WO2021023288A1 - 资源指示方法、数据接收方法及装置 - Google Patents

资源指示方法、数据接收方法及装置 Download PDF

Info

Publication number
WO2021023288A1
WO2021023288A1 PCT/CN2020/107637 CN2020107637W WO2021023288A1 WO 2021023288 A1 WO2021023288 A1 WO 2021023288A1 CN 2020107637 W CN2020107637 W CN 2020107637W WO 2021023288 A1 WO2021023288 A1 WO 2021023288A1
Authority
WO
WIPO (PCT)
Prior art keywords
reserved
time domain
resource
reservation
bitmap
Prior art date
Application number
PCT/CN2020/107637
Other languages
English (en)
French (fr)
Inventor
方惠英
戴博
杨维维
刘锟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2022507403A priority Critical patent/JP7355920B2/ja
Priority to AU2020324253A priority patent/AU2020324253B2/en
Priority to KR1020227007304A priority patent/KR20220046597A/ko
Priority to EP20849647.1A priority patent/EP4012960A4/en
Publication of WO2021023288A1 publication Critical patent/WO2021023288A1/zh
Priority to US17/592,941 priority patent/US20220240233A1/en
Priority to JP2023155648A priority patent/JP2023169337A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This application relates to the field of communications, such as resource indication methods, data receiving methods and devices.
  • Machine Type Communications (MTC for short), also known as Machine to Machine (M2M for short).
  • MTC Machine Type Communications
  • M2M Machine to Machine
  • NB-IoT Narrow Band Internet of Things
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • NB-IoT terminals adopt inband deployment (inband) and guardband deployment (Guardband) methods, and are also deployed under the same system bandwidth as traditional LTE/LTE-A terminals.
  • 5G 5th generation mobile networks
  • NR New Radio
  • the LTE-MTC/NB-IoT and NR systems cannot each enjoy independent frequency domains within the bandwidth of the coexistence system. At this time, the LTE-MTC/NB-IoT and NR systems will share the same frequency. Domain resources. Since MTC terminals based on LTE/LTE-A and NB-IoT terminals have a service life of at least ten years, MTC systems based on LTE/LTE-A (referred to as LTE-MTC systems) or NB-IoT systems and NR systems need to be longer Time coexists. How to ensure the performance of the system when the bandwidth of the coexistence system is limited is a problem that needs to be solved.
  • the embodiment of the application provides a resource indication method, including:
  • the first indication signaling includes reserved time domain resource information, which is used to indicate that the first time domain resource cannot be used for transmission.
  • the first indication signaling includes:
  • Time domain reservation period information and time domain offset information, and time domain resource information reserved in the time domain reservation period corresponding to the time domain reservation period information are examples of time domain reservation period information.
  • the time domain resources reserved in the time domain reservation period are represented by a time domain reservation bitmap; the time domain offset corresponding to the time domain offset information is in the time domain reservation period The distance between the subframe where the start position of the time domain reserved bitmap is located and the start of the time domain reserved period.
  • the time domain reserved period information and the time domain offset information are coded jointly or independently.
  • time domain reserved period information and time domain offset information are jointly indicated by 6 bits.
  • time domain reserved period information and time domain offset information are indicated separately; wherein the time domain reserved period information is indicated by 3 bits; the time domain offset information is indicated by 5 bits .
  • the time domain reservation bitmap includes a time slot reservation bitmap, and the time slot reservation bitmap is used to indicate a reserved time slot in the time domain reservation period.
  • the symbol actually reserved for the slot is determined according to the parity of the slot index.
  • the length of the time slot reservation bitmap is 4 bits or 10 bits.
  • the time domain reserved bitmap includes a symbol reserved bitmap, and the symbol reserved bitmap is used to indicate reserved symbols in a time domain reserved period.
  • the time domain reserved bitmap includes a subframe reserved bitmap, and the subframe reserved bitmap is used to indicate reserved symbols in a time domain reserved period;
  • the bit corresponding to the reserved bitmap of the subframe is the first value, which indicates that the preset symbol bit in the corresponding subframe is reserved.
  • the time domain reserved bitmap includes a subframe reserved bitmap and a symbol reserved bitmap, which are used to indicate reserved symbols in the time domain reserved period.
  • the bit corresponding to the subframe reserved bitmap is set to the first value, and the symbol reserved bitmap is used to indicate the reserved symbols in the corresponding subframe in the time domain reserved period .
  • the length of the reserved bitmap of the subframe is 2 bits, 5 bits or 10 bits.
  • the length of the symbol reserved bitmap is 2 bits, 7 bits, 14 bits, 28 bits, 70 bits, 7-L start bits, or 14-L start bits;
  • L start represents Long Term Evolution LTE The length of the downstream control area.
  • the first value is 1 or 0.
  • the time domain resource information reserved in the time domain reservation period includes:
  • bit corresponding to the reserved bitmap of the subframe is the first value, and the reserved symbol in the corresponding subframe in the reserved period of the time domain is predefined;
  • the time domain resource information reserved in the time domain reservation period includes: slot reservation bitmap information, subframe reservation bitmap information, and symbol reservation bitmap information; wherein, in the time domain reservation period The reserved symbols in the corresponding subframes in are determined according to the symbol reserved bitmap information.
  • the reserved subframe starts X subframes after the end position of the reserved slot, where X is an integer.
  • the length value of the reserved bitmap of the subframe is 3 bits, 5 bits, 6 bits, 8 bits or 10 bits.
  • the first indication signaling includes:
  • Time domain reserved period information used to indicate the time domain reserved period
  • the first Y symbols in the time domain reserved period are reserved symbols configured for the target data, and the value of Y is indicated by the symbol reservation information in the time domain reserved period, or Y is the reserved symbol. Define the value.
  • the time domain reservation period is one subframe
  • L start is the maximum length of the LTE downlink control region.
  • the reserved time domain resource indication information includes:
  • Time slot reservation bitmap information and symbol reservation bitmap information wherein the time domain reservation period of the time slot reservation bitmap can be predefined or configured through signaling; the time domain of the symbol reservation bitmap The reserved period can be pre-defined or configured through signaling;
  • the time domain reservation period of the time slot reservation bitmap and the time domain reservation period of the symbol reservation bitmap may be the same or different.
  • the first indication signaling further includes reserved frequency domain resource information
  • the reserved frequency domain resource information is used to indicate that the corresponding frequency domain resource on the reserved time domain resource cannot be used for transmission.
  • the method includes:
  • the second indication signaling indicates that the corresponding frequency domain resource on the reserved time domain resource cannot be used for transmission.
  • the reserved frequency domain resources include: at least one continuous resource block, or at least one continuous narrowband or at least one continuous resource block group.
  • N is the number of resource blocks included in the system;
  • FRRIV is a reserved indicator value in the frequency domain;
  • RB START is used to indicate the start position of the reserved resource block;
  • L CRRB is used to indicate the number of the reserved resource block.
  • the reserved resource block is a continuous resource block from the resource block sequence number (FRRIV-M+1) to the resource block sequence number (N-1);
  • N is the number of resource blocks included in the system; M is the maximum number of resource blocks that need to be reserved; FRRIV is the reserved indicator value in the frequency domain; RB START is used to indicate the starting position of the reserved resource block; L CRRB is used to indicate the number of reserved resource blocks.
  • the time domain reservation period is one of the following: 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • it further includes:
  • the reserved resource rewrite indication signaling is transmitted through a physical downlink control channel
  • the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes:
  • the reserved resource rewrite indication signaling is 2 bits, indicating that the time domain reservation within the current scheduled data transmission time length range is one of the following four situations:
  • the time domain reservation within the range of the currently scheduled data transmission duration cannot be occupied by the data transmission, the time domain reservation within the first 1/4 range of the currently scheduled data transmission duration can be occupied by the data transmission, and the currently scheduled data
  • the time domain reservation within the first 1/2 range of the transmission duration can be occupied by the data transmission, or the time domain reservation within the currently scheduled data transmission duration range can be occupied by the data transmission.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes:
  • the reserved resource rewrite indication signaling is 2 bits, indicating that the time domain reservation within the current scheduled data transmission time length range is one of the following four situations:
  • the time domain reservation within the range of the currently scheduled data transmission duration cannot be occupied by the data transmission, and the time domain reservation within the first 1/4 range of the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data
  • the time domain reservation within the first 1/2 range of the transmission duration cannot be occupied by the data transmission, or the time domain reservation within the currently scheduled data transmission duration range can be occupied by the data transmission.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes:
  • the reserved resource rewrite indication signaling is 2 bits, indicating that the time domain reservation within the current scheduled data transmission time length range is one of the following four situations:
  • the time domain reservation within the range of the currently scheduled data transmission duration cannot be occupied by the data transmission, the time domain reservation within the first 1/2 range of the currently scheduled data transmission duration can be occupied by the data transmission, and the currently scheduled data The time domain reservation within the first 1/2 range of the transmission duration cannot be occupied by the data transmission, or the time domain reservation within the currently scheduled data transmission duration range can be occupied by the data transmission.
  • An embodiment of the present application also provides a data receiving method, including:
  • the first indication signaling is used to indicate that the first time domain resource cannot be used for transmission.
  • the first indication signaling includes:
  • the time domain resources reserved in the time domain reservation period are represented by the time domain reservation bitmap; the time domain offset corresponding to the time domain offset information is the time domain reservation in the time domain reservation period The distance between the subframe where the start position of the bitmap is located and the start of the time domain reserved period.
  • an embodiment of the present application further provides a data receiving method, including:
  • the second indication signaling includes reserved time domain resource information, which is used to indicate that the corresponding frequency domain resource on the reserved time domain resource cannot be used for transmission.
  • the first indication signaling further includes reserved frequency domain resource information; wherein, the reserved frequency domain resource information is used to indicate the corresponding frequency on the reserved time domain resource Domain resources cannot be used for transmission.
  • the method further includes: receiving second indication signaling; the second indication signaling includes reserved frequency domain resource information; wherein, the reserved frequency domain resource information is used to indicate The frequency domain resources corresponding to the reserved time domain resources cannot be used for transmission.
  • N is the number of resource blocks included in the system; M is the maximum number of resource blocks that need to be reserved; FRRIV is the frequency domain reservation indication value corresponding to the frequency domain reservation indication signaling; RB START is used to indicate the preset The starting position of the reserved resource block; L CRRB is used to indicate the number of the reserved resource block; min represents the minimum value.
  • this application also provides a data receiving method, including:
  • the reserved resource rewrite indication signaling is transmitted through a physical downlink control channel
  • the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten.
  • the embodiment of the present application also provides a resource indicating device, including:
  • the first sending module used to send the first indication signaling to the terminal;
  • the first indication signaling is used to indicate that the first time domain resource cannot be used for transmission.
  • the device further includes:
  • Second sending module used to send second indication signaling to the terminal
  • the second indication signaling is used to indicate that the corresponding frequency domain resource on the reserved time domain resource cannot be used for transmission.
  • An embodiment of the present application also provides a data receiving device, including:
  • the first receiving module used to side receive the first indication signaling sent by the base station;
  • the first indication signaling is used to indicate that the first time domain resource cannot be used for transmission.
  • An embodiment of the present application also provides a data receiving device, including:
  • the second receiving module used to receive the second indication signaling sent by the base station;
  • the second indication signaling is used to indicate that the corresponding frequency domain resource on the reserved time domain resource cannot be used for transmission.
  • An embodiment of the present application provides a network device, and the base station includes a processor and a memory;
  • the memory is used to store instructions
  • the processor is configured to read the instruction to execute the method applied to the base station in the embodiment of the present application.
  • the embodiment of the application provides a communication system, and the system includes the terminal provided in the embodiment of the application and the base station provided in the embodiment of the application.
  • the embodiment of the present application provides a storage medium that stores a computer program, and the computer program implements any of the methods provided in the embodiments of the present application when the computer program is executed by a processor.
  • configuring the reserved time domain resources for the target data of the second system in the first system includes:
  • the time domain reserved period is L subframes; the symbol reservation information is the first S symbols of the reserved time domain reserved period.
  • the time domain reservation period is a single subframe
  • the time domain resources reserved for the target data configuration of the second system in the first system include:
  • L start represents the length of the LTE downlink control region (LTE legacy control channel region).
  • configuring the reserved time domain resources for the target data of the second system in the first system includes:
  • time slot reservation period may be predefined or configured through signaling; the symbol reservation period may be predefined or configured through signaling.
  • the slot reservation period and the symbol reservation period may be the same or different.
  • configuring the reserved time domain resources for the target data of the second system in the first system includes:
  • the length of the slot reserved bitmap is S1 bits
  • the length of the subframe reserved bitmap is S2 bits
  • the length of the symbol reserved bitmap is S3 bits.
  • configuring the reserved time domain resources for the target data of the second system in the first system includes:
  • the resource reservation of S2 subframes is set through the subframe reservation bitmap, and the optional value of S2 may be 3, 5, 6, 8 or 10.
  • the time domain reservation period is L1 subframes; the time domain offset indicates the subframe where the time domain reservation bitmap starts in the time domain reservation period and the time domain preset Leave the distance to the beginning of the cycle.
  • the time domain reserved bitmap is a subframe reserved bitmap, and the length of the subframe reserved bitmap is M1.
  • time domain reserved period is L2 subframes; the time domain offset indicates the subframe where the time domain reserved bitmap starts in the time domain reserved period and the start of the time domain reserved period the distance.
  • the time domain reserved bitmap is a time slot reserved bitmap, and the length of the time slot reserved bitmap is M2.
  • the time domain reservation period is L3 subframes; the time domain offset indicates the distance between the subframe of the time domain reservation bitmap in the time domain reservation period and the start of the time domain reservation period .
  • the time domain offset can be predefined or indicated by signaling.
  • the reserved narrowband (NB, Narrow Band) is indicated by the indicator value of X2 bits, P is used to indicate the number of narrowbands included in system 1 in the coexistence system, and M is used to indicate the frequency domain of system 2 in the coexistence system.
  • the maximum number of frequency domain resource blocks to be reserved is indicated by the indicator value of X2 bits, P is used to indicate the number of narrowbands included in system 1 in the coexistence system, and M is used to indicate the frequency domain of system 2 in the coexistence system. The maximum number of frequency domain resource blocks to be reserved.
  • the frequency resource reservation indication value of the value indicated by the X2 bit 2 (Frequency resource reservation indication value, briefly described here as Y2) indicates the starting position of the reserved continuous narrowband NB START and the length of the reserved continuous NB L CRNB . Indicates a reserved continuous narrow band, which has the following characteristics:
  • Y2 is the same as the maximum narrowband sequence number of the reserved continuous narrowband, which means that the reserved narrowband is Y2+1 continuous narrowbands from the narrowband sequence number 0 to the narrowband sequence number Y2.
  • NB START 0
  • L CRNB Y2+1.
  • the frequency resource reservation indication value 2 (Frequency resource reservation indication value, briefly described here as Y2) indicated by the X2 bit indicates the start position NB START of the reserved continuous narrowband and the length of the reserved continuous NB L CRNB to indicate the reservation.
  • the remaining continuous narrow band has the following characteristics:
  • Y2 is the same as the maximum narrowband sequence number of the reserved continuous narrowband, indicating that the reserved narrowband is Y2+1 continuous narrowbands from the narrowband number 0 to the narrowband number Y2-.
  • NB START 0
  • L CRNB Y2+1.
  • Y2 is the same as the maximum narrowband sequence number of the reserved continuous narrowband, indicating that the reserved narrowband is from the narrowband sequence number The beginning A narrow band. among them,
  • the reserved RBG (Resource Block Group) is indicated by X3 bits, where N represents the number of resource blocks included in the system 1 in the coexistence system, and the number of RBGs included in the system T represents the number of resource blocks included in the RBG, and M represents the maximum number of frequency domain resource blocks reserved in the frequency domain of the system 2 in the coexistence system.
  • the frequency resource reservation indication value 3 ( hereinafter referred to as Y3) indicated by the X3 bit indicates the starting position RBG START of the reserved continuous RBG and the length of the reserved continuous RBG L CRRBG to indicate the reservation.
  • the remaining continuous RBG has the following characteristics:
  • Y3 is the same as the maximum RBG sequence number of the reserved consecutive RBG, which means that the reserved RBG is Y3+1 consecutive RBGs from RBG sequence number 0 to RBG sequence number Y3.
  • (Y3-Q+1) is the same as the minimum RBG sequence number of the reserved continuous RBG, indicating that the reserved RBG is from the RBG sequence number (Y3-Q+1) to the RBG sequence number (Q -1).
  • RBG START Y3-Q+1
  • L CRRBG 2Q-Y3-1.
  • the value Y3 indicated by the X3 bit represents a reserved continuous RBG and has the following characteristics:
  • RBG START Y3-Q+1
  • the reserved time-frequency domain resources, the two-dimensional resources combined with the real-time domain and the frequency domain are divided into non-dynamically changeable reserved time-frequency domain resources or dynamically changeable reserved time-frequency domain resources.
  • the time-frequency domain reserved resources refer to reserved time-frequency domain resources that can be dynamically changed.
  • the time-frequency domain reserved resources can be used by the system.
  • the signaling for dynamically activating reserved resources in the time-frequency domain includes the configuration of the activation duration timer.
  • the signaling is the signaling sent by the base station to the user equipment. Before the activation timer expires, the time-frequency domain reserved resources can be used by the system; after the activation duration timer expires, the time-frequency domain reserved resources cannot be used by the system.
  • the activation duration timer for dynamically activating time-frequency domain resources is predefined.
  • the time domain reserved resources in the system are dynamically rewritten.
  • the time-frequency domain reserved resources refer to time-frequency domain resources that can be dynamically changed.
  • some symbols in the dynamically configured subframe or time slot can be occupied by the system before the rewrite timer expires.
  • the duration of the rewrite timer can be predefined or configured through signaling.
  • part or all of the time domain reservations within the currently scheduled data transmission duration are dynamically rewritten.
  • the 1-bit dynamic rewriting indication value indicates whether the time domain reservation within the currently scheduled data transmission time length range can be occupied by the data transmission.
  • the 2-bit dynamic rewrite indication value indicates that the time domain reservation of part or all of the transmission duration within the range of the currently scheduled data transmission duration can be occupied by the data transmission.
  • the 2-bit dynamic rewrite indication value indicates that the time domain reservation within the currently scheduled data transmission duration range is one of the following four situations:
  • the time domain reservation within the range of the currently scheduled data transmission duration cannot be occupied by the data transmission, the time domain reservation within the first 1/4 range of the currently scheduled data transmission duration can be occupied by the data transmission, and the currently scheduled data
  • the time domain reservation within the first 1/2 range of the transmission duration can be occupied by the data transmission, or the time domain reservation within the currently scheduled data transmission duration range can be occupied by the data transmission.
  • the 2-bit dynamic rewrite indication value indicates that the time domain reservation within the currently scheduled data transmission duration range is one of the following four situations:
  • the time domain reservation within the range of the currently scheduled data transmission duration cannot be occupied by the data transmission, and the time domain reservation within the first 1/4 range of the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data
  • the time domain reservation within the first 1/2 range of the transmission duration cannot be occupied by the data transmission, or the time domain reservation within the currently scheduled data transmission duration range can be occupied by the data transmission.
  • the 2-bit dynamic rewrite indication value indicates that the time domain reservation within the currently scheduled data transmission duration range is one of the following four situations:
  • the time domain reservation within the range of the currently scheduled data transmission duration cannot be occupied by the data transmission, the time domain reservation within the first 1/2 range of the currently scheduled data transmission duration can be occupied by the data transmission, and the currently scheduled data The time domain reservation within the first 1/2 range of the transmission duration cannot be occupied by the data transmission, or the time domain reservation within the currently scheduled data transmission duration range can be occupied by the data transmission.
  • the embodiments of the present application can solve the problem of sending important resources when two systems coexist, ensure that the sending of important data of the two systems does not affect each other, avoid data conflicts, and reduce system overhead.
  • FIG. 1 is a schematic flowchart of a resource indication method according to an embodiment of the application.
  • Figure 2 is a schematic diagram of time domain resource reservation according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of time domain resource reservation according to an embodiment of the application.
  • Fig. 4 is a schematic flowchart of a resource indication method according to an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a data receiving method according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of frequency domain resource reservation according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of frequency domain resource reservation according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a resource indicating device according to an embodiment of the application.
  • Fig. 9 is a schematic structural diagram of a data receiving device according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a communication system according to an embodiment of the application.
  • the resource indication method provided by the embodiment of the present application includes:
  • Step S11 Send the first indication signaling to the terminal.
  • the first indication signaling includes reserved time domain resource information, which is used to indicate that the first time domain resource cannot be used for transmission.
  • the indication signaling is used to configure reserved time domain resources and/or frequency domain resources.
  • the time domain resource is used to transmit the target data of the second system in the first system; the first system and the second system are systems that share the same spectrum resource.
  • the first system may be an LTE-MTC system or an NB-IoT system.
  • the second system may be an NR system.
  • the first time domain resource can be used to transmit the synchronization signal block (Synchronization Signal Block, SSB) and/or the common control channel block (Control-Resource Set) of the NR system. , CORESET 0).
  • SSB Synchronization Signal Block
  • Control-Resource Set Control-Resource Set
  • the embodiment of the present application indicates through signaling that the first time domain resource cannot be used for transmission, so that the first time domain resource can be reserved for another system to ensure the transmission of important data when the two systems share the same spectrum resource.
  • the reserved time domain resources can be configured by configuring the time domain reservation period, and the time domain reservation bitmap or the time domain reservation indicator value can be further used to indicate further in the time domain reservation period. Time domain resource allocation status.
  • the time domain reserved period can be any time value.
  • the time domain reserved period is one of the following: 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, and 160 ms.
  • the target data may be a synchronization signal block (Synchronization Signal Block, SSB) and/or a common control channel block (CORESET 0) of the NR system.
  • SSB Synchron Control Signal Block
  • CORESET 0 common control channel block
  • half a radio frame includes five NR slots and 10 LTE slots.
  • SSB sends a maximum of four Each time, 4 sign bits are occupied each time.
  • CORESET 0 is also sent 4 times, occupying 2 sign bits each time.
  • the target data is the SSB
  • four symbol bits are reserved for the SSB in the first four LTE time slots of a half subframe.
  • the target data is SSB and CORESET 0
  • the first two symbol bits are reserved for CORESET 0 in LTE slot 0 and LTE slot 2 respectively
  • the second, third, fourth, and fifth symbols are reserved in LTE slot 1 and LTE slot 3, respectively Bits are given to SSB
  • the first 2 symbols are reserved for CORESET 0 in LTE slot4 and LTE slot6 respectively.
  • the first indication signaling includes: time domain reserved period information and time domain offset information, and time reserved in the time domain reserved period corresponding to the time domain reserved period information Domain resource information; wherein the time domain resource reserved in the time domain reservation period is represented by the time domain reservation bitmap; the time domain offset corresponding to the time domain offset information is in the time domain reservation period The distance between the subframe where the start position of the time domain reserved bitmap is located and the start of the time domain reserved period.
  • time domain reserved period information and time domain offset information are jointly indicated by 6 bits.
  • the time domain reserved period is indicated by 3 bits; the time domain offset is indicated by 5 bits.
  • the time domain reserved period 3 bits are used to indicate the time domain reserved period, so that all possible transmission periods of important target data in the NR system can be included.
  • the time domain offset is indicated by 5 bits, so that it can include all the possible time domain offset ranges for important target data in the NR system.
  • the indication value may also have other lengths.
  • the time domain reservation period may be indicated by a bit value greater than 3 such as 4 bits, 5 bits, and 6 bits, and the time domain reservation period may be indicated by a bit value greater than 5 by 6 bits, 7 bits, and 8 bits.
  • the bit value of indicates the time domain offset. It is also possible to jointly indicate the time domain reserved period and the time domain offset through a bit value greater than 6.
  • the time domain reservation bitmap includes a time slot reservation bitmap for indicating reserved time slots in the time domain reservation period.
  • one or more bits in the time slot reservation bitmap can be set to a certain value, for example, can be set to 0 or 1, indicating that the time slot resource corresponding to the bit is reserved for The second system.
  • the length of the time slot reserved bitmap can be determined according to needs, for example, the length is 4 bits or 10 bits.
  • the symbols actually reserved in the slot are determined according to the parity of the slot index. If the time slot index is an odd number, the symbol reserved in the time slot is determined according to a corresponding method, and if the time slot index is an even number, the symbol reserved in the time slot is determined in another corresponding way.
  • the bit corresponding to the time slot reservation bitmap when the bit corresponding to the time slot reservation bitmap is set to the first value, for even-numbered time slots, the 3rd, 4th, 5th, and 6th symbols on the time slot are reserved For use by another system; when the bit corresponding to the slot reserved bitmap is set to the first value, for odd-numbered slots, the second, third, fourth, and fifth symbols on the slot are reserved for Used by another system.
  • the bit corresponding to the time slot reservation bitmap when the bit corresponding to the time slot reservation bitmap is set to the first value, for odd time slots, the 3rd, 4th, 5th, and 6th time slots are reserved.
  • the symbol is used by another system; for even-numbered time slots, the second, third, fourth, and fifth symbols on the time slot are reserved for use by another system.
  • the time slot reservation bitmap is determined according to needs, for example, the length is 4 bits or 10 bits.
  • the reserved resources can be used to transmit target data.
  • the target data in the embodiment of the present application may be the SSB block or CORESET 0 in the NR system.
  • the time domain reserved bitmap includes a symbol reserved bitmap, which is used to indicate reserved symbols in the time domain reserved period.
  • the time domain reserved bitmap includes a subframe reserved bitmap, which is used to indicate reserved symbols in a time domain reserved period; wherein, the subframe reserved bitmap corresponds to If the bit is the first value, it indicates that the preset symbol bit in the corresponding subframe is reserved.
  • the subframe includes multiple symbols. In the embodiment of the present application, it is possible to know which subframe is an invalid subframe through the reserved bitmap of the subframe. By pre-defining or in other manners, one or more specific symbols in the subframe can be configured to be reserved for target data.
  • bit corresponding to the reserved bitmap of the subframe is set to the first value, at least one symbol bit in the corresponding subframe is reserved.
  • a pre-configuration method may be used to specify that at least one symbol bit in the subframe reserved for the second system is reserved.
  • the preset symbol bit in the corresponding subframe is reserved for use by the second system.
  • At least one sign bit in the subframe reserved for the target data may be pre-configured as an invalid sign bit.
  • the time domain reserved bitmap includes a subframe reserved bitmap and a symbol reserved bitmap, and the time domain resources in the reserved time domain period are configured through the time domain reserved bitmap , Including: configuring the reserved symbols in the time domain reserved period according to the subframe reserved bitmap and the symbol reserved bitmap.
  • the reserved subframe reserved for the target data may be configured through the subframe reserved bitmap, and the reserved symbols of the target data in the reserved subframe may be configured through the symbol reserved bitmap.
  • configuring the symbols reserved by the target data in the time domain reservation period according to the set subframe reserved bitmap and symbol reserved bitmap includes: the bit corresponding to the subframe reserved bitmap The bit is set to the first value, and the reserved symbol is configured in the corresponding subframe in the time domain reserved period according to the symbol reserved bitmap.
  • the length of the reserved bitmap of the subframe may be determined according to needs, for example, the length is 2 bits, 5 bits or 10 bits.
  • the length of the reserved bitmap of the subframe is selected according to the length of the target data.
  • the length of the symbol reserved bitmap can be determined according to needs, for example, the length is 2 bits, 7 bits, 14 bits, 28 bits, 70 bits, 7-L start bits or 14-L start bits.
  • L start represents the length of the long-term evolution LTE downlink control region (LTE legacy control channel region).
  • the length of the symbol reserved bitmap is selected according to the target data length.
  • the first value may be 1 or 0.
  • a bit in the slot reservation bitmap, subframe reservation bitmap, or symbol reservation bitmap when a bit in the slot reservation bitmap, subframe reservation bitmap, or symbol reservation bitmap is set to 1 or 0, it means that the resource corresponding to the bit is reserved for the target. Data, that is, use the resource corresponding to the bit to transmit the target data.
  • configuring the time domain resources in the reserved time domain period through the time domain reserved bitmap includes: configuring the reserved time slots according to the set time slot reservation bitmap; Frame reservation bitmap, after the reserved time slot, configure reserved subframes; according to the set symbol reservation bitmap, in the reserved subframe, configure reserved symbols.
  • the reserved time slots, reserved subframes, and reserved symbols are the time slots, subframes, and symbols in the reserved period of the time domain, respectively.
  • the reserved subframe is after the S1/2 subframe at the start position of the reserved slot, and S1 is the length of the slot reserved bitmap.
  • the reserved time slot occupies the length of the S1/2 subframe, and the reserved subframe is configured immediately after the reserved time slot.
  • the length value of the reserved bitmap of the subframe may be determined as required, for example, the length is 3 bits, 5 bits, 6 bits, 8 bits or 10 bits.
  • the length of the reserved bitmap of the subframe is configured according to the length of the target data.
  • the length of the symbol reserved bitmap can be determined as required, for example, the length is 2 bits, 7 bits, 14 bits, 7-L start bits or 4-L start bits; L start means LTE The length of the downstream control area.
  • the length of the symbol reserved bitmap is configured according to the length of the target data.
  • configuring the reserved time domain resources includes: configuring the second value of reserved subframes according to a preset configuration method, and the first third value of the symbol bits in the reserved subframes are all The reserved symbols of the target data configuration.
  • the reserved resources can also be configured in a predefined manner. By pre-setting the indication value or pre-defining, the corresponding reserved resources can be directly configured without using bitmaps.
  • the above configuration methods can be pre-defined through protocols or other methods, without setting a special bitmap.
  • configuring the reserved time domain resources includes: configuring the reserved time of the target data in a predefined reservation period according to the set time slot reservation bitmap and the set symbol reservation bitmap Domain resources.
  • the reservation period may be configured in a predefined manner, and then combined with the bitmap to configure the specific time domain resources reserved in the reservation period.
  • the method further includes: configuring reserved frequency domain resources for target data; wherein the reserved frequency domain resources are used to transmit the target data.
  • the reserved frequency domain resources include: at least one continuous resource block, or at least one continuous narrowband or at least one continuous resource block group; configuring the reserved frequency domain resources includes: The preset frequency domain indicator value determines the starting position and quantity of the reserved frequency domain resources.
  • the reserved frequency domain resources are configured mainly by setting the frequency domain indicator value.
  • the time domain reservation period is one of the following: 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the method further includes: sending reserved resource rewriting indication signaling; wherein the reserved resource rewriting indication signaling is transmitted through a physical downlink control channel, and the reserved resource rewriting indication signaling indicates the physical downlink control channel corresponding to the physical downlink control channel. The situation where the reserved resource in the resource corresponding to the shared channel is rewritten.
  • the case where the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes: the length of the reserved resource rewrite indication signaling may be determined as required, for example, 2. Bit, indicating that the time domain reservation within the currently scheduled data transmission duration is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data transmission.
  • the time domain reservation within the first 1/4 range of the time length can be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the current scheduled data transmission time can be occupied by the data transmission, or the currently scheduled data All the time domain reservations within the transmission time range can be occupied by the data transmission.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes: the reserved resource rewrite indication signaling is 2 Bit, indicating that the time domain reservation within the currently scheduled data transmission duration is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data transmission The time domain reservation within the first 1/4 range of the time length cannot be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the current scheduled data transmission time cannot be occupied by the data transmission, or the currently scheduled data All the time domain reservations within the transmission time range can be occupied by the data transmission.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes: the reserved resource rewrite indication signaling is 2 Bit, indicating that the time domain reservation within the currently scheduled data transmission duration is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data transmission The time domain reservation within the first 1/2 range of the time length can be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the currently scheduled data transmission time cannot be occupied by the data transmission, or the currently scheduled data All the time domain reservations within the transmission time range can be occupied by the data transmission.
  • the embodiment of the present application provides a resource indication method, as shown in FIG. 4, including:
  • Step S40 Send reserved resource rewriting indication signaling.
  • the reserved resource rewrite indication signaling is transmitted through the physical downlink control channel, and the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes: the reserved resource rewrite indication signaling is 2 Bit, indicating that the time domain reservation within the currently scheduled data transmission duration is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data transmission The time domain reservation within the first 1/4 range of the time length can be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the current scheduled data transmission time can be occupied by the data transmission, or the currently scheduled data All the time domain reservations within the transmission time range can be occupied by the data transmission.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes: the reserved resource rewrite indication signaling is 2 Bit, indicating that the time domain reservation within the currently scheduled data transmission duration is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data transmission The time domain reservation within the first 1/4 range of the time length cannot be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the current scheduled data transmission time cannot be occupied by the data transmission, or the currently scheduled data All the time domain reservations within the transmission time range can be occupied by the data transmission.
  • the situation that the reserved resource rewrite indication signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten includes: the reserved resource rewrite indication signaling is 2 Bit, indicating that the time domain reservation within the currently scheduled data transmission duration is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration cannot be occupied by the data transmission, and the currently scheduled data transmission The time domain reservation within the first 1/2 range of the time length can be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the currently scheduled data transmission time cannot be occupied by the data transmission, or the currently scheduled data All the time domain reservations within the transmission time range can be occupied by the data transmission.
  • An embodiment of the present application also provides a data receiving method, as shown in FIG. 5, including:
  • Step S41 Receive the first indication signaling sent by the base station.
  • the first indication signaling includes reserved time domain resource information, which is used to indicate that the first time domain resource cannot be used for transmission.
  • the first indication signaling includes: time domain reserved period information and time domain offset information, and time reserved in the time domain reserved period corresponding to the time domain reserved period information Domain resource information; wherein the time domain resource reserved in the time domain reservation period is represented by the time domain reservation bitmap; the time domain offset corresponding to the time domain offset information is in the time domain reservation period The distance between the subframe where the start position of the time domain reserved bitmap is located and the start of the time domain reserved period.
  • an embodiment of the present application further provides a resource indication method, including: receiving second indication signaling sent by a base station; wherein, the second indication signaling is used to indicate the reserved time domain The corresponding frequency domain resource on the resource cannot be used for transmission.
  • FFRIV L CRRB -1
  • FFRIV RB START + min (M, N)-1
  • N the number of resource blocks included in the system Quantity
  • M the maximum number of resource blocks that need to be reserved
  • FRRIV the frequency domain reservation indication value corresponding to the frequency domain reservation indication signaling
  • RB START is used to indicate the starting position of the reserved resource block
  • L CRRB It is used to indicate the number of reserved resource blocks
  • min represents the minimum value.
  • the method provided in the present application further includes: receiving reserved resource rewrite instruction signaling; wherein the reserved resource rewrite instruction signaling is transmitted through a physical downlink control channel, and the reserved resource rewrite instruction The signaling indicates that the reserved resource in the resource corresponding to the physical shared channel corresponding to the physical downlink control channel is rewritten.
  • the data receiving method is used to receive the resource transmission data indicated by the resource indication method provided in any embodiment of the present application.
  • This embodiment is used to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring a time domain reservation period, where the time domain reservation period is 5ms, 10ms, 20ms, 40ms, 80ms, or One of 160ms.
  • Configuring the time domain reservation period further includes: configuring the time domain offset by pre-defining or sending signaling.
  • the time domain offset indicates the half frame of the time domain reserved bitmap in the time domain reservation period (5ms half frame) The distance between the start position and the start of the time domain reserved period.
  • the time domain offset is 0ms by default.
  • the time domain offset is 0ms or 5ms.
  • the time domain offset is 0ms, 5ms, 10ms, or 15ms.
  • the time domain offset is 0ms, 5ms, 10ms, 15ms, 20ms, 25ms, 30ms or 35ms.
  • the time domain offset is 0ms, 5ms, 10ms, 15ms, 20ms, 25ms, 30ms, 35ms, 40ms, 45ms, 50ms, 55ms, 60ms, 65ms, 70ms or 75ms.
  • the time domain offset is 0ms, 5ms, 10ms, 15ms, 20ms, 25ms, 30ms, 35ms, 40ms, 45ms, 50ms, 55ms, 60ms, 65ms, 70ms, 75ms, 80ms, 85ms, 90ms, 95ms, 100ms, 105ms, 110ms, 115ms, 120ms, 125ms, 130ms, 135ms, 140ms, 145ms, 150ms or 155ms.
  • the time-domain reservation indication value is used to indicate the time slot reservation period and the time slot offset separately or jointly.
  • the time domain reserved period is indicated by 3 bits, and the time slot offset is indicated by 5 bits; the time domain reserved period and the time slot offset are indicated by 6 bits.
  • Configuring the time domain reservation period further includes: configuring the time slot reservation bitmap in the time domain reservation period.
  • the length of the slot reserved bitmap is M bits, and the optional value of M is 4 or 10.
  • the bit corresponding to the time slot reservation bitmap When the bit corresponding to the time slot reservation bitmap is set to 1, the corresponding time slot is reserved for another system.
  • the bit corresponding to the time slot reservation bitmap is set to 1, for even-numbered time slots, the 3rd, 4th, 5th, and 6th symbols on the time slot are reserved for use by another system.
  • the bit corresponding to the time slot reservation bitmap is set to 1, for odd time slots, the second, third, fourth, and fifth symbols on the time slot are reserved for use by another system.
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • the transmission conflict with the SSB of the NR can be effectively avoided in the time domain, while the overhead is small and the resource waste is small.
  • This embodiment is used to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring a time domain reservation period, where the time domain reservation period is 5ms, 10ms, 20ms, 40ms, 80ms, or One of 160ms.
  • Configuring the time domain reservation period further includes: configuring the time domain offset by pre-defining or sending signaling, where the time domain offset indicates the half frame (5ms half of the time domain reserved bitmap) in the time domain reservation period. The distance between the start position of frame) and the start of the time domain reserved period.
  • Configuring the time domain offset in a pre-defined or signaling manner further includes: separately or jointly indicating the time slot reservation period and the time slot offset through the time domain offset indicator value.
  • the time domain reserved period is indicated by 3 bits, and the time slot offset is indicated by 5 bits; the time domain reserved period and the time slot offset are indicated by 6 bits.
  • Configuring the time domain reservation period further includes: configuring the subframe reservation bitmap and/or symbol reservation bitmap in the time domain reservation period.
  • the optional value of the length of the reserved bitmap of the subframe is 5 bits, 2 bits or 10 bits.
  • the 3rd, 4th, 5th, and 6th subframes are not reserved for other systems by default.
  • bit corresponding to the subframe reserved bitmap When the bit corresponding to the subframe reserved bitmap is set to 1, it means that there is at least one symbol in the corresponding subframe that needs to be reserved for other systems.
  • the reserved symbol position in the subframe is predefined.
  • the symbol reserved bitmap in the subframe is 2 bits or 7 bits or 14 bits or 7-L start bits or 14-L start bits.
  • L start represents the length of the LTE legacy control channel region.
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • the transmission conflict with the SSB and/or CORESET 0 of the NR can be effectively avoided in the time domain, and at the same time, the overhead is small and the resource waste is small.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring a time domain reservation period, where the time domain reservation period is 5 ms, One of 10ms, 20ms, 40ms, 80ms, or 160ms.
  • Configuring the time domain reservation period includes: configuring the time domain offset by pre-defining or sending signaling.
  • the time domain offset indicates the half frame (5ms half frame) of the time domain reserved bitmap in the time domain reservation period. The distance between the start position of) and the start of the time domain reserved period.
  • the slot reservation period and slot offset are indicated separately or jointly.
  • the time domain reserved period is indicated by 3 bits, and the time slot offset is indicated by 5 bits; the time domain reserved period and the time slot offset are indicated by 6 bits.
  • Configuring the time domain reservation period also includes: configuring the symbol reservation bitmap in the time domain reservation period.
  • the length of the symbol reserved bitmap can be predefined or configurable.
  • the length of the symbol reserved bitmap may be 7 bits, 14 bits, 28 bits or 70 bits.
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • the transmission conflict with the SSB and CORESET0 of the NR can be effectively avoided in the time domain, and the flexibility is high.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring a time domain reservation period, where the time domain reservation period is 5 ms, One of 10ms, 20ms, 40ms, 80ms, or 160ms.
  • Configuring the time domain reservation period further includes: configuring a time domain offset, where the time domain offset indicates the start position and time domain of the half frame (5ms half frame) where the time domain reserved bitmap in the time domain reservation period is located The distance from the beginning of the reserved period.
  • configuring the time domain offset includes: separately or jointly indicating the time slot reservation period and the time slot offset through the indication value.
  • the 3-bit indicator value indicates the time domain reserved period
  • the 5-bit indicator value indicates the slot offset
  • the 6-bit indicator value indicates the time domain reserved period and the slot offset.
  • Configuring the time domain reservation period further includes: configuring the time slot reservation bitmap, subframe reservation bitmap, and/or symbol reservation bitmap in the time domain reservation period.
  • the length of the time slot reserved bitmap is S1 bits
  • the length of the subframe reserved bitmap is S2 bits
  • the length of the symbol reserved bitmap is S3 bits.
  • Configure the time slot reservation bitmap and subframe reservation bitmap in the time domain reservation period and further include: reserve the starting position from the time slot After the subframe, the resource reservation of S2 subframes is set through the subframe reservation bitmap.
  • the optional value of S2 can be 3, 5, 6, 8, or 10.
  • Configuring the subframe reserved bitmap and the symbol reserved bitmap further includes: configuring the symbol reserved bitmap in the subframe for the subframe in which the bit corresponding to the subframe reserved bitmap is set to 1.
  • the length of the symbol reserved bitmap in the subframe is 2 bits or 7 bits or 14 bits or 7-L start bits or 14-L start bits.
  • L start represents the length of the LTE downlink control region (LTE legacy control channel region).
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • the transmission conflict with the SSB and/or CORESET 0 of the NR can be effectively avoided in the time domain, and the flexibility is high.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring symbol reservation information in the time domain reservation period.
  • the time domain reserved period is L subframes; the symbol reservation information is the first S symbols of the reserved time domain reserved period.
  • the time domain reserved period may be configured as a single subframe or two subframes.
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • the transmission conflict with NR can be effectively avoided in the time domain, and the overhead is small.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring or pre-defined time slot reservation bitmap in the time slot reservation period And the symbol reserve bitmap in the symbol reserve period.
  • the time slot reservation period is one of 5ms, 10ms, 20ms, 40ms, 80ms, or 160ms.
  • the time domain offset of the time slot reservation indicates the start position and the time slot of the half frame (5ms half frame) where the time slot reservation bitmap in the time slot reservation period is The distance from the beginning of the reserved period.
  • the symbol reservation period and/or the time domain offset of the symbol reservation are pre-defined or configured through signaling, and the symbol reservation time domain offset indicates the subframe and the symbol reservation of the symbol reservation bitmap in the symbol reservation period. Leave the distance to the beginning of the cycle.
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system and the LTE-MTC system, including: configuring reserved frequency domain resources through the indication value.
  • the reserved frequency domain resources are one or more continuous resource blocks (Resource Block, RB), or one or more continuous narrowbands (Narrowband), or one or more continuous resource block groups (Resource Block Group). , RBG).
  • the X1 bit indicates the reserved resource block, where N represents the number of resource blocks included in the LTE-MTC system, and M represents the largest continuous resource block reserved for the LTE-MTC system in the frequency domain by the NR system in the coexistence system at a time Quantity.
  • M> 24.
  • the frequency resource reservation indication value (FRRIV) of X1 bits is used to indicate the start position of the reserved continuous RB (RB START ) and the length of the reserved continuous RB L CRRB , thereby indicating the reservation
  • FRRIV is the same as the maximum resource block sequence number of the reserved contiguous resource block, and the reserved resource block is FRRIV+1 contiguous resource blocks from resource block sequence number 0 to resource block sequence number (FRRIV) .
  • RB START 0
  • L CRRB FRRIV+1.
  • L CRRB 2N-FRRIV-1.
  • the reserved RB is on one side of the LTE-MTC bandwidth, the reserved RB is in the middle of the LTE-MTC bandwidth, and the reserved RB is on the other side of the LTE-MTC bandwidth.
  • the starting position is RB 12. If N>M, at this time, resource blocks in the LTE-MTC system may conflict with NR SSB/CORESET 0 in the frequency domain.
  • the frequency resource reservation indication value (Frequency resource reservation indication value, FRRIV) indicated by the X1 bit is used to indicate the starting position of the reserved continuous RB (RB START ) and the length of the reserved continuous RB L CRRB to indicate
  • FRRIV is the same as the maximum resource block sequence number of the reserved contiguous resource block, and the reserved resource block is FRRIV+1 contiguous resource blocks from resource block sequence number 0 to resource block sequence number (FRRIV) .
  • RB START 0
  • L CRRB FRRIV+1.
  • FRRIV is the same as the maximum resource block sequence number of the reserved contiguous resource block, indicating that the reserved resource block is M contiguous resource blocks starting from the resource block sequence number (FRRIV-M+1).
  • RB START FRRIV-M+1
  • L CRRB M.
  • (FRRIV-M+1) is the same as the minimum resource block sequence number of the reserved contiguous resource block, indicating that the reserved resource block is from the resource block sequence number (FRRIV-M+1 ) To the consecutive resource blocks of the resource block number (N-1).
  • RB START (FRRIV-M+1)
  • L CRRB N+M-FRRIV-1.
  • the reserved narrowbands are indicated by X2 bits, where P represents the number of narrowbands included in the system 1 in the coexistence system, and M represents the maximum reserved number of frequency domain resource blocks in the frequency domain of the system 2 in the coexistence system.
  • the frequency resource reservation indication value of the value indicated by the X2 bit 2 (Frequency resource reservation indication value, here briefly described as Y2) indicates the start position of the reserved continuous narrowband (NB START ) and the length L of the reserved continuous NB CRNB stands for reserved continuous narrowband and has the following characteristics:
  • Y2 is the same as the maximum narrowband sequence number of the reserved continuous narrowband, which means that the reserved narrowband is Y2+1 continuous narrowbands from the narrowband sequence number 0 to the narrowband sequence number Y2.
  • NB START 0
  • LCRNB Y2+1.
  • the frequency resource reservation indication value 2 (Frequency resource reservation indication value, briefly described here as Y2) indicated by the X2 bit indicates the start position of the reserved continuous narrowband (NB START ) and the length of the reserved continuous NB L CRNB . Indicates a reserved continuous narrow band, which has the following characteristics:
  • Y2 is the same as the maximum narrowband sequence number of the reserved continuous narrowband, indicating that the reserved narrowband is Y2+1 continuous narrowbands from the narrowband number 0 to the narrowband number Y2-.
  • NB START 0
  • L CRNB Y2+1.
  • Y2 is the same as the maximum narrowband sequence number of the reserved continuous narrowband, indicating that the reserved narrowband is from the narrowband sequence number The beginning A narrow band. among them,
  • the reserved RBGs are indicated by X3 bits, where N represents the number of resource blocks included in the system 1 in the coexistence system, then the number of RBGs included in the system T represents the number of resource blocks included in the RBG, and M represents the maximum number of reserved frequency domain resource blocks to be reserved in the frequency domain of the system 2 in the coexistence system.
  • the frequency resource reservation indication value 3 (Frequency resource reservation indication value, briefly described here as Y3) indicated by the X3 bit indicates the start position of the reserved continuous RBG (RBG START ) and the length of the reserved continuous RBG L CRRBG .
  • Y3 Frequency resource reservation indication value 3
  • Y3 is the same as the maximum RBG sequence number of the reserved consecutive RBG, which means that the reserved RBG is Y3+1 consecutive RBGs from RBG sequence number 0 to RBG sequence number Y3.
  • (Y3-Q+1) is the same as the minimum RBG sequence number of the reserved continuous RBG, indicating that the reserved RBG is from the RBG sequence number (Y3-Q+1) to the RBG sequence number (Q -1).
  • RBG START Y3-Q+1
  • L CRRBG 2Q-Y3-1.
  • the value Y3 indicated by the X3 bit represents a reserved continuous RBG and has the following characteristics:
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • resources can be reserved for the coexistence system with minimal overhead in the frequency domain, which reduces coexistence interference and improves system utilization.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system and the LTE-MTC/NB-IoT system, including: configuring a time domain reservation period and a time domain offset.
  • the time domain reserved period can be indicated by the time domain reserved period indicator value
  • the time domain offset can be indicated by the time domain offset indicator value.
  • the time domain reservation period is L1 subframes, and the time domain offset indicator value indicates the distance between the subframe where the subframe reservation bitmap starts in the time domain reservation period and the start of the time domain reservation period.
  • the reserved subframe configured for the target data is indicated by the reserved subframe bitmap, and the length of the reserved subframe bitmap is M1.
  • the time domain reserved period is L2 subframes; the time domain offset indicator value indicates the distance between the subframe where the time domain reserved bitmap starts in the time domain reserved period and the start of the time domain reserved period.
  • the time slot reserved bitmap indicates the reserved time slot configured for the target data, and the length of the time slot reserved bitmap is M2.
  • the time domain reserved period is L3 subframes; the time domain offset indicator value indicates the distance between the subframe where the time domain reserved bitmap is located and the start of the time domain reserved period in the time domain reserved period.
  • the time domain offset can be predefined or indicated by signaling.
  • the reserved frequency domain resources are configured through the indication value, where the reserved frequency domain resources are one or more continuous resource blocks (Resource block, RB), one or more continuous narrowbands (Narrowband) Or one or more consecutive resource block groups (Resource Block Group, RBG).
  • the reserved frequency domain resource is a single resource block.
  • the reserved time-frequency domain resources are divided into reserved time-frequency domain resources that cannot be dynamically changed or reserved time-frequency domain resources that can be dynamically changed.
  • the frequency domain reserved resources are dynamically activated, the time-frequency domain reserved resources can be used by the system.
  • the signaling for dynamically activating reserved resources in the time-frequency domain includes the configuration of the activation duration timer. Before the activation timer expires, the time-frequency domain reserved resources can be used by the system; after the activation duration timer expires, the time-frequency domain reserved resources cannot be used by the system.
  • the activation duration timer for dynamically activating time-frequency domain resources is predefined.
  • the embodiment of the present application can solve the problem of effective transmission of important data between the first system and the second system when the first system and the second system coexist.
  • resources can be reserved for the coexistence system and the resources reserved for the coexistence system can be used flexibly, which reduces coexistence interference and improves the utilization rate of the system.
  • This embodiment provides a resource indication method to solve the coexistence of the NR system, the LTE-MTC system, and the NB-IoT system, including: configuring a time domain reservation period and a time domain offset.
  • the time domain reservation period is L1 subframes, and the time domain offset indicates the distance between the subframe where the subframe reservation bitmap starts in the time domain reservation period and the start of the time domain reservation period.
  • Configure the reserved bitmap for the subframe, and the length of the reserved bitmap for the subframe is M1.
  • the time domain reserved period is L2 subframes; the time domain offset indicates the distance between the subframe where the time domain reserved bitmap starts in the time domain reserved period and the start of the time domain reserved period.
  • the time domain reserved bitmap is a time slot reserved bitmap, and the length of the time slot reserved bitmap is M2.
  • the time domain reserved period is L3 subframes; the time domain offset indicates the distance between the subframe where the time domain reserved bitmap is located in the time domain reserved period and the start of the time domain reserved period.
  • the time domain offset can be predefined or indicated by signaling.
  • M4 can be predefined or configured through signaling.
  • the reserved time-frequency domain resources are divided into reserved time-frequency domain resources that cannot be dynamically changed or reserved time-frequency domain resources that can be dynamically changed.
  • some symbols in the dynamically configured subframe or time slot can be occupied by the system before the rewrite timer expires.
  • the duration of the rewrite timer can be predefined or configured through signaling.
  • part or all of the time domain reservations within the currently scheduled data transmission duration are dynamically rewritten.
  • One bit is used to indicate whether the time domain reservation within the currently scheduled data transmission duration can be occupied by the data transmission.
  • the time domain reservation indicating that part or all of the transmission duration within the range of the currently scheduled data transmission duration can be occupied by the data transmission through 2 bits.
  • the 2 bits indicate that the time domain reservation within the currently scheduled data transmission duration range is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration range cannot be occupied by the data transmission, The time domain reservation within the first 1/4 range of the currently scheduled data transmission time can be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the currently scheduled data transmission time can be occupied by the data transmission, Or the time domain reservation within the range of the currently scheduled data transmission time length can be occupied by the data transmission.
  • the 2 bits indicate that the time domain reservation within the currently scheduled data transmission duration range is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration range cannot be occupied by the data transmission, The time domain reservation within the first 1/4 range of the currently scheduled data transmission time cannot be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the currently scheduled data transmission time cannot be occupied by the data transmission, Or the time domain reservation within the range of the currently scheduled data transmission time length can be occupied by the data transmission.
  • the 2 bits indicate that the time domain reservation within the currently scheduled data transmission duration range is one of the following four situations: the time domain reservation within the currently scheduled data transmission duration range cannot be occupied by the data transmission, The time domain reservation within the first 1/2 range of the currently scheduled data transmission time length can be occupied by the data transmission, and the time domain reservation within the first 1/2 range of the currently scheduled data transmission time length cannot be occupied by the data transmission, Or the time domain reservation within the range of the currently scheduled data transmission time length can be occupied by the data transmission.
  • An embodiment of the present application also provides a resource indication device, as shown in FIG. 8, including: a first sending module 71: configured to send first indication signaling to a terminal; wherein, the first indication signaling includes reservation time
  • the domain resource information is used to indicate that the first time domain resource cannot be used for transmission.
  • the first indication signaling includes: time-domain reservation period information and time-domain offset information, and time-domain resource information reserved in the time-domain reservation period; wherein, the passing time The domain reservation bitmap represents the time domain resources reserved in the time domain reservation period; the time domain offset corresponding to the time domain offset information is the start of the time domain reservation bitmap in the time domain reservation period The distance between the subframe where the position is located and the start of the time domain reserved period.
  • time domain reserved period information and time domain offset information are jointly indicated by 6 bits.
  • time domain reserved period information and time domain offset information are indicated separately; wherein the time domain reserved period information is indicated by 3 bits; the time domain offset information is indicated by 5 bits .
  • the time domain reservation bitmap includes a time slot reservation bitmap for indicating reserved time slots in the time domain reservation period.
  • the time slot reservation bitmap is used to indicate that the actual reservation is determined according to the parity of the time slot index symbol.
  • the length of the time slot reservation bitmap is 4 bits or 10 bits.
  • the time domain reserved bitmap includes a symbol reserved bitmap, which is used to indicate reserved symbols in the time domain reserved period.
  • the time domain reserved bitmap includes a subframe reserved bitmap, which is used to indicate reserved symbols in a time domain reserved period; wherein, the subframe reserved bitmap corresponds to If the bit is the first value, it indicates that the preset symbol bit in the corresponding subframe is reserved.
  • the time domain reserved bitmap includes a subframe reserved bitmap and a symbol reserved bitmap, which are used to indicate reserved symbols in the time domain reserved period.
  • the bit corresponding to the subframe reserved bitmap is set to the first value, and the symbol reserved bitmap is used to indicate the reserved symbols in the corresponding subframe in the time domain reserved period .
  • the length of the reserved bitmap of the subframe is 2 bits, 5 bits or 10 bits.
  • the length of the symbol reserved bitmap is 2 bits, 7 bits, 14 bits, 28 bits, 70 bits, 7-L start bits, or 14-L start bits;
  • L start represents Long Term Evolution LTE The length of the downstream control area.
  • the first value is 1 or 0.
  • the time domain resource information reserved in the time domain reservation period includes: time slot reservation bitmap information and subframe reservation bitmap information; wherein, the subframe reservation bitmap corresponds to If the bit position of is the first value, the reserved symbols in the corresponding subframe in the time domain reserved period are predefined; or, the time domain resource information reserved in the time domain reserved period includes: time Slot reservation bitmap information, subframe reservation bitmap information, and symbol reservation bitmap information; wherein the reserved symbols in the corresponding subframe in the time domain reservation period are determined according to the symbol reservation bitmap information.
  • the reserved subframe starts X subframes after the end position of the reserved slot, where X is an integer.
  • the length value of the reserved bitmap of the subframe is 3 bits, 5 bits, 6 bits, 8 bits or 10 bits.
  • the first indication signaling includes: time domain reserved period information, used to indicate the time domain reserved period; wherein, the first Y symbols in the time domain reserved period are For the reserved symbols configured by the target data, the value of Y is indicated by symbol reservation information in the time domain reserved period, or Y is a predefined value.
  • the time domain reservation period is one subframe
  • the first indication signaling includes: time slot reservation bitmap information and symbol reservation bitmap information; wherein, the time domain reservation period of the time slot reservation bitmap can be preset Defined or configured through signaling; the time domain reservation period of the symbol reserved bitmap can be predefined or configured through signaling; the time domain reserved period of the time slot reserved bitmap and the symbol reserved bitmap The time domain reservation period can be the same or different.
  • the first indication signaling further includes reserved frequency domain resource information; wherein, the reserved frequency domain resource information is used to indicate the corresponding frequency on the reserved time domain resource Domain resources cannot be used for transmission.
  • the method further includes: sending a second indication signaling; wherein the second indication signaling indicates that the corresponding frequency domain resource on the reserved time domain resource cannot be used for transmission.
  • the reserved frequency domain resources include: at least one continuous resource block, or at least one continuous narrowband or at least one continuous resource block group.
  • N is the number of existing resource blocks in the system;
  • FRRIV is the reserved indication value in the frequency domain;
  • RB START is used to indicate the starting position of the reserved resource block;
  • L CRRB is used to indicate the number of the reserved resource block.
  • N is the number of resource blocks included in the system; M is the maximum number of resource blocks that need to be reserved; FRRIV is the reserved indication value in the frequency domain; RB START is used to indicate the starting position of the reserved resource block; L CRRB is used To indicate the number of reserved resource blocks.
  • the time domain reservation period is one of the following: 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the time domain resource is used to transmit target data of the second system in the first system; the first system and the second system are systems that share the same spectrum resource.
  • the first system is an LTE system, an MTC system or an NB-IoT system.
  • An embodiment of the present application also provides a resource indication device, including: a second sending module: used to send second indication signaling to a terminal; wherein, the second indication signaling is used to indicate the reserved time domain resources The corresponding frequency domain resources cannot be used for transmission.
  • a resource indication device including: a second sending module: used to send second indication signaling to a terminal; wherein, the second indication signaling is used to indicate the reserved time domain resources The corresponding frequency domain resources cannot be used for transmission.
  • the resource indicating device provided in the embodiment of this application is used to execute the resource indicating method provided in any one of the embodiments of this application.
  • An embodiment of the present application also provides a data receiving device, as shown in FIG. 9, including: a first receiving module 81: used to receive a first indication signaling sent by a base station; wherein, the first indication signaling is used for Indicates that the first time domain resource cannot be used for transmission.
  • the first indication signaling further includes reserved frequency domain resource information; wherein, the reserved frequency domain resource information is used to indicate the corresponding frequency on the reserved time domain resource Domain resources cannot be used for transmission.
  • the data receiving device provided in the embodiment of the present application further includes: a second receiving module: configured to receive second indication signaling sent by a base station; wherein, the second indication signaling is used to indicate the reserved time domain The corresponding frequency domain resource on the resource cannot be used for transmission.
  • a second receiving module configured to receive second indication signaling sent by a base station; wherein, the second indication signaling is used to indicate the reserved time domain The corresponding frequency domain resource on the resource cannot be used for transmission.
  • the data receiving device provided in the embodiment of the present application is used to receive the resource transmission data indicated by the resource indicating device provided in any embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • a terminal 130 provided in an embodiment of the present application includes a memory 1303 and a processor 1304.
  • the terminal 130 may also include an interface 1301 and a bus 1302.
  • the interface 1301, the memory 1303 and the processor 1304 are connected through a bus 1302.
  • the memory 1303 is used to store instructions.
  • the processor 1304 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the terminal. The implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the application.
  • the base station 140 provided in an embodiment of the present application includes a memory 1403 and a processor 1404.
  • the base station may further include an interface 1401 and a bus 1402.
  • the interface 1401, the memory 1403 and the processor 1404 are connected through a bus 1402.
  • the memory 1403 is used to store instructions.
  • the processor 1404 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the base station. The implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a communication system according to an embodiment of the application.
  • the system includes: a terminal 130 according to the foregoing embodiment and a base station 140 according to the foregoing embodiment.
  • the communication system of the embodiment of the application includes, but is not limited to: Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), General Mobile communication system (Universal Mobile Telecommunication System, UMTS), or 5G system, etc.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G system etc.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory, etc.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM can include many forms, such as static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DR RAM).
  • Static RAM, SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronization Dynamic random access memory Double Data Rate SDRAM, DDR SDRAM
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor of the embodiment of the present application may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FGPA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or processors based on multi-core processor architecture.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the foregoing processor may implement or execute the steps of each method disclosed in the embodiments of the present application.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出资源指示方法、数据接收方法及装置。所述方法包括向终端发送第一指示信令;其中,所述第一指示信令包含预留的时域资源信息,用于指示预留的时域资源不能用于传输。

Description

资源指示方法、数据接收方法及装置
本申请要求在2019年08月07日提交中国专利局、申请号为201910733945.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及资源指示方法、数据接收方法及装置。
背景技术
机器类型通信(Machine Type Communications,简称为MTC),又称机器到机器(Machine to Machine,简称为M2M)。机器类型通信和窄带物联网(NB-IoT,Narrow Band Internet of Things)是物联网的主要应用形式。相关技术中基于LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,演进LTE)的MTC终端,通常和传统LTE/LTE-A终端部署在同一个系统带宽下。NB-IoT终端采用带内部署(inband)和保护带部署(Guard band)方式,也和传统LTE/LTE-A终端部署在同一个系统带宽下。随着传统LTE/LTE-A终端退出市场,相关技术中的LTE频谱将被第五代移动通信技术(5th generation mobile networks,5G)新空口系统(NR,New Radio)所取代。
在共存系统带宽有限的情况下,LTE-MTC/NB-IoT和NR系统不能在共存系统带宽内各自享有独立的频域区域,这时,LTE-MTC/NB-IoT和NR系统将共享同一频域资源。由于基于LTE/LTE-A的MTC终端以及NB-IoT终端至少是十年的使用寿命,基于LTE/LTE-A的MTC系统(简称LTE-MTC系统)或NB-IoT系统和NR系统需要较长时间共存。如何在共存系统带宽有限的情况下保证系统共存时的性能,是需要解决的问题。
发明内容
本申请实施例提供了以下方案。
本申请实施例提供了一种资源指示方法,包括:
向终端发送第一指示信令;
其中,所述第一指示信令包含预留时域资源信息,用于指示第一时域资源不能用于传输。
在一种实施方式中,所述第一指示信令包括:
时域预留周期信息和时域偏置信息,以及所述时域预留周期信息对应的时域预留周期内预留的时域资源信息。
在一种实施方式中,所述时域预留周期中预留的时域资源通过时域预留位图表示;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
在一种实施方式中,所述时域预留周期信息和时域偏置信息联合编码或独立编码。
在一种实施方式中,所述时域预留周期信息和时域偏置信息通过6比特联合指示。
在一种实施方式中,所述时域预留周期信息和时域偏置信息分别指示;其中,所述时域预留周期信息通过3比特指示;所述时域偏置信息通过5比特指示。
在一种实施方式中,所述时域预留位图包括时隙预留位图,所述时隙预留位图用于指示在所述时域预留周期中的预留时隙。
在一种实施方式中,在所述时隙预留位图对应的比特位设置为第一值的情况下,根据时隙索引的奇偶确定该时隙实际预留的符号。
在一种实施方式中,所述时隙预留位图的长度为4比特或10比特。
在一种实施方式中,所述时域预留位图包括符号预留位图,所述符号预留位图用于指示在时域预留周期中的预留符号。
在一种实施方式中,所述时域预留位图包括子帧预留位图,所述子帧预留位图用于指示在时域预留周期中的预留符号;
其中,所述子帧预留位图对应的比特位为第一值,则指示预留对应子帧中预设的符号位。
在一种实施方式中,所述时域预留位图包括子帧预留位图和符号预留位图,用于指示在时域预留周期中的预留符号。
在一种实施方式中,所述子帧预留位图对应的比特位设置为第一值,则符号预留位图用于指示在时域预留周期中对应的子帧中的预留符号。
在一种实施方式中,所述子帧预留位图长度为2比特、5比特或10比特。
在一种实施方式中,所述符号预留位图的长度为2比特、7比特、14比特、28比特、70比特、7-L start比特或14-L start比特;L start表示长期演进LTE下行控制区域的长度。
在一种实施方式中,所述第一值为1或0。
在一种实施方式中,所述时域预留周期内预留的时域资源信息包括:
时隙预留位图信息和子帧预留位图信息;
其中,所述子帧预留位图对应的比特位为第一值,则,在时域预留周期中对应的子帧中的预留符号为预定义;
或者,所述时域预留周期内预留的时域资源信息包括:时隙预留位图信息和子帧预留位图信息,以及符号预留位图信息;其中,在时域预留周期中对应的子帧中的预留符号根据符号预留位图信息确定。
在一种实施方式中,所述预留子帧在所述预留时隙结束位置之后X个子帧开始,其中,X为整数。
在一种实施方式中,所述子帧预留位图的长度值为3比特、5比特、6比特、8比特或者10比特。
在一种实施方式中,所述第一指示信令,包括:
时域预留周期信息,用于指示时域预留周期;
其中,所述时域预留周期中前Y个符号是为所述目标数据配置的预留符号,所述Y的值由时域预留周期中的符号预留信息指示,或者,Y为预定义值。
在一种实施方式中,当时域预留周期为一个子帧时,则所述子帧的前第四值个符号预留,第四值<=L start
其中,L start为LTE下行控制区域的最大长度。
在一种实施方式中,预留时域资源指示信息,包括:
时隙预留位图信息和符号预留位图信息;其中,所述时隙预留位图的时域预留周期可预定义或通过信令配置;所述符号预留位图的时域预留周期可预定义或通过信令配置;
所述时隙预留位图的时域预留周期和符号预留位图的时域预留周期可相同或不同。
在一种实施方式中,所述第一指示信令还包括预留的频域资源信息;
其中,所述预留的频域资源信息用于指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,所述方法包括:
发送第二指示信令;
其中,所述第二指示信令指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,所述预留的频域资源包括:连续的至少一个资源块、或连续的至少一个窄带或连续的至少一个资源块组。
在一种实施方式中,在系统包含的资源块的数量不超过需要预留的资源块的数量的最大值的情况下,则:
当RB START=0,FFRIV=L CRRB-1;
当0<RB START<N,FFRIV=N+RB START-1;
对于0<=FRRIV<N,所预留的资源块是从资源块序号0到资源块序号为FRRIV的FRRIV+1个连续资源块;RB START=0,L CRRB=FRRIV+1;
对于N<=FRRIV<2N-1,预留的资源块是从资源块序号为(FRRIV-N+1)到资源块序号(N-1);L CRRB=2N-FRRIV-1;
其中N为系统包含的资源块的数量;FRRIV为频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量。
在一种实施方式中,在系统包含的资源块的数量大于需要预留的资源块的数量的最大值的情况下,则:
当RB START=0,FFRIV=L CRRB-1;
当RB START>0,FFRIV=RB START+M–1;
对于0<=FRRIV<N,所预留的资源块是从资源块序号0到资源块序号(FRRIV)的FRRIV+1个连续资源块;RB START=0,L CRRB=FRRIV+1;
对于M<=FRRIV<N,所预留的资源块是从资源块序号(FRRIV-M+1)开始的M个连续资源块;RB START=FRRIV-M+1,L CRRB=M;
对于N<=FRRIV<N+M-1,所预留的资源块是从资源块序号(FRRIV-M+1)到资源块序号(N-1)的连续资源块;RB START=(FRRIV-M+1),L CRRB=N+M-FRRIV-1;
其中,N为系统包含的资源块的数量;M为需要预留的资源块的数量的最大值;FRRIV为频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量。
在一种实施方式中,当RB START=0,FFRIV=L CRRB-1;
当RB START>0,FFRIV=RB START+min(M,N)–1;
其中,N为系统包含的资源块的数量;M为需要的资源块的数量的最大值; FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量;min表示取最小值。
在一种实施方式中,所述时域预留周期为下述中的一个:5ms、10ms、20ms、40ms、80ms和160ms。
在一种实施方式中,还包括:
发送预留资源改写指示信令;
其中,
所述预留资源改写指示信令通过物理下行控制信道传输,
所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:
所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:
所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:
所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当 前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
本申请实施例还提供一种数据接收方法,包括:
接收基站发送的第一指示信令;
其中,所述第一指示信令用于指示第一时域资源不能用于传输。
在一种实施方式中,所述第一指示信令包括:
时域预留周期信息和时域偏置信息,以及所述时域预留周期信息对应的时域预留周期内预留的时域资源信息;
其中,通过时域预留位图表示在所述时域预留周期中预留的时域资源;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
在一种实施方式中,本申请实施例还提供一种数据接收方法,包括:
接收基站发送的第二指示信令;
其中,所述第二指示信令包含预留时域资源信息,用于指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,所述第一指示信令还包括预留的频域资源信息;其中,所述预留的频域资源信息用于指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,所述方法还包括:接收第二指示信令;所述第二指示信令包括预留的频域资源信息;其中,所述预留的频域资源信息用于指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,当RB START=0,FFRIV=L CRRB-1;
当RB START>0,FFRIV=RB START+min(M,N)–1;
其中,N为系统包含的资源块的数量;M为需要预留的资源块的数量的最大值;FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量;min表示取最小值。
在一种实施方式中,本申请还提供一种数据接收方法,包括:
接收预留资源改写指示信令;
其中,
所述预留资源改写指示信令通过物理下行控制信道传输,
所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
本申请实施例还提供一种资源指示装置,包括:
第一发送模块:用于向终端发送第一指示信令;
其中,所述第一指示信令用于指示第一时域资源不能用于传输。
在一种实施方式中,所述装置还包括:
第二发送模块:用于向终端发送第二指示信令;
其中,所述第二指示信令用于指示所述预留的时域资源上对应的频域资源不能用于传输。
本申请实施例还提供一种数据接收装置,包括:
第一接收模块:用于侧接收基站发送的第一指示信令;
其中,所述第一指示信令用于指示第一时域资源不能用于传输。
本申请实施例还提供一种数据接收装置,包括:
第二接收模块:用于接收基站发送的第二指示信令;
其中,所述第二指示信令用于指示所述预留的时域资源上对应的频域资源不能用于传输。
本申请实施例提供了一种网络设备,所述基站包括:处理器及存储器;
所述存储器用于存储指令;
所述处理器被配置为读取所述指令以执行本申请实施例应用于基站的方法。
本申请实施例提供了一种通信系统,所述系统包括本申请实施例提供的终端及本申请实施例提供的基站。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一项所述的方法。
在本申请实施例中,在第一系统中为第二系统的目标数据配置预留的时域资源,包括:
配置时域预留周期中的符号预留信息。所述时域预留周期为L个子帧;所述符号预留信息为预留时域预留周期的前S个符号。
在一种实施方式中,所述时域预留周期为单个子帧,在第一系统中为第二 系统的目标数据配置预留的时域资源,包括:
所述子帧的前S个符号预留给第二系统,S<=L start;L start表示LTE下行控制区域(LTE legacy control channel region)的长度。
在本申请实施例中,在第一系统中为第二系统的目标数据配置预留的时域资源,包括:
分别配置时隙预留周期中的时隙预留位图和符号预留周期中的符号预留位图或符号预留信息。
进一步的,所述时隙预留周期可预定义或通过信令配置;所述符号预留周期可预定义或通过信令配置。
进一步的,所述时隙预留周期和符号预留周期可相同或不同。
在本申请实施例中,在第一系统中为第二系统的目标数据配置预留的时域资源,包括:
配置时域预留周期中的时隙预留位图、子帧预留位图和/或符号预留位图。所述时隙预留位图长度为S1比特,所述子帧预留位图长度为S2比特,所述符号预留位图的长度为S3比特。
进一步的,在本申请实施例中,在第一系统中为第二系统的目标数据配置预留的时域资源,包括:
在距离时隙预留起始位置
Figure PCTCN2020107637-appb-000001
子帧后,通过子帧预留位图设置S2个子帧的资源预留情况,所述S2的可选值可为3、5、6、8或10。
在一种实施方式中,所述时域预留周期为L1个子帧;所述时域偏置指示时域预留周期中时域预留位图起始所在子帧(subframe)与时域预留周期起始的距离。所述时域预留位图为子帧预留位图,子帧预留位图长度为M1。
进一步的,所述时域预留周期为L2个子帧;所述时域偏置指示时域预留周期中时域预留位图起始所在子帧(subframe)与时域预留周期起始的距离。所述时域预留位图为时隙预留位图,时隙预留位图长度为M2。
进一步的,所述时域预留周期为L3个子帧;所述时域偏置指示时域预留周期中时域预留位图所在子帧(subframe)与时域预留周期起始的距离。所述时域预留位图为符号预留位图,符号预留位图长度为M3,M3>=1且M3<14。所述时域偏置可预定义或通过信令指示。
在本申请一种实施方式中,通过X2比特的指示值指示预留的窄带(NB,Narrow Band),使用P表示共存系统中系统1包含的窄带数量,使用M表示共 存系统中系统2频域需预留的最大预留的频域资源块数量。
如果
Figure PCTCN2020107637-appb-000002
即M/6的取整值,则
Figure PCTCN2020107637-appb-000003
X2比特指示的值的频域资源预留指示值2(Frequency resource reservation indication value,这里用Y2简述)指示预留的连续窄带的起始位置NB START和预留的连续NB的长度L CRNB来表示预留的连续窄带,具有以下特征:
对于0<=Y2<P,Y2和预留的连续窄带的最大窄带序号相同,表示预留的窄带是从窄带序号0到窄带序号Y2的Y2+1个连续窄带。其中,NB START=0,L CRNB=Y2+1。
对于P<=Y2<2P-1,(Y2-P+1)和预留的连续窄带的最小窄带序号,表示预留的窄带是从窄带序号(Y2-P+1)到窄带序号(P-1)。其中,NB START=(Y2-P+1),L CRNB=2P-Y2-1。
如果
Figure PCTCN2020107637-appb-000004
Figure PCTCN2020107637-appb-000005
X2比特指示的频域资源预留指示值2(Frequency resource reservation indication value,这里用Y2简述)指示预留的连续窄带的起始位置NB START和预留的连续NB的长度L CRNB来表示预留的连续窄带,具有以下特征:
对于
Figure PCTCN2020107637-appb-000006
Y2和预留的连续窄带的最大窄带序号相同,表示预留的窄带是从窄带序号0到窄带序号Y2-的Y2+1个连续窄带。其中,NB START=0,L CRNB=Y2+1。
对于
Figure PCTCN2020107637-appb-000007
Y2和预留的连续窄带的最大窄带序号相同,表示预留的窄带是从窄带序号
Figure PCTCN2020107637-appb-000008
开始的
Figure PCTCN2020107637-appb-000009
个窄带。其中,
Figure PCTCN2020107637-appb-000010
Figure PCTCN2020107637-appb-000011
对于
Figure PCTCN2020107637-appb-000012
和预留的连续窄带的最小窄带序号相同,表示预留的窄带是从窄带序号
Figure PCTCN2020107637-appb-000013
到窄带序号(P-1)。其中,NB START=Y2-P+1,
Figure PCTCN2020107637-appb-000014
进一步的,通过X3比特指示预留的RBG(Resource Block Group,资源块组),其中N表示共存系统中系统1包含的资源块的数量,则系统包含的RBG数量
Figure PCTCN2020107637-appb-000015
T表示RBG中包含的资源块的数量,M表示共存系统中系统2 频域预留的最大预留的频域资源块数量。
如果
Figure PCTCN2020107637-appb-000016
Figure PCTCN2020107637-appb-000017
X3比特指示的频域资源预留指示值3(Frequency resource reservation indication value,这里用Y3简述)指示预留的连续RBG的起始位置RBG START和预留的连续RBG的长度L CRRBG来表示预留的连续RBG,具有以下特征:
对于0<=Y3<Q,Y3和预留的连续RBG的最大RBG序号相同,表示预留的RBG是从RBG序号0到RBG序号Y3的Y3+1个连续RBG。其中,RBG START=0,L CRRBG=Y3+1。
对于Q<=Y3<2Q-1,(Y3-Q+1)和预留的连续RBG的最小RBG序号相同,表示预留的RBG是从RBG序号(Y3-Q+1)到RBG序号(Q-1)。其中,RBG START=Y3-Q+1,L CRRBG=2Q-Y3-1。
如果
Figure PCTCN2020107637-appb-000018
Figure PCTCN2020107637-appb-000019
X3比特指示的值Y3表示预留的连续RBG,具有以下特征:
对于
Figure PCTCN2020107637-appb-000020
Y3和预留的连续RBG的最大RBG序号相同,表示预留的RBG是从RBG序号0到RBG序号Y3的Y3+1个连续RBG。其中,RBG START=0,L CRRBG=Y3+1。
对于
Figure PCTCN2020107637-appb-000021
Y3和预留的连续RBG的最大RBG序号相同,表示预留的RBG是从RBG序号
Figure PCTCN2020107637-appb-000022
开始的
Figure PCTCN2020107637-appb-000023
个RBG。其中,
Figure PCTCN2020107637-appb-000024
Figure PCTCN2020107637-appb-000025
对于
Figure PCTCN2020107637-appb-000026
和预留的连续RBG的最小RBG序号相同,表示预留的RBG是从RBG序号
Figure PCTCN2020107637-appb-000027
到RBG序号(Q-1)。其中,RBG START=Y3-Q+1,
Figure PCTCN2020107637-appb-000028
在具体实施方式中,预留的时频域资源,即时域和频域结合的二维资源,分为不可动态改变的预留时频域资源或可动态改变的预留时频域资源。
动态激活或去激活系统中的时频域预留资源。所述时频域预留资源指可动态改变的预留时频域资源。
当时频域预留资源被动态激活,则时频域预留资源可被系统使用。
进一步的,动态激活时频域预留资源的信令中包含激活时长定时器的配置。所述信令为基站发送给用户设备的信令。在激活定时器到期前,所述时频域预留资源可被系统使用;在激活时长定时器到期后,所述时频域预留资源不可被系统使用。
进一步的,动态激活时频域资源的激活时长定时器预定义。
动态改写系统中的时域预留资源。所述时频域预留资源指可动态改变的时频域资源。
对于预留的子帧资源或时隙资源,动态配置子帧中或时隙中部分符号在改写定时器到期前可被系统占用。
改写定时器的时长可以预定义或通过信令配置。
进一步的,动态改写当前所调度数据发送时长范围内的部分或全部的时域预留。
通过1比特动态改写指示值指示当前所调度数据发送时长范围内的时域预留是否可被所述数据发送占用。
通过2比特动态改写指示值指示当前所调度数据发送时长范围内的部分或全部发送时长的时域预留可被所述数据发送占用。
具体的,所述2比特动态改写指示值指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
具体的,所述2比特动态改写指示值指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
具体的,所述2比特动态改写指示值指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,当前所 调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
本申请实施例能够解决两个系统共存时重要资源的发送的问题,保证两个系统的重要数据的发送不相互影响,避免数据冲突,系统开销小。
附图说明
图1为本申请实施例的资源指示方法流程示意图。
图2为本申请实施例的时域资源预留示意图。
图3为本申请实施例的时域资源预留示意图。
图4为本申请实施例的资源指示方法流程示意图。
图5为本申请实施例的数据接收方法流程示意图。
图6为本申请实施例的频域资源预留示意图。
图7为本申请实施例的频域资源预留示意图。
图8为本申请实施例的资源指示装置结构示意图。
图9为本申请实施例的数据接收装置结构示意图。
图10为本申请实施例的终端的结构示意图。
图11为本申请实施例的基站的结构示意图。
图12为本申请实施例的通信系统的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,本申请实施例提供的资源指示方法包括:
步骤S11:向终端发送第一指示信令。
其中,所述第一指示信令包含预留时域资源信息,用于指示第一时域资源不能用于传输。
在本申请实施例中,所述指示信令用于配置预留的时域资源和/或频域资源。
在本申请实施例中,所述时域资源用于在第一系统中传输第二系统的目标数据;所述第一系统和第二系统为共享同一频谱资源的系统。
在本申请实施例中,第一系统可以为LTE-MTC系统或者NB-IoT系统。第 二系统可以为NR系统。
在本申请实施例中,当第二系统为NR系统时,第一时域资源可用于传输NR系统的同步信号块(Synchronization Signal Block,SSB)和/或公共控制信道块(Control-Resource Set 0,CORESET 0)。
本申请实施例通过信令指示第一时域资源不能用于传输,从而可以将第一时域资源预留给另一系统,保证两个系统共享同一频谱资源时重要数据的传输。
在一种实施方式中,可以通过配置时域预留周期的方式配置预留的时域资源,进一步通过时域预留位图或者时域预留指示值,指示时域预留周期中进一步的时域资源配置状况。
在一种实施方式中,时域预留周期可以为任意时间值,例如,时域预留周期为下述中的一个:5ms、10ms、20ms、40ms、80ms和160ms。在本申请实施例中,当第二系统为NR系统时,目标数据可以为NR系统的同步信号块(Synchronization Signal Block,SSB)和/或公共控制信道块(CORESET 0)。
如图2、图3所示的示例中,半个无线帧(frame)包括五个NR Slot和10个LTE slot,半个无线帧内,对于共存时的15kHz子载波间隔配置,SSB最多发送四次,每次占用4个符号位。CORESET 0也发送4次,每次占据2个符号位。对于目标数据为SSB的情况,在半个子帧的前四个LTE时隙中分别为SSB预留四个符号位。对于目标数据为SSB和CORESET 0的情况,在LTE slot0和LTE slot2中分别预留前两个符号位给CORESET 0,在LTE slot1和LTE slot3中分别预留第2、3、4、5个符号位给SSB,在LTE slot4和LTE slot6中分别预留前2个符号为给CORESET 0。
在一种实施方式中,所述第一指示信令包括:时域预留周期信息和时域偏置信息,以及所述时域预留周期信息对应的时域预留周期内预留的时域资源信息;其中,通过时域预留位图表示在所述时域预留周期中预留的时域资源;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
在一种实施方式中,所述时域预留周期信息和时域偏置信息通过6比特联合指示。
在一种实施方式中,所述时域预留周期通过3比特指示;所述时域偏置通过5比特指示。
在一种实施方式中,根据时域预留周期的可能的取值范围,通过3比特指示时域预留周期,从而能够包含NR系统中重要的目标数据的所有可能的发送周期。根据时域偏置可能的取值范围,通过5比特指示时域偏置,从而能够包含 NR系统中的重要的目标数据所有可能需要的时域偏置范围。
在其它实施例中,指示值还可以是其它长度,例如,通过4比特、5比特、6比特等大于3的比特值指示时域预留周期,通过6比特、7比特、8比特等大于5的比特值指示时域偏置。也可以通过大于6的比特值联合指示时域预留周期和时域偏置。
在一种实施方式中,所述时域预留位图包括时隙预留位图,用于指示在所述时域预留周期中的预留时隙。
在本申请实施例中,可通过将时隙预留位图中的一个或多个比特位设置为一定值,例如,可以设置为0或1,表示该比特位对应的时隙资源预留给第二系统。
在本申请实施例中,时隙预留位图的长度可以根据需要确定,例如,长度为4比特或者10比特。
在本申请实施例中,在所述时隙预留位图对应的比特位设置为第一值的情况下,根据时隙索引的奇偶性确定该时隙内实际预留的符号。若时隙索引为奇数,则按照对应的一种方式确定时隙内预留的符号,若时隙索引为偶数,则按照对应的另一种方式确定时隙内预留的符号。
在一种实施方式中,在所述时隙预留位图对应的比特位设置为第一值的情况下,对于偶数时隙,预留时隙上的第3、4、5、6个符号给另一系统使用;在所述时隙预留位图对应的比特位设置为第一值的情况下,对于奇数时隙,预留时隙上的第2、3、4、5个符号给另一系统使用。
在另一种实施方式中,在所述时隙预留位图对应的比特位设置为第一值的情况下,对于奇数时隙,预留时隙上的第3、4、5、6个符号给另一系统使用;对于偶数时隙,预留时隙上的第2、3、4、5个符号给另一系统使用。
在一种实施方式中,所述时隙预留位图的根据需要确定,例如长度为4比特或10比特。
在本申请实施例中,预留的资源可以用于传输目标数据。本申请实施例中目标数据可以是NR系统中的SSB块或者CORESET 0。
在一种实施方式中,所述时域预留位图包括符号预留位图,用于指示在时域预留周期中的预留符号。
在一种实施方式中,所述时域预留位图包括子帧预留位图,用于指示在时域预留周期中的预留符号;其中,所述子帧预留位图对应的比特位为第一值,则指示预留对应子帧中预设的符号位。
子帧包括多个符号,在本申请实施例中,通过子帧预留位图可以得知哪个子帧为无效子帧。通过预先定义或者其它方式,可以配置子帧中具体一个或多个符号预留给目标数据。
在一种实施方式中,所述子帧预留位图对应的比特位设置为第一值,则预留对应的子帧中的至少一个符号位。
在一实施例中,可采用预配置的方式,规定预留给第二系统的子帧中的至少一个符号位为预留的。
在一种实施方式中,所述子帧预留位图对应的比特位设置为第一值,则预留对应子帧中预设的符号位给所述第二系统使用。
在一实施例中,可预配置预留给目标数据的子帧中至少一个符号位为无效符号位。
在一种实施方式中,所述时域预留位图包括子帧预留位图和符号预留位图,通过时域预留位图配置在所述预留时域周期中的时域资源,包括:按照所述子帧预留位图和符号预留位图,配置在时域预留周期中的预留符号。
在一实施例中,可以通过子帧预留位图配置为目标数据预留的预留子帧,通过符号预留位图配置目标数据在预留子帧中的预留符号。
在一种实施方式中,按照设置的子帧预留位图和符号预留位图配置目标数据在时域预留周期中预留的符号,包括:所述子帧预留位图对应的比特位设置为第一值,则按照符号预留位图为配置在时域预留周期中对应的子帧中的预留符号。
在一种实施方式中,所述子帧预留位图的长度可以根据需要确定,例如长度为2比特、5比特或10比特。
在一种实施方式中,子帧预留位图的长度根据目标数据的长度进行取值。
在一种实施方式中,所述符号预留位图的长度可以根据需要确定,例如长度为2比特、7比特、14比特、28比特、70比特、7-L start比特或14-L start比特;L start表示长期演进LTE下行控制区域(LTE legacy control channel region)的长度。
在一种实施方式中,符号预留位图的长度根据目标数据长度进行取值。
在一种实施方式中,所述第一值可以为1或0。
在一实施例中,可设定时隙预留位图、子帧预留位图或者符号预留位图中的比特位设置为1或者0时,表示预留该比特位对应的资源给目标数据,即利用该比特位对应的资源传输目标数据。
在一种实施方式中,通过时域预留位图配置在所述预留时域周期中的时域资源,包括:按照设置的时隙预留位图配置预留时隙;按照设置的子帧预留位图,在所述预留时隙之后,配置预留子帧;按照设置的符号预留位图,在所述预留子帧中,配置预留符号。
在一种实施方式中,预留时隙、预留子帧、预留符号分别为时域预留周期内的时隙、子帧、符号。
在一种实施方式中,所述预留子帧在预留时隙起始位置的S1/2子帧后,S1为时隙预留位图的长度。
在一种实施方式中,预留时隙占据S1/2子帧的长度,预留时隙后紧接着配置预留子帧。
在一种实施方式中,所述子帧预留位图的长度值可以根据需要确定,例如,长度为3比特、5比特、6比特、8比特或者10比特。
在一种实施方式中,子帧预留位图的长度根据目标数据的长度进行配置。
在一种实施方式中,所述符号预留位图的长度可以根据需要确定,例如,长度为2比特、7比特、14比特、7-L start比特或4-L start比特;L start表示LTE下行控制区域的长度。
在一种实施方式中,符号预留位图的长度根据目标数据的长度进行配置。
在一种实施方式中,配置预留的时域资源,包括:根据预设配置方式,配置第二值个预留子帧,且所述预留子帧中前第三值个符号位为所述目标数据配置的预留符号。
在本申请实施例中,还可以通过预定义的方式,配置预留资源。通过预先设置指示值或者预定义等方式,可不通过位图,直接配置相应的预留资源。
在一种实施方式中,当时域预留周期为单个子帧时,则该子帧的前第四值个符号预留,第四值<=L start;当时域预留周期为两个子帧时,偶数子帧的前第五值个符号预留,第五值<=L start;L start为LTE下行控制区域的长度。
上述配置方式可通过协议或者其它方式进行预定义,而无需设置专门的位图。
在一种实施方式中,配置预留的时域资源,包括:根据设置的时隙预留位图和设置的符号预留位图,在预定义的预留周期中配置目标数据的预留时域资源。
在一种实施方式中,可通过预定义的方式配置预留周期,然后结合位图,配置在预留周期中预留的具体的时域资源。
在一种实施方式中,所述方法还包括:为目标数据配置预留的频域资源;其中,所述预留的频域资源用于传输所述目标数据。
在一种实施方式中,所述预留的频域资源包括:连续的至少一个资源块、或连续的至少一个窄带或连续的至少一个资源块组;配置预留的频域资源,包括:按照预设的频域指示值确定所述预留的频域资源的起始位置和数量。
在本申请实施例中,配置预留的频域资源主要通过设置频域指示值的方式配置。
在一种实施方式中,在第一系统所包含的资源块的数量不超过第二系统所需要预留的资源块的数量的最大值的情况下,则:对于0<=FRRIV<N,FRRIV和预留的连续资源块的最大资源块序号相同,所预留的资源块是从资源块序号0到资源块序号为FRRIV的FRRIV+1个连续资源块,RB START=0,L CRRB=FRRIV+1;对于N<=FRRIV<2N-1,所预留的资源块是RB START=(FRRIV-N+1)开始的连续资源块,表示预留的资源块是从资源块序号(为FRRIV-N+1)到资源块序号(N-1),L CRRB=2N-FRRIV-1;N为第一系统所包含的资源块的数量;FRRIV为频域预留指示值;RB START用于指示所述资源块的起始位置;L CRRB用于指示所述资源块的数量。
在一种实施方式中,在第一系统所包含的资源块的数量大于第二系统所需要的资源块数量的最大值的情况下,则:对于0<=FRRIV<N,FRRIV和预留的连续资源块的最大资源块序号相同,所预留的资源块是从资源块序号0到资源块序号(FRRIV)的FRRIV+1个连续资源块,RB START=0,L CRRB=FRRIV+1;对于M<=FRRIV<N,FRRIV和预留的连续资源块的最大资源块序号相同,所预留的资源块是从资源块序号(FRRIV-M+1)开始的M个连续资源块,RB START=FRRIV-M+1,L CRRB=M;对于N<=FRRIV<N+M-1,(FRRIV-M+1)和预留的连续资源块的最小资源块序号相同,所预留的资源块是从资源块序号(FRRIV-M+1)到资源块序号(N-1)的连续资源块,RB START=(FRRIV-M+1),L CRRB=N+M-FRRIV-1;N为第一系统所包含的资源块的数量;M为第二系统所需要的资源块数量的最大值;FRRIV为所述频域指示值;RB START用于指示所述资源块的起始位置;L CRRB用于指示所述资源块的数量。
在一种实施方式中,所述时域预留周期为下述中的一个:5ms、10ms、20ms、40ms、80ms和160ms。
所述方法还包括:发送预留资源改写指示信令;其中,所述预留资源改写指示信令通过物理下行控制信道传输,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:所述预留资源改写指示信令长度可以根据需要确定,例如为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
本申请实施例提供一种资源指示方法,如图4所示,包括:
步骤S40:发送预留资源改写指示信令。
所述预留资源改写指示信令通过物理下行控制信道传输,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
在一种实施方式中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
本申请实施例还提供一种数据接收方法,如图5所示,包括:
步骤S41:接收基站发送的第一指示信令。
所述第一指示信令包含预留时域资源信息,用于指示第一时域资源不能用于传输。
在一种实施方式中,所述第一指示信令包括:时域预留周期信息和时域偏置信息,以及所述时域预留周期信息对应的时域预留周期内预留的时域资源信息;其中,通过时域预留位图表示在所述时域预留周期中预留的时域资源;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
在一种实施方式中,本申请实施例还提供一种资源指示方法,包括:接收基站发送的第二指示信令;其中,所述第二指示信令用于指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,当RB START=0,FFRIV=L CRRB-1;当RB START>0,FFRIV=RB START+min(M,N)–1;其中,N为系统包含的资源块的数量;M为需要预留的资源块的数量的最大值;FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量;min表示取最小值。
在一种实施方式中,本申请所提供的方法进一步包括:接收预留资源改写指示信令;其中,所述预留资源改写指示信令通过物理下行控制信道传输,所 述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
在本申请实施例中,数据接收方法用于本申请任意实施例提供的接收资源指示方法指示的资源传输的数据。
实施方式一:
本实施例用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包括:配置时域预留周期,所述时域预留周期为5ms,10ms,20ms,40ms,80ms,或160ms之一。
配置时域预留周期,进一步包括:通过预定义或发送信令的方式配置时域偏置,时域偏置指示时域预留周期中时域预留位图所在半帧(5ms half frame)的起始位置与时域预留周期起始的距离。
对于时域预留周期为5ms,时域偏置默认为0ms。
对于时域预留周期为10ms,时域偏置为0ms或5ms。
对于时域预留周期为20ms,时域偏置为0ms、5ms、10ms或15ms。
对于时域预留周期为40ms,时域偏置为0ms、5ms、10ms、15ms、20ms、25ms、30ms或35ms。
对于时域预留周期为80ms,时域偏置为0ms、5ms、10ms、15ms、20ms、25ms、30ms、35ms、40ms、45ms、50ms、55ms、60ms、65ms、70ms或75ms。
对于时域预留周期为80ms,时域偏置为0ms、5ms、10ms、15ms、20ms、25ms、30ms、35ms、40ms、45ms、50ms、55ms、60ms、65ms、70ms、75ms、80ms、85ms、90ms、95ms、100ms、105ms、110ms、115ms、120ms、125ms、130ms、135ms、140ms、145ms、150ms或155ms。
通过时域预留指示值对时隙预留周期和时隙偏置分别指示或联合指示。通过3比特指示时域预留周期,通过5比特指示时隙偏置;通过6比特指示时域预留周期和时隙偏置。
配置时域预留周期进一步包括:配置时域预留周期中的时隙预留位图。
时隙预留位图的长度为M比特,M的可选值为4或10。
当时隙预留位图对应的比特位设置为1,则预留对应的时隙给另一个系统使用。
当时隙预留位图对应的比特位设置为1,则对于偶数时隙,预留时隙上的第 3,4,5,6个符号给另一系统使用。
当时隙预留位图对应的比特位设置为1,则对于奇数时隙,预留时隙上的第2,3,4,5个符号给另一系统使用。
当配置的时频域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能够有效地在时域上避开与NR的SSB的发送冲突,同时开销小,资源浪费少。
实施方式二:
本实施例用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包含:配置时域预留周期,所述时域预留周期为5ms,10ms,20ms,40ms,80ms,或160ms之一。
配置时域预留周期,进一步包括:通过预定义或发送信令的方式配置时域偏置,所述时域偏置指示时域预留周期中时域预留位图所在半帧(5ms half frame)的起始位置与时域预留周期起始的距离。
通过预定义或发送信令的方式配置时域偏置,进一步包括:通过时域偏置指示值对时隙预留周期和时隙偏置分别指示或联合指示。通过3比特指示时域预留周期,通过5比特指示时隙偏置;通过6比特指示时域预留周期和时隙偏置。
配置时域预留周期进一步包括:配置时域预留周期中的子帧预留位图(bitmap)和/或符号预留位图。子帧预留位图的长度的可选值为5比特、2比特或10比特。
当子帧预留位图的长度为2比特,默认第3,4,5,6子帧不预留给其它系统使用。
当子帧预留位图对应的比特位设置为1,表示对应的子帧中有至少1个符号需要预留给其它系统使用。
对于子帧预留位图对应的比特位设置为1的子帧,预定义子帧中的预留符号位置。
或,对于子帧预留位图对应的比特位设置为1的子帧,配置子帧中符号预留位图。子帧中的符号预留位图长度为2比特或7比特或14比特或7-L start比特或14-L start比特。L start表示LTE下行控制区域(LTE legacy control channel region)的长度。
当配置的时域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能够有效地在时域上避开与NR的SSB和/或CORESET 0的发送冲突,同时开销小,资源浪费少。
实施方式三
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包括:配置时域预留周期,所述时域预留周期为5ms,10ms,20ms,40ms,80ms,或160ms之一。
配置时域预留周期,包括:通过预定义或发送信令的方式配置时域偏置,所述时域偏置指示时域预留周期中时域预留位图所在半帧(5ms half frame)的起始位置与时域预留周期起始的距离。时隙预留周期和时隙偏置分别指示或联合指示。通过3比特指示时域预留周期,通过5比特指示时隙偏置;通过6比特指示时域预留周期和时隙偏置。
配置时域预留周期,还包括:配置时域预留周期中的符号预留位图(bitmap)。符号预留位图的长度可预定义或可配置。
可选的,所述符号预留位图的长度可为7比特、14比特、28比特或70比特。
当配置的时域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能够有效地在时域上避开与NR的SSB和CORESET0等的发送冲突,灵活性高。
实施方式四
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包括:配置时域预留周期,所述时域预留周期为5ms,10ms,20ms,40ms,80ms,或160ms之一。
配置时域预留周期,进一步包括:配置时域偏置,所述时域偏置指示时域预留周期中时域预留位图所在半帧(5ms half frame)的起始位置与时域预留周期起始的距离。
具体的,配置时域偏置,包括:通过指示值对时隙预留周期和时隙偏置分别指示或联合指示。通过3比特指示值指示时域预留周期,通过5比特指示值 指示时隙偏置;通过6比特指示值指示时域预留周期和时隙偏置。
配置时域预留周期,进一步包括:配置时域预留周期中的时隙预留位图、子帧预留位图和/或符号预留位图。其中,时隙预留位图长度为S1比特,子帧预留位图长度为S2比特,符号预留位图的长度为S3比特。
配置时域预留周期中的时隙预留位图和子帧预留位图,进一步包括:在距离时隙预留起始位置
Figure PCTCN2020107637-appb-000029
子帧后,通过子帧预留位图设置S2个子帧的资源预留情况,S2的可选值可为3、5、6、8或10。
配置子帧预留位图和符号预留位图,进一步包括:对于子帧预留位图对应的比特位设置为1的子帧,配置子帧中符号预留位图。
子帧中的符号预留位图长度为2比特或7比特或14比特或7-L start比特或14-L start比特。L start表示LTE下行控制区域(LTE legacy control channel region)的长度。
当配置的时域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能够有效地在时域上避开与NR的SSB和/或CORESET 0的发送冲突,灵活性高。
实施方式五
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包括:配置时域预留周期中的符号预留信息。所述时域预留周期为L个子帧;所述符号预留信息为预留时域预留周期的前S个符号。
可选的,时域预留周期可配置为单个子帧或两个子帧。
如时域预留周期为单个子帧,每个子帧的前S个符号预留,S<=L start;L start表示LTE下行控制区域(LTE legacy control channel region)的长度。
如时域预留周期为两个子帧,偶数子帧的前S个符号预留,S<=L start;L start表示LTE下行控制区域(LTE legacy control channel region)的长度。
当配置的时频域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能够有效地在时域上避开与NR的发送冲突,开销小。
实施方式六
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包括:配置或预定义时隙预留周期中的时隙预留位图和符号预留周期中的符号预留位图。
所述时隙预留周期为5ms,10ms,20ms,40ms,80ms,或160ms之一。配置时隙预留的时域偏置,所述时隙预留的时域偏置指示时隙预留周期中时隙预留位图所在半帧(5ms half frame)的起始位置与时隙预留周期起始的距离。
预定义或通过信令配置符号预留周期和/或符号预留的时域偏置,所述符号预留的时域偏置指示符号预留周期中符号预留位图所在子帧与符号预留周期起始的距离。
当配置的时域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能够灵活地在时域上避开与NR SSB以及CORESET0等的发送冲突,灵活度高。
实施方式七
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC系统共存的情况,包括:通过指示值,配置预留的频域资源。
其中,预留的频域资源是连续的一个或多个资源块(Resource block,RB)、或连续的一个或多个窄带(Narrowband)、或连续的一个或多个资源块组(Resource Block Group,RBG)。
通过X1比特指示预留的资源块,其中N表示LTE-MTC系统包含的资源块的数量,M表示一时刻共存系统中NR系统在频域需要LTE-MTC系统为之预留的最大连续资源块数量。
可选的,对于针对SSB的频域资源预留,M=20;对于针对CORESET 0的频域资源预留,M=24或48。对于针对SSB和CORESET 0的资源预留,M>=24。
如果N<=M,如图6所示,此时,LTE-MTC系统中的资源块可能与NR SSB/CORESET 0在频域发生冲突的可能情况有2N-1种,则
Figure PCTCN2020107637-appb-000030
通过X1比特的频域资源预留指示值(Frequency resource reservation indication value,FRRIV)来指示预留的连续RB的起始位置(RB START)和预留的连续RB的长度L CRRB,从而来表示预留的连续资源块,具有以下特征:当RB START=0,FFRIV=L CRRB-1;当0<RB START<N,FFRIV=N+RB START-1。
对于0<=FRRIV<N,FRRIV和预留的连续资源块的最大资源块序号相同,所预留的资源块是从资源块序号0到资源块序号(FRRIV)的FRRIV+1个连续资源块。其中,RB START=0,L CRRB=FRRIV+1。
对于N<=FRRIV<2N-1,所预留的资源块是RB START=(FRRIV-N+1)开始的连续资源块,表示预留的资源块是从资源块序号(FRRIV-N+1)到资源块序号(N-1)。其中,L CRRB=2N-FRRIV-1。
如图7所示,图中从左至右依次是,预留RB在LTE-MTC带宽一侧、预留RB在LTE-MTC带宽中间、预留RB在LTE-MTC带宽另一侧的情况。比如预留RB在LTE-MTC带宽中间时,起始位置为12号RB。如果N>M,此时,LTE-MTC系统中的资源块可能与NR SSB/CORESET 0在频域发生冲突的可能情况有N+M-1种,则
Figure PCTCN2020107637-appb-000031
通过X1比特指示的频域资源预留指示值(Frequency resource reservation indication value,FRRIV)来指示预留的连续RB的起始位置(RB START)和预留的连续RB的长度L CRRB,从而来表示预留的连续资源块,具有以下特征:当RB START=0,FFRIV=L CRRB-1;当0<RB START<=N-M,FFRIV=RB START+L CRRB–1,其中,L CRRB=M;当RB START>N-M,FFRIV=RB START+M–1。
对于0<=FRRIV<N,FRRIV和预留的连续资源块的最大资源块序号相同,所预留的资源块是从资源块序号0到资源块序号(FRRIV)的FRRIV+1个连续资源块。其中,RB START=0,L CRRB=FRRIV+1。
对于M<=FRRIV<N,FRRIV和预留的连续资源块的最大资源块序号相同,表示预留的资源块是从资源块序号(FRRIV-M+1)开始的M个连续资源块。其中,RB START=FRRIV-M+1,L CRRB=M。
对于N<=FRRIV<N+M-1,(FRRIV-M+1)和预留的连续资源块的最小资源块序号相同,表示预留的资源块是从资源块序号(FRRIV-M+1)到资源块序号(N-1)的连续资源块。其中,RB START=(FRRIV-M+1),L CRRB=N+M-FRRIV-1。
进一步的,通过X2比特指示预留的窄带,其中P表示共存系统中系统1包含的窄带数量,M表示共存系统中系统2频域需预留的最大预留的频域资源块数量。
如果
Figure PCTCN2020107637-appb-000032
Figure PCTCN2020107637-appb-000033
X2比特指示的值的频域资源预留指示值2(Frequency resource reservation indication value,这里用Y2简述)指示预留的连续窄带的起始位置(NB START)和预留的连续NB的长度L CRNB来表示预留的连续窄带,具有以下特征:
对于0<=Y2<P,Y2和预留的连续窄带的最大窄带序号相同,表示预留的 窄带是从窄带序号0到窄带序号Y2的Y2+1个连续窄带。其中,NB START=0,LCRNB=Y2+1。
对于P<=Y2<2P-1,(Y2-P+1)和预留的连续窄带的最小窄带序号,表示预留的窄带是从窄带序号(Y2-P+1)到窄带序号(P-1)。其中,NB START=(Y2-P+1),L CRNB=2P-Y2-1。
如果
Figure PCTCN2020107637-appb-000034
Figure PCTCN2020107637-appb-000035
X2比特指示的频域资源预留指示值2(Frequency resource reservation indication value,这里用Y2简述)指示预留的连续窄带的起始位置(NB START)和预留的连续NB的长度L CRNB来表示预留的连续窄带,具有以下特征:
对于
Figure PCTCN2020107637-appb-000036
Y2和预留的连续窄带的最大窄带序号相同,表示预留的窄带是从窄带序号0到窄带序号Y2-的Y2+1个连续窄带。其中,NB START=0,L CRNB=Y2+1。
对于
Figure PCTCN2020107637-appb-000037
Y2和预留的连续窄带的最大窄带序号相同,表示预留的窄带是从窄带序号
Figure PCTCN2020107637-appb-000038
开始的
Figure PCTCN2020107637-appb-000039
个窄带。其中,
Figure PCTCN2020107637-appb-000040
Figure PCTCN2020107637-appb-000041
对于
Figure PCTCN2020107637-appb-000042
和预留的连续窄带的最小窄带序号相同,表示预留的窄带是从窄带序号
Figure PCTCN2020107637-appb-000043
到窄带序号(P-1)。其中,
Figure PCTCN2020107637-appb-000044
进一步的,通过X3比特指示预留的RBG,其中N表示共存系统中系统1包含的资源块的数量,则系统包含的RBG数量
Figure PCTCN2020107637-appb-000045
T表示RBG中包含的资源块的数量,M表示共存系统中系统2频域需预留的最大预留的频域资源块数量。
如果
Figure PCTCN2020107637-appb-000046
Figure PCTCN2020107637-appb-000047
X3比特指示的频域资源预留指示值3(Frequency resource reservation indication value,这里用Y3简述)指示预留的连续RBG的起始位置(RBG START)和预留的连续RBG的长度L CRRBG来表示预留的连续RBG,具有以下特征:
对于0<=Y3<Q,Y3和预留的连续RBG的最大RBG序号相同,表示预 留的RBG是从RBG序号0到RBG序号Y3的Y3+1个连续RBG。其中,RBG START=0,L CRRBG=Y3+1。
对于Q<=Y3<2Q-1,(Y3-Q+1)和预留的连续RBG的最小RBG序号相同,表示预留的RBG是从RBG序号(Y3-Q+1)到RBG序号(Q-1)。其中,RBG START=Y3-Q+1,L CRRBG=2Q-Y3-1。
如果
Figure PCTCN2020107637-appb-000048
Figure PCTCN2020107637-appb-000049
X3比特指示的值Y3表示预留的连续RBG,具有以下特征:
对于
Figure PCTCN2020107637-appb-000050
Y3和预留的连续RBG的最大RBG序号相同,表示预留的RBG是从RBG序号0到RBG序号Y3的Y3+1个连续RBG。其中,RBG START=0,L CRRBG=Y3+1。
对于
Figure PCTCN2020107637-appb-000051
Y3和预留的连续RBG的最大RBG序号相同,表示预留的RBG是从RBG序号
Figure PCTCN2020107637-appb-000052
开始的
Figure PCTCN2020107637-appb-000053
个RBG。其中,
Figure PCTCN2020107637-appb-000054
Figure PCTCN2020107637-appb-000055
对于
Figure PCTCN2020107637-appb-000056
和预留的连续RBG的最小RBG序号相同,表示预留的RBG是从RBG序号
Figure PCTCN2020107637-appb-000057
到RBG序号(Q-1)。其中,
Figure PCTCN2020107637-appb-000058
当配置的时频域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,能在频域上通过最小的开销为共存系统预留资源,降低共存干扰的同时,提高系统的利用率。
实施方式八
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC/NB-IoT系统共存的情况,包括:配置时域预留周期和时域偏置。可以通过时域预留周期指示值指示时域预留周期,通过时域偏置指示值指示时域偏置。
其中,时域预留周期为L1个子帧,时域偏置指示值指示时域预留周期中子 帧预留位图起始所在子帧(subframe)与时域预留周期起始的距离。通过子帧预留位图指示配置给目标数据的预留子帧,子帧预留位图长度为M1。
或,时域预留周期为L2个子帧;时域偏置指示值指示时域预留周期中时域预留位图起始所在子帧(subframe)与时域预留周期起始的距离。通过时隙预留位图指示配置给目标数据的预留时隙,时隙预留位图长度为M2。
或,时域预留周期为L3个子帧;时域偏置指示值指示时域预留周期中时域预留位图所在子帧(subframe)与时域预留周期起始的距离。通过符号预留位图指示配置给第二系统的预留符号,符号预留位图长度为M3,M3>=1且M3<14。时域偏置可预定义或通过信令指示。
或,时域预留周期为单个子帧,各子帧的前M4个符号预留,M4<=L start;L start表示LTE下行控制区域(LTE legacy control channel region)的长度。M4可预定义或者通过信令配置。对于LTE-MTC系统,通过指示值配置预留的频域资源,其中预留的频域资源是连续的一个或多个资源块(Resource block,RB)、连续的一个或多个窄带(Narrowband)或连续的一个或多个资源块组(Resource Block Group,RBG)。
对于NB-IoT系统,预留的频域资源是单个资源块。
预留的时频域资源(时域+频域二维资源)分为不可动态改变的预留时频域资源或可动态改变的预留时频域资源。
动态激活或去激活系统中的可动态改变的预留时频域预留资源。当时频域预留资源被动态激活,则时频域预留资源可被系统使用。
动态激活时频域预留资源的信令中包含激活时长定时器的配置。在激活定时器到期前,所述时频域预留资源可被系统使用;在激活时长定时器到期后,所述时频域预留资源不可被系统使用。
动态激活时频域资源的激活时长定时器预定义。
当配置的频域资源属于第一系统,目标数据属于第二系统时,本申请实施例能够在第一系统和第二系统共存时解决两者的重要数据有效传输的问题。
通过本实施例的方法,既能为共存系统预留资源,又能灵活利用为共存系统预留的资源,降低共存干扰的同时,提高系统的利用率。
实施方式九
本实施例给出一种资源指示的方法,用于解决由于NR系统和LTE-MTC系统、NB-IoT系统共存的情况,包括:配置时域预留周期和时域偏置。
时域预留周期为L1个子帧,时域偏置指示时域预留周期中子帧预留位图起始所在子帧(subframe)与时域预留周期起始的距离。配置子帧预留位图,子帧预留位图长度为M1。
或,时域预留周期为L2个子帧;时域偏置指示时域预留周期中时域预留位图起始所在子帧(subframe)与时域预留周期起始的距离。时域预留位图为时隙预留位图,时隙预留位图长度为M2。
或,时域预留周期为L3个子帧;时域偏置指示时域预留周期中时域预留位图所在子帧(subframe)与时域预留周期起始的距离。时域预留位图为符号预留位图,符号预留位图长度为M3,M3>=1且M3<14。时域偏置可预定义或通过信令指示。
或,时域预留周期为单个子帧,各子帧的前M4个符号预留,M4<=L start;L start表示LTE下行控制区域(LTE legacy control channel region)的长度。M4可预定义或者通过信令配置。
预留的时频域资源(时域+频域二维资源)分为不可动态改变的预留时频域资源或可动态改变的预留时频域资源。
动态改写系统中的可动态改变的预留时域预留资源。
对于预留的子帧资源或时隙资源,动态配置子帧中或时隙中部分符号在改写定时器到期前可被系统占用。
改写定时器的时长可以预定义或通过信令配置。
进一步的,动态改写当前所调度数据发送时长范围内的部分或全部的时域预留。
通过1比特指示当前所调度数据发送时长范围内的时域预留是否可被所述数据发送占用。
通过2比特指示当前所调度数据发送时长范围内的部分或全部发送时长的时域预留可被所述数据发送占用。
具体的,所述2比特指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
具体的,所述2比特指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据 发送占用,当前所调度数据发送时长前1/4范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
具体的,所述2比特指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
本申请实施例还提供一种资源指示装置,如图8所示,包括:第一发送模块71:用于向终端发送第一指示信令;其中,所述第一指示信令包含预留时域资源信息,用于指示第一时域资源不能用于传输。
在一种实施方式中,所述第一指示信令包括:时域预留周期信息和时域偏置信息,以及所述时域预留周期内预留的时域资源信息;其中,通过时域预留位图表示在所述时域预留周期中预留的时域资源;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
在一种实施方式中,所述时域预留周期信息和时域偏置信息通过6比特联合指示。
在一种实施方式中,所述时域预留周期信息和时域偏置信息分别指示;其中,所述时域预留周期信息通过3比特指示;所述时域偏置信息通过5比特指示。
在一种实施方式中,所述时域预留位图包括时隙预留位图,用于指示在所述时域预留周期中的预留时隙。
在一种实施方式中,在所述时隙预留位图对应的比特位设置为第一值的情况下,所述时隙预留位图用于指示根据时隙索引的奇偶确定实际预留的符号。
在一种实施方式中,所述时隙预留位图的长度为4比特或10比特。
在一种实施方式中,所述时域预留位图包括符号预留位图,用于指示在时域预留周期中的预留符号。
在一种实施方式中,所述时域预留位图包括子帧预留位图,用于指示在时域预留周期中的预留符号;其中,所述子帧预留位图对应的比特位为第一值,则指示预留对应子帧中预设的符号位。
在一种实施方式中,所述时域预留位图包括子帧预留位图和符号预留位图, 用于指示在时域预留周期中的预留符号。
在一种实施方式中,所述子帧预留位图对应的比特位设置为第一值,则符号预留位图用于指示在时域预留周期中对应的子帧中的预留符号。
在一种实施方式中,所述子帧预留位图长度为2比特、5比特或10比特。
在一种实施方式中,所述符号预留位图的长度为2比特、7比特、14比特、28比特、70比特、7-L start比特或14-L start比特;L start表示长期演进LTE下行控制区域的长度。
在一种实施方式中,所述第一值为1或0。
在一种实施方式中,所述时域预留周期内预留的时域资源信息包括:时隙预留位图信息和子帧预留位图信息;其中,所述子帧预留位图对应的比特位为第一值,则,在时域预留周期中对应的子帧中的预留符号为预定义;或者,所述时域预留周期内预留的时域资源信息包括:时隙预留位图信息和子帧预留位图信息,以及符号预留位图信息;其中,在时域预留周期中对应的子帧中的预留符号根据符号预留位图信息确定。
在一种实施方式中,所述预留子帧在所述预留时隙结束位置之后X个子帧开始,其中,X为整数。
在一种实施方式中,所述子帧预留位图的长度值为3比特、5比特、6比特、8比特或者10比特。
在一种实施方式中,所述第一指示信令,包括:时域预留周期信息,用于指示时域预留周期;其中,所述时域预留周期中前Y个符号是为所述目标数据配置的预留符号,所述Y的值由时域预留周期中的符号预留信息指示,或者,Y为预定义值。
在一种实施方式中,当时域预留周期为一个子帧时,则所述子帧的前第四值个符号预留,第四值<=L start;其中,L start为LTE下行控制区域的最大长度。
在一种实施方式中,所述第一指示信令,包括:时隙预留位图信息和符号预留位图信息;其中,所述时隙预留位图的时域预留周期可预定义或通过信令配置;所述符号预留位图的时域预留周期可预定义或通过信令配置;所述时隙预留位图的时域预留周期和符号预留位图的时域预留周期可相同或不同。
在一种实施方式中,所述第一指示信令还包括预留的频域资源信息;其中,所述预留的频域资源信息用于指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,所述方法还包括:发送第二指示信令;其中,所述第 二指示信令指示所述预留的时域资源上对应的频域资源不能用于传输。
在一种实施方式中,所述预留的频域资源包括:连续的至少一个资源块、或连续的至少一个窄带或连续的至少一个资源块组。
在一种实施方式中,在系统包含的资源块的数量不超过需要的资源块的数量的最大值的情况下,则:当RB START=0,FFRIV=L CRRB-1;当0<RB START<N,FFRIV=N+RB START-1。
对于0<=FRRIV<N,所预留的资源块是从资源块序号0到资源块序号为FRRIV的FRRIV+1个连续资源块;RB START=0,L CRRB=FRRIV+1。
对于N<=FRRIV<2N-1,预留的资源块是从资源块序号为(FRRIV-N+1)到资源块序号(N-1);L CRRB=2N-FRRIV-1。
N为系统已有的资源块的数量;FRRIV为频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量。
在一种实施方式中,在系统包含的资源块的数量大于需要的资源块数量的最大值的情况下,则:当RB START=0,FFRIV=L CRRB-1;当RB START>0,FFRIV=RB START+M–1。
对于0<=FRRIV<N,所预留的资源块是从资源块序号0到资源块序号(FRRIV)的FRRIV+1个连续资源块;RB START=0,L CRRB=FRRIV+1。
对于M<=FRRIV<N,所预留的资源块是从资源块序号(FRRIV-M+1)开始的M个连续资源块;RB START=FRRIV-M+1,L CRRB=M。
对于N<=FRRIV<N+M-1,所预留的资源块是从资源块序号(FRRIV-M+1)到资源块序号(N-1)的连续资源块;RB START=(FRRIV-M+1),L CRRB=N+M-FRRIV-1。
N为系统包含的资源块的数量;M为需要预留的资源块的数量的最大值;FRRIV为频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量。
在一种实施方式中,所述时域预留周期为下述中的一个:5ms、10ms、20ms、40ms、80ms和160ms。
在一种实施方式中,所述时域资源用于在第一系统中传输第二系统的目标数据;所述第一系统和第二系统为共享同一频谱资源的系统。
在一种实施方式中,所述第一系统为LTE系统、MTC系统或者NB-IoT系统。
本申请实施例还提供一种资源指示装置,包括:第二发送模块:用于向终 端发送第二指示信令;其中,所述第二指示信令用于指示所述预留的时域资源上对应的频域资源不能用于传输。
本申请实施例提供的资源指示装置用于执行本申请任意一项实施例所提供的资源指示方法。
本申请实施例还提供一种数据接收装置,如图9所示,包括:第一接收模块81:用于侧接收基站发送的第一指示信令;其中,所述第一指示信令用于指示第一时域资源不能用于传输。
在一种实施例中,所述第一指示信令还包括预留的频域资源信息;其中,所述预留的频域资源信息用于指示所述预留的时域资源上对应的频域资源不能用于传输。
本申请实施例还提供的数据接收装置,还包括:第二接收模块:用于接收基站发送的第二指示信令;其中,所述第二指示信令用于指示所述预留的时域资源上对应的频域资源不能用于传输。
本申请实施例所提供的数据接收装置用于接收本申请任意一项实施例所提供的资源指示装置指示的资源传输的数据。
本申请实施例各装置中的各模块的功能可以参见上述方法实施例中的对应描述,在此不再赘述。
图10为本申请实施例的终端的结构示意图,如图10所示,本申请实施例提供的终端130包括:存储器1303与处理器1304。所述终端130还可以包括接口1301和总线1302。所述接口1301、存储器1303与处理器1304通过总线1302相连接。所述存储器1303用于存储指令。所述处理器1304被配置为读取所述指令以执行上述应用于终端的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本申请实施例的基站的结构示意图,如图11所示,本申请实施例提供的基站140包括:存储器1403与处理器1404。所述基站还可以包括接口1401和总线1402。所述接口1401、存储器1403与处理器1404通过总线1402相连接。所述存储器1403用于存储指令。所述处理器1404被配置为读取所述指令以执行上述应用于基站的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本申请实施例的通信系统的结构示意图,如图12所示,该系统包括:如上述实施例的终端130、以及上述实施例的基站140。本申请实施例的通信系统包括但不限于:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division  Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、或5G系统等。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存等。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。RAM可以包括多种形式,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本申请描述的系统和方法的存储器包括但不限于这些和任意其它适合类型的存储器。
本申请实施例的处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑器件(Field-Programmable Gate Array,FGPA)或者其他可编 程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、或者基于多核处理器架构的处理器。通用处理器可以是微处理器或者也可以是任何常规的处理器等。上述的处理器可以实现或者执行本申请实施例中的公开的各方法的步骤。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。

Claims (33)

  1. 一种资源指示方法,包括:
    向终端发送第一指示信令;
    其中,所述第一指示信令包含预留时域资源信息,用于指示对应的时域资源不能用于传输。
  2. 根据权利要求1所述的方法,其中,所述第一指示信令包括:
    时域预留周期信息和时域偏置信息,以及所述时域预留周期信息对应的时域预留周期内预留的时域资源信息;
  3. 根据权利要求2所述的方法,其中,所述时域预留周期中预留的时域资源通过时域预留位图表示;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
  4. 根据权利要求2所述的方法,其中,所述时域预留周期信息和时域偏置信息联合编码或独立编码。
  5. 根据权利要求3所述的方法,其中,所述时域预留位图包括时隙预留位图,所述时隙预留位图用于指示在所述时域预留周期中的预留时隙。
  6. 根据权利要求5所述的方法,其中,在所述时隙预留位图对应的比特位设置为第一值的情况下,根据时隙索引的奇偶确定该时隙实际预留的符号。
  7. 根据权利要求3所述的方法,其中,所述时域预留位图包括符号预留位图,所述符号预留位图用于指示在时域预留周期中的预留符号。
  8. 根据权利要求3所述的方法,其中,所述时域预留位图包括子帧预留位图,所述子帧预留位图用于指示在时域预留周期中的预留符号;
    其中,在所述子帧预留位图对应的比特位为第一值的情况下,指示预留对应子帧中预设的符号位。
  9. 根据权利要求3所述的方法,其中,所述时域预留位图包括子帧预留位图和符号预留位图,用于指示在时域预留周期中的预留符号。
  10. 根据权利要求9所述的方法,其中,在所述子帧预留位图对应的比特位设置为第一值的情况下,所述符号预留位图用于指示在时域预留周期中对应的子帧中的预留符号。
  11. 根据权利要求2所述的方法,其中,所述时域预留周期内预留的时域资源信息包括:时隙预留位图信息和子帧预留位图信息;其中,在所述子帧预留位图对应的比特位为第一值的情况下,在所述时域预留周期中对应的子帧中的预留符号为预定义;
    或者,所述时域预留周期内预留的时域资源信息包括:时隙预留位图信息和子帧预留位图信息,以及符号预留位图信息;其中,在所述时域预留周期中对应的子帧中的预留符号根据所述符号预留位图信息确定。
  12. 根据权利要求11所述的方法,其中,所述预留子帧在所述预留时隙结束位置之后X个子帧开始,其中,X为整数。
  13. 根据权利要求1所述的方法,其中,所述第一指示信令,包括:
    时域预留周期信息,用于指示时域预留周期;
    其中,所述时域预留周期中前Y个符号是为所述目标数据配置的预留符号,所述Y的值由时域预留周期中的符号预留信息指示,或者,Y为预定义值。
  14. 根据权利要求13所述的方法,其中,在所述时域预留周期为一个子帧的情况下,所述子帧的前第四值个符号预留,第四值<=L start
    其中,L start为LTE下行控制区域的最大长度。
  15. 根据权利要求1所述的方法,其中,所述第一指示信令,包括:
    时隙预留位图信息和符号预留位图信息;
    其中,所述时隙预留位图的时域预留周期可预定义或通过信令配置;所述符号预留位图的时域预留周期可预定义或通过信令配置。
  16. 根据权利要求2所述的方法,其中,所述时域预留周期为下述中的一个:5ms、10ms、20ms、40ms、80ms和160ms。
  17. 根据权利要求1所述的方法,其中,所述第一指示信令还包括预留的频域资源信息;
    其中,所述预留的频域资源信息用于指示预留的时域资源上对应的频域资源不能用于传输。
  18. 根据权利要求1所述的方法,还包括:
    发送第二指示信令;所述第二指示信令包括预留的频域资源信息;
    其中,所述预留的频域资源信息用于指示预留的时域资源上对应的频域资源不能用于传输。
  19. 根据权利要求17或18所述的方法,其中,所述预留的频域资源包括:连续的至少一个资源块、或连续的至少一个窄带或连续的至少一个资源块组。
  20. 根据权利要求17或18所述的方法,其中,在系统包含的资源块的数量不超过需要预留的资源块的数量的最大值的情况下:
    当RB START=0,FFRIV=L CRRB-1;
    当0<RB START<N,FFRIV=N+RB START-1;
    其中N为所述系统包含的资源块的数量;FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量。
  21. 根据权利要求17或18所述的方法,其中,在系统包含的资源块的数量超过需要预留的资源块的数量的最大值的情况下:
    当RB START=0,FFRIV=L CRRB-1;
    当RB START>0,FFRIV=RB START+M–1;
    其中,N为所述系统包含的资源块的数量;M为所述需要预留的资源块的数量的最大值;FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量。
  22. 根据权利要求17或18所述的方法,其中:
    当RB START=0,FFRIV=L CRRB-1;
    当RB START>0,FFRIV=RB START+min(M,N)–1;
    其中,N为系统包含的资源块的数量;M为需要预留的资源块的数量的最大值;FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量;min表示取最小值。
  23. 一种资源指示方法,包括:
    发送预留资源改写指示信令;
    其中,
    所述预留资源改写指示信令通过物理下行控制信道传输,
    所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
  24. 根据权利要求23所述的方法,其中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:
    所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
    当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
  25. 根据权利要求23所述的方法,其中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:
    所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
    当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/4范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
  26. 根据权利要求23所述的方法,其中,所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况包括:
    所述预留资源改写指示信令为2比特,指示当前所调度数据发送时长范围内的时域预留为以下4种情况之一:
    当前所调度数据发送时长范围内的时域预留不能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留能被所述数据发送占用,当前所调度数据发送时长前1/2范围内的时域预留不能被所述数据发送占用,或当前所调度数据发送时长范围内的时域预留都能被所述数据发送占用。
  27. 一种数据接收方法,包括:
    接收基站发送的第一指示信令;
    其中,所述第一指示信令包含预留时域资源信息,用于指示第一时域资源不能用于传输。
  28. 根据权利要求27所述的方法,其中,所述第一指示信令包括:
    时域预留周期信息和时域偏置信息,以及所述时域预留周期信息对应的时域预留周期内预留的时域资源信息;
    其中,通过时域预留位图表示在所述时域预留周期中预留的时域资源;所述时域偏置信息对应的时域偏置为时域预留周期中时域预留位图起始位置所在子帧与时域预留周期起始的距离。
  29. 根据权利要求27所述的方法,其中,所述第一指示信令还包括预留的频域资源信息;其中,所述预留的频域资源信息用于指示预留的时域资源上对应的频域资源不能用于传输;
    或者,所述方法还包括:接收第二指示信令;所述第二指示信令包括预留的频域资源信息;其中,所述预留的频域资源信息用于指示预留的时域资源上对应的频域资源不能用于传输。
  30. 根据权利要求29所述的方法,其中:
    当RB START=0,FFRIV=L CRRB-1;
    当RB START>0,FFRIV=RB START+min(M,N)–1;
    其中,N为系统包含的资源块的数量;M为需要预留的资源块的数量的最大值;FRRIV为频域预留指示信令对应的频域预留指示值;RB START用于指示预留资源块的起始位置;L CRRB用于指示所述预留资源块的数量;min表示取最小值。
  31. 一种数据接收方法,包括:
    接收预留资源改写指示信令;
    其中,
    所述预留资源改写指示信令通过物理下行控制信道传输,
    所述预留资源改写指示信令指示物理下行控制信道对应的物理共享信道对应的资源中预留资源被改写的情况。
  32. 一种资源指示装置,包括:
    第一发送模块:设置为向终端发送第一指示信令;
    其中,所述第一指示信令包含预留时域资源信息,用于指示对应的时域资源不能用于传输。
  33. 一种数据接收装置,包括:
    第一接收模块:设置为接收基站发送的第一指示信令;
    其中,所述第一指示信令包含预留时域资源信息,用于指示对应的时域资源不能用于传输。
PCT/CN2020/107637 2019-08-07 2020-08-07 资源指示方法、数据接收方法及装置 WO2021023288A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022507403A JP7355920B2 (ja) 2019-08-07 2020-08-07 リソース指示方法およびデータ受信方法、および装置
AU2020324253A AU2020324253B2 (en) 2019-08-07 2020-08-07 Resource indication method, resource indication apparatus, data receiving method, and data receiving apparatus
KR1020227007304A KR20220046597A (ko) 2019-08-07 2020-08-07 리소스 지시 방법, 리소스 지시 장치, 데이터 수신 방법, 및 데이터 수신 장치
EP20849647.1A EP4012960A4 (en) 2019-08-07 2020-08-07 METHOD FOR DISPLAYING RESOURCES AND METHOD AND DEVICE FOR RECEIVING DATA
US17/592,941 US20220240233A1 (en) 2019-08-07 2022-02-04 Resource indication method, resource indication apparatus, data receiving method, and data receiving apparatus
JP2023155648A JP2023169337A (ja) 2019-08-07 2023-09-21 リソース指示方法およびデータ受信方法、および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910733945.7A CN111092706B (zh) 2019-08-07 2019-08-07 资源指示方法、数据接收方法及装置
CN201910733945.7 2019-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/592,941 Continuation US20220240233A1 (en) 2019-08-07 2022-02-04 Resource indication method, resource indication apparatus, data receiving method, and data receiving apparatus

Publications (1)

Publication Number Publication Date
WO2021023288A1 true WO2021023288A1 (zh) 2021-02-11

Family

ID=70393412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107637 WO2021023288A1 (zh) 2019-08-07 2020-08-07 资源指示方法、数据接收方法及装置

Country Status (7)

Country Link
US (1) US20220240233A1 (zh)
EP (1) EP4012960A4 (zh)
JP (2) JP7355920B2 (zh)
KR (1) KR20220046597A (zh)
CN (3) CN116996194A (zh)
AU (1) AU2020324253B2 (zh)
WO (1) WO2021023288A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996194A (zh) * 2019-08-07 2023-11-03 中兴通讯股份有限公司 资源指示方法、数据接收方法、通信装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605364A (zh) * 2016-08-12 2018-09-28 联发科技(新加坡)私人有限公司 用于上行链路数据传输的方法以及装置
US20190053202A1 (en) * 2017-08-11 2019-02-14 At&T Intellectual Property I, L.P. Facilitating forward-compatible receivers in wireless communications systems
WO2019064228A2 (en) * 2017-09-27 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) METHODS FOR ENABLING MULTI-CARRIER LATERAL BINDING TRANSMISSIONS
CN111092706A (zh) * 2019-08-07 2020-05-01 中兴通讯股份有限公司 资源指示方法、数据接收方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037888A (ko) * 2012-07-05 2015-04-08 엘지전자 주식회사 반송파 집성에 사용되는 구성 반송파간에 동기화시키는 방법 및 사용자기기
WO2018203650A1 (ko) * 2017-05-01 2018-11-08 엘지전자 주식회사 무선 통신 시스템에서 자원을 할당하는 방법 및 장치
CN114513291A (zh) * 2017-06-16 2022-05-17 中兴通讯股份有限公司 定时信息的发送、确定方法、装置、存储介质及处理器
US10666406B2 (en) * 2017-06-16 2020-05-26 Qualcomm Incorporated Signaling information in physical broadcast channel (PBCH) demodulation reference signals (DMRS)
WO2019018973A1 (en) * 2017-07-24 2019-01-31 Nec Corporation METHODS AND DEVICES FOR CONFIGURING REFERENCE SIGNAL
CN117793919A (zh) * 2017-11-17 2024-03-29 中兴通讯股份有限公司 信息发送、接收方法及装置
WO2019134086A1 (zh) * 2018-01-04 2019-07-11 Oppo广东移动通信有限公司 一种资源配置方法及装置、计算机存储介质
WO2019143937A1 (en) * 2018-01-19 2019-07-25 Idac Holdings, Inc. Synchronization signal and paging for new radio-unlicensed (nr-u) band communications
US10841964B2 (en) * 2018-11-27 2020-11-17 Verizon Patent And Licensing Inc. Systems and methods for RAN slicing in a wireless access network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605364A (zh) * 2016-08-12 2018-09-28 联发科技(新加坡)私人有限公司 用于上行链路数据传输的方法以及装置
US20190053202A1 (en) * 2017-08-11 2019-02-14 At&T Intellectual Property I, L.P. Facilitating forward-compatible receivers in wireless communications systems
WO2019064228A2 (en) * 2017-09-27 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) METHODS FOR ENABLING MULTI-CARRIER LATERAL BINDING TRANSMISSIONS
CN111092706A (zh) * 2019-08-07 2020-05-01 中兴通讯股份有限公司 资源指示方法、数据接收方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
See also references of EP4012960A4
ZTE: "Coexistence of NB-IoT with NR", 3GPP DRAFT; R1-1904354 NB-IOT COEXISTENCE WITH NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699645 *
ZTE: "Coexistence of NB-IoT with NR", 3GPP DRAFT; R1-1910274 NB-IOT COEXISTENCE WITH NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789079 *
ZTE: "Discussion on coexistence of NB-IoT with NR", 3GPP DRAFT; R1-1808643 NB-IOT COEXISTENCE WITH NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516019 *
ZTE: "Resource reservation for coexistence of NB-IoT with NR", 3GPP DRAFT; R1-1912419, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823423 *

Also Published As

Publication number Publication date
EP4012960A1 (en) 2022-06-15
JP7355920B2 (ja) 2023-10-03
EP4012960A4 (en) 2023-09-27
CN111092706B (zh) 2023-07-25
CN111092706A (zh) 2020-05-01
AU2020324253B2 (en) 2024-03-07
CN116996193A (zh) 2023-11-03
JP2022544115A (ja) 2022-10-17
KR20220046597A (ko) 2022-04-14
US20220240233A1 (en) 2022-07-28
JP2023169337A (ja) 2023-11-29
CN116996194A (zh) 2023-11-03
AU2020324253A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US11647490B2 (en) Method and device for canceling uplink transmission
EP4017178A1 (en) Access resource determination method and device, storage medium and terminal
CA3064617C (en) Random access method, terminal, and network device
WO2018228561A1 (zh) 资源分配的方法、网络设备和终端设备
CN111052826B (zh) 鲁棒的时分复用图样的系统和方法
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
EP3833129B1 (en) Method for transmitting configuration information and terminal device
US20210160852A1 (en) Resource configuration method and terminal device
AU2020220568B2 (en) Random access method, device, and system
US20190037546A1 (en) Uplink data transmission method and device
EP3962202A1 (en) Pre-configured grant confirmation method, terminal, and network side device
CA3118605A1 (en) Data transmission method and communications apparatus
JP2023169337A (ja) リソース指示方法およびデータ受信方法、および装置
US11343806B2 (en) Uplink control channel transmission method and device
EP3911068A1 (en) Scheduling information transmission method and apparatus
EP3629659A1 (en) Data transmission method and apparatus
WO2018201344A1 (zh) 无线通信的方法、终端设备和网络设备
EP3911059A1 (en) Method and device for resource configuration and data transmission
JP2023543124A (ja) アップリンク伝送を向上させるためのシステムおよび方法
WO2023206416A1 (en) Methods and apparatuses for scheduling multiple physical downlink shared channel (pdsch) transmissions
US11336408B2 (en) Transmission resource allocation method and apparatus, and data sending method and apparatus
KR20220044975A (ko) 향상된 랜덤 액세스 절차의 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227007304

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020324253

Country of ref document: AU

Date of ref document: 20200807

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020849647

Country of ref document: EP

Effective date: 20220307