WO2021024448A1 - Method for assisting operation of rolling facility, operation assistance device, and rolling facility - Google Patents

Method for assisting operation of rolling facility, operation assistance device, and rolling facility Download PDF

Info

Publication number
WO2021024448A1
WO2021024448A1 PCT/JP2019/031333 JP2019031333W WO2021024448A1 WO 2021024448 A1 WO2021024448 A1 WO 2021024448A1 JP 2019031333 W JP2019031333 W JP 2019031333W WO 2021024448 A1 WO2021024448 A1 WO 2021024448A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
rolling
rolling roll
vibration
roll
Prior art date
Application number
PCT/JP2019/031333
Other languages
French (fr)
Japanese (ja)
Inventor
石川 英司
喜美 影平
宏徳 下釜
吉川 雅司
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to CN201980097276.7A priority Critical patent/CN114007770B/en
Priority to PCT/JP2019/031333 priority patent/WO2021024448A1/en
Priority to JP2021538644A priority patent/JP7179997B2/en
Publication of WO2021024448A1 publication Critical patent/WO2021024448A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • This disclosure relates to an operation support method for rolling equipment, an operation support device, and a rolling equipment.
  • the occurrence of defects in the rolled product may be detected or suppressed based on the measurement result of vibration of the rolling apparatus.
  • vibration is detected by a vibration sensor installed in a housing of a rolling mill or a roll chock, and based on the result of frequency analysis of the obtained vibration data, a striped shape that may occur in a metal plate to be rolled. It is described that the resonance phenomenon (chattering) of the rolling mill, which may cause a flaw (chatter mark), is detected.
  • N-sided formation may occur in which the cross-sectional shape of the rolling roll approaches a specific N-sided shape.
  • the rolling roll is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll are formed on the surface of the material rolled by the rolling roll, which may cause a problem in product quality. Therefore, it is desired to suppress the growth of N-sided rolling rolls and suppress the deterioration of product quality.
  • At least one embodiment of the present invention aims to provide an operation support method and operation support device for rolling equipment and a rolling equipment capable of suppressing the growth of N-polygonization of a rolling roll.
  • the operation support method for rolling equipment is Based on the correlation between the rotation speed fr of the rolling roll and the characteristic value ⁇ showing the growth tendency of N-polygonization in which the rolling roll is unevenly worn and becomes N-gonal when rolling is performed at the rotation speed fr. ,
  • an operation support method and operation support device for rolling equipment and a rolling equipment capable of suppressing the growth of N-polygonization of a rolling roll are provided.
  • FIG. 1 is a schematic view of a rolling equipment to which an operation support method and an operation support device according to some embodiments are applied.
  • the rolling equipment 1 according to the embodiment includes a rolling apparatus 2 including a rolling stand 10 configured to roll a metal plate S, and an operation support for supporting the operation of the rolling apparatus 2.
  • the device 50 and the like are provided.
  • the rolling equipment 1 is provided with a vibration measuring unit 90 for measuring the vibration of the rolling roll 3 constituting the rolling stand 10.
  • the rolling stand 10 includes a plurality of rolling rolls 3 for rolling the metal plate S, a reduction device 8 for applying a load to the rolling rolls 3 to reduce the metal plate S, a housing (not shown), and the like.
  • the reduction device 8 may include a hydraulic cylinder.
  • the rolling roll 3 is placed on the side opposite to the metal plate S with the pair of work rolls 4A and 4B provided so as to sandwich the metal plate S and the pair of work rolls 4A and 4B. It is provided and includes a pair of backup rolls 6A, 6B for supporting the pair of work rolls 4A, 4B, respectively.
  • the work rolls 4A and 4B are rotatably supported by roll chock 5A and 5B, respectively.
  • the backup rolls 6A and 6B are rotatably supported by roll chock 7A and 7B, respectively.
  • the roll chock 5A, 5B and the roll chock 7A, 7B are supported by a housing (not shown).
  • the vibration measuring unit 90 includes acceleration sensors 91 to 94 attached to the roll chocks 5A, 5B, 7A, and 7B, respectively.
  • the acceleration sensors 91 to 94 vibrate in any direction of the roll chock 5A, 5B, 7A, 7B (for example, the vertical direction, the horizontal direction, and / or the rotation axis direction of the rolling roll 3), that is, the work roll 4A. , 4B and backup rolls 6A, 6B are configured to detect vibrations in any direction.
  • the above-mentioned vibration signal detected by the acceleration sensors 91 to 94 is sent to the driving support device 50.
  • the vibration measuring unit 90 may include a displacement detecting unit configured to measure the displacement of the rolling roll 3 in any direction.
  • the vibration of the rolling roll 3 may be calculated based on the measurement result by the displacement detection unit.
  • the displacement detection unit for example, a displacement meter of a laser type or an eddy current type can be used.
  • an imaging device (camera or the like) can be used as the displacement detection unit.
  • the vibration of the rolling roll 3 may be calculated by imaging one part of the rolling roll 3 with an imaging device and performing image processing on the obtained imaging data.
  • FIG. 2 is a schematic configuration diagram of the driving support device 50 according to the embodiment.
  • the operation support device 50 is configured to support the operation of the rolling device 2 so that N-polygonization due to uneven wear of the rolling roll 3 does not grow.
  • the operation support device 50 is configured to receive a signal indicating the vibration of the rolling roll 3 from the vibration measuring unit 90 and a signal indicating the rotation speed of the rolling roll 3 measured by the roll rotation speed measuring unit 95. There is.
  • the driving support device 50 is configured to acquire information from the storage unit 96.
  • the storage unit 96 has a correlation between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ indicating the growth tendency of N-polygonization due to uneven wear of the rolling roll 3 when rolling is performed at the rotation speed fr.
  • the characteristic diagram shown is stored.
  • the operation support device 50 includes a vibration data acquisition unit 52, a frequency analysis unit 54, and an amplitude extraction unit 56 for processing information received from the above-mentioned vibration measurement unit 90, roll rotation speed measurement unit 95, or storage unit 96.
  • the target rotation speed acquisition unit 63, the output unit 72, and the like are included.
  • the driving support device 50 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like.
  • the driving support device 50 receives signals from various measuring instruments (such as the above-mentioned vibration measuring unit 90 or roll rotation speed measuring unit 95) via an interface.
  • the CPU is configured to process the signal received in this way. Further, the CPU is configured to process a program expanded in the memory.
  • the processing content of the driving support device 50 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in memory. The CPU reads the program from the memory and executes the instructions included in the program.
  • FIG. 11 is a schematic view of a rolling apparatus in which the rolling roll 3 is N-sided.
  • the rolling apparatus 2 shown in FIG. 11 includes a plurality of rolling stands 10A to 10C.
  • the cross-sectional shape of the rolling roll 3 orthogonal to the axial direction usually has a circular shape like the rolling roll 3 of the rolling stand 10A or 10C, but the rolling roll 3 (work rolls 4A, 4B) of the rolling stand 10B shown in FIG.
  • the cross-sectional shapes of the backup rolls 6A and 6B) are N-polygons (specifically, dodecagonal), and these rolling rolls 3 are N-sided.
  • N-polygons specifically, dodecagonal
  • irregularities corresponding to the N-sided shape of the rolling roll 3 are formed on the surface of the metal plate S rolled by the rolling roll 3, which may cause a problem in product quality. is there.
  • the operation support device 50 has a configuration capable of suppressing the growth of N-polygonization of the rolling roll 3. That is, the target rotation speed acquisition unit 63 of the operation support device 50 rolls based on the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ (that is, based on the characteristic diagram acquired from the storage unit 96). It is configured to acquire the rotation speed fr corresponding to the characteristic value ⁇ indicating that the N-gonification of the roll 3 is blunted or attenuated. Further, the output unit 72 is configured to output the rotation speed fr acquired by the target rotation speed acquisition unit 63 as the target rotation speed.
  • the target rotation speed is output to the rotation speed control unit 99 for controlling the rotation speed of the rolling roll 3 via the output unit 72.
  • the rotation speed control unit 99 may be configured to control the drive motor of the rolling roll 3 so that the rotation speed of the rolling roll 3 becomes the target rotation speed.
  • the target rotation speed is output to the display unit 98 (display or the like) via the output unit 72. In this case, the operator may appropriately change the rotation speed of the rolling roll 3 based on the target rotation speed displayed on the display unit 98.
  • the rolling rolls 3 may be N-polygonalized at a specific rolling stand 10, or a plurality of rolling rolls 3 constituting one rolling stand may be formed.
  • N-sided formation may occur on a specific rolling roll 3 (work rolls 4A, 4B or backup rolls 6A, 6B).
  • N-polygonization is relatively likely to occur in the work rolls 4A and 4B.
  • cold rolling performed at a relatively low temperature N-polygonization is relatively likely to occur in the backup rolls 6A and 6B.
  • the operation support method of the rolling apparatus 2 will be described.
  • a method of supporting the operation of the rolling apparatus by using the above-described operation support device 50 will be described, but in some embodiments, a part of the processing by the operation support device 50 described below or The operation of the rolling mill 2 may be assisted by manually performing all the steps.
  • the operation support method of the rolling mill according to some embodiments will be described more specifically.
  • a method of supporting the operation of the rolling apparatus 2 by using the above-mentioned operation support device 50 will be described, but in some embodiments, a part of the processing by the operation support device 50 described below or The operation of the rolling mill 2 may be assisted by manually performing all the steps.
  • FIG. 3 is a schematic flowchart of an operation support method for the rolling mill according to the embodiment.
  • “i” means the number of times the rotation speed of the rolling roll 3 is set (changed) (that is, the setting of the rotation speed of the rolling roll 3 for the i-th time), and “fr i ” and “A i ”.
  • the symbols with the subscript i such as, etc. indicate that they are at the time of rolling at the i-th rotation speed setting.
  • FIG. 4 is a schematic diagram of an example of the frequency spectrum of the vibration of the rolling roll 3 obtained in the frequency analysis step (step S206) described below.
  • FIG. 5A is a diagram showing a time change of the rotation speed fr of the rolling roll 3 when the operation support method according to the embodiment is executed.
  • FIG. 5B is a diagram showing a time change of the vibration amplitude (described later) corresponding to the N-sided shape of the rolling roll 3 when the operation support method according to the embodiment is executed.
  • the rotation speed fr i of the rolling roll 3 is unchanged until it is changed to the rotation speed fr i + 1 in step S222 described later.
  • the vibration data acquisition unit 52 while rolling at a rotation speed fr i of the rolling rolls 3, obtains vibration data indicating the vibration of the rolling rolls 3 at every sampling period dt (see FIGS. 5A and 5B) ( Vibration data acquisition step; step S204).
  • the vibration data acquired by the vibration measuring unit 90 may be acquired by the vibration data acquiring unit 52.
  • the frequency analysis unit 54 performs frequency analysis on each of the vibration data acquired for each sampling period dt, and acquires the frequency spectrum of the vibration data (frequency analysis step; step S206).
  • frequency analysis step; step S206 By performing frequency analysis on the vibration data acquired in a certain sampling period dt, for example, the frequency spectrum shown in FIG. 4 can be obtained.
  • the amplitude of vibration at the frequency (fr i ⁇ N) corresponding to the specific N polygon Ai (hereinafter, the vibration amplitude corresponding to the N polygon).
  • Acquire also referred to as A i or the like
  • the vibration amplitude acquisition step; step S2086 (see FIG. 4).
  • the information of the rotation speed fr i and the vibration amplitude A i recorded in the recording unit 60 is used for the calculation of the evaluation coefficient ⁇ described later.
  • the tendency of the vibration amplitude A corresponding to a specific N-gon to change with time (increase or decrease, and its speed, etc.) according to the rotation speed fr of the rolling roll 3. is different.
  • the vibration amplitude A 1 corresponding to the N-sided polygon increases with the passage of time. This indicates that the N-polygonization is growing in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from a circle to an N-sided shape.
  • the tendency of the vibration amplitude A to change with time at the same rotation speed fr is independent of each other.
  • the rotational speed fr 1 the vibration amplitude A corresponding to the N 1 square whereas increases with the trend of time
  • the vibration amplitude A corresponding to different N 2 prismatic and N 1 square involves a tendency of the time May decrease.
  • the rotational speed fr2 the vibration amplitude A corresponding to the N 1 square while decreases with the trend of time
  • the vibration amplitude A corresponding to the N 2 square sometimes increase with the trend of time.
  • step S208 the amplitude comparing unit 59 (see FIG. 2), the vibration amplitude A i acquired every sampling period dt, compared with the control value A iM of the vibration amplitude (Step S212).
  • the control value A iM is a value determined so as not to deteriorate the quality of the metal plate S to be rolled, and is determined so that, for example, a chatter mark is not formed on the surface of the metal plate S.
  • the control value A iM may be determined from the past operation results of the rolling mill 2. Further, different control values A iM may be set according to the number N of polygons.
  • Step S212 If the obtained vibration amplitude A i is smaller than the management value A iM in S208 (No in step S212), the vibration amplitude A i to the extent that affected leaves on the quality of the metal plate S to be rolled is not increased , It can be judged that the N-sided polygonation of interest in the rolling roll 3 has not grown excessively. Therefore, since it is not yet necessary to attenuate or delay (blunt) the N-polygonization on the rolling roll 3, the rotation speed fr of the rolling roll 3 is maintained as fr i without being changed, and the process returns to step S202 to step. The procedure after S202 is repeated.
  • step S208 if the vibration amplitude A i obtained at step S208 is greater than the management value A iM (Yes in step S212), the vibration amplitude A i is increased to the extent that leaves affect the quality of the metal plate S to be rolled There may be (ie, N-gonation is growing). Therefore, in steps S214 to S218 described below, it is determined whether or not the N-polygonization has grown to the extent that the quality of the rolled metal plate S is affected.
  • the by evaluation coefficient calculation unit 67 (see FIG. 2), to calculate an evaluation coefficient ⁇ showing the growth degree of the vibration amplitude A i relative to the given time.
  • the vibration amplitude corresponding to the N-sided polygon acquired immediately after changing the rotation speed of the rolling roll 3 to the i-th rotation speed setting value fr i is set to A iS
  • the (i + 1) rotation speed setting value fr i + 1 is set.
  • a iE be the vibration amplitude corresponding to the N-gon acquired immediately before the change to (the number of rotations at this time is fr i ) (see FIG. 5B).
  • the vibration amplitude A corresponding to the N-sided polygon increases or decreases exponentially during rolling under the condition that the rotation speed of the rolling roll 3 is constant. Then, during rolling at the rotation speed fri of the rolling roll 3, the vibration amplitude Ai_t1 corresponding to the N-sided polygon at a certain time t1 and the vibration amplitude Ai_t2 corresponding to the N-sided polygon at the time t2 after ⁇ t from the time t1 are expressed by the following equations. The relationship shown in (A) is satisfied.
  • a i_t2 / A i_t1 exp ( ⁇ i ⁇ fr i ⁇ ⁇ t)... (A)
  • ⁇ i is a characteristic value determined corresponding to the rotation speed fr i of the rolling roll 3 (hereinafter, also simply referred to as “characteristic value ⁇ ”).
  • the acquisition time of the vibration amplitude A iS above if the length of time before the acquisition time of the vibration amplitude A iE above and Delta] t i, the ratio of the vibration amplitude A iE the vibration amplitude A iS (rpm growth ratio of the vibration amplitude a i in fr i) can be represented by the following formula (B).
  • a iE / A iS exp ( ⁇ i ⁇ fr i ⁇ ⁇ t i) ... (B)
  • the vibration amplitude A i at the time of performing time rolling Delta] t i at a rotation speed fr i set to i th is increased, i.e. , Indicates that the N-sided formation of the rolling roll 3 has grown. Also, when the evaluation coefficient ⁇ is less than zero, with respect to the vibration amplitude A of the reference time, the vibration amplitude A i at the time period rolling was carried out in the i-th revolution speed fr i in Delta] t i set in decreased That is, it indicates that the N-sided formation of the rolling roll 3 has been attenuated.
  • step S216 the evaluation coefficient comparison unit 69 (see FIG. 2) determines whether or not the evaluation coefficient ⁇ calculated in step S214 is smaller than zero.
  • the evaluation coefficient ⁇ is smaller than zero (Yes in step S216)
  • step S216 when the evaluation coefficient ⁇ is larger than zero in step S216 (No in step S216), it can be determined that the vibration amplitude A is larger than that at the reference time point in the past. That is, since there is a possibility that the vibration amplitude Ai has increased to the extent that the quality of the rolled metal plate S is affected (that is, the N-sided polygonization is growing), the process proceeds to the next step S218. , It is determined whether or not it is necessary to change the rotation speed fri of the rolling roll 3.
  • step S2128 with respect to the vibration amplitude A iS corresponding to the N polygon acquired immediately after changing the rotational speed of the rolling rolls 3 the current rotational speed fr i, latest during rolling in the current rotational speed fr i ( It is determined whether or not the ratio A i_N / A iS of the vibration amplitude A i_N corresponding to the (most recently acquired) N polygon is smaller than 1.
  • step S228 sets the rotational speed of the rolling rolls 3 the current rotational speed fr i (change), the vibration amplitude Ai corresponding to the N polygon Since it is decreasing, it indicates that N-polygonization tends to decrease. Therefore, since it is not necessary to attenuate or delay (blunt) the N-polygonization on the rolling roll 3, the rotation speed fr of the rolling roll 3 is maintained as fr i without being changed, and the process returns to step S202 to return to step S202 and thereafter. Repeat the procedure in.
  • step S220 the target rotation speed acquisition unit 63 bases the rolling roll 3 based on the correlation (characteristic diagram) between the rotation speed fr of the rolling roll and the characteristic value ⁇ indicating the growth tendency of N-polygonization of the rolling roll 3.
  • the rotation speed fr corresponding to the characteristic value ⁇ indicating that the N-polygonization of is slowed down or attenuated is acquired as the target rotation speed.
  • the acquired target rotation speed is output to the display unit 98 and the rotation speed control unit 99 via the output unit 72.
  • step S222 the output of the drive motor of the rolling roll 3 is adjusted so that the target rotation speed is the target rotation speed output via the output unit 72, and the rotation speed of the rolling roll 3 is changed. Then, the counter of the set number of rotations (change number) of the rolling roll 3 is added (step S224), the process returns to step S202, and the steps after step S202 are repeated.
  • the rotation speed fr corresponding to is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus 2 to roll the metal plate S so that the rotation speed of the rolling roll 3 becomes the output target rotation speed, the N-square formation of the rolling roll 3 is slowed (delayed) or delayed. It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll 3 and suppress the deterioration of the quality of the rolled product (metal plate S).
  • FIG. 6 is a diagram showing a typical example of the correlation (characteristic diagram) between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ indicating the growth tendency of the N-sided polygonization of the rolling roll 3.
  • the characteristic value ⁇ i corresponding to the rotation speed fr i can be defined as shown in the following equation (E) by, for example, modifying the above equation (B).
  • ⁇ i ln (A iE / A iS ) / (fr i ⁇ ⁇ t i )... (E) Therefore, during rolling at various rpm fr in the rolling rolls 3, correlation by acquiring the vibration amplitude A iS and A iE corresponding to N square, and the characteristic value sigma, the rotational speed fr (Fig. The characteristic diagram shown in 6) can be obtained.
  • the characteristic diagram showing the correlation between the rotation speed fr and the characteristic value ⁇ may be prepared in advance based on the past operation results of the rolling apparatus 2.
  • the above-mentioned characteristic value ⁇ (for example, calculated based on the above formula (E)) is the amplitude of the vibration frequency of the rolling roll 3 corresponding to the N-polygon (that is, that is, during rolling at the rotation speed fr of the rolling roll 3). It is an index of the tendency of the change with time of the vibration amplitude corresponding to the N-sided polygon.
  • the fact that the characteristic value ⁇ is smaller than zero indicates that the vibration amplitude corresponding to the N-polygon decreases at the rotation speed fr corresponding to the ⁇ , that is, the N-polygonization of the rolling roll 3 is attenuated.
  • the formula property values ⁇ calculated by (E), to a molecule of the right side of the above formula (E), the vibration amplitude of the aforementioned includes the time (Delta] t i) to change from A iS to A iE Therefore, it indicates the change in vibration amplitude per unit time. Therefore, in the region where the characteristic value ⁇ is positive, it is evaluated that the larger the characteristic value ⁇ is, the larger the increase rate of the vibration amplitude A corresponding to the N-side polygon is, and the faster the growth rate of the N-sided formation of the rolling roll 3 is. be able to.
  • Curves (characteristic diagrams) showing the correlation between the rotation speed fr and the characteristic value ⁇ can be obtained individually, but the graph shown in FIG. 6 shows.
  • the correlation curves (characteristic diagrams) for a plurality of types of N polygons almost overlap. ..
  • 1 (that is, the frequency fr ⁇ N corresponding to the N polygon is equal to the natural frequency of the rolling roll 3 regardless of the number N of the polygons.
  • is larger than zero, and in particular, ⁇ is maximized when ⁇ 2. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 grows (progresses), and the larger the ⁇ , the faster the growth rate of the N-polygonization of the rolling roll 3.
  • is smaller than zero. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 is attenuated, and the smaller the ⁇ , the faster the attenuation speed of the N-gonification of the rolling roll 3.
  • 0, the N-sided formation of the rolling roll 3 does not grow or decay.
  • the characteristic value ⁇ is the rolling roll 3 at a frequency corresponding to the N-polygon during rolling at the rolling speed fr of the rolling roll 3, for example, as defined by the above equation (E). It is an index of the rate of change of the amplitude of vibration.
  • ⁇ 3 at the point P3 is a maximum value of ⁇ in the entire characteristic diagram. Further, ⁇ 2 and ⁇ 4 at points P2 and P4 are larger than zero, and ⁇ 1 and ⁇ 5 at points P1 and P5 are smaller than zero.
  • step S220 the rotation speed fr whose characteristic value ⁇ is smaller than ⁇ 2 (current value) at the point P2, that is, the rotation speed fr1, fr4, or fr5 at the points P1, P4 or P5 is acquired as the target rotation speed.
  • step S220 if the rotation speed fr whose characteristic value ⁇ is smaller than the current value is acquired as the target rotation speed based on the characteristic diagram, rolling is performed so as to reach the target rotation speed in step S224.
  • the growth rate of N-polygonization of the rolling roll 3 can be made smaller than the current value (that is, the growth of N-polygonization can be slowed down), whereby the growth of N-polygonization can be slowed down.
  • the growth of N-polygonization can be suppressed.
  • the characteristic value ⁇ is the rolling roll 3 at a frequency corresponding to the N-polygon during rolling at the rolling speed fr of the rolling roll 3, for example, as defined by the above equation (E). It is an index of the rate of change of the amplitude of vibration.
  • step S220 target rotation speed acquisition step described above, the target rotation speed fr at which the characteristic value ⁇ is less than zero is set based on the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ . Get as a number.
  • step S220 For example, assuming that the operating condition at point P2 (rolling roll rotation speed fr2) was obtained at the time when the target rotation speed was calculated in step S220 (before the rotation speed of the rolling roll 3 was changed), the characteristic value ⁇ in step S220.
  • the rotation speed fr at which is less than zero, that is, for example, the rotation speed fr1 or fr5 at the point P1 or P5 is acquired as the target rotation speed.
  • step S220 if the rotation speed fr at which the characteristic value ⁇ is less than zero is acquired as the target rotation speed based on the characteristic diagram, the rolling apparatus 2 is set to the target rotation speed in step S224.
  • the N-polygonization of the rolling roll 3 can be attenuated, and thereby the growth of the N-polygonization of the rolling roll 3 can be suppressed.
  • step S220 target rotation speed acquisition step
  • step S220 if there is a rotation speed range of 2 or more corresponding to the characteristic value ⁇ indicating that the N-gonification of the rolling roll 3 is slowed or attenuated.
  • the rotation speed within the larger rotation speed range of the two or more rotation speed ranges is acquired as the target rotation speed.
  • the range of ⁇ in which the characteristic value ⁇ is less than 0 is ⁇ ⁇ 1 or ⁇ > ⁇ 2.
  • the range of the rotation speed fr at which the characteristic value ⁇ is less than 0 is fr ⁇ 1 ⁇ fn / N or fr> ⁇ 2 ⁇ fn / N. Therefore, in this characteristic diagram, there are two rotation speed ranges (that is, fr ⁇ 1 ⁇ fn / N and fr> ⁇ 2 ⁇ fn) corresponding to the characteristic value ⁇ indicating that the N-gonification of the rolling roll 3 is attenuated. / N) Exists.
  • step S220 target rotation speed acquisition step
  • the larger rotation speed of the above two rotation speed ranges is set as the target rotation speed for attenuating the N-gonification of the rolling roll 3.
  • a target rotation speed within a number range that is, fr> ⁇ 2 ⁇ fn / N is set.
  • the rolling apparatus 2 when there are two or more rotation speed ranges corresponding to the characteristic value ⁇ indicating that the N-gonification of the rolling roll 3 is slowed or attenuated, the rotation within the larger rotation speed range of these. Get the number as the target rotation speed. Therefore, by operating the rolling apparatus 2 so as to reach the target rotation speed acquired in this way, the rolling roll is formed into an N-gon shape while suppressing a decrease in the rotation speed of the rolling roll 3 and maintaining the line speed as high as possible. Can suppress the growth of. That is, since the line speed can be made as high as possible, the production efficiency of the product can be improved while suppressing the deterioration of the quality of the product (metal plate).
  • step S220 target rotation speed acquisition step
  • the rotation speed within the rotation speed range larger than fn / N is set as the target rotation speed.
  • the rotation speed fr5 at the point P5 is a rotation speed range larger than fn / N. The number of revolutions in.
  • the frequency of vibration (fr ⁇ N) corresponding to the N-side shape of the rolling roll 3 at the rotation speed fr of the rolling roll 3 is that of the rolling roll 3.
  • the characteristic value ⁇ becomes relatively small that is, the N-squared formation of the rolling roll is slowed or attenuated.
  • a relatively large rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed.
  • the rolling apparatus 2 so as to reach the target rotation speed acquired in this way, the N-sided shape of the rolling roll 3 is suppressed while the decrease in the rotation speed of the rolling roll 3 is suppressed and the line speed is maintained as high as possible. It is possible to suppress the growth of rolling stock.
  • FIG. 7 is a chart showing the history of the evaluation coefficient ⁇ when the rolling apparatus 2 is operated based on the operation support method according to the flowchart of FIG.
  • the history of the evaluation coefficient ⁇ for 39-sided, 40-sided, and 41-sided of the various N-sided shapes in the rolling roll 3 is shown in a line graph.
  • the time ct in the graph of FIG. 7 is the time when the latest vibration data was acquired.
  • the rotation speed of the rolling roll 3 is determined at these timings. You can see that it has changed.
  • the evaluation coefficient ⁇ of the N-sided polygon (here, 39-sided polygon, 40-sided polygon, and 41-sided polygon) of interest should not exceed 0 as much as possible.
  • the rotation speed of the rolling roll 3 is adjusted (in particular, see steps S216 to S222). Then, from the current trend of the evaluation coefficient ⁇ shown in FIG. 7, the evaluation coefficient ⁇ at a future time point is predicted and displayed on the display unit 98, or a guideline for the timing of changing the rotation speed (that is, the line speed) of the rolling roll 3. It can be used for controlling the rotation speed (that is, line speed) of the rolling roll 3.
  • FIG. 8 is an example of a characteristic diagram showing the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ , and the 39, 40, 41 squares at the rotation speed fr at the time tk shown in the chart of FIG. It is a figure which shows the value of ⁇ of.
  • FIG. 9 is a diagram showing the state of the vibration amplitude corresponding to the 39, 40, 41 squares of the rolling roll 3 at the time tc shown in the chart of FIG. 7.
  • FIG. 10A is a diagram showing the state of the characteristic value ⁇ corresponding to the 39, 40, 41 squares of the rolling roll 3 at the time tc shown in the chart of FIG. 7.
  • FIG. 10B is a diagram showing the state of the evaluation coefficient ⁇ corresponding to the 39, 40, 41 squares of the rolling roll 3 at the time tc shown in the chart of FIG. 7.
  • the characteristic value ⁇ for the 40-sided polygon is larger than zero. From this, it can be seen that 40-sided formation is growing on the rolling roll 3. Further, at the time tc, the characteristic value ⁇ for the 39-sided square and the 41-sided square is smaller than zero. From this, it can be seen that the 39-sided and 41-sided squares are attenuated in the rolling roll 3. Further, from FIG. 9, at time tc, to the extent the vibration amplitude corresponding to 39, 40, 41 square are both smaller than the management value A M, the influence on the quality of the metal plate S to be rolled out 39, It can be seen that the 40 and 41 squares have not grown. Further, from FIG.
  • the evaluation coefficient ⁇ corresponding to the 39, 40, 41 squares is maintained at less than 0 at the time tc, and the vibration amplitude corresponding to the 39, 40, 41 squares is maintained as compared with the past reference time. It can be seen that is not growing excessively.
  • vibration data indicating the vibration of the rolling roll 3 is acquired, frequency analysis is performed on the vibration data, and the frequency spectrum of the vibration data is acquired. To do. Then, based on the frequency spectrum, the vibration amplitude A1 at the frequency corresponding to the N-sided polygon is acquired. Further, based on the characteristic value ⁇ and the vibration amplitude A1, when continued rolling in the rotational speed fr1, it calculates the time ⁇ tb until the vibration amplitude reaches the threshold A th. Then, the time calculated in this way is output to, for example, the display unit 98 via the output unit 72.
  • the threshold value A th the aforementioned management value A M (i.e., the management value A M used in the roll rotation speed control for suppressing the N square of the rolling rolls 3) may be the same value.
  • the characteristic value ⁇ indicates the change in amplitude during the time ⁇ t during rolling at the rotation speed fr i of the rolling roll 3 as a ratio (A i_t2 / A i_t1 ). Therefore, from equation (A), a characteristic value ⁇ during rolling in rotational speed fr1, the vibration amplitude A corresponding to the N rectangular at some point during the rolling in the rotational speed fr1, the threshold A th vibration amplitude (although a ⁇ a th), and the vibration amplitude using time ⁇ tb from a until the a th, can be expressed as the following equation (E).
  • the rotation speed fr1 of the rolling roll 3 is based on the above-mentioned correlation (correlation indicating the growth tendency of N-polygonization of the rolling roll) between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ . If you continue rolling from time t1, and calculates the time ⁇ tb to vibration amplitude corresponding to the N square of the rolling rolls 3 reaches a predetermined threshold value a th (prediction). That is, since the time until the N-sided polygonization of the rolling roll 3 reaches a predetermined degree (threshold Ath ) is calculated and displayed, for example, the operating conditions (rolling) before the calculated time elapses.
  • the rolling roll 3 whose N-sided shape is formed by surface processing by a processing machine is installed in the rolling apparatus 2. Then, in step S220 (target rotation speed acquisition step) described above, the correlation between the rotation speed of the rolling roll 3 and the characteristic value ⁇ is such that the growth of N-polygonization generated in the rolling roll 3 due to surface processing is slowed or attenuated.
  • the target rotation speed (rotation speed fr) is acquired based on the relationship.
  • the rolling roll 3 is surface-processed by a processing machine (for example, a grinding machine or the like) so that the cross-sectional shape becomes circular before use, but in reality, this surface processing makes the rolling roll 3 into an N-gonal shape that cannot be visually recognized. May occur.
  • a processing machine for example, a grinding machine or the like
  • the target rotation speed of the rolling roll 3 is obtained so that the growth of the N-sided polygonation generated in the rolling roll 3 due to the surface processing by the processing machine is slowed down or attenuated.
  • the rolling roll 3 whose N-side shape is formed by surface processing is installed in the rolling apparatus 2 and the rolling is performed, the N-sided shape of the rolling roll 3 is formed by operating the rolling apparatus 2 at the above-mentioned target rotation speed. Rolling can be slowed (delayed) or dampened. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll 3 and suppress the deterioration of the quality of the rolled product (metal plate S).
  • Examples of surface processing of the rolling roll 3 include grinding processing using a grindstone or cutting processing using a tool or an end mill. In addition, grinding may be performed after cutting.
  • the method for supporting the operation of rolling equipment is Based on the correlation between the rotation speed fr of the rolling roll and the characteristic value ⁇ showing the growth tendency of N-polygonization in which the rolling roll is unevenly worn and becomes N-gonal when rolling is performed at the rotation speed fr. ,
  • the method (1) above corresponds to the characteristic value ⁇ indicating that the N-squared formation of the rolling roll is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll and the above-mentioned characteristic value ⁇ .
  • the rotation speed fr is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed, the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
  • the characteristic value ⁇ is an index of a tendency of a time-dependent change in the amplitude of the vibration frequency of the rolling roll corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
  • the above-mentioned characteristic value ⁇ is an index of the tendency of the time-dependent change of the amplitude of the vibration frequency of the rolling roll corresponding to the N-polygon during rolling at the rotation speed fr of the rolling roll. is there. Therefore, based on the correlation between this characteristic value ⁇ and the rotation speed fr of the rolling roll, the rotation speed fr corresponding to the characteristic value ⁇ indicating that the N-polygonization of the rolling roll is slowed or attenuated should be appropriately acquired. Can be done. Therefore, by operating the rolling apparatus based on the target rotation speed acquired in this way to roll the material (metal plate, etc.), the N-gonification of the rolling roll is effectively slowed (delayed) or attenuated. be able to.
  • the characteristic value ⁇ is an index of the change rate of the amplitude of the vibration of the rolling roll at the frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
  • the rotation speed fr at which the characteristic value ⁇ is smaller than the current value is set to the target rotation speed based on the correlation between the rotation speed fr of the rolling roll and the characteristic value ⁇ .
  • the characteristic value ⁇ indicating the rate of change of the amplitude of the frequency component (vibration) corresponding to the N-sided polygon among the vibrations of the rolling roll is larger than the current value.
  • the smaller rotation speed fr is acquired as the target rotation speed. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the growth rate of N-polygonization of the rolling roll can be made smaller than the current value, thereby forming the N-polygonization of the rolling roll. Can suppress the growth of.
  • the characteristic value ⁇ is an index of the change rate of the amplitude of the vibration of the rolling roll at the frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
  • the rotation speed fr at which the characteristic value ⁇ is less than zero is acquired as the target rotation speed based on the correlation between the rotation speed fr of the rolling roll and the characteristic value ⁇ . ..
  • the characteristic value ⁇ indicating the rate of change of the amplitude of the frequency component (vibration) corresponding to the N-gon is less than zero in the vibration of the rolling roll based on the above correlation.
  • the rotation speed fr is acquired as the target rotation speed. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the N-polygonization of the rolling roll can be attenuated, and thereby the growth of the N-polygonization of the rolling roll can be suppressed. it can.
  • the target rotation speed acquisition step when there is a rotation speed range of 2 or more corresponding to the characteristic value ⁇ indicating that the N-sided polygonization of the rolling roll is slowed or attenuated, the rotation speed range of the 2 or more The rotation speed within the larger rotation speed range is acquired as the target rotation speed.
  • the larger rotation speed range of these is present.
  • the number of rotations inside is acquired as the target number of rotations. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the growth of N-polygonization of the rolling roll is performed while suppressing the decrease in the rotation speed of the rolling roll and maintaining the line speed as high as possible. Can be suppressed.
  • the target rotation speed acquisition step when the natural frequency of the rolling roll is fn, the rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed.
  • the frequency of vibration (fr ⁇ N) corresponding to the N-side of the rolling roll at the rolling roll rotation speed fr is higher than the natural frequency fn of the rolling roll. Even in a few regions, there is a rotation speed range in which the characteristic value ⁇ becomes relatively small (that is, the N-square formation of the rolling roll is slowed or attenuated). In this regard, according to the method (6) above, a relatively large rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed.
  • the time until the amplitude of the vibration corresponding to the N-sided polygon reaches the threshold value is calculated when rolling at the rotation speed fr1 is continued. Therefore, by changing the rotation speed of the rolling roll to the above-mentioned target rotation speed before this time elapses, the N-gonification of the rolling roll can be performed before the growth of the N-polygonization of the rolling roll progresses too much. It can be blunted (delayed) or attenuated. As a result, it is possible to appropriately suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
  • a step of acquiring vibration data indicating the vibration of the rolling roll for each sampling period and A step of performing frequency analysis on each of the vibration data and acquiring a frequency spectrum of the vibration data
  • a step of acquiring the amplitude of the vibration at the frequency corresponding to the N-side polygon based on the frequency spectrum For each of the vibration data, a step of acquiring the amplitude of the vibration at the frequency corresponding to the N-side polygon based on the frequency spectrum, and When the amplitude of the vibration exceeds the threshold value, the step of changing the rotation speed fr1 to the target rotation speed, and To be equipped.
  • the amplitude of the vibration at the frequency corresponding to the N-side of the rolling roll is acquired, and the amplitude is the threshold value.
  • the rotation speed of the rolling roll is changed to the above-mentioned target rotation speed. Therefore, the N-polygonization of the rolling roll can be slowed (delayed) or attenuated before the growth of the N-polygonization of the rolling roll progresses too much. As a result, it is possible to appropriately suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
  • any of the methods (1) to (8) above It is equipped with a step of installing a rolling roll whose N-sided shape is generated by surface processing by a processing machine in a rolling apparatus.
  • the rotation speed fr is acquired based on the correlation so that the growth of the N-sided polygonation caused by the surface processing is slowed down or attenuated.
  • the rolling roll is surface-processed by a processing machine (for example, a grinding machine) so that the cross-sectional shape becomes circular before use, but in reality, this surface processing results in N-sided polygonation that cannot be visually recognized. May occur.
  • a processing machine for example, a grinding machine
  • the target rotation speed of the rolling roll is obtained so that the growth of N-polygonization generated by the surface processing by the processing machine is slowed or attenuated. Therefore, when a rolling roll in which N-gonification is generated by surface processing is installed in a rolling apparatus and rolling is performed, the N-gonification of the rolling roll is slowed down by operating the rolling apparatus at the above-mentioned target rotation speed ( Can be delayed) or attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
  • the operation support device for rolling equipment is An operation support device for rolling equipment that includes rolling rolls for rolling metal plates.
  • the rolling roll is based on the correlation between the rotation speed fr of the rolling roll and the characteristic value ⁇ indicating the growth tendency of N-square formation due to uneven wear of the rolling roll when rolling is performed at the rotation speed fr.
  • a target rotation speed acquisition unit configured to acquire the rotation speed fr corresponding to the characteristic value ⁇ indicating that the N-squared formation is slowed or attenuated.
  • An output unit configured to output the acquired rotation speed fr as a target rotation speed, and To be equipped.
  • the configuration of (10) above corresponds to the characteristic value ⁇ indicating that the N-sided formation of the rolling roll is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll and the above-mentioned characteristic value ⁇ .
  • the rotation speed fr is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed, the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
  • the rolling equipment according to at least one embodiment of the present invention is A rolling apparatus including a rolling roll for rolling a metal plate, The driving support device according to (10) above, To be equipped.
  • the configuration of (11) above corresponds to the characteristic value ⁇ indicating that the N-sided formation of the rolling roll is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll and the above-mentioned characteristic value ⁇ .
  • the rotation speed fr is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed, the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated.
  • the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed
  • the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

This method for assisting operation of a rolling facility comprises a target rotational speed acquisition step for acquiring the rotational speed fr of a rolling roll, and a step for outputting the acquired rotational speed fr as a target rotational speed. In the target rotational speed acquisition step, the correlation between the rotational speed fr and a characteristic value σ, which indicates an N-gon-forming tendency for the rolling roll to form into an N-gon by being subjected to uneven wear when rolling is performed at the rotational speed fr, is used as a basis upon which to acquire the rotational speed fr that corresponds to a characteristic value σ indicating that the rolling roll is forming into an N-gon in a slowed or attenuated manner.

Description

圧延設備の運転支援方法及び運転支援装置並びに圧延設備Rolling equipment operation support method and operation support equipment and rolling equipment
 本開示は、圧延設備の運転支援方法及び運転支援装置並びに圧延設備に関する。 This disclosure relates to an operation support method for rolling equipment, an operation support device, and a rolling equipment.
 圧延ロールを含む圧延装置による金属板等の圧延において、圧延装置の振動の計測結果に基づいて、圧延された製品の不具合の発生を検出したり抑制したりすることがある。 In rolling a metal plate or the like with a rolling apparatus including a rolling roll, the occurrence of defects in the rolled product may be detected or suppressed based on the measurement result of vibration of the rolling apparatus.
 例えば、特許文献1には、圧延機のハウジングやロールチョックに設置した振動センサにより振動を検出し、得られた振動データの周波数解析の結果に基づいて、圧延される金属板に生じ得る縞状の疵(チャタマーク)の原因となり得る圧延機の共振現象(チャタリング)を検出することが記載されている。 For example, in Patent Document 1, vibration is detected by a vibration sensor installed in a housing of a rolling mill or a roll chock, and based on the result of frequency analysis of the obtained vibration data, a striped shape that may occur in a metal plate to be rolled. It is described that the resonance phenomenon (chattering) of the rolling mill, which may cause a flaw (chatter mark), is detected.
特開2018-118312号公報Japanese Unexamined Patent Publication No. 2018-118312
 ところで、圧延ロールを含む圧延装置において金属板等の材料の圧延を続けると、圧延ロールの断面形状が特定のN角形に近づくN角形化が生じることがある。圧延ロールのN角形化が生じて成長すると、圧延ロールにより圧延された材料の表面に、圧延ロールのN角形に対応した凹凸が形成され、製品の品質上問題となることがある。そこで、圧延ロールのN角形化の成長を抑制して、製品の品質低下を抑制することが望まれる。 By the way, if the rolling of a material such as a metal plate is continued in a rolling apparatus including a rolling roll, N-sided formation may occur in which the cross-sectional shape of the rolling roll approaches a specific N-sided shape. When the rolling roll is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll are formed on the surface of the material rolled by the rolling roll, which may cause a problem in product quality. Therefore, it is desired to suppress the growth of N-sided rolling rolls and suppress the deterioration of product quality.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、圧延ロールのN角形化の成長を抑制可能な圧延設備の運転支援方法及び運転支援装置並びに圧延設備を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to provide an operation support method and operation support device for rolling equipment and a rolling equipment capable of suppressing the growth of N-polygonization of a rolling roll.
 本発明の少なくとも一実施形態に係る圧延設備の運転支援方法は、
 圧延ロールの回転数frと、前記回転数frにて圧延を行った場合に前記圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を示す特性値σとの相関関係に基づいて、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する前記回転数frを取得する目標回転数取得ステップと、
 取得した前記回転数frを目標回転数として出力するステップと、
を備える。
The operation support method for rolling equipment according to at least one embodiment of the present invention is
Based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ showing the growth tendency of N-polygonization in which the rolling roll is unevenly worn and becomes N-gonal when rolling is performed at the rotation speed fr. , A target rotation speed acquisition step for acquiring the rotation speed fr corresponding to the characteristic value σ indicating that the N-squared formation of the rolling roll is slowed or attenuated.
A step of outputting the acquired rotation speed fr as a target rotation speed, and
To be equipped.
 本発明の少なくとも一実施形態によれば、圧延ロールのN角形化の成長を抑制可能な圧延設備の運転支援方法及び運転支援装置並びに圧延設備が提供される。 According to at least one embodiment of the present invention, an operation support method and operation support device for rolling equipment and a rolling equipment capable of suppressing the growth of N-polygonization of a rolling roll are provided.
一実施形態に係る圧延設備の模式図である。It is a schematic diagram of the rolling equipment which concerns on one Embodiment. 一実施形態に係る運転支援装置の概略構成図である。It is a schematic block diagram of the driving support device which concerns on one Embodiment. 一実施形態に係る圧延装置の運転支援方法の概略的なフローチャートである。It is a schematic flowchart of the operation support method of the rolling mill which concerns on one Embodiment. 圧延ロールの振動の周波数スペクトルの一例の模式図である。It is a schematic diagram of an example of the frequency spectrum of the vibration of a rolling roll. 圧延ロールの回転数frの時間変化の一例を示す図である。It is a figure which shows an example of the time change of the rotation speed fr of a rolling roll. 圧延ロールのN角形に対応する振動振幅の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the vibration amplitude corresponding to the N-sided polygon of a rolling roll. 圧延ロールの回転数frと特性値σの相関関係(特性図)の一例を示す図である。It is a figure which shows an example of the correlation (characteristic diagram) of the rotation speed fr of a rolling roll and a characteristic value σ. 一実施形態に係る運転支援方法実行時の評価係数Ψの履歴の一例を示すチャートである。It is a chart which shows an example of the history of the evaluation coefficient Ψ at the time of execution of the driving support method which concerns on one Embodiment. 圧延ロールの回転数frと特性値σとの相関関係を示す特性図の一例である。This is an example of a characteristic diagram showing the correlation between the rotation speed fr of the rolling roll and the characteristic value σ. 圧延ロールのN角形に対応する振動振幅の状況を示す図である。It is a figure which shows the state of the vibration amplitude corresponding to the N-sided polygon of a rolling roll. 圧延ロールのN角形に対応する特性値σの状況を示す図である。It is a figure which shows the state of the characteristic value σ corresponding to the N-sided polygon of a rolling roll. 圧延ロールのN角形に対応する評価係数Ψの状況を示す図である。It is a figure which shows the state of the evaluation coefficient Ψ corresponding to the N-sided polygon of a rolling roll. 圧延ロールのN角形化が生じている圧延装置の模式図である。It is a schematic diagram of the rolling apparatus in which N-sided formation of a rolling roll occurs.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. Absent.
 図1は、幾つかの実施形態に係る運転支援方法及び運転支援装置が適用される圧延設備の模式図である。図1に示すように、一実施形態に係る圧延設備1は、金属板Sを圧延するように構成された圧延スタンド10を含む圧延装置2と、圧延装置2の運転支援をするための運転支援装置50と、を備えている。また、圧延設備1は、圧延スタンド10を構成する圧延ロール3の振動を計測するための振動計測部90を備えている。 FIG. 1 is a schematic view of a rolling equipment to which an operation support method and an operation support device according to some embodiments are applied. As shown in FIG. 1, the rolling equipment 1 according to the embodiment includes a rolling apparatus 2 including a rolling stand 10 configured to roll a metal plate S, and an operation support for supporting the operation of the rolling apparatus 2. The device 50 and the like are provided. Further, the rolling equipment 1 is provided with a vibration measuring unit 90 for measuring the vibration of the rolling roll 3 constituting the rolling stand 10.
 圧延スタンド10は、金属板Sを圧延するための複数の圧延ロール3と、圧延ロール3に荷重を加えて金属板Sを圧下するための圧下装置8と、ハウジング(不図示)等を含む。圧下装置8は、油圧シリンダを含んでいてもよい。 The rolling stand 10 includes a plurality of rolling rolls 3 for rolling the metal plate S, a reduction device 8 for applying a load to the rolling rolls 3 to reduce the metal plate S, a housing (not shown), and the like. The reduction device 8 may include a hydraulic cylinder.
 図1に示す圧延装置2では、圧延ロール3は、金属板Sを挟むように設けられる一対のワークロール4A,4Bと、一対のワークロール4A,4Bを挟んで金属板Sとは反対側に設けられ、一対のワークロール4A,4Bをそれぞれ支持するための一対のバックアップロール6A,6Bと、を含む。ワークロール4A,4Bは、それぞれ、ロールチョック5A,5Bによって回転可能に支持されている。バックアップロール6A,6Bは、それぞれ、ロールチョック7A,7Bによって回転可能に支持されている。ロールチョック5A,5B及びロールチョック7A,7Bは、ハウジング(不図示)によって支持されている。 In the rolling apparatus 2 shown in FIG. 1, the rolling roll 3 is placed on the side opposite to the metal plate S with the pair of work rolls 4A and 4B provided so as to sandwich the metal plate S and the pair of work rolls 4A and 4B. It is provided and includes a pair of backup rolls 6A, 6B for supporting the pair of work rolls 4A, 4B, respectively. The work rolls 4A and 4B are rotatably supported by roll chock 5A and 5B, respectively. The backup rolls 6A and 6B are rotatably supported by roll chock 7A and 7B, respectively. The roll chock 5A, 5B and the roll chock 7A, 7B are supported by a housing (not shown).
 図1に示す圧延設備1において、振動計測部90は、ロールチョック5A,5B,7A,7Bにそれぞれ取り付けられた加速度センサ91~94を含む。加速度センサ91~94は、それぞれ、ロールチョック5A,5B,7A,7Bの任意の方向(例えば、垂直方向、水平方向、及び/又は、圧延ロール3の回転軸方向)における振動、すなわち、ワークロール4A,4B及びバックアップロール6A,6Bの任意の方向における振動を検出するように構成されている。加速度センサ91~94で検出された、上述の振動を示す信号は、運転支援装置50に送られるようになっている。 In the rolling equipment 1 shown in FIG. 1, the vibration measuring unit 90 includes acceleration sensors 91 to 94 attached to the roll chocks 5A, 5B, 7A, and 7B, respectively. The acceleration sensors 91 to 94 vibrate in any direction of the roll chock 5A, 5B, 7A, 7B (for example, the vertical direction, the horizontal direction, and / or the rotation axis direction of the rolling roll 3), that is, the work roll 4A. , 4B and backup rolls 6A, 6B are configured to detect vibrations in any direction. The above-mentioned vibration signal detected by the acceleration sensors 91 to 94 is sent to the driving support device 50.
 他の実施形態では、振動計測部90は、圧延ロール3の任意の方向における変位を計測するように構成された変位検出部を含んでいてもよい。この場合、変位検出部による計測結果に基づいて、圧延ロール3の振動を算出するようにしてもよい。変位検出部として、例えば、レーザ式又は渦電流式等の変位計を用いることができる。あるいは、変位検出部として撮像装置(カメラ等)を用いることができる。この場合、圧延ロール3の一部位を撮像装置で撮像し、得られた撮像データを画像処理することにより、圧延ロール3の振動を算出するようにしてもよい。 In another embodiment, the vibration measuring unit 90 may include a displacement detecting unit configured to measure the displacement of the rolling roll 3 in any direction. In this case, the vibration of the rolling roll 3 may be calculated based on the measurement result by the displacement detection unit. As the displacement detection unit, for example, a displacement meter of a laser type or an eddy current type can be used. Alternatively, an imaging device (camera or the like) can be used as the displacement detection unit. In this case, the vibration of the rolling roll 3 may be calculated by imaging one part of the rolling roll 3 with an imaging device and performing image processing on the obtained imaging data.
 図2は、一実施形態に係る運転支援装置50の概略構成図である。運転支援装置50は、詳しくは後述するように、圧延ロール3の偏摩耗によるN角形化が成長しないように、圧延装置2を運転することを支援するように構成されている。運転支援装置50は、振動計測部90から圧延ロール3の振動を示す信号を受け取るとともに、ロール回転数計測部95にて計測された圧延ロール3の回転数を示す信号を受け取るように構成されている。 FIG. 2 is a schematic configuration diagram of the driving support device 50 according to the embodiment. As will be described in detail later, the operation support device 50 is configured to support the operation of the rolling device 2 so that N-polygonization due to uneven wear of the rolling roll 3 does not grow. The operation support device 50 is configured to receive a signal indicating the vibration of the rolling roll 3 from the vibration measuring unit 90 and a signal indicating the rotation speed of the rolling roll 3 measured by the roll rotation speed measuring unit 95. There is.
 また、運転支援装置50は、記憶部96から情報を取得するように構成されている。記憶部96には、圧延ロール3の回転数frと、該回転数frにて圧延を行った場合の圧延ロール3の偏摩耗によるN角形化の成長傾向を示す特性値σとの相関関係を示す特性図が記憶されている。 Further, the driving support device 50 is configured to acquire information from the storage unit 96. The storage unit 96 has a correlation between the rotation speed fr of the rolling roll 3 and the characteristic value σ indicating the growth tendency of N-polygonization due to uneven wear of the rolling roll 3 when rolling is performed at the rotation speed fr. The characteristic diagram shown is stored.
 運転支援装置50は、上述の振動計測部90、ロール回転数計測部95、又は、記憶部96から受け取った情報を処理するための振動データ取得部52、周波数分析部54、振幅抽出部56、目標回転数取得部63、及び、出力部72等を含む。 The operation support device 50 includes a vibration data acquisition unit 52, a frequency analysis unit 54, and an amplitude extraction unit 56 for processing information received from the above-mentioned vibration measurement unit 90, roll rotation speed measurement unit 95, or storage unit 96. The target rotation speed acquisition unit 63, the output unit 72, and the like are included.
 運転支援装置50は、CPU、メモリ(RAM)、補助記憶部及びインターフェース等を含んでいてもよい。運転支援装置50は、インターフェースを介して、各種計測器(上述の振動計測部90又はロール回転数計測部95等)からの信号を受け取るようになっている。CPUは、このようにして受け取った信号を処理するように構成される。また、CPUは、メモリに展開されるプログラムを処理するように構成される。 The driving support device 50 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like. The driving support device 50 receives signals from various measuring instruments (such as the above-mentioned vibration measuring unit 90 or roll rotation speed measuring unit 95) via an interface. The CPU is configured to process the signal received in this way. Further, the CPU is configured to process a program expanded in the memory.
 運転支援装置50での処理内容は、CPUにより実行されるプログラムとして実装され、補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムはメモリに展開される。CPUは、メモリからプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。 The processing content of the driving support device 50 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in memory. The CPU reads the program from the memory and executes the instructions included in the program.
 上述した圧延装置2において、特定の回転数で金属板Sの圧延を続けると、圧延ロール3の断面形状が特定のN角形に近づくN角形化が生じることがある。ここで、図11は、圧延ロール3のN角形化が生じている圧延装置の模式図である。図11に示す圧延装置2は、複数の圧延スタンド10A~10Cを含む。圧延ロール3の軸方向に直交する断面形状は、通常、圧延スタンド10A又は10Cの圧延ロール3のように円形形状を有するが、図11に示す圧延スタンド10Bの圧延ロール3(ワークロール4A,4B及びバックアップロール6A,6B)の断面形状はN角形(具体的には12角形)となっており、これらの圧延ロール3にはN角形化が生じている。圧延ロール3のN角形化が生じて成長すると、圧延ロール3により圧延された金属板Sの表面に、圧延ロール3のN角形に対応した凹凸が形成され、製品の品質上問題となることがある。 In the rolling apparatus 2 described above, if the rolling of the metal plate S is continued at a specific rotation speed, N-polygonization may occur in which the cross-sectional shape of the rolling roll 3 approaches a specific N-polygon. Here, FIG. 11 is a schematic view of a rolling apparatus in which the rolling roll 3 is N-sided. The rolling apparatus 2 shown in FIG. 11 includes a plurality of rolling stands 10A to 10C. The cross-sectional shape of the rolling roll 3 orthogonal to the axial direction usually has a circular shape like the rolling roll 3 of the rolling stand 10A or 10C, but the rolling roll 3 (work rolls 4A, 4B) of the rolling stand 10B shown in FIG. The cross-sectional shapes of the backup rolls 6A and 6B) are N-polygons (specifically, dodecagonal), and these rolling rolls 3 are N-sided. When the rolling roll 3 is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll 3 are formed on the surface of the metal plate S rolled by the rolling roll 3, which may cause a problem in product quality. is there.
 上述の問題を解決するため、幾つかの実施形態に係る運転支援装置50は、圧延ロール3のN角形化の成長を抑制可能な構成を有している。すなわち、運転支援装置50の目標回転数取得部63は、圧延ロール3の回転数frと特性値σとの相関関係に基づいて(すなわち、記憶部96から取得した特性図に基づいて)、圧延ロール3のN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを取得するように構成される。また、出力部72は、目標回転数取得部63によって取得された回転数frを目標回転数として出力するように構成される。 In order to solve the above-mentioned problems, the operation support device 50 according to some embodiments has a configuration capable of suppressing the growth of N-polygonization of the rolling roll 3. That is, the target rotation speed acquisition unit 63 of the operation support device 50 rolls based on the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value σ (that is, based on the characteristic diagram acquired from the storage unit 96). It is configured to acquire the rotation speed fr corresponding to the characteristic value σ indicating that the N-gonification of the roll 3 is blunted or attenuated. Further, the output unit 72 is configured to output the rotation speed fr acquired by the target rotation speed acquisition unit 63 as the target rotation speed.
 幾つかの実施形態では、目標回転数は、出力部72を介して、圧延ロール3の回転数を制御するための回転数制御部99に出力されるようになっている。回転数制御部99は、圧延ロール3の回転数が目標回転数となるように、圧延ロール3の駆動モータを制御するように構成されていてもよい。また、幾つかの実施形態では、目標回転数は、出力部72を介して表示部98(ディスプレイ等)に出力されるようになっている。この場合、表示部98に表示された目標回転数に基づいて、オペレータが、圧延ロール3の回転数を適宜変更するようにしてもよい。 In some embodiments, the target rotation speed is output to the rotation speed control unit 99 for controlling the rotation speed of the rolling roll 3 via the output unit 72. The rotation speed control unit 99 may be configured to control the drive motor of the rolling roll 3 so that the rotation speed of the rolling roll 3 becomes the target rotation speed. Further, in some embodiments, the target rotation speed is output to the display unit 98 (display or the like) via the output unit 72. In this case, the operator may appropriately change the rotation speed of the rolling roll 3 based on the target rotation speed displayed on the display unit 98.
 なお、図11においては、圧延スタンド10Bの各圧延ロール3において、12角形化(N=12)が生じた様子が模式的に示されているが、実際の圧延装置では、圧延ロール3の回転数等の運転条件にもよるが、Nが50程度あるいは100程度のN角形が圧延ロール3に生じることもある。 Note that FIG. 11 schematically shows how dodecagonization (N = 12) occurs in each rolling roll 3 of the rolling stand 10B, but in an actual rolling apparatus, the rotation of the rolling roll 3 is performed. Depending on the operating conditions such as the number, an N-sided polygon having an N of about 50 or about 100 may occur in the rolling roll 3.
 また、圧延装置2の運転条件や仕様(固有振動数等)に応じて、特定の圧延スタンド10において圧延ロール3のN角形化が生じたり、1つの圧延スタンドを構成する複数の圧延ロール3のうち、特定の圧延ロール3(ワークロール4A,4B又はバックアップロール6A,6B)にてN角形化が生じたりすることがある。例えば、比較的高温で行う熱間圧延の場合、ワークロール4A,4BにおいてN角形化が比較的起きやすい。また、比較的低温で行う冷間圧延の場合、バックアップロール6A,6BにおいてN角形化が比較的起きやすい。 Further, depending on the operating conditions and specifications (natural frequency, etc.) of the rolling apparatus 2, the rolling rolls 3 may be N-polygonalized at a specific rolling stand 10, or a plurality of rolling rolls 3 constituting one rolling stand may be formed. Of these, N-sided formation may occur on a specific rolling roll 3 (work rolls 4A, 4B or backup rolls 6A, 6B). For example, in the case of hot rolling performed at a relatively high temperature, N-polygonization is relatively likely to occur in the work rolls 4A and 4B. Further, in the case of cold rolling performed at a relatively low temperature, N-polygonization is relatively likely to occur in the backup rolls 6A and 6B.
 次に、幾つかの実施形態に係る圧延装置2の運転支援方法について説明する。
 幾つかの実施形態では、上述の運転支援装置50を用いて圧延装置の運転を支援する方法について説明するが、幾つかの実施形態では、以下に説明する運転支援装置50による処理の一部又は全部をマニュアルで行うことにより、圧延装置2の運転支援をするようにしてもよい。
Next, the operation support method of the rolling apparatus 2 according to some embodiments will be described.
In some embodiments, a method of supporting the operation of the rolling apparatus by using the above-described operation support device 50 will be described, but in some embodiments, a part of the processing by the operation support device 50 described below or The operation of the rolling mill 2 may be assisted by manually performing all the steps.
 以下、幾つかの実施形態に係る圧延装置の運転支援方法について、より具体的に説明する。なお、以下においては、上述の運転支援装置50を用いて圧延装置2の運転支援をする方法について説明するが、幾つかの実施形態では、以下に説明する運転支援装置50による処理の一部又は全部をマニュアルで行うことにより、圧延装置2の運転支援をするようにしてもよい。 Hereinafter, the operation support method of the rolling mill according to some embodiments will be described more specifically. In the following, a method of supporting the operation of the rolling apparatus 2 by using the above-mentioned operation support device 50 will be described, but in some embodiments, a part of the processing by the operation support device 50 described below or The operation of the rolling mill 2 may be assisted by manually performing all the steps.
 図3は、一実施形態に係る圧延装置の運転支援方法の概略的なフローチャートである。図3のフローチャートにおいて、「i」は、圧延ロール3の回転数の設定(変更)回数(すなわち、i回目の圧延ロール3の回転数の設定)を意味し、「fr」「A」等の添え字iが付された記号は、それぞれ、i回目の回転数設定での圧延時におけるものであることを示す。
 図4は、以下に説明する周波数分析ステップ(ステップS206)で得られる、圧延ロール3の振動の周波数スペクトルの一例の模式図である。図5Aは、一実施形態に係る運転支援方法の実行時における、圧延ロール3の回転数frの時間変化を示す図である。図5Bは、一実施形態に係る運転支援方法の実行時における、圧延ロール3のN角形に対応する振動振幅(後で説明する)の時間変化を示す図である。
FIG. 3 is a schematic flowchart of an operation support method for the rolling mill according to the embodiment. In the flowchart of FIG. 3, “i” means the number of times the rotation speed of the rolling roll 3 is set (changed) (that is, the setting of the rotation speed of the rolling roll 3 for the i-th time), and “fr i ” and “A i ”. The symbols with the subscript i such as, etc. indicate that they are at the time of rolling at the i-th rotation speed setting.
FIG. 4 is a schematic diagram of an example of the frequency spectrum of the vibration of the rolling roll 3 obtained in the frequency analysis step (step S206) described below. FIG. 5A is a diagram showing a time change of the rotation speed fr of the rolling roll 3 when the operation support method according to the embodiment is executed. FIG. 5B is a diagram showing a time change of the vibration amplitude (described later) corresponding to the N-sided shape of the rolling roll 3 when the operation support method according to the embodiment is executed.
 一実施形態に係る方法では、まず、圧延ロール3の回転数をfr(初回はi=1)に設定し、該回転数frにて圧延装置2を運転し、金属板Sの圧延を行う(ステップS202)。なお、圧延ロール3の回転数frは、後で説明するステップS222で回転数fri+1に変更するまでは不変である。 In the method according to one embodiment, first, the rotation speed of the rolling roll 3 is set to fr i (i = 1 at the first time), the rolling apparatus 2 is operated at the rotation speed fr i , and the metal plate S is rolled. (Step S202). The rotation speed fr i of the rolling roll 3 is unchanged until it is changed to the rotation speed fr i + 1 in step S222 described later.
 次に、振動データ取得部52により、圧延ロール3の回転数frでの圧延中に、サンプリング周期dt(図5A及び図5B参照)毎に圧延ロール3の振動を示す振動データを取得する(振動データ取得ステップ;ステップS204)。該振動データとして、上述の振動計測部90により計測したものを振動データ取得部52で取得するようにしてもよい。 Then, the vibration data acquisition unit 52, while rolling at a rotation speed fr i of the rolling rolls 3, obtains vibration data indicating the vibration of the rolling rolls 3 at every sampling period dt (see FIGS. 5A and 5B) ( Vibration data acquisition step; step S204). As the vibration data, the vibration data acquired by the vibration measuring unit 90 may be acquired by the vibration data acquiring unit 52.
 次に、周波数分析部54により、サンプリング周期dt毎に取得された振動データの各々について周波数分析を行い、該振動データの周波数スペクトルを取得する(周波数分析ステップ;ステップS206)。あるサンプリング周期dtに取得された振動データについて周波数分析をすることにより、例えば図4に示す周波数スペクトルが得られる。 Next, the frequency analysis unit 54 performs frequency analysis on each of the vibration data acquired for each sampling period dt, and acquires the frequency spectrum of the vibration data (frequency analysis step; step S206). By performing frequency analysis on the vibration data acquired in a certain sampling period dt, for example, the frequency spectrum shown in FIG. 4 can be obtained.
 そして、振幅抽出部56により、周波数分析の結果得られる周波数スペクトルに基づいて、特定のN角形に対応する周波数(fr×N)における振動の振幅A(以下、N角形に対応する振動振幅A等ともいう。)を取得する(振幅取得ステップ;ステップS2086)(図4参照)。ステップS204にてサンプリング周期dt毎に取得される振動データの各々について周波数分析(ステップS206)及びN角形に対応する振動振幅の抽出(ステップS208)を行うことにより、サンプリング周期dt毎に振動振幅Aが得られる(図5B参照)。 Then, based on the frequency spectrum obtained as a result of frequency analysis by the amplitude extraction unit 56, the amplitude of vibration at the frequency (fr i × N) corresponding to the specific N polygon Ai (hereinafter, the vibration amplitude corresponding to the N polygon). Acquire (also referred to as A i or the like) (amplitude acquisition step; step S2086) (see FIG. 4). By performing frequency analysis (step S206) and extraction of the vibration amplitude corresponding to the N-side polygon (step S208) for each of the vibration data acquired for each sampling period dt in step S204, the vibration amplitude A for each sampling period dt. i is obtained (see FIG. 5B).
 ステップS208にて各振動データについて取得された振動振幅Aは、圧延ロール3の回転数frとともに、記録部60(図2参照)に記録される。記録部60に記録された回転数fr及び振動振幅Aの情報は、後述の評価係数Ψの算出に用いられる。 Vibration amplitude A i obtained for each of the vibration data at step S208, together with the rotational speed fr i of the rolling rolls 3, is recorded in the recording unit 60 (see FIG. 2). The information of the rotation speed fr i and the vibration amplitude A i recorded in the recording unit 60 is used for the calculation of the evaluation coefficient Ψ described later.
 ここで、例えば図5A及び図5Bに示すように、圧延ロール3の回転数frに応じて、特定のN角形に対応する振動振幅Aの経時変化の傾向(増加又は減少、及びその速度等)は異なる。図5A及び図5Bに示す例では、圧延ロール3の回転数fr(i=1)では、N角形に対応する振動振幅Aは、時間の経過に伴い増加している。これは、圧延ロール3においてN角形化が成長していること、すなわち、圧延ロール3の軸方向に直交する断面の形状が、円形からN角形に近づくように変形していることを示す。また、図5A及び図5Bに示す例では、圧延ロール3の回転数fr(i=2)では、N角形に対応する振動振幅Aは、時間の経過に伴い減少している。これは、圧延ロール3においてN角形化が減衰していること、すなわち、圧延ロール3の軸方向に直交する断面の形状が、N角形から円形に近づくように変形していることを示す。 Here, for example, as shown in FIGS. 5A and 5B, the tendency of the vibration amplitude A corresponding to a specific N-gon to change with time (increase or decrease, and its speed, etc.) according to the rotation speed fr of the rolling roll 3. Is different. In the example shown in FIGS. 5A and 5B, at the rotation speed fr 1 (i = 1) of the rolling roll 3, the vibration amplitude A 1 corresponding to the N-sided polygon increases with the passage of time. This indicates that the N-polygonization is growing in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from a circle to an N-sided shape. Further, in the examples shown in FIGS. 5A and 5B, at the rotation speed fr 2 (i = 2) of the rolling roll 3, the vibration amplitude A 2 corresponding to the N-sided polygon decreases with the passage of time. This indicates that the N-sided formation is attenuated in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from the N-sided shape to approach a circle.
 なお、複数種のN角形(N=N,N,N…)について、同一の回転数frにおける振動振幅Aの経時変更の傾向はそれぞれ独立している。例えば、回転数frでは、N角形に対応する振動振幅Aは時間の傾向に伴い増加するのに対し、N角形とは異なるN角形に対応する振動振幅Aは時間の傾向に伴い減少する場合がある。また、回転数fr2では、N角形に対応する振動振幅Aは時間の傾向に伴い減少するのに対し、N角形に対応する振動振幅Aは時間の傾向に伴い増加する場合がある。すなわち、圧延ロール3において、ある回転数frでは、N角形化の成長とN角形化の減衰が同時に起きることがあるし、また、他の回転数frでは、N角形化の減衰とN角形化の成長が同時に起きることがある。さらに、圧延ロール3において、ある回転数frでは、N角形化の成長とN角形化の成長が同時に起き得るし、あるいは、ある回転数frでは、N角形化の減衰とN角形化の減衰が同時に起き得る。 For a plurality of types of N polygons (N = N 1 , N 2 , N 3 ...), the tendency of the vibration amplitude A to change with time at the same rotation speed fr is independent of each other. For example, the rotational speed fr 1, the vibration amplitude A corresponding to the N 1 square whereas increases with the trend of time, the vibration amplitude A corresponding to different N 2 prismatic and N 1 square involves a tendency of the time May decrease. Further, the rotational speed fr2, the vibration amplitude A corresponding to the N 1 square while decreases with the trend of time, the vibration amplitude A corresponding to the N 2 square sometimes increase with the trend of time. That is, in the rolling roll 3, in certain rotational speed fr, to attenuate the growth and N 2 square of N 1 square of sometimes occur at the same time, also, the other rotational speed fr, the attenuation of the N 1 square of growth of N 2 square of there can occur at the same time. Further, in the rolling roll 3, in certain rotational speed fr, N 1 to the square of growth and N 2 square of growth may occur simultaneously, or in certain rotational speed fr, N 1 square of attenuation and N 2 square Attenuation of conversion can occur at the same time.
 次に、ステップS208にて、振幅比較部59(図2参照)により、サンプリング周期dt毎に取得される振動振幅Aを、該振動振幅の管理値AiMと比較する(ステップS212)。管理値AiMは、圧延される金属板Sの品質を低下させないように決定される値であり、例えば、金属板Sの表面にチャタマークが形成されないように決定される。管理値AiMは、圧延装置2の過去の運転実績から決定するようにしてもよい。また、角形数Nに応じて異なる管理値AiMを設定してもよい。 Next, in step S208, the amplitude comparing unit 59 (see FIG. 2), the vibration amplitude A i acquired every sampling period dt, compared with the control value A iM of the vibration amplitude (Step S212). The control value A iM is a value determined so as not to deteriorate the quality of the metal plate S to be rolled, and is determined so that, for example, a chatter mark is not formed on the surface of the metal plate S. The control value A iM may be determined from the past operation results of the rolling mill 2. Further, different control values A iM may be set according to the number N of polygons.
 ステップS208で取得された振動振幅Aが管理値AiMよりも小さい場合(ステップS212のNo)、圧延される金属板Sの品質に影響が出る程度に振動振幅Aが増加しておらず、圧延ロール3において着目しているN角形化は過度に成長していないと判断することができる。したがって、圧延ロール3にて該N角形化を減衰又は遅延(鈍化)させる必要はまだないため、圧延ロール3の回転数frを変更せずにfrのまま維持し、ステップS202に戻り、ステップS202以降の手順を再度行う。 Step If the obtained vibration amplitude A i is smaller than the management value A iM in S208 (No in step S212), the vibration amplitude A i to the extent that affected leaves on the quality of the metal plate S to be rolled is not increased , It can be judged that the N-sided polygonation of interest in the rolling roll 3 has not grown excessively. Therefore, since it is not yet necessary to attenuate or delay (blunt) the N-polygonization on the rolling roll 3, the rotation speed fr of the rolling roll 3 is maintained as fr i without being changed, and the process returns to step S202 to step. The procedure after S202 is repeated.
 一方、ステップS208で取得された振動振幅Aが管理値AiMよりも大きい場合(ステップS212のYes)、圧延される金属板Sの品質に影響が出る程度に振動振幅Aが増加している(即ち、N角形化が成長している)可能性がある。そこで、以下に説明するステップS214~S218にて、圧延される金属板Sの品質に影響が出る程度にN角形化が成長しているか否かを判定する。 On the other hand, if the vibration amplitude A i obtained at step S208 is greater than the management value A iM (Yes in step S212), the vibration amplitude A i is increased to the extent that leaves affect the quality of the metal plate S to be rolled There may be (ie, N-gonation is growing). Therefore, in steps S214 to S218 described below, it is determined whether or not the N-polygonization has grown to the extent that the quality of the rolled metal plate S is affected.
 ステップS214では、評価係数算出部67(図2参照)により、ある時点を基準とする振動振幅Aの成長度合いを示す評価係数Ψを算出する。
 ここで、i回目の回転数設定値frに圧延ロール3の回転数を変更した直後に取得されるN角形に対応する振動振幅をAiSとし、(i+1)回目の回転数設定値fri+1に変更する直前(この時の回転数はfrである)に取得されるN角形に対応する振動振幅をAiEとする(図5B参照)。
At step S214, the by evaluation coefficient calculation unit 67 (see FIG. 2), to calculate an evaluation coefficient Ψ showing the growth degree of the vibration amplitude A i relative to the given time.
Here, the vibration amplitude corresponding to the N-sided polygon acquired immediately after changing the rotation speed of the rolling roll 3 to the i-th rotation speed setting value fr i is set to A iS , and the (i + 1) rotation speed setting value fr i + 1 is set. Let A iE be the vibration amplitude corresponding to the N-gon acquired immediately before the change to (the number of rotations at this time is fr i ) (see FIG. 5B).
 本発明者らの知見によれば、圧延ロール3の回転数が一定の条件での圧延中、N角形に対応する振動振幅Aは、指数関数的に増減する。そして、圧延ロール3の回転数friで圧延中、ある時刻t1におけるN角形に対応する振動振幅Ai_t1と、時刻t1よりΔt後の時刻t2におけるN角形に対応する振動振幅Ai_t2は、下記式(A)で示す関係を満たす。
 Ai_t2/Ai_t1=exp(σ・fr・Δt) …(A)
 ここで、上記式(A)σは、圧延ロール3の回転数frに対応して定まる特性値(以下、単に「特性値σ」ともいう。)
According to the findings of the present inventors, the vibration amplitude A corresponding to the N-sided polygon increases or decreases exponentially during rolling under the condition that the rotation speed of the rolling roll 3 is constant. Then, during rolling at the rotation speed fri of the rolling roll 3, the vibration amplitude Ai_t1 corresponding to the N-sided polygon at a certain time t1 and the vibration amplitude Ai_t2 corresponding to the N-sided polygon at the time t2 after Δt from the time t1 are expressed by the following equations. The relationship shown in (A) is satisfied.
A i_t2 / A i_t1 = exp (σ i・ fr i・ Δt)… (A)
Here, the above formula (A) σ i is a characteristic value determined corresponding to the rotation speed fr i of the rolling roll 3 (hereinafter, also simply referred to as “characteristic value σ”).
 したがって、上述の振動振幅AiSの取得時刻から、上述の振動振幅AiEの取得時刻までの時間の長さをΔtとすれば、振動振幅AiEと振動振幅AiSとの比(回転数frでの振動振幅Aの成長比)は、下記式(B)で表すことができる。
 AiE/AiS=exp(σ・fr・Δt) …(B)
Accordingly, the acquisition time of the vibration amplitude A iS above, if the length of time before the acquisition time of the vibration amplitude A iE above and Delta] t i, the ratio of the vibration amplitude A iE the vibration amplitude A iS (rpm growth ratio of the vibration amplitude a i in fr i) can be represented by the following formula (B).
A iE / A iS = exp ( σ i · fr i · Δt i) ... (B)
 そして、i=1,2,3,・・・,iについて、上記式(B)の成長比(AiE/AiS)を全て掛け算すると、下記式(C)が得られる。
Figure JPOXMLDOC01-appb-M000001
 上記式(C)の左辺は、圧延ロール3の回転数をfr(i=1)に設定した直後の振動振幅A1Sを基準とした、振動振幅Aiの成長度合いを示すものである。そして、上記式(C)について自然対数をとれば下記式(D)に示す形で表現できる。これを評価係数Ψと定義する。
Figure JPOXMLDOC01-appb-M000002
Then, by multiplying all the growth ratios (A iE / A iS ) of the above formula (B) for i = 1, 2, 3, ..., I, the following formula (C) is obtained.
Figure JPOXMLDOC01-appb-M000001
The left side of the above formula (C) shows the degree of growth of the vibration amplitude Ai with reference to the vibration amplitude A 1S immediately after the rotation speed of the rolling roll 3 is set to fr 1 (i = 1). Then, if the natural logarithm of the above equation (C) is taken, it can be expressed in the form shown in the following equation (D). This is defined as the evaluation coefficient Ψ.
Figure JPOXMLDOC01-appb-M000002
 評価係数Ψがゼロより大きい場合、基準時点の振動振幅Aに対して、i回目に設定した回転数frでΔtの期間圧延を行った時点での振動振幅Aが増加したこと、すなわち、圧延ロール3のN角形化が成長したことを示す。また、評価係数Ψがゼロより小さい場合、基準時点の振動振幅Aに対して、i回目に設定した回転数frでΔtの期間圧延を行った時点での振動振幅Aが減少したこと、すなわち、圧延ロール3のN角形化が減衰したことを示す。 If the evaluation coefficient Ψ is greater than zero, with respect to the vibration amplitude A of the reference time, the vibration amplitude A i at the time of performing time rolling Delta] t i at a rotation speed fr i set to i th is increased, i.e. , Indicates that the N-sided formation of the rolling roll 3 has grown. Also, when the evaluation coefficient Ψ is less than zero, with respect to the vibration amplitude A of the reference time, the vibration amplitude A i at the time period rolling was carried out in the i-th revolution speed fr i in Delta] t i set in decreased That is, it indicates that the N-sided formation of the rolling roll 3 has been attenuated.
 したがって、圧延装置2の運転中にステップS202~S224(ステップS216~S224については後述)を繰り返し行うことで、記録部60に記録された回転数fr及び振動振幅A(振動振幅AiS及びAiEを含む)の過去の履歴を用いて、上記式(D)から、現時点での評価係数Ψを算出することができる。 Therefore, by repeating steps S202 to S224 (described later in steps S216 to S224) during the operation of the rolling apparatus 2, the rotation speed fr i and the vibration amplitude A i (vibration amplitude A iS and vibration amplitude A i S) recorded in the recording unit 60 are performed. Using the past history of (including AiE ), the current evaluation coefficient Ψ can be calculated from the above equation (D).
 ステップS216では、評価係数比較部69(図2参照)により、ステップS214で算出した評価係数Ψがゼロよりも小さいか否かを判定する。評価係数Ψがゼロよりも小さい場合(ステップS216のYes)、過去の基準時点に比べて振動振幅Aが小さくなっている(即ちN角形化が減衰している)と判断することができる。したがって、圧延ロール3にてN角形化を減衰又は鈍化(遅延)させる必要はまだないため、圧延ロール3の回転数frを変更せずにfrのまま維持し、ステップS202に戻り、ステップS202以降の手順を再度行う。 In step S216, the evaluation coefficient comparison unit 69 (see FIG. 2) determines whether or not the evaluation coefficient Ψ calculated in step S214 is smaller than zero. When the evaluation coefficient Ψ is smaller than zero (Yes in step S216), it can be determined that the vibration amplitude A is smaller than the past reference time point (that is, the N-polygonization is attenuated). Therefore, since it is not yet necessary to attenuate or slow down (delay) the N-polygonization on the rolling roll 3, the rotation speed fr of the rolling roll 3 is maintained as fr i without being changed, and the process returns to step S202 to return to step S202. Repeat the following steps.
 一方、ステップS216にて評価係数Ψがゼロよりも大きい場合(ステップS216のNo)、過去の基準時点に比べて振動振幅Aが大きくなっていると判断することができる。すなわち、圧延される金属板Sの品質に影響が出る程度に振動振幅Aが増加している(即ち、N角形化が成長している)可能性があるため、次のステップS218に進んで、圧延ロール3の回転数friの変更の要否を判定する。 On the other hand, when the evaluation coefficient Ψ is larger than zero in step S216 (No in step S216), it can be determined that the vibration amplitude A is larger than that at the reference time point in the past. That is, since there is a possibility that the vibration amplitude Ai has increased to the extent that the quality of the rolled metal plate S is affected (that is, the N-sided polygonization is growing), the process proceeds to the next step S218. , It is determined whether or not it is necessary to change the rotation speed fri of the rolling roll 3.
 ステップS218では、圧延ロール3の回転数を現在の回転数frに変更した直後に取得されるN角形に対応する振動振幅AiSに対する、現在の回転数frでの圧延中における最新の(直近に取得された)N角形に対応する振動振幅Ai_Nの比Ai_N/AiSが1よりも小さいか否かを判定する。 In step S218, with respect to the vibration amplitude A iS corresponding to the N polygon acquired immediately after changing the rotational speed of the rolling rolls 3 the current rotational speed fr i, latest during rolling in the current rotational speed fr i ( It is determined whether or not the ratio A i_N / A iS of the vibration amplitude A i_N corresponding to the (most recently acquired) N polygon is smaller than 1.
 上述の比Ai_N/AiSが1よりも小さい場合(ステップS218のYes)、圧延ロール3の回転数を現在の回転数frに設定(変更)後、N角形に対応する振動振幅Aiが減少しているから、N角形化は減衰傾向であることを示す。したがって、圧延ロール3にてN角形化を減衰又は遅延(鈍化)させる必要はないため、圧延ロール3の回転数frを変更せずにfrのまま維持し、ステップS202に戻り、ステップS202以降の手順を再度行う。 After the case described above the ratio A i_N / A iS is less than 1 (Yes in step S218), sets the rotational speed of the rolling rolls 3 the current rotational speed fr i (change), the vibration amplitude Ai corresponding to the N polygon Since it is decreasing, it indicates that N-polygonization tends to decrease. Therefore, since it is not necessary to attenuate or delay (blunt) the N-polygonization on the rolling roll 3, the rotation speed fr of the rolling roll 3 is maintained as fr i without being changed, and the process returns to step S202 to return to step S202 and thereafter. Repeat the procedure in.
 一方、上述の比Ai_N/AiSが1よりも大きい場合(ステップS218のNo)、圧延ロール3の回転数を現在の回転数frに設定(変更)後、N角形に対応する振動振幅Aiが増加しているから、N角形化は成長傾向であることを示す。これにより、圧延される金属板Sの品質に影響が出る程度に振動振幅Aが増加している(N角形化が成長している)と判断し、ステップS220に進む。 On the other hand, when the ratio A i_N / A iS above is greater than 1 (No in step S218), after setting the rotational speed of the rolling rolls 3 the current rotational speed fr i (change), corresponding to the N polygon vibration amplitude Since Ai is increasing, it indicates that N-polygonization is a growth trend. As a result, it is determined that the vibration amplitude Ai has increased to the extent that the quality of the rolled metal plate S is affected (N-polygonization is growing), and the process proceeds to step S220.
 ステップS220では、目標回転数取得部63により、圧延ロールの回転数frと、圧延ロール3のN角形化の成長傾向を示す特性値σとの相関関係(特性図)に基づいて、圧延ロール3のN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを目標回転数として取得する。取得した目標回転数は、出力部72を介して、表示部98や回転数制御部99に出力される。 In step S220, the target rotation speed acquisition unit 63 bases the rolling roll 3 based on the correlation (characteristic diagram) between the rotation speed fr of the rolling roll and the characteristic value σ indicating the growth tendency of N-polygonization of the rolling roll 3. The rotation speed fr corresponding to the characteristic value σ indicating that the N-polygonization of is slowed down or attenuated is acquired as the target rotation speed. The acquired target rotation speed is output to the display unit 98 and the rotation speed control unit 99 via the output unit 72.
 ステップS220の後、ステップS222では、出力部72を介して出力された目標回転数となるように、圧延ロール3の駆動モータの出力を調節して、圧延ロール3の回転数を変更する。そして、圧延ロール3の回転数の設定回数(変更回数)のカウンタを加算して(ステップS224)、ステップS202に戻り、ステップS202以降の手順を再度行う。 After step S220, in step S222, the output of the drive motor of the rolling roll 3 is adjusted so that the target rotation speed is the target rotation speed output via the output unit 72, and the rotation speed of the rolling roll 3 is changed. Then, the counter of the set number of rotations (change number) of the rolling roll 3 is added (step S224), the process returns to step S202, and the steps after step S202 are repeated.
 上述した実施形態に係る方法によれば、圧延ロール3の回転数frと上述の特性値σとの相関関係に基づいて、圧延ロール3のN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを取得し、該回転数frを目標回転数として出力する。したがって、圧延ロール3の回転数が、出力された目標回転数となるように圧延装置2を運転して金属板Sの圧延を行うことで、圧延ロール3のN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロール3のN角形化の成長を抑制して、圧延後の製品(金属板S)の品質低下を抑制することができる。 According to the method according to the above-described embodiment, the characteristic value σ indicating that the N-polygonization of the rolling roll 3 is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll 3 and the above-mentioned characteristic value σ. The rotation speed fr corresponding to is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus 2 to roll the metal plate S so that the rotation speed of the rolling roll 3 becomes the output target rotation speed, the N-square formation of the rolling roll 3 is slowed (delayed) or delayed. It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll 3 and suppress the deterioration of the quality of the rolled product (metal plate S).
 ここで、図6は、圧延ロール3の回転数frと、圧延ロール3のN角形化の成長傾向を示す特性値σの相関関係(特性図)の典型的な一例を示す図である。図6のグラフの横軸のパラメータΦは、Φ=fr×N/fn(ただし、fnは圧延ロール3の固有振動数)で表されるパラメータである。なお、Nは特定の自然数(角形数)であり、fnも圧延対象の金属板の材質や厚さ等によらず概ね一定であると見做すことができるので、Φは圧延ロール3の回転数frと概ね比例関係にある。 Here, FIG. 6 is a diagram showing a typical example of the correlation (characteristic diagram) between the rotation speed fr of the rolling roll 3 and the characteristic value σ indicating the growth tendency of the N-sided polygonization of the rolling roll 3. The parameter Φ on the horizontal axis of the graph of FIG. 6 is a parameter represented by Φ = fr × N / fn (where fn is the natural frequency of the rolling roll 3). Since N is a specific natural number (polygonal number) and fn can be considered to be substantially constant regardless of the material and thickness of the metal plate to be rolled, Φ is the rotation of the rolling roll 3. It is roughly proportional to the number fr.
 回転数frに対応する特性値σは、例えば上記式(B)を変形することにより、下記式(E)に示すように定義できる。
 σ=ln(AiE/AiS)/(fr・Δt) …(E)
 したがって、圧延ロール3にて様々な回転数frでの圧延中に、N角形に対応する振動振幅AiS及びAiEを取得することにより、特性値σと、回転数frとの相関関係(図6に示す特性図)を取得することができる。上述の回転数frと特性値σとの相関関係を示す特性図は、圧延装置2の過去の運転実績等に基づいて予め作成されたものを用いてもよい。
The characteristic value σ i corresponding to the rotation speed fr i can be defined as shown in the following equation (E) by, for example, modifying the above equation (B).
σ i = ln (A iE / A iS ) / (fr i · Δt i )… (E)
Therefore, during rolling at various rpm fr in the rolling rolls 3, correlation by acquiring the vibration amplitude A iS and A iE corresponding to N square, and the characteristic value sigma, the rotational speed fr (Fig. The characteristic diagram shown in 6) can be obtained. The characteristic diagram showing the correlation between the rotation speed fr and the characteristic value σ may be prepared in advance based on the past operation results of the rolling apparatus 2.
 上述の特性値σ(例えば上記式(E)に基づき算出したもの)は、圧延ロール3の回転数frでの圧延中における、N角形に対応する圧延ロール3の振動の周波数の振幅(即ち、N角形に対応する振動振幅)の経時変化の傾向の指標である。 The above-mentioned characteristic value σ (for example, calculated based on the above formula (E)) is the amplitude of the vibration frequency of the rolling roll 3 corresponding to the N-polygon (that is, that is, during rolling at the rotation speed fr of the rolling roll 3). It is an index of the tendency of the change with time of the vibration amplitude corresponding to the N-sided polygon.
 即ち、上述の特性値σがゼロより大きい場合、上記式(E)の右辺中の(AiE/AiS)が1よりも大きくなる。したがって、特性値σがゼロより大きいことは、当該σに対応する回転数frにおいて、N角形に対応する振動振幅が増加すること、すなわち、圧延ロール3のN角形化が成長することを示す。一方、上述の特性値σがゼロより小さい場合、上記式(E)の右辺中の(AiE/AiS)が1よりも小さくなる。したがって、特性値σがゼロより小さいことは、当該σに対応する回転数frにおいてN角形に対応する振動振幅が減少すること、すなわち、圧延ロール3のN角形化が減衰することを示す。 That is, when the above-mentioned characteristic value σ is larger than zero, (A iE / A iS ) in the right side of the above equation (E) becomes larger than 1. Therefore, when the characteristic value σ is larger than zero, it means that the vibration amplitude corresponding to the N-polygon increases at the rotation speed fr corresponding to the σ, that is, the N-sided formation of the rolling roll 3 grows. On the other hand, when the above-mentioned characteristic value σ is smaller than zero, (A iE / A iS ) in the right side of the above equation (E) becomes smaller than 1. Therefore, the fact that the characteristic value σ is smaller than zero indicates that the vibration amplitude corresponding to the N-polygon decreases at the rotation speed fr corresponding to the σ, that is, the N-polygonization of the rolling roll 3 is attenuated.
 また、上記式(E)で算出される特性値σは、上記式(E)の右辺の分子に、上述の振動振幅が、AiSからAiEまで変化するまでの時間(Δt)が含まれることから、単位時間当たりの振動振幅の変化を示すものである。したがって、特性値σが正の領域では、特性値σが大きいほど、N角形に対応する振動振幅Aの増加速度が大きく、圧延ロール3のN角形化の成長速度が速い傾向であると評価することができる。また、特性値σが負の領域では、特性値σが小さいほど、N角形に対応する振動振幅Aの減少速度が大きく、圧延ロール3のN角形化の減衰速度が速い傾向であると評価することができる。 Further, the formula property values σ calculated by (E), to a molecule of the right side of the above formula (E), the vibration amplitude of the aforementioned, includes the time (Delta] t i) to change from A iS to A iE Therefore, it indicates the change in vibration amplitude per unit time. Therefore, in the region where the characteristic value σ is positive, it is evaluated that the larger the characteristic value σ is, the larger the increase rate of the vibration amplitude A corresponding to the N-side polygon is, and the faster the growth rate of the N-sided formation of the rolling roll 3 is. be able to. Further, in the region where the characteristic value σ is negative, it is evaluated that the smaller the characteristic value σ is, the larger the decrease rate of the vibration amplitude A corresponding to the N-polygon is, and the faster the damping rate of the N-sided formation of the rolling roll 3 is. be able to.
 なお、複数種類のN角形(N=N1,N2,N3,…)について、回転数frと特性値σの相関関係を示す曲線(特性図)は個別に得られるが、図6に示すグラフのように、角形数N及び圧延ロール3の固有振動数fnで回転数frを正規化したパラメータΦを用いてグラフ化すると、複数種のN角形についての相関関係の曲線(特性図)がほぼ重なる。 For a plurality of types of N polygons (N = N1, N2, N3, ...), Curves (characteristic diagrams) showing the correlation between the rotation speed fr and the characteristic value σ can be obtained individually, but the graph shown in FIG. 6 shows. As described above, when graphing using the parameter Φ in which the rotation number fr is normalized by the natural frequency fn of the polygon number N and the rolling roll 3, the correlation curves (characteristic diagrams) for a plurality of types of N polygons almost overlap. ..
 図6に示すように、典型的な特性図においては、角形数Nに関わらず、Φ=1(即ち、N角形に対応する周波数fr×Nが圧延ロール3の固有振動数と等しくなる回転数fr)の近傍と、Φ<1の領域に、σがゼロとなるΦ(図6中のΦ=α2及びΦ=α1)(即ち回転数)が存在する。 As shown in FIG. 6, in a typical characteristic diagram, Φ = 1 (that is, the frequency fr × N corresponding to the N polygon is equal to the natural frequency of the rolling roll 3 regardless of the number N of the polygons. In the vicinity of fr) and in the region of Φ <1, there are Φ (Φ = α2 and Φ = α1) (that is, the number of rotations) in which σ becomes zero.
 そして、α1<Φ<α2の回転数領域においてσがゼロより大きく、特に、Φ≒α2にてσが極大となっている。すなわち、この回転数領域では、圧延ロール3のN角形化が成長(進行)し、σが大きいほど、圧延ロール3のN角形化の成長速度が速い。一方、Φ<α1及びΦ>α2の回転数領域ではσがゼロよりも小さい。すなわち、この回転数領域では、圧延ロール3のN角形化が減衰し、σが小さいほど、圧延ロール3のN角形化の減衰速度が速い。なお、σ=0では、圧延ロール3のN角形化は成長も減衰もしない。 Then, in the rotation speed region of α1 <Φ <α2, σ is larger than zero, and in particular, σ is maximized when Φ≈α2. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 grows (progresses), and the larger the σ, the faster the growth rate of the N-polygonization of the rolling roll 3. On the other hand, in the rotation speed region of Φ <α1 and Φ> α2, σ is smaller than zero. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 is attenuated, and the smaller the σ, the faster the attenuation speed of the N-gonification of the rolling roll 3. When σ = 0, the N-sided formation of the rolling roll 3 does not grow or decay.
 幾つかの実施形態では、特性値σは、例えば上記式(E)で定義されるように、圧延ロール3の回転数frでの圧延中における、N角形に対応する周波数での圧延ロール3の振動の振幅の変化速度の指標である。そして、上述のステップS220(目標回転数取得ステップでは圧延ロール3の回転数frと、該特性値σとの相関関係に基づいて、特性値σが現在値よりも小さくなる回転数frを、目標回転数として取得する。 In some embodiments, the characteristic value σ is the rolling roll 3 at a frequency corresponding to the N-polygon during rolling at the rolling speed fr of the rolling roll 3, for example, as defined by the above equation (E). It is an index of the rate of change of the amplitude of vibration. Then, in step S220 described above (in the target rotation speed acquisition step, the rotation speed fr whose characteristic value σ is smaller than the current value is set as the target based on the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value σ. Obtained as the number of revolutions.
 例えば、図6に示す特性図(特定のN角形についての特性図)において、回転数fr(又はパラメータΦ)と特性値σとの相関系を示す曲線上の点P1~P5が存在したとする。各点Pjの座標をPi(Φj,σj)とすると、各点P1~P5におけるΦjは、Φ1(<α1)<Φ2<Φ3<Φ4(<α2)<Φ5の関係を満たす(すなわち各点における回転数frjは、fr1<fr2<fr3<fr4<fr5の関係を満たす)。また、点P3におけるσ3は、特性図全体におけるσの極大値である。また、点P2,P4におけるσ2、σ4はゼロより大きく、点P1,P5におけるσ1、σ5はゼロより小さい。 For example, in the characteristic diagram shown in FIG. 6 (characteristic diagram for a specific N-sided polygon), it is assumed that points P1 to P5 on a curve showing a correlation system between the rotation speed fr (or parameter Φ) and the characteristic value σ exist. .. Assuming that the coordinates of each point Pj are Pi (Φj, σj), Φj at each point P1 to P5 satisfies the relationship of Φ1 (<α1) <Φ2 <Φ3 <Φ4 (<α2) <Φ5 (that is, at each point). The rotation speed frj satisfies the relationship of fr1 <fr2 <fr3 <fr4 <fr5). Further, σ3 at the point P3 is a maximum value of σ in the entire characteristic diagram. Further, σ2 and σ4 at points P2 and P4 are larger than zero, and σ1 and σ5 at points P1 and P5 are smaller than zero.
 上述の実施形態では、例えば、ステップS220にて目標回転数を算出している時点(圧延ロール3の回転数変更前)において点P2の運転条件(圧延ロール回転数fr2)であったとすると、ステップS220では、特性値σが、点P2におけるσ2(現在値)よりも小さくなる回転数fr、すなわち、例えば、点P1,P4又はP5における回転数fr1、fr4、またはfr5を、目標回転数として取得する。 In the above-described embodiment, for example, assuming that the operating condition at point P2 (rolling roll rotation speed fr2) is obtained at the time when the target rotation speed is calculated in step S220 (before the rotation speed of the rolling roll 3 is changed), the step In S220, the rotation speed fr whose characteristic value σ is smaller than σ2 (current value) at the point P2, that is, the rotation speed fr1, fr4, or fr5 at the points P1, P4 or P5 is acquired as the target rotation speed. To do.
 このように、ステップS220にて、特性図に基づいて、特性値σが現在値よりも小さくなる回転数frを目標回転数として取得すれば、ステップS224にて該目標回転数となるように圧延装置2を運転することで、圧延ロール3のN角形化の成長速度を現在値よりも小さくすることができ(即ち、N角形化の成長を鈍化させることができ)、これにより圧延ロール3のN角形化の成長を抑制することができる。 In this way, in step S220, if the rotation speed fr whose characteristic value σ is smaller than the current value is acquired as the target rotation speed based on the characteristic diagram, rolling is performed so as to reach the target rotation speed in step S224. By operating the apparatus 2, the growth rate of N-polygonization of the rolling roll 3 can be made smaller than the current value (that is, the growth of N-polygonization can be slowed down), whereby the growth of N-polygonization can be slowed down. The growth of N-polygonization can be suppressed.
 幾つかの実施形態では、特性値σは、例えば上記式(E)で定義されるように、圧延ロール3の回転数frでの圧延中における、N角形に対応する周波数での圧延ロール3の振動の振幅の変化速度の指標である。そして、上述のステップS220(目標回転数取得ステップ)では、圧延ロール3の回転数frと、特性値σとの相関関係に基づいて、特性値σがゼロ未満となる回転数frを、目標回転数として取得する。 In some embodiments, the characteristic value σ is the rolling roll 3 at a frequency corresponding to the N-polygon during rolling at the rolling speed fr of the rolling roll 3, for example, as defined by the above equation (E). It is an index of the rate of change of the amplitude of vibration. Then, in step S220 (target rotation speed acquisition step) described above, the target rotation speed fr at which the characteristic value σ is less than zero is set based on the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value σ. Get as a number.
 例えば、ステップS220にて目標回転数を算出している時点(圧延ロール3の回転数変更前)において点P2の運転条件(圧延ロール回転数fr2)であったとすると、ステップS220では、特性値σがゼロ未満となる回転数fr、すなわち、例えば、点P1又はP5における回転数fr1またはfr5を、目標回転数として取得する。 For example, assuming that the operating condition at point P2 (rolling roll rotation speed fr2) was obtained at the time when the target rotation speed was calculated in step S220 (before the rotation speed of the rolling roll 3 was changed), the characteristic value σ in step S220. The rotation speed fr at which is less than zero, that is, for example, the rotation speed fr1 or fr5 at the point P1 or P5 is acquired as the target rotation speed.
 このように、ステップS220にて、特性図に基づいて、特性値σがゼロ未満となる回転数frを目標回転数として取得すれば、ステップS224にて該目標回転数となるように圧延装置2を運転することで、圧延ロール3のN角形化を減衰させることができ、これにより圧延ロール3のN角形化の成長を抑制することができる。 As described above, in step S220, if the rotation speed fr at which the characteristic value σ is less than zero is acquired as the target rotation speed based on the characteristic diagram, the rolling apparatus 2 is set to the target rotation speed in step S224. By operating the above, the N-polygonization of the rolling roll 3 can be attenuated, and thereby the growth of the N-polygonization of the rolling roll 3 can be suppressed.
 幾つかの実施形態では、ステップS220(目標回転数取得ステップ)では、圧延ロール3のN角形化が鈍化又は減衰することを示す特性値σに対応する2以上の回転数範囲が存在する場合、前記2以上の回転数範囲のうち大きい方の回転数範囲内の回転数を、目標回転数として取得する。 In some embodiments, in step S220 (target rotation speed acquisition step), if there is a rotation speed range of 2 or more corresponding to the characteristic value σ indicating that the N-gonification of the rolling roll 3 is slowed or attenuated. The rotation speed within the larger rotation speed range of the two or more rotation speed ranges is acquired as the target rotation speed.
 図6の特性図においては、特性値σが0未満となるΦの範囲は、Φ<α1又はΦ>α2である。言い換えると、特性値σが0未満となる回転数frの範囲は、fr<α1×fn/N、又は、fr>α2×fn/Nである。したがって、この特性図において、圧延ロール3のN角形化が減衰することを示す特性値σに対応する回転数範囲が2つ(すなわち、fr<α1×fn/N、及び、fr>α2×fn/N)存在する。そこで、上述の実施形態では、ステップS220(目標回転数取得ステップ)にて、圧延ロール3のN角形化を減衰させるための目標回転数として、上記2つの回転数範囲のうち、大きい方の回転数範囲(即ち、fr>α2×fn/N)内の目標回転数を設定する。 In the characteristic diagram of FIG. 6, the range of Φ in which the characteristic value σ is less than 0 is Φ <α1 or Φ> α2. In other words, the range of the rotation speed fr at which the characteristic value σ is less than 0 is fr <α1 × fn / N or fr> α2 × fn / N. Therefore, in this characteristic diagram, there are two rotation speed ranges (that is, fr <α1 × fn / N and fr> α2 × fn) corresponding to the characteristic value σ indicating that the N-gonification of the rolling roll 3 is attenuated. / N) Exists. Therefore, in the above-described embodiment, in step S220 (target rotation speed acquisition step), the larger rotation speed of the above two rotation speed ranges is set as the target rotation speed for attenuating the N-gonification of the rolling roll 3. A target rotation speed within a number range (that is, fr> α2 × fn / N) is set.
 上述の実施形態では、圧延ロール3のN角形化が鈍化又は減衰することを示す特性値σに対応する2以上の回転数範囲が存在する場合、これらのうち大きい方の回転数範囲内の回転数を目標回転数として取得する。したがって、このように取得した目標回転数となるように圧延装置2を運転することで、圧延ロール3の回転数の低下を抑制してライン速度をなるべく高く維持しながら、圧延ロールのN角形化の成長を抑制することができる。すなわち、ライン速度をなるべく高速にできるので、製品(金属板)の品質低下を抑制しながら、製品の生産効率を向上することができる。 In the above-described embodiment, when there are two or more rotation speed ranges corresponding to the characteristic value σ indicating that the N-gonification of the rolling roll 3 is slowed or attenuated, the rotation within the larger rotation speed range of these. Get the number as the target rotation speed. Therefore, by operating the rolling apparatus 2 so as to reach the target rotation speed acquired in this way, the rolling roll is formed into an N-gon shape while suppressing a decrease in the rotation speed of the rolling roll 3 and maintaining the line speed as high as possible. Can suppress the growth of. That is, since the line speed can be made as high as possible, the production efficiency of the product can be improved while suppressing the deterioration of the quality of the product (metal plate).
 幾つかの実施形態では、ステップS220(目標回転数取得ステップ)では、圧延ロール3の固有振動数をfnとしたとき、fn/Nよりも大きい回転数範囲内の回転数を、目標回転数として取得する。なお、図6に示す特性図においては、Φ=α2(≒1)における回転数frが、fn/Nにほぼ等しいことから、点P5における回転数fr5は、fn/Nよりも大きい回転数範囲内の回転数である。 In some embodiments, in step S220 (target rotation speed acquisition step), when the natural frequency of the rolling roll 3 is fn, the rotation speed within the rotation speed range larger than fn / N is set as the target rotation speed. get. In the characteristic diagram shown in FIG. 6, since the rotation speed fr at Φ = α2 (≈1) is substantially equal to fn / N, the rotation speed fr5 at the point P5 is a rotation speed range larger than fn / N. The number of revolutions in.
 本発明者らの知見によれば、例えば図6に示すように、圧延ロール3の回転数frでの圧延ロール3のN角形に対応する振動の周波数(fr×N)が、圧延ロール3の固有振動数fnよりも大きいような高回転数領域においても、特性値σが比較的小さくなる(即ち、圧延ロールのN角形化が鈍化又は減衰する)回転数範囲が存在する。この点、上述の実施形態では、fn/Nよりも大きい回転数範囲内の比較的大きい回転数を目標回転数として取得する。したがって、このように取得した目標回転数となるように圧延装置2を運転することで、圧延ロール3の回転数の低下を抑制してライン速度をなるべく高く維持しながら、圧延ロール3のN角形化の成長を抑制することができる。 According to the findings of the present inventors, for example, as shown in FIG. 6, the frequency of vibration (fr × N) corresponding to the N-side shape of the rolling roll 3 at the rotation speed fr of the rolling roll 3 is that of the rolling roll 3. Even in the high rotation speed region where the natural frequency fn is larger, there is a rotation speed range in which the characteristic value σ becomes relatively small (that is, the N-squared formation of the rolling roll is slowed or attenuated). In this regard, in the above-described embodiment, a relatively large rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed. Therefore, by operating the rolling apparatus 2 so as to reach the target rotation speed acquired in this way, the N-sided shape of the rolling roll 3 is suppressed while the decrease in the rotation speed of the rolling roll 3 is suppressed and the line speed is maintained as high as possible. It is possible to suppress the growth of rolling stock.
 図7は、図3のフローチャートによる運転支援方法に基づき圧延装置2を運転したときの評価係数Ψの履歴を示すチャートである。図7に示す例では、圧延ロール3における様々なN角形化のうち、39角形化、40角形化及び41角形化についての、評価係数Ψの履歴を線グラフで示している。図7のグラフにおける時刻tcは、最新の振動データを取得した時刻である。なお、図7のグラフによれば、時刻t10、t11及びt12にて、各多角形化についての評価係数Ψの増加と減少が切り替わっていることから、これらのタイミングで圧延ロール3の回転数を変更していることがわかる。 FIG. 7 is a chart showing the history of the evaluation coefficient Ψ when the rolling apparatus 2 is operated based on the operation support method according to the flowchart of FIG. In the example shown in FIG. 7, the history of the evaluation coefficient Ψ for 39-sided, 40-sided, and 41-sided of the various N-sided shapes in the rolling roll 3 is shown in a line graph. The time ct in the graph of FIG. 7 is the time when the latest vibration data was acquired. According to the graph of FIG. 7, since the increase and decrease of the evaluation coefficient Ψ for each polygonization are switched at time t10, t11 and t12, the rotation speed of the rolling roll 3 is determined at these timings. You can see that it has changed.
 図3のフローチャートに示す運転支援方法によれば、図7に示すように、着目しているN角形(ここでは39角形、40角形及び41角形)についての評価係数Ψがなるべく0を超えないように、圧延ロール3の回転数を調節するようにしている(特に、ステップS216~S222参照)。そして、図7に示す現状の評価係数Ψのトレンドから、将来の時点における評価係数Ψを予測して表示部98に表示したり、圧延ロール3の回転数(即ちライン速度)の変更タイミングの目安にしたり、圧延ロール3の回転数(即ちライン速度)の制御に活用したりすることができる。 According to the driving support method shown in the flowchart of FIG. 3, as shown in FIG. 7, the evaluation coefficient Ψ of the N-sided polygon (here, 39-sided polygon, 40-sided polygon, and 41-sided polygon) of interest should not exceed 0 as much as possible. In addition, the rotation speed of the rolling roll 3 is adjusted (in particular, see steps S216 to S222). Then, from the current trend of the evaluation coefficient Ψ shown in FIG. 7, the evaluation coefficient Ψ at a future time point is predicted and displayed on the display unit 98, or a guideline for the timing of changing the rotation speed (that is, the line speed) of the rolling roll 3. It can be used for controlling the rotation speed (that is, line speed) of the rolling roll 3.
 図8は、圧延ロール3の回転数frと特性値σとの相関関係を示す特性図の一例であり、図7のチャートに示す時刻tcにおける回転数frでの、39,40,41角形についてのσの値を示す図である。図9は、図7のチャートに示す時刻tcにおける、圧延ロール3の39,40,41角形に対応する振動振幅の状況を示す図である。図10Aは、図7のチャートに示す時刻tcにおける、圧延ロール3の39,40,41角形に対応する特性値σの状況を示す図である。図10Bは、図7のチャートに示す時刻tcにおける、圧延ロール3の39,40,41角形に対応する評価係数Ψの状況を示す図である。 FIG. 8 is an example of a characteristic diagram showing the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value σ, and the 39, 40, 41 squares at the rotation speed fr at the time tk shown in the chart of FIG. It is a figure which shows the value of σ of. FIG. 9 is a diagram showing the state of the vibration amplitude corresponding to the 39, 40, 41 squares of the rolling roll 3 at the time tc shown in the chart of FIG. 7. FIG. 10A is a diagram showing the state of the characteristic value σ corresponding to the 39, 40, 41 squares of the rolling roll 3 at the time tc shown in the chart of FIG. 7. FIG. 10B is a diagram showing the state of the evaluation coefficient Ψ corresponding to the 39, 40, 41 squares of the rolling roll 3 at the time tc shown in the chart of FIG. 7.
 図8及び図10Aより、時刻tcにおいては、40角形についての特性値σがゼロより大きい。このことから、圧延ロール3にて40角形化が成長していることがわかる。また、時刻tcにおいては、39角形及び41角形についての特性値σがゼロより小さい。このことから、圧延ロール3にて39角形化及び41角形化は減衰していることがわかる。また、図9から、時刻tcにおいては、39,40,41角形に対応する振動振幅は、いずれも管理値Aよりも小さく、圧延される金属板Sの品質に影響が出る程度まで39,40,41角形化が成長していないことがわかる。また、図10Bから、時刻tcにおいて、39,40,41角形に対応する評価係数Φは0未満に維持されており、過去の基準時点に比べて、39,40,41角形に対応する振動振幅が過度に成長していないことがわかる。 From FIGS. 8 and 10A, at time tc, the characteristic value σ for the 40-sided polygon is larger than zero. From this, it can be seen that 40-sided formation is growing on the rolling roll 3. Further, at the time tc, the characteristic value σ for the 39-sided square and the 41-sided square is smaller than zero. From this, it can be seen that the 39-sided and 41-sided squares are attenuated in the rolling roll 3. Further, from FIG. 9, at time tc, to the extent the vibration amplitude corresponding to 39, 40, 41 square are both smaller than the management value A M, the influence on the quality of the metal plate S to be rolled out 39, It can be seen that the 40 and 41 squares have not grown. Further, from FIG. 10B, the evaluation coefficient Φ corresponding to the 39, 40, 41 squares is maintained at less than 0 at the time tc, and the vibration amplitude corresponding to the 39, 40, 41 squares is maintained as compared with the past reference time. It can be seen that is not growing excessively.
 幾つかの実施形態では、圧延ロール3の回転数fr1での圧延中に、圧延ロール3の振動を示す振動データを取得し、該振動データについて周波数分析を行い、該振動データの周波数スペクトルを取得する。そして、該周波数スペクトルに基づいて、N角形に対応する周波数における振動振幅A1を取得する。また、特性値σ及び振動振幅A1に基づいて、回転数fr1での圧延を継続した場合に、振動振幅が閾値Athに達するまでの時間Δtbを算出する。そして、このように算出した時間を、出力部72を介して、例えば表示部98に出力する。なお、この閾値Athは、上述の管理値A(すなわち、圧延ロール3のN角形化を抑制するためのロール回転数制御に用いる管理値A)と同じ値であってもよい。 In some embodiments, during rolling of the rolling roll 3 at the rotation speed fr1, vibration data indicating the vibration of the rolling roll 3 is acquired, frequency analysis is performed on the vibration data, and the frequency spectrum of the vibration data is acquired. To do. Then, based on the frequency spectrum, the vibration amplitude A1 at the frequency corresponding to the N-sided polygon is acquired. Further, based on the characteristic value σ and the vibration amplitude A1, when continued rolling in the rotational speed fr1, it calculates the time Δtb until the vibration amplitude reaches the threshold A th. Then, the time calculated in this way is output to, for example, the display unit 98 via the output unit 72. Incidentally, the threshold value A th, the aforementioned management value A M (i.e., the management value A M used in the roll rotation speed control for suppressing the N square of the rolling rolls 3) may be the same value.
 上記時間Δtbの算出方法の一例について説明する。式(A)より、特性値σは、圧延ロール3の回転数frでの圧延中、時間Δtの間の振幅の変化を比(Ai_t2/Ai_t1)で示すものである。したがって、式(A)より、回転数fr1での圧延中の特性値σを、回転数fr1での圧延中のある時点でのN角形に対応する振動振幅A、振動振幅の閾値Ath(ただしA<Ath)、及び、振動振幅がAからAthになるまでの時間Δtbを用いて、下記式(E)のように表現できる。
 σ=ln(Ath/A1)/(fr1・Δtb) …(E)
 上記式(E)を変形して、下記式(F)が得られる。
 Δtb=ln(Ath/A1)/(σ・fr1) …(F)
 したがって、上記式(F)から、回転数fr1において圧延中の、N角形に対応する振動振幅A1である時刻t1(例えば現在の時刻)から、振動振幅が閾値Athとなる時刻までの時間の長さΔtbを算出(予測)することができる。
An example of the calculation method of the time Δtb will be described. From the formula (A), the characteristic value σ indicates the change in amplitude during the time Δt during rolling at the rotation speed fr i of the rolling roll 3 as a ratio (A i_t2 / A i_t1 ). Therefore, from equation (A), a characteristic value σ during rolling in rotational speed fr1, the vibration amplitude A corresponding to the N rectangular at some point during the rolling in the rotational speed fr1, the threshold A th vibration amplitude (although a <a th), and the vibration amplitude using time Δtb from a until the a th, can be expressed as the following equation (E).
σ = ln (A th / A1) / (fr1 · Δtb)… (E)
The following formula (F) can be obtained by modifying the above formula (E).
Δtb = ln ( Th / A1) / (σ ・ fr1)… (F)
Therefore, from the above equation (F), during rolling in rotational speed fr1, from time a vibration amplitude A1 corresponding to the N polygon t1 (e.g. the current time), the time until the vibration amplitude becomes the threshold value A th The length Δtb can be calculated (predicted).
 上述の実施形態では、圧延ロール3の回転数frと特性値σとの上述の相関関係(圧延ロールのN角形化の成長傾向を示す相関関係)に基づいて、圧延ロール3の回転数fr1で圧延を時刻t1から継続した場合に、圧延ロール3のN角形に対応する振動振幅が既定の閾値Athに達するまでの時間Δtbを算出(予測)する。すなわち、圧延ロール3のN角形化が既定の程度(閾値Ath)に達するまでの時間を算出して、表示するようにしたので、算出された時間が経過する前に、例えば運転条件(圧延ロール回転数等)を変更したり、圧延ロール3を交換したりすることにより、圧延ロール3のN角形化の程度が大きくなりすぎるのを抑制することができる。これにより、圧延後の製品金属板の品質低下を抑制することができる。 In the above-described embodiment, the rotation speed fr1 of the rolling roll 3 is based on the above-mentioned correlation (correlation indicating the growth tendency of N-polygonization of the rolling roll) between the rotation speed fr of the rolling roll 3 and the characteristic value σ. If you continue rolling from time t1, and calculates the time Δtb to vibration amplitude corresponding to the N square of the rolling rolls 3 reaches a predetermined threshold value a th (prediction). That is, since the time until the N-sided polygonization of the rolling roll 3 reaches a predetermined degree (threshold Ath ) is calculated and displayed, for example, the operating conditions (rolling) before the calculated time elapses. By changing (roll rotation speed, etc.) or replacing the rolling roll 3, it is possible to prevent the degree of N-polygonization of the rolling roll 3 from becoming too large. As a result, deterioration of the quality of the product metal plate after rolling can be suppressed.
 幾つかの実施形態では、加工機による表面加工によりN角形化が生じた圧延ロール3を圧延装置2に設置する。そして、上述のステップS220(目標回転数取得ステップ)では、表面加工により圧延ロール3に生じたN角形化の成長が鈍化又は減衰するように、圧延ロール3の回転数と特性値σとの相関関係に基づいて目標回転数(回転数fr)を取得する。 In some embodiments, the rolling roll 3 whose N-sided shape is formed by surface processing by a processing machine is installed in the rolling apparatus 2. Then, in step S220 (target rotation speed acquisition step) described above, the correlation between the rotation speed of the rolling roll 3 and the characteristic value σ is such that the growth of N-polygonization generated in the rolling roll 3 due to surface processing is slowed or attenuated. The target rotation speed (rotation speed fr) is acquired based on the relationship.
 通常、圧延ロール3は、使用前に加工機(例えば研削機等)によって断面形状が円形になるように表面加工を行うが、実際には、この表面加工によって、目視ではわからない程度のN角形化が生じる場合がある。この点、上述の実施形態によれば、加工機による表面加工により圧延ロール3に生じたN角形化の成長が鈍化又は減衰するような圧延ロール3の目標回転数を取得する。したがって、表面加工によりN角形化が生じた圧延ロール3を圧延装置2に設置して圧延を行うときに、上述の目標回転数にて圧延装置2を運転することで、圧延ロール3のN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロール3のN角形化の成長を抑制して、圧延後の製品(金属板S)の品質低下を抑制することができる。 Normally, the rolling roll 3 is surface-processed by a processing machine (for example, a grinding machine or the like) so that the cross-sectional shape becomes circular before use, but in reality, this surface processing makes the rolling roll 3 into an N-gonal shape that cannot be visually recognized. May occur. In this regard, according to the above-described embodiment, the target rotation speed of the rolling roll 3 is obtained so that the growth of the N-sided polygonation generated in the rolling roll 3 due to the surface processing by the processing machine is slowed down or attenuated. Therefore, when the rolling roll 3 whose N-side shape is formed by surface processing is installed in the rolling apparatus 2 and the rolling is performed, the N-sided shape of the rolling roll 3 is formed by operating the rolling apparatus 2 at the above-mentioned target rotation speed. Rolling can be slowed (delayed) or dampened. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll 3 and suppress the deterioration of the quality of the rolled product (metal plate S).
 なお、圧延ロール3の表面加工の例として、例えば、砥石を用いた研削加工、又は、バイト又はエンドミル等を用いた切削加工が挙げられる。また、切削加工の後に研削加工を行うこともある。 Examples of surface processing of the rolling roll 3 include grinding processing using a grindstone or cutting processing using a tool or an end mill. In addition, grinding may be performed after cutting.
 以下、幾つかの実施形態に係る圧延設備の運転支援方法及び運転支援装置並びに圧延設備について概要を記載する。 The outline of the rolling equipment operation support method, the operation support device, and the rolling equipment according to some embodiments will be described below.
(1)本発明の少なくとも一実施形態に係る圧延設備の運転支援方法は、
 圧延ロールの回転数frと、前記回転数frにて圧延を行った場合に前記圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を示す特性値σとの相関関係に基づいて、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する前記回転数frを取得する目標回転数取得ステップと、
 取得した前記回転数frを目標回転数として出力するステップと、
を備える。
(1) The method for supporting the operation of rolling equipment according to at least one embodiment of the present invention is
Based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ showing the growth tendency of N-polygonization in which the rolling roll is unevenly worn and becomes N-gonal when rolling is performed at the rotation speed fr. , A target rotation speed acquisition step for acquiring the rotation speed fr corresponding to the characteristic value σ indicating that the N-squared formation of the rolling roll is slowed or attenuated.
A step of outputting the acquired rotation speed fr as a target rotation speed, and
To be equipped.
 上記(1)の方法によれば、圧延ロールの回転数frと上述の特性値σとの相関関係に基づいて、圧延ロールのN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを取得し、該回転数frを目標回転数として出力する。したがって、圧延ロールの回転数が、出力された目標回転数となるように圧延装置を運転して材料(金属板等)の圧延を行うことで、圧延ロールのN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロールのN角形化の成長を抑制して、圧延後の製品(金属板等)の品質低下を抑制することができる。 According to the method (1) above, it corresponds to the characteristic value σ indicating that the N-squared formation of the rolling roll is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll and the above-mentioned characteristic value σ. The rotation speed fr is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed, the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
(2)幾つかの実施形態では、上記(1)の方法において、
 前記特性値σは、前記圧延ロールの回転数frでの圧延中における、前記N角形に対応する前記圧延ロールの振動の周波数の振幅の経時変化の傾向の指標である。
(2) In some embodiments, in the method of (1) above,
The characteristic value σ is an index of a tendency of a time-dependent change in the amplitude of the vibration frequency of the rolling roll corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
 上記(2)の方法によれば、上述の特性値σは、圧延ロールの回転数frでの圧延中における、N角形に対応する圧延ロールの振動の周波数の振幅の経時変化の傾向の指標である。したがって、この特性値σと圧延ロールの回転数frとの相関関係に基づいて、圧延ロールのN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを適切に取得することができる。よって、このように取得された目標回転数に基づいて圧延装置を運転して材料(金属板等)の圧延を行うことで、圧延ロールのN角形化を効果的に鈍化(遅延)又は減衰させることができる。 According to the method (2) above, the above-mentioned characteristic value σ is an index of the tendency of the time-dependent change of the amplitude of the vibration frequency of the rolling roll corresponding to the N-polygon during rolling at the rotation speed fr of the rolling roll. is there. Therefore, based on the correlation between this characteristic value σ and the rotation speed fr of the rolling roll, the rotation speed fr corresponding to the characteristic value σ indicating that the N-polygonization of the rolling roll is slowed or attenuated should be appropriately acquired. Can be done. Therefore, by operating the rolling apparatus based on the target rotation speed acquired in this way to roll the material (metal plate, etc.), the N-gonification of the rolling roll is effectively slowed (delayed) or attenuated. be able to.
(3)幾つかの実施形態では、上記(2)の方法において、
 前記特性値σは、前記圧延ロールの回転数frでの圧延中における、前記N角形に対応する周波数での前記圧延ロールの振動の振幅の変化速度の指標であり、
 前記目標回転数取得ステップでは、前記圧延ロールの回転数frと、前記特性値σとの相関関係に基づいて、前記特性値σが、現在値よりも小さくなる回転数frを、前記目標回転数にとして取得する。
(3) In some embodiments, in the method (2) above,
The characteristic value σ is an index of the change rate of the amplitude of the vibration of the rolling roll at the frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
In the target rotation speed acquisition step, the rotation speed fr at which the characteristic value σ is smaller than the current value is set to the target rotation speed based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ. To get as.
 上記(3)の方法によれば、上述の相関関係に基づいて、圧延ロールの振動のうち、N角形に対応する周波数成分(振動)の振幅の変化速度を示す特性値σが現在値よりも小さくなる回転数frを目標回転数として取得する。したがって、このように取得した目標回転数となるように圧延装置を運転することで、圧延ロールのN角形化の成長速度を現在値よりも小さくすることができ、これにより圧延ロールのN角形化の成長を抑制することができる。 According to the method (3) above, based on the above correlation, the characteristic value σ indicating the rate of change of the amplitude of the frequency component (vibration) corresponding to the N-sided polygon among the vibrations of the rolling roll is larger than the current value. The smaller rotation speed fr is acquired as the target rotation speed. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the growth rate of N-polygonization of the rolling roll can be made smaller than the current value, thereby forming the N-polygonization of the rolling roll. Can suppress the growth of.
(4)幾つかの実施形態では、上記(2)又は(3)の方法において、
 前記特性値σは、前記圧延ロールの回転数frでの圧延中における、前記N角形に対応する周波数での前記圧延ロールの振動の振幅の変化速度の指標であり、
 前記目標回転数取得ステップでは、前記圧延ロールの回転数frと、前記特性値σとの相関関係に基づいて、前記特性値σがゼロ未満となる回転数frを、前記目標回転数として取得する。
(4) In some embodiments, in the method (2) or (3) above,
The characteristic value σ is an index of the change rate of the amplitude of the vibration of the rolling roll at the frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
In the target rotation speed acquisition step, the rotation speed fr at which the characteristic value σ is less than zero is acquired as the target rotation speed based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ. ..
 上記(4)の方法によれば、上述の相関関係に基づいて、圧延ロールの振動のうち、N角形に対応する周波数成分(振動)の振幅の変化速度を示す特性値σがゼロ未満となる回転数frを目標回転数として取得する。したがって、このように取得した目標回転数となるように圧延装置を運転することで、圧延ロールのN角形化を減衰させることができ、これにより圧延ロールのN角形化の成長を抑制することができる。 According to the method (4) above, the characteristic value σ indicating the rate of change of the amplitude of the frequency component (vibration) corresponding to the N-gon is less than zero in the vibration of the rolling roll based on the above correlation. The rotation speed fr is acquired as the target rotation speed. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the N-polygonization of the rolling roll can be attenuated, and thereby the growth of the N-polygonization of the rolling roll can be suppressed. it can.
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの方法において、
 前記目標回転数取得ステップでは、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する2以上の回転数範囲が存在する場合、前記2以上の回転数範囲のうち大きい方の回転数範囲内の回転数を、前記目標回転数として取得する。
(5) In some embodiments, in any of the above methods (1) to (4),
In the target rotation speed acquisition step, when there is a rotation speed range of 2 or more corresponding to the characteristic value σ indicating that the N-sided polygonization of the rolling roll is slowed or attenuated, the rotation speed range of the 2 or more The rotation speed within the larger rotation speed range is acquired as the target rotation speed.
 上記(5)の方法によれば、圧延ロールのN角形化が鈍化又は減衰することを示す特性値σに対応する2以上の回転数範囲が存在する場合、これらのうち大きい方の回転数範囲内の回転数を目標回転数として取得する。したがって、このように取得した目標回転数となるように圧延装置を運転することで、圧延ロールの回転数の低下を抑制してライン速度をなるべく高く維持しながら、圧延ロールのN角形化の成長を抑制することができる。 According to the method (5) above, when there is a rotation speed range of 2 or more corresponding to the characteristic value σ indicating that the N-gonification of the rolling roll is slowed or attenuated, the larger rotation speed range of these is present. The number of rotations inside is acquired as the target number of rotations. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the growth of N-polygonization of the rolling roll is performed while suppressing the decrease in the rotation speed of the rolling roll and maintaining the line speed as high as possible. Can be suppressed.
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの方法において、
 前記目標回転数取得ステップでは、前記圧延ロールの固有振動数をfnとしたとき、fn/Nよりも大きい回転数範囲内の回転数を、前記目標回転数として取得する。
(6) In some embodiments, in any of the above methods (1) to (5),
In the target rotation speed acquisition step, when the natural frequency of the rolling roll is fn, the rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed.
 本発明者らの知見によれば、圧延ロールの回転数frでの圧延ロールのN角形に対応する振動の周波数(fr×N)が、圧延ロールの固有振動数fnよりも大きいような高回転数領域においても、特性値σが比較的小さくなる(即ち、圧延ロールのN角形化が鈍化又は減衰する)回転数範囲が存在する。この点、上記(6)の方法によれば、fn/Nよりも大きい回転数範囲内の比較的大きい回転数を目標回転数として取得する。したがって、このように取得した目標回転数となるように圧延装置を運転することで、圧延ロールの回転数の低下を抑制してライン速度をなるべく高く維持しながら、圧延ロールのN角形化の成長を抑制することができる。 According to the findings of the present inventors, the frequency of vibration (fr × N) corresponding to the N-side of the rolling roll at the rolling roll rotation speed fr is higher than the natural frequency fn of the rolling roll. Even in a few regions, there is a rotation speed range in which the characteristic value σ becomes relatively small (that is, the N-square formation of the rolling roll is slowed or attenuated). In this regard, according to the method (6) above, a relatively large rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed. Therefore, by operating the rolling apparatus so as to reach the target rotation speed acquired in this way, the growth of N-polygonization of the rolling roll is performed while suppressing the decrease in the rotation speed of the rolling roll and maintaining the line speed as high as possible. Can be suppressed.
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの方法において、
 前記圧延ロールの回転数fr1での圧延中に前記圧延ロールの振動を示す振動データを取得するステップと、
 前記振動データについて周波数分析を行い、前記振動データの周波数スペクトルを取得するステップと、
 前記周波数スペクトルに基づいて、前記N角形に対応する周波数における前記振動の振幅A1を取得するステップと、
 前記特性値σ及び前記振動の振幅A1に基づいて、前記回転数fr1での圧延を継続した場合に、前記振動の振幅が閾値に達するまでの時間を算出するステップと、
 前記時間を出力するステップと、
を備える。
(7) In some embodiments, in any of the methods (1) to (6) above,
A step of acquiring vibration data indicating the vibration of the rolling roll during rolling at the rotation speed fr1 of the rolling roll, and
A step of performing frequency analysis on the vibration data and acquiring a frequency spectrum of the vibration data,
A step of acquiring the amplitude A1 of the vibration at the frequency corresponding to the N-side polygon based on the frequency spectrum, and
A step of calculating the time until the amplitude of the vibration reaches the threshold value when rolling at the rotation speed fr1 is continued based on the characteristic value σ and the amplitude A1 of the vibration.
The step to output the time and
To be equipped.
 上記(7)の方法によれば、回転数fr1での圧延を継続した場合に、N角形に対応する振動の振幅が閾値に達するまでの時間を算出する。したがって、この時間が経過する前に、圧延ロールの回転数を上述の目標回転数に変更することにより、圧延ロールのN角形化の成長が進行し過ぎないうちに、圧延ロールのN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロールのN角形化の成長を適切に抑制して、圧延後の製品(金属板等)の品質低下を抑制することができる。 According to the method (7) above, the time until the amplitude of the vibration corresponding to the N-sided polygon reaches the threshold value is calculated when rolling at the rotation speed fr1 is continued. Therefore, by changing the rotation speed of the rolling roll to the above-mentioned target rotation speed before this time elapses, the N-gonification of the rolling roll can be performed before the growth of the N-polygonization of the rolling roll progresses too much. It can be blunted (delayed) or attenuated. As a result, it is possible to appropriately suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの方法において、
 前記圧延ロールの回転数fr1での圧延中に、サンプリング周期毎に前記圧延ロールの振動を示す振動データを取得するステップと、
 前記振動データの各々について周波数分析を行い、前記振動データの周波数スペクトルを取得するステップと、
 前記振動データの各々について、前記周波数スペクトルに基づいて、前記N角形に対応する周波数における前記振動の振幅を取得するステップと、
 前記振動の振幅が閾値を超えたとき、前記回転数fr1を前記目標回転数に変更するステップと、
を備える。
(8) In some embodiments, in any of the methods (1) to (7) above,
During rolling at the rotation speed fr1 of the rolling roll, a step of acquiring vibration data indicating the vibration of the rolling roll for each sampling period, and
A step of performing frequency analysis on each of the vibration data and acquiring a frequency spectrum of the vibration data,
For each of the vibration data, a step of acquiring the amplitude of the vibration at the frequency corresponding to the N-side polygon based on the frequency spectrum, and
When the amplitude of the vibration exceeds the threshold value, the step of changing the rotation speed fr1 to the target rotation speed, and
To be equipped.
 上記(8)の方法によれば、回転数fr1での圧延中に取得した圧延ロールの振動データに基づいて、圧延ロールのN角形に対応する周波数における振動の振幅を取得し、該振幅が閾値を超えたら、圧延ロールの回転数を上述の目標回転数に変更する。したがって、圧延ロールのN角形化の成長が進行し過ぎないうちに、圧延ロールのN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロールのN角形化の成長を適切に抑制して、圧延後の製品(金属板等)の品質低下を抑制することができる。 According to the method (8) above, based on the vibration data of the rolling roll acquired during rolling at the rotation speed fr1, the amplitude of the vibration at the frequency corresponding to the N-side of the rolling roll is acquired, and the amplitude is the threshold value. When the above value is exceeded, the rotation speed of the rolling roll is changed to the above-mentioned target rotation speed. Therefore, the N-polygonization of the rolling roll can be slowed (delayed) or attenuated before the growth of the N-polygonization of the rolling roll progresses too much. As a result, it is possible to appropriately suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの方法において、
 加工機による表面加工によりN角形化が生じた圧延ロールを圧延装置に設置するステップを備え、
 前記目標回転数取得ステップでは、前記表面加工により生じた前記N角形化の成長が鈍化又は減衰するように、前記相関関係に基づいて前記回転数frを取得する。
(9) In some embodiments, in any of the methods (1) to (8) above,
It is equipped with a step of installing a rolling roll whose N-sided shape is generated by surface processing by a processing machine in a rolling apparatus.
In the target rotation speed acquisition step, the rotation speed fr is acquired based on the correlation so that the growth of the N-sided polygonation caused by the surface processing is slowed down or attenuated.
 通常、圧延ロールは、使用前に加工機(例えば研削機等)によって断面形状が円形になるように表面加工を行うが、実際には、この表面加工によって、目視ではわからない程度のN角形化が生じる場合がある。この点、上記(9)の方法によれば、加工機による表面加工により生じたN角形化の成長が鈍化又は減衰するような圧延ロールの目標回転数を取得する。したがって、表面加工によりN角形化が生じた圧延ロールを圧延装置に設置して圧延を行うときに、上述の目標回転数にて圧延装置を運転することで、圧延ロールのN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロールのN角形化の成長を抑制して、圧延後の製品(金属板等)の品質低下を抑制することができる。 Normally, the rolling roll is surface-processed by a processing machine (for example, a grinding machine) so that the cross-sectional shape becomes circular before use, but in reality, this surface processing results in N-sided polygonation that cannot be visually recognized. May occur. In this regard, according to the method (9) above, the target rotation speed of the rolling roll is obtained so that the growth of N-polygonization generated by the surface processing by the processing machine is slowed or attenuated. Therefore, when a rolling roll in which N-gonification is generated by surface processing is installed in a rolling apparatus and rolling is performed, the N-gonification of the rolling roll is slowed down by operating the rolling apparatus at the above-mentioned target rotation speed ( Can be delayed) or attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
(10)本発明の少なくとも一実施形態に係る圧延設備の運転支援装置は、
 金属板を圧延するための圧延ロールを含む圧延設備の運転支援装置であって、
 前記圧延ロールの回転数frと、前記回転数frにて圧延を行った場合の前記圧延ロールの偏摩耗によるN角形化の成長傾向を示す特性値σとの相関関係に基づいて、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する前記回転数frを取得するように構成された目標回転数取得部と、
 取得した前記回転数frを目標回転数として出力するように構成された出力部と、
を備える。
(10) The operation support device for rolling equipment according to at least one embodiment of the present invention is
An operation support device for rolling equipment that includes rolling rolls for rolling metal plates.
The rolling roll is based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ indicating the growth tendency of N-square formation due to uneven wear of the rolling roll when rolling is performed at the rotation speed fr. A target rotation speed acquisition unit configured to acquire the rotation speed fr corresponding to the characteristic value σ indicating that the N-squared formation is slowed or attenuated.
An output unit configured to output the acquired rotation speed fr as a target rotation speed, and
To be equipped.
 上記(10)の構成によれば、圧延ロールの回転数frと上述の特性値σとの相関関係に基づいて、圧延ロールのN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを取得し、該回転数frを目標回転数として出力する。したがって、圧延ロールの回転数が、出力された目標回転数となるように圧延装置を運転して材料(金属板等)の圧延を行うことで、圧延ロールのN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロールのN角形化の成長を抑制して、圧延後の製品(金属板等)の品質低下を抑制することができる。 According to the configuration of (10) above, it corresponds to the characteristic value σ indicating that the N-sided formation of the rolling roll is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll and the above-mentioned characteristic value σ. The rotation speed fr is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed, the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
(11)本発明の少なくとも一実施形態に係る圧延設備は、
 金属板を圧延するための圧延ロールを含む圧延装置と、
 上記(10)に記載の運転支援装置と、
を備える。
(11) The rolling equipment according to at least one embodiment of the present invention is
A rolling apparatus including a rolling roll for rolling a metal plate,
The driving support device according to (10) above,
To be equipped.
 上記(11)の構成によれば、圧延ロールの回転数frと上述の特性値σとの相関関係に基づいて、圧延ロールのN角形化が鈍化又は減衰することを示す特性値σに対応する回転数frを取得し、該回転数frを目標回転数として出力する。したがって、圧延ロールの回転数が、出力された目標回転数となるように圧延装置を運転して材料(金属板等)の圧延を行うことで、圧延ロールのN角形化を鈍化(遅延)又は減衰させることができる。これにより、圧延ロールのN角形化の成長を抑制して、圧延後の製品(金属板等)の品質低下を抑制することができる。 According to the configuration of (11) above, it corresponds to the characteristic value σ indicating that the N-sided formation of the rolling roll is slowed or attenuated based on the correlation between the rotation speed fr of the rolling roll and the above-mentioned characteristic value σ. The rotation speed fr is acquired, and the rotation speed fr is output as the target rotation speed. Therefore, by operating the rolling apparatus to roll the material (metal plate, etc.) so that the rotation speed of the rolling roll becomes the output target rotation speed, the N-sided formation of the rolling roll is slowed down (delayed) or It can be attenuated. As a result, it is possible to suppress the growth of N-polygonization of the rolling roll and suppress the deterioration of the quality of the rolled product (metal plate, etc.).
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In the present specification, expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial". Strictly represents not only such an arrangement, but also a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
Further, in the present specification, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained. , The shape including the uneven portion, the chamfered portion, etc. shall also be represented.
Further, in the present specification, the expression "comprising", "including", or "having" one component is not an exclusive expression excluding the existence of another component.
1     圧延設備
2     圧延装置
3     圧延ロール
4A    ワークロール
4B    ワークロール
5A    ロールチョック
5B    ロールチョック
6A    バックアップロール
6B    バックアップロール
7A    ロールチョック
7B    ロールチョック
8     圧下装置
10    圧延スタンド
10A   圧延スタンド
10B   圧延スタンド
10C   圧延スタンド
50    運転支援装置
52    振動データ取得部
54    周波数分析部
56    振幅抽出部
59    振幅比較部
60    記録部
63    目標回転数取得部
67    評価係数算出部
69    評価係数比較部
72    出力部
90    振動計測部
91    加速度センサ
92    加速度センサ
93    加速度センサ
94    加速度センサ
95    ロール回転数計測部
96    記憶部
98    表示部
99    回転数制御部
S     金属板
1 Rolling equipment 2 Rolling equipment 3 Rolling roll 4A Work roll 4B Work roll 5A Roll chock 5B Roll chock 6A Backup roll 6B Backup roll 7A Roll chock 7B Roll chock 8 Rolling device 10 Rolling stand 10A Rolling stand 10B Rolling stand 10C Rolling stand 50 Operation support device 52 Vibration Data acquisition unit 54 Frequency analysis unit 56 Vibration extraction unit 59 Vibration comparison unit 60 Recording unit 63 Target rotation speed acquisition unit 67 Evaluation coefficient calculation unit 69 Evaluation coefficient comparison unit 72 Output unit 90 Vibration measurement unit 91 Accelerometer 92 Accelerometer 92 Accelerometer 93 Accelerometer 94 Accelerometer 95 Roll rotation speed measurement unit 96 Storage unit 98 Display unit 99 Rotation speed control unit S Metal plate

Claims (11)

  1.  圧延ロールの回転数frと、前記回転数frにて圧延を行った場合に前記圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を示す特性値σとの相関関係に基づいて、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する前記回転数frを取得する目標回転数取得ステップと、
     取得した前記回転数frを目標回転数として出力するステップと、
    を備える圧延設備の運転支援方法。
    Based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ showing the growth tendency of N-polygonization in which the rolling roll is unevenly worn and becomes N-gonal when rolling is performed at the rotation speed fr. , A target rotation speed acquisition step for acquiring the rotation speed fr corresponding to the characteristic value σ indicating that the N-squared formation of the rolling roll is slowed or attenuated.
    A step of outputting the acquired rotation speed fr as a target rotation speed, and
    A method of supporting the operation of rolling equipment provided with.
  2.  前記特性値σは、前記圧延ロールの回転数frでの圧延中における、前記N角形に対応する周波数での前記圧延ロールの振動の振幅の経時変化の傾向の指標である
    請求項1に記載の圧延設備の運転支援方法。
    The characteristic value σ is the index of the tendency of the vibration amplitude of the rolling roll to change with time at a frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll, according to claim 1. Operation support method for rolling equipment.
  3.  前記特性値σは、前記圧延ロールの回転数frでの圧延中における、前記N角形に対応する周波数での前記圧延ロールの振動の振幅の変化速度の指標であり、
     前記目標回転数取得ステップでは、前記圧延ロールの回転数frと、前記特性値σとの相関関係に基づいて、前記特性値σが、現在値よりも小さくなる回転数frを、前記目標回転数として取得する
    請求項2に記載の圧延設備の運転支援方法。
    The characteristic value σ is an index of the change rate of the amplitude of the vibration of the rolling roll at the frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
    In the target rotation speed acquisition step, the rotation speed fr at which the characteristic value σ is smaller than the current value is set to the target rotation speed based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ. The operation support method for rolling equipment according to claim 2, which is acquired as.
  4.  前記特性値σは、前記圧延ロールの回転数frでの圧延中における、前記N角形に対応する周波数での前記圧延ロールの振動の振幅の変化速度の指標であり、
     前記目標回転数取得ステップでは、前記圧延ロールの回転数frと、前記特性値σとの相関関係に基づいて、前記特性値σがゼロ未満となる回転数frを、前記目標回転数として取得する
    請求項2又は3に記載の圧延設備の運転支援方法。
    The characteristic value σ is an index of the change rate of the amplitude of the vibration of the rolling roll at the frequency corresponding to the N-sided polygon during rolling at the rotation speed fr of the rolling roll.
    In the target rotation speed acquisition step, the rotation speed fr at which the characteristic value σ is less than zero is acquired as the target rotation speed based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ. The operation support method for rolling equipment according to claim 2 or 3.
  5.  前記目標回転数取得ステップでは、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する2以上の回転数範囲が存在する場合、前記2以上の回転数範囲のうち大きい方の回転数範囲内の回転数を、前記目標回転数として取得する
    請求項1乃至4の何れか一項に記載の圧延設備の運転支援方法。
    In the target rotation speed acquisition step, when there is a rotation speed range of 2 or more corresponding to the characteristic value σ indicating that the N-gonification of the rolling roll is slowed or attenuated, the rotation speed range of the 2 or more The operation support method for rolling equipment according to any one of claims 1 to 4, wherein the rotation speed within the larger rotation speed range is acquired as the target rotation speed.
  6.  前記目標回転数取得ステップでは、前記圧延ロールの固有振動数をfnとしたとき、fn/Nよりも大きい回転数範囲内の回転数を、前記目標回転数として取得する
    請求項1乃至5の何れか一項に記載の圧延設備の運転支援方法。
    In any of claims 1 to 5, in the target rotation speed acquisition step, when the natural frequency of the rolling roll is fn, the rotation speed within the rotation speed range larger than fn / N is acquired as the target rotation speed. The operation support method for rolling equipment described in item 1.
  7.  前記圧延ロールの回転数fr1での圧延中に前記圧延ロールの振動を示す振動データを取得するステップと、
     前記振動データについて周波数分析を行い、前記振動データの周波数スペクトルを取得するステップと、
     前記周波数スペクトルに基づいて、前記N角形に対応する周波数における前記振動の振幅A1を取得するステップと、
     前記特性値σ及び前記振動の振幅A1に基づいて、前記回転数fr1での圧延を継続した場合に、前記振動の振幅が閾値に達するまでの時間を算出するステップと、
     前記時間を出力するステップと、
    を備える請求項1乃至6の何れか一項に記載の圧延設備の運転支援方法。
    A step of acquiring vibration data indicating the vibration of the rolling roll during rolling at the rotation speed fr1 of the rolling roll, and
    A step of performing frequency analysis on the vibration data and acquiring a frequency spectrum of the vibration data,
    A step of acquiring the amplitude A1 of the vibration at the frequency corresponding to the N-side polygon based on the frequency spectrum, and
    A step of calculating the time until the amplitude of the vibration reaches the threshold value when rolling at the rotation speed fr1 is continued based on the characteristic value σ and the amplitude A1 of the vibration.
    The step to output the time and
    The operation support method for rolling equipment according to any one of claims 1 to 6.
  8.  前記圧延ロールの回転数fr1での圧延中に、サンプリング周期毎に前記圧延ロールの振動を示す振動データを取得するステップと、
     前記振動データの各々について周波数分析を行い、前記振動データの周波数スペクトルを取得するステップと、
     前記振動データの各々について、前記周波数スペクトルに基づいて、前記N角形に対応する周波数における前記振動の振幅を取得するステップと、
     前記振動の振幅が閾値を超えたとき、前記回転数fr1を前記目標回転数に変更するステップと、
    を備える請求項1乃至7の何れか一項に記載の圧延設備の運転支援方法。
    During rolling at the rotation speed fr1 of the rolling roll, a step of acquiring vibration data indicating the vibration of the rolling roll for each sampling period, and
    A step of performing frequency analysis on each of the vibration data and acquiring a frequency spectrum of the vibration data,
    For each of the vibration data, a step of acquiring the amplitude of the vibration at the frequency corresponding to the N-side polygon based on the frequency spectrum, and
    When the amplitude of the vibration exceeds the threshold value, the step of changing the rotation speed fr1 to the target rotation speed, and
    The operation support method for rolling equipment according to any one of claims 1 to 7.
  9.  加工機による表面加工によりN角形化が生じた圧延ロールを圧延装置に設置するステップを備え、
     前記目標回転数取得ステップでは、前記表面加工により生じた前記N角形化の成長が鈍化又は減衰するように、前記相関関係に基づいて前記回転数frを取得する
    請求項1乃至8の何れか一項に記載の圧延設備の運転支援方法。
    It is equipped with a step of installing a rolling roll whose N-sided shape is generated by surface processing by a processing machine in a rolling apparatus.
    In the target rotation speed acquisition step, any one of claims 1 to 8 for acquiring the rotation speed fr based on the correlation so that the growth of the N-sided polygonation caused by the surface processing is slowed down or attenuated. The operation support method for the rolling equipment described in the section.
  10.  金属板を圧延するための圧延ロールを含む圧延設備の運転支援装置であって、
     前記圧延ロールの回転数frと、前記回転数frにて圧延を行った場合の前記圧延ロールの偏摩耗によるN角形化の成長傾向を示す特性値σとの相関関係に基づいて、前記圧延ロールのN角形化が鈍化又は減衰することを示す前記特性値σに対応する前記回転数frを取得するように構成された目標回転数取得部と、
     取得した前記回転数frを目標回転数として出力するように構成された出力部と、
    を備える圧延設備の運転支援装置。
    An operation support device for rolling equipment that includes rolling rolls for rolling metal plates.
    The rolling roll is based on the correlation between the rotation speed fr of the rolling roll and the characteristic value σ indicating the growth tendency of N-square formation due to uneven wear of the rolling roll when rolling is performed at the rotation speed fr. A target rotation speed acquisition unit configured to acquire the rotation speed fr corresponding to the characteristic value σ indicating that the N-squared formation is slowed or attenuated.
    An output unit configured to output the acquired rotation speed fr as a target rotation speed, and
    An operation support device for rolling equipment equipped with.
  11.  金属板を圧延するための圧延ロールを含む圧延装置と、
     請求項10に記載の運転支援装置と、
    を備える圧延設備。
    A rolling apparatus including a rolling roll for rolling a metal plate,
    The driving support device according to claim 10 and
    Rolling equipment equipped with.
PCT/JP2019/031333 2019-08-08 2019-08-08 Method for assisting operation of rolling facility, operation assistance device, and rolling facility WO2021024448A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980097276.7A CN114007770B (en) 2019-08-08 2019-08-08 Operation support method and operation support device for rolling mill, and rolling mill
PCT/JP2019/031333 WO2021024448A1 (en) 2019-08-08 2019-08-08 Method for assisting operation of rolling facility, operation assistance device, and rolling facility
JP2021538644A JP7179997B2 (en) 2019-08-08 2019-08-08 Rolling equipment operation support method, operation support device, and rolling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031333 WO2021024448A1 (en) 2019-08-08 2019-08-08 Method for assisting operation of rolling facility, operation assistance device, and rolling facility

Publications (1)

Publication Number Publication Date
WO2021024448A1 true WO2021024448A1 (en) 2021-02-11

Family

ID=74502495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031333 WO2021024448A1 (en) 2019-08-08 2019-08-08 Method for assisting operation of rolling facility, operation assistance device, and rolling facility

Country Status (3)

Country Link
JP (1) JP7179997B2 (en)
CN (1) CN114007770B (en)
WO (1) WO2021024448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181545A1 (en) * 2022-03-24 2023-09-28 三菱重工業株式会社 Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340905A (en) * 2000-05-31 2001-12-11 Kawasaki Steel Corp Rolling method of steel plate having mill scale
JP2005234952A (en) * 2004-02-20 2005-09-02 Japan Science & Technology Agency Damping method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725102A (en) * 2009-05-19 2012-10-10 圣戈班磨料磨具有限公司 Method and apparatus for roll grinding
JP6844552B2 (en) * 2018-01-16 2021-03-17 Jfeスチール株式会社 Abnormal vibration detection method for rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340905A (en) * 2000-05-31 2001-12-11 Kawasaki Steel Corp Rolling method of steel plate having mill scale
JP2005234952A (en) * 2004-02-20 2005-09-02 Japan Science & Technology Agency Damping method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUO SUEOKA, KENICHIRO MATSUZAKI, TAKAHIRO RYU: "Polygonal wear of work rolls in a hot leveler of steel making machine", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES C, vol. 66, no. 651, November 2000 (2000-11-01), pages 3583 - 3590, XP055790852 *
MATSUZAKI, KENICHIRO ET AL.: "Polygonal wear of work rolls in a hot leveler of steel making machine ( 3rd report, A countermeasure by using dynamic absorbers", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES C, vol. 71, no. 704, April 2005 (2005-04-01), pages 1123 - 1130 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181545A1 (en) * 2022-03-24 2023-09-28 三菱重工業株式会社 Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program

Also Published As

Publication number Publication date
CN114007770A (en) 2022-02-01
JP7179997B2 (en) 2022-11-29
CN114007770B (en) 2023-07-28
JPWO2021024448A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
Nouri et al. Real-time tool wear monitoring in milling using a cutting condition independent method
JP5631481B2 (en) Rolling control device, rolling control method, and rolling control program
Monnin et al. Optimal control for chatter mitigation in milling—Part 2: Experimental validation
US9138848B2 (en) Method and apparatus for suppressing vibration
CN104307892B (en) The method of band head correction in tandem rolling crossing process
JP5799611B2 (en) Chattering detection method for cold rolling mill
JP2008268187A (en) Method and device for diagnosing abnormality of extremely low speed rotary machine
WO2020137014A1 (en) Chattering detection method for cold rolling mill, chattering detection device for cold rolling mill, cold rolling method, and cold rolling mill
WO2021024448A1 (en) Method for assisting operation of rolling facility, operation assistance device, and rolling facility
CN110666737B (en) Inspection system
US20160223138A1 (en) Servo controller for measuring lubrication characteristics of a machine by experimental modal analysis
WO2015019801A1 (en) Data generation method and data generation device
JP7179996B2 (en) Rolling mill condition evaluation method, condition evaluation equipment, and rolling equipment
Axinte An experimental analysis of damped coupled vibrations in broaching
JP2013111614A (en) Method of detecting chattering of cold rolling mill and device for detecting chattering
JP7335983B2 (en) Method and apparatus for estimating material properties of objects using laser ultrasound (LUS) measurement equipment
JP5674491B2 (en) Vibration determination device
JP2010085096A (en) Surface inspecting device
JPWO2011004454A1 (en) Operation support device, operation support method and program
US20220297251A1 (en) Processing system, and method for manufacturing processed product
WO2023181545A1 (en) Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program
JP6036857B2 (en) Rolling mill control method, rolling mill control device, and rolled material manufacturing method
JP2014004612A (en) Failure detection method in cold rolling and cold rolling method
JP3697578B2 (en) Method and apparatus for detecting cracks in strips
KR101594713B1 (en) Apparatus for detecting overrun and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940619

Country of ref document: EP

Kind code of ref document: A1