 and a safety valve mechanism 30 are crimped to the open end 11N of the battery can 11 via a gasket 15, and a crimping structure 11R (crimp structure) is formed.
  • a crimping structure 11R crimp structure
  • the battery lid 14 is a member that closes the open end 11N of the battery can 11 in a state where the electrode winding body 20 and the like are housed inside the battery can 11.
  • the battery lid 14 contains the same material as the material for forming the battery can 11.
  • the central region of the battery lid 14 projects in the vertical direction of FIG.
  • a region (peripheral region) of the battery lid 14 other than the central region is in contact with the safety valve mechanism 30 via the PTC element 16.
  • the gasket 15 is mainly interposed between the bent portion 11P (also referred to as a crimp portion) of the battery can 11 and the battery lid 14, thereby forming a gap between the bent portion 11P and the battery lid 14. It is a member to be sealed.
  • asphalt or the like may be coated on the surface of the gasket 15.
  • Gasket 15 contains an insulating material.
  • the type of insulating material is not particularly limited, but is a polymer material such as polybutylene terephthalate (PBT) and polyp-mouth pyrene (PP). This is because the gap between the bent portion 11P and the battery lid 14 is sufficiently sealed while the battery can 11 and the battery lid 14 are electrically separated from each other.
  • PBT polybutylene terephthalate
  • PP polyp-mouth pyrene
  • the safety valve mechanism 30 mainly releases the internal pressure of the battery can 11 by releasing the sealed state of the battery can 11 as necessary when the internal pressure (internal pressure) of the battery can 11 rises.
  • the cause of the increase in the internal pressure of the battery can 11 is gas generated due to the decomposition reaction of the electrolytic solution during charging and discharging.
  • a band-shaped positive electrode 21 and a band-shaped negative electrode 22 are spirally wound with a separator 23 in between and housed in a battery can 11 in a state of being impregnated with an electrolytic solution.
  • the positive electrode 21 and the negative electrode 22 have a positive electrode active material layer and a negative electrode active material layer formed on one or both sides of the positive electrode current collector and the negative electrode current collector, respectively.
  • the material of the positive electrode current collector is a metal foil containing aluminum or an aluminum alloy.
  • the material of the negative electrode current collector is a metal foil containing nickel, nickel alloy, copper or copper alloy.
  • the separator 23 is a porous and insulating film, which enables the movement of lithium ions while electrically insulating the positive electrode 21 and the negative electrode 22.
  • a fixing tape 31 (see FIG. 2) is attached to the separator 23 on the outermost layer of the cylindrical surface of the electrode winding body 20.
  • the fixing tape 31 is composed of a base material layer and an adhesive layer.
  • the base material layer include acrylate-based, urethane-based, epoxy-based, and cellulose-based.
  • the adhesive layer an acrylic-based, urethane-based, epoxy-based, silicone-based, or rubber-based adhesive can be used.
  • the pressure-sensitive adhesive may contain additives such as stabilizers, cross-linking agents, and modifiers.
  • a hydrolysis resistant stabilizer for ester polyurethane resin As an example, a hydrolysis resistant stabilizer for ester polyurethane resin, a stabilizer for vinyl chloride resin, a cross-linking agent for solvent-based carboxyl group-containing resin (acrylic resin, urethane resin, polyester resin, etc.), and a modifier for epoxy resin. (Reduction of water absorption rate, improvement of adhesion), modifier of thermoplastic polyurethane resin (improvement of hydrolysis resistance, adhesion) can be mentioned.
  • a space (central space 20C) created when the positive electrode 21, the negative electrode 22 and the separator 23 are wound is provided at the center of the electrode winding body 20, and the center pin 24 is inserted into the central space 20C. (Fig. 1). However, the center pin 24 can be omitted.
  • the positive electrode lead 25 is connected to the positive electrode 21, and the negative electrode lead 26 is connected to the negative electrode 22 (FIG. 1).
  • the positive electrode lead 25 contains a conductive material such as aluminum.
  • the positive electrode lead 25 is connected to the safety valve mechanism 30 and is electrically connected to the battery lid 14 via the PTC element 16.
  • the negative electrode lead 26 contains a conductive material such as nickel.
  • the negative electrode lead 26 is electrically connected to the battery can 11.
  • the positive electrode active material layer contains at least a positive electrode material (positive electrode active material) capable of occluding and releasing lithium, and may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the positive electrode material is preferably a lithium-containing compound (for example, a lithium-containing composite oxide and a lithium-containing phosphoric acid compound).
  • the lithium-containing composite oxide has, for example, a layered rock salt type or spinel type crystal structure.
  • the lithium-containing phosphoric acid compound has, for example, an olivine-type crystal structure.
  • the positive electrode binder contains synthetic rubber or a polymer compound.
  • Synthetic rubbers include styrene-butadiene rubbers, fluororubbers and ethylene propylene dienes.
  • the polymer compound is polyvinylidene fluoride (PVdF), polyimide and the like.
  • the positive electrode conductive agent is a carbon material such as graphite, carbon black, acetylene black or ketjen black.
  • the positive electrode conductive agent may be a metal material or a conductive polymer.
  • the surface of the negative electrode current collector is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer to the negative electrode current collector.
  • a method of roughening for example, there is a method of forming fine particles by using an electrolytic method and providing unevenness on the surface of the negative electrode current collector.
  • the copper foil produced by the electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer contains at least a negative electrode material (negative electrode active material) capable of occluding and releasing lithium, and may further contain a negative electrode binder, a negative electrode conductive agent, and the like.
  • the negative electrode material includes, for example, a carbon material. This is because a high energy density can be stably obtained because the change in the crystal structure during the occlusion and release of lithium is very small. Further, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer is improved.
  • the carbon material is graphitizable carbon, non-graphitizable carbon, graphite, low crystallinity carbon, or amorphous carbon.
  • the shape of the carbon material is fibrous, spherical, granular or scaly.
  • the negative electrode material includes, for example, a metal-based material.
  • metal-based materials include Li (lithium), Si (silicon), Sn (tin), Al (aluminum), Zr (zinc), and Ti (titanium).
  • Metallic elements form compounds, mixtures or alloys with other elements, such as silicon oxide (SiO x (0 ⁇ x ⁇ 2)), silicon carbide (SiC) or carbon-silicon alloys. , Lithium titanate (LTO).
  • the open circuit voltage that is, the battery voltage
  • the same positive electrode active material is used as compared with the case where the open circuit voltage at the time of full charge is low. Also, the amount of lithium released per unit mass increases. As a result, a high energy density can be obtained.
  • the separator 23 is a porous film containing a resin, and may be a laminated film of two or more types of porous films.
  • the resin is polypropylene, polyethylene and the like.
  • the separator 23 may have a porous film as a base material layer and may contain a resin layer on one side or both sides thereof. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the electrode winding body 20 is suppressed.
  • the resin layer contains a resin such as PVdF.
  • a solution in which the resin is dissolved in an organic solvent is applied to the base material layer, and then the base material layer is dried. After immersing the base material layer in the solution, the base material layer may be dried.
  • the resin layer contains inorganic particles or organic particles from the viewpoint of improving heat resistance and battery safety.
  • the types of inorganic particles are aluminum oxide, aluminum nitride, aluminum hydroxide, magnesium hydroxide, boehmite, talc, silica, mica, and the like.
  • a surface layer containing inorganic particles as a main component which is formed by a sputtering method, an ALD (atomic layer deposition) method, or the like, may be used.
  • the electrolytic solution contains a solvent and an electrolyte salt, and may further contain additives and the like, if necessary.
  • the solvent is a non-aqueous solvent such as an organic solvent, or water.
  • An electrolytic solution containing a non-aqueous solvent is called a non-aqueous electrolytic solution.
  • the non-aqueous solvent is a cyclic carbonate ester, a chain carbonate ester, a lactone, a chain carboxylic acid ester, a nitrile (mononitrile), or the like.
  • a typical example of the electrolyte salt is a lithium salt, but a salt other than the lithium salt may be contained.
  • Lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), and trifluoromethanesulfonic acid.
  • Lithium (LiCF 3 SO 3 ) dilithium hexafluorosilicate (Li 2 SF 6 ), etc.
  • These salts can be mixed and used, and among them, LiPF 6 and LiBF 4 are preferably mixed and used from the viewpoint of improving battery characteristics.
  • the content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3 mol / kg with respect to the solvent.
  • the positive electrode mixture is produced by mixing the positive electrode active material, the positive electrode binder and the positive electrode conductive agent. Subsequently, the positive electrode mixture is dispersed in an organic solvent to prepare a pace-shaped positive electrode mixture slurry. Subsequently, a positive electrode mixture slurry is applied to both sides of the positive electrode current collector and then dried to form a positive electrode active material layer. Subsequently, while heating the positive electrode active material layer, the positive electrode active material layer is compression-molded using a roll press machine to obtain the positive electrode 21.
  • the negative electrode 22 is also manufactured by the same procedure as the positive electrode 21 described above.
  • the positive electrode lead 25 and the negative electrode lead 26 are connected to the positive electrode current collector and the negative electrode current collector using a welding method, respectively. Subsequently, after laminating the positive electrode 21 and the negative electrode 22 via the separator 23, they are wound and the fixing tape 31 is attached to the outermost peripheral surface of the separator 23 to form the electrode winding body 20. Subsequently, the center pin 24 is inserted into the central space 20C of the electrode winding body 20.
  • the electrode winding body 20 is housed inside the battery can 11 while sandwiching the electrode winding body 20 between the pair of insulators.
  • one end of the positive electrode lead 25 is connected to the safety valve mechanism 30 by using a welding method, and one end of the negative electrode lead 26 is connected to the battery can 11.
  • the battery can 11 is processed using a beading processing machine (grooving processing machine) to form a recess in the battery can 11.
  • the electrolytic solution is injected into the battery can 11 to impregnate the electrode winding body 20.
  • the battery lid 14 and the safety valve mechanism 30 are housed together with the gasket 15 inside the battery can 11.
  • the caulking structure 11R is formed by caulking the battery lid 14 and the safety valve mechanism 30 at the open end 11N of the battery can 11 via the gasket 15.
  • the secondary battery is completed by closing the battery can 11 with the battery lid 14 using a press machine.
  • the present invention will be specifically described based on an example in which the fixing tape 31 attached to the electrode winding body 20 is tested using the secondary battery produced as described above.
  • the present invention is not limited to the examples described below.
  • the fixing tape 31 composed of a 40 ⁇ m-thick base material layer made of thermoplastic polyurethane and a 10 ⁇ m-thick adhesive layer containing an acrylic pressure-sensitive adhesive and a stabilizer is attached to the electrode winding body 20.
  • the lithium ion battery 1 was manufactured by sticking it on a cylindrical surface and setting the tape sticking ratio to 87% or more.
  • the tape sticking ratio is the length of the fixing tape 31 along the axial direction of the electrode winding body 20 with respect to the axial length of the electrode winding body 20 (A in FIG. 2) (in FIG. 2).
  • the ratio of B is the length of the fixing tape 31 along the axial direction of the electrode winding body 20 with respect to the axial length of the electrode winding body 20 (A in FIG. 2) (in FIG. 2).
  • the ratio of B is the length of the fixing tape 31 along the axial direction of the electrode winding body 20 with respect to the axial length of the electrode winding body 20 (A in FIG. 2) (in FIG. 2).
  • Examples 4 and 5 As shown in FIG. 2, the fixing tape 31 similar to that of Examples 1 to 3 is attached to the cylindrical surface of the electrode winding body 20 having a peripheral length of 54.67 (mm), and the electrode winding is performed as shown in FIG. A lithium ion battery 1 was produced by coating a body 20 (diameter 17.41 (mm)). At this time, the tape coverage rate was set to 5% or more.
  • the tape covering ratio is the ratio of the tape covering amount to the peripheral length of the electrode winding body 20.
  • the peripheral length of the electrode winding body 20 is the length of one circumference along the circumferential direction of the cylindrical surface of the electrode winding body 20. As shown by the value of C in FIG.
  • the tape covering amount is on the extension covering the cylindrical surface of the electrode winding body 20, and is on the second lap covering the fixing tape 31 on the first lap.
  • Example 6 Polyethylene (PE) is used as the separator 23, and the same fixing tape 31 as in Examples 1 to 3 attached to the peripheral surface (the outermost separator 23) of the electrode winding body 20 is attached together with the separator 23 to a size of 60 (mm). ) X 150 (mm).
  • the fixing tape 31 attached to the separator 23 is placed in a solvent obtained by mixing ethylene carbonate (Ethylene Carbonate, EC) and dimethyl carbonate (DMC) at a volume ratio of 35:65 in an environment of 45 ° C. Soaked for 5 hours.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Example 6 except that the fixing tape 31 is composed of a base material layer having a thickness of 40 ⁇ m made of thermoplastic polyurethane and an adhesive layer having a thickness of 10 ⁇ m (not containing a stabilizer) containing an acrylic pressure-sensitive adhesive. I did the same.
  • the height of wrinkles was measured, a 180-degree peel test was performed, and the adhesive strength after immersion was measured.
  • the 180-degree peel test uses a method based on JIS Z 0237. After immersing in a mixed solvent in an environment of 45 ° C. for 5 hours, a load of about 20 g is applied with a paper waste cloth to absorb the solvent, and then 30 A 180 degree peel test was performed within minutes.
  • the height of the wrinkles is, for example, the value of S (mean value) shown in FIG.
  • Example 6 the height of the wrinkles was 100 ⁇ m and the adhesive strength after immersion was 0.01 (N / 10 mm), whereas in Comparative Example 4, the height of the wrinkles was 50 ⁇ m and the adhesive strength was adhesive. The force could not be measured because the fixing tape 31 and the separator 23 were peeled off.
  • the adhesive strength before immersion in the mixed solvent was 0.30 (N / 10 mm) in both Example 6 and Comparative Example 4.
  • the fact that the adhesive strength remains even after immersion as in Example 6 suggests that the structure of the electrode winding body 20 can be maintained even in an environment of 45 ° C. It is considered that this is because the adhesive layer is not easily dissolved in the electrolytic solution due to the stabilizer.
  • the adhesive strength of the fixing tape 31 after immersion in the 180-degree peeling test is preferably 0.01 (N / 10 mm) or more.
  • the preferable upper limit of the adhesive strength after immersion is 0.03 (N / 10 mm) or less in the case of this example. This is because it is generally considered that the adhesive strength after immersion does not exceed the adhesive strength before immersion.
  • the height of the wrinkles of the fixing tape 31 after immersion is preferably 100 ⁇ m or more.
  • the preferable upper limit of the wrinkle height after immersion depends on the distance between the electrode winding body 20 and the battery can 11 (outer can). In the case of this example, since the distance between the gaps was 250 ⁇ m, the height of the wrinkles is preferably 250 ⁇ m or less.
  • Example 7 the lithium ion batteries 1 of Examples 1 to 5 were produced, and after the batteries were shipped, an impact test was performed, and at the same time, the physical property values of the fixing tape 31 were measured. The relationship between the pass / fail of the impact test and the characteristics of the tape was examined.
  • Example 7 A lithium ion battery 1 having a battery size of 18650 was produced by using the electrode winding body 20 to which the fixing tape 31 was attached in the same manner as in Examples 1 to 3, and one charge / discharge operation was performed in an environment of 65 ° C. After storing for 36 hours or more and storing at room temperature for several days, the batteries were shipped.
  • Example 7 except that the fixing tape 31 is composed of a base material layer having a thickness of 40 ⁇ m made of thermoplastic polyurethane and an adhesive layer having a thickness of 10 ⁇ m (not containing a stabilizer) containing an acrylic pressure-sensitive adhesive. I did the same.
  • the tape length change rate was set to (B2-B1) / B1.
  • the impact test was performed using a rotary drum type drop tester, and it was based on the UN38.3 standard. Batteries in which peeling was not visually observed on the fixing tape 31 after the test were accepted (OK in Table 4), and peeling was performed. The accepted batteries were rejected (NG in Table 4).
  • Example 7 the fixing tape 31 was in a fixed state, the height of the wrinkles was 100 ⁇ m, and the tape length change rate was -1% (the fixing tape shrank), whereas in Comparative Example 5, it was fixed.
  • the tape 31 was peeled off, the height of the wrinkles was 50 ⁇ m, and the tape length change rate was 5% (the fixed tape was stretched). Further, in the impact test, the battery of Example 7 passed, and the battery of Comparative Example 5 failed.
  • the fixing tape 31 of the seventh embodiment Since the fixing tape 31 of the seventh embodiment is fixed in the state of shipment of the battery, the structure of the fixing tape 31 is maintained.
  • the reason why the battery of Example 7 passed the impact test is that the fixing tape 31 swells in the outer peripheral direction of the electrode winding body 20 by the height of the wrinkles during immersion in the electrolytic solution, so that the wrinkles are prevented from slipping. (Or, the probability that the wrinkles of the fixing tape 31 and the inner surface of the battery can 11 come into contact with each other increases), and it is considered that the electrode winding body 20 is fixed in the battery can 11.
  • the reason why the fixing tape shrank is considered to be the occurrence of relatively high wrinkles of 100 ⁇ m.
  • Comparative Example 5 since the fixing tape 31 was peeled off, the structure of the electrode winding body 20 was not maintained and the height of the wrinkles of the fixing tape 31 was relatively low, so that the wrinkles were prevented from slipping. It is probable that the battery of Comparative Example 5 failed the impact test because it was insufficient and the electrode winding body 20 was not fixed in the battery can 11. In Comparative Example 5, the reason why the fixing tape was stretched is considered to be related to the relatively small height of the wrinkles.
  • the tape sticking ratio may be 87% or more and the tape covering ratio may be 5% or more. At this time, the lithium ion battery 1 is considered to be more resistant to impact.
  • the size of the lithium ion battery 1 was partially set to 18650, but it may be another size such as 21700.
  • the adhesive layer is said to contain a polyacrylic adhesive, but other adhesives may be used.
  • the present invention applies to batteries other than lithium-ion batteries and batteries other than cylindrical batteries (for example, laminated batteries, square batteries, coin batteries, button batteries). It is also possible.
  • the shape of the "outer peripheral surface of the electrode winding body" may be not only a cylindrical shape but also an elliptical shape or a flat shape.
  • FIG. 5 is a block diagram showing a circuit configuration example when the secondary battery according to the embodiment or embodiment of the present invention is applied to the battery pack 330.
  • the battery pack 300 includes a switch unit 304 including an assembled battery 301, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
  • the control unit 310 can control each device, perform charge / discharge control at the time of abnormal heat generation, and calculate and correct the remaining capacity of the battery pack 300.
  • the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device connected to the battery pack 300 is used, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • FIG. 5 the case where the six secondary batteries 301a are connected in two parallels and three series (2P3S) is shown as an example, but any connection method may be used.
  • the temperature detection unit 318 is connected to a temperature detection element 308 (for example, a thermistor), measures the temperature of the assembled battery 301 or the battery pack 300, and supplies the measured temperature to the control unit 310.
  • the voltage detection unit 311 measures the voltage of the assembled battery 301 and each of the secondary batteries 301a constituting the assembled battery 301, A / D converts the measured voltage, and supplies the measured voltage to the control unit 310.
  • the current measuring unit 313 measures the current using the current detection resistor 307, and supplies the measured current to the control unit 310.
  • the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
  • the switch control unit 314 controls the switch unit 304 to turn off when any voltage of the secondary battery 301a becomes equal to or lower than the overcharge detection voltage or the overdischarge detection voltage, or when a large current suddenly flows. By sending a signal, overcharging, overdischarging, and overcurrent charging / discharging are prevented.
  • the overcharge detection voltage is determined to be, for example, 4.20 V ⁇ 0.05 V
  • the over discharge detection voltage is determined to be, for example, 2.4 V ⁇ 0.1 V.
  • the charge control switch 302a or the discharge control switch 303a After the charge control switch 302a or the discharge control switch 303a is turned off, charging or discharging is possible only through the diode 302b or the diode 303b.
  • semiconductor switches such as MOSFETs can be used.
  • the parasitic diodes of the MOSFET function as diodes 302b and 303b.
  • the switch portion 304 is provided on the + side in FIG. 5, it may be provided on the ⁇ side.
  • the memory 317 is composed of a RAM or a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory.
  • the memory 317 stores in advance the numerical values calculated by the control unit 310, the battery characteristics in the initial state of each secondary battery 301a measured at the stage of the manufacturing process, and the like, and can be rewritten as appropriate. Further, by storing the fully charged capacity of the secondary battery 301a, the remaining capacity can be calculated in cooperation with the control unit 310.
  • the secondary battery according to the embodiment or embodiment of the present invention described above can be mounted on a device such as an electronic device, an electric transport device, or a power storage device and used to supply electric power. ..
  • Electronic devices include, for example, laptop computers, smartphones, tablet terminals, PDAs (personal digital assistants), mobile phones, wearable terminals, video movies, digital still cameras, electronic books, music players, headphones, game consoles, pacemakers, hearing aids, etc. Examples include power tools, televisions, lighting equipment, toys, medical equipment, and robots. In a broad sense, electronic devices may also include electric transport devices, power storage devices, power tools, and electric unmanned aerial vehicles, which will be described later.
  • Examples of electric transportation equipment include electric vehicles (including hybrid vehicles), electric motorcycles, electrically assisted bicycles, electric buses, electric carts, unmanned transport vehicles (AGV), railway vehicles, and the like. It also includes electric passenger aircraft and electric unmanned aerial vehicles for transportation.
  • the secondary battery according to the present invention is used not only as a power source for driving these, but also as an auxiliary power source, a power source for energy regeneration, and the like.
  • Examples of the power storage device include a power storage module for commercial or household use, a power storage power source for a building such as a house, a building, an office, or a power generation facility.
  • the electric screwdriver 431 is provided with a motor 433 that transmits rotational power to the shaft 434 and a trigger switch 432 that is operated by the user. By operating the trigger switch 432, a screw or the like is driven into the object by the shaft 434.
  • the battery pack 430 and the motor control unit 435 are housed in the lower housing of the handle of the electric screwdriver 431.
  • the battery pack 430 the battery pack 300 described above can be used.
  • the battery pack 430 is built into the electric screwdriver 431 or is detachable.
  • the battery pack 430 can be attached to the charging device in a state of being built in or removed from the electric driver 431.
  • Each of the battery pack 430 and the motor control unit 435 is equipped with a microcomputer. Power is supplied from the battery pack 430 to the motor control unit 435, and charge / discharge information of the battery pack 430 is communicated between both microcomputers.
  • the motor control unit 435 can control the rotation / stop and the rotation direction of the motor 433, and can cut off the power supply to the load (motor 433 and the like) at the time of over-discharging.
  • the drone 440 of FIG. 7 has a cylindrical or square tubular body portion 441, support shafts 442a to 442f fixed to the upper part of the body portion, and a battery portion (not shown) arranged below the body portion.
  • the aircraft is constructed from.
  • the body portion has a hexagonal tubular shape, and six support shafts 442a to 442f extend radially from the center of the body portion at equiangular intervals.
  • Motors 443a to 443f as power sources for the rotary blades 444a to 444f are attached to the tips of the support shafts 442a to 442f, respectively.
  • the control circuit unit 445 that controls each motor is attached to the upper part of the body portion 441.
  • the battery unit the secondary battery or the battery pack 300 according to the present invention can be used.
  • the number of secondary batteries and battery packs is not limited, but it is preferable that the number of rotor blades (three in FIG. 7) forming a pair is equal to the number of battery packs.
  • the drone 440 may be equipped with a camera or a loading platform capable of carrying a small amount of cargo.
  • FIG. 8 schematically shows a configuration example of a hybrid vehicle (HV) that employs a series hybrid system.
  • the series hybrid system is a vehicle that runs on a power driving force converter using the electric power generated by an engine-powered generator or the electric power temporarily stored in a battery.
  • the hybrid vehicle 600 includes an engine 601, a generator 602, a power driving force converter 603 (DC motor or AC motor; hereinafter simply referred to as "motor 603"), drive wheels 604a, drive wheels 604b, wheels 605a, and wheels 605b. , Battery 608, vehicle control device 609, various sensors 610, and charging port 611 are mounted.
  • the battery pack 300 of the present invention described above or a power storage module equipped with a plurality of secondary batteries of the present invention can be applied to the battery 608.
  • the shape of the secondary battery is cylindrical, square or laminated.
  • the motor 603 is operated by the electric power of the battery 608, and the rotational force of the motor 603 is transmitted to the drive wheels 604a and 604b.
  • the rotational force of the engine 601 is transmitted to the generator 602, and the electric power generated by the generator 602 by the rotational force can be stored in the battery 608.
  • the various sensors 610 control the engine speed via the vehicle control device 609, and control the opening degree of a throttle valve (not shown).
  • the various sensors 610 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the hybrid vehicle 600 When the hybrid vehicle 600 is decelerated by a braking mechanism (not shown), the resistance force at the time of deceleration is applied to the motor 603 as a rotational force, and the regenerative power generated by this rotational force is stored in the battery 608. Further, although not shown, an information processing device (for example, a battery remaining amount display device) that performs information processing on vehicle control based on information on the secondary battery may be provided.
  • the battery 608 can receive electric power and store electricity by being connected to an external power source via the charging port 611 of the hybrid vehicle 600.
  • Such an HV vehicle is called a plug-in hybrid vehicle (PHV or PHEV).
  • the present invention can also be applied to a parallel system in which an engine and a motor are used together, or a hybrid vehicle in which a series system and a parallel system are combined. Furthermore, the present invention is also applicable to an electric vehicle (EV or BEV) or a fuel cell vehicle (FCV) that travels only with a drive motor that does not use an engine.
  • EV or BEV electric vehicle
  • FCV fuel cell vehicle
  • Lithium ion battery 11 ... Battery can, 12, 13 ... Insulator, 20 ... Electrode winder, 21 ... Positive electrode, 22 ... Negative electrode, 23 ... Separator , 24 ... Center pin, 25 ... Positive electrode lead, 26 ... Negative electrode lead, 31 ... Fixed tape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a secondary cell in which an electrode winding body having a structure in which a band-shaped positive electrode and a band-shaped negative electrode are stacked via a separator and wound, and an electrolytic solution are accommodated in an outer can, wherein the outer peripheral surface of the electrode winding body is covered with fixing tape, the fixing tape has an adhesive strength of 0.01 (N/10 mm) or greater in a 180-degree peel test, and, when the tape sticking ratio is defined as the ratio of the length of the fixing tape along the axial direction to the length of the electrode winding body in the axial direction, the tape sticking ratio is 87% or greater.

Description

二次電池、電池パック、電子機器、電動工具及び電動車両Rechargeable batteries, battery packs, electronic devices, power tools and electric vehicles
 本発明は、二次電池、電池パック、電子機器、電動工具及び電動車両に関する。 The present invention relates to a secondary battery, a battery pack, an electronic device, an electric tool, and an electric vehicle.
 リチウムイオン電池は電動工具、電気自動車(ハイブリッド車を含む。)、電動式航空機(いわゆるドローン)などに用途が拡大されている。これらの大型機器を含む電子機器は、外部から衝撃が加わって、電池が破損することがあるため、電池の耐衝撃性が重要な要因の一つとなっており、様々な開発研究が行われている。 The use of lithium-ion batteries is expanding to electric tools, electric vehicles (including hybrid vehicles), electric aircraft (so-called drones), etc. Since the batteries of electronic devices including these large devices may be damaged by external impact, the impact resistance of the batteries is one of the important factors, and various development studies have been conducted. There is.
 特許文献1では、電極組立体固定用テープは、例えば、電解質により立体形状を具現することで、電極組立体を缶の内部に固定することを開示している。 Patent Document 1 discloses that the electrode assembly fixing tape fixes the electrode assembly inside a can by, for example, embodying a three-dimensional shape with an electrolyte.
特表2014-503978号公報Special Table 2014-503978
 しかしながら、特許文献1の方法だと、外部から衝撃が何度も加わると、電池缶内で電極組立体が動いて衝突を繰り返し、タブの溶接部位などの破損や内部回路の断線を招いてしまう虞があった。 However, with the method of Patent Document 1, if an impact is applied many times from the outside, the electrode assembly moves inside the battery can and repeatedly collides, causing damage to the welded portion of the tab and disconnection of the internal circuit. There was a risk.
 従って、本発明は、外部からの衝撃に強い電池を提供することを目的の一つとする。 Therefore, one of the objects of the present invention is to provide a battery that is resistant to external impact.
 本発明は、セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、電解液とが外装缶に収容された二次電池において、
 電極巻回体の外周面は固定テープによって被覆され、
 固定テープは、180度剥離試験で粘着力が0.01(N/10mm)以上であり、
 テープ貼付け比を、電極巻回体の軸方向の長さに対する軸方向に沿った固定テープの長さの割合と定義したとき、該テープ貼付け比が87%以上である二次電池である。
The present invention relates to a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and an electrode winding body having a wound structure and an electrolytic solution are housed in an outer can.
The outer peripheral surface of the electrode winding body is covered with fixing tape,
The fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peel test.
When the tape sticking ratio is defined as the ratio of the length of the fixed tape along the axial direction to the axial length of the electrode winding body, the secondary battery has the tape sticking ratio of 87% or more.
 また、本発明は、セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、電解液とが外装缶に収容された二次電池において、
 電極巻回体の外周面は固定テープによって1周以上被覆され、
 固定テープは、180度剥離試験で粘着力が0.01(N/10mm)以上であり、
 テープ被り率を、1周目の固定テープ上を被覆する2周目の固定テープの長さと定義したとき、該テープ被り率が5%以上である二次電池である。
Further, the present invention relates to a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and an electrode winding body having a wound structure and an electrolytic solution are housed in an outer can.
The outer peripheral surface of the electrode winding body is covered with a fixing tape for one or more turns.
The fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peel test.
When the tape coverage is defined as the length of the fixing tape on the second lap that covers the fixing tape on the first lap, the secondary battery has the tape coverage of 5% or more.
 また、本発明は、セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、電解液とが外装缶に収容された二次電池において、
 電極巻回体の外周面は固定テープによって1周以上被覆され、
 固定テープは、180度剥離試験で粘着力が0.01(N/10mm)以上であり、
 テープ貼付け比を、電極巻回体の軸方向の長さに対する軸方向に沿った固定テープの長さの割合と定義したとき、該テープ貼付け比が87%以上であり、
 テープ被り率を、1周目の固定テープ上を被覆する2周目の固定テープの長さと定義したとき、該テープ被り率が5%以上である二次電池である。
Further, the present invention relates to a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and an electrode winding body having a wound structure and an electrolytic solution are housed in an outer can.
The outer peripheral surface of the electrode winding body is covered with a fixing tape for one or more turns.
The fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peel test.
When the tape sticking ratio is defined as the ratio of the length of the fixed tape along the axial direction to the axial length of the electrode winding body, the tape sticking ratio is 87% or more.
When the tape coverage is defined as the length of the fixing tape on the second lap that covers the fixing tape on the first lap, the secondary battery has the tape coverage of 5% or more.
 本発明の実施の形態によれば、特に電動工具、電気自動車、電動式航空機などの比較的大型な電子機器に適した、耐衝撃性の高い電池を実現することができる。なお、本明細書で例示された効果により本発明の内容が限定して解釈されるものではない。 According to the embodiment of the present invention, it is possible to realize a battery having high impact resistance, which is particularly suitable for relatively large electronic devices such as electric tools, electric vehicles, and electric aircraft. It should be noted that the contents of the present invention are not limitedly interpreted by the effects exemplified in the present specification.
図1は、一実施の形態に係る電池の断面図である。FIG. 1 is a cross-sectional view of a battery according to an embodiment. 図2は、固定テープを貼付した電極巻回体の正面図である。FIG. 2 is a front view of the electrode winding body to which the fixing tape is attached. 図3は、電極巻回体に貼付した固定テープのテープ被り量の説明に使用する図である。FIG. 3 is a diagram used for explaining the amount of tape covering of the fixing tape attached to the electrode winding body. 図4は、固定テープのシワの高さの説明に使用する図である。FIG. 4 is a diagram used to explain the height of wrinkles on the fixing tape. 図5は、本発明の応用例としての電池パックの説明に使用する接続図である。FIG. 5 is a connection diagram used for explaining a battery pack as an application example of the present invention. 図6は、本発明の応用例としての電動工具の説明に使用する接続図である。FIG. 6 is a connection diagram used for explaining a power tool as an application example of the present invention. 図7は、本発明の応用例としての無人航空機の説明に使用する接続図である。FIG. 7 is a connection diagram used for explaining an unmanned aerial vehicle as an application example of the present invention. 図8は、本発明の応用例としての電動車両の説明に使用する接続図である。FIG. 8 is a connection diagram used for explaining an electric vehicle as an application example of the present invention.
 以下、本発明の実施の形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.一実施の形態>
<2.変形例>
<3.応用例>
 以下に説明する実施の形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施の形態等に限定されるものではない。
Hereinafter, embodiments and the like of the present invention will be described with reference to the drawings. The explanation will be given in the following order.
<1. Embodiment>
<2. Modification example>
<3. Application example>
The embodiments described below are preferable specific examples of the present invention, and the contents of the present invention are not limited to these embodiments.
 本発明の実施の形態では、二次電池として、円筒形状のリチウムイオン電池を例にして説明する。 In the embodiment of the present invention, a cylindrical lithium ion battery will be described as an example of the secondary battery.
<1.一実施の形態>
 まず、リチウムイオン電池の全体構成に関して説明する。図1は、リチウムイオン電池1の概略断面図である。リチウムイオン電池1は、図1に示すように、電池缶11(外装缶)の内部に電極巻回体20が収納されている円筒型のリチウムイオン電池1である。
<1. Embodiment>
First, the overall configuration of the lithium ion battery will be described. FIG. 1 is a schematic cross-sectional view of the lithium ion battery 1. As shown in FIG. 1, the lithium ion battery 1 is a cylindrical lithium ion battery 1 in which an electrode winding body 20 is housed inside a battery can 11 (outer can).
 具体的には、リチウムイオン電池1は、円筒状の電池缶11の内部に、一対の絶縁体12,13と、電極巻回体20とを備えている。リチウムイオン電池1は、さらに、電池缶11の内部に、熱感抵抗(PTC)素子及び補強部材などのうちのいずれか1種類又は2種類以上を備えていてもよい。 Specifically, the lithium ion battery 1 includes a pair of insulators 12 and 13 and an electrode winding body 20 inside a cylindrical battery can 11. The lithium ion battery 1 may further include any one or more of a heat-sensitive resistance (PTC) element, a reinforcing member, and the like inside the battery can 11.
[電池缶]
 電池缶11は、主に、電極巻回体20を収納する部材である。この電池缶11は、一端部が開放されると共に他端部が閉塞された円筒状の容器である。すなわち、電池缶11は、開放された一端部(開放端部11N)を有している。この電池缶11は、鉄、アルミニウム及びそれらの合金などの金属材料のうちのいずれか1種類又は2種類以上を含んでいる。ただし、電池缶11の表面において、ニッケルなどの金属材料のうちのいずれか1種類又は2種類以上がめっき処理されていてもよい。
[Battery can]
The battery can 11 is mainly a member for accommodating the electrode winding body 20. The battery can 11 is a cylindrical container in which one end is opened and the other end is closed. That is, the battery can 11 has an open end portion (open end portion 11N). The battery can 11 contains any one or more of metal materials such as iron, aluminum and alloys thereof. However, on the surface of the battery can 11, any one or more of the metal materials such as nickel may be plated.
[絶縁体]
 絶縁体12,13は、電極巻回体20の巻回軸方向(図1の鉛直方向)に対して略垂直な面を有するシート状の部材である。絶縁体12,13は、互いに電極巻回体20を挟むように配置されている。絶縁体12,13の材質としては、ポリエチレンテレフタラート(PET)、ポリプロピレン(PP)、ベークライトなどが用いられる。ベークライトには、フェノール樹脂を紙又は布に塗布した後に加熱して作製される、紙ベークライトや布ベークライトがある。
[Insulator]
The insulators 12 and 13 are sheet-like members having a surface substantially perpendicular to the winding axis direction (vertical direction in FIG. 1) of the electrode winding body 20. The insulators 12 and 13 are arranged so as to sandwich the electrode winding body 20 with each other. As the materials of the insulators 12 and 13, polyethylene terephthalate (PET), polypropylene (PP), bakelite and the like are used. Bakelite includes paper bakelite and cloth bakelite, which are produced by applying phenolic resin to paper or cloth and then heating it.
[かしめ構造]
 電池缶11の開放端部11Nには、電池蓋14及び安全弁機構30がガスケット15を介して、かしめられており、かしめ構造11R(クリンプ構造)が形成されている。これにより、電池缶11の内部に電極巻回体20などが収納された状態において、その電池缶11は密閉されている。
[Caulking structure]
A battery lid 14 and a safety valve mechanism 30 are crimped to the open end 11N of the battery can 11 via a gasket 15, and a crimping structure 11R (crimp structure) is formed. As a result, the battery can 11 is sealed in a state where the electrode winding body 20 and the like are housed inside the battery can 11.
[電池蓋]
 電池蓋14は、電池缶11の内部に電極巻回体20などが収納された状態において、その電池缶11の開放端部11Nを閉塞する部材である。この電池蓋14は、電池缶11の形成材料と同様の材料を含んでいる。電池蓋14のうち中央領域は、図1の鉛直方向に突出している。一方、電池蓋14のうち中央領域以外の領域(周辺領域)は、PTC素子16を介して安全弁機構30に接触している。
[Battery lid]
The battery lid 14 is a member that closes the open end 11N of the battery can 11 in a state where the electrode winding body 20 and the like are housed inside the battery can 11. The battery lid 14 contains the same material as the material for forming the battery can 11. The central region of the battery lid 14 projects in the vertical direction of FIG. On the other hand, a region (peripheral region) of the battery lid 14 other than the central region is in contact with the safety valve mechanism 30 via the PTC element 16.
[ガスケット]
 ガスケット15は、主に、電池缶11の折り曲げ部11P(クリンプ部とも称される。)と電池蓋14との間に介在することにより、その折り曲げ部11Pと電池蓋14との間の隙間を封止する部材である。ガスケット15の表面には、例えば、アスファルトなどが塗布されていてもよい。
[gasket]
The gasket 15 is mainly interposed between the bent portion 11P (also referred to as a crimp portion) of the battery can 11 and the battery lid 14, thereby forming a gap between the bent portion 11P and the battery lid 14. It is a member to be sealed. For example, asphalt or the like may be coated on the surface of the gasket 15.
 ガスケット15は、絶縁性材料を含んでいる。絶縁性材料の種類は特に限定されないが、ポリブチレンテレフタレート(PBT)及びポリプ口ピレン(PP)などの高分子材料である。電池缶11と電池蓋14とを互いに電気的に分離しながら、折り曲げ部11Pと電池蓋14との間の隙間が十分に封止されるからである。 Gasket 15 contains an insulating material. The type of insulating material is not particularly limited, but is a polymer material such as polybutylene terephthalate (PBT) and polyp-mouth pyrene (PP). This is because the gap between the bent portion 11P and the battery lid 14 is sufficiently sealed while the battery can 11 and the battery lid 14 are electrically separated from each other.
[安全弁機構]
 安全弁機構30は、主に、電池缶11の内部の圧力(内圧)が上昇した際に、必要に応じて電池缶11の密閉状態を解除することにより、その内圧を開放する。電池缶11の内圧が上昇する原因は、充放電時において電解液の分解反応に起因して発生するガスなどである。
[Safety valve mechanism]
The safety valve mechanism 30 mainly releases the internal pressure of the battery can 11 by releasing the sealed state of the battery can 11 as necessary when the internal pressure (internal pressure) of the battery can 11 rises. The cause of the increase in the internal pressure of the battery can 11 is gas generated due to the decomposition reaction of the electrolytic solution during charging and discharging.
[電極巻回体]
 円筒形状のリチウムイオン電池では、帯状の正極21と帯状の負極22がセパレータ23を挟んで渦巻き状に巻回されて、電解液に含浸された状態で、電池缶11に収納されている。図示しないが、正極21、負極22はそれぞれ、正極集電体、負極集電体の片面又は両面に正極活物質層、負極活物質層を形成したものである。正極集電体の材料は、アルミニウムやアルミニウム合金を含む金属箔である。負極集電体の材料は、ニッケル、ニッケル合金、銅や銅合金を含む金属箔である。セパレータ23は多孔質で絶縁性のあるフィルムであり、正極21と負極22とを電気的に絶縁しながら、リチウムイオンの移動を可能にしている。
[Electrode winder]
In a cylindrical lithium-ion battery, a band-shaped positive electrode 21 and a band-shaped negative electrode 22 are spirally wound with a separator 23 in between and housed in a battery can 11 in a state of being impregnated with an electrolytic solution. Although not shown, the positive electrode 21 and the negative electrode 22 have a positive electrode active material layer and a negative electrode active material layer formed on one or both sides of the positive electrode current collector and the negative electrode current collector, respectively. The material of the positive electrode current collector is a metal foil containing aluminum or an aluminum alloy. The material of the negative electrode current collector is a metal foil containing nickel, nickel alloy, copper or copper alloy. The separator 23 is a porous and insulating film, which enables the movement of lithium ions while electrically insulating the positive electrode 21 and the negative electrode 22.
 電極巻回体20の巻回構造を保持するために、電極巻回体20の円筒面の最外層にあるセパレータ23には、固定テープ31(図2を参照)が貼付してある。固定テープ31は基材層と、粘着層から構成される。基材層としては、アクリレート系、ウレタン系、エポキシ系又はセルロース系を例示することができる。粘着層としては、アクリル系、ウレタン系、エポキシ系、シリコーン系又はゴム系の粘着剤を使用することができる。粘着剤に安定剤、架橋剤、改質剤などの添加剤を含んでいてもよい。一例として、エステル系ポリウレタン樹脂の耐加水分解性安定剤、塩化ビニル樹脂用の安定剤、溶剤系カルボキシル基含有樹脂の架橋剤(アクリル樹脂、ウレタン樹脂、ポリエステル樹脂など)、エポキシ樹脂の改質剤(吸水率低減、密着性向上)、熱可塑性ポリウレタン樹脂の改質剤(耐加水分解性、密着性向上)が挙げられる。 In order to maintain the winding structure of the electrode winding body 20, a fixing tape 31 (see FIG. 2) is attached to the separator 23 on the outermost layer of the cylindrical surface of the electrode winding body 20. The fixing tape 31 is composed of a base material layer and an adhesive layer. Examples of the base material layer include acrylate-based, urethane-based, epoxy-based, and cellulose-based. As the adhesive layer, an acrylic-based, urethane-based, epoxy-based, silicone-based, or rubber-based adhesive can be used. The pressure-sensitive adhesive may contain additives such as stabilizers, cross-linking agents, and modifiers. As an example, a hydrolysis resistant stabilizer for ester polyurethane resin, a stabilizer for vinyl chloride resin, a cross-linking agent for solvent-based carboxyl group-containing resin (acrylic resin, urethane resin, polyester resin, etc.), and a modifier for epoxy resin. (Reduction of water absorption rate, improvement of adhesion), modifier of thermoplastic polyurethane resin (improvement of hydrolysis resistance, adhesion) can be mentioned.
 電極巻回体20の中心には、正極21、負極22及びセパレータ23を巻回させる際に生じた空間(中心空間20C)が設けられており、中心空間20Cには、センターピン24が挿入されている(図1)。ただし、センターピン24は省略可能である。 A space (central space 20C) created when the positive electrode 21, the negative electrode 22 and the separator 23 are wound is provided at the center of the electrode winding body 20, and the center pin 24 is inserted into the central space 20C. (Fig. 1). However, the center pin 24 can be omitted.
 正極21には、正極リード25が接続されていると共に、負極22には、負極リード26が接続されている(図1)。正極リード25は、アルミニウムなどの導電性材料を含んでいる。正極リード25は、安全弁機構30に接続されており、PTC素子16を介して電池蓋14と電気的に接続されている。負極リード26は、ニッケルなどの導電性材料を含んでいる。負極リード26は、電池缶11と電気的に接続されている。正極21、負極22、セパレータ23及び電解液のそれぞれの詳細な構成、材質に関しては、後述する。 The positive electrode lead 25 is connected to the positive electrode 21, and the negative electrode lead 26 is connected to the negative electrode 22 (FIG. 1). The positive electrode lead 25 contains a conductive material such as aluminum. The positive electrode lead 25 is connected to the safety valve mechanism 30 and is electrically connected to the battery lid 14 via the PTC element 16. The negative electrode lead 26 contains a conductive material such as nickel. The negative electrode lead 26 is electrically connected to the battery can 11. The detailed configurations and materials of the positive electrode 21, the negative electrode 22, the separator 23, and the electrolytic solution will be described later.
[正極]
 正極活物質層は、リチウムを吸蔵及び放出することが可能である正極材料(正極活物質)を少なくとも含み、さらに、正極結着剤及び正極導電剤などを含んでいてもよい。正極材料は、リチウム含有化合物(例えば、リチウム含有複合酸化物及びリチウム含有リン酸化合物)が好ましい。
[Positive electrode]
The positive electrode active material layer contains at least a positive electrode material (positive electrode active material) capable of occluding and releasing lithium, and may further contain a positive electrode binder, a positive electrode conductive agent, and the like. The positive electrode material is preferably a lithium-containing compound (for example, a lithium-containing composite oxide and a lithium-containing phosphoric acid compound).
 リチウム含有複合酸化物は、例えば、層状岩塩型又はスピネル型の結晶構造を有している。リチウム含有リン酸化合物は、例えば、オリビン型の結晶構造を有している。 The lithium-containing composite oxide has, for example, a layered rock salt type or spinel type crystal structure. The lithium-containing phosphoric acid compound has, for example, an olivine-type crystal structure.
 正極結着剤は、合成ゴム又は高分子化合物を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴム及びエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン(PVdF)及びポリイミドなどである。 The positive electrode binder contains synthetic rubber or a polymer compound. Synthetic rubbers include styrene-butadiene rubbers, fluororubbers and ethylene propylene dienes. The polymer compound is polyvinylidene fluoride (PVdF), polyimide and the like.
 正極導電剤は、黒鉛、カーボンブラック、アセチレンブラック又はケッチェンブラックなどの炭素材料である。ただし、正極導電剤は、金属材料及び導電性高分子でもよい。 The positive electrode conductive agent is a carbon material such as graphite, carbon black, acetylene black or ketjen black. However, the positive electrode conductive agent may be a metal material or a conductive polymer.
[負極]
 負極集電体の表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体に対する負極活物質層の密着性が向上するからである。粗面化の方法は、例えば、電解法を利用して微粒子を形成し、負極集電体の表面に凹凸を設ける手法がある。電解法により作製された銅箔は、一般的に電解銅箔と呼ばれている。
[Negative electrode]
The surface of the negative electrode current collector is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer to the negative electrode current collector. As a method of roughening, for example, there is a method of forming fine particles by using an electrolytic method and providing unevenness on the surface of the negative electrode current collector. The copper foil produced by the electrolytic method is generally called an electrolytic copper foil.
 負極活物質層は、リチウムを吸蔵及び放出することが可能である負極材料(負極活物質)を少なくとも含み、さらに、負極結着剤及び負極導電剤などを含んでいてもよい。 The negative electrode active material layer contains at least a negative electrode material (negative electrode active material) capable of occluding and releasing lithium, and may further contain a negative electrode binder, a negative electrode conductive agent, and the like.
 負極材料は、例えば、炭素材料を含む。リチウムの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層の導電性が向上する。 The negative electrode material includes, for example, a carbon material. This is because a high energy density can be stably obtained because the change in the crystal structure during the occlusion and release of lithium is very small. Further, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer is improved.
 炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛、低結晶性炭素、又は非晶質炭素である。炭素材料の形状は、繊維状、球状、粒状又は鱗片状を有している。 The carbon material is graphitizable carbon, non-graphitizable carbon, graphite, low crystallinity carbon, or amorphous carbon. The shape of the carbon material is fibrous, spherical, granular or scaly.
 また、負極材料は、例えば金属系材料を含む。金属系材料の例としては、Li(リチウム)、Si(ケイ素)、Sn(スズ)、Al(アルミニウム)、Zr(亜鉛)、Ti(チタン)が挙げられる。金属系元素は、他の元素と化合物、混合物又は合金を形成しており、その例としては、酸化ケイ素(SiOx(0<x≦2))、炭化ケイ素(SiC)又は炭素とケイ素の合金、チタン酸リチウム(LTO)が挙げられる。 Further, the negative electrode material includes, for example, a metal-based material. Examples of metal-based materials include Li (lithium), Si (silicon), Sn (tin), Al (aluminum), Zr (zinc), and Ti (titanium). Metallic elements form compounds, mixtures or alloys with other elements, such as silicon oxide (SiO x (0 <x≤2)), silicon carbide (SiC) or carbon-silicon alloys. , Lithium titanate (LTO).
 リチウムイオン電池1では、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、その完全充電時の開回路電圧が低い場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなる。これにより、高いエネルギー密度が得られる。 In the lithium ion battery 1, when the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25 V or more, the same positive electrode active material is used as compared with the case where the open circuit voltage at the time of full charge is low. Also, the amount of lithium released per unit mass increases. As a result, a high energy density can be obtained.
[セパレータ]
 セパレータ23は、樹脂を含む多孔質膜であり、2種類以上の多孔質膜の積層膜でもよい。樹脂は、ポリプロピレン及びポリエチレンなどである。
[Separator]
The separator 23 is a porous film containing a resin, and may be a laminated film of two or more types of porous films. The resin is polypropylene, polyethylene and the like.
 セパレータ23は、多孔質膜を基材層として、その片面又は両面に樹脂層を含んでいてもよい。正極21及び負極22のそれぞれに対するセパレータ23の密着性が向上するため、電極巻回体20の歪みが抑制されるからである。 The separator 23 may have a porous film as a base material layer and may contain a resin layer on one side or both sides thereof. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the electrode winding body 20 is suppressed.
 樹脂層は、PVdFなどの樹脂を含んでいる。この樹脂層を形成する場合には、有機溶剤に樹脂が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。樹脂層には、無機粒子又は有機粒子を含んでいることが、耐熱性、電池の安全性向上の観点で好ましい。無機粒子の種類は、酸化アルミニウム、窒化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ベーマイト、タルク、シリカ、雲母などである。また、樹脂層に代えて、スパッタ法、ALD(原子層堆積)法などで形成された、無機粒子を主成分とする表面層を用いてもよい。 The resin layer contains a resin such as PVdF. When forming this resin layer, a solution in which the resin is dissolved in an organic solvent is applied to the base material layer, and then the base material layer is dried. After immersing the base material layer in the solution, the base material layer may be dried. It is preferable that the resin layer contains inorganic particles or organic particles from the viewpoint of improving heat resistance and battery safety. The types of inorganic particles are aluminum oxide, aluminum nitride, aluminum hydroxide, magnesium hydroxide, boehmite, talc, silica, mica, and the like. Further, instead of the resin layer, a surface layer containing inorganic particles as a main component, which is formed by a sputtering method, an ALD (atomic layer deposition) method, or the like, may be used.
[電解液]
 電解液は、溶媒及び電解質塩を含み、必要に応じてさらに添加剤などを含んでいてもよい。溶媒は、有機溶媒などの非水溶媒、又は水である。非水溶媒を含む電解液を非水電解液という。非水溶媒は、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステル又はニトリル(モノニトリル)などである。
[Electrolytic solution]
The electrolytic solution contains a solvent and an electrolyte salt, and may further contain additives and the like, if necessary. The solvent is a non-aqueous solvent such as an organic solvent, or water. An electrolytic solution containing a non-aqueous solvent is called a non-aqueous electrolytic solution. The non-aqueous solvent is a cyclic carbonate ester, a chain carbonate ester, a lactone, a chain carboxylic acid ester, a nitrile (mononitrile), or the like.
 電解質塩の代表例はリチウム塩であるが、リチウム塩以外の塩を含んでいてもよい。リチウム塩は、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、六フッ化ケイ酸二リチウム(Li2SF6)などである。これらの塩を混合して用いることもでき、中でも、LiPF6、LiBF4を混合して用いることが、電池特性向上の観点で好ましい。電解質塩の含有量は特に限定されないが、溶媒に対して0.3mol/kgから3mol/kgであることが好ましい。 A typical example of the electrolyte salt is a lithium salt, but a salt other than the lithium salt may be contained. Lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), and trifluoromethanesulfonic acid. Lithium (LiCF 3 SO 3 ), dilithium hexafluorosilicate (Li 2 SF 6 ), etc. These salts can be mixed and used, and among them, LiPF 6 and LiBF 4 are preferably mixed and used from the viewpoint of improving battery characteristics. The content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3 mol / kg with respect to the solvent.
[リチウムイオン電池の作製方法]
 続いて、二次電池の製造方法に関して説明する。まず、正極21を作製する場合には、正極活物質、正極結着剤及び正極導電剤を混合することにより正極合剤を作製する。続いて、有機溶剤に正極合剤を分散させることにより、ペース卜状の正極合剤スラリーを作製する。続いて、正極集電体の両面に正極合剤スラリーを塗布したのち、乾燥させることにより、正極活物質層を形成する。続いて、正極活物質層を加熱しながら、ロールプレス機を用いて正極活物質層を圧縮成型し、正極21が得られる。
[How to make a lithium-ion battery]
Subsequently, a method for manufacturing the secondary battery will be described. First, when producing the positive electrode 21, the positive electrode mixture is produced by mixing the positive electrode active material, the positive electrode binder and the positive electrode conductive agent. Subsequently, the positive electrode mixture is dispersed in an organic solvent to prepare a pace-shaped positive electrode mixture slurry. Subsequently, a positive electrode mixture slurry is applied to both sides of the positive electrode current collector and then dried to form a positive electrode active material layer. Subsequently, while heating the positive electrode active material layer, the positive electrode active material layer is compression-molded using a roll press machine to obtain the positive electrode 21.
 負極22を作製する場合にも、上記した正極21と同様の手順により行う。 The negative electrode 22 is also manufactured by the same procedure as the positive electrode 21 described above.
 次に、溶接法を用いて正極集電体、負極集電体に、それぞれ正極リード25、負極リード26を接続する。続いて、セパレータ23を介して正極21及び負極22を積層したのち、それらを巻回し、セパレータ23の最外周面に固定テープ31を貼付することにより、電極巻回体20を形成する。続いて、電極巻回体20の中心空間20Cにセンターピン24を挿入する。 Next, the positive electrode lead 25 and the negative electrode lead 26 are connected to the positive electrode current collector and the negative electrode current collector using a welding method, respectively. Subsequently, after laminating the positive electrode 21 and the negative electrode 22 via the separator 23, they are wound and the fixing tape 31 is attached to the outermost peripheral surface of the separator 23 to form the electrode winding body 20. Subsequently, the center pin 24 is inserted into the central space 20C of the electrode winding body 20.
 続いて、一対の絶縁体で電極巻回体20を挟みながら、電極巻回体20を電池缶11の内部に収納する。次に、溶接法を用いて正極リード25の一端を安全弁機構30に接続すると共に、負極リード26の一端を電池缶11に接続する。 Subsequently, the electrode winding body 20 is housed inside the battery can 11 while sandwiching the electrode winding body 20 between the pair of insulators. Next, one end of the positive electrode lead 25 is connected to the safety valve mechanism 30 by using a welding method, and one end of the negative electrode lead 26 is connected to the battery can 11.
 続いて、ビーディング加工機(溝付け加工機)を用いて電池缶11を加工することにより、電池缶11に窪みを形成する。続いて、電池缶11の内部に電解液を注入し、電極巻回体20に含浸させる。続いて、電池缶11の内部にガスケット15と共に電池蓋14及び安全弁機構30を収納する。 Subsequently, the battery can 11 is processed using a beading processing machine (grooving processing machine) to form a recess in the battery can 11. Subsequently, the electrolytic solution is injected into the battery can 11 to impregnate the electrode winding body 20. Subsequently, the battery lid 14 and the safety valve mechanism 30 are housed together with the gasket 15 inside the battery can 11.
 次に図1に示したように、電池缶11の開放端部11Nにおいてガスケット15を介して電池蓋14及び安全弁機構30をかしめることにより、かしめ構造11Rを形成する。最後に、プレス機を用いて、電池缶11を電池蓋14により閉塞することによって、二次電池が完成する。 Next, as shown in FIG. 1, the caulking structure 11R is formed by caulking the battery lid 14 and the safety valve mechanism 30 at the open end 11N of the battery can 11 via the gasket 15. Finally, the secondary battery is completed by closing the battery can 11 with the battery lid 14 using a press machine.
 以下、上記のようにして作製した二次電池を用いて、電極巻回体20に貼付した固定テープ31について試験した実施例に基づいて、本発明を具体的に説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on an example in which the fixing tape 31 attached to the electrode winding body 20 is tested using the secondary battery produced as described above. The present invention is not limited to the examples described below.
[実施例1~3]
 熱可塑性ポリウレタンからなる厚さ40μmの基材層と、アクリル系粘着剤と安定剤を含む厚さ10μmの粘着層で構成される固定テープ31を、図2のように、電極巻回体20の円筒面に貼り付け、テープ貼付け比を87%以上として、リチウムイオン電池1を作製した。ここで、テープ貼付け比とは、電極巻回体20の軸方向の長さ(図2中のA)に対する電極巻回体20の軸方向に沿った固定テープ31の長さ(図2中のB)の割合である。
[Examples 1 to 3]
As shown in FIG. 2, the fixing tape 31 composed of a 40 μm-thick base material layer made of thermoplastic polyurethane and a 10 μm-thick adhesive layer containing an acrylic pressure-sensitive adhesive and a stabilizer is attached to the electrode winding body 20. The lithium ion battery 1 was manufactured by sticking it on a cylindrical surface and setting the tape sticking ratio to 87% or more. Here, the tape sticking ratio is the length of the fixing tape 31 along the axial direction of the electrode winding body 20 with respect to the axial length of the electrode winding body 20 (A in FIG. 2) (in FIG. 2). The ratio of B).
[比較例1、2]
 テープ貼付け比を86%以下としたこと以外は、実施例1~3と同様にした。
[Comparative Examples 1 and 2]
The same applies to Examples 1 to 3 except that the tape application ratio was set to 86% or less.
[評価]
 上述したリチウムイオン電池1について、回転ドラム型落下試験機を用い、衝撃試験を行った。衝撃試験はUN38.3規格に基づくもので、試験後に目視で固定テープ31に剥離が認められなかった電池を合格(表1でOK)とし、剥離が認められた電池を不合格(表1でNG)とした。
[Evaluation]
The above-mentioned lithium ion battery 1 was subjected to an impact test using a rotary drum type drop tester. The impact test is based on the UN38.3 standard. Batteries in which peeling was not visually observed on the fixing tape 31 after the test were accepted (OK in Table 1), and batteries in which peeling was observed were rejected (Table 1). NG).
[表1]
Figure JPOXMLDOC01-appb-I000001
[Table 1]
Figure JPOXMLDOC01-appb-I000001
 実施例1~3は衝撃試験に合格し、比較例1、2は衝撃試験に不合格になった。表1の結果から、テープ貼付け比が87%以上のとき、リチウムイオン電池1が衝撃に強いことが分かった。 Examples 1 to 3 passed the impact test, and Comparative Examples 1 and 2 failed the impact test. From the results in Table 1, it was found that the lithium ion battery 1 is strong against impact when the tape attachment ratio is 87% or more.
[実施例4、5]
 実施例1~3と同様の固定テープ31を、図2のように、周長が54.67(mm)の電極巻回体20の円筒面に貼り付け、図3のように、電極巻回体20(直径が17.41(mm))に被覆させたものを用いて、リチウムイオン電池1を作製した。このとき、テープ被り率を5%以上とした。ここで、テープ被り率とは、電極巻回体20の周長に対するテープ被り量の割合である。電極巻回体20の周長とは、電極巻回体20の円筒面の円周方向に沿っての1周分の長さである。テープ被り量は、図3中のCの値で示されるように、電極巻回体20の円筒面を被覆する延長上であって、1周目の固定テープ31の上を被覆する2周目の固定テープ31の長さ(要するにテープ同士がオーバーラップしている長さ)である。また、電極巻回体20に貼付された固定テープ31の円周方向の長さをテープの長さと称する。
[Examples 4 and 5]
As shown in FIG. 2, the fixing tape 31 similar to that of Examples 1 to 3 is attached to the cylindrical surface of the electrode winding body 20 having a peripheral length of 54.67 (mm), and the electrode winding is performed as shown in FIG. A lithium ion battery 1 was produced by coating a body 20 (diameter 17.41 (mm)). At this time, the tape coverage rate was set to 5% or more. Here, the tape covering ratio is the ratio of the tape covering amount to the peripheral length of the electrode winding body 20. The peripheral length of the electrode winding body 20 is the length of one circumference along the circumferential direction of the cylindrical surface of the electrode winding body 20. As shown by the value of C in FIG. 3, the tape covering amount is on the extension covering the cylindrical surface of the electrode winding body 20, and is on the second lap covering the fixing tape 31 on the first lap. This is the length of the fixing tape 31 (in short, the length at which the tapes overlap each other). Further, the length of the fixing tape 31 attached to the electrode winding body 20 in the circumferential direction is referred to as the tape length.
[比較例3]
 テープ被り率を4%としたこと以外は、実施例4、5と同様にした。
[Comparative Example 3]
The same applies to Examples 4 and 5 except that the tape coverage rate was set to 4%.
[評価]
 上述したリチウムイオン電池1について、回転ドラム型落下試験機を用い、衝撃試験を行った。衝撃試験はUN38.3規格に基づくもので、試験後に目視で固定テープ31に剥離が認められなかった電池を合格(表2でOK)とし、剥離が認められた電池を不合格(表2でNG)とした。
[Evaluation]
The above-mentioned lithium ion battery 1 was subjected to an impact test using a rotary drum type drop tester. The impact test is based on the UN38.3 standard. Batteries in which peeling was not visually observed on the fixing tape 31 after the test were accepted (OK in Table 2), and batteries in which peeling was observed were rejected (Table 2). NG).
[表2]
Figure JPOXMLDOC01-appb-I000002
[Table 2]
Figure JPOXMLDOC01-appb-I000002
 実施例4、5は、衝撃試験に合格し、比較例3は衝撃試験に不合格になった。表2の結果から、テープ被り率が5%以上のとき、リチウムイオン電池1が衝撃に強いことが分かった。 Examples 4 and 5 passed the impact test, and Comparative Example 3 failed the impact test. From the results in Table 2, it was found that the lithium ion battery 1 is strong against impact when the tape coverage is 5% or more.
 次に、上述した実施例1~5と比較例1~3の固定テープ31について、電極巻回体20の周面(すなわち最外周のセパレータ23)から切り出したサンプルを作製し、高温保存試験後における固定テープ31の粘着力とシワの高さについて調べた。 Next, with respect to the fixing tapes 31 of Examples 1 to 5 and Comparative Examples 1 to 3 described above, a sample cut out from the peripheral surface of the electrode winding body 20 (that is, the outermost separator 23) was prepared, and after the high temperature storage test. The adhesive strength and the height of wrinkles of the fixing tape 31 in the above were investigated.
[実施例6]
 セパレータ23としてポリエチレン(PE)を用い、電極巻回体20の周面(最外周のセパレータ23)に貼付された実施例1~3と同様の固定テープ31を、セパレータ23と共に大きさ60(mm)×150(mm)に切り出した。セパレータ23に貼り付けられた固定テープ31を、炭酸エチレン(Ethylene Carbonate, EC)と炭酸ジメチル(Dimethyl Carbonate, DMC)を体積比35:65の割合で混合した溶剤中に、45℃の環境下で5時間浸漬させた。
[Example 6]
Polyethylene (PE) is used as the separator 23, and the same fixing tape 31 as in Examples 1 to 3 attached to the peripheral surface (the outermost separator 23) of the electrode winding body 20 is attached together with the separator 23 to a size of 60 (mm). ) X 150 (mm). The fixing tape 31 attached to the separator 23 is placed in a solvent obtained by mixing ethylene carbonate (Ethylene Carbonate, EC) and dimethyl carbonate (DMC) at a volume ratio of 35:65 in an environment of 45 ° C. Soaked for 5 hours.
[比較例4]
 固定テープ31が熱可塑性ポリウレタンからなる厚さ40μmの基材層と、アクリル系粘着剤を含む厚さ10μmの粘着層(安定剤を含まない。)で構成されること以外は、実施例6と同様にした。
[Comparative Example 4]
Example 6 except that the fixing tape 31 is composed of a base material layer having a thickness of 40 μm made of thermoplastic polyurethane and an adhesive layer having a thickness of 10 μm (not containing a stabilizer) containing an acrylic pressure-sensitive adhesive. I did the same.
[評価]
 上述したセパレータ23に貼付された固定テープ31について、シワの高さを計測し、180度ピール試験を行い、浸漬後の粘着力を測定した。180度ピール試験はJIS Z 0237に基づいた方法を用い、混合した溶剤中に45℃の環境下で5時間浸漬後に、紙製のウエスで約20gの荷重を掛けて溶剤を吸取した後、30分以内に180度ピール試験を行った。シワの高さは例えば、図4で示されるSの値(平均値)である。
[Evaluation]
With respect to the fixing tape 31 attached to the separator 23 described above, the height of wrinkles was measured, a 180-degree peel test was performed, and the adhesive strength after immersion was measured. The 180-degree peel test uses a method based on JIS Z 0237. After immersing in a mixed solvent in an environment of 45 ° C. for 5 hours, a load of about 20 g is applied with a paper waste cloth to absorb the solvent, and then 30 A 180 degree peel test was performed within minutes. The height of the wrinkles is, for example, the value of S (mean value) shown in FIG.
[表3]
Figure JPOXMLDOC01-appb-I000003
[Table 3]
Figure JPOXMLDOC01-appb-I000003
 実施例6では、シワの高さが100μmであり、浸漬後の粘着力が0.01(N/10mm)であったのに対し、比較例4では、シワの高さが50μmであり、粘着力は固定テープ31とセパレータ23とが剥離したので計測不能であった。混合した溶剤中に浸漬させる前の粘着力(浸漬前の粘着力)は、実施例6でも比較例4でも、0.30(N/10mm)であった。実施例6のように、浸漬後でも粘着力が残っているということは、45℃の環境下でも電極巻回体20の構造の保持が可能であることを示唆していている。これは、安定剤により、粘着層が容易に電解液に溶解しなくなったためと考えられる。 In Example 6, the height of the wrinkles was 100 μm and the adhesive strength after immersion was 0.01 (N / 10 mm), whereas in Comparative Example 4, the height of the wrinkles was 50 μm and the adhesive strength was adhesive. The force could not be measured because the fixing tape 31 and the separator 23 were peeled off. The adhesive strength before immersion in the mixed solvent (adhesive strength before immersion) was 0.30 (N / 10 mm) in both Example 6 and Comparative Example 4. The fact that the adhesive strength remains even after immersion as in Example 6 suggests that the structure of the electrode winding body 20 can be maintained even in an environment of 45 ° C. It is considered that this is because the adhesive layer is not easily dissolved in the electrolytic solution due to the stabilizer.
 表3の結果より、浸漬後の固定テープ31の180度剥離試験による粘着力は、0.01(N/10mm)以上が好ましいことが分かった。なお、浸漬後の粘着力の好ましい上限値は、本実施例の場合、0.03(N/10mm)以下である。一般的に、浸漬後の粘着力が浸漬前の粘着力を超えることはないと考えられるためである。また、表3の結果より、浸漬後の固定テープ31のシワの高さは、100μm以上が好ましいことが分かった。なお、浸漬後のシワの高さの好ましい上限値は、電極巻回体20と電池缶11(外装缶)の間隙に距離に依存する。本実施例の場合、該間隙の距離が250μmであったため、シワの高さも250μm以下とするのが好ましい。 From the results in Table 3, it was found that the adhesive strength of the fixing tape 31 after immersion in the 180-degree peeling test is preferably 0.01 (N / 10 mm) or more. The preferable upper limit of the adhesive strength after immersion is 0.03 (N / 10 mm) or less in the case of this example. This is because it is generally considered that the adhesive strength after immersion does not exceed the adhesive strength before immersion. Further, from the results in Table 3, it was found that the height of the wrinkles of the fixing tape 31 after immersion is preferably 100 μm or more. The preferable upper limit of the wrinkle height after immersion depends on the distance between the electrode winding body 20 and the battery can 11 (outer can). In the case of this example, since the distance between the gaps was 250 μm, the height of the wrinkles is preferably 250 μm or less.
 次に、実施例7において、実施例1~5のリチウムイオン電池1を作製し、電池出荷状態にした後で、衝撃試験を行い、これと同時に固定テープ31の物性値を測定することで、衝撃試験の合否とテープの特徴との関係について検討した。 Next, in Example 7, the lithium ion batteries 1 of Examples 1 to 5 were produced, and after the batteries were shipped, an impact test was performed, and at the same time, the physical property values of the fixing tape 31 were measured. The relationship between the pass / fail of the impact test and the characteristics of the tape was examined.
[実施例7]
 実施例1~3と同様に固定テープ31を貼付した電極巻回体20を用いて、電池サイズが18650のリチウムイオン電池1を作製し、1回の充放電と、65℃の環境下での36時間以上の保存と、常温での数日間の保存とを行って、電池出荷状態とした。
[Example 7]
A lithium ion battery 1 having a battery size of 18650 was produced by using the electrode winding body 20 to which the fixing tape 31 was attached in the same manner as in Examples 1 to 3, and one charge / discharge operation was performed in an environment of 65 ° C. After storing for 36 hours or more and storing at room temperature for several days, the batteries were shipped.
[比較例5]
 固定テープ31が熱可塑性ポリウレタンからなる厚さ40μmの基材層と、アクリル系粘着剤を含む厚さ10μmの粘着層(安定剤を含まない。)とで構成されること以外は、実施例7と同様にした。
[Comparative Example 5]
Example 7 except that the fixing tape 31 is composed of a base material layer having a thickness of 40 μm made of thermoplastic polyurethane and an adhesive layer having a thickness of 10 μm (not containing a stabilizer) containing an acrylic pressure-sensitive adhesive. I did the same.
[評価]
 電池出荷状態にしたリチウムイオン電池1の固定テープ31について、粘着性の有無を判断し、シワの高さを計測し、テープ長さ変化率を計測し、衝撃試験を行った。粘着性の有無は、固着状態か剥離状態かを目視で判断し、固定テープ31が固着したままであるときを固着状態(表4でOK)とし、剥離しているときを剥離状態(表4でNG)とした。シワの高さは例えば、図4で示されるSの値(平均値)である。また、電極巻回体20の軸方向に沿った固定テープ31の長さ(図2中のB)について、上記充放電前の状態における長さをB1とし、電池出荷状態における長さをB2としたとき、テープ長さ変化率を(B2-B1)/B1とした。衝撃試験は回転ドラム型落下試験機を用いて行い、UN38.3規格に基づくものとし、試験後に目視で固定テープ31に剥離が認められなかった電池を合格(表4でOK)とし、剥離が認められた電池を不合格(表4でNG)とした。
[Evaluation]
With respect to the fixing tape 31 of the lithium ion battery 1 shipped from the battery, the presence or absence of adhesiveness was determined, the height of wrinkles was measured, the tape length change rate was measured, and an impact test was conducted. Whether it is sticky or not is visually determined whether it is in a fixed state or a peeled state, and when the fixing tape 31 remains stuck, it is regarded as a fixed state (OK in Table 4), and when it is peeled, it is in a peeled state (Table 4). NG). The height of the wrinkles is, for example, the value of S (mean value) shown in FIG. Further, regarding the length of the fixing tape 31 (B in FIG. 2) along the axial direction of the electrode winding body 20, the length before charging / discharging is defined as B1, and the length in the battery shipping state is defined as B2. Then, the tape length change rate was set to (B2-B1) / B1. The impact test was performed using a rotary drum type drop tester, and it was based on the UN38.3 standard. Batteries in which peeling was not visually observed on the fixing tape 31 after the test were accepted (OK in Table 4), and peeling was performed. The accepted batteries were rejected (NG in Table 4).
[表4]
Figure JPOXMLDOC01-appb-I000004
[Table 4]
Figure JPOXMLDOC01-appb-I000004
 実施例7では、固定テープ31が固着状態で、シワの高さが100μmあり、テープ長さ変化率が-1%であった(固定テープが縮んだ)のに対し、比較例5では、固定テープ31が剥離状態で、シワの高さが50μmであり、テープ長さ変化率が5%であった(固定テープが伸びた)。また、衝撃試験では実施例7の電池は合格し、比較例5の電池は不合格になった。 In Example 7, the fixing tape 31 was in a fixed state, the height of the wrinkles was 100 μm, and the tape length change rate was -1% (the fixing tape shrank), whereas in Comparative Example 5, it was fixed. When the tape 31 was peeled off, the height of the wrinkles was 50 μm, and the tape length change rate was 5% (the fixed tape was stretched). Further, in the impact test, the battery of Example 7 passed, and the battery of Comparative Example 5 failed.
 実施例7の固定テープ31は、電池出荷状態で固着していることから固定テープ31の構造が保持されている。加えて、実施例7の電池が衝撃試験に合格した理由は、電解液浸漬中に固定テープ31がシワの高さ分、電極巻回体20の外周方向に膨れることで、シワが滑り止めとなって(或いは、固定テープ31のシワと電池缶11の内面が接触する確率が増えて)、電極巻回体20が電池缶11内で固定されたためと考えられる。実施例7において、固定テープが縮んだ理由は、比較的高い100μmのシワの発生によるものと考えられる。 Since the fixing tape 31 of the seventh embodiment is fixed in the state of shipment of the battery, the structure of the fixing tape 31 is maintained. In addition, the reason why the battery of Example 7 passed the impact test is that the fixing tape 31 swells in the outer peripheral direction of the electrode winding body 20 by the height of the wrinkles during immersion in the electrolytic solution, so that the wrinkles are prevented from slipping. (Or, the probability that the wrinkles of the fixing tape 31 and the inner surface of the battery can 11 come into contact with each other increases), and it is considered that the electrode winding body 20 is fixed in the battery can 11. In Example 7, the reason why the fixing tape shrank is considered to be the occurrence of relatively high wrinkles of 100 μm.
 一方、比較例5では、固定テープ31が剥離したため、電極巻回体20の構造が保持されていないことと、固定テープ31のシワの高さが比較的低かったので、シワが滑り止めとしては不十分で、電極巻回体20が電池缶11内で固定されないことから、比較例5の電池は衝撃試験に不合格になったと考えられる。比較例5において、固定テープが伸びた理由はシワの高さが比較的小さいことに関係があると考えられる。 On the other hand, in Comparative Example 5, since the fixing tape 31 was peeled off, the structure of the electrode winding body 20 was not maintained and the height of the wrinkles of the fixing tape 31 was relatively low, so that the wrinkles were prevented from slipping. It is probable that the battery of Comparative Example 5 failed the impact test because it was insufficient and the electrode winding body 20 was not fixed in the battery can 11. In Comparative Example 5, the reason why the fixing tape was stretched is considered to be related to the relatively small height of the wrinkles.
 表4の結果より、電池出荷状態及び/又は出荷後において、シワの高さが100μm以上であるとき、又は、固定テープ31が電極巻回体20の軸方向に収縮しているときに、リチウムイオン電池1が衝撃に強いことが分かった。 From the results in Table 4, lithium is obtained when the height of the wrinkles is 100 μm or more, or when the fixing tape 31 is contracted in the axial direction of the electrode winding body 20 in the battery shipping state and / or after shipping. It was found that the ion battery 1 is strong against impact.
<2.変形例>
 以上、本発明の一実施の形態について具体的に説明したが、本発明の内容は上述した実施の形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
<2. Modification example>
Although one embodiment of the present invention has been specifically described above, the content of the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible. ..
 固定テープ31について、テープ貼付け比が87%以上、且つ、テープ被り率が5%以上としてもよく、このとき、リチウムイオン電池1はより衝撃に強いと考えられる。 Regarding the fixed tape 31, the tape sticking ratio may be 87% or more and the tape covering ratio may be 5% or more. At this time, the lithium ion battery 1 is considered to be more resistant to impact.
 リチウムイオン電池1のサイズを一部で18650としていたが、例えば21700のような他のサイズであってもよい。粘着層はポリアクリル系粘着剤を含むとしていたが、これ以外の粘着剤であってもよい。 The size of the lithium ion battery 1 was partially set to 18650, but it may be another size such as 21700. The adhesive layer is said to contain a polyacrylic adhesive, but other adhesives may be used.
 本発明の趣旨を逸脱しない限り、本発明は、リチウムイオン電池以外の他の電池や、円筒形状以外の電池(例えば、ラミネート型電池、角型電池、コイン型電池、ボタン型電池)に適用することも可能である。この場合において、「電極巻回体の外周面」の形状は、円筒形状のみならず、楕円形状や扁平形状なども採り得る。 Unless deviating from the gist of the present invention, the present invention applies to batteries other than lithium-ion batteries and batteries other than cylindrical batteries (for example, laminated batteries, square batteries, coin batteries, button batteries). It is also possible. In this case, the shape of the "outer peripheral surface of the electrode winding body" may be not only a cylindrical shape but also an elliptical shape or a flat shape.
<3.応用例>
(1)電池パック
 図5は、本発明の実施の形態又は実施例に係る二次電池を電池パック330に適用した場合の回路構成例を示すブロック図である。電池パック300は、組電池301、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。制御部310は各デバイスの制御を行い、さらに異常発熱時に充放電制御を行ったり、電池パック300の残容量の算出や補正を行ったりすることが可能である。
<3. Application example>
(1) Battery pack FIG. 5 is a block diagram showing a circuit configuration example when the secondary battery according to the embodiment or embodiment of the present invention is applied to the battery pack 330. The battery pack 300 includes a switch unit 304 including an assembled battery 301, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310. The control unit 310 can control each device, perform charge / discharge control at the time of abnormal heat generation, and calculate and correct the remaining capacity of the battery pack 300.
 電池パック300の充電時には正極端子321及び負極端子322がそれぞれ充電器の正極端子、負極端子に接続され、充電が行われる。また、電池パック300に接続された電子機器の使用時には、正極端子321及び負極端子322がそれぞれ電子機器の正極端子、負極端子に接続され、放電が行われる。 When charging the battery pack 300, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when the electronic device connected to the battery pack 300 is used, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
 組電池301は、複数の二次電池301aを直列及び/又は並列に接続してなる。図5では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、どのような接続方法でもよい。 The assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel. In FIG. 5, the case where the six secondary batteries 301a are connected in two parallels and three series (2P3S) is shown as an example, but any connection method may be used.
 温度検出部318は、温度検出素子308(例えばサーミスタ)と接続されており、組電池301又は電池パック300の温度を測定して、測定温度を制御部310に供給する。電圧検出部311は、組電池301及びそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。 The temperature detection unit 318 is connected to a temperature detection element 308 (for example, a thermistor), measures the temperature of the assembled battery 301 or the battery pack 300, and supplies the measured temperature to the control unit 310. The voltage detection unit 311 measures the voltage of the assembled battery 301 and each of the secondary batteries 301a constituting the assembled battery 301, A / D converts the measured voltage, and supplies the measured voltage to the control unit 310. The current measuring unit 313 measures the current using the current detection resistor 307, and supplies the measured current to the control unit 310.
 スイッチ制御部314は、電圧検出部311及び電流測定部313から入力された電圧及び電流をもとに、スイッチ部304の充電制御スイッチ302a及び放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aのいずれかの電圧が過充電検出電圧若しくは過放電検出電圧以下になったとき、また、大電流が急激に流れたときに、スイッチ部304にOFFの制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。
 ここで、二次電池がリチウムイオン二次電池の場合、過充電検出電圧は例えば4.20V±0.05Vと定められ、過放電検出電圧は例えば2.4V±0.1Vと定められる。
The switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313. The switch control unit 314 controls the switch unit 304 to turn off when any voltage of the secondary battery 301a becomes equal to or lower than the overcharge detection voltage or the overdischarge detection voltage, or when a large current suddenly flows. By sending a signal, overcharging, overdischarging, and overcurrent charging / discharging are prevented.
Here, when the secondary battery is a lithium ion secondary battery, the overcharge detection voltage is determined to be, for example, 4.20 V ± 0.05 V, and the over discharge detection voltage is determined to be, for example, 2.4 V ± 0.1 V.
 充電制御スイッチ302a又は放電制御スイッチ303aがOFFした後は、ダイオード302b又はダイオード303bを介することによってのみ、充電又は放電が可能となる。これらの充放電スイッチは、MOSFETなどの半導体スイッチを使用することができる。この場合、MOSFETの寄生ダイオードがダイオード302b及び303bとして機能する。なお、図5では+側にスイッチ部304を設けているが、-側に設けても良い。 After the charge control switch 302a or the discharge control switch 303a is turned off, charging or discharging is possible only through the diode 302b or the diode 303b. As these charge / discharge switches, semiconductor switches such as MOSFETs can be used. In this case, the parasitic diodes of the MOSFET function as diodes 302b and 303b. Although the switch portion 304 is provided on the + side in FIG. 5, it may be provided on the − side.
 メモリ317は、RAMやROMからなり、例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)などを含む。メモリ317には、制御部310で演算された数値や、製造工程の段階で測定された各二次電池301aの初期状態における電池特性やなどが予め記憶され、また適宜、書き換えも可能である。また、二次電池301aの満充電容量を記憶させておくことで、制御部310と協働して残容量を算出することができる。 The memory 317 is composed of a RAM or a ROM, and includes, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory. The memory 317 stores in advance the numerical values calculated by the control unit 310, the battery characteristics in the initial state of each secondary battery 301a measured at the stage of the manufacturing process, and the like, and can be rewritten as appropriate. Further, by storing the fully charged capacity of the secondary battery 301a, the remaining capacity can be calculated in cooperation with the control unit 310.
(2)電子機器
 上述した本発明の実施の形態又は実施例に係る二次電池は、電子機器や電動輸送機器、蓄電装置などの機器に搭載され、電力を供給するために使用することができる。
(2) Electronic device The secondary battery according to the embodiment or embodiment of the present invention described above can be mounted on a device such as an electronic device, an electric transport device, or a power storage device and used to supply electric power. ..
 電子機器としては、例えばノート型パソコン、スマートフォン、タブレット端末、PDA(携帯情報端末)、携帯電話、ウェアラブル端末、ビデオムービー、デジタルスチルカメラ、電子書籍、音楽プレイヤー、ヘッドホン、ゲーム機、ペースメーカー、補聴器、電動工具、テレビ、照明機器、玩具、医療機器、ロボットが挙げられる。また、後述する電動輸送機器、蓄電装置、電動工具、電動式無人航空機も、広義では電子機器に含まれ得る。 Electronic devices include, for example, laptop computers, smartphones, tablet terminals, PDAs (personal digital assistants), mobile phones, wearable terminals, video movies, digital still cameras, electronic books, music players, headphones, game consoles, pacemakers, hearing aids, etc. Examples include power tools, televisions, lighting equipment, toys, medical equipment, and robots. In a broad sense, electronic devices may also include electric transport devices, power storage devices, power tools, and electric unmanned aerial vehicles, which will be described later.
 電動輸送機器としては電気自動車(ハイブリッド自動車を含む。)、電動バイク、電動アシスト自転車、電動バス、電動カート、無人搬送車(AGV)、鉄道車両などが挙げられる。また、電動旅客航空機や輸送用の電動式無人航空機も含まれる。本発明に係る二次電池は、これらの駆動用電源のみならず、補助用電源、エネルギー回生用電源などとしても用いられる。 Examples of electric transportation equipment include electric vehicles (including hybrid vehicles), electric motorcycles, electrically assisted bicycles, electric buses, electric carts, unmanned transport vehicles (AGV), railway vehicles, and the like. It also includes electric passenger aircraft and electric unmanned aerial vehicles for transportation. The secondary battery according to the present invention is used not only as a power source for driving these, but also as an auxiliary power source, a power source for energy regeneration, and the like.
 蓄電装置としては、商業用又は家庭用の蓄電モジュールや、住宅、ビル、オフィスなどの建築物用又は発電設備用の電力貯蔵用電源などが挙げられる。 Examples of the power storage device include a power storage module for commercial or household use, a power storage power source for a building such as a house, a building, an office, or a power generation facility.
(3)電動工具
 図6を参照して、本発明が適用可能な電動工具として電動ドライバの例について概略的に説明する。電動ドライバ431には、シャフト434に回転動力を伝達するモータ433と、ユーザが操作するトリガースイッチ432が設けられている。トリガースイッチ432の操作により、シャフト434によって被対象物にねじなどが打ち込まれる。
(3) Power Tool With reference to FIG. 6, an example of an electric screwdriver as an electric tool to which the present invention can be applied will be schematically described. The electric screwdriver 431 is provided with a motor 433 that transmits rotational power to the shaft 434 and a trigger switch 432 that is operated by the user. By operating the trigger switch 432, a screw or the like is driven into the object by the shaft 434.
 電動ドライバ431の把手の下部筐体内に、電池パック430及びモータ制御部435が収納されている。電池パック430としては、上述した電池パック300を使用することができる。
 電池パック430は、電動ドライバ431に対して内蔵されているか、又は着脱自在とされている。電池パック430は、電動ドライバ431に内蔵された状態、又は外された状態で、充電装置に装着可能である。
The battery pack 430 and the motor control unit 435 are housed in the lower housing of the handle of the electric screwdriver 431. As the battery pack 430, the battery pack 300 described above can be used.
The battery pack 430 is built into the electric screwdriver 431 or is detachable. The battery pack 430 can be attached to the charging device in a state of being built in or removed from the electric driver 431.
 電池パック430及びモータ制御部435のそれぞれには、マイクロコンピュータが備えられている。電池パック430からモータ制御部435に対して電源が供給されると共に、両者のマイクロコンピュータ間で電池パック430の充放電情報が通信される。モータ制御部435は、モータ433の回転/停止、並びに回転方向を制御し、さらに、過放電時に負荷(モータ433など)への電源供給を遮断することができる。 Each of the battery pack 430 and the motor control unit 435 is equipped with a microcomputer. Power is supplied from the battery pack 430 to the motor control unit 435, and charge / discharge information of the battery pack 430 is communicated between both microcomputers. The motor control unit 435 can control the rotation / stop and the rotation direction of the motor 433, and can cut off the power supply to the load (motor 433 and the like) at the time of over-discharging.
(4)電動式無人航空機
 本発明を電動式無人航空機440(以下、単に「ドローン440」という。)用の電源に適用した例について、図7を参照して説明する。図7のドローン440は、円筒状又は角筒状の胴体部441と、胴体部の上部に固定された支持軸442a~442fと、胴体部の下側に配置されたバッテリ部(図示せず)から機体が構成される。一例として、胴体部が6角筒状とされ、胴体部の中心から6本の支持軸442a~442fが等角間隔で放射状に延びている。
(4) Electric Unmanned Aerial Vehicle An example in which the present invention is applied to a power source for an electric electric unmanned aerial vehicle 440 (hereinafter, simply referred to as “drone 440”) will be described with reference to FIG. The drone 440 of FIG. 7 has a cylindrical or square tubular body portion 441, support shafts 442a to 442f fixed to the upper part of the body portion, and a battery portion (not shown) arranged below the body portion. The aircraft is constructed from. As an example, the body portion has a hexagonal tubular shape, and six support shafts 442a to 442f extend radially from the center of the body portion at equiangular intervals.
 支持軸442a~442fの先端部には、回転翼444a~444fの動力源としてのモータ443a~443fがそれぞれ取り付けられている。各モータを制御する制御回路ユニット445は、胴体部441の上部に取り付けられている。バッテリ部としては、本発明に係る二次電池又は電池パック300を使用することができる。二次電池や電池パックの数に制限はないが、対を構成する回転翼の数(図7では3つ)と電池パックの数を等しくするのが好ましい。また、図示しないが、ドローン440にはカメラが搭載されていたり、少量の貨物を運搬可能な荷台が備えられていてもよい。 Motors 443a to 443f as power sources for the rotary blades 444a to 444f are attached to the tips of the support shafts 442a to 442f, respectively. The control circuit unit 445 that controls each motor is attached to the upper part of the body portion 441. As the battery unit, the secondary battery or the battery pack 300 according to the present invention can be used. The number of secondary batteries and battery packs is not limited, but it is preferable that the number of rotor blades (three in FIG. 7) forming a pair is equal to the number of battery packs. Further, although not shown, the drone 440 may be equipped with a camera or a loading platform capable of carrying a small amount of cargo.
(5)電動車両用蓄電システム
 本発明を電動車両用の蓄電システムに適用した例として、図8に、シリーズハイブリッドシステムを採用したハイブリッド車両(HV)の構成例を概略的に示す。シリーズハイブリッドシステムはエンジンを動力とする発電機で発電された電力、あるいはそれをバッテリに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
(5) Power Storage System for Electric Vehicles As an example of applying the present invention to a power storage system for electric vehicles, FIG. 8 schematically shows a configuration example of a hybrid vehicle (HV) that employs a series hybrid system. The series hybrid system is a vehicle that runs on a power driving force converter using the electric power generated by an engine-powered generator or the electric power temporarily stored in a battery.
 このハイブリッド車両600には、エンジン601、発電機602、電力駆動力変換装置603(直流モータ又は交流モータ。以下単に「モータ603」という。)、駆動輪604a、駆動輪604b、車輪605a、車輪605b、バッテリ608、車両制御装置609、各種センサ610、充電口611が搭載されている。バッテリ608に対して、上述した本発明の電池パック300、又は本発明の二次電池を複数搭載した蓄電モジュールが適用され得る。二次電池の形状としては、円筒型、角型又はラミネート型である。 The hybrid vehicle 600 includes an engine 601, a generator 602, a power driving force converter 603 (DC motor or AC motor; hereinafter simply referred to as "motor 603"), drive wheels 604a, drive wheels 604b, wheels 605a, and wheels 605b. , Battery 608, vehicle control device 609, various sensors 610, and charging port 611 are mounted. The battery pack 300 of the present invention described above or a power storage module equipped with a plurality of secondary batteries of the present invention can be applied to the battery 608. The shape of the secondary battery is cylindrical, square or laminated.
 バッテリ608の電力によってモータ603が作動し、モータ603の回転力が駆動輪604a、604bに伝達される。エンジン601の回転力は発電機602に伝えられ、その回転力によって発電機602により生成された電力をバッテリ608に蓄積することが可能である。各種センサ610は、車両制御装置609を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度を制御したりする。各種センサ610には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。 The motor 603 is operated by the electric power of the battery 608, and the rotational force of the motor 603 is transmitted to the drive wheels 604a and 604b. The rotational force of the engine 601 is transmitted to the generator 602, and the electric power generated by the generator 602 by the rotational force can be stored in the battery 608. The various sensors 610 control the engine speed via the vehicle control device 609, and control the opening degree of a throttle valve (not shown). The various sensors 610 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 図示しない制動機構によりハイブリッド車両600が減速すると、その減速時の抵抗力がモータ603に回転力として加わり、この回転力によって生成された回生電力がバッテリ608に蓄積される。また、図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置(例えば、電池の残量表示装置)を備えていても良い。バッテリ608は、ハイブリッド車両600の充電口611を介して外部の電源に接続されることで電力供給を受け、蓄電することが可能である。このようなHV車両を、プラグインハイブリッド車(PHV又はPHEV)という。 When the hybrid vehicle 600 is decelerated by a braking mechanism (not shown), the resistance force at the time of deceleration is applied to the motor 603 as a rotational force, and the regenerative power generated by this rotational force is stored in the battery 608. Further, although not shown, an information processing device (for example, a battery remaining amount display device) that performs information processing on vehicle control based on information on the secondary battery may be provided. The battery 608 can receive electric power and store electricity by being connected to an external power source via the charging port 611 of the hybrid vehicle 600. Such an HV vehicle is called a plug-in hybrid vehicle (PHV or PHEV).
 以上では、シリーズハイブリッド車を例として説明したが、エンジンとモータを併用するパラレル方式、又は、シリーズ方式とパラレル方式を組み合わせたハイブリッド車に対しても本発明は適用可能である。さらに、エンジンを用いない駆動モータのみで走行する電気自動車(EV又はBEV)や、燃料電池車(FCV)に対しても本発明は適用可能である。 Although the series hybrid vehicle has been described above as an example, the present invention can also be applied to a parallel system in which an engine and a motor are used together, or a hybrid vehicle in which a series system and a parallel system are combined. Furthermore, the present invention is also applicable to an electric vehicle (EV or BEV) or a fuel cell vehicle (FCV) that travels only with a drive motor that does not use an engine.
1・・・リチウムイオン電池,11・・・電池缶,12,13・・・絶縁体,20・・・電極巻回体,21・・・正極,22・・・負極,23・・・セパレータ,24・・・センターピン,25・・・正極リード,26・・・負極リード,31・・・固定テープ 1 ... Lithium ion battery, 11 ... Battery can, 12, 13 ... Insulator, 20 ... Electrode winder, 21 ... Positive electrode, 22 ... Negative electrode, 23 ... Separator , 24 ... Center pin, 25 ... Positive electrode lead, 26 ... Negative electrode lead, 31 ... Fixed tape

Claims (12)

  1.  セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、電解液とが外装缶に収容された二次電池において、
     前記電極巻回体の外周面は固定テープによって被覆され、
     前記固定テープは、180度剥離試験で粘着力が0.01(N/10mm)以上であり、
     テープ貼付け比を、前記電極巻回体の軸方向の長さに対する前記軸方向に沿った前記固定テープの長さの割合と定義したとき、該テープ貼付け比が87%以上である二次電池。
    In a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, an electrode winding body having a wound structure, and an electrolytic solution are housed in an outer can.
    The outer peripheral surface of the electrode winding body is covered with a fixing tape.
    The fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peeling test.
    A secondary battery having a tape sticking ratio of 87% or more when the tape sticking ratio is defined as the ratio of the length of the fixed tape along the axial direction to the axial length of the electrode winding body.
  2.  セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、電解液とが外装缶に収容された二次電池において、
     前記電極巻回体の外周面は固定テープによって1周以上被覆され、
     前記固定テープは、180度剥離試験で粘着力が0.01(N/10mm)以上であり、
     テープ被り率を、1周目の前記固定テープ上を被覆する2周目の前記固定テープの長さと定義したとき、該テープ被り率が5%以上である二次電池。
    In a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, an electrode winding body having a wound structure, and an electrolytic solution are housed in an outer can.
    The outer peripheral surface of the electrode winding body is covered with a fixing tape for one or more turns.
    The fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peeling test.
    A secondary battery having a tape coverage of 5% or more when the tape coverage is defined as the length of the fixing tape on the second lap that covers the fixing tape on the first lap.
  3.  セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、電解液とが外装缶に収容された二次電池において、
     前記電極巻回体の外周面は固定テープによって1周以上被覆され、
     前記固定テープは、180度剥離試験で粘着力が0.01(N/10mm)以上であり、
     テープ貼付け比を、前記電極巻回体の軸方向の長さに対する前記軸方向に沿った前記固定テープの長さの割合と定義したとき、該テープ貼付け比が87%以上であり、
     テープ被り率を、1周目の前記固定テープ上を被覆する2周目の前記固定テープの長さと定義したとき、該テープ被り率が5%以上である二次電池。
    In a secondary battery in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, an electrode winding body having a wound structure, and an electrolytic solution are housed in an outer can.
    The outer peripheral surface of the electrode winding body is covered with a fixing tape for one or more turns.
    The fixing tape has an adhesive strength of 0.01 (N / 10 mm) or more in a 180-degree peeling test.
    When the tape sticking ratio is defined as the ratio of the length of the fixed tape along the axial direction to the axial length of the electrode winding body, the tape sticking ratio is 87% or more.
    A secondary battery having a tape coverage of 5% or more when the tape coverage is defined as the length of the fixing tape on the second lap that covers the fixing tape on the first lap.
  4.  前記固定テープが前記電極巻回体の軸方向に沿う方向に収縮している請求項1から3の何れかに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the fixing tape is contracted in a direction along the axial direction of the electrode winding body.
  5.  前記固定テープのシワの高さが100μm以上である請求項1から4の何れかに記載の二次電池。 The secondary battery according to any one of claims 1 to 4, wherein the height of the wrinkles of the fixing tape is 100 μm or more.
  6.  前記固定テープは、熱可塑性ポリウレタンからなる基材層と、アクリル系粘着剤と、架橋剤、安定剤又は改質剤の少なくとも一種を含む粘着層を有する請求項1から5の何れかに記載の二次電池。 The fixing tape according to any one of claims 1 to 5, wherein the fixing tape has a base material layer made of thermoplastic polyurethane, an acrylic pressure-sensitive adhesive, and a pressure-sensitive adhesive layer containing at least one of a cross-linking agent, a stabilizer or a modifier. Secondary battery.
  7.  前記固定テープの粘着力は、0.03(N/10mm)以下である請求項1から6の何れかに記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the adhesive strength of the fixing tape is 0.03 (N / 10 mm) or less.
  8.  前記固定テープの前記シワの高さが250μm以下である請求項1から7の何れかに記載の二次電池。 The secondary battery according to any one of claims 1 to 7, wherein the height of the wrinkles of the fixing tape is 250 μm or less.
  9.  請求項1から8の何れかに記載の二次電池と、
     前記二次電池を制御する制御部と、
     前記二次電池を内包する外装体と
     を有する電池パック。
    The secondary battery according to any one of claims 1 to 8.
    A control unit that controls the secondary battery and
    A battery pack having an exterior body containing the secondary battery.
  10.  請求項1から8の何れかに記載の二次電池又は請求項9に記載の電池パックを有する電子機器。 An electronic device having the secondary battery according to any one of claims 1 to 8 or the battery pack according to claim 9.
  11.  請求項9に記載の電池パックを有し、前記電池パックを電源として使用する電動工具。 An electric tool having the battery pack according to claim 9 and using the battery pack as a power source.
  12.  請求項1から8の何れかに記載の二次電池を有し、
     前記二次電池から電力の供給を受けて車両の駆動力に変換する変換装置を有する電動車両。
    The secondary battery according to any one of claims 1 to 8 is provided.
    An electric vehicle having a conversion device that receives electric power from the secondary battery and converts it into the driving force of the vehicle.
PCT/JP2020/018691 2019-08-08 2020-05-08 Secondary cell, cell pack, electronic device, electric tool, and electric vehicle WO2021024563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-146626 2019-08-08
JP2019146626 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021024563A1 true WO2021024563A1 (en) 2021-02-11

Family

ID=74502557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018691 WO2021024563A1 (en) 2019-08-08 2020-05-08 Secondary cell, cell pack, electronic device, electric tool, and electric vehicle

Country Status (1)

Country Link
WO (1) WO2021024563A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114797A (en) * 2011-11-25 2013-06-10 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte battery
JP2013140765A (en) * 2011-02-28 2013-07-18 Nitto Denko Corp Pressure-sensitive adhesive tape for battery and battery using the pressure-sensitive adhesive tape
JP2014508827A (en) * 2011-01-27 2014-04-10 エルジー・ケム・リミテッド Swelling tape for gap filling
KR20160142589A (en) * 2015-06-03 2016-12-13 주식회사 엘지화학 Cylindrical Secondary Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508827A (en) * 2011-01-27 2014-04-10 エルジー・ケム・リミテッド Swelling tape for gap filling
JP2013140765A (en) * 2011-02-28 2013-07-18 Nitto Denko Corp Pressure-sensitive adhesive tape for battery and battery using the pressure-sensitive adhesive tape
JP2013114797A (en) * 2011-11-25 2013-06-10 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte battery
KR20160142589A (en) * 2015-06-03 2016-12-13 주식회사 엘지화학 Cylindrical Secondary Battery

Similar Documents

Publication Publication Date Title
WO2021176906A1 (en) Secondary battery, electronic device, and electric tool
WO2021177149A1 (en) Secondary battery, electronic device, and electric tool
WO2021024734A1 (en) Secondary battery, battery pack, electronic device, electric tool and electric vehicle
US20220149445A1 (en) Secondary battery, battery pack, electronic equipment, electric tool, and electric vehicle
WO2021251121A1 (en) Secondary battery, electronic device, and electric tool
US20220255081A1 (en) Secondary battery, electronic device, and power tool
WO2021153231A1 (en) Secondary battery, electronic apparatus, and power tool
WO2021153230A1 (en) Secondary battery, electronic device, and electric tool
WO2021166546A1 (en) Secondary battery, electronic apparatus, and power tool
WO2021024563A1 (en) Secondary cell, cell pack, electronic device, electric tool, and electric vehicle
JP2021136233A (en) Secondary battery, electronic apparatus, and electric power tool
WO2021124828A1 (en) Secondary battery, manufacturing method for secondary battery, electronic device, and electric tool
WO2021193044A1 (en) Secondary battery, electronic device, and electric tool
WO2021106763A1 (en) Secondary battery, electronic device, and electric power tool
WO2022153647A1 (en) Secondary battery, electronic device, and electric tool
WO2022054642A1 (en) Secondary battery, electronic apparatus, and electric tool
US20220376307A1 (en) Secondary battery, electronic device, and electric tool
WO2022075019A1 (en) Secondary battery, electronic device, and electric tool
WO2022070824A1 (en) Secondary battery, electronic device, and electric tool
JP7494949B2 (en) Secondary batteries, electronic devices and power tools
WO2021149554A1 (en) Secondary battery, electronic device, and electric tool
WO2021149555A1 (en) Secondary battery, electronic device, and electric tool
WO2022085561A1 (en) Secondary battery, electronic device, and power tool
US20230335863A1 (en) Secondary battery, electronic equipment, and electric tool
US20230335804A1 (en) Secondary battery, electronic equipment, and electric tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP