WO2021024515A1 - Shape data processing device, shape data processing method, and shape data processing program - Google Patents

Shape data processing device, shape data processing method, and shape data processing program Download PDF

Info

Publication number
WO2021024515A1
WO2021024515A1 PCT/JP2020/002342 JP2020002342W WO2021024515A1 WO 2021024515 A1 WO2021024515 A1 WO 2021024515A1 JP 2020002342 W JP2020002342 W JP 2020002342W WO 2021024515 A1 WO2021024515 A1 WO 2021024515A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
data processing
shape data
identification information
information
Prior art date
Application number
PCT/JP2020/002342
Other languages
French (fr)
Japanese (ja)
Inventor
光一 西浦
スマディ ジエン
Original Assignee
インテグラル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテグラル・テクノロジー株式会社 filed Critical インテグラル・テクノロジー株式会社
Priority to JP2021537560A priority Critical patent/JP7189584B2/en
Publication of WO2021024515A1 publication Critical patent/WO2021024515A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD

Definitions

  • the present invention relates to a shape data processing apparatus, a shape data processing method, and a shape data processing program.
  • Patent Document 1 describes a technique for determining the surface shape of an object classified in the technical field of CAE (Computer Aided Engineering: Computer Aided Engineering) such as structural analysis by using a plurality of symbols (+,-, 0). It is disclosed.
  • CAE Computer Aided Engineering: Computer Aided Engineering
  • Patent Document 1 since it is not possible to specify which category and what shape the surface shape of the classified object is, it can be used in the technical field of CAD. The reality is that there is no such thing.
  • An object of the present invention is to provide a shape data processing apparatus, a shape data processing method, and a shape data processing program.
  • the present invention has the following first and second aspects of shape data processing apparatus, first and second aspects of shape data processing methods, and first and second aspects of shape data processing. Provide a program.
  • the shape data processing device corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
  • a determination means for determining a plurality of shape identification information, an acquisition means for acquiring a plurality of characteristic information related to the shapes of the plurality of surfaces, and the shape identification information and the acquisition means determined by the determination means. It is characterized by including a registration means for registering the acquired characteristic information in a database in association with the adjacent division information corresponding to the adjacent division adjacent to the division for each division information corresponding to the division.
  • the shape data processing method according to the first aspect of the present invention corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
  • Shape data processing program causes a computer to execute each step of the shape data processing method according to the first aspect of the present invention. belongs to.
  • the shape data processing device corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
  • a determination means for determining a plurality of shape identification information, a conversion means for converting the plurality of shape identification information determined by the determination means into image elements corresponding to the plurality of shape identification information, and a conversion means for converting the plurality of shape identification information.
  • the generation means for generating the image data for shape identification from the said image elements in a predetermined order, and the image data for shape identification generated by the generation means are registered in the database in the predetermined order. It is characterized by having a registration means.
  • the shape data processing method corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
  • the generation step of generating the image data for shape identification from the image elements in a predetermined order and the image data for shape identification generated in the generation step are registered in the database in the predetermined order. It is characterized by including a registration step.
  • Shape data processing program causes a computer to execute each step of the shape data processing method according to the second aspect of the present invention. belongs to.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a shape data processing device.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus.
  • FIG. 3 is an explanatory diagram showing an example of a surface of a part of the division information of the object.
  • FIG. 4 is an explanatory diagram of an object determination process by the shape data processing device.
  • FIG. 5 is an explanatory diagram of an object determination process by the shape data processing device.
  • FIG. 6 is an explanatory diagram of an object determination process by the shape data processing device.
  • FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a shape data processing device.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus.
  • FIG. 3 is an explanatory diagram showing an example of a surface of a part of the division information
  • FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the object.
  • FIG. 9 is a chart schematically showing an example of a data structure of a part of the shape data of the object shown in FIG. 8 in the database.
  • FIG. 10 is a schematic diagram showing an example of an input screen for inputting change values of shape identification information and characteristic information.
  • FIG. 11 is a block diagram showing another example of the hardware configuration of the shape data processing device.
  • FIG. 12 is a flowchart showing another example of the processing procedure of the shape data processing apparatus.
  • FIG. 13 illustrates the processing result when the determination processing is applied to the specific shape portion of the object.
  • FIG. 14 is a chart schematically showing an example of image data of a part of the object shown in FIG. 13 in the database and a data structure of a predetermined arrangement order corresponding thereto.
  • FIG. 15 is an output image output using image data for shape identification composed of the image elements shown in FIG.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of the shape data processing device 100.
  • the shape data processing device 100 includes a control unit 110 (computer), a storage unit 120, a reading unit 130, and an output unit 140.
  • the control unit 110 is configured to realize various functions required by the control unit 110 by executing the shape data processing program Pa stored in advance in the recording device 121 of the storage unit 120.
  • the control unit 110 is composed of a processor such as a CPU.
  • the control unit 110 performs various processes by loading and executing a software program such as the shape data processing program Pa stored in the recording device 121 in advance on the RAM 122b of the memory device 122.
  • the storage unit 120 includes a memory device 122 such as a ROM 122a and a RAM 122b, and a recording device 121 such as a flash memory and a hard disk device.
  • the shape data processing program Pa acquired from the reading unit 130 is stored in the recording device 121 in advance.
  • the output unit 140 includes a display device 141 such as a liquid crystal display panel and a printing device 142 such as a laser printer.
  • the display device 141 displays the output display information from the control unit 110 on the display screen.
  • the printing device 142 prints the output display information from the control unit 110.
  • the reading unit 130 includes a reading device 131 that reads a recording medium M such as a CD-ROM.
  • the shape data processing program Pa is pre-recorded on the recording medium M.
  • the recording medium M may be a recording disc such as a CD-ROM, or any other recording medium.
  • the shape data processing program Pa is not limited to the one acquired via a recording medium such as a CD-ROM, and may be downloaded via a communication means such as the Internet.
  • the control unit 110 includes three-dimensional CAD data input means Qa1, shape recognition means Qa2, determination means Qa3, acquisition means Qa4, registration means Qa5, reception means Qa6, specific means Qa7, and output means Qa8. It functions as a means to prepare. That is, the shape data processing program Pa controls a step including a three-dimensional CAD data input step, a shape recognition step, a determination step, an acquisition step, a registration step, a reception step, a specific step, and an output step. Let unit 110 execute.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing device 100.
  • each processing of three-dimensional CAD data input, shape recognition, shape identification information determination, characteristic information acquisition, database registration, change acceptance, shape identification, and information output is performed.
  • 3D CAD data input In the 3D CAD data input step, the control unit 110 inputs 3D CAD data (3D CAD model), which is the shape data of the object (product) created by the 3D CAD, from the reading unit 130.
  • the control unit 110 recognizes the shape based on the three-dimensional CAD data.
  • the shape recognition step can be mainly divided into three steps.
  • each surface information of the 3D CAD data is acquired.
  • a free mesh is created on each surface of the first input 3D CAD data, and a database for feature calculation (database DB in this example) is constructed.
  • Such features include, for example, surface curvature, outer circumference curvature, outer circumference length, fixed points on the outer circumference, length ratio of paired outer circumference pairs, outer circumference circular shape, cylindrical shape, sphericality, internal angle of fixed points, etc. Includes area, in-plane normal angle difference, surface continuity, perimeter contact angle, and cross-sectional shape. In order to calculate these features, we mainly refer to the mesh data together with the acquired geometry shape information.
  • feature means, for example, (1) “Overall shape”: Twisted uneven plate with holes (2) “Draw bead”: Strip-shaped uneven part to be made on a flat surface (3) “Fillet”: Sharpened corners It refers to the “shape” (or the word that indicates it) such as a part, and is called “shape”.
  • each surface is classified based on the acquired information and features. After acquiring the data and calculating the characteristics of each surface, each surface is classified into 5 different types (plane, fillet, cylinder, sphere, curved surface). In order to classify each surface, it is confirmed whether it has a specific feature depending on the surface type to be classified.
  • the curvature of the surface As a fillet surface, the curvature of the surface, the curvature of the outer circumference, the outer circumference length, the width of the surface, the fixed points on the outer circumference, the length ratio of the paired outer circumference pair, the outer circumference Inspect the circular shape, the inner angle of the fixed point, the area, the continuity of the surface, the contact angle of the outer circumference, and the cross-sectional shape. Fillets, cylinders, spheres, and curved surfaces are all considered curved surfaces in the first place. Then distinguish them from different features. Also, a cylinder and a sphere can be fillets. If they have a certain form of continuity with the adjacent surface, they are considered fillets.
  • a complex part consisting of multiple surfaces is recognized.
  • 2D holes on the plate shape model, 3D holes on the solid model, stepped holes such as counterbore, steps, embossing, flanges, fillet flow, chamfers, corner fillets, thin surfaces between fillets, ribs, grooves Use the surface types and other information classified in the second step to recognize parts such as, gear teeth, and screws.
  • Other information used to recognize the part includes the combination of face types, the positional relationship between the faces, the size of the part, and the cross-sectional shape when a composite shape is formed by a plurality of faces.
  • the specific part recognized through the above three steps is stored in the system together with CAD information, mesh area information, and shape data at the time of recognition, and is used when creating a mesh according to the rules. ..
  • shape data such as characteristic information is associated with each classification information corresponding to the classification of the object.
  • the division information is a surface symbol and / or a number corresponding to a surface (hereinafter, also referred to as a surface).
  • the surface means one unit that constitutes an object in three-dimensional CAD data. That is, the surface is obtained by dividing the surface of the object into a plurality of surfaces for convenience in order to grasp the position of each shape on the object, and each of the plurality of surfaces is given a symbol and / or a number. Will be done.
  • shape data such as characteristic information associated with each classification information may be registered in advance in the database DB. In this case, the shape recognition step can be omitted.
  • the control unit 110 determines a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into a plurality of surfaces (surfaces). ..
  • FIG. 3 is an explanatory diagram showing an example of the surface of the division information F12 of a part of the object.
  • the surface shown in FIG. 3 illustrates the surface of the classification information F12 of the rounded thick portion (fillet) which is the root of the rising portion of the rib-shaped rib shown in FIG. 8 to be described later.
  • the area a1 As information on each surface, the area a1, the lines L1 to L4 and the number of lines constituting the outer shape of each surface, the lengths of the respective lines L1 to L4, and the maximum line length (L1 (or L3 in this example)).
  • the determination step is Cross product calculation step to obtain the outer product vector by the normal vector (out-of-plane vector) of the surface (reference surface) of the first division information and the tangential vector in which the surface of the first division information and the surface of the second division information are in contact with each other.
  • FIG. 4 to 6 are explanatory views of the object determination process by the shape data processing device 100. Further, FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device 100.
  • the outer product calculation step one surface registered in the database DB is set as the surface of the first division information F1 (reference surface), and another surface of the other division information adjacent to the surface is used as the surface of the second division information F2. (S1).
  • the plane (reference plane) of the first division information F1 is basically a plane.
  • the outer product vector D is obtained from the vector B in the tangential direction in which the surface of F2 is in contact.
  • the inner product of the outer product vector D obtained in the outer product calculation step and the normal vector (outside vector) C of the surface of the second division information F2 is obtained (S2), and the calculation result is determined. Enter in.
  • the surface shape of the surface of the second division information F2 with respect to the surface of the first division information F1 is determined based on the input calculation result.
  • the surface of the second division information F2 is concave (FIG. 4). (See) to determine the shape identification information (+1) (S4).
  • the calculation result is not a positive value (S3: No)
  • it is determined whether or not the calculation result is a negative value (S5)
  • the calculation result shows a negative value (S5: Yes).
  • the shape identification information (-1) is determined (S6) by using the surface of the second division information F2 as a convex surface (see FIG. 5).
  • step S5 when the calculation result is not a negative value (step S5: No), it is determined whether or not the calculation result is a zero value (S7), and when the calculation result indicates a zero value (S7: Yes). ),
  • the shape identification information (0) is determined on the assumption that the surface of the second division information F2 is a plane continuous with the surface of the first division information F1 (see FIG. 6) (S8). If No is determined even in S7, error processing (S11) is executed to move to S9.
  • the surface of the adjacent surface that bites into the surface when viewed from the reference surface always has a negative value, and the surface that extends outside the surface always has a positive value. I am using.
  • the control unit 110 acquires a plurality of characteristic information related to the shapes of the plurality of surfaces.
  • the characteristic information is the characteristic information recognized in the shape recognition step or the characteristic information registered in advance. Examples of the characteristic information include the width, length, curvature of the surface (surface), and the coordinates of the inflection point at which the shape is switched within the surface (surface).
  • control unit 110 sets the shape identification information (+1, -1, 0) determined in the determination step and the characteristic information acquired in the acquisition step adjacent to each other for each division information corresponding to the division. It is registered in the database DB in association with the adjacent classification information corresponding to the classification.
  • the shape identification information of the surface when shows a value of zero is classified by (0), and these shape identification information and the corresponding characteristic information are registered in the database DB in association with the adjacent classification information for each classification information.
  • the shape of the object can be extracted (that is, specified) by the combination of these shape identification information (+1, -1, 0) in the subsequent processing such as search.
  • FIG. 8 illustrates the processing result when the above determination processing is applied to the specific shape portion of the object 10.
  • the result of applying the above determination process to the rib shape is shown, and the result of the inner product calculation is positive (+) on the surface of the rounded thick portion (fillet) which is the base of the rising portion of the rib.
  • the shape identification information is +1 and the result of the inner product calculation is minus ( ⁇ ) and the shape identification information is -1 on the surface of the tip (end) of the rib.
  • FIG. 9 shows a part of the shape data of the object 10 shown in FIG. 8 in the database DB [classification information F11 to F22, shape identification information (+1, -1, 0), adjacent classification information F11 to F22, characteristic information (characteristics). It is a chart which shows an example of the data structure of the value 1 to characteristic value n) (n is an integer of 2 or more)].
  • the length D 10 mm is registered as the characteristic value 2
  • shape data is also registered in F12 to F22 in the same manner.
  • the control unit 110 receives an input operation for changing the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n).
  • change values of shape identification information (+1, -1, 0) and characteristic information (characteristic value 1 to characteristic value n) are accepted.
  • FIG. 10 is a schematic diagram showing an example of an input screen G for inputting change values of shape identification information (+1, -1, 0) and characteristic information (characteristic value 1 to characteristic value n).
  • the input screen G is divided into a first input screen G1 and a second input screen G2.
  • the classification information F22 in the illustrated example
  • the second input screen G2 is displayed.
  • the second input screen G2 On the second input screen G2, adjacent classification information (F21, F16, F19, F12 in the illustrated example) corresponding to the classification information (F22 in the illustrated example) input on the first input screen G1 is displayed.
  • shape identification information (0, -1, 0, -1 in the illustrated example) and characteristic information (width 20 mm, length in the illustrated example) corresponding to the classification information (F22 in the illustrated example) input on the first input screen G1.
  • 18 mm, curvature 0, ..., Inflection point coordinates are displayed so that they can be changed and input.
  • the control unit 110 receives shape identification information (+1, -1, 0), characteristic information (characteristic value 1 to characteristic value n), and adjacent classification information for each division information (F11 to F22) stored in the database DB. From (F11 to F22), the classification information (F11 to F22) and the adjacent classification information (F11 to F22) are connected to specify the shape of the object 10.
  • the surface of the division information F22 is a plane (curvature 0) having a width W of 20 mm and a length D of 18 mm, is adjacent to the surfaces of the division information F21 and F19 in a plane, and is adjacent to the surfaces of the division information F16 and F12.
  • the shape of the object 10 can be specified by performing the recognition processing in the same manner for the other surfaces adjacent to the classification information F22 and all the surfaces adjacent to the classification information F11 to F21.
  • control unit 110 determines the object 10 by changing the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n) changed in the reception step. Identify the shape of.
  • control unit 110 outputs the shape of the object 10 specified in the specific step to the display device 141 or the printing device 142.
  • a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object 10 is determined, and a plurality of shapes related to the shapes of the plurality of surfaces are determined.
  • the characteristic information (characteristic value 1 to characteristic value n) is acquired, and the determined shape identification information (+1, -1, 0) and the acquired characteristic information (characteristic value 1 to characteristic value n) are classified into classification information (F11 to F22).
  • the shape identification information (+1, -1, 0) and the characteristic information (characteristic value 1 to characteristic value n) are stored in the classification information (F11 to F11). It can be associated with each F22). Therefore, it is possible to specify which category and what shape the surface shape of the segmented object 10 is, which makes it possible to use it in the technical field of CAD. Further, since the classification information (F11 to F22) is associated with the adjacent classification information (F11 to F22), the connection between the classification information (F11 to F22) and the adjacent classification information (F11 to F22) can be recognized. As a result, the shape of the object 10 can be easily specified. Moreover, even if the object 10 has a complicated shape, it can have a simple data structure, which makes it possible to simplify the control configuration and, by extension, increase the processing speed.
  • the control unit 110 includes shape identification information (+1, -1, 0), characteristic information (characteristic value 1 to characteristic value n), and adjacent to each division information (F11 to F22) stored in the database DB.
  • the shape of the object 10 is specified by connecting the classification information (F11 to F22) and the adjacent classification information (F11 to F22) from the classification information (F11 to F22), and the shape of the specified target 10 is output.
  • the user can use the shape identification information (+1, -1,0), the characteristic information (characteristic value 1 to the characteristic value n), and the adjacent classification information (characteristic value 1 to characteristic value n) for each division information (F11 to F22) stored in the database DB.
  • the shape of the object 10 output from F11 to F22) can be confirmed.
  • model change when designing a new object from the current object 10 (so-called model change), it is desired to design a new object by easily changing the shape and / or shape characteristics of the current object 10. It is rare.
  • the control unit 110 accepts and changes the input operation for changing the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n).
  • the shape of the object 10 is specified by the changed value of the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n). By doing so, it is possible to easily change the shape and / or characteristics of the current object 10 and easily design a new object.
  • the control unit 110 may include a plurality of processors that separately process the classification information (F11 to F22).
  • the control unit 110 can perform parallel processing by a plurality of processors.
  • the first processor is assigned to the division information F11 to F14
  • the second processor is assigned to the division information F15 to F18
  • the third processor is assigned to the division information F19 to F12, respectively, and the first processor, the second processor, and the second processor are assigned.
  • Parallel processing can be performed by 3 processors. By doing so, parallel processing can be easily performed, and thereby, further high-speed processing can be realized with a simple control configuration.
  • FIG. 11 is a block diagram showing another example of the hardware configuration of the shape data processing device 100.
  • the control unit 110 realizes various functions required for the control unit 110 by executing the shape data processing program Pb stored (installed) in advance in the recording device 121 of the storage unit 120. It is configured as follows. Specifically, the control unit 110 performs various processes by loading and executing a software program such as the shape data processing program Pb previously stored in the recording device 121 on the RAM 122b of the memory device 122. The shape data processing program Pb acquired from the reading unit 130 is stored in the recording device 121 in advance. The shape data processing program Pb is recorded in advance on the recording medium M.
  • the shape data processing program Pb is not limited to the one acquired via a recording medium such as a CD-ROM, and may be downloaded via a communication means such as the Internet.
  • the control unit 110 includes three-dimensional CAD data input means Qb1, determination means Qb2, conversion means Qb3, generation means Qb4, registration means Qb5, shape specifying means Qb6, data reception means Qb7, and output means Qb8. Functions as a means of providing. That is, the shape data processing program Pb includes a three-dimensional CAD data input step, a determination step, a conversion step, a generation step, a registration step, a shape specifying step, a data reception step, and an output step. Let the control unit 110 execute.
  • FIG. 12 is a flowchart showing another example of the processing procedure of the shape data processing device 100.
  • each processing of three-dimensional CAD data input, shape identification information determination, image element conversion, image data generation, database registration, shape identification, data reception, and information output is performed.
  • 3D CAD data input In the 3D CAD data input step, the control unit 110 inputs 3D CAD data (3D CAD model), which is the shape data of the object (product) created by the 3D CAD, from the reading unit 130.
  • the control unit 110 determines a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into a plurality of surfaces (surfaces). ..
  • the determination step is the same as the determination step described with reference to FIGS. 3 to 7 in the above-described first embodiment, and the description thereof will be omitted here.
  • FIG. 13 illustrates the processing result when the above determination processing is applied to the specific shape portion of the object 10 as in the first embodiment.
  • the result of applying the above determination process to the rib shape is shown, and the result of the inner product calculation is positive (+) on the surface of the rounded thick portion (fillet) which is the base of the rising portion of the rib.
  • the shape identification information is +1 and the result of the inner product calculation is minus ( ⁇ ) and the shape identification information is -1 on the surface of the tip (end) of the rib.
  • the control unit 110 corresponds the plurality of shape identification information (combination of -1, 0, +1) determined in the determination step to the plurality of shape identification information (combination of -1, 0, +1). Convert to image elements (M11 to M22 ).
  • the image element (Mxy: x, y is an integer of 1 or more) may be any as long as the individual image elements can be distinguished from each other. For example, of hue, saturation, and lightness. Color images with different colors, monotone images with different brightness from white to black, horizontal line patterns, vertical line patterns, lattice patterns, diagonal line patterns, dot patterns, and other pattern patterns with different patterns. Images, letters, numbers, and kanji. Examples include character images and text images in which characters such as hiragana and katakana are different from each other, or image elements such as a combination image in which at least two of these are combined.
  • the control unit 110 In the generation step, the control unit 110 generates image data MD for shape identification from the image elements (M11 to M22 ...) Converted in the conversion step in a predetermined arrangement order.
  • the predetermined arrangement order is the arrangement order from one end to the other end of the surfaces adjacent to each other in the predetermined arrangement direction among the plurality of surfaces.
  • the arrangement order for example, the arrangement order of the rows along the first horizontal direction H1, the arrangement order of the columns along the second horizontal direction H2 orthogonal to the first horizontal direction H1, the vertical direction V, and the vertical direction.
  • the order of the rows on one side (front side) along the direction V and the order of the rows on the other side (back side) along the vertical direction V can be mentioned.
  • the control unit 110 registers the image data MDs for shape identification generated in the generation step in the database DB in a predetermined order.
  • the shape of the object can be specified by the image pattern of the image data MD for shape identification.
  • the control unit 110 registers the image data MD for shape identification generated in the generation step in the database DB in association with a predetermined arrangement order.
  • FIG. 14 is a chart schematically showing an example of an image data MD for shape identification of a part of the object 10 shown in FIG. 13 in the database DB and a corresponding data structure in a predetermined arrangement order.
  • the shape identification information (-1, + 1, -1, 0) corresponding to the classification information F11 is "red” as an image element (M11).
  • the shape identification information (-1, + 1, -1, + 1) corresponding to the classification information F12 is "yellowish red” as an image element (M12).
  • the shape identification information (-1, -1, -1, + 1) corresponding to the classification information F13 is "yellow” as an image element (M13).
  • the shape identification information (-1, -1, -1, -1) corresponding to the classification information F14 is "yellowish green" as an image element (M14).
  • the shape identification information (-1, -1, +1, -1) corresponding to the classification information F15 is "green” as an image element (M15).
  • the shape identification information (+1, -1, +1, -1) corresponding to the classification information F16 is "blue-green” as an image element (M16).
  • the shape identification information (-1, ..., -1, + 1) corresponding to the classification information F17 is registered as an image element (M17) in "blue", ... In the image data MD for shape identification.
  • the shape identification information (-1, + 1, -1, 0) corresponding to the classification information F11 is "red” as an image element (M11).
  • the shape identification information (-1, + 1, -1, + 1) corresponding to the classification information F12 is "yellowish red” as an image element (M12).
  • the shape identification information (-1, -1, -1, -1) corresponding to the classification information F14 is "yellowish green” as an image element (M14).
  • the shape identification information (+1, -1, +1, -1) corresponding to the classification information F16 is "blue-green" as an image element (M16).
  • the shape identification information (-1, ..., -1, + 1) corresponding to the classification information F17 is registered as an image element (M17) in "blue", ... In the image data MD for shape identification.
  • the shape identification information (-1, 0, -1, 0) corresponding to the classification information F18 is "blue-purple” as an image element (M18).
  • the shape identification information (0,0, -1,0) corresponding to the classification information F19 is “purple” as an image element (M19).
  • the shape identification information (0, -1, 0, -1) corresponding to the classification information F20 is “purple red” as an image element (M20).
  • the shape identification information (-1, -1, 0, -1) corresponding to the classification information F21 is "brown” as an image element (M21).
  • FIG. 15 is an output image output using the image data MD for shape identification including the image elements M11, ..., M22, ... Shown in FIG.
  • the image data MD for shape identification shown in FIG. 15 is a pattern image for convenience of display, but is actually a color image.
  • the image data MD for shape identification may be a pattern image as described above.
  • shape identification In the shape identification step, the control unit 110 identifies the shape of the object 10 from the image data MD for shape identification by using the image processing technique.
  • image processing techniques can be used.
  • image processing technology an image processing technology using AI (artificial intelligence) can be exemplified.
  • Machine learning is used as the image processing technology by AI. Machine learning finds rules such as image trends and features from a huge amount of image data, and analyzes and predicts from those rules.
  • shape identification for shape information (for example, rib shape information) is performed by shape information (for example, rib shape information), image data for shape identification composed of corresponding image elements, and a predetermined arrangement order.
  • AI learning software learn the arrangement pattern of each image element in the image data for use.
  • the control unit 110 can specify the shape (for example, the rib shape as shown in FIG. 13) from the arrangement pattern of each image element in the image data for shape identification.
  • control unit 110 In the data reception step, the control unit 110 provides characteristic information such as the width, length, curvature, and inflection point coordinates at which the shape is switched within the surface (surface) with respect to the shape of the specified object 10. Accepts input operations to change.
  • control unit 110 changes the shape of the specified object 10 into the shape of the characteristic information received in the data reception step and outputs the shape to the display device 141 or the printing device 142.
  • a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into a plurality of surfaces (surfaces) is determined.
  • the determined plurality of shape identification information (combination of -1, 0, +1) is converted into image elements (M11 to M22 %)
  • the shape of the object 10 can be specified from. Therefore, it is possible to specify which category and what shape the surface shape of the segmented object 10 is, which makes it possible to use it in the technical field of CAD.
  • the predetermined arrangement order is the arrangement order from one end to the other end of the surfaces adjacent to each other in a predetermined arrangement direction (for example, the first horizontal direction H1) among the plurality of surfaces.
  • a control operation for generating an image data MD for shape identification can be easily realized.
  • the shape of the object 10 can be accurately specified by image processing technology (particularly image processing technology by AI).
  • the present invention relates to a technique for converting three-dimensional shape data into one-dimensional shape data or two-dimensional shape data, and can be particularly applied to the technical field of CAD.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)

Abstract

This shape data processing device, this shape data processing method, and this shape data processing program determine a plurality of shape identification information pieces corresponding respectively to the shapes of a plurality of faces of an object for which the surface has been segmented into the plurality of faces. A plurality of characteristic information pieces relating respectively to the plurality of face shapes are acquired. The determined shape identification information pieces and the acquired characteristic information pieces are registered in a database in association with an adjacent segment information piece corresponding to an adjacent segment which is adjacent to a given segment, for each segment information piece corresponding to the given segment. Or, the determined plurality of shape identification information pieces are converted into image elements corresponding to the plurality of shape identification information pieces, shape identification image data pieces are generated in a predetermined prescribed order from the converted image elements, and the generated shape identification image data pieces are registered in the database in the prescribed order.

Description

形状データ処理装置、形状データ処理方法及び形状データ処理プログラムShape data processing device, shape data processing method and shape data processing program
 本発明は、形状データ処理装置、形状データ処理方法及び形状データ処理プログラムに関する。 The present invention relates to a shape data processing apparatus, a shape data processing method, and a shape data processing program.
 特許文献1には、構造解析等のCAE(Computer Aided Engineering:コンピュータ支援エンジニアリング)の技術分野において区分された対象物の表面形状を複数の記号(+,-,0)を用いて判定する技術が開示されている。 Patent Document 1 describes a technique for determining the surface shape of an object classified in the technical field of CAE (Computer Aided Engineering: Computer Aided Engineering) such as structural analysis by using a plurality of symbols (+,-, 0). It is disclosed.
国際公開第2017/175349号International Publication No. 2017/175349
 ところで、CAD(Computer-Aided Design:コンピュータ支援設計)の技術分野においては、区分された対象物の表面形状の判定結果を利用して対象物の形状を出力することが望まれている。 By the way, in the technical field of CAD (Computer-Aided Design: computer-aided design), it is desired to output the shape of an object by using the determination result of the surface shape of the classified object.
 しかしながら、特許文献1の開示技術では、区分された対象物の表面形状がどこの区分のものでどのような形状のものであるかを特定できないため、CADの技術分野に利用することができていないのが実情である。 However, in the disclosed technology of Patent Document 1, since it is not possible to specify which category and what shape the surface shape of the classified object is, it can be used in the technical field of CAD. The reality is that there is no such thing.
 そこで、本発明は、区分された対象物の表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野に利用することができる形状データ処理装置、形状データ処理方法及び形状データ処理プログラムを提供することを目的とする。 Therefore, the present invention can specify which category and what shape the surface shape of the classified object is, and can be used in the technical field of CAD. An object of the present invention is to provide a shape data processing apparatus, a shape data processing method, and a shape data processing program.
 本発明は、前記課題を解決するため、次の第1態様及び第2態様の形状データ処理装置、第1態様及び第2態様の形状データ処理方法及び第1態様及び第2態様の形状データ処理プログラムを提供する。 In order to solve the above problems, the present invention has the following first and second aspects of shape data processing apparatus, first and second aspects of shape data processing methods, and first and second aspects of shape data processing. Provide a program.
 (1-1)第1態様の形状データ処理装置
 本発明の第1態様に係る形状データ処理装置は、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定手段と、前記複数の面の形状にそれぞれ関係する複数の特性情報を取得する取得手段と、前記判定手段にて判定した前記形状識別情報と前記取得手段にて取得した前記特性情報とを前記区分に対応する区分情報毎に前記区分に隣接する隣接区分に対応する隣接区分情報と関連付けてデータベースに登録する登録手段とを備えることを特徴とする。
(1-1) Shape Data Processing Device of the First Aspect The shape data processing device according to the first aspect of the present invention corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces. A determination means for determining a plurality of shape identification information, an acquisition means for acquiring a plurality of characteristic information related to the shapes of the plurality of surfaces, and the shape identification information and the acquisition means determined by the determination means. It is characterized by including a registration means for registering the acquired characteristic information in a database in association with the adjacent division information corresponding to the adjacent division adjacent to the division for each division information corresponding to the division.
 (1-2)第1態様の形状データ処理方法
 本発明の第1態様に係る形状データ処理方法は、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定ステップと、前記複数の面の形状にそれぞれ関係する複数の特性情報を取得する取得ステップと、前記判定ステップにて判定した前記形状識別情報と前記取得ステップにて取得した前記特性情報とを前記区分に対応する区分情報毎に前記区分に隣接する隣接区分に対応する隣接区分情報と関連付けてデータベースに登録する登録ステップとを含むことを特徴とする。
(1-2) Shape data processing method of the first aspect The shape data processing method according to the first aspect of the present invention corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces. A determination step for determining a plurality of shape identification information, an acquisition step for acquiring a plurality of characteristic information related to the shapes of the plurality of surfaces, and the shape identification information and the acquisition step determined in the determination step. It is characterized by including a registration step of associating the acquired characteristic information with the adjacent division information corresponding to the adjacent division adjacent to the division and registering the acquired characteristic information in the database for each division information corresponding to the division.
 (1-3)第1態様の形状データ処理プログラム
 本発明の第1態様に係る形状データ処理プログラムは、前記本発明の第1態様に係る形状データ処理方法の各ステップを、コンピュータに実行させるためのものである。
(1-3) Shape data processing program according to the first aspect The shape data processing program according to the first aspect of the present invention causes a computer to execute each step of the shape data processing method according to the first aspect of the present invention. belongs to.
 (2-1)第2態様の形状データ処理装置
 本発明の第2態様に係る形状データ処理装置は、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定手段と、前記判定手段にて判定した前記複数の形状識別情報を該複数の形状識別情報に対応する画像要素に変換する変換手段と、前記変換手段にて変換した前記画像要素から予め定めた所定の並び順で形状識別用の画像データを生成する生成手段と、前記生成手段にて生成した前記形状識別用の画像データを所定の並び順でデータベースに登録する登録手段とを備えることを特徴とする。
(2-1) Shape Data Processing Device of the Second Aspect The shape data processing device according to the second aspect of the present invention corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces. A determination means for determining a plurality of shape identification information, a conversion means for converting the plurality of shape identification information determined by the determination means into image elements corresponding to the plurality of shape identification information, and a conversion means for converting the plurality of shape identification information. The generation means for generating the image data for shape identification from the said image elements in a predetermined order, and the image data for shape identification generated by the generation means are registered in the database in the predetermined order. It is characterized by having a registration means.
 (2-2)第2態様の形状データ処理方法
 本発明の第2態様に係る形状データ処理方法は、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定ステップと、前記判定ステップにて判定した前記複数の形状識別情報を該複数の形状識別情報に対応する画像要素に変換する変換ステップと、前記変換ステップにて変換した前記画像要素から予め定めた所定の並び順で形状識別用の画像データを生成する生成ステップと、前記生成ステップにて生成した前記形状識別用の画像データを所定の並び順でデータベースに登録する登録ステップとを含むことを特徴とする。
(2-2) Shape Data Processing Method of the Second Aspect The shape data processing method according to the second aspect of the present invention corresponds to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces. A determination step for determining a plurality of shape identification information, a conversion step for converting the plurality of shape identification information determined in the determination step into image elements corresponding to the plurality of shape identification information, and a conversion step for converting the plurality of shape identification information. The generation step of generating the image data for shape identification from the image elements in a predetermined order and the image data for shape identification generated in the generation step are registered in the database in the predetermined order. It is characterized by including a registration step.
 (2-3)第2態様の形状データ処理プログラム
 本発明の第2態様に係る形状データ処理プログラムは、前記本発明の第2態様に係る形状データ処理方法の各ステップを、コンピュータに実行させるためのものである。
(2-3) Shape data processing program according to the second aspect The shape data processing program according to the second aspect of the present invention causes a computer to execute each step of the shape data processing method according to the second aspect of the present invention. belongs to.
 本発明によれば、区分された対象物の表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野に利用することが可能となる。 According to the present invention, it is possible to specify which category and what shape the surface shape of the classified object is, and thereby it can be used in the technical field of CAD. It becomes.
図1は、形状データ処理装置のハードウェア構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a hardware configuration of a shape data processing device. 図2は、形状データ処理装置の処理手順の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus. 図3は、対象物の一部の区分情報の面の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a surface of a part of the division information of the object. 図4は、形状データ処理装置による対象物の判定処理の説明図である。FIG. 4 is an explanatory diagram of an object determination process by the shape data processing device. 図5は、形状データ処理装置による対象物の判定処理の説明図である。FIG. 5 is an explanatory diagram of an object determination process by the shape data processing device. 図6は、形状データ処理装置による対象物の判定処理の説明図である。FIG. 6 is an explanatory diagram of an object determination process by the shape data processing device. 図7は、形状データ処理装置による対象物の判定処理の手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device. 図8は、判定処理を対象物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the object. 図9は、データベースにおいて図8に示す対象物の一部の形状データのデータ構造の一例を概略的に示す図表である。FIG. 9 is a chart schematically showing an example of a data structure of a part of the shape data of the object shown in FIG. 8 in the database. 図10は、形状識別情報及び特性情報の変更値を入力するための入力画面の一例を示す模式図である。FIG. 10 is a schematic diagram showing an example of an input screen for inputting change values of shape identification information and characteristic information. 図11は、形状データ処理装置のハードウェア構成の他の例を示すブロック図である。FIG. 11 is a block diagram showing another example of the hardware configuration of the shape data processing device. 図12は、形状データ処理装置の処理手順の他の例を示すフローチャートである。FIG. 12 is a flowchart showing another example of the processing procedure of the shape data processing apparatus. 図13は、判定処理を対象物の具体的な形状部分に当てはめたときの処理結果を例示している。FIG. 13 illustrates the processing result when the determination processing is applied to the specific shape portion of the object. 図14は、データベースにおいて図13に示す対象物の一部の画像データ及びそれに対応する所定の並び順のデータ構造の一例を概略的に示す図表である。FIG. 14 is a chart schematically showing an example of image data of a part of the object shown in FIG. 13 in the database and a data structure of a predetermined arrangement order corresponding thereto. 図15は、図14に示す画像要素からなる形状識別用の画像データを用いて出力した出力画像である。FIG. 15 is an output image output using image data for shape identification composed of the image elements shown in FIG.
 以下、本発明に係る実施の形態について図面を参照しながら説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称及び機能も同じである。従って、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of them will not be repeated.
 <第1実施形態>
 [第1実施形態に係る形状データ処理装置のハードウェア構成]
 先ず、第1実施形態に係る形状データ処理装置100のハードウェア構成について図1を参照しながら以下に説明する。
<First Embodiment>
[Hardware configuration of the shape data processing device according to the first embodiment]
First, the hardware configuration of the shape data processing device 100 according to the first embodiment will be described below with reference to FIG.
 図1は、形状データ処理装置100のハードウェア構成の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of the hardware configuration of the shape data processing device 100.
 図1に示すように、形状データ処理装置100は、制御部110(コンピュータ)、記憶部120、読取部130及び出力部140を備えている。制御部110は、記憶部120の記録装置121に予め格納(インストール)された形状データ処理プログラムPaを実行することによって、制御部110に必要な各種の機能を実現させるように構成されている。詳しくは、制御部110は、CPU等のプロセッサーで構成されている。制御部110は、記録装置121に予め格納された形状データ処理プログラムPa等のソフトウェアプログラムをメモリ装置122のRAM122b上にロードして実行することにより、各種の処理を行う。記憶部120は、ROM122a、RAM122b等のメモリ装置122、及び、フラッシュメモリ、ハードディスク装置等の記録装置121を備えている。記録装置121には、読取部130から取得した形状データ処理プログラムPaが予め格納される。出力部140は、液晶表示パネル等の表示装置141と、レーザープリンタ等の印刷装置142を備えている。表示装置141は、制御部110からの出力表示情報を表示画面に表示する。印刷装置142は、制御部110からの出力表示情報を印刷する。読取部130は、CD-ROM等の記録媒体Mを読み取る読取装置131を備えている。記録媒体Mには、形状データ処理プログラムPaが予め記録されている。なお、記録媒体Mは、CD-ROM等の記録ディスクの他、他の各種の記録媒体であってもよい。また、形状データ処理プログラムPaは、CD-ROM等の記録媒体を介して取得したものには限定されず、インターネット等の通信手段を介してダウンロードされたものであってもよい。 As shown in FIG. 1, the shape data processing device 100 includes a control unit 110 (computer), a storage unit 120, a reading unit 130, and an output unit 140. The control unit 110 is configured to realize various functions required by the control unit 110 by executing the shape data processing program Pa stored in advance in the recording device 121 of the storage unit 120. Specifically, the control unit 110 is composed of a processor such as a CPU. The control unit 110 performs various processes by loading and executing a software program such as the shape data processing program Pa stored in the recording device 121 in advance on the RAM 122b of the memory device 122. The storage unit 120 includes a memory device 122 such as a ROM 122a and a RAM 122b, and a recording device 121 such as a flash memory and a hard disk device. The shape data processing program Pa acquired from the reading unit 130 is stored in the recording device 121 in advance. The output unit 140 includes a display device 141 such as a liquid crystal display panel and a printing device 142 such as a laser printer. The display device 141 displays the output display information from the control unit 110 on the display screen. The printing device 142 prints the output display information from the control unit 110. The reading unit 130 includes a reading device 131 that reads a recording medium M such as a CD-ROM. The shape data processing program Pa is pre-recorded on the recording medium M. The recording medium M may be a recording disc such as a CD-ROM, or any other recording medium. Further, the shape data processing program Pa is not limited to the one acquired via a recording medium such as a CD-ROM, and may be downloaded via a communication means such as the Internet.
 [第1実施形態に係る形状データ処理装置のソフトウェア構成]
 次に、第1実施形態に係る形状データ処理装置100のソフトウェア構成について図1を参照しながら以下に説明する。
[Software configuration of shape data processing device according to the first embodiment]
Next, the software configuration of the shape data processing device 100 according to the first embodiment will be described below with reference to FIG.
 制御部110は、3次元CADデータ入力手段Qa1と、形状認識手段Qa2と、判定手段Qa3と、取得手段Qa4と、登録手段Qa5と、受付手段Qa6と、特定手段Qa7と、出力手段Qa8とを備える手段として機能する。すなわち、形状データ処理プログラムPaは、3次元CADデータ入力ステップと、形状認識ステップと、判定ステップと、取得ステップと、登録ステップと、受付ステップと、特定ステップと、出力ステップとを含むステップを制御部110に実行させる。 The control unit 110 includes three-dimensional CAD data input means Qa1, shape recognition means Qa2, determination means Qa3, acquisition means Qa4, registration means Qa5, reception means Qa6, specific means Qa7, and output means Qa8. It functions as a means to prepare. That is, the shape data processing program Pa controls a step including a three-dimensional CAD data input step, a shape recognition step, a determination step, an acquisition step, a registration step, a reception step, a specific step, and an output step. Let unit 110 execute.
 [第1実施形態に係る形状データ処理装置の処理手順]
 図2は、形状データ処理装置100の処理手順の一例を示すフローチャートである。
[Processing procedure of the shape data processing device according to the first embodiment]
FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing device 100.
 形状データ処理装置100の処理手順の一例では、3次元CADデータ入力、形状認識、形状識別情報判定、特性情報取得、データベース登録、変更受付、形状特定、情報出力の各処理を行う。 In an example of the processing procedure of the shape data processing device 100, each processing of three-dimensional CAD data input, shape recognition, shape identification information determination, characteristic information acquisition, database registration, change acceptance, shape identification, and information output is performed.
 (3次元CADデータ入力)
 3次元CADデータ入力ステップでは、制御部110は、3次元CADで作成された対象物(製品)の形状データである3次元CADデータ(3次元CADモデル)が読取部130から入力される。
(3D CAD data input)
In the 3D CAD data input step, the control unit 110 inputs 3D CAD data (3D CAD model), which is the shape data of the object (product) created by the 3D CAD, from the reading unit 130.
 (形状認識)
 次に、形状認識ステップでは、制御部110は、3次元CADデータに基づいて形状を認識する。詳しくは、形状認識ステップは、主に3つのステップに分けることができる。
(Shape recognition)
Next, in the shape recognition step, the control unit 110 recognizes the shape based on the three-dimensional CAD data. Specifically, the shape recognition step can be mainly divided into three steps.
 第1ステップでは、3次元CADデータのそれぞれの面情報を取得する。最初に入力された3次元CADデータのそれぞれの面にフリーメッシュを作成し、特徴計算のためのデータベース(この例ではデータベースDB)を構築する。かかる特徴は、例えば、面の曲率、外周の曲率、外周長さ、外周上の固定点、対になる外周ペアの長さ比、外周の円形状、円筒形状、球面度、固定点の内角、面積、面内の法線方向角度差、サーフェス連続性、外周の接触角度、そして断面形状が含まれる。これらの特徴を計算するために、取得したジオメトリ形状の情報とともにメッシュデータを主に参照する。 In the first step, each surface information of the 3D CAD data is acquired. A free mesh is created on each surface of the first input 3D CAD data, and a database for feature calculation (database DB in this example) is constructed. Such features include, for example, surface curvature, outer circumference curvature, outer circumference length, fixed points on the outer circumference, length ratio of paired outer circumference pairs, outer circumference circular shape, cylindrical shape, sphericality, internal angle of fixed points, etc. Includes area, in-plane normal angle difference, surface continuity, perimeter contact angle, and cross-sectional shape. In order to calculate these features, we mainly refer to the mesh data together with the acquired geometry shape information.
 本明細書でいう「特徴」とは、例えば、
(1)「全体の形状」:穴の開いている捻じれた凹凸のある板
(2)「ドロービード」:平らな面に作る帯状の凹凸部分
(3)「フィレット」:尖った角を丸く削った部分
などの「形状」(又はそれを示す言葉)をいい、「シェープ」と称される。
The term "feature" as used herein means, for example,
(1) "Overall shape": Twisted uneven plate with holes (2) "Draw bead": Strip-shaped uneven part to be made on a flat surface (3) "Fillet": Sharpened corners It refers to the "shape" (or the word that indicates it) such as a part, and is called "shape".
 また、「特徴=形状」の「起点(頂点、端部を含む)」「切り替わる」部分(但し、3次元CADデータに表現されている「線」すべてがそれに相当するわけではない。)は、「フィーチャー」と称される。 In addition, the "starting point (including vertices and ends)" and "switching" part of "feature = shape" (however, not all "lines" expressed in 3D CAD data correspond to it). Called a "feature".
 第2ステップでは、取得した情報と特徴を元にそれぞれの面を分類分けする。データを取得し、それぞれの面の特徴を計算した後に、それぞれの面を5つの異なるタイプ(平面、フィレット、円筒、球、曲面)に分類する。各面を分類するためには、分類する面タイプによって特定の特徴を有するか確認する。例として、ある面をフィレットの面だとみなすためには、面の曲率、外周の曲率、外周長さ、面の幅、外周上の固定点、対になる外周ペアの長さ比、外周の円形状、固定点の内角、面積、サーフェスの連続性、外周の接触角度、そして断面形状を検査する。フィレット、円筒、球、そして曲面は全て最初の段階では曲面とみなす。その後異なる特徴からそれらを区別する。また、円筒と球とはフィレットになり得る。それらが特定の形で隣接面との連続性がある場合はフィレットとみなす。 In the second step, each surface is classified based on the acquired information and features. After acquiring the data and calculating the characteristics of each surface, each surface is classified into 5 different types (plane, fillet, cylinder, sphere, curved surface). In order to classify each surface, it is confirmed whether it has a specific feature depending on the surface type to be classified. As an example, to consider a surface as a fillet surface, the curvature of the surface, the curvature of the outer circumference, the outer circumference length, the width of the surface, the fixed points on the outer circumference, the length ratio of the paired outer circumference pair, the outer circumference Inspect the circular shape, the inner angle of the fixed point, the area, the continuity of the surface, the contact angle of the outer circumference, and the cross-sectional shape. Fillets, cylinders, spheres, and curved surfaces are all considered curved surfaces in the first place. Then distinguish them from different features. Also, a cylinder and a sphere can be fillets. If they have a certain form of continuity with the adjacent surface, they are considered fillets.
 第3ステップでは、複数の面からなる複雑な部位の認識を行う。板形状モデル上の2Dの穴、ソリッドモデル上の3Dの孔、ザグリをはじめとした段付き孔、段差、エンボス、フランジ、フィレット流れ、面取り、角部フィレット、フィレット間の細い面、リブ、溝、ギヤの歯、ネジのような部位を認識するために、第2ステップで分類した面タイプとその他の情報を使用する。部位の認識を行うめに使用したその他の情報には、面タイプの組み合わせ、面同士の位置関係、部位の大きさ、複数の面で複合形状を形成した際の断面形状などがある。 In the third step, a complex part consisting of multiple surfaces is recognized. 2D holes on the plate shape model, 3D holes on the solid model, stepped holes such as counterbore, steps, embossing, flanges, fillet flow, chamfers, corner fillets, thin surfaces between fillets, ribs, grooves Use the surface types and other information classified in the second step to recognize parts such as, gear teeth, and screws. Other information used to recognize the part includes the combination of face types, the positional relationship between the faces, the size of the part, and the cross-sectional shape when a composite shape is formed by a plurality of faces.
 以上、3つのステップを経て認識された特定部位は、CADの情報、メッシュの領域情報、認識した際の形状データをまとめてシステム内部で保持され、ルールに従ったメッシュ作成の際に使用される。 The specific part recognized through the above three steps is stored in the system together with CAD information, mesh area information, and shape data at the time of recognition, and is used when creating a mesh according to the rules. ..
 このとき、データベースDBにおいて、対象物の区分に対応する区分情報毎に特性情報等の形状データが関連付けられている。この例では、区分情報は、サーフェス(以下、面ということもある。)に対応するサーフェス記号及び/又は番号とされている。ここで、サーフェスとは、3次元CADデータにおいて対象物を構成する一単位を意味する。すなわち、サーフェスは、対象物における個々の形状の位置を把握するために、便宜上、対象物の表面をサーフェスで複数に区切ったものであり、複数のサーフェスのそれぞれには記号及び/又は番号が付与される。なお、データベースDBにおいて区分情報毎に関連付けられた特性情報等の形状データが予め登録されていてもよい。この場合、形状認識ステップを省略することができる。 At this time, in the database DB, shape data such as characteristic information is associated with each classification information corresponding to the classification of the object. In this example, the division information is a surface symbol and / or a number corresponding to a surface (hereinafter, also referred to as a surface). Here, the surface means one unit that constitutes an object in three-dimensional CAD data. That is, the surface is obtained by dividing the surface of the object into a plurality of surfaces for convenience in order to grasp the position of each shape on the object, and each of the plurality of surfaces is given a symbol and / or a number. Will be done. In addition, shape data such as characteristic information associated with each classification information may be registered in advance in the database DB. In this case, the shape recognition step can be omitted.
 (形状識別情報判定)
 判定ステップでは、制御部110は、表面を複数の面(サーフェス)に区分された対象物における複数の面の形状のそれぞれに対応する複数の形状識別情報(+1,-1,0)を判定する。
(Shape identification information judgment)
In the determination step, the control unit 110 determines a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into a plurality of surfaces (surfaces). ..
 図3は、対象物の一部の区分情報F12の面の一例を示す説明図である。図3に示す面は、後述する図8に示すリブ形状のリブの立ち上がり部分の根元である丸み肉厚部(フィレット)の区分情報F12の面を例示している。 FIG. 3 is an explanatory diagram showing an example of the surface of the division information F12 of a part of the object. The surface shown in FIG. 3 illustrates the surface of the classification information F12 of the rounded thick portion (fillet) which is the root of the rising portion of the rib-shaped rib shown in FIG. 8 to be described later.
 データベースDBには、各面の情報として、面積a1、各面の外形を構成するラインL1~L4及びライン数、それぞれのラインL1~L4の長さ、最大ライン長(この例ではL1(またはL3)の幅W)、相当ライン幅(=面積a1/最大ライン長L1の長さD)の各情報が、それぞれの区分情報毎に登録されている。 In the database DB, as information on each surface, the area a1, the lines L1 to L4 and the number of lines constituting the outer shape of each surface, the lengths of the respective lines L1 to L4, and the maximum line length (L1 (or L3 in this example)). ) Width W) and equivalent line width (= area a1 / maximum line length L1 length D) are registered for each classification information.
 ここで、データベースDBに登録された一つの面を第1区分情報の第1面(基準面)とし、これに隣接する他の面を第2区分情報の第2面とすると、判定ステップは、第1区分情報の面(基準面)の法線ベクトル(面外ベクトル)と、第1区分情報の面と第2区分情報の面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算ステップと、求めた外積ベクトルと第2区分情報の面の法線ベクトル(面外ベクトル)との内積を求める内積演算ステップと、内積演算ステップの演算結果に基づいて第1区分情報の面に対する第2区分情報の面の表面形状を判定する判定ステップとを含んでいる。 Here, assuming that one surface registered in the database DB is the first surface (reference surface) of the first division information and the other surface adjacent to this is the second surface of the second division information, the determination step is Cross product calculation step to obtain the outer product vector by the normal vector (out-of-plane vector) of the surface (reference surface) of the first division information and the tangential vector in which the surface of the first division information and the surface of the second division information are in contact with each other. And the inner product calculation step for obtaining the inner product of the obtained outer product vector and the normal vector (outside vector) of the surface of the second division information, and the second for the surface of the first division information based on the calculation result of the inner product calculation step. It includes a determination step of determining the surface shape of the surface of the classification information.
 次に、上記構成の判定ステップによる判定処理について、図4から図6に示す説明図及び図7に示すフローチャートを参照しながら以下に説明する。 Next, the determination process by the determination step of the above configuration will be described below with reference to the explanatory diagrams shown in FIGS. 4 to 6 and the flowchart shown in FIG. 7.
 図4から図6は、形状データ処理装置100による対象物の判定処理の説明図である。また、図7は、形状データ処理装置100による対象物の判定処理の手順を示すフローチャートである。 4 to 6 are explanatory views of the object determination process by the shape data processing device 100. Further, FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device 100.
 外積演算ステップでは、データベースDBに登録された一つの面を第1区分情報F1の面(基準面)とし、これに隣接する他の区分情報の面を第2区分情報F2の面として、外積演算を行う(S1)。ここで、第1区分情報F1の面(基準面)は、基本的に平面である。外積演算ステップでは、図4から図6に示すように、第1区分情報F1の面(基準面)の法線ベクトル(面外ベクトル)Aと、第1区分情報F1の面と第2区分情報F2の面とが接する接線方向のベクトルBとにより外積ベクトルDを求める。 In the outer product calculation step, one surface registered in the database DB is set as the surface of the first division information F1 (reference surface), and another surface of the other division information adjacent to the surface is used as the surface of the second division information F2. (S1). Here, the plane (reference plane) of the first division information F1 is basically a plane. In the outer product calculation step, as shown in FIGS. 4 to 6, the normal vector (out-of-plane vector) A of the surface (reference surface) of the first division information F1 and the surface and the second division information of the first division information F1. The outer product vector D is obtained from the vector B in the tangential direction in which the surface of F2 is in contact.
 次に、内積演算ステップでは、外積演算ステップで求めた外積ベクトルDと第2区分情報F2の面の法線ベクトル(面外ベクトル)Cとの内積を求め(S2)、その演算結果を判定ステップに入力する。 Next, in the inner product calculation step, the inner product of the outer product vector D obtained in the outer product calculation step and the normal vector (outside vector) C of the surface of the second division information F2 is obtained (S2), and the calculation result is determined. Enter in.
 判定ステップでは、入力された演算結果に基づいて第1区分情報F1の面に対する第2区分情報F2の面の表面形状を判定する。 In the determination step, the surface shape of the surface of the second division information F2 with respect to the surface of the first division information F1 is determined based on the input calculation result.
 具体的には、演算結果がプラスの値であるか否かを判断し(S3)、演算結果がプラスの値を示すときには(S3:Yes)、第2区分情報F2の面を凹面(図4参照)として形状識別情報(+1)を判定する(S4)。一方、演算結果がプラスの値でない場合には(S3:No)、演算結果がマイナスの値であるか否かを判断し(S5)、演算結果がマイナスの値を示すときには(S5:Yes)、第2区分情報F2の面を凸面(図5参照)として形状識別情報(-1)を判定する(S6)。また、演算結果がマイナスの値でない場合には(ステップS5:No)、演算結果が零の値であるか否かを判断し(S7)、演算結果が零の値を示すときには(S7:Yes)、第2区分情報F2の面を第1区分情報F1の面に連続する平面(図6参照)であるとして形状識別情報(0)を判定する(S8)。なお、S7でもNoと判断された場合には、エラー処理(S11)を実行してS9に移行する。 Specifically, when it is determined whether or not the calculation result is a positive value (S3) and the calculation result shows a positive value (S3: Yes), the surface of the second division information F2 is concave (FIG. 4). (See) to determine the shape identification information (+1) (S4). On the other hand, when the calculation result is not a positive value (S3: No), it is determined whether or not the calculation result is a negative value (S5), and when the calculation result shows a negative value (S5: Yes). , The shape identification information (-1) is determined (S6) by using the surface of the second division information F2 as a convex surface (see FIG. 5). Further, when the calculation result is not a negative value (step S5: No), it is determined whether or not the calculation result is a zero value (S7), and when the calculation result indicates a zero value (S7: Yes). ), The shape identification information (0) is determined on the assumption that the surface of the second division information F2 is a plane continuous with the surface of the first division information F1 (see FIG. 6) (S8). If No is determined even in S7, error processing (S11) is executed to move to S9.
 この後、全ての区分情報の面の処理を終了したか否かを確認し(S9)、全ての区分情報の面の処理を終了していない場合には(S9:Yes)、S1に戻って処理を繰り返す。一方、全ての区分情報の面の処理を終了している場合には(S9:No)、その時点で表面形状の判定処理を終了する。 After that, it is confirmed whether or not the processing of all the classification information surfaces is completed (S9), and if the processing of all the classification information surfaces is not completed (S9: Yes), the process returns to S1. Repeat the process. On the other hand, when the processing of all the classification information surfaces is completed (S9: No), the surface shape determination processing is completed at that point.
 すなわち、本実施の形態では、上記内積演算の結果、隣り合う面が、基準面からみたときに面内に食い込む面は必ずマイナスの値となり、面外に広がる面は必ずプラスの値となることを利用している。 That is, in the present embodiment, as a result of the inner product calculation, the surface of the adjacent surface that bites into the surface when viewed from the reference surface always has a negative value, and the surface that extends outside the surface always has a positive value. I am using.
 (特性情報取得)
 取得ステップでは、制御部110は、複数の面の形状にそれぞれ関係する複数の特性情報を取得する。ここで、特性情報は、形状認識ステップにて認識した特性情報或いは予め登録しておいた特性情報である。特性情報としては、例えば、面(サーフェス)の幅、長さ、曲率、面(サーフェス)内で形状が切り替わる変曲点座標を挙げることができる。
(Acquisition of characteristic information)
In the acquisition step, the control unit 110 acquires a plurality of characteristic information related to the shapes of the plurality of surfaces. Here, the characteristic information is the characteristic information recognized in the shape recognition step or the characteristic information registered in advance. Examples of the characteristic information include the width, length, curvature of the surface (surface), and the coordinates of the inflection point at which the shape is switched within the surface (surface).
 (データベース登録)
 登録ステップでは、制御部110は、判定ステップにて判定した形状識別情報(+1,-1,0)と取得ステップにて取得した特性情報とを区分に対応する区分情報毎に区分に隣接する隣接区分に対応する隣接区分情報と関連付けてデータベースDBに登録する。
(Database registration)
In the registration step, the control unit 110 sets the shape identification information (+1, -1, 0) determined in the determination step and the characteristic information acquired in the acquisition step adjacent to each other for each division information corresponding to the division. It is registered in the database DB in association with the adjacent classification information corresponding to the classification.
 詳しくは、登録ステップは、演算結果がプラスの値を示すときの面の形状識別情報を(+1)、演算結果がマイナスの値を示すときの面の形状識別情報を(-1)、演算結果が零の値を示すときの面の形状識別情報を(0)で分類し、これらの形状識別情報とそれに対応する特性情報とを区分情報毎に隣接区分情報と関連付けてデータベースDBに登録する。これにより、以後に実施される検索等の処理において、これらの形状識別情報(+1,-1,0)の組み合わせにより対象物の形状を抽出(すなわち、特定)することができる。 Specifically, in the registration step, the shape identification information of the surface when the calculation result shows a positive value (+1), the shape identification information of the surface when the calculation result shows a negative value (-1), and the calculation result The shape identification information of the surface when shows a value of zero is classified by (0), and these shape identification information and the corresponding characteristic information are registered in the database DB in association with the adjacent classification information for each classification information. As a result, the shape of the object can be extracted (that is, specified) by the combination of these shape identification information (+1, -1, 0) in the subsequent processing such as search.
 図8は、上記の判定処理を対象物10の具体的な形状部分に当てはめたときの処理結果を例示している。図8に示す例では、リブ形状に上記の判定処理を当てはめた結果を表しており、リブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面は、内積演算の結果がプラス(+)、形状識別情報が+1となり、リブの先端部(端部)の面では、内積演算の結果がマイナス(-)、形状識別情報が-1となっている。 FIG. 8 illustrates the processing result when the above determination processing is applied to the specific shape portion of the object 10. In the example shown in FIG. 8, the result of applying the above determination process to the rib shape is shown, and the result of the inner product calculation is positive (+) on the surface of the rounded thick portion (fillet) which is the base of the rising portion of the rib. ), The shape identification information is +1 and the result of the inner product calculation is minus (−) and the shape identification information is -1 on the surface of the tip (end) of the rib.
 図9は、データベースDBにおいて図8に示す対象物10の一部の形状データ〔区分情報F11~F22、形状識別情報(+1,-1,0)、隣接区分情報F11~F22、特性情報(特性値1~特性値n)(nは2以上の整数)〕のデータ構造の一例を概略的に示す図表である。 FIG. 9 shows a part of the shape data of the object 10 shown in FIG. 8 in the database DB [classification information F11 to F22, shape identification information (+1, -1, 0), adjacent classification information F11 to F22, characteristic information (characteristics). It is a chart which shows an example of the data structure of the value 1 to characteristic value n) (n is an integer of 2 or more)].
 図9に示すデータベースDBにおいて、例えば、区分情報F11には、形状識別情報として-1,+1,-1,0、隣接区分情報として…,F12,F18,…、特性値1として幅W=20mm、特性値2として長さD=10mm、特性値3として曲率=0等が登録されている。以下、F12~F22も同様に形状データが登録されている。 In the database DB shown in FIG. 9, for example, the classification information F11 has -1, +1, -1,0 as shape identification information, ..., F12, F18, ... As adjacent classification information, and a width W = 20 mm as a characteristic value 1. The length D = 10 mm is registered as the characteristic value 2, the curvature = 0 and the like are registered as the characteristic value 3. Hereinafter, shape data is also registered in F12 to F22 in the same manner.
 (変更受付)
 受付ステップでは、制御部110は、形状識別情報(+1,-1,0)及び/又は特性情報(特性値1~特性値n)を変更するための入力操作を受け付ける。この例では、形状識別情報(+1,-1,0)及び特性情報(特性値1~特性値n)の変更値を受け付ける。
(Change reception)
In the reception step, the control unit 110 receives an input operation for changing the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n). In this example, change values of shape identification information (+1, -1, 0) and characteristic information (characteristic value 1 to characteristic value n) are accepted.
 図10は、形状識別情報(+1,-1,0)及び特性情報(特性値1~特性値n)の変更値を入力するための入力画面Gの一例を示す模式図である。 FIG. 10 is a schematic diagram showing an example of an input screen G for inputting change values of shape identification information (+1, -1, 0) and characteristic information (characteristic value 1 to characteristic value n).
 図10に示す例では、入力画面Gは、第1入力画面G1と第2入力画面G2とに分かれている。第1入力画面G1では、ユーザーにより区分情報(図示例ではF22)が入力され、OKボタンBT1が操作されると、第2入力画面G2が表示される。 In the example shown in FIG. 10, the input screen G is divided into a first input screen G1 and a second input screen G2. On the first input screen G1, the classification information (F22 in the illustrated example) is input by the user, and when the OK button BT1 is operated, the second input screen G2 is displayed.
 第2入力画面G2では、第1入力画面G1で入力された区分情報(図示例ではF22)に対応する隣接区分情報(図示例ではF21,F16,F19,F12)が表示される。また、第1入力画面G1で入力された区分情報(図示例ではF22)に対応する形状識別情報(図示例では0,-1,0,-1)及び特性情報(図示例では幅20mm、長さ18mm、曲率0、…、変曲点座標)が変更入力可能に表示される。ユーザーにより形状識別情報及び特性情報が変更され、OKボタンBT2が操作されると、変更受付処理が終了する。 On the second input screen G2, adjacent classification information (F21, F16, F19, F12 in the illustrated example) corresponding to the classification information (F22 in the illustrated example) input on the first input screen G1 is displayed. In addition, shape identification information (0, -1, 0, -1 in the illustrated example) and characteristic information (width 20 mm, length in the illustrated example) corresponding to the classification information (F22 in the illustrated example) input on the first input screen G1. 18 mm, curvature 0, ..., Inflection point coordinates) are displayed so that they can be changed and input. When the shape identification information and the characteristic information are changed by the user and the OK button BT2 is operated, the change acceptance process ends.
 (形状特定)
 特定ステップでは、制御部110は、データベースDBに保存した区分情報(F11~F22)毎の形状識別情報(+1,-1,0)、特性情報(特性値1~特性値n)及び隣接区分情報(F11~F22)から区分情報(F11~F22)と隣接区分情報(F11~F22)とを繋ぎ合わせて対象物10の形状を特定する。例えば、区分情報F22の面は、幅Wが20mm、長さDが18mmの平面(曲率0)で、区分情報F21,F19の面とは平面で隣接し、区分情報F16,F12の面とは凸面で隣接することがわかる。以下、区分情報F22に隣接する他の面、区分情報F11~F21に隣接する全ての面についても同様にして認識処理することで、対象物10の形状を特定することができる。
(Shape identification)
In the specific step, the control unit 110 receives shape identification information (+1, -1, 0), characteristic information (characteristic value 1 to characteristic value n), and adjacent classification information for each division information (F11 to F22) stored in the database DB. From (F11 to F22), the classification information (F11 to F22) and the adjacent classification information (F11 to F22) are connected to specify the shape of the object 10. For example, the surface of the division information F22 is a plane (curvature 0) having a width W of 20 mm and a length D of 18 mm, is adjacent to the surfaces of the division information F21 and F19 in a plane, and is adjacent to the surfaces of the division information F16 and F12. It can be seen that they are adjacent by a convex surface. Hereinafter, the shape of the object 10 can be specified by performing the recognition processing in the same manner for the other surfaces adjacent to the classification information F22 and all the surfaces adjacent to the classification information F11 to F21.
 そして、特定ステップでは、制御部110は、受付ステップにて変更された形状識別情報(+1,-1,0)及び/又は特性情報(特性値1~特性値n)の変更値により対象物10の形状を特定する。 Then, in the specific step, the control unit 110 determines the object 10 by changing the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n) changed in the reception step. Identify the shape of.
 (情報出力)
 出力ステップでは、制御部110は、特定ステップにて特定した対象物10の形状を表示装置141又は印刷装置142に出力する。
(Information output)
In the output step, the control unit 110 outputs the shape of the object 10 specified in the specific step to the display device 141 or the printing device 142.
 (第1実施形態について)
 第1実施形態によれば、対象物10における複数の面の形状のそれぞれに対応する複数の形状識別情報(+1,-1,0)を判定し、複数の面の形状にそれぞれ関係する複数の特性情報(特性値1~特性値n)を取得し、判定した形状識別情報(+1,-1,0)と取得した特性情報(特性値1~特性値n)とを区分情報(F11~F22)毎に隣接区分情報(F11~F22)と関連付けてデータベースDBに登録するので、形状識別情報(+1,-1,0)及び特性情報(特性値1~特性値n)を区分情報(F11~F22)毎に対応付けることができる。従って、区分された対象物10の表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野に利用することが可能となる。さらに、区分情報(F11~F22)が隣接区分情報(F11~F22)と関連付けられているので、区分情報(F11~F22)と隣接区分情報(F11~F22)との繋がりを認識することができ、これにより、対象物10の形状を特定し易くすることができる。しかも、対象物10がたとえ複雑な形状であっても簡単なデータ構造にすることができ、これにより、制御構成の容易化、ひいては処理速度の高速化を実現させることができる。
(About the first embodiment)
According to the first embodiment, a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object 10 is determined, and a plurality of shapes related to the shapes of the plurality of surfaces are determined. The characteristic information (characteristic value 1 to characteristic value n) is acquired, and the determined shape identification information (+1, -1, 0) and the acquired characteristic information (characteristic value 1 to characteristic value n) are classified into classification information (F11 to F22). ) Are registered in the database DB in association with the adjacent classification information (F11 to F22), so that the shape identification information (+1, -1, 0) and the characteristic information (characteristic value 1 to characteristic value n) are stored in the classification information (F11 to F11). It can be associated with each F22). Therefore, it is possible to specify which category and what shape the surface shape of the segmented object 10 is, which makes it possible to use it in the technical field of CAD. Further, since the classification information (F11 to F22) is associated with the adjacent classification information (F11 to F22), the connection between the classification information (F11 to F22) and the adjacent classification information (F11 to F22) can be recognized. As a result, the shape of the object 10 can be easily specified. Moreover, even if the object 10 has a complicated shape, it can have a simple data structure, which makes it possible to simplify the control configuration and, by extension, increase the processing speed.
 本実施の形態において、制御部110は、データベースDBに保存した区分情報(F11~F22)毎の形状識別情報(+1,-1,0)、特性情報(特性値1~特性値n)及び隣接区分情報(F11~F22)から区分情報(F11~F22)と隣接区分情報(F11~F22)とを繋ぎ合わせて対象物10の形状を特定し、特定した対象物10の形状を出力する。こうすることで、ユーザーは、データベースDBに保存した区分情報(F11~F22)毎の形状識別情報(+1,-1,0)、特性情報(特性値1~特性値n)及び隣接区分情報(F11~F22)から出力した対象物10の形状を確認することができる。 In the present embodiment, the control unit 110 includes shape identification information (+1, -1, 0), characteristic information (characteristic value 1 to characteristic value n), and adjacent to each division information (F11 to F22) stored in the database DB. The shape of the object 10 is specified by connecting the classification information (F11 to F22) and the adjacent classification information (F11 to F22) from the classification information (F11 to F22), and the shape of the specified target 10 is output. By doing so, the user can use the shape identification information (+1, -1,0), the characteristic information (characteristic value 1 to the characteristic value n), and the adjacent classification information (characteristic value 1 to characteristic value n) for each division information (F11 to F22) stored in the database DB. The shape of the object 10 output from F11 to F22) can be confirmed.
 ところで、現状の対象物10から新しい対象物を設計する(いわゆるモデルチェンジする)場合、現状の対象物10の形状及び/又は形状の特性を容易に変更して新しい対象物を設計することが望まれている。 By the way, when designing a new object from the current object 10 (so-called model change), it is desired to design a new object by easily changing the shape and / or shape characteristics of the current object 10. It is rare.
 この点、本実施の形態において、制御部110は、形状識別情報(+1,-1,0)及び/又は特性情報(特性値1~特性値n)を変更するための入力操作を受け付け、変更した形状識別情報(+1,-1,0)及び/又は特性情報(特性値1~特性値n)の変更値により対象物10の形状を特定する。こうすることで、現状の対象物10の形状及び/又は特性を容易に変更して新しい対象物を容易に設計することができる。 In this regard, in the present embodiment, the control unit 110 accepts and changes the input operation for changing the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n). The shape of the object 10 is specified by the changed value of the shape identification information (+1, -1, 0) and / or the characteristic information (characteristic value 1 to characteristic value n). By doing so, it is possible to easily change the shape and / or characteristics of the current object 10 and easily design a new object.
 本実施の形態において、制御部110は、区分情報(F11~F22)に対して複数に分けて処理する複数のプロセッサーを備えていてもよい。この場合、制御部110は、複数のプロセッサーにより並列処理を行うことができる。例えば、区分情報F11~F14に対して第1プロセッサー、区分情報F15~F18に対して第2プロセッサー、区分情報F19~F12に対して第3プロセッサーをそれぞれ割り当て、第1プロセッサー、第2プロセッサー及び第3プロセッサーにより並列処理を行うことができる。こうすることで、容易に並列処理を行うことができ、これにより、簡単な制御構成で、さらなる高速処理を実現させることができる。 In the present embodiment, the control unit 110 may include a plurality of processors that separately process the classification information (F11 to F22). In this case, the control unit 110 can perform parallel processing by a plurality of processors. For example, the first processor is assigned to the division information F11 to F14, the second processor is assigned to the division information F15 to F18, and the third processor is assigned to the division information F19 to F12, respectively, and the first processor, the second processor, and the second processor are assigned. Parallel processing can be performed by 3 processors. By doing so, parallel processing can be easily performed, and thereby, further high-speed processing can be realized with a simple control configuration.
 <第2実施形態>
 [第2実施形態に係る形状データ処理装置のハードウェア構成]
 先ず、第2実施形態に係る形状データ処理装置100のハードウェア構成について図11を参照しながら以下に説明する。
<Second Embodiment>
[Hardware configuration of the shape data processing device according to the second embodiment]
First, the hardware configuration of the shape data processing device 100 according to the second embodiment will be described below with reference to FIG.
 図11は、形状データ処理装置100のハードウェア構成の他の例を示すブロック図である。 FIG. 11 is a block diagram showing another example of the hardware configuration of the shape data processing device 100.
 図11に示すように、制御部110は、記憶部120の記録装置121に予め格納(インストール)された形状データ処理プログラムPbを実行することによって、制御部110に必要な各種の機能を実現させるように構成されている。詳しくは、制御部110は、記録装置121に予め格納された形状データ処理プログラムPb等のソフトウェアプログラムをメモリ装置122のRAM122b上にロードして実行することにより、各種の処理を行う。記録装置121には、読取部130から取得した形状データ処理プログラムPbが予め格納される。記録媒体Mには、形状データ処理プログラムPbが予め記録されている。なお、形状データ処理プログラムPbは、CD-ROM等の記録媒体を介して取得したものには限定されず、インターネット等の通信手段を介してダウンロードされたものであってもよい。 As shown in FIG. 11, the control unit 110 realizes various functions required for the control unit 110 by executing the shape data processing program Pb stored (installed) in advance in the recording device 121 of the storage unit 120. It is configured as follows. Specifically, the control unit 110 performs various processes by loading and executing a software program such as the shape data processing program Pb previously stored in the recording device 121 on the RAM 122b of the memory device 122. The shape data processing program Pb acquired from the reading unit 130 is stored in the recording device 121 in advance. The shape data processing program Pb is recorded in advance on the recording medium M. The shape data processing program Pb is not limited to the one acquired via a recording medium such as a CD-ROM, and may be downloaded via a communication means such as the Internet.
 [第2実施形態に係る形状データ処理装置のソフトウェア構成]
 次に、第2実施形態に係る形状データ処理装置100のソフトウェア構成について図11を参照しながら以下に説明する。
[Software configuration of the shape data processing device according to the second embodiment]
Next, the software configuration of the shape data processing device 100 according to the second embodiment will be described below with reference to FIG.
 制御部110は、3次元CADデータ入力手段Qb1と、判定手段Qb2と、変換手段Qb3と、生成手段Qb4と、登録手段Qb5と、形状特定手段Qb6と、データ受付手段Qb7と、出力手段Qb8とを備える手段として機能する。すなわち、形状データ処理プログラムPbは、3次元CADデータ入力ステップと、判定ステップと、変換ステップと、生成ステップと、登録ステップと、形状特定ステップと、データ受付ステップと、出力ステップとを含むステップを制御部110に実行させる。 The control unit 110 includes three-dimensional CAD data input means Qb1, determination means Qb2, conversion means Qb3, generation means Qb4, registration means Qb5, shape specifying means Qb6, data reception means Qb7, and output means Qb8. Functions as a means of providing. That is, the shape data processing program Pb includes a three-dimensional CAD data input step, a determination step, a conversion step, a generation step, a registration step, a shape specifying step, a data reception step, and an output step. Let the control unit 110 execute.
 [第2実施形態に係る形状データ処理装置の処理手順]
 図12は、形状データ処理装置100の処理手順の他の例を示すフローチャートである。
[Processing procedure of the shape data processing device according to the second embodiment]
FIG. 12 is a flowchart showing another example of the processing procedure of the shape data processing device 100.
 形状データ処理装置100の処理手順の他の例では、3次元CADデータ入力、形状識別情報判定、画像要素変換、画像データ生成、データベース登録、形状特定、データ受付、情報出力の各処理を行う。 In another example of the processing procedure of the shape data processing device 100, each processing of three-dimensional CAD data input, shape identification information determination, image element conversion, image data generation, database registration, shape identification, data reception, and information output is performed.
 (3次元CADデータ入力)
 3次元CADデータ入力ステップでは、制御部110は、3次元CADで作成された対象物(製品)の形状データである3次元CADデータ(3次元CADモデル)が読取部130から入力される。
(3D CAD data input)
In the 3D CAD data input step, the control unit 110 inputs 3D CAD data (3D CAD model), which is the shape data of the object (product) created by the 3D CAD, from the reading unit 130.
 (形状識別情報判定)
 判定ステップでは、制御部110は、表面を複数の面(サーフェス)に区分された対象物における複数の面の形状のそれぞれに対応する複数の形状識別情報(+1,-1,0)を判定する。
(Shape identification information judgment)
In the determination step, the control unit 110 determines a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into a plurality of surfaces (surfaces). ..
 なお、判定ステップは、前述の第1実施形態における図3から図7を用いて説明した判定ステップと同じであり、ここでは、説明を省略する。 The determination step is the same as the determination step described with reference to FIGS. 3 to 7 in the above-described first embodiment, and the description thereof will be omitted here.
 図13は、第1実施形態と同様、上記の判定処理を対象物10の具体的な形状部分に当てはめたときの処理結果を例示している。図13に示す例では、リブ形状に上記の判定処理を当てはめた結果を表しており、リブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面は、内積演算の結果がプラス(+)、形状識別情報が+1となり、リブの先端部(端部)の面では、内積演算の結果がマイナス(-)、形状識別情報が-1となっている。 FIG. 13 illustrates the processing result when the above determination processing is applied to the specific shape portion of the object 10 as in the first embodiment. In the example shown in FIG. 13, the result of applying the above determination process to the rib shape is shown, and the result of the inner product calculation is positive (+) on the surface of the rounded thick portion (fillet) which is the base of the rising portion of the rib. ), The shape identification information is +1 and the result of the inner product calculation is minus (−) and the shape identification information is -1 on the surface of the tip (end) of the rib.
 (画像要素変換)
 変換ステップでは、制御部110は、判定ステップにて判定した複数の形状識別情報(-1,0,+1の組み合わせ)を該複数の形状識別情報(-1,0,+1の組み合わせ)に対応する画像要素(M11~M22…)に変換する。ここで、画像要素(Mxy:x,yは1以上の整数)としては、個々の画像要素が互いに識別できるものであれば何れのものであってもよく、例えば、色相、彩度、明度のそれぞれが互いに異なる色画像、白から黒までの明度が互いに異なるモノトーン画像、横線パターン、縦線パターン、格子パターン、斜線パターンやドットパターン等の模様パターンが互いに異なる模様パターン画像、英字、数字、漢字やひらがな、カタカナ等の文字が互いに異なる文字画像や文章画像、又は、これらのうち少なくとも2つを組み合わせた組み合わせ画像等の画像要素を挙げることができる。
(Image element conversion)
In the conversion step, the control unit 110 corresponds the plurality of shape identification information (combination of -1, 0, +1) determined in the determination step to the plurality of shape identification information (combination of -1, 0, +1). Convert to image elements (M11 to M22 ...). Here, the image element (Mxy: x, y is an integer of 1 or more) may be any as long as the individual image elements can be distinguished from each other. For example, of hue, saturation, and lightness. Color images with different colors, monotone images with different brightness from white to black, horizontal line patterns, vertical line patterns, lattice patterns, diagonal line patterns, dot patterns, and other pattern patterns with different patterns. Images, letters, numbers, and kanji. Examples include character images and text images in which characters such as hiragana and katakana are different from each other, or image elements such as a combination image in which at least two of these are combined.
 (画像データ生成)
 生成ステップでは、制御部110は、変換ステップにて変換した画像要素(M11~M22…)から予め定めた所定の並び順で形状識別用の画像データMDを生成する。所定の並び順は、この例では、複数の面のうち予め定めた所定の並び方向に隣り合う面の一端から他端までの並び順である。ここで、並び順としては、例えば、第1水平方向H1に沿った行の並び順、第1水平方向H1に直交する第2水平方向H2に沿った列の並び順や、鉛直方向V、鉛直方向Vに沿った一方側(手前側)の列の並び順、鉛直方向Vに沿った他方側(奥側)の列の並び順を挙げることができる。
(Image data generation)
In the generation step, the control unit 110 generates image data MD for shape identification from the image elements (M11 to M22 ...) Converted in the conversion step in a predetermined arrangement order. In this example, the predetermined arrangement order is the arrangement order from one end to the other end of the surfaces adjacent to each other in the predetermined arrangement direction among the plurality of surfaces. Here, as the arrangement order, for example, the arrangement order of the rows along the first horizontal direction H1, the arrangement order of the columns along the second horizontal direction H2 orthogonal to the first horizontal direction H1, the vertical direction V, and the vertical direction. The order of the rows on one side (front side) along the direction V and the order of the rows on the other side (back side) along the vertical direction V can be mentioned.
 (データベース登録)
 登録ステップでは、制御部110は、生成ステップにて生成した形状識別用の画像データMDを所定の並び順でデータベースDBに登録する。これにより、以後に実施される形状特定等の処理において、形状識別用の画像データMDの画像パターンにより対象物の形状を特定することができる。この例では、制御部110は、生成ステップにて生成した形状識別用の画像データMDを所定の並び順と関連付けてデータベースDBに登録する。
(Database registration)
In the registration step, the control unit 110 registers the image data MDs for shape identification generated in the generation step in the database DB in a predetermined order. As a result, in the subsequent processing such as shape identification, the shape of the object can be specified by the image pattern of the image data MD for shape identification. In this example, the control unit 110 registers the image data MD for shape identification generated in the generation step in the database DB in association with a predetermined arrangement order.
 図14は、データベースDBにおいて図13に示す対象物10の一部の形状識別用の画像データMD及びそれに対応する所定の並び順のデータ構造の一例を概略的に示す図表である。 FIG. 14 is a chart schematically showing an example of an image data MD for shape identification of a part of the object 10 shown in FIG. 13 in the database DB and a corresponding data structure in a predetermined arrangement order.
 図14に示すデータベースDBにおいて、例えば、第1水平方向H1に沿った第1行では、
区分情報F11に対応する形状識別情報(-1,+1,-1,0)は、画像要素(M11)として「赤色」、
区分情報F12に対応する形状識別情報(-1,+1,-1,+1)は、画像要素(M12)として「黄赤色」、
区分情報F13に対応する形状識別情報(-1,-1,-1,+1)は、画像要素(M13)として「黄色」、
区分情報F14に対応する形状識別情報(-1,-1,-1,-1)は、画像要素(M14)として「黄緑色」、
区分情報F15に対応する形状識別情報(-1,-1,+1,-1)は、画像要素(M15)として「緑色」、
区分情報F16に対応する形状識別情報(+1,-1,+1,-1)は、画像要素(M16)として「青緑色」、
区分情報F17に対応する形状識別情報(-1,…,-1,+1)は、画像要素(M17)として「青色」、…が形状識別用の画像データMDに登録される。
In the database DB shown in FIG. 14, for example, in the first row along the first horizontal direction H1,
The shape identification information (-1, + 1, -1, 0) corresponding to the classification information F11 is "red" as an image element (M11).
The shape identification information (-1, + 1, -1, + 1) corresponding to the classification information F12 is "yellowish red" as an image element (M12).
The shape identification information (-1, -1, -1, + 1) corresponding to the classification information F13 is "yellow" as an image element (M13).
The shape identification information (-1, -1, -1, -1) corresponding to the classification information F14 is "yellowish green" as an image element (M14).
The shape identification information (-1, -1, +1, -1) corresponding to the classification information F15 is "green" as an image element (M15).
The shape identification information (+1, -1, +1, -1) corresponding to the classification information F16 is "blue-green" as an image element (M16).
The shape identification information (-1, ..., -1, + 1) corresponding to the classification information F17 is registered as an image element (M17) in "blue", ... In the image data MD for shape identification.
 また、第2水平方向H2に沿った第k列(kは1以上の整数)では、
区分情報F11に対応する形状識別情報(-1,+1,-1,0)は、画像要素(M11)として「赤色」、
第2水平方向H2に沿った第k+1列では、
区分情報F12に対応する形状識別情報(-1,+1,-1,+1)は、画像要素(M12)として「黄赤色」、
第2水平方向H2に沿った第k+2列では、
区分情報F14に対応する形状識別情報(-1,-1,-1,-1)は、画像要素(M14)として「黄緑色」、
第2水平方向H2に沿った第k+3列では、
区分情報F16に対応する形状識別情報(+1,-1,+1,-1)は、画像要素(M16)として「青緑色」、
第2水平方向H2に沿った第k+4列では、
区分情報F17に対応する形状識別情報(-1,…,-1,+1)は、画像要素(M17)として「青色」、…が形状識別用の画像データMDに登録される。
Further, in the k-th column (k is an integer of 1 or more) along the second horizontal direction H2,
The shape identification information (-1, + 1, -1, 0) corresponding to the classification information F11 is "red" as an image element (M11).
In the k + 1 column along the second horizontal direction H2,
The shape identification information (-1, + 1, -1, + 1) corresponding to the classification information F12 is "yellowish red" as an image element (M12).
In the k + 2 row along the second horizontal direction H2,
The shape identification information (-1, -1, -1, -1) corresponding to the classification information F14 is "yellowish green" as an image element (M14).
In the k + 3 row along the second horizontal direction H2,
The shape identification information (+1, -1, +1, -1) corresponding to the classification information F16 is "blue-green" as an image element (M16).
In the k + 4 row along the second horizontal direction H2,
The shape identification information (-1, ..., -1, + 1) corresponding to the classification information F17 is registered as an image element (M17) in "blue", ... In the image data MD for shape identification.
 さらに、一方側(手前側)の面の鉛直方向Vに沿った第m列(mは1以上の整数)では、
区分情報F18に対応する形状識別情報(-1,0,-1,0)は、画像要素(M18)として「青紫色」、
 鉛直方向Vに沿った第m+1列では、
区分情報F19に対応する形状識別情報(0,0,-1,0)は、画像要素(M19)として「紫色」、
区分情報F20に対応する形状識別情報(0,-1,0,-1)は、画像要素(M20)として「赤紫色」、
区分情報F21に対応する形状識別情報(-1,-1,0,-1)は、画像要素(M21)として「茶色」、
 鉛直方向Vに沿った第m+2列では、
区分情報F22に対応する形状識別情報(-1,…,-1,0)は、画像要素(M22)として「肌色」、…が形状識別用の画像データMDに登録される。
Further, in the m-th row (m is an integer of 1 or more) along the vertical direction V of the surface on one side (front side),
The shape identification information (-1, 0, -1, 0) corresponding to the classification information F18 is "blue-purple" as an image element (M18).
In the m + 1 row along the vertical direction V,
The shape identification information (0,0, -1,0) corresponding to the classification information F19 is "purple" as an image element (M19).
The shape identification information (0, -1, 0, -1) corresponding to the classification information F20 is "purple red" as an image element (M20).
The shape identification information (-1, -1, 0, -1) corresponding to the classification information F21 is "brown" as an image element (M21).
In the m + 2 row along the vertical direction V,
As the shape identification information (-1, ..., -1,0) corresponding to the classification information F22, "skin color", ... As an image element (M22) is registered in the image data MD for shape identification.
 図15は、図14に示す画像要素M11,・・・,M22,・・・からなる形状識別用の画像データMDを用いて出力した出力画像である。なお、図15に示す形状識別用の画像データMDは、表示の都合上、パターン画像になっているが、実際には色画像である。しかし、形状識別用の画像データMDは、前述したとおり、パターン画像であってもよい。 FIG. 15 is an output image output using the image data MD for shape identification including the image elements M11, ..., M22, ... Shown in FIG. The image data MD for shape identification shown in FIG. 15 is a pattern image for convenience of display, but is actually a color image. However, the image data MD for shape identification may be a pattern image as described above.
 (形状特定)
 形状特定ステップでは、制御部110は、画像処理技術を用いて形状識別用の画像データMDから対象物10の形状を特定する。画像処理技術は従来公知のものを用いることができる。画像処理技術としては、AI(人工知能)による画像処理技術を例示できる。AIによる画像処理技術には、機械学習という技術が使われる。機械学習は、膨大な画像データのから画像の傾向や特徴などの法則を見出し、その法則から分析して予測するものである。本実施の形態では、形状の情報(例えばリブ形状の情報)、それに対応する画像要素からなる形状識別用の画像データ及び所定の並び順により、形状の情報(例えばリブ形状の情報)に対する形状識別用の画像データにおける各画像要素の並びパターンをAI学習ソフトに学習させておく。これにより、制御部110は、形状識別用の画像データにおける各画像要素の並びパターンから形状(例えば図13に示すようなリブ形状)を特定することができる。
(Shape identification)
In the shape identification step, the control unit 110 identifies the shape of the object 10 from the image data MD for shape identification by using the image processing technique. Conventionally known image processing techniques can be used. As the image processing technology, an image processing technology using AI (artificial intelligence) can be exemplified. Machine learning is used as the image processing technology by AI. Machine learning finds rules such as image trends and features from a huge amount of image data, and analyzes and predicts from those rules. In the present embodiment, shape identification for shape information (for example, rib shape information) is performed by shape information (for example, rib shape information), image data for shape identification composed of corresponding image elements, and a predetermined arrangement order. Let AI learning software learn the arrangement pattern of each image element in the image data for use. Thereby, the control unit 110 can specify the shape (for example, the rib shape as shown in FIG. 13) from the arrangement pattern of each image element in the image data for shape identification.
 (データ受付)
 データ受付ステップでは、制御部110は、特定した対象物10の形状に対して面(サーフェス)の幅、長さ、曲率、面(サーフェス)内で形状が切り替わる変曲点座標などの特性情報を変更するための入力操作を受け付ける。
(Data reception)
In the data reception step, the control unit 110 provides characteristic information such as the width, length, curvature, and inflection point coordinates at which the shape is switched within the surface (surface) with respect to the shape of the specified object 10. Accepts input operations to change.
 (情報出力)
 出力ステップでは、制御部110は、特定した対象物10の形状をデータ受付ステップにて受け付けた特性情報の形状に変更して表示装置141又は印刷装置142に出力する。
(Information output)
In the output step, the control unit 110 changes the shape of the specified object 10 into the shape of the characteristic information received in the data reception step and outputs the shape to the display device 141 or the printing device 142.
 (第2実施形態について)
 第2実施形態によれば、表面を複数の面(サーフェス)に区分された対象物における複数の面の形状のそれぞれに対応する複数の形状識別情報(+1,-1,0)を判定し、判定した複数の形状識別情報(-1,0,+1の組み合わせ)を該複数の形状識別情報(-1,0,+1の組み合わせ)のそれぞれに対応する画像要素(M11~M22…)に変換し、変換した画像要素(M11~M22…)から所定の並び順で形状識別用の画像データMDを生成するので、画像処理技術(特にAIによる画像処理技術)を用いて形状識別用の画像データMDから対象物10の形状を特定することができる。従って、区分された対象物10の表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野に利用することが可能となる。
(About the second embodiment)
According to the second embodiment, a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into a plurality of surfaces (surfaces) is determined. The determined plurality of shape identification information (combination of -1, 0, +1) is converted into image elements (M11 to M22 ...) Corresponding to each of the plurality of shape identification information (combination of -1, 0, +1). Since the image data MD for shape identification is generated from the converted image elements (M11 to M22 ...) in a predetermined order, the image data MD for shape identification is generated by using an image processing technique (particularly an image processing technique by AI). The shape of the object 10 can be specified from. Therefore, it is possible to specify which category and what shape the surface shape of the segmented object 10 is, which makes it possible to use it in the technical field of CAD.
 本実施の形態において、所定の並び順は、複数の面のうち予め定めた所定の並び方向(例えば第1水平方向H1)に隣り合う面の一端から他端までの並び順であることで、形状識別用の画像データMDを生成するための制御動作を容易に実現することができる。 In the present embodiment, the predetermined arrangement order is the arrangement order from one end to the other end of the surfaces adjacent to each other in a predetermined arrangement direction (for example, the first horizontal direction H1) among the plurality of surfaces. A control operation for generating an image data MD for shape identification can be easily realized.
 画像要素は、色画像の画像要素であることで、画像処理技術(特にAIによる画像処理技術)により対象物10の形状を精度よく特定することができる。 Since the image element is an image element of a color image, the shape of the object 10 can be accurately specified by image processing technology (particularly image processing technology by AI).
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention is not limited to the embodiments described above, and can be implemented in various other forms. Therefore, such embodiments are merely exemplary in all respects and should not be construed in a limited way. The scope of the present invention is shown by the claims and is not bound by the text of the specification. Furthermore, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.
 本発明は、3次元の形状データを1次元の形状データ又は2次元の形状データに変換する技術に係るものであり、特に、CADの技術分野に適用することができる。 The present invention relates to a technique for converting three-dimensional shape data into one-dimensional shape data or two-dimensional shape data, and can be particularly applied to the technical field of CAD.
10      対象物
100     形状データ処理装置
110     制御部
120     記憶部
121     記録装置
122     メモリ装置
130     読取部
131     読取装置
140     出力部
141     表示装置
142     印刷装置
BT1     OKボタン
BT2     OKボタン
DB      データベース
F1      第1区分情報
F2      第2区分情報
F11~F22 区分情報
G       入力画面
G1      第1入力画面
G2      第2入力画面
H1      第1水平方向
H2      第2水平方向
M       記録媒体
M11~M22 画像要素
MD      形状識別用の画像データ
Pa      形状データ処理プログラム
Pb      形状データ処理プログラム
Qa1     3次元CADデータ入力手段
Qa2     形状認識手段
Qa3     判定手段
Qa4     取得手段
Qa5     登録手段
Qa6     受付手段
Qa7     特定手段
Qa8     出力手段
Qb1     3次元CADデータ入力手段
Qb2     判定手段
Qb3     変換手段
Qb4     生成手段
Qb5     登録手段
Qb6     形状特定手段
Qb7     データ受付手段
Qb8     出力手段
V       鉛直方向
W       幅
10 Object 100 Shape data processing device 110 Control unit 120 Storage unit 121 Recording device 122 Memory device 130 Reading unit 131 Reading device 140 Output unit 141 Display device 142 Printing device BT1 OK button BT2 OK button DB Database F1 First division information F2 2 Classification information F11 to F22 Classification information G Input screen G1 First input screen G2 Second input screen H1 First horizontal direction H2 Second horizontal direction M Recording medium M11 to M22 Image element MD Image data for shape identification Pa Shape data processing Program Pb Shape data processing program Qa1 3D CAD data input means Qa2 Shape recognition means Qa3 Judgment means Qa4 Acquisition means Qa5 Registration means Qa6 Reception means Qa7 Specific means Qa8 Output means Qb1 3D CAD data input means Qb2 Judgment means Qb3 Conversion means Qb4 Generation Means Qb5 Registration Means Qb6 Shape Identification Means Qb7 Data Receiving Means Qb8 Output Means V Vertical W Width

Claims (11)

  1.  表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定手段と、
     前記複数の面の形状にそれぞれ関係する複数の特性情報を取得する取得手段と、
     前記判定手段にて判定した前記形状識別情報と前記取得手段にて取得した前記特性情報とを前記区分に対応する区分情報毎に前記区分に隣接する隣接区分に対応する隣接区分情報と関連付けてデータベースに登録する登録手段と
     を備えることを特徴とする形状データ処理装置。
    A determination means for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
    An acquisition means for acquiring a plurality of characteristic information related to the shapes of the plurality of surfaces, and
    A database in which the shape identification information determined by the determination means and the characteristic information acquired by the acquisition means are associated with the adjacent division information corresponding to the adjacent division adjacent to the division for each division information corresponding to the division. A shape data processing device comprising a registration means for registering in.
  2.  請求項1に記載の形状データ処理装置であって、
     前記データベースに保存した前記区分情報毎の前記形状識別情報、前記特性情報及び前記隣接区分情報から前記区分情報と前記隣接区分情報とを繋ぎ合わせて前記対象物の形状を特定する特定手段と、
     前記特定手段にて特定した前記対象物の形状を出力する出力手段と
     をさらに備えることを特徴とする形状データ処理装置。
    The shape data processing apparatus according to claim 1.
    A specific means for identifying the shape of the object by connecting the classification information and the adjacent classification information from the shape identification information, the characteristic information, and the adjacent classification information for each of the classification information stored in the database.
    A shape data processing apparatus further comprising an output means for outputting the shape of the object specified by the specific means.
  3.  請求項2に記載の形状データ処理装置であって、
     前記形状識別情報及び/又は前記特性情報を変更するための入力操作を受け付ける受付手段をさらに備え、
     前記特定手段は、前記受付手段にて変更された前記形状識別情報及び/又は前記特性情報の変更値により前記対象物の形状を特定することを特徴とする形状データ処理装置。
    The shape data processing apparatus according to claim 2.
    Further provided with a receiving means for receiving an input operation for changing the shape identification information and / or the characteristic information.
    The specific means is a shape data processing device characterized in that the shape of the object is specified by the shape identification information and / or the changed value of the characteristic information changed by the reception means.
  4.  請求項1から請求項3までの何れか1つに記載の形状データ処理装置であって、
     前記区分情報に対して複数に分けて処理する複数のプロセッサーを備え、
     前記複数のプロセッサーにより並列処理を行うことを特徴とする形状データ処理装置。
    The shape data processing apparatus according to any one of claims 1 to 3.
    It is provided with a plurality of processors that process the classification information in a plurality of divisions.
    A shape data processing apparatus characterized in that parallel processing is performed by the plurality of processors.
  5.  表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定ステップと、
     前記複数の面の形状にそれぞれ関係する複数の特性情報を取得する取得ステップと、
     前記判定ステップにて判定した前記形状識別情報と前記取得ステップにて取得した前記特性情報とを前記区分に対応する区分情報毎に前記区分に隣接する隣接区分に対応する隣接区分情報と関連付けてデータベースに登録する登録ステップと
     を含むことを特徴とする形状データ処理方法。
    A determination step for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
    An acquisition step for acquiring a plurality of characteristic information related to the shapes of the plurality of surfaces, and
    A database in which the shape identification information determined in the determination step and the characteristic information acquired in the acquisition step are associated with the adjacent division information corresponding to the adjacent division adjacent to the division for each division information corresponding to the division. A shape data processing method characterized by including a registration step to be registered in.
  6.  請求項5に記載の形状データ処理方法の各ステップを、コンピュータに実行させるための形状データ処理プログラム。 A shape data processing program for causing a computer to execute each step of the shape data processing method according to claim 5.
  7.  表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定手段と、
     前記判定手段にて判定した前記複数の形状識別情報を該複数の形状識別情報に対応する画像要素に変換する変換手段と、
     前記変換手段にて変換した前記画像要素から予め定めた所定の並び順で形状識別用の画像データを生成する生成手段と、
     前記生成手段にて生成した前記形状識別用の画像データを所定の並び順でデータベースに登録する登録手段と
     を備えることを特徴とする形状データ処理装置。
    A determination means for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
    A conversion means for converting the plurality of shape identification information determined by the determination means into image elements corresponding to the plurality of shape identification information, and
    A generation means for generating image data for shape identification from the image elements converted by the conversion means in a predetermined order of arrangement.
    A shape data processing apparatus including a registration means for registering image data for shape identification generated by the generation means in a database in a predetermined order.
  8.  請求項7に記載の形状データ処理装置であって、
     前記所定の並び順は、前記複数の面のうち予め定めた所定の並び方向に隣り合う面の一端から他端までの並び順であることを特徴とする形状データ処理装置。
    The shape data processing apparatus according to claim 7.
    The shape data processing apparatus, characterized in that the predetermined arrangement order is an arrangement order from one end to the other end of the surfaces adjacent to each other in a predetermined arrangement direction among the plurality of surfaces.
  9.  請求項7又は請求項8に記載の形状データ処理装置であって、
     前記画像要素は、色画像の画像要素であることを特徴とする形状データ処理装置。
    The shape data processing apparatus according to claim 7 or 8.
    The shape data processing apparatus, wherein the image element is an image element of a color image.
  10.  表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定ステップと、
     前記判定ステップにて判定した前記複数の形状識別情報を該複数の形状識別情報に対応する画像要素に変換する変換ステップと、
     前記変換ステップにて変換した前記画像要素から予め定めた所定の並び順で形状識別用の画像データを生成する生成ステップと、
     前記生成ステップにて生成した前記形状識別用の画像データを所定の並び順でデータベースに登録する登録ステップと
     を含むことを特徴とする形状データ処理方法。
    A determination step for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
    A conversion step of converting the plurality of shape identification information determined in the determination step into image elements corresponding to the plurality of shape identification information, and a conversion step.
    A generation step of generating image data for shape identification from the image elements converted in the conversion step in a predetermined order of arrangement.
    A shape data processing method including a registration step of registering the image data for shape identification generated in the generation step in a database in a predetermined order.
  11.  請求項10に記載の形状データ処理方法の各ステップを、コンピュータに実行させるための形状データ処理プログラム。 A shape data processing program for causing a computer to execute each step of the shape data processing method according to claim 10.
PCT/JP2020/002342 2019-08-06 2020-01-23 Shape data processing device, shape data processing method, and shape data processing program WO2021024515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537560A JP7189584B2 (en) 2019-08-06 2020-01-23 Shape data processing device, shape data processing method and shape data processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/030822 2019-08-06
PCT/JP2019/030822 WO2021024367A1 (en) 2019-08-06 2019-08-06 Shape data processing device, shape data processing method, and shape data processing program

Publications (1)

Publication Number Publication Date
WO2021024515A1 true WO2021024515A1 (en) 2021-02-11

Family

ID=74503048

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/030822 WO2021024367A1 (en) 2019-08-06 2019-08-06 Shape data processing device, shape data processing method, and shape data processing program
PCT/JP2020/002342 WO2021024515A1 (en) 2019-08-06 2020-01-23 Shape data processing device, shape data processing method, and shape data processing program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030822 WO2021024367A1 (en) 2019-08-06 2019-08-06 Shape data processing device, shape data processing method, and shape data processing program

Country Status (2)

Country Link
JP (1) JP7189584B2 (en)
WO (2) WO2021024367A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206551A (en) * 2002-12-26 2004-07-22 Toppan Printing Co Ltd Three-dimensional interior space simulation system
JP2006302035A (en) * 2005-04-21 2006-11-02 Canon Inc Image processing method and image processing apparatus
JP2008134943A (en) * 2006-11-29 2008-06-12 Toshiba Corp Analysis model creation method, cad system and analysis model creation program
WO2017175349A1 (en) * 2016-04-07 2017-10-12 インテグラル・テクノロジー株式会社 Surface shape determination device, surface shape determination method and surface shape determination program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092805A (en) * 1999-09-20 2001-04-06 Hitachi Ltd Device and method for generating analytical mesh and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206551A (en) * 2002-12-26 2004-07-22 Toppan Printing Co Ltd Three-dimensional interior space simulation system
JP2006302035A (en) * 2005-04-21 2006-11-02 Canon Inc Image processing method and image processing apparatus
JP2008134943A (en) * 2006-11-29 2008-06-12 Toshiba Corp Analysis model creation method, cad system and analysis model creation program
WO2017175349A1 (en) * 2016-04-07 2017-10-12 インテグラル・テクノロジー株式会社 Surface shape determination device, surface shape determination method and surface shape determination program

Also Published As

Publication number Publication date
JP7189584B2 (en) 2022-12-14
JPWO2021024515A1 (en) 2021-02-11
WO2021024367A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
CN110378985B (en) Animation drawing auxiliary creation method based on GAN
US8849032B2 (en) Shape parameterisation for editable document generation
GB2559446A (en) Generating a three-dimensional model from a scanned object
CN105069746A (en) Video real-time human face substitution method and system based on partial affine and color transfer technology
JPH11232441A (en) Picture generation method and device therefor
CN111311702B (en) Image generation and identification module and method based on BlockGAN
CN103996185A (en) Image segmentation method based on attention TD-BU mechanism
CN115812221A (en) Image generation and coloring method and device
CN111062290A (en) Method and device for constructing Chinese calligraphy style conversion model based on generation confrontation network
WO2019194282A1 (en) Image processing device and two-dimensional image generation program
WO2021024515A1 (en) Shape data processing device, shape data processing method, and shape data processing program
US20210272301A1 (en) Method for processing three-dimensional point cloud data
JP4155049B2 (en) Document processing device
CN104732589A (en) Rapid generation method of hybrid grid
CN105513071B (en) A kind of topographic map symbols quality evaluating method
JP4155051B2 (en) Document processing device
Zhang Edge detection in glass fragmentation images based on one order differential operator
CN104702815A (en) Method for visualizing color gamut of color output device
CN111260755B (en) Digital tie-dyeing pattern generation method based on deep learning and digital image processing
JP3061812B2 (en) Pattern recognition method and apparatus
JP2019503905A (en) Full color data processing method and apparatus for 3D objects
JPH11195139A (en) Sculptured surface generating device, method therefor and providing medium
Čomić et al. Repairing binary images through the 2D diamond grid
CN101859437B (en) Vector image splitting method
CN112115549B (en) Image recognition-based tire pattern two-dimensional sea Liu Bi calculation method and application thereof in tire pattern design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849388

Country of ref document: EP

Kind code of ref document: A1