WO2021024418A1 - Gear and method for manufacturing gear - Google Patents
Gear and method for manufacturing gear Download PDFInfo
- Publication number
- WO2021024418A1 WO2021024418A1 PCT/JP2019/031131 JP2019031131W WO2021024418A1 WO 2021024418 A1 WO2021024418 A1 WO 2021024418A1 JP 2019031131 W JP2019031131 W JP 2019031131W WO 2021024418 A1 WO2021024418 A1 WO 2021024418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tooth
- gear
- tip edge
- tooth tip
- hardness
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/32—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/17—Toothed wheels
Definitions
- the present invention relates to a gear capable of avoiding peeling damage to the tooth surface due to meshing of the gears and a method for manufacturing the gear.
- FIG. 1 is a photograph showing an actual example of damage to the gear.
- FIG. 1A shows two examples of flaking damage on the tooth surface on the left and right, and
- FIG. 1B shows an example of partial tooth defect.
- FIG. 1 (c) shows an example of pitching damage at the start of meshing of the helical gear and an example of tooth surface peeling starting from there
- FIG. 1 (d) shows an example of chipping damage at the tooth tip edge of the drive gear. Is shown.
- Non-Patent Document 1 Japanese gear devices are described as "matters necessary for strengthening the competitiveness of gear devices and problems to be solved". In order to maintain strong international competitiveness in the future, 1) improvement of durability and reliability, 2) improvement of vibration and noise performance during operation, 3) improvement of power transmission efficiency, 4) prevention of troubles, 5 ) It is stated that it is necessary to carry out technological innovations related to gear devices in all aspects of cost reduction. And, it is said that the basis for improving the overall design / manufacturing technology and building overwhelming competitiveness is "design / manufacturing technology that makes the gear stronger than the gears designed by the conventional method".
- Patent Document 1 in order to achieve both high strength of the tooth surface of the gear and toughness of the tooth root, charcoal substances are formed on the tooth surface and the tooth root by treatment such as cooling and heating after the carburizing treatment.
- the tooth surface is made harder than the tooth root, and the tooth surface has pitching resistance. It is said that it provides high-strength gears that have both wear resistance, bending fatigue strength at the tooth root, and impact resistance.
- the technology described in this document can be said to be an example of efforts aimed at increasing the strength of gears as described above.
- Non-Patent Document 1 the damage phenomenon has not been sufficiently elucidated at present
- An approach that has not been studied has led to the invention of gears and methods of manufacturing them that can significantly reduce damage during operation with little increase in manufacturing costs.
- FIG. 2 shows a common tangent line (also referred to as an action line) of the basic circle of the driven / driven gear in which the contact of the tooth profile of the involute curve occurs.
- an action line also referred to as an action line
- the reaction force received by the raised tooth is sufficiently smaller than the force received by the pair of teeth whose tooth surfaces are already engaged, and the duration of the state or the advance of the gear rotation angle is small. Therefore, the movement of the contact point from the point C to the point B during the trochoid interference proceeds in a substantially displacement-forced state in which the amount of rotation delay of the driven gear with respect to the drive gear hardly changes.
- a state is shown in the upper part of FIG. 3 as a schematic view of an attack on the tooth surface of the tooth root by the tooth tip edge of the mating gear.
- FIG. 4 schematically shows the state of change in contact stress on the tooth surface of the drive gear in such a contact state.
- a large contact stress is generated between the tooth tip and the tooth base, heat is generated due to the large relative slip of the tooth surface at the contact point, and the shearing force acting on the surface is large, so that the damage is extremely caused.
- the state that it becomes easy to do is drawn. Specifically, as shown in the curve schematically showing the state of Hertz stress of tooth surface contact in the figure, the edge and the surface in the trochoid interference region from point C to point B where the contact with the mating tooth surface is newly started.
- the contact stress increases sharply due to contact with the tooth (indicated by a thick single-point chain line in the figure), and the contact area is large from point B to the tooth tip direction because the contact is between the surface and the mating tooth surface. Therefore, the contact stress becomes small, but when the tooth tip reaches the tooth tip, the tooth tip edge, which is a free end, becomes in a state of engaging with the mating tooth surface, and the contact stress increases in accordance with the decrease in the area of the contact ellipse. Due to such a state, the gears as shown in FIG. 1 are damaged.
- the effective range is substantially the area indicated by the thick arrow in the figure from the point C at the root of the tooth to the front of the tooth tip. That is, the tooth root and tooth tip between points C and B are out of the effective range.
- the destructive peeling damage experienced in many practical gears often occurs outside the effective range of the tooth surface durability evaluation method, that is, the contact between the tooth tip edge and the tooth root tooth surface, and the conventional tooth surface durability Studies prior to the present invention have revealed that the trigger (trigger damage) is caused by the unexpected contact stress generated in the tooth root and the tooth tip in the force evaluation method.
- FIG. 5A is a photograph showing the tooth surface condition in the intermediate stage in which the helical gear is endurance-operated under a heavy load and the gear life has not yet been reached. Since this helical gear was given crowning to the tooth muscle, trochoidal interference occurred at the tooth root in the center of the tooth width of the mating gear due to contact with the tooth tip edge, causing severe adhesive wear. It shows that gear damage is in progress.
- FIG. 5A is a photograph showing the tooth surface condition in the intermediate stage in which the helical gear is endurance-operated under a heavy load and the gear life has not yet been reached. Since this helical gear was given crowning to the tooth muscle, trochoidal interference occurred at the tooth root in the center of the tooth width of the mating gear due to contact with the tooth tip edge, causing severe adhesive wear. It shows that gear damage is in progress.
- FIG. 5A is a photograph showing the tooth surface condition in the intermediate stage in which the helical gear is endurance-operated under a heavy load and the gear life has not
- 5B is a photograph of an example in which a passenger car driving gear is endurance-operated, in which the tooth surface state at an intermediate stage where the gear life has not yet been reached is observed by a replica that transfers the tooth surface to acetyl cellulose.
- the tooth surface at the start of meshing between the tooth tip edge of the helical gear and the tooth root is white, but this is because the surface roughness is crushed and smoothed due to the contact with the tooth tip edge of the mating gear.
- the state is shown.
- An enlarged view of this meshing start point is shown in FIG. 5 (c).
- FIG. 5D is a photograph showing the tooth surface of the root of the drive gear, which generates a large amount of heat due to the attack of the tip of the mating tooth and causes adhesive wear. The part where the adhesive wear is caused appears white in the photograph. Due to the high temperature of the tooth surface below it, the lubricating oil is sludged and adhered.
- FIG. 5 (e) is a replica image of the tooth surface with flaking damage shown in FIG. 1 (a) left, and it is clear that the damage was generated from the meshing portion with the tooth tip edge of the mating gear. You can check.
- the hard edge attacked the tooth surface of the mating gear, so that the above-mentioned damage was likely to occur. That is, even if the gear is manufactured so as to have a constant and uniform hardness, there is a hardness difference that the tooth tip edge is harder than the tooth root tooth surface when each part is microscopically grasped. Can be said to be particularly remarkable when carburizing and quenching is performed to increase the hardness.
- the hardness is inclined (changed) so that the hardness becomes closer to that of the base material from the outer surface side to the base material side, and the thickness and surface thickness of the coating layer at the center of the tooth surface are formed.
- a uniform, low-hardness (softer than the base metal) coating layer is formed on the tooth tip side and the tooth root side in order to equalize.
- a coating layer softer than the base material is formed only on the tooth surface on the tooth tip side for the purpose of making the hardness of the tooth tip edge lower than the hardness of the tooth root tooth surface, such a gear
- the coating layer is easily peeled off at the tooth tip edge, and the hard base material is exposed, which leads to the result of causing damage to the gear.
- the present invention can significantly reduce such damage in order to fundamentally solve the cause of damage on the tooth tip edge and the tooth surface of the tooth roots of the meshed gears.
- the main purpose is to provide gears based on new ideas and manufacturing methods capable of manufacturing such gears with almost no cost increase.
- the present invention is a gear constituting the gear device, wherein the hardness of the tooth tip edge portion in a softened state in each tooth is softer than the hardness of the tooth surface of the mating gear. ..
- the present invention is characterized in that, in a gear constituting a gear device, the hardness of the tooth tip edge portion in a softened state in each tooth is softer than the hardness of the tooth surface of the same tooth. Is.
- the hardness of the tooth tip edge portion of each tooth may be softer than the hardness of the tooth root tooth surface of the mating gear, and the tooth root tooth of the same gear as the tooth tip edge portion. It may be soft in comparison with the hardness of the surface, or may satisfy both of them.
- the term "tooth surface” is not particularly limited, and is assumed to be common to both the tooth surface of the mating gear and the tooth surface of the gear itself.
- the gears subject to the present invention include all types of gears such as spur gears, helical gears, bevel gears, screw gears, hypoid gears, internal gears, rack pinions, worms and worm wheels, and are driven. Both gears and driven gears are included.
- the present invention is effective for all gears in which the tooth tip edge portion contacts the tooth root tooth surface of the mating gear.
- the tooth tip edge portion includes a tooth tip edge of each tooth and is a limited fixed region from the tooth tip surface to the tooth surface in the tooth profile direction (particularly within about 0.7 mm from the tooth tip edge in the tooth profile direction). The range of). Since the hardness (hardness) of each part of the gear varies slightly for each measurement point, the hardness (or softness) of the tooth tip edge portion and the tooth root tooth surface is a region included in them. The evaluation is made based on the average value of the hardness measured at a plurality of points of the above, and the same applies to the description of each invention described below.
- the tooth tip edge of the drive gear which is softer than that, starts to come into contact with the tooth surface of the driven gear
- the tooth tip edge of the drive gear having a relatively low hardness naturally becomes. Since it is crushed (plastically deformed) and rounded, it is possible to easily prevent chipping damage at the tooth surface of the driven gear, particularly at the meshing limit point. That is, contrary to the conventional tendency of increasing hardness in the present technical field, the tooth tip edge portion that is not directly related to power transmission is positively softened, and the tooth tip edge portion is immediately after the start of gear operation.
- the hardness of the tooth tip edge portion with respect to the tooth base tooth surface needs to be 90% or less, preferably 50% or more, and 70% or less and 50% or more. It is desirable because the tooth tip edge portion is easily rounded by contact with the tooth surface.
- the lower limit of the hardness of the tooth tip edge with respect to the tooth surface is set to 50% because it is difficult in the manufacturing process to reduce the hardness to less than 50%.
- the most appropriate portion of the tooth root tooth surface where the hardness is compared with the tooth tip edge portion is the tooth surface near the meshing limit point with the mating gear.
- the meshing limit point with the mating gear is that the tooth tip of the mating gear newly entering the meshing state comes into contact with the tooth root of each tooth closest to the tooth bottom direction in the gear meshing theory. It shall refer to the position of the tooth base to be obtained.
- the hardness of the tooth tip edge portion is reduced to a tooth by undergoing a tooth tip edge softening treatment step by tempering the tooth tip edge portion of each tooth with respect to the gear after quenching.
- a method of manufacturing a gear that is softer than the hardness of the original tooth surface is suitable.
- the tooth tip edge softening treatment step it is preferable to perform heat treatment on the tooth tip of each tooth as a specific target, and one of the suitable tempering methods is high frequency induction on the tooth tip edge.
- a method of tempering by heating can be mentioned.
- a high-frequency induction heating coil is placed near the tooth tip of the gear, and the tooth tip edge is heated by energizing this coil under the temperature and time conditions according to the material of the gear, and then naturally cooled. It is possible to adopt a method of tempering and softening the tooth tip edge portion.
- the tooth tip edge portion of the gear of the present invention is softer than the tooth root tooth surface of the mating gear or the tooth root tooth surface of the same tooth of the gear, the tooth tip edge portion is formed by operating the gear device. Will come into contact with the tooth surface of the tooth of the mating gear and cause plastic deformation and be rounded, so that trocolloid interference will be significantly suppressed at the beginning and end of meshing between the teeth, and conventional teeth.
- the gear life is greatly extended, and the gear device and its incorporation. However, it is possible to prevent equipment failure. Further, by passing through a step of locally heating and softening the tooth tip edge portion by using a high frequency tempering method or the like, a gear in which only the tooth tip edge portion of the present invention is softened can be manufactured at low cost. Can be done.
- a partially enlarged view of the gear of the same embodiment The figure which shows the 1st example of the tooth tip edge softening process in the manufacturing method of the gear of the same embodiment.
- a diagram showing a temperature distribution state in a tempering test using a disc spring as a sample steel piece a diagram showing a temperature distribution state in a tempering test using a disc spring as a sample steel piece.
- gear device X including a drive gear 11 and a driven gear 12 to which the gear 1 of the present invention is applied, and the gear 1 (hereinafter, the drive gear 11 and the driven gear 12 are collectively referred to as “gear X”.
- the drive gear 11 and the driven gear 12 are collectively referred to as “gear X”.
- a few examples of the manufacturing method of) will be described.
- a pair of gears 1 as the gear device X (for the sake of brevity, the drive gear 11 and the driven gear 12 are both spur gears.
- this description applies to all gears. (Effective) is taken as an example, and FIG. 6 shows an enlarged cross-sectional view of the meshed portion.
- this gear 1 has the tooth tips of each tooth 10.
- the edge portion 10a is manufactured to be softer than the tooth surface 10b.
- the figure shows only a part of the teeth 10 of the gear 1, the relationship between the hardness of the tooth tip edge portion 10a and the tooth root tooth surface 10b is the same for all the teeth 10.
- the drive gear 11 and the driven gear 12 have a common relationship between the hardness of the tooth tip edge portion 10a and the tooth root tooth surface 10b of each tooth 10.
- the tooth tip edge portion 10a is defined as a localized constant region from the tooth tip surface 102 to the tooth surface 103 in the tooth profile direction including the tooth tip edge 101 of each tooth 10.
- the tooth profile direction indicates a certain range (within about 0.7 mm) from the tooth tip edge 101.
- the tooth tip edge portion 10a is outside the effective range on the tooth tip side of the tooth surface endurance evaluation method that is usually used.
- a tooth tip edge softening step of softening only the tooth tip edge portion 10a of each tooth 10 of the gear 1 by the circular coil 20 will be described.
- a circular coil 20 having a diameter slightly larger than the tooth tip circle 10c is substantially concentric with the gear shaft 1z in the vicinity of the outer side of the tooth tip surface 102 of the gear 1 to be processed.
- the circular coil 20 is connected to a high-frequency power source (not shown), and by energizing the circular coil 20, the tooth tips are heated.
- the tooth tip edge portion 10a After some time has passed, when the energization is stopped when the temperature distribution near the tooth tip edge portion 10a becomes appropriate, the tooth tip is naturally cooled by heat dissipation into the atmosphere and heat conduction to the inside of the gear 10, and the tooth is cooled. The tip edge portion is tempered and softened, and the tooth tip edge softening step is completed.
- the step of softening the tooth tip edge portion of the spur gear as the gear 1 has been described, but in the case of the gear 1 having a wide tooth width and the circular coil 20 cannot heat the entire gear 10 at the same time and all at once,
- the circular coil 20 may be heated while being moved in parallel with the gear shaft 1z, or this operation may be repeated a plurality of times.
- the coil instead of the circular coil 20, the coil may have a shape deviated from a perfect circular cross section or a polygonal shape. In that case, it is preferable to heat the gear 10 while rotating it.
- the circular coil 20 can have a circular cross section without a break, in order to facilitate the installation of the circular coil 20 on the gear 10, a circular coil with a part cut out, a cut or a hinge in a part, and the like. It is also possible to use a circular coil that can be opened and closed by providing a.
- the second example of the tooth tip edge softening step is an example in which the tooth tip of the gear 1 is tempered using a plate coil.
- a plate coil As shown in FIG. 9, one plate-shaped coil 21 connected to a high-frequency power supply is used, and the plate-shaped coil 21 is attached to the tooth tip surface 102 of the gear 1 as in the circular coil 20 of the first example. In the vicinity of the outside, it is slightly separated from the tooth tip circle 10c.
- the plate coil 21 is energized at high frequency while rotating the gear 1 (in the direction of the arrow in the figure) in this state, the tooth tip edge portion 10a is heated when the tooth tip passes near the magnetic field generated by the plate coil 21.
- the heating time can be adjusted by changing the rotation speed of the gear 1, and it becomes easy to set the optimum tempering condition of the tooth tip edge portion 10a. Then, when the energization is stopped when the temperature distribution near the tooth tip edge portion 10a becomes appropriate after the lapse of a predetermined rotation speed or rotation time, the tooth tip dissipates heat into the atmosphere and heats the inside of the gear 10. It is naturally cooled by conduction, and the tooth tip edge portion is tempered and softened, and the tooth tip edge softening step is completed.
- the advantage of the tooth tip edge softening step in this example is that the gear 1 is extremely easy to install on the plate coil pair 21.
- the third example of the tooth tip edge softening step is an example in which the tooth tip of the gear 1 is tempered using two plate-shaped coils.
- a set of plate-shaped coil pairs 22 composed of two plate-shaped coils 22a and 22a connected to a high-frequency power supply, respectively, is used, and each plate-shaped coil 22a is used as a gear 1 for example. They are arranged so as to face each other in the radial direction so that each plate-shaped coil 22a is slightly separated from the tooth tip circle 10c in the vicinity of the outer side of the tooth tip surface 102 of the gear 1 as in the case of the first example and the second example.
- the plate-shaped coil 21a When the plate-shaped coil 21a is energized at high frequency while rotating the gear 1 (in the direction of the arrow in the figure) in this state, the tooth tip edge portion 10a heats up when the tooth tip passes near the magnetic field generated by each plate-shaped coil 22a. Then, the temperature changes in a substantially pulsed manner, in which the temperature is naturally cooled immediately.
- the eccentricity of the gear 1 or the like causes the heated state of each tooth 10 of the gear 1 to be heated. The effect of non-uniformity can be eliminated. Further, high frequency power supplies having different frequencies can be connected to each plate coil 22a.
- the heating time can be adjusted by changing the rotation speed of the gear 1, and it becomes easy to set the optimum tempering condition of the tooth tip edge portion 10a.
- the fourth example of the tooth tip edge softening step is also an example in which the tooth tip of the gear 1 is tempered using a plate coil. In this example, as shown in FIG. 11, high frequencies are used. It differs from the third example described above in that it uses two sets of plate coil pairs 23 and 24 connected to the power supply. In this fourth example, the pair of plate coils 23a and 23a constituting the plate coil pair 23 and the pair of plate coils 24a and 24a constituting the plate coil pair 24 are 90 in the diameter direction of the gear 10, respectively.
- the plate-shaped coils 23a and 24a are arranged so as to face each other with different degrees of angles and phases, and the plate-shaped coils 23a and 24a are slightly separated from the tooth tip circle 10c near the outer side of the tooth tip surface 102 of the gear 1 as in the first to third examples. I am doing it.
- the frequency of the voltage and the current when the plate coil pair 23 and the plate coil pair 24 are energized by changing the frequency of the voltage and the current when the plate coil pair 23 and the plate coil pair 24 are energized, the depth of the eddy current heat source in the material of the tooth tip (inside the gear 1) and the heat generation are generated. It is possible to more appropriately adjust the temperature distribution in the vicinity of the tooth tip edge portion 10a by changing the degree of concentration of the tooth tip edge portion 10a and the like. Similar to this example, the number of coil pairs consisting of a pair of plate-shaped coils can be further increased.
- the tooth tip edge can be tempered by heating for a very short time, and the method is also simple. Only the tooth tip edge softening step is added to the manufacturing process of the gear 1 of the above, and the gear 1 with less damage can be manufactured without causing a large cost increase.
- the softening treatment of the tooth tip edge 10a for the spur gear has been described, but in these examples, the gear having teeth formed along the circumferential direction of the cross section. It can be applied in general.
- various methods by high-frequency tempering such as heating with a coil arranged on the inner peripheral side of the gear on which the teeth are formed and heating with a plate-shaped coil in the case of a rack are performed.
- the tooth tip edge softening step can be carried out.
- the energizing time, voltage, frequency, heating temperature, etc. may be appropriately set according to the material of the gear.
- the target gear is heated by induction by induction, as in the case of general induction hardening.
- induction by induction
- an alternating magnetic field is applied to the tip of the gear by a high-frequency AC current coil
- an eddy current is generated in the material near the tip of the tooth of the gear, but this eddy current is concentrated on the edge due to the skin effect.
- FIG. 12 which is the result of the electromagnetic induction heating simulation, the temperature of the edge portion is raised.
- condition I and condition II the temperature distribution of the right half of the disc spring 2 by the circular coil 20 under two tempering conditions (hereinafter referred to as condition I and condition II) in the tempering test using the disc spring 2 as a sample steel piece described later.
- condition I and condition II The degree of temperature rise is determined by the size and shape of the object, the distance to the coil, the power frequency, the energizing time, and the steel grade of the gear.
- the hardness distribution inside the tooth tip is a function of how the temperature at each point inside the gear tooth changes over time and the metallurgical properties of the gear material. It will be decided.
- FIG. 13 shows an example of a continuous cooling transformation diagram (CCT diagram, solid line in the diagram) of eutectoid carbon steel.
- CCT diagram continuous cooling transformation diagram
- TTT diagram constant temperature transformation diagram showing the hardenability of the steel material of the gear targeted in the tooth tip edge softening step is shown in the right half of the diagram with dotted lines and solid lines Ps (start line of pearlite transformation). It is assumed that it is an S-shaped curve of Pf (the completion line of pearlite transformation).
- the temperature change at each point in the material of the tooth tip is represented by a constant-velocity cooling curve shown by a alternate long and short dash line that decreases from a position slightly above 700 ° C. in a parabolic manner.
- the sample steel piece employs a disc spring 2 as shown in a plan view (FIG. 14A) and a longitudinal sectional view (FIG. 14B) in FIG. 14, and the upper surface (concave surface) of the disc spring 2 is adopted.
- the inner diameter edge portion 2a on the) side is regarded as the tooth tip edge portion 10a of the tooth 10 on the gear 1.
- the inner diameter edge portion 2a was tempered by intensively high-frequency induction heating of the inner diameter edge portion 2a while rotating the disc spring 2 by a circular coil 20 having an outer diameter slightly smaller than the inner diameter of the disc spring 2. It is tempered and the degree of hardness and tempered range is examined.
- tempering conditions condition I and condition II as shown in FIG. 15, and the frequency, anode voltage, and anode current are equalized under both conditions, and only the heating time is 0.9 seconds under condition I.
- Condition II provides a difference of 1.0 second.
- FIG. 17 is shown as a cross-sectional hardness change diagram.
- the cross-sectional hardness of the disc spring 2 before tempering showed a value of 600 to 650 Hv.
- the hardness at the measurement point distal to the circular coil 20 was 600 to 650 Hv, which was close to the hardness before tempering. Therefore, at these measurement points, the high frequency due to the circular coil 20 was obtained. The result was that no tempering was done. Similar to this experiment, as a result of experiments under several other tempering conditions, the inner diameter edge portion 2a having a hardness of about 650 Hv before tempering was about 400 Hv (baked) by the tempering process using the circular coil 20. It was found that the hardness can be locally reduced to about 60% of the hardness before tempering, and the hardness at a place away from the inner diameter edge can not be changed at all.
- the distribution of the cross-sectional hardness of the inner diameter edge portion 2a of the disc spring 2 was measured in detail. Similar to the measurement test of the change in the cross-sectional hardness of the countersunk spring 2 due to the high frequency tempering described above, the countersunk spring 2 tempered under the condition I was cut in the radial direction, and as shown in FIG. Only the measurement point of the inner diameter edge portion in the cross section of the right half portion 2B is shown, but the measurement point is actually set for the left half portion 2A as well), the diameter direction and the inner diameter from the inner diameter edge on the concave surface side.
- the boundary of hardness 450Hv is shown by a solid line
- the boundary of 500Hv is shown by a chain line
- the boundary of hardness 550Hv is shown by a broken line.
- the degree of softening of the tooth tip edge portion by the tooth tip edge softening step is 90% or less. Further, if it is not required to soften the tooth tip edge portion up to 60%, and it is considered that sufficient plastic deformation can be obtained by softening about 70%, the range of the tooth tip edge portion in the tooth surface direction is , It is sufficient to set it to about 0.7 to 1.0 mm from the tooth tip edge. Note that the above dimensions may vary slightly from 0.7 to 1.0 mm depending on the size of the gear teeth and therefore the module. For example, in the case of a large module tooth, this dimension may be slightly increased. Further, since it is difficult to reduce the degree of softening to less than 50% in the manufacturing process, it is appropriate to set 50% as the lower limit value.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Gears, Cams (AREA)
Abstract
In order to prevent separation damage to a tooth-base tooth surface and damage to a tooth-tip edge portion which are caused by trochoid interference at the beginning of engagement and the end of engagement with a counterpart gear, and thus to increase the life of a gear, a gear device, and a mechanical device in which these are incorporated, a tooth-tip edge portion 10a of each tooth 10 of a gear 1 is made softer than a tooth-base tooth surface 10b, so that from the start of the operation of engaging the counterpart gear the tooth-tip edge portion 10a naturally undergoes plastic deformation due to contact with the tooth-base tooth surface 10, thereby preventing damage to the tooth-base tooth surface 10b and the tooth-tip edge portion 10a.
Description
本発明は、歯車同士のかみ合いによる歯面の剥離損傷を避けることができる歯車とその製造方法に関するものである。
The present invention relates to a gear capable of avoiding peeling damage to the tooth surface due to meshing of the gears and a method for manufacturing the gear.
近年、歯車装置が高負荷運転されるようになってきており、それに伴い歯車の歯面の剥離損傷が多発するようになってきている。このような損傷は、歯車の稼働がそれ以上不可能となるものであり、重大事故にも繋がりかねない深刻な問題である。
In recent years, gear devices have come to be operated with a high load, and along with this, peeling damage to the tooth surface of the gear has come to occur frequently. Such damage is a serious problem that makes it impossible to operate the gears any more and may lead to a serious accident.
具体的に、大荷重で運転される通常の歯車では、駆動歯車の歯元歯面は相手歯車(被動歯車)の歯先エッジによって切り込まれる。この際、多くの摩擦屑が発生し、これらが歯面にかみ込まれて歯面を損傷させる。また、歯先の切り込みによって生成される歯元歯面の段差部にかみ込まれた摩擦屑が衝突し、歯面剥離の引き金となるマイクロ亀裂が生じる。一方、駆動歯車の歯先エッジはかみ合い外れ時に相手歯車の歯元歯面を強く擦り、その際に発生する大きな接触応力と高熱のために歯先エッジの欠け(チッピング)が発生する。すると、剥離屑やチッピング屑がかみ合う歯車の歯面や歯車装置のベアリング等の機構部品にかみ込まれる。その結果、装置全体の劣化や損傷が加速され、最終的には事故の発生に繋がることになる(非特許文献1参照)。図1に歯車に生じた損傷の実例を写真で示す。図1(a)は、歯面のフレーキング損傷に至った例を左右に二つ示したものであり、図1(b)は、歯の部分欠損例を示したものである。図1(c)は、はすば歯車のかみ合い始め部分のピッチング損傷とそこから始める歯面剥離例を示したものであり、図1(d)は、駆動歯車の歯先エッジのチッピング損傷例を示したものである。
Specifically, in a normal gear operated with a large load, the tooth surface of the drive gear is cut by the tooth tip edge of the mating gear (driven gear). At this time, a lot of frictional debris is generated, and these are bitten into the tooth surface and damage the tooth surface. In addition, the friction debris bitten into the stepped portion of the tooth base tooth surface generated by the notch of the tooth tip collides with each other, and microcracks that trigger the tooth surface peeling occur. On the other hand, the tooth tip edge of the drive gear strongly rubs the tooth root tooth surface of the mating gear when it is disengaged, and chipping of the tooth tip edge occurs due to the large contact stress and high heat generated at that time. Then, the peeling dust and the chipping dust are bitten into the tooth surface of the gear and the mechanical parts such as the bearing of the gear device. As a result, deterioration and damage of the entire device are accelerated, which eventually leads to the occurrence of an accident (see Non-Patent Document 1). FIG. 1 is a photograph showing an actual example of damage to the gear. FIG. 1A shows two examples of flaking damage on the tooth surface on the left and right, and FIG. 1B shows an example of partial tooth defect. FIG. 1 (c) shows an example of pitching damage at the start of meshing of the helical gear and an example of tooth surface peeling starting from there, and FIG. 1 (d) shows an example of chipping damage at the tooth tip edge of the drive gear. Is shown.
このような問題は、本技術分野において従来から認識されているところであり、非特許文献1には、「歯車装置の競争力強化に必要な事項と解決すべき課題」として、我が国の歯車装置が将来にわたり強い国際競争力を維持していくためには、1)耐久性・信頼性向上、2)運転時の振動・騒音性能向上、3)動力伝達効率の向上、4)トラブル未然防止、5)コスト低減、の全てにわたり歯車装置に関する技術革新を行って行く必要がある、と述べられている。そして、設計・製造技術全般を向上させ圧倒的な競争力を構築していく基盤は、『従来の方法で設計された歯車よりも高強度にする設計・製造技術』であるとされている。すなわち、歯車に関する上述したような剥離損傷対策としては、「従来設計手法で対処できない損傷の未然防止」が目的ではあるが、損傷現象が十分に解明されていない現状においては、的確な損傷防止策が構築されていない場合の現実的な対処策として、歯車の超高強度化が目指され鋭意研究・開発されているのが本技術分野の趨勢である。
Such problems have been conventionally recognized in the present technical field, and in Non-Patent Document 1, Japanese gear devices are described as "matters necessary for strengthening the competitiveness of gear devices and problems to be solved". In order to maintain strong international competitiveness in the future, 1) improvement of durability and reliability, 2) improvement of vibration and noise performance during operation, 3) improvement of power transmission efficiency, 4) prevention of troubles, 5 ) It is stated that it is necessary to carry out technological innovations related to gear devices in all aspects of cost reduction. And, it is said that the basis for improving the overall design / manufacturing technology and building overwhelming competitiveness is "design / manufacturing technology that makes the gear stronger than the gears designed by the conventional method". That is, as a measure against peeling damage as described above for gears, the purpose is "prevention of damage that cannot be dealt with by conventional design methods", but in the current situation where the damage phenomenon has not been fully elucidated, accurate damage prevention measures. The trend in this technical field is that the gears are being researched and developed with the aim of increasing the strength of the gears as a practical countermeasure when the gears have not been constructed.
例えば、特許文献1では、歯車における歯面の高強度性と歯元の靭性というそれぞれの強度特性を両立させるべく、浸炭処理後の冷却や加熱等の処理によって歯面と歯元とで炭化物の分散析出率、窒素濃度分布、オーステナイト量分布に差を付ける、分散析出する炭化物を球状ないし擬球状とするなどして、歯面を歯元よりも高硬度とするとともに、歯面の耐ピッチング性と耐摩耗性、歯元の曲げ疲労強度と耐衝撃性を兼ね備えた高強度歯車を提供する、とされている。同文献に記載の技術は、上述したような歯車の高強度化を目指す取り組みの一例であるといえる。
For example, in Patent Document 1, in order to achieve both high strength of the tooth surface of the gear and toughness of the tooth root, charcoal substances are formed on the tooth surface and the tooth root by treatment such as cooling and heating after the carburizing treatment. By making the dispersion precipitation rate, nitrogen concentration distribution, and austenite amount distribution different, and making the dispersion-precipitated carbide spherical or pseudo-spherical, the tooth surface is made harder than the tooth root, and the tooth surface has pitching resistance. It is said that it provides high-strength gears that have both wear resistance, bending fatigue strength at the tooth root, and impact resistance. The technology described in this document can be said to be an example of efforts aimed at increasing the strength of gears as described above.
歯車そのものを超高強度化するという研究開発の方向性自体は、歯車の損傷を防止し性能を高める方策の一つではあるものの、結局のところ、駆動歯車と被動歯車の双方の歯先エッジの強い接触によって歯面損傷並びにそれが進展した結果としての歯の部分欠損等を生じてしまう現象の根本解決に至るものとは言い難い。このような損傷を避けるための一策として、歯のエッジを滑らかに丸めるという方法が考えられる。しかしながら、歯車の全歯のエッジの空間的な存在の仕方は単純ではないため、滑らかに丸めるための加工は容易ではなく、航空機用や競争自動車駆動用といった加工に要する費用よりも歯車の絶対性能を追求する必要がある特殊な用途にのみ適用できるものであって、低コストでの製造が求められる歯車全般にまで用いることができる技術であるとはいえない。
Although the direction of research and development to make the gear itself ultra-high strength is one of the measures to prevent damage to the gear and improve its performance, after all, the tooth edge of both the drive gear and the driven gear It is hard to say that it will lead to a fundamental solution to the phenomenon that tooth surface damage and partial loss of teeth as a result of its progress occur due to strong contact. As a measure to avoid such damage, a method of smoothly rounding the edges of the teeth can be considered. However, since the spatial existence of the edges of all the teeth of the gear is not simple, it is not easy to process for smooth rounding, and the absolute performance of the gear is more than the cost required for processing such as for aircraft and competitive automobile drive. It can be said that it can be applied only to special applications that need to be pursued, and it cannot be said that it is a technology that can be used for all gears that are required to be manufactured at low cost.
そこで本発明者は、非特許文献1において「現状では損傷現象が十分に解明されていない」とされていた歯車における損傷剥離の発生メカニズムを次の通り仔細に研究し、これまで本技術分野では検討されてこなかったアプローチにより、製造コストをほとんど上昇させることなく稼働中の損傷を著しく低減させることができる歯車とその製造方法について発明するに至ったものである。
Therefore, the present inventor has studied in detail the mechanism of occurrence of damage peeling in gears, which was described in Non-Patent Document 1 as "the damage phenomenon has not been sufficiently elucidated at present", and has been carried out in the present technical field as follows. An approach that has not been studied has led to the invention of gears and methods of manufacturing them that can significantly reduce damage during operation with little increase in manufacturing costs.
本発明の説明に先立って、本発明者の研究により明らかになった歯車の剥離損傷メカニズムについて説明する。まず、図2は、インボリュート曲線の歯形の接触が起こる駆動・被動歯車の基礎円の共通内接線(作用線ともいう)を示したものである。機構学上の歯車の幾何理論(歯のかみ合い理論)では、同図中の線分ABの中ほどの位置に既に接触している歯の対があり、その接触点が歯車の回転運動によりこの線上を上の方(Aの方向)に動いていき、それにつれて次の歯面がB点に来てそこで新たな歯がかみ合い状態に入る、と教えている。しかしながら、図中の上側にある既にかみ合っている歯の対が負荷により大きな撓みを生じていると、当然ながらその撓みの分、被動歯車は駆動歯車に対して回転遅れを生じる。その結果、新たにかみ合いに入る歯は、歯車のかみ合い理論で教えるかみ合い開始点であるB点よりも以前のC点で接触を始めることになる。この現象は、歯車軸直角断面において、現実のインボリュート歯形の理論的正規位置に対する位相差が原因であり、歯に歯筋クラウニング、片当たり、ピッチ誤差等が存在する場合にも生じるものである。
Prior to the description of the present invention, the mechanism of gear peeling damage clarified by the research of the present inventor will be described. First, FIG. 2 shows a common tangent line (also referred to as an action line) of the basic circle of the driven / driven gear in which the contact of the tooth profile of the involute curve occurs. In the mechanical theory of gear geometry (tooth meshing theory), there is a pair of teeth that are already in contact at the middle position of the line segment AB in the figure, and the contact point is due to the rotational movement of the gear. It teaches that it moves upward (in the direction of A) on the line, and along with that, the next tooth surface comes to point B, where new teeth enter the meshing state. However, if the pair of teeth that are already engaged on the upper side in the figure is greatly deflected by the load, the driven gear naturally causes a rotation delay with respect to the drive gear by the amount of the deflection. As a result, the newly engaged teeth start contacting at point C, which is earlier than point B, which is the starting point of meshing taught in the gear meshing theory. This phenomenon is caused by the phase difference of the actual involute tooth profile with respect to the theoretical normal position in the cross section perpendicular to the gear axis, and also occurs when the tooth has tooth muscle crowning, one-sided contact, pitch error, and the like.
C点で新たにかみ合いに入る歯同士の接触が始まる直前の状態では、既にかみ合っている歯が全荷重を受け持っているために、その分撓んでおり、駆動歯車に対する被動歯車の回転遅れが生じている。C点で新しくかみ合いに入った被動歯車の歯は、歯先のエッジが接触する状態であるので、この接触部分が分担する力は、既にかみ合っている歯が受け持っている力に比べて極めて小さい。歯の接触がC点からB点に至るまでの間、すなわち、駆動歯車に対する被動歯車の回転遅れが原因で歯先の角が相手歯元に強く接触する状態(トロコイド干渉)では、この干渉を起こしている歯の受ける反力は、既に歯面がかみ合っている歯の対の受けている力に比べて十分に小さく、また、その状態の持続する時間或いは歯車回転角の進みは僅かであるので、トロコイド干渉中のC点からB点までの接触点の移動は、駆動歯車に対する被動歯車の回転遅れ量が殆ど変化しないほぼ変位強制の状態で進行する。このような状態を、相手歯車の歯先エッジによる歯元歯面の攻撃の様子の模式図として図3の上段に示す。
In the state immediately before the contact between the teeth newly engaged at point C starts, the teeth that are already engaged are in charge of the total load, so that the teeth are bent by that amount, and the rotation of the driven gear with respect to the drive gear is delayed. ing. Since the teeth of the driven gear that are newly engaged at point C are in a state where the edges of the tooth tips are in contact with each other, the force shared by this contact portion is extremely small compared to the force that the already engaged teeth have. .. This interference occurs during the tooth contact from point C to point B, that is, when the angle of the tip of the tooth strongly contacts the mating tooth root due to the rotation delay of the driven gear with respect to the driving gear (trochoid interference). The reaction force received by the raised tooth is sufficiently smaller than the force received by the pair of teeth whose tooth surfaces are already engaged, and the duration of the state or the advance of the gear rotation angle is small. Therefore, the movement of the contact point from the point C to the point B during the trochoid interference proceeds in a substantially displacement-forced state in which the amount of rotation delay of the driven gear with respect to the drive gear hardly changes. Such a state is shown in the upper part of FIG. 3 as a schematic view of an attack on the tooth surface of the tooth root by the tooth tip edge of the mating gear.
同図に示すように、歯車の回転の進行に伴い、相手歯先は歯元歯面に対してトロコイド曲線を描いて近付く。ここでは便宜上、歯車同士のかみ合い始めの状態について限定して説明するが、かみ合い終わりでも同図上段と同様の状態が発生し、かみ合い始めの状態に対して接触点の移動方向が逆になり、以下の説明中の用語「かみ合い始め」を「かみ合い終わり」に読み替えることで、かみ合い終わりの状態をかみ合い始めの状態と同様に説明することができる。さて、このトロコイド曲線が歯元歯面に食い込む状態になれば、歯先エッジが歯元歯面に強く接触するトロコイド干渉の状態になる。歯車の歯には全歯幅に亘り歯面をうまく当てるため、歯幅中央で歯形曲線をわずかに前方に、歯の両側端では後方に位置するようにクラウニング(歯筋クラウニング)と称するマイクロ歯面形状修整加工が施される。同図では、駆動歯車の歯形を3本の線で示しており、図中右側に隣接する歯に繋がった中央の線が基準となる正面歯形、外側の線が歯幅中央部の歯形、内側の線が歯の両側端における歯形をそれぞれ示している。そしてこの場合、歯幅中央部でトロコイド干渉が大きくなる。図3(a)の下段に示す写真ではその状態で歯幅の中央部の歯元歯面が相手歯車の歯先エッジにより強く攻撃されている状態を示している。このように、歯筋クラウニングが与えられた歯車において、歯幅の中央部で大きなトロコイド干渉が起きる結果、歯元歯面には歯筋クラウニングの形状に対応してかみ合う相手歯先の攻撃を受け、歯元歯面が強く損傷し始めている状態が認められる。その一方で、歯の両側端ではトロコイド干渉が起こっていないことが分かる。このような状況は、歯車の歯のかみ合いの進行につれて常に起こっている。図3(b)の写真では、トロコイド干渉部から歯面剥離が生じている状態が示されている。図3(a)及び(b)の写真を比較すると、歯元歯面におけるトロコイド干渉部が損傷し始めてから歯面剥離が生じるメカニズムが一目瞭然である。
As shown in the figure, as the rotation of the gear progresses, the tip of the mating tooth approaches the tooth surface of the tooth by drawing a trochoid curve. Here, for convenience, the state at which the gears start to mesh with each other will be limited, but even at the end of meshing, the same state as in the upper part of the figure occurs, and the moving direction of the contact point is opposite to the state at which the gears start to mesh. By replacing the term "beginning of meshing" with "end of meshing" in the following explanation, the state of the end of meshing can be explained in the same way as the state of the beginning of meshing. Now, when this trochoid curve bites into the tooth surface, the trochoid interference state in which the tooth tip edge strongly contacts the tooth surface. Micro teeth called crowning (dental muscle crowning) so that the tooth profile is slightly forward at the center of the tooth width and posterior at both ends of the tooth so that the tooth surface can be applied well to the teeth of the gear over the entire tooth width. Surface shape modification processing is applied. In the figure, the tooth profile of the drive gear is shown by three lines. The center line connected to the adjacent tooth on the right side of the figure is the reference front tooth profile, and the outer line is the tooth profile at the center of the tooth width, and the inside. Lines indicate the tooth profile at both ends of the tooth. In this case, the trochoidal interference becomes large at the central portion of the tooth width. The photograph shown in the lower part of FIG. 3A shows a state in which the tooth surface at the center of the tooth width is strongly attacked by the tooth tip edge of the mating gear. In this way, in the gear to which the tooth muscle crowning is given, a large trochoidal interference occurs in the central part of the tooth width, and as a result, the tooth surface is attacked by the mating tooth tip that meshes according to the shape of the tooth muscle crowning. , It is recognized that the tooth surface at the root of the tooth is beginning to be strongly damaged. On the other hand, it can be seen that trochoidal interference does not occur at both ends of the tooth. Such a situation always occurs as the gear tooth meshing progresses. The photograph of FIG. 3B shows a state in which tooth surface peeling occurs from the trochoidal interference portion. Comparing the photographs of FIGS. 3A and 3B, it is clear at a glance the mechanism by which the tooth surface peels off after the trochoidal interference portion on the tooth root tooth surface begins to be damaged.
このような接触状態の駆動歯車の歯面における接触応力の変化の様子を図4に模式的に示す。同図には、歯先と歯元に大きな接触応力が発生し、その接触箇所の歯面の相対滑りも大きいために発熱し、また、表面に働く剪断力が大きいために、損傷が極めて発生しやすくなるという状態が描かれている。具体的には、同図中の歯面接触のヘルツ応力の状態を模式的に示す曲線の通り、新しく相手歯面との接触を開始するC点からB点までのトロコイド干渉領域ではエッジと面との接触のため接触応力が急激に大きくなり(図中、太い一点鎖線で示す)、B点から歯先方向にかけては、相手歯面との面と面との接触になるため接触面積が大きいことから、接触応力が小さくなるが、歯先に到達すると自由端である歯先エッジが相手歯面とかみ合う状態となり、接触楕円の面積の減少に対応して接触応力が大きくなる。このような状態により、図1に示したような歯車の損傷が発生しているのである。一方、本技術分野において世界の全ての国々で現在使われている歯面耐久力評価法では、歯面と歯面の接触がその理論的根拠であり、トロコロイド干渉が全く考慮されていないため、実質的には歯元のC点から歯先に至る手前までの図中太矢印で示した領域が有効範囲となっている。すなわち、C点からB点までの間の歯元と歯先についてはその有効範囲外である。すなわち、多くの実用歯車で経験される破壊的な剥離損傷は、歯面耐久力評価法の有効範囲外、つまり歯先エッジと歯元歯面の接触から起こることが多く、従来の歯面耐久力評価法の想定外の接触応力が歯元と歯先に発生することが原因で、その引き金(トリガー損傷)が生じていることが本発明に先立つ研究により明らかとなってきた。
FIG. 4 schematically shows the state of change in contact stress on the tooth surface of the drive gear in such a contact state. In the figure, a large contact stress is generated between the tooth tip and the tooth base, heat is generated due to the large relative slip of the tooth surface at the contact point, and the shearing force acting on the surface is large, so that the damage is extremely caused. The state that it becomes easy to do is drawn. Specifically, as shown in the curve schematically showing the state of Hertz stress of tooth surface contact in the figure, the edge and the surface in the trochoid interference region from point C to point B where the contact with the mating tooth surface is newly started. The contact stress increases sharply due to contact with the tooth (indicated by a thick single-point chain line in the figure), and the contact area is large from point B to the tooth tip direction because the contact is between the surface and the mating tooth surface. Therefore, the contact stress becomes small, but when the tooth tip reaches the tooth tip, the tooth tip edge, which is a free end, becomes in a state of engaging with the mating tooth surface, and the contact stress increases in accordance with the decrease in the area of the contact ellipse. Due to such a state, the gears as shown in FIG. 1 are damaged. On the other hand, in the tooth surface durability evaluation method currently used in all the countries of the world in this technical field, the contact between the tooth surfaces is the rationale, and the trocolloid interference is not considered at all. The effective range is substantially the area indicated by the thick arrow in the figure from the point C at the root of the tooth to the front of the tooth tip. That is, the tooth root and tooth tip between points C and B are out of the effective range. That is, the destructive peeling damage experienced in many practical gears often occurs outside the effective range of the tooth surface durability evaluation method, that is, the contact between the tooth tip edge and the tooth root tooth surface, and the conventional tooth surface durability Studies prior to the present invention have revealed that the trigger (trigger damage) is caused by the unexpected contact stress generated in the tooth root and the tooth tip in the force evaluation method.
ここで、歯車の歯元と歯先における想定外の接触応力の発生による損傷の例を示す。図5(a)は、はずば歯車を重荷重で耐久運転し、未だ歯車寿命には達していない中間段階での歯面状態を示す写真である。このはすば歯車には、歯筋にクラウニングを与えていたため、歯先エッジとの接触のために相手歯車の歯幅中央部の歯元でトロコイド干渉が発生し、激しい凝着摩耗が起こって歯車の損傷が進行中である状態が示されている。図5(b)は、乗用車駆動用歯車を耐久運転した例において、未だ歯車寿命には達していない中間段階での歯面状態を、アセチルセルローズに転写するレプリカによって観察した写真である。はすば歯車の歯先エッジと歯元のかみ合い開始部分の歯面が白くなっているが、これは相手歯車の歯先エッジとの接触のために表面粗さが潰されて滑らかになった状態が示されている。このかみ合い開始点を拡大したものを図5(c)に示す。相手歯車の歯先エッジとの高圧・高滑りの接触の結果、その接触箇所の応力状態が材料の耐力を超え、微細なピットとクラックが発生し始めているのが認められる。これらのトリガー損傷はその後、図1(c)に示したような損傷に発展するが、図5(c)はその前段階である。図5(d)は、相手歯先の攻撃により大きく発熱し、凝着摩耗を起こしている駆動歯車の歯元歯面を示す写真である。凝着摩耗を起こしている部分は写真では白く見えている。その下の歯面は、高温になったため、潤滑油がスラッジ化して付着している。凝着摩耗を起こした歯面は高温のために焼き戻されて硬度が低下し、損傷を極めて起こしやすくなり、歯車損傷のポジティブフィードバック系の挙動が進展している状況にある。図5(e)は、図1(a)左図に示したフレーキング損傷を生じた歯面のレプリカ画像であり、損傷が相手歯車の歯先エッジとのかみ合い部から発生したことが明確に確認できる。
Here, an example of damage due to the generation of unexpected contact stress at the tooth root and the tooth tip of the gear is shown. FIG. 5A is a photograph showing the tooth surface condition in the intermediate stage in which the helical gear is endurance-operated under a heavy load and the gear life has not yet been reached. Since this helical gear was given crowning to the tooth muscle, trochoidal interference occurred at the tooth root in the center of the tooth width of the mating gear due to contact with the tooth tip edge, causing severe adhesive wear. It shows that gear damage is in progress. FIG. 5B is a photograph of an example in which a passenger car driving gear is endurance-operated, in which the tooth surface state at an intermediate stage where the gear life has not yet been reached is observed by a replica that transfers the tooth surface to acetyl cellulose. The tooth surface at the start of meshing between the tooth tip edge of the helical gear and the tooth root is white, but this is because the surface roughness is crushed and smoothed due to the contact with the tooth tip edge of the mating gear. The state is shown. An enlarged view of this meshing start point is shown in FIG. 5 (c). As a result of high-pressure, high-slip contact with the tooth tip edge of the mating gear, it is observed that the stress state at the contact point exceeds the yield strength of the material, and fine pits and cracks begin to occur. These trigger injuries then develop into injuries as shown in FIG. 1 (c), which is the pre-stage in FIG. 5 (c). FIG. 5D is a photograph showing the tooth surface of the root of the drive gear, which generates a large amount of heat due to the attack of the tip of the mating tooth and causes adhesive wear. The part where the adhesive wear is caused appears white in the photograph. Due to the high temperature of the tooth surface below it, the lubricating oil is sludged and adhered. The tooth surface that has undergone adhesive wear is burned back due to high temperature, its hardness decreases, and it becomes extremely easy to cause damage, and the behavior of the positive feedback system for gear damage is progressing. FIG. 5 (e) is a replica image of the tooth surface with flaking damage shown in FIG. 1 (a) left, and it is clear that the damage was generated from the meshing portion with the tooth tip edge of the mating gear. You can check.
以上に示したような歯車の損傷は、硬い歯先エッジがそれよりも柔らかい相手歯車の歯元歯面を攻撃するために発生するものである。従来、歯車の強度を高めるためには歯面硬度を高くすることのみが目指されてきた。歯車の強度を高めるために採用される最も一般的な浸炭焼入れ法は、歯の表面から炭素を拡散させ、その硬度を上げるものであり、この方向に沿った歯車熱処理方法である。この処理時において、歯のエッジは歯面に比べて多方面に表面を有し、その全ての面から炭素が浸入するため、一方の面からしか炭素が侵入しない歯面よりもどうしても硬く、且つ脆くなる傾向が避けられない。したがって、その硬いエッジが相手歯車の歯面を攻撃したため、上述したような損傷が発生しやすくなっていたと考えられる。すなわち、一定の均質な硬度となるように製造した歯車であっても、各部を微視的に捉えると、歯先エッジの方が歯元歯面よりも硬いという硬度差が存在し、その傾向は硬度を上げるために浸炭焼入れを施した場合は特に顕著であるといえる。
Gear damage as shown above occurs because the hard tooth tip edge attacks the tooth surface of the mating gear, which is softer than that. Conventionally, in order to increase the strength of gears, only increasing the tooth surface hardness has been aimed at. The most common carburizing and quenching method used to increase the strength of gears is to diffuse carbon from the tooth surface to increase its hardness, which is a gear heat treatment method along this direction. At the time of this treatment, the tooth edge has surfaces in many directions as compared with the tooth surface, and carbon invades from all the surfaces, so that it is inevitably harder than the tooth surface in which carbon invades only from one surface, and The tendency to become brittle is inevitable. Therefore, it is probable that the hard edge attacked the tooth surface of the mating gear, so that the above-mentioned damage was likely to occur. That is, even if the gear is manufactured so as to have a constant and uniform hardness, there is a hardness difference that the tooth tip edge is harder than the tooth root tooth surface when each part is microscopically grasped. Can be said to be particularly remarkable when carburizing and quenching is performed to increase the hardness.
一方、このような損傷発生の状態から論理的に考えると、歯先エッジの硬度がそれとかみ合う相手歯車の歯元歯面よりも低くなれば、このような損傷は大幅に少なくなることが予想される。歯先エッジの硬度を低くするような歯車の製造方法の一つとしては、例えば特許文献2に記載されているような、歯面に母材よりも硬度が低い材料でコーティングを施すという方法が考えられる。しかし、同文献に記載された技術の目的は、表面の硬度が母材の硬度よりも低いコーティング層と母材との密着性を向上させることで、歯面に圧縮残留応力を付与するためにショットピーニングを行っても母材とコーティング層とが容易に剥離せず、歯面に圧縮残留応力を付与する、というものであり、歯車の歯元と歯先における想定外の接触応力の発生による損傷を防止することについては同文献には示唆されていない。そして、歯面の耐久力を向上させる目的を達するために、歯面中央部(歯面の歯先側と歯元側の中間部位)に母材よりも硬度が低い材料で被覆したコーティング層を形成し、このコーティング層においては外面側から母材側に向けて硬度が母材に近くなるように硬度に傾斜(変化)を持たせ、この歯面中央部のコーティング層の厚さと表面厚さを均等にするために、歯先側と歯元側には均質な低硬度の(母材よりも軟質な)コーティング層を形成している。しかしながら、単に歯先エッジの硬度を歯元歯面の硬度よりも低くする目的で、歯先側の歯面にのみ母材よりも軟質なコーティング層を形成した場合を想定すると、このような歯車をかみ合わせて稼働させた場合、歯先エッジにおいてはコーティング層が容易に剥離してしまい、硬度の高い母材が露出し、歯車の損傷を引き起こす結果に繋がることになる。
On the other hand, logically considering the state of occurrence of such damage, it is expected that such damage will be significantly reduced if the hardness of the tooth tip edge is lower than the tooth surface of the mating gear that meshes with it. Tooth. As one of the methods for manufacturing a gear that lowers the hardness of the tooth tip edge, for example, a method of coating the tooth surface with a material having a hardness lower than that of the base material, as described in Patent Document 2, is used. Conceivable. However, the purpose of the technique described in the same document is to apply compressive residual stress to the tooth surface by improving the adhesion between the base material and the coating layer whose surface hardness is lower than the hardness of the base material. Even if shot peening is performed, the base material and the coating layer do not easily peel off, and compressive residual stress is applied to the tooth surface, which is caused by the generation of unexpected contact stress between the tooth root and the tooth tip of the gear. There is no suggestion in the document to prevent damage. Then, in order to achieve the purpose of improving the durability of the tooth surface, a coating layer coated with a material having a hardness lower than that of the base material is applied to the central part of the tooth surface (intermediate part between the tooth tip side and the tooth root side of the tooth surface). In this coating layer, the hardness is inclined (changed) so that the hardness becomes closer to that of the base material from the outer surface side to the base material side, and the thickness and surface thickness of the coating layer at the center of the tooth surface are formed. A uniform, low-hardness (softer than the base metal) coating layer is formed on the tooth tip side and the tooth root side in order to equalize. However, assuming that a coating layer softer than the base material is formed only on the tooth surface on the tooth tip side for the purpose of making the hardness of the tooth tip edge lower than the hardness of the tooth root tooth surface, such a gear When the teeth are engaged and operated, the coating layer is easily peeled off at the tooth tip edge, and the hard base material is exposed, which leads to the result of causing damage to the gear.
以上の問題に鑑みて、本発明は、かみ合い状態にある歯車同士の歯先エッジと歯元歯面における損傷の原因を根本的に解決すべく、そのような損傷を大幅に減少させることができる新しい着想に基づく歯車と、斯かる歯車を殆どコスト上昇させることなく製造することができる製法とを提供することを主たる目的とするものである。
In view of the above problems, the present invention can significantly reduce such damage in order to fundamentally solve the cause of damage on the tooth tip edge and the tooth surface of the tooth roots of the meshed gears. The main purpose is to provide gears based on new ideas and manufacturing methods capable of manufacturing such gears with almost no cost increase.
すなわち本発明は、歯車装置を構成する歯車において、各歯において軟化させた状態の歯先エッジ部の硬さが、相手歯車の歯元歯面の硬さよりも柔らかいことを特徴とする歯車である。
That is, the present invention is a gear constituting the gear device, wherein the hardness of the tooth tip edge portion in a softened state in each tooth is softer than the hardness of the tooth surface of the mating gear. ..
また、本発明は、歯車装置を構成する歯車において、各歯において軟化させた状態の歯先エッジ部の硬さが、同じその歯の歯元歯面の硬さよりも柔らかいことを特徴とする歯車である。
Further, the present invention is characterized in that, in a gear constituting a gear device, the hardness of the tooth tip edge portion in a softened state in each tooth is softer than the hardness of the tooth surface of the same tooth. Is.
すなわち本発明では、各歯の歯先エッジ部の硬さは、相手歯車の歯元歯面の硬さとの比較において柔らかいものであってもよく、その歯先エッジ部と同じ歯車の歯元歯面の硬さとの比較において柔らかいものであってもよく、その両方を満たすものであってもよい。以下、特に限定することなく「歯元歯面」という場合には、相手歯車の歯元歯面とその歯車自体の歯元歯面の両方に共通するものであるとする。本発明の対象となる歯車には、平歯車、はすば歯車、かさ歯車、ねじ歯車、ハイポイド歯車、内歯歯車、ラック・ピニオン、ウォーム・ウォームホイール等、あらゆる種類の歯車が該当し、駆動歯車と被動歯車の両方が含まれる。また、トロコイド干渉が生じない歯車でも、歯先エッジ部が相手歯車の歯元歯面に接触する歯車全般について、本発明は有効である。本発明において歯先エッジ部は、各歯の歯先エッジを含んで歯先面から歯形方向の歯面にかけての限局された一定の領域(特に歯形方向へは歯先エッジから約0.7mm以内の範囲)を指していうものとする。なお、歯車における各部の硬さ(硬度)は、各測定ポイントごとに僅かにバラツキがあるため、歯先エッジ部と歯元歯面における硬さ(又は柔らかさ)とは、それらに含まれる領域の複数ポイントで測定された硬度の平均値によって評価することとし、以下に述べる各発明の説明においても同様とする。
That is, in the present invention, the hardness of the tooth tip edge portion of each tooth may be softer than the hardness of the tooth root tooth surface of the mating gear, and the tooth root tooth of the same gear as the tooth tip edge portion. It may be soft in comparison with the hardness of the surface, or may satisfy both of them. Hereinafter, the term "tooth surface" is not particularly limited, and is assumed to be common to both the tooth surface of the mating gear and the tooth surface of the gear itself. The gears subject to the present invention include all types of gears such as spur gears, helical gears, bevel gears, screw gears, hypoid gears, internal gears, rack pinions, worms and worm wheels, and are driven. Both gears and driven gears are included. Further, even in a gear in which trochoidal interference does not occur, the present invention is effective for all gears in which the tooth tip edge portion contacts the tooth root tooth surface of the mating gear. In the present invention, the tooth tip edge portion includes a tooth tip edge of each tooth and is a limited fixed region from the tooth tip surface to the tooth surface in the tooth profile direction (particularly within about 0.7 mm from the tooth tip edge in the tooth profile direction). The range of). Since the hardness (hardness) of each part of the gear varies slightly for each measurement point, the hardness (or softness) of the tooth tip edge portion and the tooth root tooth surface is a region included in them. The evaluation is made based on the average value of the hardness measured at a plurality of points of the above, and the same applies to the description of each invention described below.
このような本発明の歯車では、歯車同士のかみ合い始めにおいて、駆動歯車の歯元歯面にそれよりも柔らかい被動歯車の歯先エッジ部が接触し始めると、相対的に硬度が低い被動歯車の歯先エッジ部が自然に潰れて(塑性変形して)丸められるため、駆動歯車の歯元歯面、特に従来の歯面耐久力評価法における有効範囲外で生じていたため対策がなされていなかったかみ合い限界点における剥離損傷を容易に予防することができることになる。一方、歯車同士のかみ合い終わりにおいては、被動歯車の歯元歯面にそれよりも柔らかい駆動歯車の歯先エッジ部が接触し始めると、相対的に硬度が低い駆動歯車の歯先エッジ部が自然に潰れて(塑性変形して)丸められるため、被動歯車の歯元歯面、特にかみ合い限界点におけるチッピング損傷を容易に予防することができることになる。すなわち、本技術分野のこれまでの傾向であった硬度上昇とは逆に、動力伝達に直接関わることがない歯先エッジ部を積極的に柔らかいものとして、歯先エッジ部が歯車稼働開始直後から相手歯車の歯元歯面の硬さに負けて自動的に丸められるようにすることで、トロコイド干渉を抑制することができるため、歯元歯面の損傷を大幅に減少させることができるようになるのである。もちろん、丸められた歯先エッジ部の欠損等の損傷も生じにくくなる。このような技術によれば、歯車寿命を長くし、歯車装置を組み込んだ装置の故障原因も減少させることができる。なお、駆動歯車及び被動歯車の歯先エッジ部及び歯先面は、歯車装置における動力伝達には殆ど関与しないため、相手歯車の歯元歯面との接触により丸められるなどの変形が生じても、歯車装置の稼働には影響を及ぼすことがなく、本発明により歯先エッジ部の損傷や欠損を防止できることは歯車装置の延命に大いに寄与するものである。また、本発明の歯車では、金属母材を露出させるようにしていることから、歯面に母材よりも柔らかい材料をコーティングしたものと比較して、コスト的にも安価に製造することができ、歯車装置の稼働によるコーティング層の剥離という問題も回避することができる。
In such a gear of the present invention, when the tooth tip edge of the driven gear, which is softer than the tooth surface of the driving gear, starts to come into contact with the tooth surface of the driving gear at the beginning of meshing between the gears, the hardness of the driven gear is relatively low. Since the edge of the tooth tip is naturally crushed (plastically deformed) and rounded, the tooth surface of the drive gear, especially the tooth surface endurance evaluation method of the conventional method, occurred outside the effective range, so no countermeasure was taken. Peeling damage at the meshing limit point can be easily prevented. On the other hand, at the end of meshing between the gears, when the tooth tip edge of the drive gear, which is softer than that, starts to come into contact with the tooth surface of the driven gear, the tooth tip edge of the drive gear having a relatively low hardness naturally becomes. Since it is crushed (plastically deformed) and rounded, it is possible to easily prevent chipping damage at the tooth surface of the driven gear, particularly at the meshing limit point. That is, contrary to the conventional tendency of increasing hardness in the present technical field, the tooth tip edge portion that is not directly related to power transmission is positively softened, and the tooth tip edge portion is immediately after the start of gear operation. By making it possible to lose the hardness of the tooth surface of the mating gear and automatically roll it, trochoid interference can be suppressed, so that damage to the tooth surface can be significantly reduced. It becomes. Of course, damage such as a chipped edge of the rounded tooth tip is less likely to occur. According to such a technique, the life of the gear can be extended and the cause of failure of the device incorporating the gear device can be reduced. Since the tooth tip edges and tooth tip surfaces of the drive gear and the driven gear are hardly involved in power transmission in the gear device, even if deformation such as being rounded due to contact with the tooth root tooth surface of the mating gear occurs. The fact that the operation of the gear device is not affected and that the present invention can prevent damage or loss of the tooth tip edge portion greatly contributes to prolonging the life of the gear device. Further, in the gear of the present invention, since the metal base material is exposed, it can be manufactured at a lower cost than the gear whose tooth surface is coated with a material softer than the base material. It is also possible to avoid the problem of peeling of the coating layer due to the operation of the gear device.
本発明の歯車において、歯元歯面よりも柔らかい歯先エッジ部としては、焼き戻しされた状態の歯先エッジ部であることが望ましい。なお、歯車の製造工程において、歯車全体を焼入れ・焼き戻しされることが通常であることから、その工程の後に、歯先エッジ部のみを更に焼き戻すことで、焼き戻しされた状態の歯先エッジ部が得られる。焼き戻しは、焼入れによってマルテンサイト化して硬く脆くなった鋼組織を再加熱することで硬さを調整し、柔らかくさせながら組織に粘りや強靱性を与える工程として常用されているが、通常は部品全体(本発明であれば歯車)に対して、あるいは軸物であればその部品の一部に対して施される熱処理であり、歯先のエッジといった部品の極く一部(局所)のみを焼き戻すということは通常行われることはない。本発明では、歯先エッジ部のみを焼き戻しされた状態とすることで、歯先エッジ部のみを選択的に柔らかく、粘りと強靱さを持った性質とすることで、歯元歯面に対して柔らかい歯先エッジ部を備えた歯車とすることができる。
In the gear of the present invention, it is desirable that the tooth tip edge portion softer than the tooth root tooth surface is the tooth tip edge portion in a tempered state. Since the entire gear is usually hardened and tempered in the gear manufacturing process, the tooth tip in the tempered state is further tempered by further tempering only the tooth tip edge portion after the process. An edge portion is obtained. Tempering is commonly used as a process of adjusting the hardness by reheating a steel structure that has become hard and brittle due to martensite formation by quenching, and giving the structure tenacity and toughness while softening it. It is a heat treatment applied to the whole (gear in the present invention) or a part of the part in the case of a shaft, and only a small part (local) of the part such as the edge of the tooth tip is hardened. Returning is not usually done. In the present invention, only the tooth tip edge portion is in a tempered state, so that only the tooth tip edge portion is selectively softened and has tenacity and toughness. It can be a gear having a soft tooth tip edge portion.
本発明においては、歯元歯面に対する歯先エッジ部の硬さは、有意差が認められる90%以下が必要であり、50%以上とすることが好ましく、70%以下50%以上であれば歯先エッジ部が歯元歯面との接触により容易に丸められやすくなるため望ましい。歯元歯面に対する歯先エッジ部の硬さの下限を50%としたのは、50%未満にまで低下させることは製造工程上、困難であるためである。
In the present invention, the hardness of the tooth tip edge portion with respect to the tooth base tooth surface needs to be 90% or less, preferably 50% or more, and 70% or less and 50% or more. It is desirable because the tooth tip edge portion is easily rounded by contact with the tooth surface. The lower limit of the hardness of the tooth tip edge with respect to the tooth surface is set to 50% because it is difficult in the manufacturing process to reduce the hardness to less than 50%.
本発明において、歯元歯面において歯先エッジ部と硬さが比較される最も適切な部位は、相手歯車とのかみ合い限界点近傍の歯面とすることが望ましい。この相手歯車とのかみ合い限界点とは、本発明では、各歯の歯元歯面において、新たにかみ合い状態に入る相手歯車の歯先が歯車のかみ合い理論上最も歯底方向に近寄って接触し得る歯元位置を指していうものとする。
In the present invention, it is desirable that the most appropriate portion of the tooth root tooth surface where the hardness is compared with the tooth tip edge portion is the tooth surface near the meshing limit point with the mating gear. In the present invention, the meshing limit point with the mating gear is that the tooth tip of the mating gear newly entering the meshing state comes into contact with the tooth root of each tooth closest to the tooth bottom direction in the gear meshing theory. It shall refer to the position of the tooth base to be obtained.
本発明の歯車の製造方法としては、焼入れ後の歯車に対する各歯の歯先エッジ部を対象に、焼き戻しによる歯先エッジ部軟化処理工程を経ることにより、歯先エッジ部の硬さが歯元歯面の硬さよりも柔らかい歯車を製造する方法が適している。
In the method for manufacturing a gear of the present invention, the hardness of the tooth tip edge portion is reduced to a tooth by undergoing a tooth tip edge softening treatment step by tempering the tooth tip edge portion of each tooth with respect to the gear after quenching. A method of manufacturing a gear that is softer than the hardness of the original tooth surface is suitable.
歯先エッジ部軟化処理工程では、各歯の歯先部を特異的な対象とした熱処理を行うことが好適であり、それに適した焼き戻し方法の1つとしては、歯先エッジ部に対する高周波誘導加熱による焼き戻し方法を挙げることができる。この場合、歯車の歯先の近傍に高周波誘導加熱コイルを配置し、このコイルに歯車の材質に応じた温度及び時間条件下で通電することで歯先エッジ部を加熱した後、自然冷却することにより歯先エッジ部を焼き戻して軟化させる方法を採用することができる。
In the tooth tip edge softening treatment step, it is preferable to perform heat treatment on the tooth tip of each tooth as a specific target, and one of the suitable tempering methods is high frequency induction on the tooth tip edge. A method of tempering by heating can be mentioned. In this case, a high-frequency induction heating coil is placed near the tooth tip of the gear, and the tooth tip edge is heated by energizing this coil under the temperature and time conditions according to the material of the gear, and then naturally cooled. It is possible to adopt a method of tempering and softening the tooth tip edge portion.
本発明の歯車は、歯先エッジ部を相手歯車の歯元歯面、又はその歯車の同じ歯の歯元歯面よりも柔らかくしたものであるため、歯車装置を稼働させることで歯先エッジ部が相手歯車の歯の歯元歯面と接触して塑性変形を起こし丸められることになるため、歯同士のかみ合い始めとかみ合い終わりにおいてトロコロイド干渉が大幅に抑制されることになり、従来の歯面耐久力評価法における有効範囲外で生じていた歯元歯面での剥離損傷が防止され、同時に歯先エッジ部の破損も防止できる結果、歯車寿命を大幅に延ばし、歯車装置やそれを組み込んだ装置の故障も防止することができる。また、高周波焼き戻し法等を利用して歯先エッジ部を局所的に加熱して軟化させる工程を経ることで、本発明の歯先エッジ部のみを軟化させた歯車を低コストで製造することができる。
Since the tooth tip edge portion of the gear of the present invention is softer than the tooth root tooth surface of the mating gear or the tooth root tooth surface of the same tooth of the gear, the tooth tip edge portion is formed by operating the gear device. Will come into contact with the tooth surface of the tooth of the mating gear and cause plastic deformation and be rounded, so that trocolloid interference will be significantly suppressed at the beginning and end of meshing between the teeth, and conventional teeth. As a result of preventing peeling damage on the tooth root tooth surface that occurred outside the effective range in the surface durability evaluation method and at the same time preventing damage to the tooth tip edge, the gear life is greatly extended, and the gear device and its incorporation. However, it is possible to prevent equipment failure. Further, by passing through a step of locally heating and softening the tooth tip edge portion by using a high frequency tempering method or the like, a gear in which only the tooth tip edge portion of the present invention is softened can be manufactured at low cost. Can be done.
以下、本発明の一実施形態を、図面を参照して説明する。
本実施形態では、本発明の歯車1を適用した駆動歯車11及び被動歯車12からなる歯車装置Xの一例と、その歯車1(以下、駆動歯車11及び被動歯車12を総称する場合は「歯車X」と呼ぶこととする。)の製造方法の数例を説明することとする。ここでは説明を簡略化するため、歯車装置Xとして一対の歯車1(説明を簡単にするため、駆動歯車11及び被動歯車12は共に平歯車であるとする。しかし、この説明は全ての歯車に有効なものである。)を例に挙げ、そのかみ合い部分を拡大した断面図として図6に示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, an example of a gear device X including adrive gear 11 and a driven gear 12 to which the gear 1 of the present invention is applied, and the gear 1 (hereinafter, the drive gear 11 and the driven gear 12 are collectively referred to as “gear X”. A few examples of the manufacturing method of) will be described. Here, for the sake of brevity, a pair of gears 1 as the gear device X (for the sake of brevity, the drive gear 11 and the driven gear 12 are both spur gears. However, this description applies to all gears. (Effective) is taken as an example, and FIG. 6 shows an enlarged cross-sectional view of the meshed portion.
本実施形態では、本発明の歯車1を適用した駆動歯車11及び被動歯車12からなる歯車装置Xの一例と、その歯車1(以下、駆動歯車11及び被動歯車12を総称する場合は「歯車X」と呼ぶこととする。)の製造方法の数例を説明することとする。ここでは説明を簡略化するため、歯車装置Xとして一対の歯車1(説明を簡単にするため、駆動歯車11及び被動歯車12は共に平歯車であるとする。しかし、この説明は全ての歯車に有効なものである。)を例に挙げ、そのかみ合い部分を拡大した断面図として図6に示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, an example of a gear device X including a
図7(a)に製造直後の歯車1(駆動歯車11及び被動歯車12)の一部の歯の正面歯形を部分的に拡大して示すように、この歯車1は、各歯10の歯先エッジ部10aが歯元歯面10bよりも柔らかく製造されたものである。同図では歯車1の一部の歯10のみを示しているが、歯先エッジ部10aと歯元歯面10bの硬さの関係は、全ての歯10について同じである。また、駆動歯車11と被動歯車12は、各歯10における歯先エッジ部10aと歯元歯面10bの硬さの関係も共通である。ここで、本実施形態において歯先エッジ部10aとは、各歯10の歯先エッジ101を含んで歯先面102から歯形方向の歯面103にかけての限局された一定の領域であると定義しており、特に歯形方向へは歯先エッジ101から一定の範囲(約0.7mm以内の範囲)を指すものとする。この歯先エッジ部10aは、通常利用されている歯面耐久力評価法の歯先側の有効範囲外である。
As shown in FIG. 7A by partially enlarging the front tooth profile of some of the teeth of the gear 1 (driving gear 11 and driven gear 12) immediately after manufacturing, this gear 1 has the tooth tips of each tooth 10. The edge portion 10a is manufactured to be softer than the tooth surface 10b. Although the figure shows only a part of the teeth 10 of the gear 1, the relationship between the hardness of the tooth tip edge portion 10a and the tooth root tooth surface 10b is the same for all the teeth 10. Further, the drive gear 11 and the driven gear 12 have a common relationship between the hardness of the tooth tip edge portion 10a and the tooth root tooth surface 10b of each tooth 10. Here, in the present embodiment, the tooth tip edge portion 10a is defined as a localized constant region from the tooth tip surface 102 to the tooth surface 103 in the tooth profile direction including the tooth tip edge 101 of each tooth 10. In particular, it is assumed that the tooth profile direction indicates a certain range (within about 0.7 mm) from the tooth tip edge 101. The tooth tip edge portion 10a is outside the effective range on the tooth tip side of the tooth surface endurance evaluation method that is usually used.
このように、各歯10の歯先エッジ部10aが歯元歯面10bよりも柔らかい、すなわち、歯車10の歯先エッジ部10aは、相手歯車10(駆動歯車11に対する被動歯車12、被動歯車12に対する駆動歯車11)の歯元歯面10bよりも柔らかいため、駆動歯車11と稼働歯車12とをかみ合わせてこの歯車装置Xを稼働し始めると、その直後から相手歯車の硬い歯元歯面10bに食い込むことなく接触した歯先エッジ部10aは自然に塑性変形し、図7(b)に示すように丸められることとなり、それ以降、相手歯車の歯元歯面10bが剥離損傷を受けることがなく、同時に歯先エッジ部10aが欠損するなどの損傷を受けることがなくなる。
As described above, the tooth tip edge portion 10a of each tooth 10 is softer than the tooth root tooth surface 10b, that is, the tooth tip edge portion 10a of the gear 10 is the mating gear 10 (the driven gear 12 with respect to the driving gear 11 and the driven gear 12). Since it is softer than the tooth surface 10b of the drive gear 11), when the drive gear 11 and the working gear 12 are engaged with each other and the gear device X is started to operate, the tooth surface 10b of the mating gear becomes hard immediately after that. The tooth tip edge portion 10a that comes into contact without biting is naturally plastically deformed and rounded as shown in FIG. 7 (b), and thereafter, the tooth surface 10b of the mating gear is not peeled and damaged. At the same time, the tooth tip edge portion 10a is not damaged.
次に、本実施形態の歯車1の製造方法、特に常法通りに歯切り・熱処理された後、本発明において特徴的な歯先エッジ部10aのみを柔らかくするための歯先エッジ部軟化工程の数種について説明する。なお、この工程は、歯面の最終仕上加工の前あるいは後に入る場合がある。本実施形態で説明する歯先エッジ部軟化工程では、一般的な高周波焼入れと同様に高周波電源を利用して対象物を誘導加熱し、焼き戻し処理を行うが、通常の高周波焼入れ法や高周波焼き戻し法と顕著に異なる点は、処理対象である歯車1の歯10の全体を加熱するのではなく、歯先エッジ部10aのみを局所加熱する点である。
Next, the method for manufacturing the gear 1 of the present embodiment, particularly the tooth tip edge softening step for softening only the tooth tip edge portion 10a, which is characteristic of the present invention, after gear cutting and heat treatment according to a conventional method. Some types will be described. In addition, this step may be performed before or after the final finishing process of the tooth surface. In the tooth tip edge softening step described in the present embodiment, the object is induced and heated by using a high frequency power source in the same manner as general induction hardening, and tempering is performed. However, ordinary induction hardening or induction hardening is performed. A significant difference from the tempering method is that not the entire tooth 10 of the gear 1 to be processed is heated, but only the tooth tip edge portion 10a is locally heated.
まず一例目として、円形コイル20によって歯車1の各歯10における歯先エッジ部10aのみを軟化させる歯先エッジ部軟化工程について説明する。図8に断面図として示すように、処理対象である歯車1の歯先面102の外側近傍に、歯先円10cよりも僅かに直径の大きい円形コイル20を、歯車軸1zと略同心となるように配置する。円形コイル20は、図示しない高周波電源に接続されており、円形コイル20に通電することで、歯先を対象として加熱する。その際、各歯10の歯先に対する電磁誘導加熱の状態ができるだけ平均化させるために、歯車軸1zを中心として歯車10を回転(図中矢印方向)させながら円形コイル20への通電を実行することが望ましい。この場合、高周波周波数、印加電圧・電流のほか、歯車1の回転に伴う歯先円10cと円形コイル20の内周20aとのギャップ差の関数として、歯先エッジ部10aは略正弦波の時間経緯で加熱されてゆくこととなる。若干の時間経過後、歯先エッジ部10a付近の温度分布が適切になった時点で通電を止めると、歯先は雰囲気中への放熱と歯車10の内部への熱伝導により自然冷却され、歯先エッジ部が焼き戻されて軟化することとなり、歯先エッジ部軟化工程が終了する。
First, as an first example, a tooth tip edge softening step of softening only the tooth tip edge portion 10a of each tooth 10 of the gear 1 by the circular coil 20 will be described. As shown in FIG. 8 as a cross-sectional view, a circular coil 20 having a diameter slightly larger than the tooth tip circle 10c is substantially concentric with the gear shaft 1z in the vicinity of the outer side of the tooth tip surface 102 of the gear 1 to be processed. Arrange as follows. The circular coil 20 is connected to a high-frequency power source (not shown), and by energizing the circular coil 20, the tooth tips are heated. At that time, in order to even out the state of electromagnetic induction heating for the tooth tips of each tooth 10 as much as possible, the circular coil 20 is energized while rotating the gear 10 around the gear shaft 1z (in the direction of the arrow in the figure). Is desirable. In this case, as a function of the high frequency frequency, the applied voltage / current, and the gap difference between the tooth tip circle 10c and the inner circumference 20a of the circular coil 20 due to the rotation of the gear 1, the tooth tip edge portion 10a has a substantially sinusoidal time. It will be heated according to the circumstances. After some time has passed, when the energization is stopped when the temperature distribution near the tooth tip edge portion 10a becomes appropriate, the tooth tip is naturally cooled by heat dissipation into the atmosphere and heat conduction to the inside of the gear 10, and the tooth is cooled. The tip edge portion is tempered and softened, and the tooth tip edge softening step is completed.
この例では、歯車1として平歯車に対する歯先エッジ部軟化工程について説明したが、歯幅が広い歯車1の場合であって、円形コイル20では歯車10の全体を同時且つ一斉に加熱できないときには、円形コイル20を歯車軸1zと平行に移動させながら加熱したり、この操作を複数回繰り返すようにしてもよい。また、円形コイル20に代えて、コイルを断面真円形状からズレた形状としたり、多角形状とすることも可能であり、その場合には歯車10を回転させながら加熱することが好適である。さらに、円形コイル20は切れ目のない断面円形状とすることができるが、歯車10に対する円形コイル20の設置を容易にするために、一部を切り欠いた円形コイルや、一部に切れ目やヒンジを設けて開閉できるようにした円形コイルを利用することも可能である。
In this example, the step of softening the tooth tip edge portion of the spur gear as the gear 1 has been described, but in the case of the gear 1 having a wide tooth width and the circular coil 20 cannot heat the entire gear 10 at the same time and all at once, The circular coil 20 may be heated while being moved in parallel with the gear shaft 1z, or this operation may be repeated a plurality of times. Further, instead of the circular coil 20, the coil may have a shape deviated from a perfect circular cross section or a polygonal shape. In that case, it is preferable to heat the gear 10 while rotating it. Further, although the circular coil 20 can have a circular cross section without a break, in order to facilitate the installation of the circular coil 20 on the gear 10, a circular coil with a part cut out, a cut or a hinge in a part, and the like. It is also possible to use a circular coil that can be opened and closed by providing a.
歯先エッジ部軟化工程の二例目は、板状コイルを用いて歯車1の歯先に対する焼き戻し処理を行う例である。この例では、図9に示すように、高周波電源に接続した1つの板状コイル21を用いており、一例目の円形コイル20と同様に、板状コイル21を歯車1の歯先面102の外側近傍に、歯先円10cから僅かに離すようにしている。この状態で歯車1を回転(図中矢印方向)させながら板状コイル21に高周波通電すると、板状コイル21が発生する磁界近傍を歯先が通過する際に歯先エッジ部10aが加熱され、すぐに自然冷却されるという略パルス状に温度変化する状態が繰り返される。この例の場合、歯車1の回転速度を変化させると加熱時間を調整することが可能であり、最適の歯先エッジ部10aの焼き戻し条件を設定することが容易となる。そして、所定の回転数又は回転時間の経過後、歯先エッジ部10a付近の温度分布が適切になった時点で通電を止めると、歯先は雰囲気中への放熱と歯車10の内部への熱伝導により自然冷却され、歯先エッジ部が焼き戻されて軟化することとなり、歯先エッジ部軟化工程が終了する。この例の歯先エッジ部軟化工程の利点は、板状コイル対21に対する歯車1の設置が極めて容易であることが挙げられる。
The second example of the tooth tip edge softening step is an example in which the tooth tip of the gear 1 is tempered using a plate coil. In this example, as shown in FIG. 9, one plate-shaped coil 21 connected to a high-frequency power supply is used, and the plate-shaped coil 21 is attached to the tooth tip surface 102 of the gear 1 as in the circular coil 20 of the first example. In the vicinity of the outside, it is slightly separated from the tooth tip circle 10c. When the plate coil 21 is energized at high frequency while rotating the gear 1 (in the direction of the arrow in the figure) in this state, the tooth tip edge portion 10a is heated when the tooth tip passes near the magnetic field generated by the plate coil 21. The state in which the temperature changes in a substantially pulsed manner, that is, it is naturally cooled immediately, is repeated. In the case of this example, the heating time can be adjusted by changing the rotation speed of the gear 1, and it becomes easy to set the optimum tempering condition of the tooth tip edge portion 10a. Then, when the energization is stopped when the temperature distribution near the tooth tip edge portion 10a becomes appropriate after the lapse of a predetermined rotation speed or rotation time, the tooth tip dissipates heat into the atmosphere and heats the inside of the gear 10. It is naturally cooled by conduction, and the tooth tip edge portion is tempered and softened, and the tooth tip edge softening step is completed. The advantage of the tooth tip edge softening step in this example is that the gear 1 is extremely easy to install on the plate coil pair 21.
歯先エッジ部軟化工程の三例目は、2枚の板状コイルを用いて歯車1の歯先に対する焼き戻し処理を行う例である。この例では、図9に示すように、それぞれ高周波電源に接続した2つの板状コイル22a,22aからなる一組の板状コイル対22を用いており、各板状コイル22aを歯車1の例えば直径方向に対向配置し、一例目や二例目の場合と同様に、各板状コイル22aを歯車1の歯先面102の外側近傍に、歯先円10cから僅かに離すようにしている。この状態で歯車1を回転(図中矢印方向)させながら各板状コイル21aに高周波通電すると、各板状コイル22aが発生する磁界近傍を歯先が通過する際に歯先エッジ部10aが加熱され、すぐに自然冷却されるという略パルス状に温度変化する状態が繰り返される。この例で、2つの板状コイル22a,22aを被処理歯車(歯車1)の直径の180度対応位置に配置することにより、歯車1の偏心等が当該歯車1の各歯10の加熱状態を不均一にする影響をなくすることができる。また、各板状コイル22aに、異なる周波数の高周波電源を接続することができる。それにより、板状コイル22a、22aごとに通電時の電圧と電流の周波数を変えることによって、歯先部の材料中(歯車1の内部)の渦電流熱源の深さや、発熱の歯先エッジ部10aへの集中程度等を変化させ、歯先エッジ部10a付近の温度分布をより適切に調整することが可能である。一方、歯車1の直径の両側位置に配置される2つの板状コイル22a、22aが発生する磁界が等しくなるよう、両板状コイル22a,22aに同じ電圧で等しい周波数の等しい高周波電源が用いることもできる(両板状コイル22a,22aを共通の高周波電源に接続するとよい)。これにより、各板状コイル22aと歯車1の歯先円1cとの間の距離の変動が歯先部の発熱に及ぼす影響がキャンセルされ、歯車1の偏心や、歯車1の設置位置の不正確さに関わらず、全ての歯先が均等に加熱される状況を作ることができる。この例の場合、歯車1の回転速度を変化させると加熱時間を調整することが可能であり、最適の歯先エッジ部10aの焼き戻し条件を設定することが容易となる。そして、所定の回転数又は回転時間の経過後、歯先エッジ部10a付近の温度分布が適切になった時点で通電を止めると、歯先は雰囲気中への放熱と歯車10の内部への熱伝導により自然冷却され、歯先エッジ部が焼き戻されて軟化することとなり、歯先エッジ部軟化工程が終了する。この例の歯先エッジ部軟化工程の利点は、板状コイル対21に対する歯車1の設置が極めて容易であることが挙げられる。
The third example of the tooth tip edge softening step is an example in which the tooth tip of the gear 1 is tempered using two plate-shaped coils. In this example, as shown in FIG. 9, a set of plate-shaped coil pairs 22 composed of two plate-shaped coils 22a and 22a connected to a high-frequency power supply, respectively, is used, and each plate-shaped coil 22a is used as a gear 1 for example. They are arranged so as to face each other in the radial direction so that each plate-shaped coil 22a is slightly separated from the tooth tip circle 10c in the vicinity of the outer side of the tooth tip surface 102 of the gear 1 as in the case of the first example and the second example. When the plate-shaped coil 21a is energized at high frequency while rotating the gear 1 (in the direction of the arrow in the figure) in this state, the tooth tip edge portion 10a heats up when the tooth tip passes near the magnetic field generated by each plate-shaped coil 22a. Then, the temperature changes in a substantially pulsed manner, in which the temperature is naturally cooled immediately. In this example, by arranging the two plate-shaped coils 22a and 22a at positions corresponding to 180 degrees of the diameter of the gear to be processed (gear 1), the eccentricity of the gear 1 or the like causes the heated state of each tooth 10 of the gear 1 to be heated. The effect of non-uniformity can be eliminated. Further, high frequency power supplies having different frequencies can be connected to each plate coil 22a. As a result, by changing the frequency of the voltage and current when energized for each of the plate-shaped coils 22a and 22a, the depth of the eddy current heat source in the material of the tooth tip (inside the gear 1) and the tooth edge of heat generation It is possible to more appropriately adjust the temperature distribution in the vicinity of the tooth tip edge portion 10a by changing the degree of concentration on the 10a. On the other hand, both plate coils 22a and 22a should be used with the same high frequency power supply having the same voltage and the same frequency so that the magnetic fields generated by the two plate coils 22a and 22a arranged at both sides of the diameter of the gear 1 are equal. (It is preferable to connect both plate-shaped coils 22a and 22a to a common high-frequency power supply). As a result, the influence of the fluctuation of the distance between each plate-shaped coil 22a and the tooth tip circle 1c of the gear 1 on the heat generation of the tooth tip is canceled, and the eccentricity of the gear 1 and the inaccuracies in the installation position of the gear 1 are canceled. Regardless, it is possible to create a situation where all tooth tips are heated evenly. In the case of this example, the heating time can be adjusted by changing the rotation speed of the gear 1, and it becomes easy to set the optimum tempering condition of the tooth tip edge portion 10a. Then, when the energization is stopped when the temperature distribution near the tooth tip edge portion 10a becomes appropriate after the lapse of a predetermined rotation speed or rotation time, the tooth tip dissipates heat into the atmosphere and heats the inside of the gear 10. It is naturally cooled by conduction, and the tooth tip edge portion is tempered and softened, and the tooth tip edge softening step is completed. The advantage of the tooth tip edge softening step in this example is that the gear 1 is extremely easy to install on the plate coil pair 21.
第二例目と第三例目のように、板状コイルを利用する歯先エッジ部軟化工程では、板状コイルの数を1つ以上で実施できることから、任意の複数個の板状コイルを適用することができる。その例として歯先エッジ部軟化工程の四例目も、板状コイルを用いて歯車1の歯先に対する焼き戻し処理を行う例であるが、この例では、図11に示すように、それぞれ高周波電源に接続した二組の板状コイル対23,24を用いている点で、上述した三例目と異なる。この四例目では、板状コイル対23を構成する一対の板状コイル23a,23aと、板状コイル対24を構成する一対の板状コイル24a,24aを、それぞれ歯車10の直径方向に90度の角度位相を変えて対向配置し、一例目から三例目までと同様に、各板状コイル23a,24aを歯車1の歯先面102の外側近傍に、歯先円10cから僅かに離すようにしている。この場合、板状コイル対23と板状コイル対24とで通電時の電圧と電流の周波数を変えることによって、歯先部の材料中(歯車1の内部)の渦電流熱源の深さや、発熱の歯先エッジ部10aへの集中程度等を変化させ、歯先エッジ部10a付近の温度分布をより適切に調整することが可能である。この例と同様に、一対の板状コイルからなるコイル対をさらに増加させることもできる。
As in the second and third examples, in the tooth tip edge softening step using the plate-shaped coil, since the number of plate-shaped coils can be one or more, any plurality of plate-shaped coils can be used. Can be applied. As an example, the fourth example of the tooth tip edge softening step is also an example in which the tooth tip of the gear 1 is tempered using a plate coil. In this example, as shown in FIG. 11, high frequencies are used. It differs from the third example described above in that it uses two sets of plate coil pairs 23 and 24 connected to the power supply. In this fourth example, the pair of plate coils 23a and 23a constituting the plate coil pair 23 and the pair of plate coils 24a and 24a constituting the plate coil pair 24 are 90 in the diameter direction of the gear 10, respectively. The plate-shaped coils 23a and 24a are arranged so as to face each other with different degrees of angles and phases, and the plate-shaped coils 23a and 24a are slightly separated from the tooth tip circle 10c near the outer side of the tooth tip surface 102 of the gear 1 as in the first to third examples. I am doing it. In this case, by changing the frequency of the voltage and the current when the plate coil pair 23 and the plate coil pair 24 are energized, the depth of the eddy current heat source in the material of the tooth tip (inside the gear 1) and the heat generation are generated. It is possible to more appropriately adjust the temperature distribution in the vicinity of the tooth tip edge portion 10a by changing the degree of concentration of the tooth tip edge portion 10a and the like. Similar to this example, the number of coil pairs consisting of a pair of plate-shaped coils can be further increased.
以上のような歯先エッジ部軟化工程では、次に実施例で説明するように、ごく短時間の加熱によって歯先エッジ部を焼き戻しすることができ、その方法も簡便であることから、通常の歯車1の製造工程に歯先エッジ部軟化工程を加えるだけであり、大きなコストアップを招来することなく、損傷の少ない歯車1を製造することができる。なお、以上に説明した歯先エッジ部軟化工程では、平歯車を対象とした歯先エッジ部10aの軟化処理について説明したが、これらの例では断面円周方向に沿って歯が形成された歯車全般について適用することができる。また、内歯歯車の場合には、歯が形成されている歯車の内周側に配置したコイルで加熱したり、ラックの場合には板状コイルで加熱するなど、種々の高周波焼き戻しによる方法で歯先エッジ部軟化工程を実施することができる。さらに高周波焼き戻し法以外にも、歯車の歯先エッジ部のみをターゲットとしてレーザー照射することにより加熱し、その後自然冷却させることで、局所的な歯先エッジ部軟化工程を実施することも可能である。いずれの方法による歯先エッジ部軟化工程であっても、歯車の材質に応じて、通電する時間や電圧や周波数、加熱温度等を適宜設定すればよい。
In the tooth tip edge softening step as described above, as described in the next embodiment, the tooth tip edge can be tempered by heating for a very short time, and the method is also simple. Only the tooth tip edge softening step is added to the manufacturing process of the gear 1 of the above, and the gear 1 with less damage can be manufactured without causing a large cost increase. In the tooth tip edge softening step described above, the softening treatment of the tooth tip edge 10a for the spur gear has been described, but in these examples, the gear having teeth formed along the circumferential direction of the cross section. It can be applied in general. Further, in the case of an internal tooth gear, various methods by high-frequency tempering such as heating with a coil arranged on the inner peripheral side of the gear on which the teeth are formed and heating with a plate-shaped coil in the case of a rack are performed. The tooth tip edge softening step can be carried out. In addition to the high-frequency tempering method, it is also possible to carry out a local tooth tip edge softening process by heating by irradiating only the tooth tip edge of the gear with a laser and then naturally cooling it. is there. Regardless of which method is used for the tooth tip edge softening step, the energizing time, voltage, frequency, heating temperature, etc. may be appropriately set according to the material of the gear.
ここでは、本発明における歯車の製造方法のうち、まず上述した実施形態における高周波焼き戻し法による歯先エッジ部軟化工程の原理について説明し、続いてサンプル鋼片を用いた実証試験について説明する。
Here, among the methods for manufacturing gears in the present invention, the principle of the tooth tip edge softening step by the high-frequency tempering method in the above-described embodiment will be described first, and then a verification test using a sample steel piece will be described.
上述の実施形態における歯先エッジ部軟化工程では、一般的な高周波焼入れと同様に、高周波誘導により対象物である歯車、特に歯車の歯先エッジ部をターゲットとして加熱する。歯車の歯先部に高周波交流通電コイルによる交番磁界を作用させると、歯車の歯の歯先近傍の材料中に渦電流が発生するが、この渦電流はスキン・エフェクトによりエッジ部に集中し、電磁誘導加熱シミュレーション結果である図12に示すようにエッジ部の温度を上昇させる。同図では、後述する皿ばね2をサンプル鋼片とした焼き戻し試験における2つの焼き戻し条件(以下、条件I及び条件IIという)において、円形コイル20による皿ばね2の右半部の温度分布を示している。その温度上昇の程度は、対象物の大きさ、形状、コイルまでの距離、電源周波数、通電時間、歯車の鋼材種によって決まる。このような温度分布になった状態で加熱を止めると、加熱された部分は自然冷却されて次第に温度が下がる。歯先部内部の硬さ分布は、歯車の歯の内部の各点の温度が時間の経過に伴いどのように変化していくかの状況と、歯車の材料の冶金学的特性との関数として決まってくる。
In the tooth tip edge softening step in the above-described embodiment, the target gear, particularly the tooth tip edge of the gear, is heated by induction by induction, as in the case of general induction hardening. When an alternating magnetic field is applied to the tip of the gear by a high-frequency AC current coil, an eddy current is generated in the material near the tip of the tooth of the gear, but this eddy current is concentrated on the edge due to the skin effect. As shown in FIG. 12, which is the result of the electromagnetic induction heating simulation, the temperature of the edge portion is raised. In the figure, the temperature distribution of the right half of the disc spring 2 by the circular coil 20 under two tempering conditions (hereinafter referred to as condition I and condition II) in the tempering test using the disc spring 2 as a sample steel piece described later. Is shown. The degree of temperature rise is determined by the size and shape of the object, the distance to the coil, the power frequency, the energizing time, and the steel grade of the gear. When heating is stopped in such a temperature distribution state, the heated portion is naturally cooled and the temperature gradually decreases. The hardness distribution inside the tooth tip is a function of how the temperature at each point inside the gear tooth changes over time and the metallurgical properties of the gear material. It will be decided.
図13は、共析炭素鋼の連続冷却変態線図(CCT線図、図中の実線)の一例を示したものである。ここで、歯先エッジ部軟化工程で対象としている歯車の鋼材の焼入れ性を示す恒温変態線図(TTT線図)が、同図の右半分に点線及び実線Ps(パーライト変態の開始線)、Pf(パーライト変態の完了線)のS字カーブであるとする。また、歯先部の材料中の各点の温度変化は、700℃より少し上の位置から放物線状に低下している一点鎖線で示した定速冷却曲線で表される。歯先部の内部のある点における温度が最も左側の定速冷却曲線のように急速に変化すると、この点は焼入れされて硬度が上昇することを意味している。それに対して右側2本の定速冷却曲線のようにゆるやかに温度が低下すると、この点は焼き戻されて硬度が低下することを意味している。なお、同図中に示した記号Ac1は加熱時にオーステナイトが生成し始める温度を、Msは冷却の間にオーステナイトがマルテンサイトに変態し始める温度を、M50%とM90%は、冷却の間にオーステナイトの50%と90%がマルテンサイトにそれぞれ変態する温度を、それぞれ意味している。
FIG. 13 shows an example of a continuous cooling transformation diagram (CCT diagram, solid line in the diagram) of eutectoid carbon steel. Here, a constant temperature transformation diagram (TTT diagram) showing the hardenability of the steel material of the gear targeted in the tooth tip edge softening step is shown in the right half of the diagram with dotted lines and solid lines Ps (start line of pearlite transformation). It is assumed that it is an S-shaped curve of Pf (the completion line of pearlite transformation). Further, the temperature change at each point in the material of the tooth tip is represented by a constant-velocity cooling curve shown by a alternate long and short dash line that decreases from a position slightly above 700 ° C. in a parabolic manner. When the temperature at a certain point inside the tooth tip changes rapidly like the leftmost constant-velocity cooling curve, this point means that it is hardened and the hardness increases. On the other hand, when the temperature gradually decreases as shown by the two constant-velocity cooling curves on the right side, this point means that the temperature is tempered and the hardness decreases. The symbol Ac 1 shown in the figure indicates the temperature at which austenite begins to form during heating, Ms indicates the temperature at which austenite begins to transform into martensite during cooling, and M50% and M90% indicate the temperature during cooling. It means the temperature at which 50% and 90% of austenite transform into martensite, respectively.
次に、歯車の歯先エッジ部を模したビッカース硬度650(Hv650)程度の硬さのサンプル鋼片を図12のように高周波誘導加熱し、擬似的な歯先エッジ部の焼き戻し実験を行った。サンプル鋼片は、図14に平面図(同図(a))及び縦断面図(同図(b))で示したような皿ばね2を採用しており、この皿ばね2の上面(凹面)側における内径エッジ部2aを、歯車1における歯10の歯先エッジ部10aと見做している。実験では、皿ばね2の内径よりもやや小さい外径を有する円形コイル20により、皿ばね2を回転させながらその内径エッジ部2aを集中的に高周波誘導加熱することにより、内径エッジ部2aの焼き戻しを行い、硬さや焼き戻しされた範囲の程度を調べている。焼き戻し条件は、図15に示したような条件I、条件IIの2種類としており、両条件で周波数、陽極電圧、陽極電流の値を等しくし、加熱時間だけを条件Iでは0.9秒、条件IIでは1.0秒として差を設けている。この結果、図示しないが、条件Iで高周波焼き戻し処理を行った皿ばね2の外観観察から、凹面側における内径エッジ部2aにテンパカラーが認められ、その範囲は内径エッジから直径方向に1.4mmまで至っていた。
Next, a sample steel piece having a hardness of about 650 (Hv650), which imitates the tooth tip edge of a gear, is subjected to high frequency induction heating as shown in FIG. 12, and a pseudo tempering experiment of the tooth tip edge is performed. It was. The sample steel piece employs a disc spring 2 as shown in a plan view (FIG. 14A) and a longitudinal sectional view (FIG. 14B) in FIG. 14, and the upper surface (concave surface) of the disc spring 2 is adopted. The inner diameter edge portion 2a on the) side is regarded as the tooth tip edge portion 10a of the tooth 10 on the gear 1. In the experiment, the inner diameter edge portion 2a was tempered by intensively high-frequency induction heating of the inner diameter edge portion 2a while rotating the disc spring 2 by a circular coil 20 having an outer diameter slightly smaller than the inner diameter of the disc spring 2. It is tempered and the degree of hardness and tempered range is examined. There are two types of tempering conditions, condition I and condition II as shown in FIG. 15, and the frequency, anode voltage, and anode current are equalized under both conditions, and only the heating time is 0.9 seconds under condition I. , Condition II provides a difference of 1.0 second. As a result, although not shown, a temper color was observed at the inner diameter edge portion 2a on the concave surface side from the appearance observation of the disc spring 2 subjected to the high frequency tempering treatment under the condition I, and the range was 1. It reached up to 4 mm.
まず、高周波焼き戻しによる皿ばね2の断面硬さの変化について調べた。焼き戻し前の皿ばね2と、条件I、条件IIによる焼き戻し処理後の皿ばね2の3種類(全て同等製品)について、それぞれ直径方向で切断し、図16に示すように、各皿ばね2の左半部2Aと右半部2Bのそれぞれについて、凹面から0.1mm内部、内径エッジから直径方向に0.2~0.6mmの範囲では0.2mm間隔、0.6~3.0mmの範囲では0.3mm間隔の位置に測定点(図中、黒丸で示す)を設定し、各測定点における断面硬さをマイクロビッカース硬度計(荷重2.9N、5秒)により測定した結果を、図17に断面硬さ変化図として示す。焼き戻し前の皿ばね2の断面硬さは600~650Hvの値を示した。条件Iの高周波加熱による焼き戻し後では、内径エッジ部2a付近では400Hv程度の硬さまで低下させることができた。一方、条件Iよりも0.1秒だけ加熱時間を長くした条件IIの高周波加熱による約戻し後では、ほとんどの測定点で条件Iよりもやや硬い結果が得られた。なお、条件Iの場合、左半部2Aの内径エッジ部2a近傍では、極端な硬さの上昇が発現したが、これは皿ばね2と円形コイル20との位置関係、回転と加熱(通電)とのタイミング、焼き戻し条件等により、焼入れが生じたものと推察される。また、条件I、条件IIのいずれでも、円形コイル20から遠位となる測定点では、焼き戻し前の硬さに近い600~650Hvであったことから、これらの測定点では円形コイル20による高周波焼き戻しが全くなされていないという結果が得られた。この実験と同様に、他にも数種類の焼き戻し条件で実験した結果、円形コイル20を用いた焼き戻し処理により、焼き戻し前に650Hv程度の硬さの内径エッジ部2aは、400Hv程度(焼き戻し前の60%程度)の硬さまで局所的に低下させ、内径エッジ部から離れた所の硬度は全く変化させないことができるという知見が得られた。
First, the change in cross-sectional hardness of the disc spring 2 due to high-frequency tempering was investigated. Three types of disc springs 2 before tempering and disc springs 2 after tempering under conditions I and II (all equivalent products) were cut in the radial direction, and as shown in FIG. 16, each disc spring was cut. For each of the left half 2A and the right half 2B of 2, 0.1 mm inside from the concave surface, 0.2 mm interval in the range of 0.2 to 0.6 mm in the radial direction from the inner diameter edge, 0.6 to 3.0 mm In the range of, measurement points (indicated by black circles in the figure) are set at positions at intervals of 0.3 mm, and the cross-sectional hardness at each measurement point is measured with a Micro Vickers hardness tester (load 2.9 N, 5 seconds). , FIG. 17 is shown as a cross-sectional hardness change diagram. The cross-sectional hardness of the disc spring 2 before tempering showed a value of 600 to 650 Hv. After tempering by high-frequency heating under Condition I, the hardness could be reduced to about 400 Hv in the vicinity of the inner diameter edge portion 2a. On the other hand, after about reversion by high-frequency heating under Condition II in which the heating time was longer than that under Condition I by 0.1 seconds, a result slightly harder than that under Condition I was obtained at most of the measurement points. In the case of condition I, an extreme increase in hardness occurred in the vicinity of the inner diameter edge portion 2a of the left half portion 2A, but this was due to the positional relationship between the disc spring 2 and the circular coil 20, rotation and heating (energization). It is presumed that quenching occurred depending on the timing and tempering conditions. Further, in both condition I and condition II, the hardness at the measurement point distal to the circular coil 20 was 600 to 650 Hv, which was close to the hardness before tempering. Therefore, at these measurement points, the high frequency due to the circular coil 20 was obtained. The result was that no tempering was done. Similar to this experiment, as a result of experiments under several other tempering conditions, the inner diameter edge portion 2a having a hardness of about 650 Hv before tempering was about 400 Hv (baked) by the tempering process using the circular coil 20. It was found that the hardness can be locally reduced to about 60% of the hardness before tempering, and the hardness at a place away from the inner diameter edge can not be changed at all.
次に、皿ばね2の内径エッジ部2aの断面硬さの分布状況を詳細に測定した。前述した高周波焼き戻しによる皿ばね2の断面硬さの変化の測定試験と同様に、条件Iで焼き戻し処理した皿ばね2を直径方向で切断し、図18に示すように(皿ばね20の右半部2Bの断面における内径エッジ部の測定点のみを示しているが、実際には左半部2Aについても同様に測定点を設定している)、凹面側の内径エッジから直径方向及び内径内部方向(図中縦方向)に各0.2mmの位置を測定点の基準点として、この基準点を基に図中縦横に各0.2mm間隔で測定点を設定し、さらに基準点から内径エッジ側に縦横各0.1mmの位置にも測定点を設定し、各測定点における断面硬さをマイクロビッカース硬度計(荷重2.9N、5秒)により測定した結果を図18に断面硬さ分布図として示す。同図では、各測定点における測定結果の数値(ビッカース硬度)と共に、硬度450Hvの境界を実線、500Hvの境界を一点鎖線、硬度550Hvの境界を破線で示している。この結果から、450Hvの境界は内径エッジ部から0.4~0.7mmの範囲に、500Hvの境界は内径エッジ部から0.9~1.0mmの範囲(0.9mmは図示を省略した左半部2Aにおける測定結果に基づく)に、550Hvの境界は内径エッジ部から1.3~1.4mmの範囲にあることが認められた。この実験と同様に、円形コイル20による加熱時間を変化させて断面硬さ分布を測定したところ、加熱時間を延ばせば焼き戻し範囲が広がり、加熱時間を縮めると焼き戻し範囲が狭まることが分かった。
Next, the distribution of the cross-sectional hardness of the inner diameter edge portion 2a of the disc spring 2 was measured in detail. Similar to the measurement test of the change in the cross-sectional hardness of the countersunk spring 2 due to the high frequency tempering described above, the countersunk spring 2 tempered under the condition I was cut in the radial direction, and as shown in FIG. Only the measurement point of the inner diameter edge portion in the cross section of the right half portion 2B is shown, but the measurement point is actually set for the left half portion 2A as well), the diameter direction and the inner diameter from the inner diameter edge on the concave surface side. With the position of 0.2 mm each in the internal direction (vertical direction in the figure) as the reference point for the measurement point, the measurement points are set at intervals of 0.2 mm in the vertical and horizontal directions in the figure based on this reference point, and the inner diameter from the reference point is further set. Measurement points were also set at positions of 0.1 mm in length and width on the edge side, and the cross-sectional hardness at each measurement point was measured with a Micro Vickers hardness tester (load 2.9 N, 5 seconds). Shown as a distribution map. In the figure, along with the numerical value (Vickers hardness) of the measurement result at each measurement point, the boundary of hardness 450Hv is shown by a solid line, the boundary of 500Hv is shown by a chain line, and the boundary of hardness 550Hv is shown by a broken line. From this result, the boundary of 450 Hv is in the range of 0.4 to 0.7 mm from the inner diameter edge portion, and the boundary of 500 Hv is in the range of 0.9 to 1.0 mm from the inner diameter edge portion (0.9 mm is left without illustration). (Based on the measurement results in half 2A), it was found that the boundary of 550 Hv was in the range of 1.3 to 1.4 mm from the inner diameter edge. Similar to this experiment, when the cross-sectional hardness distribution was measured by changing the heating time by the circular coil 20, it was found that the tempering range was widened by extending the heating time, and the tempering range was narrowed by shortening the heating time. ..
さらに、マクロ観察として、皿ばね2の左半部2A及び右半部2Bにおける内径周辺部をナイタルエッチングした。この状態の組織は、図20に写真で示すように、内径エッジ部2aが強く焼き戻されている様子がわかる。同図中に、図19に示したものと同様の硬度450Hv、500Hv、550Hvの境界を示しているが、色が濃い部分(内径エッジ部2aに近い部分)ほど強く焼き戻されて軟化している状態が把握できる。この他、ミクロ観察においても、円形コイル20の近傍で加熱された内径エッジ部2aが強く焼き戻され、加熱による影響が円形コイル20から離れるほど小さくなっている状態が確認された。
Furthermore, as a macro observation, the peripheral inner diameter of the left half 2A and the right half 2B of the disc spring 2 was nightally etched. In the structure in this state, as shown in the photograph in FIG. 20, it can be seen that the inner diameter edge portion 2a is strongly tempered. In the figure, the same boundaries of hardness 450Hv, 500Hv, and 550Hv as those shown in FIG. 19 are shown, but the darker the color (the part closer to the inner diameter edge portion 2a), the stronger it is burned and softened. You can grasp the state of being. In addition, in micro observation, it was confirmed that the inner diameter edge portion 2a heated in the vicinity of the circular coil 20 was strongly burned back, and the influence of heating became smaller as the distance from the circular coil 20 increased.
以上に説明した本実施例における各種の実験結果から、サンプル鋼片とした皿ばね2を本発明の歯車に置き換えると、歯先エッジ部軟化工程によって歯車の歯先エッジ部を適度に軟化させるためには、対象物の大きさ、コイルまでの距離、電源周波数、通電時間、歯車の鋼材種によって微妙な条件設定が必要であるが、歯先エッジ部のみが焼き戻されて軟化する条件が確実に存在することが分かった。また、皿ばね2を対象とした実験と同様の高周波焼き戻しを歯車の歯先エッジ部に対して行えば、コイルから遠い歯元歯面に対して歯先エッジ部の硬さを60%程度まで軟化させることができ、処理条件を詳細に選定すれば、さらなるエッジ部の焼き戻しが可能であると想定される。問題は、加熱後、エッジ部の温度低下速度が急激になりすぎると、焼き入れの状態になりエッジ部の硬度は低下しないので、これを生じないような条件を対象物の材質、形状、大きさ、コイルの設計、エッジ部とコイルの間隔、通電周波数、電圧、対象物の回転速度等の調整により設定することが必要である。相手歯車とのかみ合い時に、相手歯車の歯元歯面と接触した歯先エッジ部が塑性変形して丸められるためには、歯元歯面との硬さに少なくとも有意差が認められる必要があることから、歯先エッジ部軟化工程による歯先エッジ部の軟化の程度は90%以下とすることが望ましいといえる。また、歯先エッジ部の60%までの軟化までは求められず、70%程度の軟化で十分な塑性変形が得られると考えられる場合には、歯面方向への歯先エッジ部の範囲は、歯先エッジから0.7~1.0mm程度までと設定すれば十分である。なお、歯車の歯の大きさ、したがってモジュールによって、上記の寸法は0.7~1.0mmより若干変化させてもよい。例えばモジュールの大きい歯の場合には、この寸法を若干大きくしてもよい。また、軟化の程度を50%未満にまで低下させることは製造工程上、困難であるため、50%を下限値とすることが妥当である。
From the results of various experiments in the present embodiment described above, when the disc spring 2 as the sample steel piece is replaced with the gear of the present invention, the tooth tip edge portion of the gear is appropriately softened by the tooth tip edge portion softening step. It is necessary to set delicate conditions depending on the size of the object, the distance to the coil, the power frequency, the energization time, and the steel grade of the gear, but it is certain that only the edge of the tooth tip is tempered and softened. Found to exist in. Further, if the same high-frequency tempering as in the experiment for the disc spring 2 is performed on the tooth tip edge portion of the gear, the hardness of the tooth tip edge portion is about 60% with respect to the tooth surface of the tooth root far from the coil. It is assumed that further tempering of the edge portion is possible if the treatment conditions are selected in detail. The problem is that if the temperature drop rate of the edge part becomes too rapid after heating, it will be in a hardened state and the hardness of the edge part will not decrease, so the material, shape, and size of the object should be such that this does not occur. It is necessary to set by adjusting the coil design, the distance between the edge and the coil, the energizing frequency, the voltage, the rotation speed of the object, and the like. In order for the tooth tip edge portion in contact with the tooth root tooth surface of the mating gear to be plastically deformed and rounded at the time of meshing with the mating gear, at least a significant difference in hardness from the tooth root tooth surface must be recognized. Therefore, it can be said that it is desirable that the degree of softening of the tooth tip edge portion by the tooth tip edge softening step is 90% or less. Further, if it is not required to soften the tooth tip edge portion up to 60%, and it is considered that sufficient plastic deformation can be obtained by softening about 70%, the range of the tooth tip edge portion in the tooth surface direction is , It is sufficient to set it to about 0.7 to 1.0 mm from the tooth tip edge. Note that the above dimensions may vary slightly from 0.7 to 1.0 mm depending on the size of the gear teeth and therefore the module. For example, in the case of a large module tooth, this dimension may be slightly increased. Further, since it is difficult to reduce the degree of softening to less than 50% in the manufacturing process, it is appropriate to set 50% as the lower limit value.
焼入歯車の歯の硬度は一般に歯先が最も硬く、歯元にゆくほど漸次、硬度が低下するものであることが知られている。歯先エッジ近くの歯形形状を極めて特殊な修整加工した歯車以外では、この硬い歯先エッジが相手歯元歯面をトロコイド干渉により攻撃し、歯車損傷を誘発している。本発明を実施し、歯先エッジ部を相手歯車の歯面かみ合い限界点付近より軟化させた歯車では、極めて高価な加工となる上記の歯先エッジ近くの歯面形状に特殊な修整加工を施すことなく、工場雰囲気中で極めて短時間当該歯車を高周波加熱処理を施すだけで、歯先エッジ部を軟化させ強度的信頼性の高い歯車を製造することができるので、その産業的意味は大きい。
It is known that the hardness of the teeth of a hardened gear is generally the hardest at the tip of the tooth, and the hardness gradually decreases toward the tooth root. Except for gears whose tooth profile near the tooth tip edge is extremely specially modified, this hard tooth tip edge attacks the tooth surface of the mating tooth by trochoidal interference and induces gear damage. In the case of a gear in which the tooth tip edge portion is softened from the vicinity of the tooth surface meshing limit point of the mating gear according to the present invention, a special modification process is performed on the tooth surface shape near the tooth tip edge, which is extremely expensive. It is possible to manufacture a gear having high strength and reliability by softening the tooth tip edge portion only by subjecting the gear to high-frequency heat treatment for an extremely short time in a factory atmosphere, which has great industrial significance.
このように、歯先エッジ部の硬度を焼き戻しによる歯先エッジ部軟化工程を経て軟化させることで歯車を製造した場合、歯先エッジ部の硬度はかみ合う相手歯車の歯元歯面の硬度よりも十分に低く(柔らかく)することができ、歯車のかみ合い時にトロコイド干渉が生じて歯先エッジ部が相手歯車の歯元歯面に強く接触すれば、軟化している歯先エッジ部は強い接触応力により塑性変形し、歯車装置の稼働初期から自然に丸められる結果、歯元歯面が損傷を受ける程度を極めて小さくすることができ、歯先エッジ部の破損の程度も低減させることができることとなる。
In this way, when a gear is manufactured by softening the hardness of the tooth tip edge portion through a process of softening the tooth tip edge portion by tempering, the hardness of the tooth tip edge portion is higher than the hardness of the tooth root tooth surface of the mating gear. Can be made sufficiently low (soft), and if trochoid interference occurs when the gears are engaged and the tooth tip edge part makes strong contact with the tooth surface of the mating gear, the softened tooth tip edge part makes strong contact. As a result of plastic deformation due to stress and natural rounding from the initial operation of the gear device, the degree of damage to the tooth surface at the root of the tooth can be extremely reduced, and the degree of damage to the tooth tip edge can also be reduced. Become.
本発明は、従来は防ぐことができなかった歯車の歯元歯面におけるトロコロイド干渉による剥離損傷や歯先エッジ部の破損を防止することができるようになるため、あらゆる種類の歯車と歯車装置並びにそれを組み込んだ装置の製品寿命を延ばすことができることから、歯車が適用される製品分野において極めて有益なものとなり得る。
The present invention makes it possible to prevent peeling damage and damage to the tooth tip edge portion due to trocolloid interference on the tooth root tooth surface of the gear, which could not be prevented in the past. Therefore, all kinds of gears and gear devices In addition, the product life of the device incorporating the gear can be extended, which can be extremely useful in the product field to which the gear is applied.
1…歯車
10…歯
10a…歯先エッジ部
10b…歯元歯面 1 ...Gear 10 ... Tooth 10a ... Tooth tip edge 10b ... Tooth root tooth surface
10…歯
10a…歯先エッジ部
10b…歯元歯面 1 ...
Claims (8)
- 歯車装置を構成する歯車において、
各歯において軟化させた状態の歯先エッジ部の硬さが、相手歯車の歯元歯面の硬さよりも柔らかいことを特徴とする歯車。 In the gears that make up the gear device
A gear characterized in that the hardness of the tooth tip edge portion in a softened state in each tooth is softer than the hardness of the tooth base tooth surface of the mating gear. - 歯車装置を構成する歯車において、
各歯において軟化させた状態の歯先エッジ部の硬さが、当該歯の歯元歯面の硬さよりも柔らかいことを特徴とする歯車。 In the gears that make up the gear device
A gear characterized in that the hardness of the tooth tip edge portion in a softened state in each tooth is softer than the hardness of the tooth surface of the tooth. - 前記歯先エッジ部は、焼き戻しにより軟化された状態である請求項1又は2に記載の歯車。 The gear according to claim 1 or 2, wherein the tooth tip edge portion is in a state of being softened by tempering.
- 前記歯元歯面に対する歯先エッジ部の硬度は、50%以上90%以下である請求項1乃至3の何れかに記載の歯車。 The gear according to any one of claims 1 to 3, wherein the hardness of the tooth tip edge portion with respect to the tooth root tooth surface is 50% or more and 90% or less.
- 前記歯先エッジ部の硬さは、前記歯元歯面におけるかみ合い限界点近傍の歯面硬さよりも柔らかいものである請求項1乃至4の何れかに記載の歯車。 The gear according to any one of claims 1 to 4, wherein the hardness of the tooth tip edge portion is softer than the tooth surface hardness near the meshing limit point on the tooth root tooth surface.
- 請求項1乃至5の何れかに記載の歯車の製造方法であって、
焼入れ後の歯車に対する各歯の歯先エッジ部を対象に焼き戻しによる歯先エッジ部軟化工程を経ることにより、歯先エッジ部の硬さが歯元歯面の硬さよりも軟化させることを特徴とする歯車の製造方法。 The method for manufacturing a gear according to any one of claims 1 to 5.
The feature is that the hardness of the tooth tip edge is softer than the hardness of the tooth root surface by undergoing the tooth tip edge softening step by tempering the tooth tip edge of each tooth with respect to the gear after quenching. How to manufacture gears. - 前記歯先エッジ部軟化工程は、各歯の歯先部を特異的な対象とした熱処理を行うものである請求項6に記載の歯車の製造方法。 The method for manufacturing a gear according to claim 6, wherein the tooth tip edge softening step is a heat treatment for the tooth tip of each tooth as a specific target.
- 前記歯先エッジ部軟化工程は、各歯の歯先部を特異的な対象とした高周波焼き戻し法によるものである請求項7に記載の歯車の製造方法。 The method for manufacturing a gear according to claim 7, wherein the tooth tip edge softening step is based on a high-frequency tempering method in which the tooth tip of each tooth is a specific target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/031131 WO2021024418A1 (en) | 2019-08-07 | 2019-08-07 | Gear and method for manufacturing gear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/031131 WO2021024418A1 (en) | 2019-08-07 | 2019-08-07 | Gear and method for manufacturing gear |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021024418A1 true WO2021024418A1 (en) | 2021-02-11 |
Family
ID=74503134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031131 WO2021024418A1 (en) | 2019-08-07 | 2019-08-07 | Gear and method for manufacturing gear |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021024418A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7490618B2 (en) | 2021-07-19 | 2024-05-27 | 美的集団股▲フン▼有限公司 | Wave gear device and actuator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848629A (en) * | 1981-09-14 | 1983-03-22 | Toyota Motor Corp | Hardening method for surface of gear |
JP2000002315A (en) * | 1998-06-15 | 2000-01-07 | Nissan Motor Co Ltd | High surface pressure gear, and manufacture thereof |
JP2019120332A (en) * | 2018-01-09 | 2019-07-22 | 公益財団法人応用科学研究所 | Gear and process of manufacture of gear |
-
2019
- 2019-08-07 WO PCT/JP2019/031131 patent/WO2021024418A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848629A (en) * | 1981-09-14 | 1983-03-22 | Toyota Motor Corp | Hardening method for surface of gear |
JP2000002315A (en) * | 1998-06-15 | 2000-01-07 | Nissan Motor Co Ltd | High surface pressure gear, and manufacture thereof |
JP2019120332A (en) * | 2018-01-09 | 2019-07-22 | 公益財団法人応用科学研究所 | Gear and process of manufacture of gear |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7490618B2 (en) | 2021-07-19 | 2024-05-27 | 美的集団股▲フン▼有限公司 | Wave gear device and actuator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6818214B2 (en) | Gears, gear manufacturing methods | |
EP2554686B1 (en) | Method for manufacturing base material for wave gear | |
US9464335B2 (en) | Method for improving fatigue strength of cast iron material | |
JPH07242994A (en) | Steel for gear excellent in tooth surface strength, gear, and production of gear | |
JP4760664B2 (en) | Sheave member for belt type continuously variable transmission and method for manufacturing the same | |
Fernandez et al. | Increase wind gearbox power density by means of IGS (Improved Gear Surface) | |
WO2021024418A1 (en) | Gear and method for manufacturing gear | |
US20050279430A1 (en) | Sub-surface enhanced gear | |
EP1452771B1 (en) | Chain | |
JP2011256423A (en) | Heat treatment method and apparatus for rolling surface of rolling element | |
Ohue et al. | Sliding–rolling contact fatigue and wear of maraging steel roller with ion-nitriding and fine particle shot-peening | |
Yan et al. | Determination of the optimal coverage for heavy-duty-axle gears in shot peening | |
WO2022123715A1 (en) | Gear and manufacturing method therefor | |
KR19980018261A (en) | Screw fastener and fatigue life improvement method | |
JP5371084B2 (en) | Heat treatment method for cylindrical parts | |
JP4883018B2 (en) | Surface modification method and powertrain components | |
Seki et al. | Rolling contact fatigue life of cavitation-peened steel gear | |
JPS60162726A (en) | Method for surface-hardening toothed part of ring gear of flywheel | |
JP3856536B2 (en) | Crawler belt bushing and manufacturing method thereof | |
Nemecek et al. | Laser hardening of gear wheels | |
JP5424298B2 (en) | Heat treatment method for cylindrical parts | |
Amendola et al. | Longitudinal tooth contact pattern shift | |
Seki et al. | Influence of shot peening on surface durability of case-hardened steel gears (Influences of shot velocity and shot diameter) | |
JP2000176586A (en) | Production of high bearing pressure drive resistant part and high bearing pressure drive resistant part | |
WO2023182333A1 (en) | Gear component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19940524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19940524 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |