WO2021023441A1 - Fuel cell stack and method for the production and use of a fuel cell stack - Google Patents
Fuel cell stack and method for the production and use of a fuel cell stack Download PDFInfo
- Publication number
- WO2021023441A1 WO2021023441A1 PCT/EP2020/068470 EP2020068470W WO2021023441A1 WO 2021023441 A1 WO2021023441 A1 WO 2021023441A1 EP 2020068470 W EP2020068470 W EP 2020068470W WO 2021023441 A1 WO2021023441 A1 WO 2021023441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- cell stack
- electrically conductive
- polymer material
- conductive polymer
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 112
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 title description 2
- 239000002861 polymer material Substances 0.000 claims abstract description 68
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 67
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 239000004020 conductor Substances 0.000 claims description 10
- 238000001746 injection moulding Methods 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 4
- 210000004027 cell Anatomy 0.000 description 92
- 239000004033 plastic Substances 0.000 description 14
- 229920003023 plastic Polymers 0.000 description 14
- 239000004952 Polyamide Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 229920002647 polyamide Polymers 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 239000004696 Poly ether ether ketone Substances 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- -1 hydrogen ions Chemical class 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229920002530 polyetherether ketone Polymers 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 239000004734 Polyphenylene sulfide Substances 0.000 description 6
- 239000002482 conductive additive Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 210000000620 electrically active cell Anatomy 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04037—Electrical heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04253—Means for solving freezing problems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04268—Heating of fuel cells during the start-up of the fuel cells
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/146—Conductive polymers, e.g. polyethylene, thermoplastics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/24—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the invention relates to a fuel cell stack, a vehicle comprising the fuel cell stack and a method for producing and using the fuel cell stack.
- a fuel cell is a galvanic cell that converts the chemical reaction energy of a continuously supplied fuel and an oxidizing agent into electrical energy.
- a fuel cell is therefore an electrochemical energy converter.
- hydrogen (H 2 ) and oxygen (O 2 ) in particular are converted into water (H 2 O), electrical energy and heat.
- An electrolyzer is an electrochemical energy converter which splits water (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ) using electrical energy.
- proton exchange membranes PEM fuel cells
- PEM proton exchange membranes
- Anion exchange membranes are also known for both fuel cells and electrolysers.
- Proton exchange membrane fuel cells have a centrally arranged membrane which is conductive for protons, i.e. for hydrogen ions.
- the oxidizing agent in particular atmospheric oxygen, is thereby spatially separated from the fuel, in particular hydrogen.
- Proton exchange membrane fuel cells also have an anode and a cathode.
- the fuel is fed to the anode of the fuel cell and catalytically oxidized to protons with the release of electrons.
- the protons pass through the membrane to the cathode.
- the released electrons are diverted from the fuel cell and flow to the cathode via an external circuit.
- the oxidizing agent is fed to the fuel cell's cathode and it reacts to water by absorbing electrons from the external circuit and protons that have passed through the membrane to the cathode. The resulting water is drained from the fuel cell.
- the gross response is:
- a voltage is applied between the anode and the cathode of the fuel cell.
- several fuel cells can be arranged mechanically one behind the other to form a fuel cell stack, which is also referred to as a fuel cell stack, and electrically connected in series.
- a fuel cell stack to which hydrogen and oxygen and optionally a cooling medium are fed, is usually closed by two end plates.
- Current collectors are arranged within the end plates.
- dissolved ions can be present in the water produced as a result of impurities and / or side reactions.
- the ions lead to an undesirable electrical conductivity, which causes corrosion effects and thus degradation, i.e. a loss of performance, on the fuel cell or the fuel cell stack.
- Fuel cells are often supplied with media such as hydrogen and oxygen via supply channels arranged perpendicular to the membrane of the fuel cell. Media are also discharged via these feed channels.
- the supply channels are connected to the fuel cell or the fuel cell stack by port structures, which can also be referred to as fluid connections. Between different port structures one Fuel cells or a fuel cell stack can generate undesirable leakage currents.
- US 2013 / 0295481A1 and DE 10 2012 220 705 Al deal with fluid connections for polymer electrolyte fuel cells. Molded parts or injection molded parts made of polymers are described, which electrically isolate the gas connections for the supply and discharge of air and hydrogen and a cooling water connection in the area of the end plate from one another.
- a manifold block for a fuel cell has electrical insulation for a coolant flow channel in an internal flow channel.
- DE 11 2007 002 945 B4 describes a shear-elastic element that ensures tolerance compensation in the fuel cell stack.
- the shear elastic member is inserted between a clamping member and an end surface of the fuel cell stack in the stacking direction and elastically deforms in a shearing direction that is perpendicular to the stacking direction.
- the fuel cell stack has a cushion element which is positioned between the stack and a plate covering at least one side section of the side face of the stack.
- a fuel cell stack comprising at least one fuel cell, at least one current collector and at least one end plate, wherein an end position is arranged between the at least one current collector and the at least one end plate and the end position is made up of an electrically conductive polymer material and the electrically conductive polymer material electrically connected to a power source and is suitable to heat up when an electrical voltage is applied.
- a vehicle comprising the fuel cell stack is proposed as well as a method for producing the fuel cell stack, characterized in that at least one port structure is produced from the electrically conductive polymer material by injection molding and then a mechanical connection between the at least one port structure and a second port structure is Structure or between the at least one port structure and parts of the end position that are different from the at least one port structure, is produced by injection molding of an electrically insulating component.
- the end position can also be inserted into the fuel cell stack as an injection molded part in the form of an insert.
- the fuel cell stack which is in particular a PEM fuel cell stack, can comprise more than one end position, in particular two end positions.
- the end position made of electrically conductive polymer material, which is also referred to as polymer trace heating, can compensate for both shape tolerances and position tolerances within the fuel cell stack structure.
- the current collector is understood to mean an electrically conductive surface element which is electrically connected directly to an outer fuel cell of the fuel cell stack, in particular to the outer electrode of the outer fuel cell. Over the length of the fuel cell stack, the current collector brings together the current transported over the entire fuel cell surface in the plane of the surface element on one or more electrical connection points so that the electrical power of the fuel cell stack can be dissipated without impermissible ohmic heating.
- the outer fuel cell of the fuel cell stack usually ends with a flow field, which can also be referred to as a flow plate.
- the flow field can be formed by a graphitic or metallic structure. Since there is no further fuel cell connected to the outer fuel cell, it can also be referred to as a monopolar plate.
- the current that flows through the fuel cell stack in the stacking direction and that forms the electrical fuel cell stack voltage between the two fuel cell stack ends as the sum of the individual fuel cell voltages must be electrically transmitted from the inside of the fuel cell stack to the outside, for example via seals. With smaller powers, this can be done in that the outer flow plate or monopolar plate has an electrical current tap in the plane of the monopolar plate.
- the monopolar plate is therefore enlarged by an extension or flag for a cable connection.
- the monopolar plate can be electrically connected to the end plate or pressed and the current can be tapped at an end collector, preferably comprising stainless steel or aluminum, which bundles the current to an electrical cable connection.
- an end collector preferably comprising stainless steel or aluminum
- the end plate is electrically insulated. Therefore, an electrically highly conductive plate, for example comprising copper, with low contact resistance, which can be achieved by a coating, for example with gold, can be arranged between the monopolar plate and the end plate, and this can be electrically connected to a connection cable.
- the plate which has good electrical conductivity, is preferably used when the fuel cell stack can deliver a large amount of electrical power.
- the end plate can transmit forces from tensioning elements to the electrically active cell surfaces such as the membrane surfaces evenly, that is to say with a uniform local pressing force and the same local deformation, the tensioning elements being outside the electrically active cell surfaces.
- the current collector is electrically conductive and ensures electrical contact between the outer electrode of the fuel cell stack and a connection cable, while the end plate ensures mechanical stability of the fuel cell stack.
- the end position comprises the electrically conductive polymer material.
- the end position can optionally include the electrically insulating component.
- the end position is preferably more than 50% by weight, more preferably more than 80% % By weight, more preferably more than 95% by weight, of the electrically conductive polymer material.
- the end position preferably comprises from 5% by weight to 20% by weight of the electrically insulating component.
- the end position is preferably manufactured using injection molding.
- the electrically conductive polymer material which is also referred to as Heat Inducing Thermoplastics (HIT), comprises a plastic matrix and an electrically conductive additive, which can also be referred to as a filler.
- the plastic matrix preferably consists of at least one thermoplastic or at least one thermoset.
- the plastic matrix more preferably comprises polyvinylidene fluoride (PVDF), polypropylene (PP), polyphenylene sulfide (PPS), polyamide (PA), polyether ether ketone (PEEK) or mixtures thereof.
- PVDF polyvinylidene fluoride
- PP polypropylene
- PPS polyphenylene sulfide
- PA polyamide
- PEEK polyether ether ketone
- the plastic matrix consists of polyvinylidene fluoride, polypropylene, polyphenylene sulfide, polyamide, polyetheretherketone or mixtures thereof.
- the electrically conductive additive preferably comprises or consists of metal powder, metal fibers, carbon black, graphite, carbon fibers, carbon nano tubes or mixtures thereof.
- the proportion by weight of the electrically conductive additive, based on the electrically conductive polymer material, is advantageously above the percolation limit of the electrically conductive polymer material.
- Joule heat is generated by the electrical resistance of the electrically conductive polymer material, so that the electrically conductive polymer material is heated when an electrical voltage is applied, as is also described in DE 102012 212 798 A1. Furthermore, electrically conductive plastic compounds are shown in Hopmann et al., Development of electrically conductive plastic compounds based on filier combinations, Journal of Plastics Technology 10 (2014) 2, pages 50 to 67.
- the electrical conductivity of the electrically conductive polymer material preferably decreases with increasing temperature. Accordingly, the specific resistance of the electrically conductive polymer material preferably increases with increasing temperature and there is a positive temperature coefficient (PTC).
- PTC positive temperature coefficient
- the decreasing electrical conductivity with increasing temperature is given in particular with thermoplastics as a plastic matrix. Due to the thermal expansion of the plastic matrix, the distances between particles of the electrically conductive additive become larger and electrical conduction paths are interrupted.
- the electrical resistance preferably increases exponentially to the softening temperature of the thermoplastic.
- the heating of the electrically conductive polymer material is preferably limited to a maximum temperature of 200 ° C. when the electrical voltage is applied.
- the electrically conductive polymer material preferably has shear-elastic properties.
- the modulus of elasticity of the electrically conductive polymer material is preferably more than 1.5 GPa, more preferably more than 2 GPa.
- the E modulus of the electrically conductive polymer material is higher than the E modulus of the plastic matrix.
- the modulus of elasticity of polyamide is from 1.0 GPa to 1.1 GPa and of polyamide containing 3% by weight of carbon nano fiber (CNT) is 2.1 GPa.
- the modulus of elasticity of polyamide containing 15% by weight of carbon black (CB) is, for example, 2.8 GPa.
- the end position preferably has at least one port structure for the passage of a fluid such as hydrogen, oxygen, water or a cooling medium.
- the at least one port structure is preferably constructed from the electrically conductive polymer material.
- the at least one port structure therefore preferably comprises the electrically conductive polymer material, the at least one port structure more preferably consists of more than 50% by weight, more preferably more than 80% by weight, more preferably more than 95% by weight .-%, from the electrical conductive polymer material.
- the at least one port structure is advantageously designed in one piece with the end position.
- the end position can be arranged directly between the end plate and the current collector, which adjoins the monopolar plate of the outer fuel cell of the fuel cell stack.
- the current collector attacks the
- the current collector can at the same time be a first power connection for the electrically conductive polymer material.
- the end plate can represent a second power connection.
- a conductive contact can be arranged in each case on a first and a second surface of the electrically conductive polymer material, so that during the assembly the first surface is contacted by the current collector and the second surface is contacted by the end plate. In this way, the end position becomes evenly warm, since the paths in the electrically conductive polymer material, i.e. the resistance, are roughly the same length.
- the end position can have a non-planar shape, wherein the electrically conductive polymer material can enclose the port structure on the inside or outside, so that the end position has nozzles formed from the electrically conductive polymer material, which can also be referred to as fingers. There is a larger area of electrically conductive polymer material on the port structure and more heating cable can be emitted there.
- the at least one port structure is advantageously already produced during the production of the end position, for example by injection molding the electrically conductive polymer material.
- more than one port structures can initially be produced, which are then mechanically connected to one another by subsequent injection molding of the electrically insulating component between the more than one port structures.
- the electrically insulating component which preferably contains a second polymer material, simultaneously serves to mechanically connect the more than one port structure and also to electrically isolate the more than one port structure from one another.
- the second polymer material can correspond to the plastic matrix of the electrically conductive polymer material.
- the electrically insulating component preferably comprises polyvinylidene fluoride (PVDF), polypropylene (PP), polyphenylene sulfide (PPS), polyamide (PA), polyetheretherketone (PEEK) or mixtures thereof.
- the electrically insulating component consists of polyvinylidene fluoride, polypropylene, polyphenylene sulfide, polyamide, polyether ether ketone or mixtures thereof.
- the electrically insulating component advantageously has a material bond with the electrically conductive polymer material.
- the material of the plastic matrix of the electrically conductive polymer material can be used for this.
- the electrically insulating component can comprise a second additive such as ceramic powder.
- the end position preferably has at least two areas which are electrically isolated from one another and which can also be referred to as parts.
- no more than one port structure is arranged on at least one of the at least two regions that are electrically isolated from one another.
- the end position can consequently also be electrically segmented, that is to say divided into regions that are electrically isolated from one another.
- the current collector can be a first common power connection for each electrically isolated area.
- a second power connection for each electrically isolated area can be integrated into the port structure.
- the electrically insulating film can also be referred to as a layer or layer.
- the electrically insulating film can also be referred to as an electrically insulating surface and is preferably a polymer film, preferably comprising polyethylene (PE), polypropylene (PP), polyetheretherketone (PEK), polyimide (PI), polyvinylidene fluoride (PVDF), polyamide (PA) ), Polytetrafluoroethylene (PTFE) or mixtures thereof, or a ceramic film. More preferably, the electrically insulating film consists of a polymer that can form a material bond with the plastic matrix of the electrically conductive polymer material.
- the electrically insulating film consists of a polymer of the same class as the plastic matrix of the electrically conductive polymer material.
- the film can be applied to the surface of the end position by placing, gluing, interposing or painting, for example with a PVDF paint.
- the electrically insulating film can represent additional electrical insulation with respect to the current collector and / or the end plate.
- the surfaces of components that have been injection molded from conductive polymer can have less electrical conductivity due to the formation of a cast skin.
- the electrically conductive polymer material advantageously additionally has metallic conductor tracks, which are arranged in particular near the surface, more preferably on the surface of the electrically conductive polymer material.
- the metallic conductor tracks advantageously penetrate the cast skin and ensure permanent electrical contact with the electrically conductive additive.
- the metallic conductor tracks can be used to make electrical contact between the electrically conductive polymer material and the power source.
- the metallic conductor tracks can be produced by cold gas spraying of metal, in which metal is introduced into the top layer of the electrically conductive polymer material at high speed.
- the metallic conductor tracks can be introduced three-dimensionally into the injection-molded component, that is to say the end position, which may have port structures, so that a power connection can be made at almost any point in the end position.
- the remaining surface of the end position which may have a cast skin, may have poorer electrical conductor properties. If this is desired, the electrically insulating film can be applied to the surface of the end position for additional insulation.
- the end position being used as surface heating with a specific power of 1.5 W / cm 2 to 4 W / cm 2 , in particular 2 W / cm 2 to 3 W / cm 2 .
- the applied electrical voltage can preferably be 12, 24, 48 or 220 volts, or a multiple of the voltage of an individual fuel cell in the fuel cell stack.
- electrical trace heating is combined with a polymer intermediate layer and, if necessary, targeted port heating in one component.
- the areas near the end plates or their edge areas in the fuel cell stack are heated in particular by a simple polymer component, in particular a polymer injection-molded part.
- the end position is used in particular to heat the gas connection areas in the form of the at least one port structure.
- each port structure can be heated separately and the temperature of the respective port structure can be regulated separately.
- the heatable port structures prevent condensation in the area of the port structures during a cold start of the fuel cell stack, and rapid heating of the edge areas of the fuel cell stack is possible.
- shape tolerances and bearing tolerances of the fuel cell stack can be compensated for by the end position.
- the electrically conductive polymer material enables heat to be dissipated homogeneously over the surface of the end position.
- the polymer material means that the end position can be freely shaped, for example by an injection molding process. Accordingly, the heat can be directed to individual areas of the fuel cell stack, such as the port structure, where there is a need for heat.
- the combination of electrical trace heating, polymer intermediate layer and port heating can reduce the overall weight of the fuel cell stack.
- Figure 1 shows a fuel cell stack
- Figure 2 shows a section of an end position made of electrically conductive polymer material
- FIG. 3 shows a graph of the temperature dependence of the electrical conductivity of the electrically conductive polymer material
- FIG. 4 shows a plan view of a fuel cell stack with end position and port structures
- FIG. 5 shows a side view of the fuel cell stack according to FIG. 4.
- FIG. 1 shows a schematic illustration of a fuel cell stack 4 with a plurality of fuel cells 3.
- Each fuel cell 3 has a membrane 23, two gas diffusion layers 1, an anode 31 and a cathode 32.
- the individual fuel cells 3 are delimited from one another by bipolar plates 50, which can include a cooling plate 45.
- FIG. 2 shows a section of an end position 10 constructed from an electrically conductive polymer material 12.
- the electrically conductive polymer material 12 is connected to a power source 14.
- an electrical voltage is applied to the electrically conductive material 12, as a result of which the electrically conductive polymer material 12 is heated and gives off heat 34 to the surroundings and in particular to the fuel cell stack 4.
- the end position 10 can be produced by means of injection molding. This means that the shape for the end position 10 is flexible.
- the heat 34 is given off evenly over a surface 18 of the end position 10.
- FIG. 3 shows a graph of the dependence of a conductivity 47 on a temperature 43 of the electrically conductive polymer material 12.
- the electrical conductivity 47 of the electrically conductive polymer material 12 and the temperature 43 of the electrically conductive polymer material 12 are plotted over time 41.
- the electrical conductivity 47 of the electrically conductive polymer material 12 decreases, so that heating of the electrically conductive polymer material 12 is self-regulating.
- FIG. 4 shows a plan view of a fuel cell stack 4 with an end position 10 and port structures 16 and a current collector 52.
- the end position 10 has at least one port structure 16 and a second port structure 17. Oxygen and hydrogen are supplied to the fuel cell stack 4 through the port structures 16, 17 and water is removed.
- the end position 10 also has a first insulated area 24 and a second insulated area 26, which are insulated from one another by an electrically insulating component 30.
- the electrically insulating component 30 also establishes a mechanical connection 28 between the first isolated area 24 and the second isolated area 26.
- the at least one port structure 16 and the second port structure 17 are also electrically insulated from one another by the electrically insulating component 30, so that leakage currents be avoided.
- the regions 24, 26 that are electrically isolated from one another are electrically separated from one another by the electrically insulating component 30. Each isolated area 24, 26 has no more than one port structure 16, 17.
- the end position 10 with the first insulated area 24 and the second insulated area 26 is made up of the electrically conductive polymer material 12 and has a surface 18.
- the electrically conductive polymer material 12 has metallic conductor tracks 22 which are arranged in the electrically conductive polymer material 12 near the surface 18.
- each port structure 16 has a single contact 33. Since the port structures 16, 17 are formed from the electrically conductive polymer material 12, the individual port structures 16, 17 and the areas 24, 26 isolated from one another can be heated separately from one another by means of the individual contacts 33.
- FIG. 5 shows a side view of the fuel cell stack 4 according to FIG. 4 with the end position 10, port structures 16.
- the port structures 16 protrude through an end plate 48, where they have the individual contacts 33.
- the end plate 48 is used to generate mechanical pressure and to compress the fuel cell stack 4.
- the end position 10 is subdivided into the regions 24, 26 that are electrically isolated from one another and are constructed from the electrically insulating component 30 by the mechanical connection 28.
- An electrically insulating film 20 is also located on the surface 18 of the end position 10.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
The invention relates to a fuel cell stack (4) comprising at least one fuel cell (3), at least one current collector (52) and at least one end plate (48), wherein an end layer (10) is arranged between the at least one current collector (52) and the at least one end plate (48), and the end layer (10) is constructed from an electrically conductive polymer material (12), and wherein the electrically conductive polymer material (12) is electrically connected to a power source (14) and is suitable for heating up when an electrical voltage is applied. The invention further relates to a vehicle comprising the fuel cell stack (4) and to a method for producing the fuel cell stack (4) and to a use of the fuel cell stack (4).
Description
Brennstoffzellenstapel und Verfahren zur Herstellung sowie Verwendung einesFuel cell stack and method for making and using one
Brennstoffzellenstapels Fuel cell stack
Die Erfindung betrifft einen Brennstoffzellenstapel, ein Fahrzeug umfassend den Brennstoffzellenstapel und ein Verfahren zur Herstellung sowie eine Verwendung des Brennstoffzellenstapels. The invention relates to a fuel cell stack, a vehicle comprising the fuel cell stack and a method for producing and using the fuel cell stack.
Stand der Technik State of the art
Eine Brennstoffzelle ist eine galvanische Zelle, welche die chemische Reaktionsenergie eines kontinuierlich zugeführten Brennstoffs und eines Oxidationsmittels in elektrische Energie wandelt. Eine Brennstoffzelle ist also ein elektrochemischer Energiewandler. Bei bekannten Brennstoffzellen werden insbesondere Wasserstoff (H2) und Sauerstoff (O2) in Wasser (H2O), elektrische Energie und Wärme gewandelt. A fuel cell is a galvanic cell that converts the chemical reaction energy of a continuously supplied fuel and an oxidizing agent into electrical energy. A fuel cell is therefore an electrochemical energy converter. In known fuel cells, hydrogen (H 2 ) and oxygen (O 2 ) in particular are converted into water (H 2 O), electrical energy and heat.
Ein Elektrolyseur ist ein elektrochemischer Energiewandler, welcher Wasser (H2O) mittels elektrischer Energie in Wasserstoff (H2) und Sauerstoff (O2) spaltet. An electrolyzer is an electrochemical energy converter which splits water (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ) using electrical energy.
Unter anderem sind Protonenaustauschmembranen (Proton-Exchange- Membrane = PEM)- Brennstoffzellen bekannt, die auch als Polymerelektrolyt- Brennstoffzelle bezeichnet werden. Weiterhin bekannt sind Anion-Austausch- Membranen sowohl für Brennstoffzellen als auch für Elektrolyseure. Protonenaustauschmembranen-Brennstoffzellen weisen eine zentral angeordnete Membran auf, die für Protonen, also für Wasserstoffionen, leitfähig ist. Das Oxidationsmittel, insbesondere Luftsauerstoff, ist dadurch räumlich von dem Brennstoff, insbesondere Wasserstoff, getrennt. Among other things, proton exchange membranes (Proton Exchange Membrane = PEM) fuel cells are known, which are also referred to as polymer electrolyte fuel cells. Anion exchange membranes are also known for both fuel cells and electrolysers. Proton exchange membrane fuel cells have a centrally arranged membrane which is conductive for protons, i.e. for hydrogen ions. The oxidizing agent, in particular atmospheric oxygen, is thereby spatially separated from the fuel, in particular hydrogen.
Protonenaustauschmembranen-Brennstoffzellen weisen ferner eine Anode und eine Kathode auf. Der Brennstoff wird an der Anode der Brennstoffzelle zugeführt
und katalytisch unter Abgabe von Elektronen zu Protonen oxidiert. Die Protonen gelangen durch die Membran zu der Kathode. Die abgegebenen Elektronen werden aus der Brennstoffzelle abgeleitet und fließen über einen externen Stromkreis zu der Kathode. Proton exchange membrane fuel cells also have an anode and a cathode. The fuel is fed to the anode of the fuel cell and catalytically oxidized to protons with the release of electrons. The protons pass through the membrane to the cathode. The released electrons are diverted from the fuel cell and flow to the cathode via an external circuit.
Das Oxidationsmittel wird an der Kathode der Brennstoffzelle zugeführt und es reagiert durch Aufnahme der Elektronen aus dem externen Stromkreis und Protonen, die durch die Membran zur Kathode gelangt sind, zu Wasser. Das so entstandene Wasser wird aus der Brennstoffzelle abgeleitet. The oxidizing agent is fed to the fuel cell's cathode and it reacts to water by absorbing electrons from the external circuit and protons that have passed through the membrane to the cathode. The resulting water is drained from the fuel cell.
Die Bruttoreaktion lautet: The gross response is:
O2 + 4H+ + Ae — 2H2O O 2 + 4H + + Ae - 2H 2 O
Zwischen der Anode und der Kathode der Brennstoffzelle liegt dabei eine Spannung an. Zur Erhöhung der Spannung können mehrere Brennstoffzellen mechanisch hintereinander zu einem Brennstoffzellenstapel, der auch als Brennstoffzellen-Stack bezeichnet wird, angeordnet und elektrisch in Reihe geschaltet werden. A voltage is applied between the anode and the cathode of the fuel cell. To increase the voltage, several fuel cells can be arranged mechanically one behind the other to form a fuel cell stack, which is also referred to as a fuel cell stack, and electrically connected in series.
Ein Brennstoffzellenstapel, dem Wasserstoff und Sauerstoff sowie optional ein Kühlmedium zugeführt wird, wird üblicherweise durch zwei Endplatten abgeschlossen. Innerhalb der Endplatten sind jeweils Stromsammler angeordnet. A fuel cell stack, to which hydrogen and oxygen and optionally a cooling medium are fed, is usually closed by two end plates. Current collectors are arranged within the end plates.
Bei der Erzeugung von elektrischem Strom durch die Produktion von Wasser in einer Brennstoffzelle können im produzierten Wasser gelöste Ionen durch Verunreinigungen und/oder Nebenreaktionen vorliegen. Die Ionen führen zu einer unerwünschten elektrischen Leitfähigkeit, die Korrosionseffekte und damit eine Degradation, also einen Leistungsverlust, an der Brennstoffzelle oder dem Brennstoffzellenstapel verursachen. When electricity is generated through the production of water in a fuel cell, dissolved ions can be present in the water produced as a result of impurities and / or side reactions. The ions lead to an undesirable electrical conductivity, which causes corrosion effects and thus degradation, i.e. a loss of performance, on the fuel cell or the fuel cell stack.
Brennstoffzellen werden häufig über senkrecht zu der Membran der Brennstoffzelle angeordnete Zuführkanäle mit Medien wie Wasserstoff und Sauerstoff versorgt. Auch werden Medien über diese Zuführkanäle abgeführt. Die Zuführkanäle sind durch Port-Strukturen, die auch als Fluidanschlüsse bezeichnet werden können, mit der Brennstoffzelle oder dem Brennstoffzellenstapel verbunden. Zwischen verschiedenen Port-Strukturen einer
Brennstoffzelle oder eines Brennstoffzellenstapels können unerwünschte Kriechströme entstehen. Fuel cells are often supplied with media such as hydrogen and oxygen via supply channels arranged perpendicular to the membrane of the fuel cell. Media are also discharged via these feed channels. The supply channels are connected to the fuel cell or the fuel cell stack by port structures, which can also be referred to as fluid connections. Between different port structures one Fuel cells or a fuel cell stack can generate undesirable leakage currents.
US 2013/0295481A1 und DE 10 2012 220 705 Al haben Fluidanschlüsse für Polymerelektrolyt- Brennstoffzellen zum Gegenstand. Es werden Formteile oder Spritzgussteile aus Polymeren beschrieben, die die Gasanschlüsse zur Zuführung und Ableitung von Luft und Wasserstoff sowie einen Kühlwasseranschluss elektrisch im Bereich der Endplatte gegeneinander isolieren. Ein Verteilerblock für eine Brennstoffzelle weist eine elektrische Isolierung für einen Kühlmittelströmungskanal in einem internen Strömungskanal auf. US 2013 / 0295481A1 and DE 10 2012 220 705 Al deal with fluid connections for polymer electrolyte fuel cells. Molded parts or injection molded parts made of polymers are described, which electrically isolate the gas connections for the supply and discharge of air and hydrogen and a cooling water connection in the area of the end plate from one another. A manifold block for a fuel cell has electrical insulation for a coolant flow channel in an internal flow channel.
DE 11 2007002 945 B4 beschreibt ein scherelastisches Element, das für einen Toleranzausgleich im Brennstoffzellenstapel sorgt. Das scherelastische Element ist zwischen einem Klemmelement und einer Endfläche des Brennstoffzellenstapels in Stapelrichtung eingefügt und verformt sich elastisch in einer Scherrichtung, die senkrecht zur Stapelrichtung liegt. Ferner weist der Brennstoffzellenstapel ein Polsterelement auf, das zwischen dem Stapel und einer zumindest einen Seitenabschnitt der Seitenfläche des Stapels bedeckenden Platte positioniert ist. DE 11 2007 002 945 B4 describes a shear-elastic element that ensures tolerance compensation in the fuel cell stack. The shear elastic member is inserted between a clamping member and an end surface of the fuel cell stack in the stacking direction and elastically deforms in a shearing direction that is perpendicular to the stacking direction. Furthermore, the fuel cell stack has a cushion element which is positioned between the stack and a plate covering at least one side section of the side face of the stack.
Werden Brennstoffzellenstapel bei einer Temperatur unterhalb des Gefrierpunktes von Wasser in Betrieb genommen, kann gefrorenes Wasser an den Port-Strukturen auftreten. Dies kann auch auftreten, wenn der Brennstoffzellenstapel mittels einer Zwischenlage elektrisch beheizbar ist, da die Port-Strukturen durch eine polymere Zwischenplatte wärmeisoliert und somit von der Beheizung abgegrenzt sein können. If fuel cell stacks are put into operation at a temperature below the freezing point of water, frozen water can appear on the port structures. This can also occur if the fuel cell stack can be heated electrically by means of an intermediate layer, since the port structures can be thermally insulated by a polymer intermediate plate and thus separated from the heating.
Offenbarung der Erfindung Disclosure of the invention
Es wird ein Brennstoffzellenstapel vorgeschlagen, umfassend mindestens eine Brennstoffzelle, mindestens einen Stromsammler und mindestens eine Endplatte, wobei zwischen dem mindestens einen Stromsammler und der mindestens einen Endplatte eine Endlage angeordnet ist und die Endlage aus einem elektrisch leitfähigen Polymermaterial aufgebaut ist und wobei das elektrisch leitfähige Polymermaterial elektrisch mit einer Stromquelle verbunden
ist und geeignet ist, sich bei einer anliegenden elektrischen Spannung zu erwärmen. A fuel cell stack is proposed, comprising at least one fuel cell, at least one current collector and at least one end plate, wherein an end position is arranged between the at least one current collector and the at least one end plate and the end position is made up of an electrically conductive polymer material and the electrically conductive polymer material electrically connected to a power source and is suitable to heat up when an electrical voltage is applied.
Weiterhin wird ein Fahrzeug umfassend den Brennstoffzellenstapel vorgeschlagen sowie ein Verfahren zur Herstellung des Brennstoffzellenstapels dadurch gekennzeichnet, dass mindestens eine Port-Struktur mittels Spritzguss aus dem elektrisch leitfähigem Polymermaterial hergestellt wird und dann eine mechanische Verbindung zwischen der mindestens einen Port-Struktur und einer zweiten Port-Struktur oder zwischen der mindestens einen Port-Struktur und Teilen der Endlage, die von der mindestens einen Port-Struktur verschieden sind, durch Spritzgießen einer elektrisch isolierenden Komponente hergestellt wird. Furthermore, a vehicle comprising the fuel cell stack is proposed as well as a method for producing the fuel cell stack, characterized in that at least one port structure is produced from the electrically conductive polymer material by injection molding and then a mechanical connection between the at least one port structure and a second port structure is Structure or between the at least one port structure and parts of the end position that are different from the at least one port structure, is produced by injection molding of an electrically insulating component.
Die Endlage kann auch als Spritzgussteil in Form eines Einlegeteils in den Brennstoffzellenstapel eingefügt werden. The end position can also be inserted into the fuel cell stack as an injection molded part in the form of an insert.
Der Brennstoffzellenstapel, der insbesondere ein PEM-Brennstoffzellenstapel ist, kann mehr als eine Endlage, insbesondere zwei Endlagen umfassen. Die Endlage aus elektrisch leitfähigem Polymermaterial, die auch als polymere Begleitheizung bezeichnet werden, kann sowohl Formtoleranzen als auch Lagetoleranzen innerhalb des Brennstoffzellenstapelaufbaus ausgleichen. The fuel cell stack, which is in particular a PEM fuel cell stack, can comprise more than one end position, in particular two end positions. The end position made of electrically conductive polymer material, which is also referred to as polymer trace heating, can compensate for both shape tolerances and position tolerances within the fuel cell stack structure.
Unter dem Stromsammler wird im Rahmen der vorliegenden Erfindung ein elektrisch leitfähiges Flächenelement verstanden, das direkt mit einer äußeren Brennstoffzelle des Brennstoffzellenstapels, insbesondere mit der äußeren Elektrode der äußeren Brennstoffzelle, elektrisch verbunden ist. Der Stromsammler führt über die Brennstoffzellenstapellänge den in der gesamten Brennstoffzellenfläche transportierten Strom in der Ebene des Flächenelements auf einen oder mehrere elektrische Anschlusspunkte zusammen, damit die elektrische Leistung des Brennstoffzellenstapels ohne unzulässige ohmsche Erwärmung abgeführt werden kann. In the context of the present invention, the current collector is understood to mean an electrically conductive surface element which is electrically connected directly to an outer fuel cell of the fuel cell stack, in particular to the outer electrode of the outer fuel cell. Over the length of the fuel cell stack, the current collector brings together the current transported over the entire fuel cell surface in the plane of the surface element on one or more electrical connection points so that the electrical power of the fuel cell stack can be dissipated without impermissible ohmic heating.
Die äußere Brennstoffzelle des Brennstoffzellenstapels endet in der Regel mit einem Strömungsfeld, das auch als Strömungsplatte bezeichnet werden kann. Das Strömungsfeld kann von einer graphitischen oder metallischen Struktur gebildet werden. Da sich an die äußere Brennstoffzelle keine weitere Brennstoffzelle anschließt, kann auch von einer Monopolarplatte gesprochen werden.
Der Strom, der in Stapelrichtung durch den Brennstoffzellenstapel fließt und der zwischen beiden Brennstoffzellenstapelenden die elektrische Brennstoffzellenstapelspannung als Summe der einzelnen Brennstoffzellenspannungen bildet, muss aus dem Inneren des Brennstoffzellenstapels nach außen, beispielsweise über Dichtungen, elektrisch übertragen werden. Dies kann bei kleineren Leistungen dadurch erfolgen, dass die äußere Strömungsplatte oder Monopolarplatte einen elektrischen Stromabgriff in der Ebene der Monopolarplatte aufweist. Die Monopolarplatte ist also um einen Fortsatz oder Fähnchen für einen Kabelanschluss vergrößert. The outer fuel cell of the fuel cell stack usually ends with a flow field, which can also be referred to as a flow plate. The flow field can be formed by a graphitic or metallic structure. Since there is no further fuel cell connected to the outer fuel cell, it can also be referred to as a monopolar plate. The current that flows through the fuel cell stack in the stacking direction and that forms the electrical fuel cell stack voltage between the two fuel cell stack ends as the sum of the individual fuel cell voltages must be electrically transmitted from the inside of the fuel cell stack to the outside, for example via seals. With smaller powers, this can be done in that the outer flow plate or monopolar plate has an electrical current tap in the plane of the monopolar plate. The monopolar plate is therefore enlarged by an extension or flag for a cable connection.
Alternativ kann die Monopolarplatte mit der Endplatte elektrisch verbunden oder verpresst sein und der Strom kann an einem Endsammler, bevorzugt umfassend Edelstahl oder Aluminium, abgegriffen werden, der den Strom zu einem elektrischen Kabelanschluss bündelt. Liegt eine elastische Zwischenlage aus einem nicht leitenden Polymer zum mechanischen Toleranzausgleich vor, ist die Endplatte jedoch elektrisch isoliert. Daher kann zwischen der Monopolarplatte und der Endplatte eine elektrisch gut leitende Platte, beispielsweise umfassend Kupfer, mit geringem Kontaktwiderstand, der durch eine Beschichtung zum Beispiel mit Gold erzielt werden kann, angeordnet sein und diese mit einem Anschlusskabel elektrisch verbunden sein. Die elektrisch gut leitende Platte wird bevorzugt eingesetzt, wenn der Brennstoffzellenstapel eine große elektrische Leistung liefern kann. Alternatively, the monopolar plate can be electrically connected to the end plate or pressed and the current can be tapped at an end collector, preferably comprising stainless steel or aluminum, which bundles the current to an electrical cable connection. However, if there is an elastic intermediate layer made of a non-conductive polymer for mechanical tolerance compensation, the end plate is electrically insulated. Therefore, an electrically highly conductive plate, for example comprising copper, with low contact resistance, which can be achieved by a coating, for example with gold, can be arranged between the monopolar plate and the end plate, and this can be electrically connected to a connection cable. The plate, which has good electrical conductivity, is preferably used when the fuel cell stack can deliver a large amount of electrical power.
Die Endplatte kann gleichmäßig, also mit gleichmäßiger lokaler Presskraft und gleicher lokaler Verformung, Kräfte aus Spannelementen auf die elektrisch aktiven Zellflächen wie die Membranflächen übertragen, wobei die Spannelemente außerhalb der elektrisch aktiven Zellflächen liegen. The end plate can transmit forces from tensioning elements to the electrically active cell surfaces such as the membrane surfaces evenly, that is to say with a uniform local pressing force and the same local deformation, the tensioning elements being outside the electrically active cell surfaces.
Der Stromsammler ist elektrisch leitfähig und stellt die elektrische Kontaktierung zwischen der äußeren Elektrode des Brennstoffzellestapels und einem Anschlusskabel sicher, während die Endplatte für mechanische Stabilität des Brennstoffzellenstapels sorgt. The current collector is electrically conductive and ensures electrical contact between the outer electrode of the fuel cell stack and a connection cable, while the end plate ensures mechanical stability of the fuel cell stack.
Die Endlage umfasst das elektrisch leitfähige Polymermaterial. Gegebenenfalls kann die Endlage die elektrisch isolierende Komponente umfassen. Bevorzugt besteht die Endlage zu mehr als 50 Gew.-%, mehr bevorzugt zu mehr als 80
Gew.-%, weiter bevorzugt zu mehr als 95 Gew.-%, aus dem elektrisch leitfähigen Polymermaterial. Die Endlage umfasst bevorzugt von 5 Gew.-% bis 20 Gew.-% die elektrisch isolierende Komponente. Hergestellt ist die Endlage bevorzugt mittels Spritzguss. The end position comprises the electrically conductive polymer material. The end position can optionally include the electrically insulating component. The end position is preferably more than 50% by weight, more preferably more than 80% % By weight, more preferably more than 95% by weight, of the electrically conductive polymer material. The end position preferably comprises from 5% by weight to 20% by weight of the electrically insulating component. The end position is preferably manufactured using injection molding.
Das elektrisch leitfähige Polymermaterial, das auch als Heat Inducing Thermoplastics (HIT) bezeichnet wird, umfasst eine Kunststoffmatrix und ein elektrisch leitfähiges Additiv, das auch als Füllstoff bezeichnet werden kann. Bevorzugt besteht die Kunststoffmatrix aus mindestens einem Thermoplasten oder mindestens einem Duroplasten. Mehr bevorzugt umfasst die Kunststoffmatrix Polyvinylidenfluorid (PVDF), Polypropylen (PP), Polyphenylensulfid (PPS), Polyamid (PA), Polyetheretherketon (PEEK) oder Mischungen daraus. Insbesondere besteht die Kunststoffmatrix aus Polyvinylidenfluorid, Polypropylen, Polyphenylensulfid, Polyamid, Polyetheretherketon oder Mischungen daraus. Das elektrisch leitfähige Additiv umfasst oder besteht aus bevorzugt Metallpulver, Metallfasern, Ruß, Graphit, Kohlefasern, Carbon Nano Tubes oder Mischungen daraus. Vorteilhaft liegt der Gewichtsanteil des elektrisch leitfähigen Additivs, bezogen auf das elektrisch leitfähige Polymermaterial, oberhalb der Perkolationsgrenze des elektrisch leitfähigen Polymermaterials. The electrically conductive polymer material, which is also referred to as Heat Inducing Thermoplastics (HIT), comprises a plastic matrix and an electrically conductive additive, which can also be referred to as a filler. The plastic matrix preferably consists of at least one thermoplastic or at least one thermoset. The plastic matrix more preferably comprises polyvinylidene fluoride (PVDF), polypropylene (PP), polyphenylene sulfide (PPS), polyamide (PA), polyether ether ketone (PEEK) or mixtures thereof. In particular, the plastic matrix consists of polyvinylidene fluoride, polypropylene, polyphenylene sulfide, polyamide, polyetheretherketone or mixtures thereof. The electrically conductive additive preferably comprises or consists of metal powder, metal fibers, carbon black, graphite, carbon fibers, carbon nano tubes or mixtures thereof. The proportion by weight of the electrically conductive additive, based on the electrically conductive polymer material, is advantageously above the percolation limit of the electrically conductive polymer material.
Die elektrische Leitfähigkeit s eines Materials wird durch die Anzahl N von Ladungsträgern pro Volumen V, der Elementarladung e, und der Mobilität m der Ladungsträger bestimmt: s = (N/V) p e The electrical conductivity s of a material is determined by the number N of charge carriers per volume V, the elementary charge e, and the mobility m of the charge carriers: s = (N / V) p e
In Abhängigkeit von der Art und der Menge des elektrisch leitfähigen Additivs in dem elektrisch leitfähigen Polymermaterials beträgt der spezifische Widerstand (r=1/s) des elektrisch leitfähigen Polymermaterils nicht mehr als 5 Qcm. Depending on the type and amount of the electrically conductive additive in the electrically conductive polymer material, the specific resistance (r = 1 / s) of the electrically conductive polymer material is not more than 5 Ωcm.
Durch den elektrischen Widerstand des elektrisch leitfähigen Polymermaterials wird joulesche Wärme erzeugt, so dass sich das elektrisch leitfähige Polymermaterial bei einer anliegenden elektrischen Spannung erwärmt, wie es auch in der DE 102012 212 798 Al beschrieben ist. Ferner sind elektrisch leitfähige Kunststoffcompounds dargestellt in Hopmann et al., Development of
electrically conductive plastic compounds based on filier combinations, Journal of Plastics Technology 10 (2014) 2, Seiten 50 bis 67. Joule heat is generated by the electrical resistance of the electrically conductive polymer material, so that the electrically conductive polymer material is heated when an electrical voltage is applied, as is also described in DE 102012 212 798 A1. Furthermore, electrically conductive plastic compounds are shown in Hopmann et al., Development of electrically conductive plastic compounds based on filier combinations, Journal of Plastics Technology 10 (2014) 2, pages 50 to 67.
Bevorzugt nimmt die elektrische Leitfähigkeit des elektrisch leitfähigen Polymermaterials mit zunehmender Temperatur ab. Entsprechend nimmt bevorzugt der spezifische Widerstand des elektrisch leitfähigen Polymermaterials mit zunehmender Temperatur zu und es liegt ein positiver Temperaturkoeffizient (PTC) vor. Die abnehmende elektrische Leitfähigkeit mit steigender Temperatur ist insbesondere bei Thermoplasten als Kunststoffmatrix gegeben. Durch die thermische Ausdehnung der Kunststoffmatrix werden die Abstände von Partikeln des elektrisch leitfähigen Additivs größer und elektrische Leitpfade werden unterbrochen. Der elektrische Widerstand steigt bevorzugt exponentiell zur Erweichungstemperatur des Thermoplasten an. The electrical conductivity of the electrically conductive polymer material preferably decreases with increasing temperature. Accordingly, the specific resistance of the electrically conductive polymer material preferably increases with increasing temperature and there is a positive temperature coefficient (PTC). The decreasing electrical conductivity with increasing temperature is given in particular with thermoplastics as a plastic matrix. Due to the thermal expansion of the plastic matrix, the distances between particles of the electrically conductive additive become larger and electrical conduction paths are interrupted. The electrical resistance preferably increases exponentially to the softening temperature of the thermoplastic.
Bevorzugt ist das Erwärmen des elektrisch leitfähigen Polymermaterials bei der anliegenden elektrischen Spannung auf eine maximale Temperatur von 200° C begrenzt. Durch das Abnehmen der Leitfähigkeit des elektrisch leitfähigen Polymermaterials bei höherer Temperatur wird eine Selbstregulation der Beheizung des Brennstoffzellenstapels durch die Endlage erzielt, so dass eine Überhitzung vermieden wird. The heating of the electrically conductive polymer material is preferably limited to a maximum temperature of 200 ° C. when the electrical voltage is applied. By decreasing the conductivity of the electrically conductive polymer material at a higher temperature, self-regulation of the heating of the fuel cell stack by the end position is achieved, so that overheating is avoided.
Bevorzugt weist das elektrisch leitfähige Polymermaterial scherelastische Eigenschaften auf. Der E-Modul des elektrisch leitfähigen Polymermaterials beträgt bevorzug mehr als 1,5 GPa, mehr bevorzugt mehr als 2 GPa. Insbesondere ist der E-Modul des elektrisch leitfähigen Polymermaterials höher als der E-Modul der Kunststoffmatrix. Beispielsweise beträgt der E-Modul von Polyamid von 1,0 GPa bis 1,1 GPa und von Polyamid enthaltend 3 Gew.-% Carbon Nano Fiber (CNT) 2,1 GPa. Der E-Modul von Polyamid enthaltend 15 Gew.-% Leitruß (Carbon Black, CB) beträgt beispielsweise 2,8 GPa. The electrically conductive polymer material preferably has shear-elastic properties. The modulus of elasticity of the electrically conductive polymer material is preferably more than 1.5 GPa, more preferably more than 2 GPa. In particular, the E modulus of the electrically conductive polymer material is higher than the E modulus of the plastic matrix. For example, the modulus of elasticity of polyamide is from 1.0 GPa to 1.1 GPa and of polyamide containing 3% by weight of carbon nano fiber (CNT) is 2.1 GPa. The modulus of elasticity of polyamide containing 15% by weight of carbon black (CB) is, for example, 2.8 GPa.
Bevorzugt weist die Endlage mindestens eine Port-Struktur zur Durchführung eines Fluids wie Wasserstoff, Sauerstoff, Wasser oder eines Kühlmediums auf. Die mindestens eine Port-Struktur ist bevorzugt aus dem elektrisch leitfähigen Polymermaterial aufgebaut. Die mindestens eine Port-Struktur umfasst also bevorzugt das elektrisch leitfähige Polymermaterial, mehr bevorzugt besteht die mindestens eine Port-Struktur zu mehr als 50 Gew.-%, mehr bevorzugt zu mehr als 80 Gew.-%, weiter bevorzugt zu mehr als 95 Gew.-%, aus dem elektrisch
leitfähigen Polymermaterial. Vorteilhaft ist die mindestens eine Port-Struktur einstückig mit der Endlage ausgeführt. The end position preferably has at least one port structure for the passage of a fluid such as hydrogen, oxygen, water or a cooling medium. The at least one port structure is preferably constructed from the electrically conductive polymer material. The at least one port structure therefore preferably comprises the electrically conductive polymer material, the at least one port structure more preferably consists of more than 50% by weight, more preferably more than 80% by weight, more preferably more than 95% by weight .-%, from the electrical conductive polymer material. The at least one port structure is advantageously designed in one piece with the end position.
Die Endlage kann direkt zwischen der Endplatte und dem Stromsammler, der an die Monopolarplatte der äußeren Brennstoffzelle des Brennstoffzellenstapels angrenzt, angeordnet sein. Der Stromsammler greift dieThe end position can be arranged directly between the end plate and the current collector, which adjoins the monopolar plate of the outer fuel cell of the fuel cell stack. The current collector attacks the
Brennstoffzellenstapelspannung ab. Da das elektrisch leitfähige Polymermaterial auch durch den Stromsammler kontaktiert werden kann, kann der Stromsammler gleichzeitig ein erster Stromanschluss für das elektrisch leitfähige Polymermaterial sein. Ein zweiter Stromanschluss kann die Endplatte darstellen. Alternativ kann ein leitfähiger Kontakt jeweils auf einer ersten und einer zweiten Oberfläche des elektrisch leitfähigen Polymermaterials angeordnet sein, so dass beim Zusammenfügen die erste Oberfläche vom Stromsammler und die zweite Oberfläche von der Endplatte kontaktiert wird. So wird die Endlage gleichmäßig warm, da die Weg in dem elektrisch leitfähigen Polymermaterial, also der Widerstand, in etwa gleich lang sind. Fuel cell stack voltage. Since the electrically conductive polymer material can also be contacted by the current collector, the current collector can at the same time be a first power connection for the electrically conductive polymer material. The end plate can represent a second power connection. Alternatively, a conductive contact can be arranged in each case on a first and a second surface of the electrically conductive polymer material, so that during the assembly the first surface is contacted by the current collector and the second surface is contacted by the end plate. In this way, the end position becomes evenly warm, since the paths in the electrically conductive polymer material, i.e. the resistance, are roughly the same length.
Die Endlage kann eine nicht planare Form aufweisen, wobei das elektrisch leitfähige Polymermaterial die Port-Struktur innen oder außen umschließen kann, so dass die Endlage aus dem elektrisch leitfähigen Polymermaterial angeformte Stutzen, die auch als Finger bezeichnet werden können, besitzt. So liegt an der Portstruktur eine größere Fläche an elektrisch leitfähigem Polymermaterial vor und es kann dort mehr Heizleitung abgegeben werden. The end position can have a non-planar shape, wherein the electrically conductive polymer material can enclose the port structure on the inside or outside, so that the end position has nozzles formed from the electrically conductive polymer material, which can also be referred to as fingers. There is a larger area of electrically conductive polymer material on the port structure and more heating cable can be emitted there.
Vorteilhaft wird bereits bei der Herstellung der Endlage, beispielsweise durch Spritzgießen des elektrisch leitfähigen Polymermaterials, die mindestens eine Port-Struktur hergestellt. Insbesondere können zunächst mehr als eine Port- Strukturen hergestellt werden, die dann durch anschließendes Spritzgießen der elektrisch isolierenden Komponente zwischen die mehr als eine Port-Strukturen mechanisch miteinander verbunden werden. Die elektrisch isolierende Komponente, die bevorzugt ein zweites Polymermaterial enthält, dient gleichzeitig der mechanischen Verbindung der mehr als einen Port-Struktur und auch der elektrischen Isolierung der mehr als einen Port-Struktur voneinander. Das zweite Polymermaterial kann der Kunststoffmatrix des elektrisch leitfähigen Polymermaterials entsprechend. Bevorzugt umfasst die elektrisch isolierende Komponente Polyvinylidenfluorid (PVDF), Polypropylen (PP), Polyphenylensulfid (PPS), Polyamid (PA), Polyetheretherketon (PEEK) oder Mischungen daraus.
Insbesondere besteht die elektrisch isolierende Komponente aus Polyvinylidenfluorid, Polypropylen, Polyphenylensulfid, Polyamid, Polyetheretherketon oder Mischungen daraus. Die elektrisch isolierende Komponente weist vorteilhaft einen stoffschlüssigen Verbund zum elektrisch leitfähigen Polymermaterial auf. Hierfür kann das Material der Kunststoffmatrix des elektrisch leitfähigen Polymermaterials verwendet werden. Zur Anpassung mechanischer und thermischer Eigenschaften wie der Wärmeleitfähigkeit kann die elektrisch isolierende Komponente ein zweites Additiv wie Keramikpulver umfassen. The at least one port structure is advantageously already produced during the production of the end position, for example by injection molding the electrically conductive polymer material. In particular, more than one port structures can initially be produced, which are then mechanically connected to one another by subsequent injection molding of the electrically insulating component between the more than one port structures. The electrically insulating component, which preferably contains a second polymer material, simultaneously serves to mechanically connect the more than one port structure and also to electrically isolate the more than one port structure from one another. The second polymer material can correspond to the plastic matrix of the electrically conductive polymer material. The electrically insulating component preferably comprises polyvinylidene fluoride (PVDF), polypropylene (PP), polyphenylene sulfide (PPS), polyamide (PA), polyetheretherketone (PEEK) or mixtures thereof. In particular, the electrically insulating component consists of polyvinylidene fluoride, polypropylene, polyphenylene sulfide, polyamide, polyether ether ketone or mixtures thereof. The electrically insulating component advantageously has a material bond with the electrically conductive polymer material. The material of the plastic matrix of the electrically conductive polymer material can be used for this. To adapt mechanical and thermal properties such as thermal conductivity, the electrically insulating component can comprise a second additive such as ceramic powder.
Bevorzugt weist die Endlage mindestens zwei elektrisch voneinander isolierte Bereiche, die auch als Teile bezeichnet werden können, auf. Insbesondere ist auf mindestens einem der mindestens zwei elektrisch voneinander isolierten Bereiche jeweils nicht mehr als eine Port-Struktur angeordnet. The end position preferably has at least two areas which are electrically isolated from one another and which can also be referred to as parts. In particular, no more than one port structure is arranged on at least one of the at least two regions that are electrically isolated from one another.
Die Endlage kann folglich auch elektrisch segmentiert, also in elektrisch voneinander isolierte Bereiche unterteilt, sein. Hier kann ein erster gemeinsamer Stromanschluss für jeden elektrisch isolierten Bereich der Stromsammler sein.The end position can consequently also be electrically segmented, that is to say divided into regions that are electrically isolated from one another. The current collector can be a first common power connection for each electrically isolated area.
Ein zweiter Stromanschluss jeweils für einen elektrisch isolierten Bereich kann in die Portstruktur integriert sein. A second power connection for each electrically isolated area can be integrated into the port structure.
Bevorzugt weist eine Oberfläche der Endlage eine elektrisch isolierende Folie auf, die auch als Schicht oder Lage bezeichnet werden kann. Die elektrisch isolierende Folie kann auch als elektrisch isolierende Oberfläche bezeichnet werden und ist bevorzugt eine Polymer- Folie, bevorzugt umfassend Polyethylen (PE), Polypropylen (PP), Polyetheretherketon (PEK), Polyimid (PI), Polyvinylidenfluorid (PVDF), Polyamid (PA), Polytetrafluorethylen (PTFE) oder Mischungen daraus, oder eine Keramik-Folie. Weiter bevorzugt besteht die elektrisch isolierende Folie aus einem Polymer, dass einen stoffschlüssigen Verbund mit der Kunststoffmatrix des elektrisch leitfähigen Polymermaterials eingehen kann. Insbesondere besteht die elektrisch isolierende Folie aus einem Polymer gleicher Klasse wie die Kunststoffmatrix des elektrisch leitfähigen Polymermaterials. Die Folie kann durch Auflegen, Aufkleben, Dazwischenlegen oder Lackieren, zum Beispiel mit einem PVDF-Lack, auf die Oberfläche der Endlage aufgebracht werden. Die elektrisch isolierende Folie kann eine zusätzliche elektrische Isolation gegenüber dem Stromsammler und/oder der Endplatte darstellen.
Oberflächen von Bauteilen, die im Spritzguss aus leitfähigem Polymer hergestellt wurden, können durch die Ausbildung einer Gusshaut eine weniger starke elektrische Leitfähigkeit besitzen. Vorteilhaft weist das elektrisch leitfähige Polymermaterial zusätzlich metallische Leiterbahnen auf, die insbesondere oberflächennah, mehr bevorzugt auf der Oberfläche des elektrisch leitfähigen Polymermaterials, angeordnet sind. Die metallischen Leiterbahnen durchdringen vorteilhaft die Gusshaut und stellen eine dauerhafte elektrische Kontaktierung zum elektrisch leitfähigen Additiv sicher. Die metallischen Leiterbahnen können zur elektrischen Kontaktierung des elektrisch leitfähigen Polymermaterials mit der Stromquelle eingesetzt werden. One surface of the end position preferably has an electrically insulating film, which can also be referred to as a layer or layer. The electrically insulating film can also be referred to as an electrically insulating surface and is preferably a polymer film, preferably comprising polyethylene (PE), polypropylene (PP), polyetheretherketone (PEK), polyimide (PI), polyvinylidene fluoride (PVDF), polyamide (PA) ), Polytetrafluoroethylene (PTFE) or mixtures thereof, or a ceramic film. More preferably, the electrically insulating film consists of a polymer that can form a material bond with the plastic matrix of the electrically conductive polymer material. In particular, the electrically insulating film consists of a polymer of the same class as the plastic matrix of the electrically conductive polymer material. The film can be applied to the surface of the end position by placing, gluing, interposing or painting, for example with a PVDF paint. The electrically insulating film can represent additional electrical insulation with respect to the current collector and / or the end plate. The surfaces of components that have been injection molded from conductive polymer can have less electrical conductivity due to the formation of a cast skin. The electrically conductive polymer material advantageously additionally has metallic conductor tracks, which are arranged in particular near the surface, more preferably on the surface of the electrically conductive polymer material. The metallic conductor tracks advantageously penetrate the cast skin and ensure permanent electrical contact with the electrically conductive additive. The metallic conductor tracks can be used to make electrical contact between the electrically conductive polymer material and the power source.
Die metallischen Leiterbahnen können durch Kaltgasspritzen von Metall, bei dem Metall mit hoher Geschwindigkeit in die oberste Lage des elektrisch leitfähigen Polymermaterials eingebracht wird, hergestellt werden. Die metallischen Leiterbahnen können dreidimensional in das gespritzte Bauteil, also die Endlage, die gegebenenfalls Port- Strukturen aufweist, eingebracht werden, so dass ein Stromanschluss an nahezu beliebiger Stelle der Endlage erfolgen kann. The metallic conductor tracks can be produced by cold gas spraying of metal, in which metal is introduced into the top layer of the electrically conductive polymer material at high speed. The metallic conductor tracks can be introduced three-dimensionally into the injection-molded component, that is to say the end position, which may have port structures, so that a power connection can be made at almost any point in the end position.
Im Vergleich zu den eingebrachten metallischen Leiterbahnen kann die übrige Oberfläche der Endlage, die gegebenenfalls eine Gusshaut aufweist, schlechtere elektrische Leitereigenschaften aufweisen. Ist dies gewünscht, kann zur zusätzlichen Isolation die elektrisch isolierende Folie auf die Oberfläche der Endlage aufgebracht werden. Compared to the introduced metallic conductor tracks, the remaining surface of the end position, which may have a cast skin, may have poorer electrical conductor properties. If this is desired, the electrically insulating film can be applied to the surface of the end position for additional insulation.
Des Weiteren wird eine Verwendung des Brennstoffzellenstapels vorgeschlagen, wobei die Endlage als Flächenheizung mit einer spezifischen Leistung von 1,5 W/cm2 bis bis 4 W/cm2, insbesondere von 2 W/cm2 bis 3 W/cm2, eingesetzt wird. Furthermore, a use of the fuel cell stack is proposed, the end position being used as surface heating with a specific power of 1.5 W / cm 2 to 4 W / cm 2 , in particular 2 W / cm 2 to 3 W / cm 2 .
Die anliegende elektrische Spannung kann vorzugsweise 12, 24, 48 oder 220 Volt betragen, oder ein Vielfaches der Spannung einer einzelnen Brennstoffzelle im Brennstoffzellenstapel. The applied electrical voltage can preferably be 12, 24, 48 or 220 volts, or a multiple of the voltage of an individual fuel cell in the fuel cell stack.
Vorteile der Erfindung
Durch die Endlage des erfindungsgemäßen Brennstoffzellenstapels wird eine elektrische Begleitheizung mit einer polymeren Zwischenlage und gegebenenfalls einer gezielten Portbeheizung in einem Bauteil kombiniert. Die Erwärmung insbesondere der Bereiche nahe der Endplatten beziehungsweise deren Randbereiche im Brennstoffzellenstapel erfolgt durch ein einfaches Polymerbauteil, insbesondere ein Polymerspritzgussteil. Die Endlage dient insbesondere zur Beheizung der Gasanschlussbereiche in Form der mindestens einer Port-Struktur. Advantages of the invention Due to the end position of the fuel cell stack according to the invention, electrical trace heating is combined with a polymer intermediate layer and, if necessary, targeted port heating in one component. The areas near the end plates or their edge areas in the fuel cell stack are heated in particular by a simple polymer component, in particular a polymer injection-molded part. The end position is used in particular to heat the gas connection areas in the form of the at least one port structure.
Bei entsprechender elektrischer Kontaktierung und elektrischer Isolierung verschiedener Port-Strukturen voneinander, die im Rahmen der vorliegenden Erfindung möglich sind, kann jede Port-Struktur separat beheizt und die Temperatur der jeweiligen Port-Struktur separat geregelt werden. With appropriate electrical contacting and electrical insulation of different port structures from one another, which are possible within the scope of the present invention, each port structure can be heated separately and the temperature of the respective port structure can be regulated separately.
Durch die beheizbaren Port-Strukturen wird eine Kondensation im Bereich der Port-Strukturen beim Kaltstart des Brennstoffzellenstapels vermieden und ein schnelles Erwärmen der Randbereiche des Brennstoffzellenstapels ist möglich. The heatable port structures prevent condensation in the area of the port structures during a cold start of the fuel cell stack, and rapid heating of the edge areas of the fuel cell stack is possible.
Weiterhin können Formtoleranzen und Lagertoleranzen des Brennstoffzellenstapels durch die Endlage ausgeglichen werden. Furthermore, shape tolerances and bearing tolerances of the fuel cell stack can be compensated for by the end position.
Darüber hinaus ist durch das elektrisch leitfähige Polymermaterial eine über die Oberfläche der Endlage homogen verteilte Wärmeabgabe möglich. Durch das Polymermaterial ist die Endlage frei formbar, beispielsweise durch ein Spritzgussverfahren. Entsprechend kann die Wärme gezielt an einzelne Bereiche des Brennstoffzellenstapels wie der Port-Struktur geführt werden, an denen ein Wärmebedarfs besteht. In addition, the electrically conductive polymer material enables heat to be dissipated homogeneously over the surface of the end position. The polymer material means that the end position can be freely shaped, for example by an injection molding process. Accordingly, the heat can be directed to individual areas of the fuel cell stack, such as the port structure, where there is a need for heat.
Durch die Kombination von elektrischer Begleitheizung, polymerer Zwischenlage und Port-Beheizung kann insgesamt Gewicht am Brennstoffzellenstapel reduziert werden. The combination of electrical trace heating, polymer intermediate layer and port heating can reduce the overall weight of the fuel cell stack.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigen: Embodiments of the invention are explained in more detail with reference to the drawings and the following description. Show it:
Figur 1 einen Brennstoffzellenstapel, Figure 1 shows a fuel cell stack,
Figur 2 einen Ausschnitt einer Endlage aufgebaut aus elektrisch leitfähigem Polymermaterial, Figure 2 shows a section of an end position made of electrically conductive polymer material,
Figur 3 einen Graph zur Temperaturabhängigkeit der elektrischen Leitfähigkeit des elektrisch leitfähigen Polymermaterials, FIG. 3 shows a graph of the temperature dependence of the electrical conductivity of the electrically conductive polymer material,
Figur 4 eine Draufsicht auf einen Brennstoffzellenstapel mit Endlage und Port-Strukturen und FIG. 4 shows a plan view of a fuel cell stack with end position and port structures and
Figur 5 eine Seitenansicht des Brennstoffzellenstapels gemäß Figur 4. Ausführungsformen der Erfindung FIG. 5 shows a side view of the fuel cell stack according to FIG. 4. Embodiments of the invention
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar. In the following description of the embodiments of the invention, the same or similar elements are denoted by the same reference numerals, a repeated description of these elements being dispensed with in individual cases. The figures represent the subject matter of the invention only schematically.
Figur 1 zeigt eine schematische Darstellung eines Brennstoffzellenstapels 4 mit mehreren Brennstoffzellen 3. Jede Brennstoffzelle 3 weist eine Membran 23, zwei Gasdiffusionslagen 1, eine Anode 31 und eine Kathode 32 auf. Die einzelnen Brennstoffzellen 3 sind durch Bipolarplatten 50, die eine Kühlplatte 45 umfassen können, voneinander abgegrenzt. FIG. 1 shows a schematic illustration of a fuel cell stack 4 with a plurality of fuel cells 3. Each fuel cell 3 has a membrane 23, two gas diffusion layers 1, an anode 31 and a cathode 32. The individual fuel cells 3 are delimited from one another by bipolar plates 50, which can include a cooling plate 45.
Der Brennstoffzellenstapel 4, dem Wasserstoff 40 und Sauerstoff 42 sowie ein Kühlmedium 44 zugeführt wird, wird durch zwei Endplatten 48 abgeschlossen und weist Stromsammler 52 auf. Die verschiedenen Zuführungen sind durch Dichtungen 46 voneinander getrennt. Zwischen der Endplatte 48 und dem Stromsammler 52 ist eine Endlage 10, die als schereleastische beheizbare Ausgleichslage dient, angeordnet.
Figur 2 zeigt einen Ausschnitt einer Endlage 10 aufgebaut aus einem elektrisch leitfähigen Polymermaterial 12. Das elektrisch leitfähige Polymermaterial 12 ist mit einer Stromquelle 14 verbunden. In der hier gezeigten Darstellung liegt eine elektrische Spannung an dem elektrisch leitfähigen Material 12 an, wodurch sich das elektrisch leitfähige Polymermaterial 12 erwärmt und Wärme 34 an die Umgebung und insbesondere an den Brennstoffzellenstapel 4 abgibt. Die Endlage 10 ist mittels Spritzguss herstellbar. Dadurch ist die Formgebung für die Endlage 10 flexibel. Die Wärme 34 wird gleichmäßig über eine Oberfläche 18 der Endlage 10 abgegeben. The fuel cell stack 4, to which hydrogen 40 and oxygen 42 and a cooling medium 44 are supplied, is closed by two end plates 48 and has current collectors 52. The various inlets are separated from one another by seals 46. Between the end plate 48 and the current collector 52, an end position 10, which serves as a shear-elastic, heatable compensation position, is arranged. FIG. 2 shows a section of an end position 10 constructed from an electrically conductive polymer material 12. The electrically conductive polymer material 12 is connected to a power source 14. In the illustration shown here, an electrical voltage is applied to the electrically conductive material 12, as a result of which the electrically conductive polymer material 12 is heated and gives off heat 34 to the surroundings and in particular to the fuel cell stack 4. The end position 10 can be produced by means of injection molding. This means that the shape for the end position 10 is flexible. The heat 34 is given off evenly over a surface 18 of the end position 10.
Figur 3 zeigt einen Graphen zur Abhängigkeit einer Leitfähigkeit 47 von einer Temperatur 43 des elektrisch leitfähigen Polymermaterials 12. Die elektrische Leitfähigkeit 47 des elektrisch leitfähigen Polymermaterials 12 sowie die Temperatur 43 des elektrisch leitfähigen Polymermaterials 12 sind über die Zeit 41 aufgetragen. FIG. 3 shows a graph of the dependence of a conductivity 47 on a temperature 43 of the electrically conductive polymer material 12. The electrical conductivity 47 of the electrically conductive polymer material 12 and the temperature 43 of the electrically conductive polymer material 12 are plotted over time 41.
Mit steigender Temperatur 43 nimmt die elektrische Leitfähigkeit 47 des elektrisch leitfähigen Polymermaterials 12 ab, so dass eine Erwärmung des elektrisch leitfähigen Polymermaterials 12 selbstregulierend ist. Je geringer die Leitfähigkeit 47 ist, desto weniger Wärme 34 wird von dem elektrisch leitfähigen Polymermaterial 12 erzeugt, so dass eine maximale Temperatur 36 des elektrisch leitfähigen Polymermaterials 12 nicht überschritten wird. As the temperature 43 rises, the electrical conductivity 47 of the electrically conductive polymer material 12 decreases, so that heating of the electrically conductive polymer material 12 is self-regulating. The lower the conductivity 47, the less heat 34 is generated by the electrically conductive polymer material 12, so that a maximum temperature 36 of the electrically conductive polymer material 12 is not exceeded.
Figur 4 zeigt eine Draufsicht auf einen Brennstoffzellenstapel 4 mit einer Endlage 10 und Port-Strukturen 16 sowie einem Stromsammler 52. FIG. 4 shows a plan view of a fuel cell stack 4 with an end position 10 and port structures 16 and a current collector 52.
Die Endlage 10 weist mindestens eine Port-Struktur 16 sowie eine zweite Port- Struktur 17 auf. Durch die Port-Strukturen 16, 17 wird dem Brennstoffzellenstapel 4 Sauerstoff und Wasserstoff zugeführt sowie Wasser abgeführt. The end position 10 has at least one port structure 16 and a second port structure 17. Oxygen and hydrogen are supplied to the fuel cell stack 4 through the port structures 16, 17 and water is removed.
Ferner weist die Endlage 10 einen ersten isolierten Bereich 24 sowie einen zweiten isolierten Bereich 26 auf, die durch eine elektrisch isolierende Komponente 30 voneinander isoliert sind. Die elektrisch isolierende Komponente 30 stellt auch eine mechanische Verbindung 28 zwischen dem ersten isolierten Bereich 24 und dem zweiten isolierten Bereich 26 her. Durch die elektrisch isolierende Komponente 30 sind auch die mindestens eine Port-Struktur 16 und die zweite Port-Struktur 17 elektrisch voneinander isoliert, so dass Kriechströme
vermieden werden. Durch die elektrisch isolierende Komponente 30 sind die elektrisch voneinander isolierten Bereiche 24, 26 elektrisch voneinander getrennt. Jeder isolierte Bereich 24, 26 weist jeweils nicht mehr als eine Port- Struktur 16, 17 auf. The end position 10 also has a first insulated area 24 and a second insulated area 26, which are insulated from one another by an electrically insulating component 30. The electrically insulating component 30 also establishes a mechanical connection 28 between the first isolated area 24 and the second isolated area 26. The at least one port structure 16 and the second port structure 17 are also electrically insulated from one another by the electrically insulating component 30, so that leakage currents be avoided. The regions 24, 26 that are electrically isolated from one another are electrically separated from one another by the electrically insulating component 30. Each isolated area 24, 26 has no more than one port structure 16, 17.
Die Endlage 10 mit dem ersten isolierten Bereich 24 und dem zweiten isolierten Bereich 26 ist aus dem elektrisch leitfähigen Polymermaterial 12 aufgebaut und besitzt eine Oberfläche 18. The end position 10 with the first insulated area 24 and the second insulated area 26 is made up of the electrically conductive polymer material 12 and has a surface 18.
Das elektrisch leitfähige Polymermaterial 12 weist metallische Leiterbahnen 22 auf, die in dem elektrisch leitfähigen Polymermaterial 12 nahe der Oberfläche 18 angeordnet sind. The electrically conductive polymer material 12 has metallic conductor tracks 22 which are arranged in the electrically conductive polymer material 12 near the surface 18.
Weiterhin weist jede Port-Struktur 16 jeweils einen Einzelkontakt 33 auf. Da die Port-Strukturen 16, 17 aus dem elektrisch leitfähigen Polymermaterial 12 geformt sind, können mittels der Einzelkontakte 33 die einzelnen Port-Strukturen 16, 17 sowie die voneinander isolierten Bereiche 24, 26 getrennt voneinander beheizt werden. Furthermore, each port structure 16 has a single contact 33. Since the port structures 16, 17 are formed from the electrically conductive polymer material 12, the individual port structures 16, 17 and the areas 24, 26 isolated from one another can be heated separately from one another by means of the individual contacts 33.
Figur 5 zeigt eine Seitenansicht des Brennstoffzellenstapels 4 gemäß Figur 4 mit der Endlage 10, Port-Strukturen 16. Die Port-Strukturen 16 ragen durch eine Endplatte 48 hindurch, wo sie die Einzelkontakte 33 aufweisen. Die Endplatte 48 dient der Erzeugung von mechanischem Druck und der Verpressung des Brennstoffzellenstapels 4. FIG. 5 shows a side view of the fuel cell stack 4 according to FIG. 4 with the end position 10, port structures 16. The port structures 16 protrude through an end plate 48, where they have the individual contacts 33. The end plate 48 is used to generate mechanical pressure and to compress the fuel cell stack 4.
Die Endlage 10 ist in die voneinander elektrisch isolierten Bereiche 24, 26 unterteilt, die durch die mechanische Verbindung 28 aus der elektrisch isolierenden Komponente 30 aufgebaut ist. Auf der Oberfläche 18 der Endlage 10 befindet sich ferner eine elektrisch isolierende Folie 20. The end position 10 is subdivided into the regions 24, 26 that are electrically isolated from one another and are constructed from the electrically insulating component 30 by the mechanical connection 28. An electrically insulating film 20 is also located on the surface 18 of the end position 10.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.
The invention is not restricted to the exemplary embodiments described here and the aspects emphasized therein. Rather, within the range specified by the claims, a large number of modifications are possible that are within the scope of expert knowledge.
Claims
1. Brennstoffzellenstapel (4) umfassend mindestens eine Brennstoffzelle (3), mindestens einen Stromsammler (52) und mindestens eine Endplatte (48), wobei zwischen dem mindestens einen Stromsammler (52) und der mindestens einen Endplatte (48) eine Endlage (10) angeordnet ist und die Endlage (10) aus einem elektrisch leitfähigen Polymermaterial (12) aufgebaut ist und wobei das elektrisch leitfähige Polymermaterial (12) elektrisch mit einer Stromquelle (14) verbunden ist und geeignet ist, sich bei einer anliegenden elektrischen Spannung zu erwärmen. 1. Fuel cell stack (4) comprising at least one fuel cell (3), at least one current collector (52) and at least one end plate (48), with an end position (10) between the at least one current collector (52) and the at least one end plate (48) is arranged and the end position (10) is made up of an electrically conductive polymer material (12) and wherein the electrically conductive polymer material (12) is electrically connected to a power source (14) and is suitable to heat up when an electrical voltage is applied.
2. Brennstoffzellenstapel (4) nach Anspruch 1, dadurch gekennzeichnet, dass die Endlage (10) mindestens eine Port-Struktur (16) zur Durchführung eines Fluids aufweist und die mindestens eine Port- Struktur (16) aus dem elektrisch leitfähigen Polymermaterial (12) aufgebaut ist. 2. Fuel cell stack (4) according to claim 1, characterized in that the end position (10) has at least one port structure (16) for the passage of a fluid and the at least one port structure (16) made of the electrically conductive polymer material (12) is constructed.
3. Brennstoffzellenstapel (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Oberfläche (18) der Endlage (10) eine elektrisch isolierende Folie (20) aufweist. 3. Fuel cell stack (4) according to one of the preceding claims, characterized in that one surface (18) of the end position (10) has an electrically insulating film (20).
4. Brennstoffzellenstapel (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitfähige Polymermaterial (12) scherelastische Eigenschaften aufweist. 4. Fuel cell stack (4) according to one of the preceding claims, characterized in that the electrically conductive polymer material (12) has shear-elastic properties.
5. Brennstoffzellenstapel (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrisch leitfähige Polymermaterial (12) zusätzlich metallische Leiterbahnen (22) aufweist, die insbesondere oberflächennah angeordnet sind.
5. Fuel cell stack (4) according to one of the preceding claims, characterized in that the electrically conductive polymer material (12) additionally has metallic conductor tracks (22) which are arranged in particular close to the surface.
6. Brennstoffzellenstapel (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Endlage (10) mindestens zwei elektrisch voneinander isolierte Bereiche (24, 26) aufweist. 6. Fuel cell stack (4) according to one of the preceding claims, characterized in that the end position (10) has at least two electrically isolated regions (24, 26).
7. Brennstoffzellenstapel (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf mindestens einem der mindestens zwei elektrisch voneinander isolierten Bereiche (24,26) jeweils nicht mehr als eine Port-Struktur (16) angeordnet ist. 7. Fuel cell stack (4) according to one of the preceding claims, characterized in that no more than one port structure (16) is arranged on at least one of the at least two electrically isolated regions (24, 26).
8. Fahrzeug umfassend einen Brennstoffzellenstapel (4) nach einem der Ansprüche 1 bis 7. 8. A vehicle comprising a fuel cell stack (4) according to any one of claims 1 to 7.
9. Verfahren zur Herstellung eines Brennstoffzellenstapels (4) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens eine Port-Struktur (16) mittels Spritzguss aus dem elektrisch leitfähigem Polymermaterial (12) hergestellt wird und dann eine mechanische Verbindung (28) zwischen der mindestens einen Port-Struktur (16) und einer zweiten Port-Struktur (17) oder zwischen der mindestens einen Port-Struktur (16) und Teilen der Endlage (10), die von der mindestens einen Port-Struktur (16) verschieden sind, durch Spritzgießen einer elektrisch isolierenden Komponente (30) hergestellt wird. 9. The method for producing a fuel cell stack (4) according to one of claims 1 to 7, characterized in that at least one port structure (16) is produced from the electrically conductive polymer material (12) by means of injection molding and then a mechanical connection (28) between the at least one port structure (16) and a second port structure (17) or between the at least one port structure (16) and parts of the end position (10) that differ from the at least one port structure (16) are made by injection molding an electrically insulating component (30).
10. Verwendung eines Brennstoffzellenstapels (4) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Endlage (10) als Flächenheizung mit einer spezifischen Leistung von 1,5 Watl/cm2 bis 4 Watl/cm2, insbesondere von 2 Watt/cm2 bis 3 Watt/cm2 eingesetzt wird.
10. Use of a fuel cell stack (4) according to one of claims 1 to 7, characterized in that the end position (10) as a surface heating system with a specific power of 1.5 watts / cm 2 to 4 watts / cm 2 , in particular 2 watts / cm 2 to 3 watts / cm 2 is used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019211823.2A DE102019211823A1 (en) | 2019-08-07 | 2019-08-07 | Fuel cell stack and method for producing and using a fuel cell stack |
DE102019211823.2 | 2019-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021023441A1 true WO2021023441A1 (en) | 2021-02-11 |
Family
ID=71452228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/068470 WO2021023441A1 (en) | 2019-08-07 | 2020-07-01 | Fuel cell stack and method for the production and use of a fuel cell stack |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102019211823A1 (en) |
WO (1) | WO2021023441A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020208702A1 (en) | 2020-07-13 | 2022-01-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | Heating element for a cell stack |
EP4293763A1 (en) * | 2022-06-15 | 2023-12-20 | Airbus Operations, S.L. | Bipolar plate for use in a fuel cell device and method for producing the same |
EP4447269A1 (en) * | 2023-04-14 | 2024-10-16 | Wobben Properties GmbH | Coil arrangement for an electric machine, stator, electric machine and wind turbine |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030022046A1 (en) * | 2001-07-30 | 2003-01-30 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack and a method of operating the same |
KR20120056990A (en) * | 2010-11-26 | 2012-06-05 | 현대자동차주식회사 | Fuel cell having heating gas diffusion layer |
DE102012212798A1 (en) | 2011-12-22 | 2013-06-27 | Robert Bosch Gmbh | Heating element and method for its production and use of the heating element |
US20130295481A1 (en) | 2012-05-07 | 2013-11-07 | Hyundai Motor Company | Manifold block for fuel cell stack |
US20170331126A1 (en) * | 2015-02-05 | 2017-11-16 | Hanon Systems | End cell heater for fuel cell, and fuel cell including same |
DE102017212023A1 (en) * | 2016-07-15 | 2018-01-18 | Hanon Systems | End cell heating for fuel cell |
KR20180058000A (en) * | 2016-11-23 | 2018-05-31 | 현대자동차주식회사 | Ptc heater for fuel cell stack and ptc heater assembly for fuel cell stack comprising the same |
DE112007002945B4 (en) | 2006-12-27 | 2018-10-11 | Toyota Jidosha Kabushiki Kaisha | Fuel cell with elastic element |
US20190044163A1 (en) * | 2016-02-05 | 2019-02-07 | Safran Power Units | Fuel cell and associated heating system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5229534B2 (en) * | 2008-02-13 | 2013-07-03 | トヨタ自動車株式会社 | Fuel cell, fuel cell system and heating unit |
KR101827123B1 (en) * | 2016-06-03 | 2018-02-07 | 한온시스템 주식회사 | End cell heater assembly, and fuel cell stack having the same |
-
2019
- 2019-08-07 DE DE102019211823.2A patent/DE102019211823A1/en active Pending
-
2020
- 2020-07-01 WO PCT/EP2020/068470 patent/WO2021023441A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030022046A1 (en) * | 2001-07-30 | 2003-01-30 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack and a method of operating the same |
DE112007002945B4 (en) | 2006-12-27 | 2018-10-11 | Toyota Jidosha Kabushiki Kaisha | Fuel cell with elastic element |
KR20120056990A (en) * | 2010-11-26 | 2012-06-05 | 현대자동차주식회사 | Fuel cell having heating gas diffusion layer |
DE102012212798A1 (en) | 2011-12-22 | 2013-06-27 | Robert Bosch Gmbh | Heating element and method for its production and use of the heating element |
US20130295481A1 (en) | 2012-05-07 | 2013-11-07 | Hyundai Motor Company | Manifold block for fuel cell stack |
DE102012220705A1 (en) | 2012-05-07 | 2013-11-07 | Hyundai Motor Company | DISTRIBUTION BLOCK FOR FUEL CELL STACK |
US20170331126A1 (en) * | 2015-02-05 | 2017-11-16 | Hanon Systems | End cell heater for fuel cell, and fuel cell including same |
US20190044163A1 (en) * | 2016-02-05 | 2019-02-07 | Safran Power Units | Fuel cell and associated heating system |
DE102017212023A1 (en) * | 2016-07-15 | 2018-01-18 | Hanon Systems | End cell heating for fuel cell |
KR20180058000A (en) * | 2016-11-23 | 2018-05-31 | 현대자동차주식회사 | Ptc heater for fuel cell stack and ptc heater assembly for fuel cell stack comprising the same |
Non-Patent Citations (1)
Title |
---|
HOPMANN ET AL.: "Development of electrically conductive plastic compounds based on filler combinations", JOURNAL OF PLASTICS TECHNOLOGY, vol. 10, no. 2, 2014, pages 50 - 67 |
Also Published As
Publication number | Publication date |
---|---|
DE102019211823A1 (en) | 2021-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021023441A1 (en) | Fuel cell stack and method for the production and use of a fuel cell stack | |
DE10392176B4 (en) | Separator plate for a PEM fuel cell and method for its production | |
DE102008050507B4 (en) | PLATE FOR A MEMBRANE HUMIDIFIER AND METHOD FOR PRODUCING THE SAME | |
DE102016225651A1 (en) | END CELL HEATING ARRANGEMENT AND FUEL CELL STACK WITH THE SAME | |
DE102008029628B4 (en) | Fuel cell stack with low electrical resistance bipolar plate diffusion media assembly and method of making same | |
EP2002499A1 (en) | Method for producing a membrane electrode unit for a fuel cell | |
DE10039674A1 (en) | Bipolar plate for PEM fuel cells | |
DE102008028549A1 (en) | Thermoplastic bipolar plate | |
DE10207743A1 (en) | Electrode for polymer electrolyte fuel cell e.g. for electric vehicle or motorized wheelchair, has solid polymer electrolyte membrane, electrode layers and reinforcing members integrally formed by sealing member | |
DE112007002574B4 (en) | Fuel cell and gasket for a fuel cell | |
DE102008038202B4 (en) | PEM fuel cell with improved water management and process for its production | |
EP1401039A2 (en) | Bipolar plate for PEM fuel cells | |
DE112004000386B4 (en) | Polymer separator | |
DE112004000556B4 (en) | Stack with variable pressure drop and operating procedures | |
DE102008059349B4 (en) | Fuel cell stack with a device for improved water management | |
WO2020187538A1 (en) | Semifinished product for a bipolar plate of a fuel cell, bipolar plate, fuel cells, and methods for producing a semifinished product for a bipolar plate of a fuel cell and a bipolar plate of a fuel cell | |
DE102007009899A1 (en) | Fuel cells with moldable sealing elements and manufacturing processes | |
EP1653537A1 (en) | Cooling plate modul for fuel cell stack | |
DE102015100607B4 (en) | Method for forming a seal for a PEM fuel cell | |
DE102004061784A1 (en) | Polymer electrolyte membrane fuel cell stack for vehicles comprises single cells separated from each other by metallic bipolar plates, electrically insulated end plates, metallic current deviating plates and electrical heating elements | |
DE102019218861A1 (en) | Bipolar plate for a fuel cell, method for producing a fuel cell and fuel cell | |
WO2017072003A1 (en) | Method for producing a membrane-electrode assembly and membrane-electrode assembly | |
DE102020216104A1 (en) | Fuel cell stack and method of manufacture | |
DE102013208839A1 (en) | Polar plate, fuel cell with such and method for producing the polar plate | |
DE102007061127B4 (en) | A unipolar plate and method of forming a composite unipolar plate for a fuel cell stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20736316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20736316 Country of ref document: EP Kind code of ref document: A1 |