WO2021023250A1 - Power control method, communication nodes and storage medium - Google Patents

Power control method, communication nodes and storage medium Download PDF

Info

Publication number
WO2021023250A1
WO2021023250A1 PCT/CN2020/107289 CN2020107289W WO2021023250A1 WO 2021023250 A1 WO2021023250 A1 WO 2021023250A1 CN 2020107289 W CN2020107289 W CN 2020107289W WO 2021023250 A1 WO2021023250 A1 WO 2021023250A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
control parameter
information
srs
srs resource
Prior art date
Application number
PCT/CN2020/107289
Other languages
French (fr)
Chinese (zh)
Inventor
姚珂
蒋创新
高波
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021023250A1 publication Critical patent/WO2021023250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • This application relates to a wireless communication network, for example, to a power control method, communication node, and storage medium.
  • the new radio technology (NR) of a new generation of wireless communication needs to support a variety of application scenarios, and it also needs to support traditional frequency bands, high frequency bands, and beam modes at the same time.
  • the beam characteristics can solve the problem of small coverage in the high frequency band, but the support for the beam also brings great challenges to the design of power control.
  • the reference beam for uplink transmission has been changed, but the power control parameters corresponding to the uplink transmission cannot be updated in time, making the power control insufficiently accurate.
  • This application provides a power control method, device, system, and storage medium.
  • An embodiment of the present application provides a power control method, including:
  • the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication
  • An embodiment of the present application provides a power control method, including:
  • An embodiment of the present application provides a power control method, including:
  • the power control parameter of the PUSCH authorized to be configured is determined according to the power control parameter information in the power control parameter MAC signaling.
  • An embodiment of the present application provides a power control method, including:
  • the communication node determines according to the power control parameter information that the reference signal indicates the power control parameter of the associated uplink transmission.
  • An embodiment of the present application provides a power control method, including:
  • An embodiment of the present application provides a communication node, including:
  • the first receiving module is configured to receive power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indicator and power control parameter information corresponding to the reference signal indicator;
  • the determining module is configured to determine, according to the power control parameter information, the power control parameter of the associated uplink transmission indicated by the reference signal.
  • An embodiment of the present application provides a communication node, including:
  • the first receiving module is configured to receive power control parameter media access control MAC signaling
  • the update module is used to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
  • An embodiment of the present application provides a communication node, including:
  • the first sending module is configured to send power control parameter media access control MAC signaling; the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication; the power control parameter MAC The signaling is used to instruct the first communication node to determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
  • An embodiment of the present application provides a communication node, including:
  • the first sending module is used to send power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the power control parameter information in advance according to the power control parameter MAC signaling Configured power control parameter pool.
  • An embodiment of the present application provides a communication node including a processor, and the processor is configured to execute any method in the embodiments of the present application when running a program.
  • the embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • Figure 1 is a schematic diagram of a base station and UE performing beam training
  • Figure 2 is a schematic diagram of the spatial relationship indication
  • Figure 3 is a schematic diagram of determining the spatial relationship
  • Figure 4 is a schematic diagram of beam pair changes
  • FIG. 5 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a power control method provided by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the spatial relationship of PUCCH to activate/deactivate MAC
  • Figure 15 is a schematic diagram of SP SRS activation/deactivation of MAC CE
  • FIG. 16 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • Figure 17 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • Figure 19 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • Figure 22 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of a communication node provided by an embodiment of the present invention.
  • 25 is a schematic structural diagram of a first communication node provided by an embodiment of the present invention.
  • FIG. 26 is a schematic structural diagram of a second communication node according to an embodiment of the present invention.
  • the base station configures a sounding reference signal (Sounding Reference Signal, SRS) resource set (SRS resource set) for a user terminal (User Equipment, UE), and the SRS resource set includes at least one SRS resource (SRS resource).
  • SRS resource sets have different uses, such as beam management, antenna selection, positioning, codebook or non-codebook.
  • the SRS resource sets whose uses are codebook and non-codebook are used for codebook-based physical uplink shared channel (PUSCH) transmission and non-codebook-based PUSCH respectively. transmission.
  • the SRS resource sent by the base station to the UE may be configured with a spatial relationship.
  • the spatial relationship may be a beam on the base station side or a beam on the UE side, which are described by a downlink reference signal resource indicator and an uplink reference signal resource indicator, respectively.
  • the downlink reference signal is a reference signal sent by the base station side;
  • the uplink reference signal is a reference signal sent by the UE side.
  • the UE needs to transmit the SRS resource according to the spatial relationship of the SRS resource, that is, the transmission filter parameter is determined according to the spatial relationship of the SRS resource.
  • the transmission filter parameter may be a transmission parameter set to form a specific beam direction.
  • the beam may be indicated by a reference signal.
  • the beam can be a kind of resource (for example, transmit-end spatial filter, receive-end spatial filter, transmit-end precoding, receive-end precoding, antenna port, antenna weight vector and antenna weight matrix, etc.), and beam can also use resource index information To represent (for example, reference signal resource number, spatial relationship number).
  • resource index information For example, reference signal resource number, spatial relationship number.
  • the beam can be bound to some time-frequency code resources for transmission, the beam can also be expressed in a transmission (sending/receiving) manner, such as space division multiplexing, frequency domain or time domain diversity.
  • the use of the reference signal indication may indicate the beam to be used.
  • the reference signal indication may be, for example, an SRS Resource Indication (SRS Resource Indication, SRI).
  • the reference signal may include one or more of the following:
  • Channel State Information Reference Signal Channel State Information Reference Signal, CSI-RS
  • DL DMRS Downlink demodulation reference signal
  • Uplink demodulation reference signal (UL DMRS)
  • Random Access Channel (RACH)
  • Synchronization signal Synchronization Signal (Synchronization Signal, SS)
  • Synchronization Signal Block Synchronization Signal Block (Synchronization Signal Block, SSB or SS block)
  • the UE may include any type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • wireless user equipment such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • both the base station and the UE support the use of multiple beams for transmission or reception, so uplink and downlink beam training (also called beam scanning or beam management) is required.
  • the base station first configures the SRS resource set used for beam management for the UE, in which the SRS resource may not be configured with a spatial relationship, and the UE determines the transmission filter parameter for the SRS resource. Then, the base station selects some better beam pairs as available/candidate beam pairs according to the results of beam training, and configures the SRS resource set for the codebook or non-codebook to the UE.
  • the SRS resource set includes at least one SRS resource, and the spatial relationship of the SRS resources in the SRS resource set for codebook or non-codebook can be the SRS resource indicator (SRI) that the UE has sent or the downlink reference that the base station has sent Signal indication or synchronization signal block (SSB).
  • SRI SRS resource indicator
  • SSB Signal indication or synchronization signal block
  • the base station instructs the sending beam, and the UE knows that the downlink sending beam of the base station corresponds to the best receiving beam of the UE according to its own measurement results. Which beam is specifically selected for reception depends on the UE.
  • the base station instructs the UE's sending beam, and the base station itself determines the receiving beam for uplink transmission. Therefore, the receiving beam is transparent to the transmitting end.
  • the base station also configures power control parameters for the UE so that the UE can determine the power of uplink transmission.
  • the base station For PUSCH transmission, the base station indicates one or more SRS resources through the SRI field in Downlink Control Information (DCI), and the UE uses the same transmission filter parameters/beams as the SRS resources corresponding to the SRI to transmit the PUSCH.
  • the SRI indicated in the DCI is determined according to the SRS resource set configured by the base station. As shown in FIG. 3, the SRI field in the DCI for scheduling the PUSCH indicates SRI1, and the UE uses the spatial relationship of the SRS resources corresponding to the SRI1 to determine the transmission filter parameters of the PUSCH.
  • DCI Downlink Control Information
  • the available beam pair between the base station and the UE may change.
  • the SRS resource set, the spatial relationship corresponding to the SRS resource, and the corresponding relationship between the SRI field and the power control parameter in the DCI are all configured by high-level signaling, such as radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • the configuration delay of high-level parameters is relatively large, and the flexibility is not high. Therefore, the NR system supports the use of Medium Access Control (MAC) signaling for semi-persistent (SP) SRS resource collections to modify the spatial relationship of SRS resources.
  • MAC Medium Access Control
  • SP semi-persistent
  • the power control parameters are configured by RRC signaling to correspond to the SRS resource indication (SRI), and the power control parameters are determined based on the transmission and reception beam pair when the RRC configures the PUSCH.
  • the corresponding relationship between the SRS resource indication and the power control parameter in the SRS resource set does not change with the modification of the spatial relationship, resulting in the inability to match the new beam pair.
  • the beam of SRI1 has changed relative to Fig. 3, and the receiving beam of the base station may also be changed, and the power control parameters configured by RRC signaling may not match the new beam pair.
  • the base station may change the uplink receiving beam according to the real-time measurement result, which may also cause the power control parameter configured by the RRC signaling to no longer match the new beam pair.
  • the beam is expressed by the spatial relationship corresponding to the PUCCH resource.
  • the power control parameters are configured based on the spatial relationship.
  • the available beam pair changes, there is also a problem similar to PUSCH, that is, the power control parameters cannot match the new transceiver beam pair.
  • Step 510 Receive a power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication.
  • Step 520 Determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
  • the foregoing power control method provided by the embodiment of the present invention may be executed by the first communication node.
  • the first communication node may include a UE.
  • the power control parameter MAC signaling may come from the second communication node.
  • the second communication node may include a base station.
  • the reference signal indication and the power control parameter information corresponding to the reference signal indication are configured through MAC signaling, and the power control parameter for uplink transmission is determined according to the power control parameter information.
  • the MAC signaling configuration delay is small and the flexibility is high; on the other hand, the reference signal indication and the corresponding power control parameter information can be configured by MAC signaling in synchronization. Therefore, when the second communication node needs to change the uplink receiving beam, regardless of whether the corresponding beam of the first communication node changes, the power control parameter can be flexibly indicated, thereby achieving precise control of the uplink transmission power.
  • uplink transmission may include at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel (PRACH) transmission.
  • the power control parameter information may include at least one of PUCCH power control parameter information, PUSCH power control parameter information, and SRS power control parameter information.
  • the reference signal indication may include one or more of SRS resource indication (SRS Resource Indication, SRI), SRS resource set indication, transmission configuration indication (Transmission Configuration Indication, TCI), and spatial relationship indication.
  • the SRS resource indicator, SRS resource set indicator, transmission configuration indicator, and spatial relationship indicator can also be replaced by SRS resource number, SRS resource set number, transmission configuration number, and spatial relationship number. Number and index have the same meaning and can be replaced with each other.
  • high-level parameters such as RRC signaling, configure at least one transmission configuration indication TCI for the first communication node, which is used as a reference for at least one type of uplink transmission.
  • the uplink transmission may include, for example, one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
  • the upper layer parameters also configure the association relationship between TCI and power control parameters, so that these power control parameters can be used for PUCCH transmission, PUSCH transmission, PRACH transmission and/or SRS transmission power calculation.
  • the power control parameter MAC signaling updates the association relationship between the TCI and the power control parameter
  • the power control parameter MAC signaling may include TCI.
  • the power control parameter MAC signaling can have multiple exemplary implementations:
  • the power control parameter MAC signaling may include the spatial relationship activation state MAC control element (CE) of the physical uplink control channel PUCCH.
  • the spatial relationship activation state MAC CE of the PUCCH may be the spatial relationship activation/deactivation MAC CE of the PUCCH, which is used to activate or deactivate the spatial relationship of PUCCH transmission, and instruct the first communication node to update the spatial relationship corresponding to the uplink transmission resource.
  • the PUCCH spatial relationship activation/deactivation MAC CE carries the spatial relationship indication.
  • the PUCCH spatial relationship activation/deactivation MAC CE carries the power control parameter information to realize the configuration of the spatial relationship indication and power control parameters Relationship.
  • the PUCCH spatial relationship activation state MAC CE may include PUCCH power control parameter information.
  • the power control parameter MAC signaling may include the SRS activation state MAC CE.
  • SRS activation state MAC CE which can be SRS activation/deactivation MAC CE.
  • SRS activation/deactivation MAC CE can include SRS activation/deactivation MAC CE whose time domain characteristics are configured as semi-persistent (Semi-Persistent, SP), and can also include time domain characteristics configured as aperiodic and periodic SRS activation/ Deactivate one of MAC CE.
  • SRS activation/deactivation MAC CE is used to activate or deactivate the SRS resource set or the spatial relationship corresponding to each SRS resource in the SRS resource set.
  • SRS activation/deactivation MAC CE carries SRS resource set indication and SRS resource indication (SRI).
  • SRS activation/deactivation MAC CE carries power control parameter information to realize the configuration of SRI and power control parameters Relationship.
  • the SRS active state MAC CE may include at least one of PUSCH power control parameter information and SRS power control parameter information.
  • the power control parameter MAC signaling may include the dedicated power control parameter MAC CE.
  • the dedicated power control parameter MAC signaling is mainly used to carry reference signal indication and power control parameter information, and configure the reference signal indication and power control for the first communication node Association relationship of parameter information.
  • the reference signal indication in the dedicated power control parameter MAC signaling may be SRI, SRS resource set indication, TCI and/or spatial relationship indication.
  • the dedicated power control parameter MAC CE may include one or more of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
  • power control means power control
  • power control parameters and power control parameters have equivalent meanings.
  • the power control parameter information may include power control parameter status information and/or power control parameter indication information.
  • the indication information of the power control parameter is used to indicate the specific value of the power control parameter, which may directly indicate the power control parameter, or may indicate the power control parameter through index information (for example, a serial number).
  • the power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information.
  • the PUCCH spatial relationship activation/deactivation MAC CE or SRS activation/deactivation MAC CE is used to instruct the first communication node to switch the spatial relationship.
  • the MAC CE may not include the indication information of the power control parameters, and the power control can be used.
  • the parameter status information indicates whether the MAC CE includes indication information of power control parameters. If yes, the first communication node obtains the indication information of the power control parameter in the parameter field pre-specified in the MAC CE; if not, the MAC CE mainly carries the reference signal indication, which is used to instruct the first communication node to switch the spatial relationship.
  • the indication information of the power control parameter may include at least one of the following:
  • the power control parameter set number is used to determine at least one power control parameter set in a pre-configured power control parameter set pool.
  • the power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
  • the power control parameter MAC CE can indicate the power control parameter through the number.
  • the parameter pool can be pre-configured, and the parameter is indicated by indicating the number in the parameter pool.
  • the power control parameters can include one or more of the following:
  • Open-loop power control parameters may include path loss adjustment coefficient Alpha and/or target power P0.
  • path loss measurement parameters may be path loss (Path Loss, PL) reference signal parameters; path loss measurement parameters may include reference signal resource index information (such as number), which is identified by the index information The reference signal measurement result obtained the path loss.
  • path loss measurement parameters may be path loss (Path Loss, PL) reference signal parameters; path loss measurement parameters may include reference signal resource index information (such as number), which is identified by the index information The reference signal measurement result obtained the path loss.
  • closed-loop power control parameters may include closed-loop power control indexes and/or closed-loop power control numbers.
  • index information for example, numbers
  • Power control parameter pools can be configured for different types of power control parameters, for example, one or more of the open loop power control parameter pool, the path loss measurement parameter pool, and the closed loop power control parameter pool can be configured.
  • the power control parameter number may correspondingly include one or more of the open loop power control parameter number, the path loss measurement parameter number, and the closed loop power control number.
  • the open-loop power control parameter number can be used to determine at least one open-loop power control parameter in the pre-configured open-loop power parameter pool;
  • the path loss measurement parameter number can be used to determine at least one open-loop power control parameter in the pre-configured path loss measurement parameter pool A path loss measurement parameter;
  • the closed-loop power control number can be used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
  • a power control parameter set pool may be configured, and the power control parameter set pool may include one or more power control parameter sets.
  • Each power control parameter set includes one or more types of power control parameters. For example, configure a power control parameter set pool, where each power control parameter set includes one or more of open-loop power control parameters, path loss measurement parameters, and closed-loop power control parameters.
  • a power control parameter set pool may be configured, and the power control parameter set pool may include one or more power control parameter sets.
  • Each power control parameter set includes one or more types of power control parameter numbers.
  • the power control parameter collection pool is configured, and one or more of the open loop power control parameter pool, the path loss measurement parameter pool, and the closed loop power control parameter pool are configured.
  • Each parameter set in the power control parameter set pool includes one or more of an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control parameter number.
  • the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
  • the first communication node may index the power control parameter set by the power control parameter set number, and obtain the corresponding power control parameter.
  • the foregoing various power control parameter pools and/or power control parameter collection pools may be configured by higher layer parameters (such as RRC signaling).
  • the power control parameter pool configured by RRC includes an open loop power control parameter pool and a path loss measurement parameter pool.
  • the open loop power control parameter pool includes at most 32 open loop power control parameters
  • the path loss measurement parameter pool includes at most 8 path loss measurement parameters.
  • the indication information of the power control parameter may include 1 byte of information, where 5 bits indicate the open loop power control parameter number, and 3 bits indicate the path loss measurement parameter number.
  • the closed-loop power control parameters can use the default parameter values configured by RRC.
  • the power control parameter pool configured by RRC includes an open-loop power control parameter pool, a path loss measurement parameter pool, and a closed-loop power control parameter pool.
  • the open loop power control parameter pool includes at most 32 open loop power control parameters
  • the path loss measurement parameter pool includes at most 4 path loss measurement parameters
  • the closed loop power control parameter pool includes at most 2 closed loop power control parameters.
  • the indication information of the power control parameter may include 1 byte of information, where 5 bits indicate the open loop power control parameter number, 2 bits indicate the path loss measurement parameter number, and 1 bit indicates the closed loop power control parameter number.
  • the power control parameter pool configured by RRC includes an open loop power control parameter pool, a path loss measurement parameter pool, and a closed loop power control parameter pool.
  • the open-loop power control parameter pool includes at most 32 open-loop power control parameters, of which 8 open-loop power control parameters can be configured by the power control parameter MAC signaling.
  • the path loss measurement parameter pool includes at most 8 path loss measurement parameters, 4 of which can be configured by the power control parameter MAC signaling.
  • the closed-loop power control parameter pool includes up to 2 closed-loop power control parameters, all of which can be configured by the power control parameter MAC signaling.
  • the indication information of the power control parameter may include 1 byte of information, where 3 bits indicate the open loop power control parameter number, 2 bits indicate the path loss measurement parameter number, 1 bit indicates the closed loop power control parameter number, and the remaining 2 bits are reserved.
  • the indication information of power control parameters includes 1 byte of information, and some or all of the bits are used to indicate a power control parameter set number.
  • the power control parameter set number indicates a power control parameter set in a power control parameter set pool.
  • the power control parameter information includes power control parameter status information and/or power control parameter indication information, and there are multiple implementation manners.
  • the power control parameter information has a first bit and/or a second bit.
  • the first bit is used to carry power control parameter status information
  • the second bit is used to carry power control parameter indication information.
  • the second bit in the power control parameter MAC signaling occupies 2 bits and can represent 4 parameter values, which are used to indicate one of the 4 path loss measurement parameters in the path loss measurement parameter pool. For example, 00 indicates the No. 0 road loss measurement parameter, 01 indicates the No. 1 road loss measurement parameter, 10 indicates the No. 2 road loss measurement parameter, and 11 indicates the No. 3 road loss measurement parameter.
  • Example 2 Use one or more bits to represent the power control parameter status information and/or power control parameter indication information with different bit values.
  • M bits in the power control parameter MAC signaling are used to carry power control parameter information.
  • the M bits indicate that the power control parameter is maintained at the current value with the preset holding value (that is, the power control parameter indication information is not included in the M bits).
  • the M bits indicate that the power control parameter is changed to one or more of the other power control parameter values except the current value by using a plurality of preset non-holding values.
  • the holding value can be zero, and other values of the M bits except zero can be used as non-holding values.
  • M 2
  • 00 indicates that the current path loss measurement parameter remains unchanged
  • the remaining three values indicate one of the remaining three path loss measurement parameters except the current path loss measurement parameter. It can be indicated in the order of the remaining three path loss measurement parameters. Assuming that the current path loss measurement parameter is the No. 2 path loss measurement parameter, 00 indicates that the No. 2 path loss measurement parameter is still used, while 01 indicates the use of the No. 0 path loss measurement parameter, 10 indicates the use of the No. 1 path loss measurement parameter, and 11 indicates the use No. 3 road loss measurement parameters.
  • the method may include:
  • Step 610 Receive power control parameter media access control MAC signaling.
  • the power control parameter MAC signaling includes reference signal indication and SRS power control parameter information.
  • Step 620 Determine that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set.
  • Step 630 Determine, according to the power control parameter information, the power control parameter of the associated uplink transmission that the reference signal indicates.
  • step 620 it is determined that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set according to the following information:
  • the corresponding type information of the SRS power control parameter included in the power control parameter MAC signaling is used to indicate that the power control parameter information corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set .
  • the power control parameter information of the SRS may correspond to the SRS resource set, or may correspond to the SRS resource in the SRS resource.
  • the corresponding type information of the SRS power control parameter may be carried in the power control parameter MAC signaling, which directly indicates whether the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set. It can also be judged based on the purpose of the SRS resource collection. For example, according to the SRS resource set number indicated in the SRS activation/deactivation MAC CE, the use of the SRS resource set can be determined, and the power control parameter information of the SRS can be determined according to the use to correspond to the SRS resource set or to the SRS in the SRS resource set Resource correspondence.
  • step 620 determining the power control parameter information of the SRS corresponding to the SRS resource set or corresponding to the SRS resource in the SRS resource set according to the use of the SRS resource set includes :
  • Step 710 When the purpose of the SRS resource set is beam management, antenna selection or positioning, the power control parameter information corresponds to the SRS resource set.
  • Step 720 When the use of the SRS resource set is a codebook or a non-codebook, the power control parameter information corresponds to each SRS resource in the SRS resource set.
  • the power control parameter information when the power control parameter information corresponds to the SRS resource set, the power control parameter information includes a group of power control parameter indication information; the power control parameter information corresponds to the SRS resource in the SRS resource set
  • the power control parameter information includes at least one group of power control parameter indication information, and the at least one group of power control parameter indication information respectively corresponds to at least one SRS resource in the SRS resource set.
  • the method may include:
  • Step 810 Receive power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes reference signal indication and PUSCH power control parameter information.
  • Step 820 Determine the amount of PUSCH power control parameter information included in the power control parameter MAC signaling.
  • Step 830 Determine, according to the power control parameter information, the power control parameter indicating the associated uplink transmission by the reference signal.
  • the first communication node determines the quantity of power control parameter information of the PUSCH, and can obtain the corresponding quantity of power control parameter information in the designated field of the power control parameter MAC signaling.
  • the number of PUSCH power control parameter information included in the power control parameter MAC signaling is determined according to one of the following information:
  • the number of values in the SRI field may be the number of valid SRI values in the comparison table of the correspondence between SRI values and SRS resources, that is, the number of possible values of SRI.
  • the number of PUSCH power control parameter information is equal to the number of SRI values in the DCI.
  • the purpose of the SRS resource set is related to the number of values of the SRS resource indicator field (SRI field) in the DCI.
  • SRI field SRS resource indicator field
  • the number of values of the SRI field in the DCI is equal to the number of SRS resources in the SRS resource set.
  • the use of the SRS resource set is not a codebook, the number of values of the SRI field in the DCI and the combined number of SRS resources in the SRS resource set and/or the maximum supported by the communication node (ie, the first communication node) The rank is determined.
  • the number of PUSCH power control parameter information can be determined according to the usage of the SRS resource set, and the number of PUSCH power control parameter information can also be determined according to the number of values of the SRI field in the DCI.
  • the embodiment of the present invention may also carry parameter quantity information in the power control parameter MAC signaling, and the parameter quantity information directly indicates the quantity of PUSCH power control parameter information.
  • step 820 determining the number of PUSCH power control parameter information included in the power control parameter MAC signaling according to the use of the SRS resource set includes:
  • Step 910 When the purpose of the SRS resource set is a codebook, determine the amount of power control parameter information of the PUSCH according to the amount of SRS resources in the SRS resource set.
  • Step 920 When the purpose of the SRS resource set is not a codebook, determine the amount of PUSCH power control parameter information according to the combined number of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node.
  • the number of PUSCH power control parameter information may be the number of groups of PUSCH power control parameter information, and each group of PUSCH power control parameter information corresponds to one SRS resource set, or one SRS resource in the SRS resource set, or A combination of multiple SRS resources in the SRS resource set.
  • the number of combinations of SRS resources in the SRS resource set may be the number of combinations formed by randomly taking N SRS resources from the M SRS resources of the SRS resource set, N ⁇ M.
  • the combined number of SRS resources is limited by the maximum rank supported by the communication node.
  • the quantity of control parameter information may include: calculating the quantity of combinations formed by any K SRS resources in the M SRS resources of the SRS resource set, and determining that the quantity is the quantity of power control parameter information of the PUSCH, K ⁇ L. Among them, L is the maximum rank supported by this communication node (the first communication node).
  • the number of PUSCH power control parameter information and the number of values of the SRI field in the DCI are 4.
  • the number of PUSCH power control parameter information and the number of values of the SRI field in the DCI are 15.
  • each reference signal indication may correspond to one path loss measurement parameter.
  • each reference signal indication may correspond to at least one open-loop power control parameter, and at least one open-loop power control parameter may correspond to at least one uplink transmission.
  • SRS activation/deactivation MAC SRI in CE may indicate Open-loop power control parameters for PUSCH transmission and/or open-loop power control parameters for SRS transmission.
  • the dedicated power control MAC CE can indicate one or more of the open loop power control parameters for PUSCH transmission, the open loop power control parameters for SRS transmission, the open loop power control parameters for PUCCH transmission, and the open loop power control parameters for PRACH transmission.
  • the open loop power control parameters for PUSCH transmission, the open loop power control parameters for SRS transmission, the open loop power control parameters for PUCCH transmission, and the open loop power control parameters for PRACH transmission can be configured independently.
  • each reference signal indication may correspond to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
  • the activation/deactivation of the SRS the SRI in the MAC CE may indicate the closed-loop power control parameter of PUSCH transmission and/or the closed-loop power control parameter of SRS transmission.
  • the dedicated power control MAC CE can indicate one or more of closed-loop power control parameters for PUSCH transmission, closed-loop power control parameters for SRS transmission, closed-loop power control parameters for PUCCH transmission, and closed-loop power control parameters for PRACH transmission.
  • the closed-loop power control parameters for PUSCH transmission, the closed-loop power control parameters for SRS transmission, the closed-loop power control parameters for PUCCH transmission, and the closed-loop power control parameters for PRACH transmission can be configured independently.
  • the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
  • the transmission type information may be used to identify one or more types of uplink transmission to which the power control parameter information in the power control parameter MAC signaling is applied.
  • the types of uplink transmission include PUSCH transmission, SRS transmission, PUCCH transmission or PRACH transmission.
  • the power control method provided in the embodiment of the present invention may include:
  • Step 1010 Send capability information to the base station, where the capability information is used to indicate whether the communication node supports MAC signaling to modify power control parameters.
  • Step 1020 Receive a power control parameter MAC signaling, where the power control parameter MAC signaling includes a reference signal indicator and power control parameter information corresponding to the reference signal indicator.
  • Step 1030 Determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
  • the above method may be executed by the first communication node (for example, UE).
  • the power control parameter MAC signaling may be sent when the second communication node (for example, the base station) determines that the first communication node supports modification of the power control parameter after receiving the capability information.
  • the power control method provided in the embodiment of the present invention can indicate the power control parameter through the power control parameter MAC signaling when the first communication node supports the modification of the power control parameter.
  • the first communication node sends capability information to the base station, and the base station can clarify whether the first communication node supports modification of power control parameters.
  • an embodiment of the present invention also provides a power control method. As shown in FIG. 11, the method includes:
  • Step 1110 Receive the power control parameter media access control MAC signaling.
  • Step 1120 Update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
  • the power control parameter pool pre-configured in the first communication node can also be updated through the power control parameter MAC signaling, so as to realize more flexible power control.
  • the embodiment of the present invention may update one or more of the path loss measurement parameter pool, the open loop power control parameter pool, the closed loop power control parameter pool, and the power control parameter collection pool.
  • the power control parameter MAC signaling includes one or more sets of power control parameter information, and one or more sets of power control parameter information is used to indicate a set of power control parameters or multiple sets of numbers in the power control parameter pool. To large power control parameters.
  • the power control parameter MAC signaling includes a set of path loss measurement parameter information, which can be used to update the first path loss measurement parameter in the path loss measurement parameter pool.
  • Power control parameter MAC signaling includes multiple sets of path loss measurement parameter information, and the number of path loss measurement parameter information in the MAC signaling is the same as the number of path loss measurement parameters in the path loss measurement parameter pool, power control parameter MAC signaling All path loss measurement parameters in the path loss measurement parameter pool can be updated.
  • Power control parameter MAC signaling includes multiple sets of path loss measurement parameter information, and the number of path loss measurement parameter information in the MAC signaling is less than the number of path loss measurement parameters in the path loss measurement parameter pool.
  • the power control parameter MAC signaling is used To update some of the path loss measurement parameters in the path loss measurement parameter pool, and update the number of the path loss measurement parameters from small to large.
  • the number of path loss measurement parameters in the path loss measurement parameter pool configured by the upper layer is 4, and the number is 0 to 3, and the power control parameter MAC signaling only includes 2 path loss measurement parameters, and only the number is updated to 0 , 1 road loss measurement parameters.
  • the power control parameter information in the power control parameter MAC signaling may be used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
  • an embodiment of the present invention further provides a power control method, including:
  • the power control parameter of the PUSCH authorized to be configured is determined according to the power control parameter information in the power control parameter MAC signaling.
  • the power control parameters of the authorized PUSCH are updated to improve the accuracy of power control.
  • the power control parameter information includes power control parameter indication information.
  • the indication information of the power control parameter may be used to indicate the power control parameter of the PUSCH authorized to be configured.
  • PUSCH transmission is divided into two categories: PUSCH transmission based on dynamic authorization and configured grant based PUSCH transmission.
  • the PUSCH transmission for configuration authorization is divided into Type 1 and Type 2.
  • the power control parameters of the authorized PUSCH can be used for type 2 PUSCH transmission of the authorized PUSCH.
  • the power control parameter information further includes at least one of the type indication information of the authorized PUSCH and the number of the authorized PUSCH.
  • the indication information of the power control parameter is used to indicate the one or more groups of power control parameters of the PUSCH authorized by the configuration.
  • the type indication information of the PUSCH authorized by the configuration is used to indicate the type 1 configuration authorized PUSCH transmission or the type 2 configuration authorized PUSCH transmission.
  • the number of the PUSCH authorized for configuration may be the number of the PUSCH authorized for the type 1 configuration and the PUSCH authorized for the type 2 configuration respectively, or the unified number of the PUSCH authorized for the type 1 configuration and the PUSCH authorized for the type 2 configuration.
  • Higher layer signaling can configure more than one authorized PUSCH transmission.
  • the power control parameter can determine which configured authorized PUSCH the above power control parameter is applied to by configuring at least one of the type indication information of the authorized PUSCH and the number of the authorized PUSCH.
  • the upper layer configures a type 1 configuration authorized PUSCH transmission and a type 2 configuration authorized PUSCH transmission, and the type indication information of the configured authorized PUSCH can determine which configuration authorized PUSCH the above power control parameter is applied to.
  • the higher layer configures multiple Type 2 configuration authorized PUSCH transmissions, and the number can be used to determine which configuration authorized PUSCH the above power control parameter is applied to.
  • the higher layer has configured multiple type 1 and multiple type 2 configuration authorized PUSCH transmissions, and the type 1 configuration authorized PUSCH transmission and the type 2 configuration authorized PUSCH transmission are separately numbered, and they are authorized through configuration
  • the PUSCH type indication information and the number of the configured authorized PUSCH can determine which configured authorized PUSCH the above-mentioned power control parameter is applied to.
  • the upper layer has configured multiple Type 1 and multiple Type 2 configuration authorized PUSCH transmissions, and the type 1 configuration authorized PUSCH transmission and the type 2 configuration authorized PUSCH transmission are uniformly numbered, and they are authorized through configuration
  • the PUSCH number can determine which configuration authorized PUSCH the above power control parameter is applied to.
  • Step 1210 Send the power control parameter media access control MAC signaling; the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication; the power control parameter MAC signaling is used to instruct the first communication node according to The power control parameter information determines that the reference signal indicates the power control parameter of the associated uplink transmission.
  • the foregoing power control method provided by the embodiment of the present invention may be executed by the second communication node.
  • the second communication node may include a base station.
  • the first communication node may include a UE.
  • the power control method that can be executed by the second communication node provided in the embodiment of the present invention various technical details can be set by referring to the method that can be executed by the first communication node provided in the embodiment of the present invention.
  • the uplink transmission includes at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
  • the power control parameter MAC signaling includes one of the following:
  • the spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
  • the spatial relationship activation state MAC CE of the PUCCH includes the power control parameter information of the PUCCH
  • the SRS activation state MAC CE includes at least one of PUSCH power control parameter information and SRS power control parameter information;
  • the dedicated power control parameter MAC CE includes at least one of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
  • the power control parameter information includes at least one of the following:
  • the power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information
  • the indication information of the power control parameter includes at least one of the following:
  • the power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool
  • the power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
  • the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
  • the power control parameter includes at least one of the following:
  • Open loop power control parameters path loss measurement parameters, and closed loop power control parameters.
  • the power control parameter number includes at least one of the following:
  • Open-loop power control parameter number, path loss measurement parameter number, and closed-loop power control number are used to determine at least one open-loop power control parameter and path loss measurement parameter number in the pre-configured open-loop power parameter pool It is used to determine at least one path loss measurement parameter in a pre-configured path loss measurement parameter pool; the closed-loop power control number is used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
  • the M bits of the power control parameter MAC signaling are used to carry power control parameter information; the M bits represent the power control parameter as the current value with a preset holding value, and the M bits represent the preset value Multiple non-holding values indicate that the power control parameter is changed to one or more of other power control parameter values except the current value.
  • the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set.
  • the power control parameter MAC signaling further includes corresponding type information of the SRS power control parameter, and the corresponding type information of the SRS power control parameter is used to indicate that the power control parameter information corresponds to the SRS resource set or corresponds to the SRS resource set.
  • the SRS resources in the SRS resource set correspond.
  • the power control parameter information corresponds to the SRS resource set; when the use of the SRS resource set is codebook or non-codebook In this case, the power control parameter information corresponds to each SRS resource in the SRS resource set.
  • the power control parameter information when the power control parameter information corresponds to the SRS resource set, the power control parameter information includes a group of power control parameter indication information; when the power control parameter information corresponds to the SRS resource When the SRS resources in the set correspond to the SRS resources, the power control parameter information includes at least one set of power control parameter indication information, and the at least one set of power control parameter indication information corresponds to at least one SRS in the SRS resource set. Resource correspondence.
  • the amount of PUSCH power control parameter information included in the power control parameter MAC signaling can be determined according to the usage of the SRS resource set.
  • the number of SRS resource indication fields in the downlink control information DCI corresponding to uplink transmission is equal to the number of PUSCH power control parameter information included in the power control parameter MAC signaling.
  • the power control parameter MAC signaling may also include parameter quantity information.
  • the parameter quantity information is used to indicate the quantity of power control parameter information of the PUSCH.
  • the number of power control parameter information for the PUSCH is determined according to the number of SRS resources in the SRS resource set; in the case where the use of the SRS resource set is not a codebook , Determining the quantity of the PUSCH power control parameter information according to the combined quantity of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node.
  • the reference signal indication includes at least one of an SRS resource indication, an SRS resource set indication, a transmission configuration indication, and a spatial relationship indication.
  • each reference signal indication corresponds to one path loss measurement parameter
  • Each reference signal indication corresponds to at least one open-loop power control parameter, and at least one open-loop power control parameter corresponds to at least one type of uplink transmission;
  • Each reference signal indication corresponds to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
  • the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
  • the embodiment of the present invention may include:
  • Receive capability information sent by the first communication node indicates whether the first communication node supports MAC signaling to modify power control parameters.
  • the power control parameter MAC signaling is sent; the power control parameter MAC signaling includes a reference signal indicator and power control parameter information corresponding to the reference signal indicator; power control parameters
  • the MAC signaling is used to instruct the first communication node to determine the reference signal to indicate the associated uplink transmission power control parameter according to the power control parameter information.
  • Step 1310 Send the power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
  • the power control parameter MAC signaling includes one or more sets of power control parameter information, and the one or more sets of power control parameter information is used to indicate a set of power control in the power control parameter pool Parameters or groups of power control parameters with numbers from small to large.
  • the power control parameter information in the power control parameter MAC signaling is used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
  • Application example 1 is to reuse the spatial relationship of PUCCH to activate/deactivate MAC CE and update the power control parameters of PUCCH.
  • the base station configures a PUCCH spatial relationship pool for the UE through RRC signaling, which includes at least one PUCCH spatial relationship.
  • the spatial relationship of each PUCCH corresponds to a set of power control parameters.
  • Each group of power control parameters comes from the PUCCH power control parameter pool configured by the base station for the UE through RRC signaling.
  • the power control parameters include at least one of the following: open-loop power control parameters, closed-loop power control parameters, and path loss measurement parameters.
  • the power control parameter pool means that the correspondence between multiple power control parameters and power control parameter numbers can be pre-configured, and each type of power control parameter can be indexed by the power control parameter number.
  • the base station also configures a PUCCH resource pool for the UE through high-layer signaling RRC, which includes at least one PUCCH resource.
  • the base station activates/deactivates the MAC CE to activate/deactivate the spatial relationship of one PUCCH to one PUCCH resource through the spatial relationship of PUCCH.
  • the base station indicates the PUCCH resource through physical layer signaling DCI, and the UE can determine its corresponding PUCCH spatial relationship.
  • Figure 14 is a schematic diagram of the PUCCH spatial relationship activation/deactivation MAC. The meaning of each field in the PUCCH spatial relationship activation/deactivation MAC is as follows:
  • This field indicates the identity of the serving cell to which the MAC CE applies; the length of this field is 5 bits.
  • BWP ID Uplink bandwidth part identifier
  • Physical uplink control channel resource ID (PUCCH Resource ID): This field is the PUCCH resource ID; the length of this field is 7 bits.
  • S i indicates the activation state of the spatial relationship of the PUCCH, and i is the number of the spatial relationship of the PUCCH in the spatial relationship pool. If the value of this field is 1, it means activation, and 0 means deactivation.
  • the value of i is from 0 to 7, a total of 8 with 1 bit each, so the length of this field is 8 bits, indicating the activation state of 8 spatial relations.
  • R Reserved bit, which can be set to 0 or 1.
  • the base station activates/deactivates the MAC CE through the spatial relationship of the PUCCH and carries the power control parameters of the PUCCH, which is used to update the PUCCH power control parameters of the PUCCH resource in the PUCCH resource in the MAC CE.
  • One of the following methods can be used:
  • Method 1 Add a power control parameter field in the PUCCH spatial relationship activation/deactivation MAC CE.
  • One of the R fields is used to indicate whether there is an extra byte (power control parameter field) for the power control parameter indication of the activated PUCCH spatial relationship.
  • the second R field is used to indicate that a 1-byte power control parameter field is used to indicate the power control parameter of the PUCCH, and 1 byte is added to the schematic diagram of FIG. 14 to indicate the power control parameter of the PUCCH.
  • Method 2 Use 2 R domains to indicate power control parameters. For example, using two R fields, a total of two bits, can indicate four situations, which are used to indicate one of the four path loss measurement parameters configured by RRC.
  • the indication information of the power control parameter of the PUCCH includes at least one of the following: an open-loop power control parameter number, a path loss measurement parameter number, and a closed-loop power control parameter number.
  • the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control parameter number are used to identify the RRC configured open-loop power control parameter pool, path loss measurement parameter pool, and closed-loop power control parameter pool. Power control parameters.
  • the open loop power control parameter number, the path loss measurement parameter number, and the closed loop power control parameter number are used to identify the subset of the open loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed loop power control parameter.
  • Various types of power control parameters in a subset of the pool are used.
  • the open loop power control parameter pool includes a maximum of 32 open loop power control parameters
  • the path loss measurement parameter pool includes a maximum of 8 path loss measurement parameters.
  • the indication information of the power control parameter is 1 byte, including a 5-bit open-loop power control parameter number and a 3-bit path loss measurement parameter number.
  • the closed-loop power control parameters are not changed, and the closed-loop power control parameters configured by the RRC for the PUCCH spatial relationship are maintained.
  • the open-loop power control parameter pool includes up to 32 open-loop power control parameters
  • the path loss measurement parameter pool includes up to 4 path loss measurement parameters.
  • the closed-loop power control parameter pool It includes up to 2 closed-loop power controls.
  • the indication information of the power control parameter is 1 byte, including a 5-bit open-loop power control parameter number, a 2-bit path loss measurement parameter number, and a 1-bit closed-loop power control parameter number.
  • the open-loop power control parameter pool includes a maximum of 32 open-loop power control parameters, but the subset of the open-loop power control parameter pool for MAC CE configuration includes 8 open-loop power control parameters. Power control parameters.
  • the path loss measurement parameter pool includes up to 8 path loss measurement parameters, but the path loss measurement parameter subset for MAC CE configuration includes 4 open-loop power control parameters, and the closed-loop power control parameter pool includes up to 2 closed-loop power control parameters.
  • the indication information of the power control parameter is 1 byte, including a 3-bit open-loop power control parameter number, a 2-bit path loss measurement parameter number, a 1-bit power control parameter number, and the remaining 2 bits of 1 byte are reserved bits.
  • the indication information of the power control parameter of the PUCCH is 1 byte, and some or all of the bits are used to indicate the power control parameter set number of a PUCCH.
  • the power control parameter set number of the PUCCH indicates a power control parameter set structure of a PUCCH, which includes at least one of the following parameters: an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control parameter number. As follows:
  • PUCCH power control parameter set structure
  • PUCCH power control parameters are included in the PUCCH power control parameter set structure depends on the base station.
  • the base station configures at least one PUCCH power control parameter set structure for the UE through RRC signaling.
  • the base station instructs one of them to be used to update the power control parameters of the PUCCH included in the power control parameter set structure of the PUCCH through the MAC CE, and the power control parameters of the PUCCH that are not included in the power control parameter set structure of the other PUCCHs keep the RRC configuration for the PUCCH
  • the value of the spatial relationship is not updated by MAC CE.
  • the advantage of indicating the PUCCH power control parameter set number through the MAC layer is that the base station can associate the PUCCH power control parameter set with the beam on the base station side.
  • the base station can flexibly update the power control parameters of PUCCH through MAC CE.
  • the indication information of the power control parameter of the PUCCH includes at least one of the following: an open loop power control parameter, a path loss measurement parameter, and a closed loop power control parameter.
  • the open-loop power control parameters include: P0 value, or P0 adjustment value.
  • the P0 value is a UE-specific (UE-specific) target received power value for PUCCH.
  • the P0 adjustment value refers to the amount that needs to be adjusted relative to the previous P0 value.
  • the path loss measurement parameters include: the type of the reference signal used to measure the path loss, and the number of the reference signal used to measure the path loss.
  • the type of reference signal used for measuring path loss includes at least one of the following: channel state information reference signal CSI-RS, SSB.
  • the number of the reference signal used to measure the path loss is used to identify the type of the reference signal used to measure the path loss.
  • the number of the reference signal used to measure the path loss may be a reference signal number or a reference signal resource number, such as a CSI-RS resource number and an SSB number.
  • the closed-loop power control parameters include: the closed-loop power control number of the PUCCH. When the number of closed-loop power control of PUCCH is 1, this field may not exist.
  • One R field in the MAC CE can be used to indicate whether the PUCCH power control parameter exists.
  • the R field is "0" indicating that there is no PUCCH power control parameter after the PUCCH spatial relationship activation/deactivation related information; the R field is "1" indicates that there is PUCCH power control after the PUCCH spatial relationship activation/deactivation related information parameter.
  • Application example 2 is to multiplex SRS to activate/deactivate MAC CE, and update SRS resource set or power control parameters of SRS resource.
  • the power control parameters for SRS transmission are configured based on the SRS resource set through high-layer signaling RRC, that is, all SRS resources in an SRS resource set share the same power control parameters. That is, the power control parameters of SRS are configured by high-level signaling. High-level signaling may also configure the spatial relationship of SRS resources.
  • the NR system supports SP (semi-persistent, semi-persistent) SRS activation/deactivation MAC CE, which can activate/deactivate each SRS resource in the SRS resource set configured as SP in time domain characteristics, and indicate space for activated SRS resources relationship.
  • SP sub-persistent, semi-persistent
  • SRS activation/deactivation MAC CE which can activate/deactivate each SRS resource in the SRS resource set configured as SP in time domain characteristics, and indicate space for activated SRS resources relationship.
  • the MAC CE changes the spatial relationship of the SRS resources, the power control parameters cannot be updated in time.
  • Figure 15 shows a schematic diagram of SP SRS activation/deactivation MAC CE. The meaning of each field is as follows:
  • A/D This field indicates whether the MAC CE activates or deactivates an SP SRS resource set. A value of 1 means activation, otherwise it means deactivation.
  • SRS Resource Set's Cell ID This field indicates the identity of a serving cell, and the above SP SRS resource set belongs to the serving cell. If the following C field is set to 0, this field is also the serving cell of all resources in the Resource ID i (Resource ID i ) field. The length of this field is 5 bits.
  • SRS Resource Set's BWP ID This field indicates a BWP identifier, and the above-mentioned SP SRS resource set belongs to this BWP. If the following C field is set to 0, this field is also the BWP of all resources in the resource identifier i field.
  • the field length is 2 bits.
  • This field indicates whether the bytes in the Resource Serving Cell ID field and the uplink bandwidth part identification field exist. When the value is 1, the bytes of these two types of fields exist, otherwise, they do not exist.
  • Supplementary Uplink This field indicates that this MAC CE is applied to a normal uplink (NUL) carrier or SUL carrier configuration. A value of 1 indicates that it is applied to SUL carrier configuration, and 0 indicates that it is applied to NUL carrier configuration.
  • SP SRS Resource Set ID (SP SRS Resource Set ID): This field indicates the SP SRS resource set ID to be activated/deactivated, and the length of this field is 4 bits.
  • This field indicates the resource type of the spatial relationship of SRS resources. Set to 1 to indicate that the resource of the spatial relationship is a non-zero power channel state information reference signal resource (Non-Zero Power Channel State Information-Reference Signal resource, NZP CSI-RS) resource number, set to 0 to indicate that the resource of the spatial relationship is SSB or SRS Resource number. This field only exists when the A/D field is set to 1.
  • NZP CSI-RS Non-Zero Power Channel State Information-Reference Signal resource
  • Resource IDi (Resource IDi): This field includes a resource ID for the spatial relationship of SRS resource i.
  • Resource ID0 refers to the first SRS resource in the SRS resource set, Resource ID1 corresponds to the second one, and so on. If Fi is 0, and the first bit of the field is 1, the rest of the field includes the number of the SSB. If Fi is 0, and the first bit of the field is 0, the rest of the field includes the number of the SRS resource. The length of this field is 7 bits. This field only exists when the A/D field is set to 1.
  • Resource Serving Cell Idi (Resource Serving Cell Idi): This field indicates the identity of a serving cell, which is the serving cell where the spatial relationship resource of SRS resource i is located. The length of this field is 5 bits.
  • Resource uplink bandwidth part identifier i (Resource BWP Idi): This field indicates a BWP identifier, which is the BWP where the spatial relationship resource of the SRS resource i is located. The length of this field is 2 bits.
  • R Reserved bit, which can be set to 0 or 1.
  • the base station carries SRS power control parameters through SP SRS activation/deactivation MAC CE.
  • the power control parameters of the SRS are based on the SRS resource set, that is, the power control parameters of the SRS are added after the SP SRS activation/deactivation related information.
  • the power control parameter indication of the SRS includes at least one of the following: an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control number.
  • the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify each type of power in the RRC configuration open-loop power control parameter pool, path loss measurement parameter pool, and closed-loop power control number pool. Control parameters.
  • the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify the subset of the open-loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed-loop power control number pool.
  • the various types of power control parameters in the subset are used to identify the subset of the open-loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed-loop power control number pool.
  • the power control parameter of the SRS may also be a power control parameter set number indicating one SRS.
  • the power control parameter set number of the SRS indicates a power control parameter set structure of an SRS, which includes at least one of the following parameters: an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control number. As follows:
  • the power control parameter set structure of the SRS may also include only part of the power control parameters of the SRS, which will not be repeated here. Which SRS power control parameters are included in the SRS power control parameter set structure depends on the base station.
  • the base station configures at least one SRS power control parameter set structure for the UE through RRC signaling.
  • the base station instructs one of them to be used to update the power control parameters of the SRS included in the power control parameter set structure of the SRS through the MAC CE, and the power control parameters of the SRS not included in the power control parameter set structure of the remaining SRS keep the RRC configured for the SRS resource
  • the value of the set configuration is not updated by the MAC CE.
  • the advantage of indicating the SRS power control parameter set number through the MAC layer is that the base station can associate the SRS power control parameter set with the beam on the base station side.
  • the base station needs to change the uplink receiving beam, regardless of the beam on the UE side (using SRS resources).
  • the base station can flexibly update SRS power control parameters through MAC CE.
  • the R field can also be used to indicate whether the "SP SRS activation/deactivation" MAC CE has indication information of the power control parameters of the SRS. Or use the R field to indicate "SP SRS activation/deactivation" MAC CE including indication information of path loss measurement parameters configured by RRC.
  • the power control parameters of the SRS are based on the SRS resource set, that is, the indication information of the power control parameters of the SRS is added after the SP SRS activation/deactivation related information, which is used for all SRS resources in the SRS resource set indicated by the MAC CE.
  • the power control parameters of the above SRS may also be based on the SRS resource indication. That is, after the SP SRS activation/deactivation related information, the indication information of the power control parameters of the SRS is added, and each SRS resource in the SRS resource set corresponds to a set of indication information of the power control parameters of the SRS.
  • Whether the power control parameter of the SRS is based on the SRS resource set or the SRS resource can be determined according to the usage of the SRS resource set.
  • the power control parameters of the SRS are based on the SRS resource set.
  • the power control parameters of SRS are based on SRS resources.
  • the power control parameters of the SRS are based on the SRS resource set, there is only one set of power control parameters for the SRS, which is used for all SRS resources in the SRS resource set.
  • the power control parameters of the SRS When the power control parameters of the SRS are based on SRS resources, the power control parameters of the SRS have a set for each SRS resource in the SRS resource set, and they are respectively applied to the power control of each SRS resource.
  • the two R fields in the MAC CE can be used as power control parameters indicating SRS.
  • "00" indicates that there is no SRS power control parameter after SP SRS activation/deactivation related information
  • "01” indicates that there is SRS power control parameter after SP SRS activation/deactivation related information, which is indicated based on the SRS resource set
  • "10 Indicates that there are SRS power control parameters after SP SRS activation/deactivation related information, which is based on the SRS resource indication, that is, each SRS resource in the SRS resource set corresponds to a set of SRS power control parameters
  • "11" is the reserved value .
  • one R field in the MAC CE can be used as a power control parameter indicating SRS.
  • the R field is "0" indicating that there is no SRS power control parameter after SP SRS activation/deactivation related information; the R field is "1" indicating that there is SRS power control parameter after SP SRS activation/deactivation related information, which is based on SRS resource set indicates.
  • Application example 3 is to multiplex SRS to activate/deactivate MAC CE and update the power control parameters of PUSCH.
  • the PUSCH beam is determined by SRI, and its power control parameters are also determined by the SRI and the correlation between the SRI configured by the RRC and the number of each power control parameter in the power control parameter pool.
  • the base station can change the spatial relationship of the SRS resources corresponding to the SRI through MAC layer signaling, but cannot update the power parameters of the PUSCH corresponding to the SRI.
  • this application example uses SP SRS to activate/deactivate MAC CE to carry PUSCH power control parameters.
  • the power control parameters of PUSCH are based on SRI association.
  • SRI SRS resource set corresponding to the SRI
  • SRS resource set corresponding to the SRI is non-codebook
  • each SRI and SRS The SRS resources or SRS resource combinations in the resource set have a one-to-one correspondence. That is, the flexible power control of PUSCH is realized by adding the power control parameter of PUSCH after SP SRS activation/deactivation related information.
  • the PUSCH power control parameter indication includes at least one of the following: an open-loop power control parameter number, a path loss measurement parameter number, and a closed-loop power control number.
  • the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify each type of power in the RRC configuration open-loop power control parameter pool, path loss measurement parameter pool, and closed-loop power control number pool. Control parameters.
  • the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify the subset of the open-loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed-loop power control number pool.
  • the various types of power control parameters in the subset are used to identify the subset of the open-loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed-loop power control number pool.
  • the PUSCH power control parameter may also be a power control parameter set number indicating a PUSCH.
  • the PUSCH power control parameter set number indicates a PUSCH power control parameter set structure, which includes at least one of the following parameters: open loop power control parameter number, path loss measurement parameter number, and closed loop power control number. As follows:
  • the power control parameter set structure of the PUSCH may also only include part of the power control parameters of the PUSCH, which will not be repeated here. Which PUSCH power control parameters are included in the PUSCH power control parameter set structure depends on the base station.
  • the number of PUSCH power control parameters can be determined according to the number of SRIs in the DCI corresponding to the SRS resource set activated by the SP SRS activation/deactivation MAC CE.
  • the number of SRIs in the DCI corresponding to the SRS resource set is equal to the SRS resources in the SRS resource set, so the number of power control parameters for PUSCH is equal to the number of SRS resources in the SRS resource set .
  • the number of SRIs in the DCI corresponding to the SRS resource set is equal to the number of SRS resources in the SRS resource set and the combined number of SRS resources, and is limited by the maximum number supported by the UE.
  • Input multiple output (Multi Input Multi Output, MIMO) layer number maximum rank.
  • MIMO Multi Input Multi Output
  • the number of power control parameters for PUSCH is equal to 4.
  • the SRI has 15 values. So the number of power control parameters for PUSCH is equal to 15.
  • the number of power control parameters of the PUSCH can also be determined according to the usage of the SRS resource set activated by the SP SRS activation/deactivation MAC CE and the number of SRS resources included in the SRS resource set.
  • the number of power control parameters of the PUSCH is equal to the number of SRS resources included in the SRS resource set.
  • the number of power control parameters of the PUSCH is equal to the number of combinations of SRS resources included in the SRS resource set.
  • the combination of SRS resources includes a single SRS resource. For example, when the SRS resource set includes 4 SRS resources, the number of any combination of SRS resources is 15.
  • the number of power control parameters of the PUSCH is equal to the SRS resource set considering the limitation of the maximum number of layers of the UE The number of any combination of SRS resources included in.
  • One R field in the MAC CE can be used to indicate whether the power control parameter of the PUSCH exists.
  • the R field of "0" indicates that there is no PUSCH power control parameter after SP SRS activation/deactivation related information; the R field of "1" indicates that there are PUSCH power control parameters after SP SRS activation/deactivation related information.
  • Application example 4 is to multiplex SRS to activate/deactivate MAC CE, and update the power control parameters of PUSCH and/or the power control parameters of SRS.
  • the base station activates/deactivates MAC CE through SP SRS, or a new MAC CE carries SP SRS activation/deactivation related information, SRS power control parameters, and/or PUSCH power control parameters.
  • the two R fields in the MAC CE can be used to indicate the power control parameters of the SRS and/or the power control parameters of the PUSCH.
  • "00" means that there are no SRS power control parameters and/or PUSCH power control parameters after SP SRS activation/deactivation related information;
  • "01” means that there are SRS power control parameters after SP SRS activation/deactivation related information, which is based on SRS resource set indication;
  • "10” means that SP SRS activation/deactivation related information has SRS power control parameters, which are based on SRS resource indication, that is, each SRS resource in the SRS resource set corresponds to a set of SRS power control Parameter;
  • "11" indicates that there are PUSCH power control parameters after SP SRS activation/deactivation related information.
  • the two R fields in the MAC CE can be used to indicate the power control parameters of the SRS and/or the power control parameters of the PUSCH.
  • "00” means that there are no SRS power control parameters and/or PUSCH power control parameters after SP SRS activation/deactivation related information;
  • "01” means that there are SRS power control parameters after SP SRS activation/deactivation related information, which is based on As indicated by the SRS resource set;
  • "10” indicates that there are PUSCH power control parameters after SP SRS activation/deactivation related information;
  • 11 is a reserved value.
  • the base station uses the PUSCH dedicated power control parameter MAC CE to update the PUSCH power control parameter.
  • SRS Resource Set s Cell ID (SRS Resource Set’s Cell ID);
  • SRS Resource Set BWP ID (SRS Resource Set’s BWP ID);
  • SRS Resource Set ID (SRS Resource Set ID);
  • the base station configures at least one SRS resource set for the UE through high-level parameters, in which only one SRS resource set is used as a codebook, and one SRS resource set is used as a non-codebook.
  • the base station configures PUSCH parameters for the UE through high-level parameters, where the txConfig parameter is codebook or non-codebook.
  • the UE determines the transmission of the PUSCH according to the txConfig parameter for selecting the codebook or non-codebook SRS resource set whose usage is the codebook or non-codebook.
  • the PUSCH power control parameter information field includes at least one set of PUSCH power control parameters.
  • each set of PUSCH power control parameters corresponds to each SRS resource in the SRS resource set; when the PUSCH txConfig When the parameter is not a codebook, each set of PUSCH power control parameters corresponds to each SRS resource or combination of SRS resources in the SRS resource set.
  • the base station uses the SRS dedicated power control parameter MAC CE to update the SRS power control parameter.
  • the proprietary power control parameter MAC CE of SRS includes one or more of the following domains:
  • SRS Resource Set s Cell ID (SRS Resource Set’s Cell ID);
  • SRS Resource Set BWP ID (SRS Resource Set’s BWP ID);
  • SRS Resource Set ID (SRS Resource Set ID);
  • the power control parameter information field of the SRS indicates the power control parameter of the SRS resource set, and is shared by all SRS resources in the SRS resource set.
  • the power control parameter field of the SRS indicates the power control parameters of all SRS resources in the SRS resource set, and each SRS resource corresponds to a set of power control parameters.
  • the base station uses the PUCCH dedicated power control parameter MAC CE to update the PUCCH power control parameter.
  • BWP ID (BWP ID);
  • the base station uses the joint dedicated power control parameter MAC CE to update the power control parameters of PUSCH, SRS and/or PUCCH.
  • the parameter MAC CE realizes the common update of the power control parameters of PUSCH, SRS and PUCCH.
  • the joint proprietary power control parameter MAC CE includes one or more of the following domains:
  • BWP ID (BWP ID);
  • Uplink transmission control indication state ID (UL TCI-state ID);
  • the path loss measurement parameters are associated with UL TCI-state ID.
  • the path loss measurement parameters can be determined as the value of this domain.
  • the joint proprietary power control parameter MAC CE may also include one or more of the following domains:
  • the power control parameter information of the PUCCH here includes the open-loop power control parameter information of the PUCCH or the closed-loop power control parameter information of the PUCCH.
  • the PUSCH power control parameter information here includes PUSCH open-loop power control parameter information or PUSCH closed-loop power control parameter information.
  • the power control parameter information of the SRS here includes the open-loop power control parameter information of the SRS or the closed-loop power control parameter information of the SRS.
  • the aforementioned PUSCH power control parameter information, PUCCH power control parameter information, and SRS power control parameter information may exist in whole or in part, or may not exist. Therefore, the joint proprietary power control parameter MAC CE may also include one of the following domains:
  • the PUCCH power control parameter status information is used to indicate whether the PUCCH power control parameter information exists
  • PUSCH power control parameter status information is used to indicate whether the PUSCH power control parameter information exists
  • the power control parameter status information of the SRS is used to indicate whether the power control parameter information of the SRS exists.
  • the power control parameter status information field of the uplink transmission is not required.
  • the aforementioned joint dedicated power control parameter MAC CE only configures the aforementioned power control parameters for one UL TCI-state ID.
  • the joint dedicated power control parameter MAC CE may also configure the above power control parameters for multiple UL TCI-state IDs.
  • Application example 9 provides transmission conditions for the proprietary power control parameter MAC CE.
  • the base station After updating part or all of the beam expression with the UE, the base station sends at least one of the following signaling: PUSCH dedicated power control parameter MAC CE, PUCCH dedicated power control parameter MAC CE, SRS dedicated power control parameter MAC CE , Joint proprietary power control parameter MAC CE.
  • the beam expression (ie, reference signal indication) includes one of the following:
  • Application example 10 provides a method for using MAC CE to update a pre-configured power control parameter pool.
  • the power control parameter pool is configured by high-level parameters, and the following problems may exist:
  • the power control parameter pool may not meet the demand.
  • the maximum number of reference signals (Reference Signal, RS) used for path loss measurement is 4, and when the location of the UE changes, all the 4 path loss measurement parameters configured by the higher layer cannot be used.
  • the first one in the power control parameter pool is used by default. When the location of the UE changes, this default power control parameter is inappropriate.
  • the base station carries power control parameters through power control parameter MAC signaling to update the pre-configured power control parameter pool.
  • BWP ID (BWP ID);
  • the path loss measurement parameter field can include only one path loss measurement parameter, which is used to update the first path loss measurement parameter in the path loss measurement parameter pool configured by the upper layer, that is, the path loss measurement parameter with the smallest number or the number 0. .
  • the path loss measurement parameter domain includes at least one path loss measurement parameter, which is used to update all path loss measurement parameters in a path loss measurement parameter pool configured by a higher layer. That is, the number of path loss measurement parameters here is the same as the number of path loss measurement parameters in the path loss measurement parameter pool configured by the higher layer.
  • the path loss measurement parameter domain includes at least one path loss measurement parameter, which is used to update some path loss measurement parameters in a path loss measurement parameter pool configured by a higher layer. That is, the number of path loss measurement parameters here is less than the number of path loss measurement parameters in the path loss measurement parameter pool configured by the upper layer, and the number of path loss measurement parameters is updated from small to large. For example, if the number of path loss measurement parameters in the path loss measurement parameter pool configured by the upper layer is 4 and the numbers are 0 to 3, and the MAC CE includes only 2 path loss measurement parameters, only the numbers 0 and 1 of the upper layer configuration will be updated. The path loss measurement parameters.
  • the aforementioned path loss measurement parameter domain may include one or more of the following: PUSCH path loss measurement parameters, PUCCH path loss measurement parameters, and SRS path loss measurement parameters.
  • a MAC CE may only correspond to the update of one of the PUSCH path loss measurement parameter pool, the PUCCH path loss measurement parameter pool, or the SRS path loss measurement parameter pool, or it may correspond to multiple.
  • the aforementioned open-loop power control parameters and closed-loop power control parameters may be used for one or more of PUSCH, PUCCH, and SRS.
  • open-loop power control parameters and closed-loop power control parameters are also used to update part or all of the open-loop power control parameter pool and closed-loop power control parameter pool configured by the upper layer.
  • the power control parameter pool refers to at least one possible value of the power control parameter.
  • the following takes the power control parameter of PUSCH as an example for description.
  • PUSCH parameter configuration PUSCH-Config parameters include PUSCH-PowerControl parameters.
  • the PUSCH-PowerControl parameter includes at least one P0-PUSCH-AlphaSet parameter, that is, an open-loop power control parameter pool.
  • the PUSCH-PowerControl parameter includes at least one PUSCH-PathlossReferenceRS parameter, that is, a path loss measurement parameter pool.
  • the PUSCH-PowerControl parameter includes at least one twoPUSCH-PC-AdjustmentStates parameter, indicating the number of closed-loop power control parameters, that is, the closed-loop power control parameter pool.
  • the PUSCH-PowerControl parameter includes at least one SRI-PUSCH-PowerControl parameter, that is, the power control parameter pool.
  • the pre-configured PUSCH-PathlossReferenceRS parameter numbered 0 is updated.
  • the pre-configured SRI-PUSCH-PowerControl parameter numbered 0 is updated.
  • the pre-configured P0-PUSCH-AlphaSet parameters numbered 0 and 1 are updated.
  • the pre-configured path loss measurement parameter pool numbered 0 for at least one of PUSCH, PUCCH, or SRS is updated.
  • Application example 11 provides a method for the UE to inform the base station of its own capabilities.
  • the UE notifies the base station of one or more of the following information:
  • the base station can update the power control parameters of the UE through the above-mentioned power control parameter MAC signaling, otherwise the base station cannot update the power control parameters through the power control parameter MAC signaling.
  • the UE performs one of the following operations:
  • the UE only maintains the maximum number of path loss measurement parameters that can be supported with a smaller path loss measurement parameter number
  • the UE only maintains the most recently updated path loss measurement parameters that can be supported.
  • the base station guarantees that the number of path loss measurement parameters not configured for the UE is greater than the maximum number of path loss measurement parameters supported by the UE.
  • the UE does not expect that the number of path loss measurement parameters configured by the base station for itself is greater than the maximum number of path loss measurement parameters that it supports.
  • a base station represents a network side device, such as one or more types of base stations, transmission nodes, access points (AP, Access Point), relays, NB (Node B), and terrestrial radio access (UTRA, Universal Terrestrial Radio Access) or Evolved Terrestrial Radio Access (EUTRA, Evolved Universal Terrestrial Radio Access), etc.
  • the UE represents a kind of terminal equipment, for example, a user, a user equipment data card, a relay, or a mobile device.
  • the communication node includes:
  • the first receiving module 1610 is configured to receive power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication;
  • the determining module 1620 is configured to determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
  • the uplink transmission includes at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
  • the power control parameter MAC signaling includes one of the following:
  • the spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
  • the spatial relationship activation state MAC CE of the PUCCH includes the power control parameter information of the PUCCH
  • the SRS activation state MAC CE includes at least one of PUSCH power control parameter information and SRS power control parameter information;
  • the dedicated power control parameter MAC CE includes at least one of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
  • the power control parameter information includes at least one of the following:
  • the power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information
  • the indication information of the power control parameter includes at least one of the following:
  • the power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool
  • the power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
  • the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
  • the power control parameter includes at least one of the following:
  • Open loop power control parameters Open loop power control parameters, path loss measurement parameters and closed loop power control parameters
  • the power control parameter number includes at least one of the following:
  • Open-loop power control parameter number, path loss measurement parameter number, and closed-loop power control number are used to determine at least one open-loop power control parameter and path loss measurement parameter number in the pre-configured open-loop power parameter pool It is used to determine at least one path loss measurement parameter in a pre-configured path loss measurement parameter pool; the closed-loop power control number is used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
  • the M bits of the power control parameter MAC signaling are used to carry power control parameter information; the M bits represent the power control parameter as the current value with a preset holding value, and the M bits represent the preset value Multiple non-holding values indicate that the power control parameter is changed to one or more of other power control parameter values except the current value.
  • the communication node further includes:
  • the corresponding module 1710 is configured to determine that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set according to one of the following information:
  • the power control parameter MAC signaling includes the corresponding type information of the SRS power control parameter, and the corresponding type information of the SRS power control parameter is used to indicate that the power control parameter information corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set.
  • the corresponding module 1710 includes:
  • the first corresponding unit 1810 is configured to correspond to the power control parameter information with the SRS resource set when the purpose of the SRS resource set is beam management, antenna selection or positioning;
  • the second corresponding unit 1820 is configured to correspond to each SRS resource in the SRS resource set when the use of the SRS resource set is a codebook or a non-codebook.
  • the power control parameter information includes a group of power control parameter indication information
  • the power control parameter information corresponds to the SRS resource in the SRS resource set
  • the power control parameter information includes at least one set of power control parameter indication information
  • the at least one set of power control parameter indication information corresponds to at least one of the SRS resource sets.
  • One SRS resource corresponds.
  • the communication node further includes:
  • the quantity confirmation module 1910 is configured to determine the quantity of PUSCH power control parameter information included in the power control parameter MAC signaling according to one of the following information:
  • the number of parameters included in the power control parameter MAC signaling is the number of parameters included in the power control parameter MAC signaling.
  • the quantity confirmation module 1910 includes one of the following:
  • the first confirmation unit 2010 is configured to determine the amount of PUSCH power control parameter information according to the number of SRS resources in the SRS resource set when the use of the SRS resource set is a codebook;
  • the second confirmation unit 2020 is used to determine the PUSCH power control parameter information according to the combined number of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node when the use of the SRS resource set is not a codebook Quantity.
  • the reference signal indicator includes at least one of an SRS resource indicator (SRI), an SRS resource set indicator, a transmission configuration indicator, and a spatial relationship indicator.
  • SRI SRS resource indicator
  • SRS resource set indicator SRS resource set indicator
  • transmission configuration indicator SRS resource set indicator
  • spatial relationship indicator SRS resource indicator
  • the corresponding relationship between the reference signal indication and the power control parameter information includes one or more of the following:
  • Each reference signal indicator corresponds to a path loss measurement parameter
  • Each reference signal indication corresponds to at least one open-loop power control parameter, and at least one open-loop power control parameter corresponds to at least one type of uplink transmission;
  • Each reference signal indication corresponds to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
  • the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
  • the communication node may further include:
  • the information sending unit 2110 is used to send capability information to the base station; the capability information is used to indicate whether the communication node supports modification of power control parameters.
  • an embodiment of the present invention also provides a communication node, including:
  • the first receiving module 2210 is configured to receive power control parameter media access control MAC signaling
  • the update module 2220 is configured to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
  • the power control parameter MAC signaling includes one or more sets of power control parameter information, and one or more sets of power control parameter information is used to indicate a set of power control parameters or multiple sets of numbers in the power control parameter pool. To large power control parameters.
  • the power control parameter information in the power control parameter MAC signaling is used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
  • FIG. 23 a schematic structural diagram of a communication node, an embodiment of the present invention also provides a communication node, including:
  • the first sending module 2310 is used to send power control parameter media access control MAC signaling; power control parameter MAC signaling includes reference signal indication and power control parameter information corresponding to the reference signal indication; power control parameter MAC signaling is used to indicate The first communication node determines, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
  • the uplink transmission includes at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
  • the power control parameter MAC signaling includes one of the following:
  • the spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
  • the spatial relationship activation state MAC CE of the PUCCH includes the power control parameter information of the PUCCH
  • the SRS activation state MAC CE includes at least one of PUSCH power control parameter information and SRS power control parameter information;
  • the dedicated power control parameter MAC CE includes at least one of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
  • the power control parameter information includes at least one of the following:
  • the power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information
  • the indication information of the power control parameter includes at least one of the following:
  • the power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool
  • the power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
  • the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
  • the power control parameter includes at least one of the following:
  • Open loop power control parameters Open loop power control parameters, path loss measurement parameters and closed loop power control parameters
  • the power control parameter number includes at least one of the following:
  • Open-loop power control parameter number, path loss measurement parameter number, and closed-loop power control number are used to determine at least one open-loop power control parameter and path loss measurement parameter number in the pre-configured open-loop power parameter pool It is used to determine at least one path loss measurement parameter in a pre-configured path loss measurement parameter pool; the closed-loop power control number is used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
  • the M bits of the power control parameter MAC signaling are used to carry power control parameter information; the M bits represent the power control parameter as the current value with a preset holding value, and the M bits represent the preset value Multiple non-holding values indicate that the power control parameter is changed to one or more of other power control parameter values except the current value.
  • the reference signal indication includes one of an SRS resource indication, a transmission configuration indication, and a spatial relationship indication.
  • the corresponding relationship between the reference signal indication and the power control parameter information includes one or more of the following:
  • Each reference signal indicator corresponds to a path loss measurement parameter
  • Each reference signal indication corresponds to at least one open-loop power control parameter, and at least one open-loop power control parameter corresponds to at least one type of uplink transmission;
  • Each reference signal indication corresponds to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
  • the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
  • an embodiment of the present invention also provides a communication node, including:
  • the first sending module 2410 is used to send the power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the pre-configured power according to the power control parameter information in the power control parameter MAC signaling Control parameter pool.
  • the power control parameter MAC signaling includes one or more sets of power control parameter information, and the one or more sets of power control parameter information is used to indicate a set of power control in the power control parameter pool Parameters or groups of power control parameters with numbers from small to large.
  • the power control parameter information in the power control parameter MAC signaling is used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
  • FIG. 25 is a schematic structural diagram of a first communication node according to an embodiment of the present application.
  • the first communication node 130 provided in an embodiment of the present application includes a memory 1303 and a processor 1304.
  • the first communication node 130 may further include an interface 1301 and a bus 1302.
  • the interface 1301, the memory 1303 and the processor 1304 are connected through a bus 1302.
  • the memory 1303 is used to store instructions.
  • the processor 1304 is configured to read instructions to execute the technical solutions of the foregoing method embodiments applied to the first communication node.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 26 is a schematic structural diagram of a second communication node according to an embodiment of the application.
  • the second communication node 140 provided in the embodiment of the application includes a memory 1403 and a processor 1404.
  • the second communication node 140 may further include an interface 1401 and a bus 1402.
  • the interface 1401, the memory 1403 and the processor 1404 are connected through a bus 1402.
  • the memory 1403 is used to store instructions.
  • the processor 1404 is configured to read instructions to execute the technical solutions of the foregoing method embodiments applied to the second communication node.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, Industry Subversive Alliance (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Industry Subversive Alliance
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory, etc.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM can include many forms, such as static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DR RAM).
  • Static RAM, SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronization Dynamic random access memory Double Data Rate SDRAM, DDR SDRAM
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor in the embodiment of the present application may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FGPA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or processors based on multi-core processor architecture.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the foregoing processor may implement or execute the steps of each method disclosed in the embodiments of the present application.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present application provides a power control method, communication nodes and a storage medium. The power control method comprises: receiving power control parameter Media Access Control (MAC) signaling, the power control parameter MAC signaling comprising reference signal instructions and power control parameter information corresponding to the reference signal instructions; and determining power control parameters of an uplink transmission associated with the reference signal instructions according to the power control parameter information.

Description

功率控制方法、通信节点和存储介质Power control method, communication node and storage medium
本申请要求在2019年08月07日提交中国专利局、申请号为201910729406.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application filed with the Chinese Patent Office with application number 201910729406.6 on August 7, 2019. The entire content of this application is incorporated into this application by reference.
技术领域Technical field
本申请涉及无线通信网络,例如涉及一种功率控制方法、通信节点和存储介质。This application relates to a wireless communication network, for example, to a power control method, communication node, and storage medium.
背景技术Background technique
新一代无线通信新空口技术(new radio,NR)需要支持多样的应用场景,还需要同时支持传统的频段、高频段以及波束方式。波束特性可以解决在高频段覆盖小的问题,但是对波束的支持也对功率控制的设计带来很大的挑战。NR系统中,在一些情况下上行传输的参考波束已经改变了,但是上行传输对应的功率控制参数却无法及时更新,使得功率控制不够精准。The new radio technology (NR) of a new generation of wireless communication needs to support a variety of application scenarios, and it also needs to support traditional frequency bands, high frequency bands, and beam modes at the same time. The beam characteristics can solve the problem of small coverage in the high frequency band, but the support for the beam also brings great challenges to the design of power control. In the NR system, in some cases, the reference beam for uplink transmission has been changed, but the power control parameters corresponding to the uplink transmission cannot be updated in time, making the power control insufficiently accurate.
发明内容Summary of the invention
本申请提供功率控制方法、装置、系统和存储介质。This application provides a power control method, device, system, and storage medium.
本申请实施例提供一种功率控制方法,包括:An embodiment of the present application provides a power control method, including:
接收功控参数介质访问控制MAC信令,所述功控参数MAC信令包括参考信号指示以及与所述参考信号指示对应的功率控制参数信息;Receiving a power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication;
根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。Determine, according to the power control parameter information, the power control parameter of the associated uplink transmission that the reference signal indicates.
本申请实施例提供一种功率控制方法,包括:An embodiment of the present application provides a power control method, including:
接收功控参数介质访问控制MAC信令;Receive power control parameter media access control MAC signaling;
根据所述功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。Update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
本申请实施例提供一种功率控制方法,包括:An embodiment of the present application provides a power control method, including:
接收功控参数介质访问控制MAC信令;Receive power control parameter media access control MAC signaling;
根据所述功控参数MAC信令中的功率控制参数信息确定配置授权的PUSCH的功率控制参数。The power control parameter of the PUSCH authorized to be configured is determined according to the power control parameter information in the power control parameter MAC signaling.
本申请实施例提供一种功率控制方法,包括:An embodiment of the present application provides a power control method, including:
发送功控参数介质访问控制MAC信令;所述功控参数MAC信令包括参考信号指示以及与所述参考信号指示对应的功率控制参数信息;所述功控参数MAC信令用于指示第一通信节点根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。Send power control parameter media access control MAC signaling; the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication; the power control parameter MAC signaling is used to indicate the first The communication node determines according to the power control parameter information that the reference signal indicates the power control parameter of the associated uplink transmission.
本申请实施例提供一种功率控制方法,包括:An embodiment of the present application provides a power control method, including:
发送功控参数介质访问控制MAC信令;所述功控参数MAC信令用于指示第一通信节点根据所述功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。Sending power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
本申请实施例提供一种通信节点,包括:An embodiment of the present application provides a communication node, including:
第一接收模块,用于接收功控参数介质访问控制MAC信令,所述功控参数MAC信令包括参考信号指示以及与所述参考信号指示对应的功率控制参数信息;The first receiving module is configured to receive power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indicator and power control parameter information corresponding to the reference signal indicator;
确定模块,用于根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。The determining module is configured to determine, according to the power control parameter information, the power control parameter of the associated uplink transmission indicated by the reference signal.
本申请实施例提供一种通信节点,包括:An embodiment of the present application provides a communication node, including:
第一接收模块,用于接收功控参数介质访问控制MAC信令;The first receiving module is configured to receive power control parameter media access control MAC signaling;
更新模块,用于根据所述功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。The update module is used to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
本申请实施例提供一种通信节点,包括:An embodiment of the present application provides a communication node, including:
第一发送模块,用于发送功控参数介质访问控制MAC信令;所述功控参数MAC信令包括参考信号指示以及与所述参考信号指示对应的功率控制参数信息;所述功控参数MAC信令用于指示第一通信节点根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。The first sending module is configured to send power control parameter media access control MAC signaling; the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication; the power control parameter MAC The signaling is used to instruct the first communication node to determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
本申请实施例提供一种通信节点,包括:An embodiment of the present application provides a communication node, including:
第一发送模块,用于发送功控参数介质访问控制MAC信令;所述功控参数MAC信令用于指示第一通信节点根据所述功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。The first sending module is used to send power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the power control parameter information in advance according to the power control parameter MAC signaling Configured power control parameter pool.
本申请实施例提供一种通信节点,包括处理器,所述处理器用于运行程序时执行本申请实施例中的任意一种方法。An embodiment of the present application provides a communication node including a processor, and the processor is configured to execute any method in the embodiments of the present application when running a program.
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所 述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。The embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
附图说明Description of the drawings
图1为基站和UE进行波束训练的示意图;Figure 1 is a schematic diagram of a base station and UE performing beam training;
图2为空间关系指示的示意图;Figure 2 is a schematic diagram of the spatial relationship indication;
图3为空间关系确定的示意图;Figure 3 is a schematic diagram of determining the spatial relationship;
图4为波束对发生变化的示意图;Figure 4 is a schematic diagram of beam pair changes;
图5为本发明实施例提供的功率控制方法的示意图;FIG. 5 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图6为本发明实施例提供的功率控制方法的示意图;FIG. 6 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图7为本发明实施例提供的功率控制方法的示意图;FIG. 7 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图8为本发明实施例提供的功率控制方法的示意图;FIG. 8 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图9为本发明实施例提供的功率控制方法的示意图;FIG. 9 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图10为本发明实施例提供的功率控制方法的示意图;FIG. 10 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图11为本发明实施例提供的功率控制方法的示意图;FIG. 11 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图12为本发明实施例提供的功率控制方法的示意图;FIG. 12 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图13为本发明实施例提供的功率控制方法的示意图;FIG. 13 is a schematic diagram of a power control method provided by an embodiment of the present invention;
图14为PUCCH的空间关系激活/去激活MAC的示意图;FIG. 14 is a schematic diagram of the spatial relationship of PUCCH to activate/deactivate MAC;
图15为SP SRS激活/去激活MAC CE的示意图;Figure 15 is a schematic diagram of SP SRS activation/deactivation of MAC CE;
图16为本发明实施例提供的通信节点的结构示意图;FIG. 16 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图17为本发明实施例提供的通信节点的结构示意图;Figure 17 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图18为本发明实施例提供的通信节点的结构示意图;FIG. 18 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图19为本发明实施例提供的通信节点的结构示意图;Figure 19 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图20为本发明实施例提供的通信节点的结构示意图;FIG. 20 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图21为本发明实施例提供的通信节点的结构示意图;FIG. 21 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图22为本发明实施例提供的通信节点的结构示意图;Figure 22 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图23为本发明实施例提供的通信节点的结构示意图;FIG. 23 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图24为本发明实施例提供的通信节点的结构示意图;FIG. 24 is a schematic structural diagram of a communication node provided by an embodiment of the present invention;
图25为本发明实施例提供的第一通信节点的结构示意图;25 is a schematic structural diagram of a first communication node provided by an embodiment of the present invention;
图26为本发明实施例提供的第二通信节点的结构示意图。FIG. 26 is a schematic structural diagram of a second communication node according to an embodiment of the present invention.
具体实施方式detailed description
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。Hereinafter, the embodiments of the present application will be described in detail with reference to the drawings. It should be noted that the embodiments in this application and the features in the embodiments can be combined with each other arbitrarily if there is no conflict.
在NR系统中,基站配置探测参考信号(Sounding Reference Signal,SRS)资源集合(SRS resource set)给用户终端(User Equipment,UE),SRS资源集合中包括至少一个SRS资源(SRS resource)。SRS资源集合有不同的用途,例如波束管理、天线选择、定位、码本或非码本。其中,用途为码本和非码本的SRS资源集合分别用于基于码本(codebook based)的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输和非基于码本(non codebook based)的PUSCH传输。基站向UE发送的SRS资源中可以配置空间关系,空间关系可以是基站侧的波束,或UE侧的波束,分别用下行参考信号资源指示和上行参考信号资源指示进行描述。下行参考信号是基站侧发送的参考信号;上行参考信号是UE侧发送的参考信号。当SRS资源配置了空间关系,UE需要按照SRS资源的空间关系发送SRS资源,即根据SRS资源的空间关系确定发送滤波器参数。其中,发送滤波器参数可以是为了形成特定的波束方向而设定的发送参数。当基站向UE发送的SRS资源中没有配置空间关系,则UE可以自己确定发送滤波器参数。In the NR system, the base station configures a sounding reference signal (Sounding Reference Signal, SRS) resource set (SRS resource set) for a user terminal (User Equipment, UE), and the SRS resource set includes at least one SRS resource (SRS resource). SRS resource sets have different uses, such as beam management, antenna selection, positioning, codebook or non-codebook. Among them, the SRS resource sets whose uses are codebook and non-codebook are used for codebook-based physical uplink shared channel (PUSCH) transmission and non-codebook-based PUSCH respectively. transmission. The SRS resource sent by the base station to the UE may be configured with a spatial relationship. The spatial relationship may be a beam on the base station side or a beam on the UE side, which are described by a downlink reference signal resource indicator and an uplink reference signal resource indicator, respectively. The downlink reference signal is a reference signal sent by the base station side; the uplink reference signal is a reference signal sent by the UE side. When the SRS resource is configured with a spatial relationship, the UE needs to transmit the SRS resource according to the spatial relationship of the SRS resource, that is, the transmission filter parameter is determined according to the spatial relationship of the SRS resource. Wherein, the transmission filter parameter may be a transmission parameter set to form a specific beam direction. When the SRS resources sent by the base station to the UE do not have a configuration spatial relationship, the UE can determine the sending filter parameters by itself.
在本申请实施例中,波束可以用参考信号指示表示。波束可以为一种资源(例如发送端空间滤波器、接收端空间滤波器、发端预编码、收端预编码、天线端口、天线权重矢量和天线权重矩阵等),波束也可以用资源的索引信息来表示(例如参考信号资源编号、空间关系编号)。因为波束可以与一些时频码资源进行传输上的绑定,所以波束也可以用一种传输(发送/接收)方式表示,例如空分复用、频域或时域分集等。示例性地,使用参考信号指示可以指示要使用的波束。参考信号指示例如可以是SRS资源指示(SRS Resource Indication,SRI)。参考信号可以包括如下一种或多种:In the embodiment of the present application, the beam may be indicated by a reference signal. The beam can be a kind of resource (for example, transmit-end spatial filter, receive-end spatial filter, transmit-end precoding, receive-end precoding, antenna port, antenna weight vector and antenna weight matrix, etc.), and beam can also use resource index information To represent (for example, reference signal resource number, spatial relationship number). Because the beam can be bound to some time-frequency code resources for transmission, the beam can also be expressed in a transmission (sending/receiving) manner, such as space division multiplexing, frequency domain or time domain diversity. Exemplarily, the use of the reference signal indication may indicate the beam to be used. The reference signal indication may be, for example, an SRS Resource Indication (SRS Resource Indication, SRI). The reference signal may include one or more of the following:
(1)信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)(1) Channel State Information Reference Signal (Channel State Information Reference Signal, CSI-RS)
(2)信道状态信息干扰测量信号(Channel State Information Interference Measurement Signal,CSI-IM)(2) Channel State Information Interference Measurement Signal (Channel State Information Interference Measurement Signal, CSI-IM)
(3)解调参考信号(Demodulation Reference Signal,DMRS)(3) Demodulation Reference Signal (Demodulation Reference Signal, DMRS)
(4)下行解调参考信号(Downlink demodulation reference signal,DL DMRS)(4) Downlink demodulation reference signal (DL DMRS)
(5)上行解调参考信号(Uplink demodulation reference signal,UL DMRS)(5) Uplink demodulation reference signal (UL DMRS)
(6)探测参考信号(Sounding Reference Signal,SRS)(6) Sounding Reference Signal (Sounding Reference Signal, SRS)
(7)相位追踪参考信号(Phase-tracking reference signals,PTRS)(7) Phase-tracking reference signals (PTRS)
(8)随机接入信道信号(Random Access Channel,RACH)(8) Random Access Channel (RACH)
(9)同步信号(Synchronization Signal,SS)(9) Synchronization signal (Synchronization Signal, SS)
(10)同步信号块(Synchronization Signal Block,SSB或SS block)(10) Synchronization Signal Block (Synchronization Signal Block, SSB or SS block)
(11)主同步信号(Primary Synchronization Signal,PSS)(11) Primary synchronization signal (Primary Synchronization Signal, PSS)
(12)辅同步信号(Secondary Synchronization Signal,SSS)(12) Secondary synchronization signal (Secondary Synchronization Signal, SSS)
在本申请实施例中,UE可以包括任意类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台等。In the embodiment of the present application, the UE may include any type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
如图1所示,基站和UE都支持使用多个波束进行发送或接收,因此需要做上行和下行链路的波束训练(也叫波束扫描或波束管理)。基站先为UE配置用途为波束管理的SRS资源集合,其中的SRS资源可不配置空间关系,UE为SRS资源确定发送滤波器参数。然后,基站根据波束训练的结果挑选一些较好的波束对(beam pair)作为可用的/备选的波束对,并配置用途为码本或非码本的SRS资源集合给UE。SRS资源集合中包括至少一个SRS资源,用途为码本或非码本的SRS资源集合中的SRS资源的空间关系可以用UE已经发送过的SRS资源指示(SRI)或基站已经发送过的下行参考信号指示或同步信号块(SSB)来表示。如图2所示,SRS资源集合中包括2个SRS资源,可分别标记为SRI1和SRI2。As shown in Figure 1, both the base station and the UE support the use of multiple beams for transmission or reception, so uplink and downlink beam training (also called beam scanning or beam management) is required. The base station first configures the SRS resource set used for beam management for the UE, in which the SRS resource may not be configured with a spatial relationship, and the UE determines the transmission filter parameter for the SRS resource. Then, the base station selects some better beam pairs as available/candidate beam pairs according to the results of beam training, and configures the SRS resource set for the codebook or non-codebook to the UE. The SRS resource set includes at least one SRS resource, and the spatial relationship of the SRS resources in the SRS resource set for codebook or non-codebook can be the SRS resource indicator (SRI) that the UE has sent or the downlink reference that the base station has sent Signal indication or synchronization signal block (SSB). As shown in Figure 2, the SRS resource set includes two SRS resources, which can be marked as SRI1 and SRI2 respectively.
NR的多波束系统中,对下行传输,基站指示发送波束,UE根据自己的测量结果,知道基站的下行发送波束对应UE的最好接收波束。具体选择哪个波束进行接收取决于UE。对上行传输,基站指示UE的发送波束,基站自己确定上行传输的接收波束。因此,接收波束对发送端都是透明的。对上行传输,除发送波束外,基站还为UE配置功率控制参数,使得UE可以确定上行传输的功率。In the NR multi-beam system, for downlink transmission, the base station instructs the sending beam, and the UE knows that the downlink sending beam of the base station corresponds to the best receiving beam of the UE according to its own measurement results. Which beam is specifically selected for reception depends on the UE. For uplink transmission, the base station instructs the UE's sending beam, and the base station itself determines the receiving beam for uplink transmission. Therefore, the receiving beam is transparent to the transmitting end. For uplink transmission, in addition to sending beams, the base station also configures power control parameters for the UE so that the UE can determine the power of uplink transmission.
对于PUSCH传输,基站通过下行控制信息(Downlink Control Information,DCI)中的SRI域指示一个或多个SRS资源,UE则使用与SRI对应的SRS资源相同的发送滤波器参数/波束发送PUSCH。DCI中指示的SRI是根据基站配置的SRS资源集合确定的。如图3所示,调度PUSCH的DCI中SRI域指示了SRI1,则UE使用SRI1对应的SRS资源的空间关系确定PUSCH的发送滤波器参数。For PUSCH transmission, the base station indicates one or more SRS resources through the SRI field in Downlink Control Information (DCI), and the UE uses the same transmission filter parameters/beams as the SRS resources corresponding to the SRI to transmit the PUSCH. The SRI indicated in the DCI is determined according to the SRS resource set configured by the base station. As shown in FIG. 3, the SRI field in the DCI for scheduling the PUSCH indicates SRI1, and the UE uses the spatial relationship of the SRS resources corresponding to the SRI1 to determine the transmission filter parameters of the PUSCH.
如图4所示,当UE发生位置改变时,基站与UE之间的可用波束对可能会 发生改变。SRS资源集合、SRS资源对应的空间关系以及DCI中的SRI域与功率控制参数的对应关系都是由高层信令配置的,例如无线资源控制(Radio Resource Control,RRC)信令。一般地,高层参数的配置时延较大,灵活性不高。因此NR系统支持对半持续(Semi-Persistent,SP)的SRS资源集合用介质访问控制(Medium Access Control,MAC)信令修改SRS资源的空间关系。但是,功率控制参数是由RRC信令配置为与SRS资源指示(SRI)对应的,且功率控制参数是基于RRC配置PUSCH时的发送和接收波束对确定的。SRS资源集合中的SRS资源指示和功率控制参数的对应关系没有随空间关系修改而变化,导致无法与新的波束对匹配。在图4中,SRI1的波束相对于图3发生了改变,基站的接收波束也可能发生了改变,由RRC信令配置的功率控制参数可能不能与新的波束对匹配。As shown in Figure 4, when the location of the UE changes, the available beam pair between the base station and the UE may change. The SRS resource set, the spatial relationship corresponding to the SRS resource, and the corresponding relationship between the SRI field and the power control parameter in the DCI are all configured by high-level signaling, such as radio resource control (Radio Resource Control, RRC) signaling. Generally, the configuration delay of high-level parameters is relatively large, and the flexibility is not high. Therefore, the NR system supports the use of Medium Access Control (MAC) signaling for semi-persistent (SP) SRS resource collections to modify the spatial relationship of SRS resources. However, the power control parameters are configured by RRC signaling to correspond to the SRS resource indication (SRI), and the power control parameters are determined based on the transmission and reception beam pair when the RRC configures the PUSCH. The corresponding relationship between the SRS resource indication and the power control parameter in the SRS resource set does not change with the modification of the spatial relationship, resulting in the inability to match the new beam pair. In Fig. 4, the beam of SRI1 has changed relative to Fig. 3, and the receiving beam of the base station may also be changed, and the power control parameters configured by RRC signaling may not match the new beam pair.
另外,即使SRI对应的SRS资源不发生变化,基站也可能根据实时的测量结果改变上行接收波束,也可能导致RRC信令配置的功率控制参数已经不能匹配新的波束对。In addition, even if the SRS resource corresponding to the SRI does not change, the base station may change the uplink receiving beam according to the real-time measurement result, which may also cause the power control parameter configured by the RRC signaling to no longer match the new beam pair.
对于物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输,其波束用PUCCH资源对应的空间关系表达。功率控制参数基于空间关系配置。当可用的波束对发生变化,也存在和PUSCH类似的问题,即功率控制参数不能匹配新的收发波束对。For physical uplink control channel (PUCCH) transmission, the beam is expressed by the spatial relationship corresponding to the PUCCH resource. The power control parameters are configured based on the spatial relationship. When the available beam pair changes, there is also a problem similar to PUSCH, that is, the power control parameters cannot match the new transceiver beam pair.
在一个示例性实施方式中,请参考图5所示的本发明实施例提供的功率控制方法的流程图,该方法包括:In an exemplary embodiment, please refer to the flowchart of the power control method provided by the embodiment of the present invention shown in FIG. 5, and the method includes:
步骤510、接收功控参数介质访问控制MAC信令,功控参数MAC信令包括参考信号指示以及与参考信号指示对应的功率控制参数信息。Step 510: Receive a power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication.
步骤520、根据功率控制参数信息确定参考信号指示关联的上行传输的功率控制参数。Step 520: Determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
本发明实施例提供的上述功率控制方法,可以由第一通信节点执行。示例性地,第一通信节点可以包括UE。在步骤510中,功控参数MAC信令可以来自第二通信节点。示例性地,第二通信节点可以包括基站。The foregoing power control method provided by the embodiment of the present invention may be executed by the first communication node. Exemplarily, the first communication node may include a UE. In step 510, the power control parameter MAC signaling may come from the second communication node. Exemplarily, the second communication node may include a base station.
本发明实施例的技术方案,通过MAC信令配置参考信号指示以及与参考信号指示对应的功率控制参数信息,并根据功率控制参数信息确定上行传输的功率控制参数。一方面,MAC信令配置时延较小,且灵活性高;另一方面参考信号指示与对应的功率控制参数信息可以同步由MAC信令配置。因此,当第二通信节点需要更换上行接收波束时,无论第一通信节点的对应波束是否发生变化,都可以灵活地指示功率控制参数,从而实现了上行传输功率的精准控制。In the technical solution of the embodiment of the present invention, the reference signal indication and the power control parameter information corresponding to the reference signal indication are configured through MAC signaling, and the power control parameter for uplink transmission is determined according to the power control parameter information. On the one hand, the MAC signaling configuration delay is small and the flexibility is high; on the other hand, the reference signal indication and the corresponding power control parameter information can be configured by MAC signaling in synchronization. Therefore, when the second communication node needs to change the uplink receiving beam, regardless of whether the corresponding beam of the first communication node changes, the power control parameter can be flexibly indicated, thereby achieving precise control of the uplink transmission power.
本发明实施例中,上行传输可以包括物理上行控制信道PUCCH传输、物理上行共享信道PUSCH传输、探测参考信号SRS传输和物理随机接入信道(Physical Random Access Channel,PRACH)传输中的至少一种。功率控制参数信息可以包括PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息中的至少一种。In the embodiment of the present invention, uplink transmission may include at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel (PRACH) transmission. The power control parameter information may include at least one of PUCCH power control parameter information, PUSCH power control parameter information, and SRS power control parameter information.
在具体实施时,参考信号指示可以包括SRS资源指示(SRS Resource Indication,SRI)、SRS资源集合指示、传输配置指示(Transmission Configuration Indication,TCI)和空间关系指示中的一种或多种。In specific implementation, the reference signal indication may include one or more of SRS resource indication (SRS Resource Indication, SRI), SRS resource set indication, transmission configuration indication (Transmission Configuration Indication, TCI), and spatial relationship indication.
SRS资源指示、SRS资源集合指示、传输配置指示和空间关系指示也可以用SRS资源编号、SRS资源集合编号、传输配置编号和空间关系编号代替。编号与索引的含义等同,可以互相替换。The SRS resource indicator, SRS resource set indicator, transmission configuration indicator, and spatial relationship indicator can also be replaced by SRS resource number, SRS resource set number, transmission configuration number, and spatial relationship number. Number and index have the same meaning and can be replaced with each other.
以传输配置指示为例,高层参数,例如RRC信令,会为第一通信节点配置至少一个传输配置指示TCI,用于至少一种的上行传输的参考。上行传输例如可以包括物理上行控制信道PUCCH传输、物理上行共享信道PUSCH传输、探测参考信号SRS传输和物理随机接入信道PRACH传输中的一种。高层参数还配置TCI与功率控制参数的关联关系,使这些功率控制参数可用于PUCCH传输、PUSCH传输、PRACH传输和/或SRS传输的功率计算。在本发明实施例中,功控参数MAC信令更新所述TCI与功率控制参数的关联关系,功控参数MAC信令可以包括TCI。Taking transmission configuration indication as an example, high-level parameters, such as RRC signaling, configure at least one transmission configuration indication TCI for the first communication node, which is used as a reference for at least one type of uplink transmission. The uplink transmission may include, for example, one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission. The upper layer parameters also configure the association relationship between TCI and power control parameters, so that these power control parameters can be used for PUCCH transmission, PUSCH transmission, PRACH transmission and/or SRS transmission power calculation. In the embodiment of the present invention, the power control parameter MAC signaling updates the association relationship between the TCI and the power control parameter, and the power control parameter MAC signaling may include TCI.
功控参数MAC信令可以有多种示例性实施方式:The power control parameter MAC signaling can have multiple exemplary implementations:
示例一、功控参数MAC信令可以包括物理上行控制信道PUCCH的空间关系激活状态MAC控制单元(Control Element,CE)。PUCCH的空间关系激活状态MAC CE,可以是PUCCH的空间关系激活/去激活MAC CE,用于激活或去激活PUCCH传输的空间关系,指示第一通信节点更新上行传输资源对应的空间关系。PUCCH的空间关系激活/去激活MAC CE承载有空间关系指示,在本发明实施例中,可以由PUCCH的空间关系激活/去激活MAC CE承载功率控制参数信息,实现配置空间关系指示与功率控制参数的关联关系。PUCCH的空间关系激活状态MAC CE可以包括PUCCH的功率控制参数信息。Example 1: The power control parameter MAC signaling may include the spatial relationship activation state MAC control element (CE) of the physical uplink control channel PUCCH. The spatial relationship activation state MAC CE of the PUCCH may be the spatial relationship activation/deactivation MAC CE of the PUCCH, which is used to activate or deactivate the spatial relationship of PUCCH transmission, and instruct the first communication node to update the spatial relationship corresponding to the uplink transmission resource. The PUCCH spatial relationship activation/deactivation MAC CE carries the spatial relationship indication. In the embodiment of the present invention, the PUCCH spatial relationship activation/deactivation MAC CE carries the power control parameter information to realize the configuration of the spatial relationship indication and power control parameters Relationship. The PUCCH spatial relationship activation state MAC CE may include PUCCH power control parameter information.
示例二、功控参数MAC信令可以包括SRS激活状态MAC CE。SRS激活状态MAC CE,可以是SRS激活/去激活MAC CE。SRS激活/去激活MAC CE,可以包括时域特性配置为半持续(Semi-Persistent,SP)的SRS激活/去激活MAC CE,也可以包括时域特性配置为非周期的、周期的SRS激活/去激活MAC CE的其中之一。SRS激活/去激活MAC CE用于激活或去激活SRS资源集合或者SRS资源集合中的各个SRS资源对应的空间关系。SRS激活/去激活MAC CE 承载有SRS资源集合指示和SRS资源指示(SRI),在本发明实施例中,可以由SRS激活/去激活MAC CE承载功率控制参数信息,实现配置SRI与功率控制参数的关联关系。SRS激活状态MAC CE可以包括PUSCH的功率控制参数信息和SRS的功率控制参数信息的至少一种。Example 2: The power control parameter MAC signaling may include the SRS activation state MAC CE. SRS activation state MAC CE, which can be SRS activation/deactivation MAC CE. SRS activation/deactivation MAC CE can include SRS activation/deactivation MAC CE whose time domain characteristics are configured as semi-persistent (Semi-Persistent, SP), and can also include time domain characteristics configured as aperiodic and periodic SRS activation/ Deactivate one of MAC CE. SRS activation/deactivation MAC CE is used to activate or deactivate the SRS resource set or the spatial relationship corresponding to each SRS resource in the SRS resource set. SRS activation/deactivation MAC CE carries SRS resource set indication and SRS resource indication (SRI). In the embodiment of the present invention, SRS activation/deactivation MAC CE carries power control parameter information to realize the configuration of SRI and power control parameters Relationship. The SRS active state MAC CE may include at least one of PUSCH power control parameter information and SRS power control parameter information.
示例三、功控参数MAC信令可以包括专有功控参数MAC CE,专有功控参数MAC信令主要用于承载参考信号指示与功率控制参数信息,为第一通信节点配置参考信号指示与功率控制参数信息的关联关系。专有功控参数MAC信令中的参考信号指示可以是SRI、SRS资源集合指示、TCI和/或空间关系指示。专有功控参数MAC CE可以包括PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息和PRACH的功率控制参数信息中的一种或多种。Example 3: The power control parameter MAC signaling may include the dedicated power control parameter MAC CE. The dedicated power control parameter MAC signaling is mainly used to carry reference signal indication and power control parameter information, and configure the reference signal indication and power control for the first communication node Association relationship of parameter information. The reference signal indication in the dedicated power control parameter MAC signaling may be SRI, SRS resource set indication, TCI and/or spatial relationship indication. The dedicated power control parameter MAC CE may include one or more of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
在本发明实施例中,功控即功率控制,功率控制参数与功控参数是等同的含义。In the embodiment of the present invention, power control means power control, and power control parameters and power control parameters have equivalent meanings.
在本发明实施例中,功率控制参数信息可以包括功率控制参数状态信息和/或功率控制参数的指示信息。In the embodiment of the present invention, the power control parameter information may include power control parameter status information and/or power control parameter indication information.
其中,功率控制参数的指示信息,用于指示功率控制参数的具体值,可以直接指示功率控制参数,也可以通过索引信息(例如编号)指示功率控制参数。Wherein, the indication information of the power control parameter is used to indicate the specific value of the power control parameter, which may directly indicate the power control parameter, or may indicate the power control parameter through index information (for example, a serial number).
功率控制参数状态信息,用于指示功控参数MAC信令是否包括功率控制参数的指示信息。例如PUCCH的空间关系激活/去激活MAC CE或SRS激活/去激活MAC CE,用于指示第一通信节点切换空间关系,该MAC CE中可能不包括功率控制参数的指示信息,则可以通过功率控制参数状态信息指示MAC CE中是否包括功率控制参数的指示信息。若有,则第一通信节点在MAC CE中预先指定的参数域中获取功率控制参数的指示信息;若无,则该MAC CE主要承载参考信号指示,用于指示第一通信节点切换空间关系。The power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information. For example, the PUCCH spatial relationship activation/deactivation MAC CE or SRS activation/deactivation MAC CE is used to instruct the first communication node to switch the spatial relationship. The MAC CE may not include the indication information of the power control parameters, and the power control can be used The parameter status information indicates whether the MAC CE includes indication information of power control parameters. If yes, the first communication node obtains the indication information of the power control parameter in the parameter field pre-specified in the MAC CE; if not, the MAC CE mainly carries the reference signal indication, which is used to instruct the first communication node to switch the spatial relationship.
本发明实施例中,功率控制参数的指示信息可以包括以下至少一种:In the embodiment of the present invention, the indication information of the power control parameter may include at least one of the following:
(1)功率控制参数集合编号,用于在预先配置的功率控制参数集合池中确定至少一个功率控制参数集合。(1) The power control parameter set number is used to determine at least one power control parameter set in a pre-configured power control parameter set pool.
(2)功率控制参数。(2) Power control parameters.
(3)功率控制参数编号,用于在预先配置的功率控制参数池中确定至少一个功率控制参数。(3) The power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
功控参数MAC CE可以通过编号来指示功率控制参数。示例性地,可以预先配置好参数池,通过指示参数池中的编号来指示参数。The power control parameter MAC CE can indicate the power control parameter through the number. Exemplarily, the parameter pool can be pre-configured, and the parameter is indicated by indicating the number in the parameter pool.
功率控制参数可以包括以下的一种或多种:The power control parameters can include one or more of the following:
(1)开环功率控制参数;开环功率控制参数可以包括路径损耗调整系数Alpha和/或目标功率P0。(1) Open-loop power control parameters; open-loop power control parameters may include path loss adjustment coefficient Alpha and/or target power P0.
(2)路损测量参数;路损测量参数可以是路径损耗(Path Loss,PL)的参考信号参数;路损测量参数可以包括参考信号资源的索引信息(例如编号),通过该索引信息所标识的参考信号测量结果获得路径损耗。(2) Path loss measurement parameters; path loss measurement parameters may be path loss (Path Loss, PL) reference signal parameters; path loss measurement parameters may include reference signal resource index information (such as number), which is identified by the index information The reference signal measurement result obtained the path loss.
(3)闭环功率控制参数;闭环功率控制参数可以包括闭环功率控制索引和/或闭环功率控制数量。(3) Closed-loop power control parameters; closed-loop power control parameters may include closed-loop power control indexes and/or closed-loop power control numbers.
通过索引信息(例如编号)指示功率控制参数,有几种示例性的实施方式:There are several exemplary implementation manners for indicating power control parameters through index information (for example, numbers):
示例一、可以为不同类型的功率控制参数分别配置功率控制参数池,例如配置开环功率控制参数池、路损测量参数池和闭环功率控制参数池中的一种或多种。功率控制参数编号可以相应地包括开环功率控制参数编号、路损测量参数编号和闭环功率控制编号中的一种或多种。其中,开环功率控制参数编号可以用于在预先配置的开环功率参数池中确定至少一个开环功率控制参数;路损测量参数编号可以用于在预先配置的路损测量参数池中确定至少一个路损测量参数;闭环功率控制编号可以用于在预先配置的闭环功率控制参数池中确定至少一个闭环功率控制参数。Example 1: Power control parameter pools can be configured for different types of power control parameters, for example, one or more of the open loop power control parameter pool, the path loss measurement parameter pool, and the closed loop power control parameter pool can be configured. The power control parameter number may correspondingly include one or more of the open loop power control parameter number, the path loss measurement parameter number, and the closed loop power control number. Wherein, the open-loop power control parameter number can be used to determine at least one open-loop power control parameter in the pre-configured open-loop power parameter pool; the path loss measurement parameter number can be used to determine at least one open-loop power control parameter in the pre-configured path loss measurement parameter pool A path loss measurement parameter; the closed-loop power control number can be used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
示例二、可以配置功率控制参数集合池,该功率控制参数集合池中可以包括一个或多个功率控制参数集合。每个功率控制参数集合中包括一种或多种类型的功率控制参数。例如,配置功率控制参数集合池,其中的每个功率控制参数集合中包括开环功率控制参数、路损测量参数和闭环功率控制参数中的一种或多种。Example 2: A power control parameter set pool may be configured, and the power control parameter set pool may include one or more power control parameter sets. Each power control parameter set includes one or more types of power control parameters. For example, configure a power control parameter set pool, where each power control parameter set includes one or more of open-loop power control parameters, path loss measurement parameters, and closed-loop power control parameters.
示例三、可以配置功率控制参数集合池,该功率控制参数集合池中可以包括一个或多个功率控制参数集合。每个功率控制参数集合中包括一种或多种类型的功率控制参数编号。例如,配置功率控制参数集合池,并且配置开环功率控制参数池、路损测量参数池和闭环功率控制参数池中的一种或多种。功率控制参数集合池中的每个参数集合中包括开环功率控制参数编号、路损测量参数编号和闭环功率控制参数编号中的一种或多种。Example 3: A power control parameter set pool may be configured, and the power control parameter set pool may include one or more power control parameter sets. Each power control parameter set includes one or more types of power control parameter numbers. For example, the power control parameter collection pool is configured, and one or more of the open loop power control parameter pool, the path loss measurement parameter pool, and the closed loop power control parameter pool are configured. Each parameter set in the power control parameter set pool includes one or more of an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control parameter number.
上述示例二和示例三中,功率控制参数集合包括功率控制参数集合编号以及与功率控制参数集合编号对应的至少一个功率控制参数或至少一个功率控制参数编号。第一通信节点可以通过功率控制参数集合编号索引功率控制参数集合,获取对应的功率控制参数。In the foregoing example two and example three, the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number. The first communication node may index the power control parameter set by the power control parameter set number, and obtain the corresponding power control parameter.
上述各种功率控制参数池和/或功率控制参数集合池,可以由高层参数 (例如RRC信令)配置。The foregoing various power control parameter pools and/or power control parameter collection pools may be configured by higher layer parameters (such as RRC signaling).
下面以具体的应用示例展示功率控制参数的指示信息:The following specific application examples show the indication information of power control parameters:
示例一、RRC配置的功率控制参数池包括开环功率控制参数池和路损测量参数池。开环功率控制参数池中包括至多32个开环功率控制参数,路损测量参数池中包括至多8个路损测量参数。功率控制参数的指示信息可以包括1字节信息量,其中5比特指示开环功率控制参数编号,3比特指示路损测量参数编号。而闭环功率控制参数可以使用RRC配置的默认参数值。Example 1: The power control parameter pool configured by RRC includes an open loop power control parameter pool and a path loss measurement parameter pool. The open loop power control parameter pool includes at most 32 open loop power control parameters, and the path loss measurement parameter pool includes at most 8 path loss measurement parameters. The indication information of the power control parameter may include 1 byte of information, where 5 bits indicate the open loop power control parameter number, and 3 bits indicate the path loss measurement parameter number. The closed-loop power control parameters can use the default parameter values configured by RRC.
示例二、RRC配置的功率控制参数池包括开环功率控制参数池、路损测量参数池和闭环功率控制参数池。开环功率控制参数池包括至多32个开环功率控制参数,路损测量参数池包括至多4个路损测量参数,闭环功率控制参数池包括至多2个闭环功率控制参数。功率控制参数的指示信息可以包括1字节信息量,其中5比特指示开环功率控制参数编号,2比特指示路损测量参数编号,1比特指示闭环功率控制参数编号。Example 2: The power control parameter pool configured by RRC includes an open-loop power control parameter pool, a path loss measurement parameter pool, and a closed-loop power control parameter pool. The open loop power control parameter pool includes at most 32 open loop power control parameters, the path loss measurement parameter pool includes at most 4 path loss measurement parameters, and the closed loop power control parameter pool includes at most 2 closed loop power control parameters. The indication information of the power control parameter may include 1 byte of information, where 5 bits indicate the open loop power control parameter number, 2 bits indicate the path loss measurement parameter number, and 1 bit indicates the closed loop power control parameter number.
示例三、RRC配置的功率控制参数池包括开环功率控制参数池、路损测量参数池和闭环功率控制参数池。开环功率控制参数池包括至多32个开环功率控制参数,可以由功控参数MAC信令配置其中的8个开环功率控制参数。路损测量参数池中包括至多8个路损测量参数,可以由功控参数MAC信令配置其中4个路损测量参数。闭环功率控制参数池中包括最多2个闭环功率控制参数,均可由功控参数MAC信令配置。功率控制参数的指示信息可以包括1字节信息量,其中3比特指示开环功率控制参数编号,2比特指示路损测量参数编号,1比特指示闭环功率控制参数编号,其余的2比特保留。Example 3: The power control parameter pool configured by RRC includes an open loop power control parameter pool, a path loss measurement parameter pool, and a closed loop power control parameter pool. The open-loop power control parameter pool includes at most 32 open-loop power control parameters, of which 8 open-loop power control parameters can be configured by the power control parameter MAC signaling. The path loss measurement parameter pool includes at most 8 path loss measurement parameters, 4 of which can be configured by the power control parameter MAC signaling. The closed-loop power control parameter pool includes up to 2 closed-loop power control parameters, all of which can be configured by the power control parameter MAC signaling. The indication information of the power control parameter may include 1 byte of information, where 3 bits indicate the open loop power control parameter number, 2 bits indicate the path loss measurement parameter number, 1 bit indicates the closed loop power control parameter number, and the remaining 2 bits are reserved.
示例四、功率控制参数的指示信息包括1字节信息量,其中的部分或全部比特用于指示一个功率控制参数集合编号。功率控制参数集合编号指示一个功率控制参数集合池中的功率控制参数集合。Example 4: The indication information of power control parameters includes 1 byte of information, and some or all of the bits are used to indicate a power control parameter set number. The power control parameter set number indicates a power control parameter set in a power control parameter set pool.
功率控制参数信息包括功率控制参数状态信息和/或功率控制参数的指示信息,有多种实施方式。The power control parameter information includes power control parameter status information and/or power control parameter indication information, and there are multiple implementation manners.
示例一、功率控制参数信息中有第一比特位和/或第二比特位,使用第一比特位承载功率控制参数状态信息,第二比特位承载功率控制参数的指示信息。例如功控参数MAC信令中的第二比特位占用2个比特,可以表示4个参数值,用于指示路损测量参数池中的4个路损测量参数之一。比如,00指示0号路损测量参数,01指示1号路损测量参数,10指示2号路损测量参数,11指示3号路损测量参数。Example 1: The power control parameter information has a first bit and/or a second bit. The first bit is used to carry power control parameter status information, and the second bit is used to carry power control parameter indication information. For example, the second bit in the power control parameter MAC signaling occupies 2 bits and can represent 4 parameter values, which are used to indicate one of the 4 path loss measurement parameters in the path loss measurement parameter pool. For example, 00 indicates the No. 0 road loss measurement parameter, 01 indicates the No. 1 road loss measurement parameter, 10 indicates the No. 2 road loss measurement parameter, and 11 indicates the No. 3 road loss measurement parameter.
示例二、使用一个或多个比特位,以不同的比特值分别表示功率控制参数 状态信息和/或功率控制参数的指示信息。例如,功控参数MAC信令中的M个比特位用于承载功率控制参数信息。M个比特位以预设的保持值表示功率控制参数保持为当前值(即这M个比特中不包括功率控制参数的指示信息)。M个比特位以预设的多个非保持值表示功率控制参数变更为除当前值外的其他功率控制参数值中的一种或多种。其中,保持值可以是零,M个比特位除了零外的其他取值均可作为非保持值。比如,M=2,00指示当前的路损测量参数保持不变,其余3种取值分别指示除了当前的路损测量参数之外的其余3种路损测量参数之一。可以是按照其余3种路损测量参数的次序进行指示。假设当前路损测量参数为2号路损测量参数,则00表示仍使用2号路损测量参数,而01指示使用0号路损测量参数,10指示使用1号路损测量参数,11指示使用3号路损测量参数。Example 2: Use one or more bits to represent the power control parameter status information and/or power control parameter indication information with different bit values. For example, M bits in the power control parameter MAC signaling are used to carry power control parameter information. The M bits indicate that the power control parameter is maintained at the current value with the preset holding value (that is, the power control parameter indication information is not included in the M bits). The M bits indicate that the power control parameter is changed to one or more of the other power control parameter values except the current value by using a plurality of preset non-holding values. Among them, the holding value can be zero, and other values of the M bits except zero can be used as non-holding values. For example, M=2, 00 indicates that the current path loss measurement parameter remains unchanged, and the remaining three values indicate one of the remaining three path loss measurement parameters except the current path loss measurement parameter. It can be indicated in the order of the remaining three path loss measurement parameters. Assuming that the current path loss measurement parameter is the No. 2 path loss measurement parameter, 00 indicates that the No. 2 path loss measurement parameter is still used, while 01 indicates the use of the No. 0 path loss measurement parameter, 10 indicates the use of the No. 1 path loss measurement parameter, and 11 indicates the use No. 3 road loss measurement parameters.
参见图6所示的本发明实施例提供的功率控制方法的流程图,该方法可以包括:Referring to the flowchart of the power control method provided by the embodiment of the present invention shown in FIG. 6, the method may include:
步骤610、接收功控参数介质访问控制MAC信令,功控参数MAC信令包括参考信号指示以及SRS的功率控制参数信息。Step 610: Receive power control parameter media access control MAC signaling. The power control parameter MAC signaling includes reference signal indication and SRS power control parameter information.
步骤620、确定SRS的功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应。Step 620: Determine that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set.
步骤630、根据功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。Step 630: Determine, according to the power control parameter information, the power control parameter of the associated uplink transmission that the reference signal indicates.
其中,步骤620中根据以下信息确定SRS的功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应:Wherein, in step 620, it is determined that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set according to the following information:
(1)SRS资源集合的用途;(1) Purpose of SRS resource collection;
(2)功控参数MAC信令包括的SRS功控参数的对应类型信息,SRS功控参数的对应类型信息用于指示功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应。(2) The corresponding type information of the SRS power control parameter included in the power control parameter MAC signaling. The corresponding type information of the SRS power control parameter is used to indicate that the power control parameter information corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set .
SRS的功率控制参数信息可以是与SRS资源集合对应,也可以是与SRS资源中的SRS资源对应。可以在功控参数MAC信令中承载SRS功控参数的对应类型信息,直接指示SRS的功率控制参数信息是与SRS资源集合对应或与SRS资源集合中的SRS资源对应。也可以是根据SRS资源集合的用途判断。例如,根据SRS激活/去激活MAC CE中指示的SRS资源集合编号,可以确定该SRS资源集合的用途,根据该用途确定SRS的功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应。The power control parameter information of the SRS may correspond to the SRS resource set, or may correspond to the SRS resource in the SRS resource. The corresponding type information of the SRS power control parameter may be carried in the power control parameter MAC signaling, which directly indicates whether the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set. It can also be judged based on the purpose of the SRS resource collection. For example, according to the SRS resource set number indicated in the SRS activation/deactivation MAC CE, the use of the SRS resource set can be determined, and the power control parameter information of the SRS can be determined according to the use to correspond to the SRS resource set or to the SRS in the SRS resource set Resource correspondence.
作为一种示例性实施方式,如图7所示的流程图,步骤620、根据SRS资 源集合的用途确定SRS的功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应,包括:As an exemplary embodiment, as shown in the flowchart shown in FIG. 7, step 620, determining the power control parameter information of the SRS corresponding to the SRS resource set or corresponding to the SRS resource in the SRS resource set according to the use of the SRS resource set includes :
步骤710、在SRS资源集合的用途为波束管理、天线选择或定位的情况下,功率控制参数信息与SRS资源集合对应。Step 710: When the purpose of the SRS resource set is beam management, antenna selection or positioning, the power control parameter information corresponds to the SRS resource set.
步骤720、在SRS资源集合的用途为码本或非码本的情况下,功率控制参数信息与SRS资源集合中的每个SRS资源对应。Step 720: When the use of the SRS resource set is a codebook or a non-codebook, the power control parameter information corresponds to each SRS resource in the SRS resource set.
作为一种示例性实施方式,在功率控制参数信息与SRS资源集合对应的情况下,功率控制参数信息包括一组功率控制参数的指示信息;在功率控制参数信息与SRS资源集合中的SRS资源对应的情况下,功率控制参数信息包括至少一组功率控制参数的指示信息,至少一组功率控制参数的指示信息分别与SRS资源集合中的至少一个SRS资源对应。As an exemplary embodiment, when the power control parameter information corresponds to the SRS resource set, the power control parameter information includes a group of power control parameter indication information; the power control parameter information corresponds to the SRS resource in the SRS resource set In the case, the power control parameter information includes at least one group of power control parameter indication information, and the at least one group of power control parameter indication information respectively corresponds to at least one SRS resource in the SRS resource set.
参见图8所示的本发明实施例提供的功率控制方法的流程图,该方法可以包括:Referring to the flowchart of the power control method provided by the embodiment of the present invention shown in FIG. 8, the method may include:
步骤810、接收功控参数介质访问控制MAC信令,功控参数MAC信令包括参考信号指示以及PUSCH的功率控制参数信息。Step 810: Receive power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes reference signal indication and PUSCH power control parameter information.
步骤820、确定功控参数MAC信令中包括的PUSCH的功率控制参数信息的数量。Step 820: Determine the amount of PUSCH power control parameter information included in the power control parameter MAC signaling.
步骤830、根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。Step 830: Determine, according to the power control parameter information, the power control parameter indicating the associated uplink transmission by the reference signal.
第一通信节点确定PUSCH的功率控制参数信息的数量,可以在功控参数MAC信令的指定域中获取对应数量的功率控制参数信息。其中,根据以下信息中的一种确定功控参数MAC信令中包括的PUSCH的功率控制参数信息的数量:The first communication node determines the quantity of power control parameter information of the PUSCH, and can obtain the corresponding quantity of power control parameter information in the designated field of the power control parameter MAC signaling. Wherein, the number of PUSCH power control parameter information included in the power control parameter MAC signaling is determined according to one of the following information:
(1)SRS资源集合的用途。(1) The purpose of SRS resource collection.
(2)上行传输对应的下行控制信息DCI中的SRS资源指示域的取值个数。(2) The number of values of the SRS resource indication field in the downlink control information DCI corresponding to uplink transmission.
(3)功控参数MAC信令包括的参数数量信息。(3) The parameter quantity information included in the power control parameter MAC signaling.
SRI域的取值个数,可以是SRI值与SRS资源的对应关系对照表中有效的SRI值的个数,即SRI的可取的值的个数。The number of values in the SRI field may be the number of valid SRI values in the comparison table of the correspondence between SRI values and SRS resources, that is, the number of possible values of SRI.
PUSCH的功率控制参数信息的数量等于DCI中的SRI的取值个数。SRS资源集合的用途与DCI中的SRS资源指示域(SRI域)的取值个数相关。例如,在SRS资源集合的用途是码本的情况下,DCI中的SRI域的取值个数等于SRS资源集合中的SRS资源个数。在SRS资源集合的用途是非码本的情况下,DCI 中的SRI域的取值个数与SRS资源集合中的SRS资源的组合数量和/或本通信节点(即第一通信节点)支持的最大秩确定。本发明实施例可以根据SRS资源集合的用途确定PUSCH的功率控制参数信息的数量,也可以根据DCI中的SRI域的取值个数确定PUSCH的功率控制参数信息的数量。本发明实施例还可以在功控参数MAC信令中承载参数数量信息,该参数数量信息直接指示PUSCH的功率控制参数信息的数量。The number of PUSCH power control parameter information is equal to the number of SRI values in the DCI. The purpose of the SRS resource set is related to the number of values of the SRS resource indicator field (SRI field) in the DCI. For example, when the purpose of the SRS resource set is a codebook, the number of values of the SRI field in the DCI is equal to the number of SRS resources in the SRS resource set. In the case that the use of the SRS resource set is not a codebook, the number of values of the SRI field in the DCI and the combined number of SRS resources in the SRS resource set and/or the maximum supported by the communication node (ie, the first communication node) The rank is determined. In the embodiment of the present invention, the number of PUSCH power control parameter information can be determined according to the usage of the SRS resource set, and the number of PUSCH power control parameter information can also be determined according to the number of values of the SRI field in the DCI. The embodiment of the present invention may also carry parameter quantity information in the power control parameter MAC signaling, and the parameter quantity information directly indicates the quantity of PUSCH power control parameter information.
作为一种示例性实施方式,如图9所示的流程图,步骤820、根据SRS资源集合的用途确定功控参数MAC信令中包括的PUSCH的功率控制参数信息的数量,包括:As an exemplary embodiment, as shown in the flowchart shown in FIG. 9, step 820, determining the number of PUSCH power control parameter information included in the power control parameter MAC signaling according to the use of the SRS resource set includes:
步骤910、在SRS资源集合的用途是码本的情况下,根据SRS资源集合中的SRS资源数量确定PUSCH的功率控制参数信息的数量。Step 910: When the purpose of the SRS resource set is a codebook, determine the amount of power control parameter information of the PUSCH according to the amount of SRS resources in the SRS resource set.
步骤920、在SRS资源集合的用途是非码本的情况下,根据SRS资源集合中的SRS资源的组合数量和/或本通信节点支持的最大秩确定PUSCH的功率控制参数信息的数量。Step 920: When the purpose of the SRS resource set is not a codebook, determine the amount of PUSCH power control parameter information according to the combined number of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node.
示例性地,PUSCH的功率控制参数信息的数量可以是PUSCH的功率控制参数信息的组数,每一组PUSCH的功率控制参数信息对应一个SRS资源集合,或SRS资源集合中的一个SRS资源,或SRS资源集合中的多个SRS资源的组合。Exemplarily, the number of PUSCH power control parameter information may be the number of groups of PUSCH power control parameter information, and each group of PUSCH power control parameter information corresponds to one SRS resource set, or one SRS resource in the SRS resource set, or A combination of multiple SRS resources in the SRS resource set.
示例性地,SRS资源集合中的SRS资源的组合数量,可以是从SRS资源集合的M个SRS资源中任取N个SRS资源所形成的组合的数量,N≤M。但是,在NR系统中,SRS资源的组合数量受限于通信节点支持的最大秩,步骤920、根据SRS资源集合中的SRS资源的组合数量和/或本通信节点支持的最大秩确定PUSCH的功率控制参数信息的数量,可以包括:计算在SRS资源集合的M个SRS资源中任取K个SRS资源所形成的组合的数量,确定该数量为PUSCH的功率控制参数信息的数量,K≤L。其中,L为本通信节点(第一通信节点)支持的最大秩。Exemplarily, the number of combinations of SRS resources in the SRS resource set may be the number of combinations formed by randomly taking N SRS resources from the M SRS resources of the SRS resource set, N≦M. However, in the NR system, the combined number of SRS resources is limited by the maximum rank supported by the communication node. Step 920: Determine the PUSCH power according to the combined number of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node. The quantity of control parameter information may include: calculating the quantity of combinations formed by any K SRS resources in the M SRS resources of the SRS resource set, and determining that the quantity is the quantity of power control parameter information of the PUSCH, K≤L. Among them, L is the maximum rank supported by this communication node (the first communication node).
例如,在最大秩L=1,SRS资源集合中的资源个数M=4的情况下,PUSCH的功率控制参数信息的数量、DCI中的SRI域的取值个数为4。在最大秩=4,SRS资源集合中的资源个数M=4的情况下,PUSCH的功率控制参数信息的数量、DCI中的SRI域的取值个数为15。For example, in the case where the maximum rank L=1 and the number of resources in the SRS resource set M=4, the number of PUSCH power control parameter information and the number of values of the SRI field in the DCI are 4. In the case where the maximum rank=4 and the number of resources in the SRS resource set M=4, the number of PUSCH power control parameter information and the number of values of the SRI field in the DCI are 15.
作为示例性的实施方式,每个参考信号指示可以对应一个路损测量参数。As an exemplary implementation, each reference signal indication may correspond to one path loss measurement parameter.
作为示例性的实施方式,每个参考信号指示可以对应至少一个开环功率控制参数,至少一个开环功率控制参数对应至少一种上行传输,例如SRS的激活/ 去激活MAC CE中的SRI可以指示PUSCH传输的开环功率控制参数和/或SRS传输的开环功率控制参数。专有功控MAC CE可以指示PUSCH传输的开环功率控制参数、SRS传输的开环功率控制参数、PUCCH传输的开环功率控制参数和PRACH传输的开环功率控制参数中的一种或多种。PUSCH传输的开环功率控制参数、SRS传输的开环功率控制参数、PUCCH传输的开环功率控制参数和PRACH传输的开环功率控制参数可以独立配置。As an exemplary embodiment, each reference signal indication may correspond to at least one open-loop power control parameter, and at least one open-loop power control parameter may correspond to at least one uplink transmission. For example, SRS activation/deactivation MAC SRI in CE may indicate Open-loop power control parameters for PUSCH transmission and/or open-loop power control parameters for SRS transmission. The dedicated power control MAC CE can indicate one or more of the open loop power control parameters for PUSCH transmission, the open loop power control parameters for SRS transmission, the open loop power control parameters for PUCCH transmission, and the open loop power control parameters for PRACH transmission. The open loop power control parameters for PUSCH transmission, the open loop power control parameters for SRS transmission, the open loop power control parameters for PUCCH transmission, and the open loop power control parameters for PRACH transmission can be configured independently.
作为示例性的实施方式,每个参考信号指示可以对应至少一个闭环功率控制参数,至少一个闭环功率控制参数对应至少一种上行传输。例如,SRS的激活/去激活MAC CE中的SRI可以指示PUSCH传输的闭环功率控制参数和/或SRS传输的闭环功率控制参数。专有功控MAC CE可以指示PUSCH传输的闭环功率控制参数、SRS传输的闭环功率控制参数、PUCCH传输的闭环功率控制参数和PRACH传输的闭环功率控制参数中的一种或多种。PUSCH传输的闭环功率控制参数、SRS传输的闭环功率控制参数、PUCCH传输的闭环功率控制参数和PRACH传输的闭环功率控制参数可以独立配置。As an exemplary embodiment, each reference signal indication may correspond to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission. For example, the activation/deactivation of the SRS, the SRI in the MAC CE may indicate the closed-loop power control parameter of PUSCH transmission and/or the closed-loop power control parameter of SRS transmission. The dedicated power control MAC CE can indicate one or more of closed-loop power control parameters for PUSCH transmission, closed-loop power control parameters for SRS transmission, closed-loop power control parameters for PUCCH transmission, and closed-loop power control parameters for PRACH transmission. The closed-loop power control parameters for PUSCH transmission, the closed-loop power control parameters for SRS transmission, the closed-loop power control parameters for PUCCH transmission, and the closed-loop power control parameters for PRACH transmission can be configured independently.
作为示例性的实施方式,功控参数MAC信令还包括传输类别信息,传输类别信息用于标识上行传输的类型。传输类别信息可以是用于标识功控参数MAC信令中的功率控制参数信息所应用的一种或多种上行传输的类型。上行传输的类型包括PUSCH传输、SRS传输、PUCCH传输或PRACH传输。As an exemplary implementation manner, the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission. The transmission type information may be used to identify one or more types of uplink transmission to which the power control parameter information in the power control parameter MAC signaling is applied. The types of uplink transmission include PUSCH transmission, SRS transmission, PUCCH transmission or PRACH transmission.
作为示例性的实施方式,如图10所示的功率控制的方法的流程图,本发明实施例提供的功率控制方法可以包括:As an exemplary implementation, as shown in the flowchart of the power control method in FIG. 10, the power control method provided in the embodiment of the present invention may include:
步骤1010、向基站发送能力信息,能力信息用于表示本通信节点是否支持MAC信令修改功率控制参数。Step 1010: Send capability information to the base station, where the capability information is used to indicate whether the communication node supports MAC signaling to modify power control parameters.
步骤1020、接收功控参数MAC信令,功控参数MAC信令包括参考信号指示以及与参考信号指示对应的功率控制参数信息。Step 1020: Receive a power control parameter MAC signaling, where the power control parameter MAC signaling includes a reference signal indicator and power control parameter information corresponding to the reference signal indicator.
步骤1030、根据功率控制参数信息确定参考信号指示关联的上行传输的功率控制参数。Step 1030: Determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
上述方法可以由第一通信节点(例如UE)执行。功控参数MAC信令可以是第二通信节点(例如基站)在接收到能力信息后,确定第一通信节点支持修改功率控制参数的情况下发送的。The above method may be executed by the first communication node (for example, UE). The power control parameter MAC signaling may be sent when the second communication node (for example, the base station) determines that the first communication node supports modification of the power control parameter after receiving the capability information.
本发明实施例提供的功率控制方法,可以在第一通信节点支持修改功率控制参数的情况下通过功控参数MAC信令指示功率控制参数。第一通信节点向基站发送能力信息,基站可以明确第一通信节点是否支持修改功率控制参数。The power control method provided in the embodiment of the present invention can indicate the power control parameter through the power control parameter MAC signaling when the first communication node supports the modification of the power control parameter. The first communication node sends capability information to the base station, and the base station can clarify whether the first communication node supports modification of power control parameters.
作为一种示例性实施方式,本发明实施例还提供一种功率控制方法,如图 11所示,该方法包括:As an exemplary implementation, an embodiment of the present invention also provides a power control method. As shown in FIG. 11, the method includes:
步骤1110、接收功控参数介质访问控制MAC信令。Step 1110: Receive the power control parameter media access control MAC signaling.
步骤1120、根据功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。Step 1120: Update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
本发明实施例还可以通过功控参数MAC信令更新第一通信节点中预先配置的功率控制参数池,实现更灵活的功率控制。In the embodiment of the present invention, the power control parameter pool pre-configured in the first communication node can also be updated through the power control parameter MAC signaling, so as to realize more flexible power control.
示例性地,本发明实施例可以更新路损测量参数池、开环功率控制参数池、闭环功率控制参数池和功率控制参数集合池中的一种或多种。Exemplarily, the embodiment of the present invention may update one or more of the path loss measurement parameter pool, the open loop power control parameter pool, the closed loop power control parameter pool, and the power control parameter collection pool.
示例性地,功控参数MAC信令中包括一组或多组功率控制参数信息,一组或多组功率控制参数信息用于指示功率控制参数池中的一组功率控制参数或多组编号从小到大的功率控制参数。Exemplarily, the power control parameter MAC signaling includes one or more sets of power control parameter information, and one or more sets of power control parameter information is used to indicate a set of power control parameters or multiple sets of numbers in the power control parameter pool. To large power control parameters.
以路损测量参数池为例,有如下几种应用示例:Taking the path loss measurement parameter pool as an example, there are several application examples as follows:
示例一、功控参数MAC信令包括一组路损测量参数信息,可以用于更新路损测量参数池中的第一个路损测量参数。Example 1: The power control parameter MAC signaling includes a set of path loss measurement parameter information, which can be used to update the first path loss measurement parameter in the path loss measurement parameter pool.
示例二、功控参数MAC信令包括多组路损测量参数信息,且MAC信令中路损测量参数信息的数量与路损测量参数池中的路损测量参数数量相同,功控参数MAC信令可以更新路损测量参数池中的所有路损测量参数。Example 2: Power control parameter MAC signaling includes multiple sets of path loss measurement parameter information, and the number of path loss measurement parameter information in the MAC signaling is the same as the number of path loss measurement parameters in the path loss measurement parameter pool, power control parameter MAC signaling All path loss measurement parameters in the path loss measurement parameter pool can be updated.
实例三、功控参数MAC信令包括多组路损测量参数信息,且MAC信令中路损测量参数信息的数量小于路损测量参数池中的路损测量参数数量,功控参数MAC信令用于更新路损测量参数池中部分路损测量参数,并且按路损测量参数的编号从小到大更新。例如,高层配置的路损测量参数池中的路损测量参数数量为4,编号为0~3,而功控参数MAC信令中只包括了2个路损测量参数,则只更新编号为0、1的路损测量参数。Example 3: Power control parameter MAC signaling includes multiple sets of path loss measurement parameter information, and the number of path loss measurement parameter information in the MAC signaling is less than the number of path loss measurement parameters in the path loss measurement parameter pool. The power control parameter MAC signaling is used To update some of the path loss measurement parameters in the path loss measurement parameter pool, and update the number of the path loss measurement parameters from small to large. For example, the number of path loss measurement parameters in the path loss measurement parameter pool configured by the upper layer is 4, and the number is 0 to 3, and the power control parameter MAC signaling only includes 2 path loss measurement parameters, and only the number is updated to 0 , 1 road loss measurement parameters.
示例性地,功控参数MAC信令中的功率控制参数信息可以用于更新PUSCH的功率控制参数池、PUCCH的功率控制参数池和SRS的功率控制参数池中的一种或多种。Exemplarily, the power control parameter information in the power control parameter MAC signaling may be used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
作为一种示例性的实施方式,本发明实施例还提供一种功率控制方法,包括:As an exemplary implementation manner, an embodiment of the present invention further provides a power control method, including:
接收功控参数介质访问控制MAC信令;Receive power control parameter media access control MAC signaling;
根据所述功控参数MAC信令中的功率控制参数信息确定配置授权的PUSCH的功率控制参数。The power control parameter of the PUSCH authorized to be configured is determined according to the power control parameter information in the power control parameter MAC signaling.
本发明实施例当通信波束发生变化时,更新配置授权的PUSCH的功率控制 参数,提高功率控制的精准程度。In the embodiment of the present invention, when the communication beam changes, the power control parameters of the authorized PUSCH are updated to improve the accuracy of power control.
示例性地,所述功率控制参数信息包括功率控制参数的指示信息。在该示例实施方式中,功率控制参数的指示信息可以用于指示配置授权的PUSCH的功率控制参数。PUSCH传输分为两类:基于动态授权的PUSCH传输、配置授权的(configured grant based)PUSCH传输。配置授权的PUSCH传输分为类型1和类型2。配置授权的PUSCH的功率控制参数可以用于类型2的配置授权的PUSCH传输。Exemplarily, the power control parameter information includes power control parameter indication information. In this example embodiment, the indication information of the power control parameter may be used to indicate the power control parameter of the PUSCH authorized to be configured. PUSCH transmission is divided into two categories: PUSCH transmission based on dynamic authorization and configured grant based PUSCH transmission. The PUSCH transmission for configuration authorization is divided into Type 1 and Type 2. The power control parameters of the authorized PUSCH can be used for type 2 PUSCH transmission of the authorized PUSCH.
示例性地,所述功率控制参数信息还包括配置授权的PUSCH的类型指示信息和配置授权的PUSCH的编号中的至少一种。所述功率控制参数的指示信息用于指示所述一组或多组配置授权的PUSCH的功率控制参数。Exemplarily, the power control parameter information further includes at least one of the type indication information of the authorized PUSCH and the number of the authorized PUSCH. The indication information of the power control parameter is used to indicate the one or more groups of power control parameters of the PUSCH authorized by the configuration.
配置授权的PUSCH的类型指示信息,用于指示类型1的配置授权的PUSCH传输或类型2的配置授权的PUSCH传输。配置授权的PUSCH的编号可能是对类型1的配置授权的PUSCH和类型2的配置授权的PUSCH分别编号,或对类型1的配置授权的PUSCH和类型2的配置授权的PUSCH统一编号。The type indication information of the PUSCH authorized by the configuration is used to indicate the type 1 configuration authorized PUSCH transmission or the type 2 configuration authorized PUSCH transmission. The number of the PUSCH authorized for configuration may be the number of the PUSCH authorized for the type 1 configuration and the PUSCH authorized for the type 2 configuration respectively, or the unified number of the PUSCH authorized for the type 1 configuration and the PUSCH authorized for the type 2 configuration.
高层信令可以配置多于一个的配置授权的PUSCH传输。功率控制参数通过配置授权的PUSCH的类型指示信息和配置授权的PUSCH的编号中的至少一种,可以确定上述功率控制参数是应用于哪一个配置授权的PUSCH。例如,高层配置了一个类型1的配置授权的PUSCH传输和一个类型2的配置授权的PUSCH传输,通过配置授权的PUSCH的类型指示信息可以确定上述功率控制参数是应用于哪一个配置授权的PUSCH。又如,高层配置了多个类型2的配置授权的PUSCH传输,通过编号可以确定上述功率控制参数是应用于哪一个配置授权的PUSCH。又如,高层配置了多个类型1和多个类型2的配置授权的PUSCH传输,且类型1的配置授权的PUSCH传输和类型2的配置授权的PUSCH传输是分开编号的,则通过配置授权的PUSCH的类型指示信息和配置授权的PUSCH的编号可以确定上述功率控制参数是应用于哪一个配置授权的PUSCH。又如,高层配置了多个类型1和多个类型2的配置授权的PUSCH传输,且类型1的配置授权的PUSCH传输和类型2的配置授权的PUSCH传输是统一编号的,则通过配置授权的PUSCH的编号可以确定上述功率控制参数是应用于哪一个配置授权的PUSCH。Higher layer signaling can configure more than one authorized PUSCH transmission. The power control parameter can determine which configured authorized PUSCH the above power control parameter is applied to by configuring at least one of the type indication information of the authorized PUSCH and the number of the authorized PUSCH. For example, the upper layer configures a type 1 configuration authorized PUSCH transmission and a type 2 configuration authorized PUSCH transmission, and the type indication information of the configured authorized PUSCH can determine which configuration authorized PUSCH the above power control parameter is applied to. For another example, the higher layer configures multiple Type 2 configuration authorized PUSCH transmissions, and the number can be used to determine which configuration authorized PUSCH the above power control parameter is applied to. For another example, the higher layer has configured multiple type 1 and multiple type 2 configuration authorized PUSCH transmissions, and the type 1 configuration authorized PUSCH transmission and the type 2 configuration authorized PUSCH transmission are separately numbered, and they are authorized through configuration The PUSCH type indication information and the number of the configured authorized PUSCH can determine which configured authorized PUSCH the above-mentioned power control parameter is applied to. For another example, the upper layer has configured multiple Type 1 and multiple Type 2 configuration authorized PUSCH transmissions, and the type 1 configuration authorized PUSCH transmission and the type 2 configuration authorized PUSCH transmission are uniformly numbered, and they are authorized through configuration The PUSCH number can determine which configuration authorized PUSCH the above power control parameter is applied to.
在一个示例性实施方式中,请参考图12所示的本发明实施例提供的功率控制方法的流程图,该方法包括:In an exemplary embodiment, please refer to the flowchart of the power control method provided by the embodiment of the present invention shown in FIG. 12, and the method includes:
步骤1210、发送功控参数介质访问控制MAC信令;功控参数MAC信令包 括参考信号指示以及与参考信号指示对应的功率控制参数信息;功控参数MAC信令用于指示第一通信节点根据功率控制参数信息确定参考信号指示关联的上行传输的功率控制参数。Step 1210: Send the power control parameter media access control MAC signaling; the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication; the power control parameter MAC signaling is used to instruct the first communication node according to The power control parameter information determines that the reference signal indicates the power control parameter of the associated uplink transmission.
本发明实施例提供的上述功率控制方法,可以由第二通信节点执行。示例性地,第二通信节点可以包括基站。步骤1210中第一通信节点可以包括UE。本发明实施例提供的可以由第二通信节点执行的功率控制方法,各种技术细节可参考本发明实施例提供的可由第一通信节点执行的方法设置。The foregoing power control method provided by the embodiment of the present invention may be executed by the second communication node. Exemplarily, the second communication node may include a base station. In step 1210, the first communication node may include a UE. The power control method that can be executed by the second communication node provided in the embodiment of the present invention, various technical details can be set by referring to the method that can be executed by the first communication node provided in the embodiment of the present invention.
示例性地,上行传输包括物理上行控制信道PUCCH传输、物理上行共享信道PUSCH传输、探测参考信号SRS传输和物理随机接入信道PRACH传输中的至少一种。Exemplarily, the uplink transmission includes at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
示例性地,功控参数MAC信令包括以下的一种:Exemplarily, the power control parameter MAC signaling includes one of the following:
PUCCH的空间关系激活状态MAC控制单元CE、SRS激活状态MAC CE和专有功控参数MAC CE。The spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
示例性地,PUCCH的空间关系激活状态MAC CE包括PUCCH的功率控制参数信息;Exemplarily, the spatial relationship activation state MAC CE of the PUCCH includes the power control parameter information of the PUCCH;
SRS激活状态MAC CE包括PUSCH的功率控制参数信息和SRS的功率控制参数信息中的至少一种;The SRS activation state MAC CE includes at least one of PUSCH power control parameter information and SRS power control parameter information;
专有功控参数MAC CE包括PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息和PRACH的功率控制参数信息中的至少一种。The dedicated power control parameter MAC CE includes at least one of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
示例性地,功率控制参数信息包括以下至少一种:Exemplarily, the power control parameter information includes at least one of the following:
功率控制参数状态信息,用于指示功控参数MAC信令是否包括功率控制参数的指示信息;The power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information;
功率控制参数的指示信息。Indication information of power control parameters.
示例性地,功率控制参数的指示信息包括以下至少一种:Exemplarily, the indication information of the power control parameter includes at least one of the following:
功率控制参数集合编号,用于在预先配置的功率控制参数集合池中确定至少一个功率控制参数集合;The power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool;
功率控制参数;Power control parameters;
功率控制参数编号,用于在预先配置的功率控制参数池中确定至少一个功率控制参数。The power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
示例性地,功率控制参数集合包括功率控制参数集合编号以及与功率控制 参数集合编号对应的至少一个功率控制参数或至少一个功率控制参数编号。Exemplarily, the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
示例性地,功率控制参数包括以下至少一种:Exemplarily, the power control parameter includes at least one of the following:
开环功率控制参数、路损测量参数和闭环功率控制参数。Open loop power control parameters, path loss measurement parameters, and closed loop power control parameters.
功率控制参数编号包括以下至少一种:The power control parameter number includes at least one of the following:
开环功率控制参数编号、路损测量参数编号和闭环功率控制编号;开环功率控制参数编号用于在预先配置的开环功率参数池中确定至少一个开环功率控制参数,路损测量参数编号用于在预先配置的路损测量参数池中确定至少一个路损测量参数;闭环功率控制编号用于在预先配置的闭环功率控制参数池中确定至少一个闭环功率控制参数。Open-loop power control parameter number, path loss measurement parameter number, and closed-loop power control number; open-loop power control parameter number is used to determine at least one open-loop power control parameter and path loss measurement parameter number in the pre-configured open-loop power parameter pool It is used to determine at least one path loss measurement parameter in a pre-configured path loss measurement parameter pool; the closed-loop power control number is used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
示例性地,功控参数MAC信令的M个比特位用于承载功率控制参数信息;M个比特位以预设的保持值表示功率控制参数保持为当前值,M个比特位以预设的多个非保持值表示功率控制参数变更为除当前值外的其他功率控制参数值中的一种或多种。Exemplarily, the M bits of the power control parameter MAC signaling are used to carry power control parameter information; the M bits represent the power control parameter as the current value with a preset holding value, and the M bits represent the preset value Multiple non-holding values indicate that the power control parameter is changed to one or more of other power control parameter values except the current value.
示例性地,根据SRS资源集合的用途可以确定所述SRS的功率控制参数信息与所述SRS资源集合对应或与所述SRS资源集合中的SRS资源对应。Exemplarily, according to the usage of the SRS resource set, it may be determined that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set.
示例性地,功控参数MAC信令还包括SRS功控参数的对应类型信息,所述SRS功控参数的对应类型信息用于指示所述功率控制参数信息与所述SRS资源集合对应或与所述SRS资源集合中的SRS资源对应。Exemplarily, the power control parameter MAC signaling further includes corresponding type information of the SRS power control parameter, and the corresponding type information of the SRS power control parameter is used to indicate that the power control parameter information corresponds to the SRS resource set or corresponds to the SRS resource set. The SRS resources in the SRS resource set correspond.
示例性地,在SRS资源集合的用途为波束管理、天线选择或定位的情况下,所述功率控制参数信息与所述SRS资源集合对应;在SRS资源集合的用途为码本或非码本的情况下,所述功率控制参数信息与SRS资源集合中的每个SRS资源对应。Exemplarily, when the use of the SRS resource set is beam management, antenna selection or positioning, the power control parameter information corresponds to the SRS resource set; when the use of the SRS resource set is codebook or non-codebook In this case, the power control parameter information corresponds to each SRS resource in the SRS resource set.
示例性地,在所述功率控制参数信息与所述SRS资源集合对应的情况下,所述功率控制参数信息包括一组功率控制参数的指示信息;在所述功率控制参数信息与所述SRS资源集合中的SRS资源对应的情况下,所述功率控制参数信息包括至少一组功率控制参数的指示信息,所述至少一组功率控制参数的指示信息分别与所述SRS资源集合中的至少一个SRS资源对应。Exemplarily, when the power control parameter information corresponds to the SRS resource set, the power control parameter information includes a group of power control parameter indication information; when the power control parameter information corresponds to the SRS resource When the SRS resources in the set correspond to the SRS resources, the power control parameter information includes at least one set of power control parameter indication information, and the at least one set of power control parameter indication information corresponds to at least one SRS in the SRS resource set. Resource correspondence.
示例性地,根据SRS资源集合的用途可以确定所述功控参数MAC信令中包括的PUSCH的功率控制参数信息的数量。Exemplarily, the amount of PUSCH power control parameter information included in the power control parameter MAC signaling can be determined according to the usage of the SRS resource set.
示例性地,上行传输对应的下行控制信息DCI中的SRS资源指示域的取值个数等于功控参数MAC信令中包括的PUSCH的功率控制参数信息的数量。Exemplarily, the number of SRS resource indication fields in the downlink control information DCI corresponding to uplink transmission is equal to the number of PUSCH power control parameter information included in the power control parameter MAC signaling.
示例性地,功控参数MAC信令还可以包括参数数量信息。参数数量信息用 于指示PUSCH的功率控制参数信息的数量。Exemplarily, the power control parameter MAC signaling may also include parameter quantity information. The parameter quantity information is used to indicate the quantity of power control parameter information of the PUSCH.
示例性地,在SRS资源集合的用途是码本的情况下,根据SRS资源集合中的SRS资源数量确定所述PUSCH的功率控制参数信息的数量;在SRS资源集合的用途是非码本的情况下,根据SRS资源集合中的SRS资源的组合数量和/或本通信节点支持的最大秩确定所述PUSCH的功率控制参数信息的数量。Exemplarily, in the case where the use of the SRS resource set is a codebook, the number of power control parameter information for the PUSCH is determined according to the number of SRS resources in the SRS resource set; in the case where the use of the SRS resource set is not a codebook , Determining the quantity of the PUSCH power control parameter information according to the combined quantity of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node.
示例性地,参考信号指示包括SRS资源指示、SRS资源集合指示、传输配置指示和空间关系指示中的至少一种。Exemplarily, the reference signal indication includes at least one of an SRS resource indication, an SRS resource set indication, a transmission configuration indication, and a spatial relationship indication.
示例性地,所述参考信号指示与所述功率控制参数信息的对应关系包括以下一种或多种:每个参考信号指示对应一个路损测量参数;Exemplarily, the corresponding relationship between the reference signal indication and the power control parameter information includes one or more of the following: each reference signal indication corresponds to one path loss measurement parameter;
每个参考信号指示对应至少一个开环功率控制参数,至少一个开环功率控制参数对应至少一种上行传输;Each reference signal indication corresponds to at least one open-loop power control parameter, and at least one open-loop power control parameter corresponds to at least one type of uplink transmission;
每个参考信号指示对应至少一个闭环功率控制参数,至少一个闭环功率控制参数对应至少一种上行传输。Each reference signal indication corresponds to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
示例性地,功控参数MAC信令还包括传输类别信息,传输类别信息用于标识上行传输的类型。Exemplarily, the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
示例性地,本发明实施例可以包括:Exemplarily, the embodiment of the present invention may include:
接收第一通信节点发送的能力信息;能力信息表示第一通信节点是否支持MAC信令修改功率控制参数。Receive capability information sent by the first communication node; the capability information indicates whether the first communication node supports MAC signaling to modify power control parameters.
在第一通信节点支持MAC信令修改功率控制参数的情况下,发送功控参数MAC信令;功控参数MAC信令包括参考信号指示以及与参考信号指示对应的功率控制参数信息;功控参数MAC信令用于指示第一通信节点根据功率控制参数信息确定参考信号指示关联的上行传输的功率控制参数。In the case that the first communication node supports MAC signaling to modify power control parameters, the power control parameter MAC signaling is sent; the power control parameter MAC signaling includes a reference signal indicator and power control parameter information corresponding to the reference signal indicator; power control parameters The MAC signaling is used to instruct the first communication node to determine the reference signal to indicate the associated uplink transmission power control parameter according to the power control parameter information.
在一个示例性实施方式中,请参考图13所示的本发明实施例提供的功率控制方法的流程图,该方法包括:In an exemplary embodiment, please refer to the flowchart of the power control method provided by the embodiment of the present invention shown in FIG. 13, and the method includes:
步骤1310、发送功控参数介质访问控制MAC信令;功控参数MAC信令用于指示第一通信节点根据功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。Step 1310: Send the power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
示例性地,所述功控参数MAC信令中包括一组或多组功率控制参数信息,所述一组或多组功率控制参数信息用于指示所述功率控制参数池中的一组功率控制参数或多组编号从小到大的功率控制参数。Exemplarily, the power control parameter MAC signaling includes one or more sets of power control parameter information, and the one or more sets of power control parameter information is used to indicate a set of power control in the power control parameter pool Parameters or groups of power control parameters with numbers from small to large.
示例性地,所述功控参数MAC信令中的功率控制参数信息用于更新PUSCH的功率控制参数池、PUCCH的功率控制参数池和SRS的功率控制参数池中的一 种或多种。Exemplarily, the power control parameter information in the power control parameter MAC signaling is used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
以下提供多种本发明实施例的应用示例:The following provides various application examples of the embodiments of the present invention:
应用示例1Application example 1
应用示例1是复用PUCCH的空间关系激活/去激活MAC CE,更新PUCCH的功率控制参数。Application example 1 is to reuse the spatial relationship of PUCCH to activate/deactivate MAC CE and update the power control parameters of PUCCH.
基站通过RRC信令对UE配置PUCCH的空间关系池,其中包括至少一个PUCCH的空间关系。每个PUCCH的空间关系对应一组功率控制参数。每一组功率控制参数来自于基站通过RRC信令为UE配置的PUCCH的功控参数池。功率控制参数包括以下至少一类:开环功率控制参数、闭环功率控制参数、路损测量参数。功率控制参数池是指,可以预先配置多个功率控制参数与功率控制参数编号的对应关系,则每类功率控制参数可以由功率控制参数编号索引。The base station configures a PUCCH spatial relationship pool for the UE through RRC signaling, which includes at least one PUCCH spatial relationship. The spatial relationship of each PUCCH corresponds to a set of power control parameters. Each group of power control parameters comes from the PUCCH power control parameter pool configured by the base station for the UE through RRC signaling. The power control parameters include at least one of the following: open-loop power control parameters, closed-loop power control parameters, and path loss measurement parameters. The power control parameter pool means that the correspondence between multiple power control parameters and power control parameter numbers can be pre-configured, and each type of power control parameter can be indexed by the power control parameter number.
另外,基站通过高层信令RRC还对UE配置PUCCH的资源池,其中包括至少一个PUCCH资源。基站通过PUCCH的空间关系激活/去激活MAC CE激活/去激活其中的一个PUCCH的空间关系给一个PUCCH资源。基站通过物理层信令DCI指示PUCCH资源,UE可以确定其对应的PUCCH空间关系。如图14所示是PUCCH的空间关系激活/去激活MAC的示意图,PUCCH的空间关系激活/去激活MAC中的各个域含义如下:In addition, the base station also configures a PUCCH resource pool for the UE through high-layer signaling RRC, which includes at least one PUCCH resource. The base station activates/deactivates the MAC CE to activate/deactivate the spatial relationship of one PUCCH to one PUCCH resource through the spatial relationship of PUCCH. The base station indicates the PUCCH resource through physical layer signaling DCI, and the UE can determine its corresponding PUCCH spatial relationship. Figure 14 is a schematic diagram of the PUCCH spatial relationship activation/deactivation MAC. The meaning of each field in the PUCCH spatial relationship activation/deactivation MAC is as follows:
小区标识(Serving Cell ID):该域指示该MAC CE所应用的服务小区的标识;该域长度是5比特。Serving Cell ID: This field indicates the identity of the serving cell to which the MAC CE applies; the length of this field is 5 bits.
上行带宽部分(Bandwidth Part,BWP)标识(BWP ID):该域指示该MAC CE所应用的UL BWP的标识;该域长度是2比特。Uplink bandwidth part (Bandwidth Part, BWP) identifier (BWP ID): This field indicates the UL BWP identifier to which the MAC CE applies; the length of this field is 2 bits.
物理上行控制信道资源标识(PUCCH Resource ID):该域是PUCCH资源标识;该域长度为7比特。Physical uplink control channel resource ID (PUCCH Resource ID): This field is the PUCCH resource ID; the length of this field is 7 bits.
S i:指示PUCCH的空间关系的激活状态,i为PUCCH的空间关系在空间关系池中的编号。该域的值若为1表示激活,0表示去激活。i取值0到7,一共8个,每个1比特,所以该域长度为8比特,指示8种空间关系的激活状态。 S i : indicates the activation state of the spatial relationship of the PUCCH, and i is the number of the spatial relationship of the PUCCH in the spatial relationship pool. If the value of this field is 1, it means activation, and 0 means deactivation. The value of i is from 0 to 7, a total of 8 with 1 bit each, so the length of this field is 8 bits, indicating the activation state of 8 spatial relations.
R:保留位,可以设为0,或者设为1。R: Reserved bit, which can be set to 0 or 1.
为实现PUCCH的灵活功控,基站通过PUCCH的空间关系激活/去激活MAC CE携带PUCCH的功率控制参数,用于更新该MAC CE中的PUCCH资源的激活PUCCH空间关系的PUCCH的功率控制参数。可以采用以下方式之一:In order to realize the flexible power control of the PUCCH, the base station activates/deactivates the MAC CE through the spatial relationship of the PUCCH and carries the power control parameters of the PUCCH, which is used to update the PUCCH power control parameters of the PUCCH resource in the PUCCH resource in the MAC CE. One of the following methods can be used:
方式一、在PUCCH的空间关系激活/去激活MAC CE中增加功率控制参数 域。Method 1: Add a power control parameter field in the PUCCH spatial relationship activation/deactivation MAC CE.
利用其中的一个R域指示是否有额外的字节(功率控制参数域)用于激活的PUCCH空间关系的功率控制参数指示。One of the R fields is used to indicate whether there is an extra byte (power control parameter field) for the power control parameter indication of the activated PUCCH spatial relationship.
例如,假设第二个R域被用作指示存在1字节的功率控制参数域被用于指示PUCCH的功率控制参数,在图14的示意图中增加1字节指示PUCCH的功率控制参数。For example, suppose that the second R field is used to indicate that a 1-byte power control parameter field is used to indicate the power control parameter of the PUCCH, and 1 byte is added to the schematic diagram of FIG. 14 to indicate the power control parameter of the PUCCH.
方式二、利用2个R域指示功率控制参数。例如,使用2个R域一共2比特,可以指示4种情况,用于指示RRC配置的4种路损测量参数之一。Method 2: Use 2 R domains to indicate power control parameters. For example, using two R fields, a total of two bits, can indicate four situations, which are used to indicate one of the four path loss measurement parameters configured by RRC.
PUCCH的功率控制参数的指示信息包括以下至少之一:开环功率控制参数编号,路损测量参数编号,闭环功率控制参数编号。其中,开环功率控制参数编号,路损测量参数编号,闭环功率控制参数编号分别用于标识RRC配置的开环功率控制参数池,路损测量参数池,闭环功率控制参数池中的各个类型的功率控制参数。The indication information of the power control parameter of the PUCCH includes at least one of the following: an open-loop power control parameter number, a path loss measurement parameter number, and a closed-loop power control parameter number. Among them, the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control parameter number are used to identify the RRC configured open-loop power control parameter pool, path loss measurement parameter pool, and closed-loop power control parameter pool. Power control parameters.
或者,开环功率控制参数编号,路损测量参数编号,闭环功率控制参数编号分别用于标识RRC配置的开环功率控制参数池的子集,路损测量参数池的子集,闭环功率控制参数池的子集中的各个类型的功率控制参数。Or, the open loop power control parameter number, the path loss measurement parameter number, and the closed loop power control parameter number are used to identify the subset of the open loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed loop power control parameter. Various types of power control parameters in a subset of the pool.
例如,假设RRC配置的PUCCH功率控制参数中,开环功率控制参数池中包括最多32个开环功率控制参数,路损测量参数池中包括最多8个路损测量参数。功率控制参数的指示信息为1字节,包括5比特开环功率控制参数编号,3比特路损测量参数编号。而闭环功率控制参数不改变,保持RRC为该PUCCH空间关系配置的闭环功率控制参数。For example, suppose that in the PUCCH power control parameters configured by RRC, the open loop power control parameter pool includes a maximum of 32 open loop power control parameters, and the path loss measurement parameter pool includes a maximum of 8 path loss measurement parameters. The indication information of the power control parameter is 1 byte, including a 5-bit open-loop power control parameter number and a 3-bit path loss measurement parameter number. The closed-loop power control parameters are not changed, and the closed-loop power control parameters configured by the RRC for the PUCCH spatial relationship are maintained.
又如,假设RRC配置的PUCCH功率控制参数中,开环功率控制参数池中包括最多32个开环功率控制参数,路损测量参数池中包括最多4个路损测量参数,闭环功率控制参数池中包括最多2个闭环功率控制。功率控制参数的指示信息为1字节,包括5比特开环功率控制参数编号,2比特路损测量参数编号,1比特闭环功率控制参数编号。As another example, suppose that in the PUCCH power control parameters configured by RRC, the open-loop power control parameter pool includes up to 32 open-loop power control parameters, and the path loss measurement parameter pool includes up to 4 path loss measurement parameters. The closed-loop power control parameter pool It includes up to 2 closed-loop power controls. The indication information of the power control parameter is 1 byte, including a 5-bit open-loop power control parameter number, a 2-bit path loss measurement parameter number, and a 1-bit closed-loop power control parameter number.
又如,假设RRC配置的PUCCH功率控制参数中,开环功率控制参数池中包括最多32个开环功率控制参数,但是供MAC CE配置的开环功率控制参数池子集中包括其中的8个开环功率控制参数,路损测量参数池中包括最多8个路损测量参数,但是供MAC CE配置的路损测量参数子集中包括其中的4个开环功率控制参数,闭环功率控制参数池中包括最多2个闭环功率控制参数。功率控制参数的指示信息为1字节,包括3比特开环功率控制参数编号,2比特路损测量参数编号,1比特功率控制参数编号,1字节的剩余2比特是保留比特。As another example, suppose that in the PUCCH power control parameters configured by RRC, the open-loop power control parameter pool includes a maximum of 32 open-loop power control parameters, but the subset of the open-loop power control parameter pool for MAC CE configuration includes 8 open-loop power control parameters. Power control parameters. The path loss measurement parameter pool includes up to 8 path loss measurement parameters, but the path loss measurement parameter subset for MAC CE configuration includes 4 open-loop power control parameters, and the closed-loop power control parameter pool includes up to 2 closed-loop power control parameters. The indication information of the power control parameter is 1 byte, including a 3-bit open-loop power control parameter number, a 2-bit path loss measurement parameter number, a 1-bit power control parameter number, and the remaining 2 bits of 1 byte are reserved bits.
又如,PUCCH的功率控制参数的指示信息为1字节,其中的部分或全部比特用于指示一个PUCCH的功控参数集合编号。其中PUCCH的功率控制参数集合编号指示一个PUCCH的功率控制参数集合结构,其中包括以下参数至少之一:开环功率控制参数编号,路损测量参数编号以及闭环功率控制参数编号。如下所示:For another example, the indication information of the power control parameter of the PUCCH is 1 byte, and some or all of the bits are used to indicate the power control parameter set number of a PUCCH. The power control parameter set number of the PUCCH indicates a power control parameter set structure of a PUCCH, which includes at least one of the following parameters: an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control parameter number. As follows:
PUCCH的功率控制参数集合结构:PUCCH power control parameter set structure:
{PUCCH的功率控制参数集合编号;{PUCCH power control parameter set number;
集合编号对应的开环功率控制参数编号;The open-loop power control parameter number corresponding to the set number;
集合编号对应的路损测量参数编号;The path loss measurement parameter number corresponding to the set number;
集合编号对应的闭环功率控制编号Closed-loop power control number corresponding to the set number
}}
PUCCH的功率控制参数集合结构的另一种实现方式:Another realization of the PUCCH power control parameter set structure:
{PUCCH的功控参数集合编号;{PUCCH power control parameter set number;
集合编号对应的开环功率控制参数编号;The open-loop power control parameter number corresponding to the set number;
集合编号对应的路损测量参数编号;The path loss measurement parameter number corresponding to the set number;
}}
PUCCH的功控参数集合结构的另一种实现方式:Another realization of the power control parameter set structure of PUCCH:
{PUCCH的功控参数集合编号;{PUCCH power control parameter set number;
集合编号对应的路损测量参数编号;The path loss measurement parameter number corresponding to the set number;
}}
PUCCH的功控参数集合结构的另一种实现方式:Another realization of the power control parameter set structure of PUCCH:
{PUCCH的功控参数集合编号;{PUCCH power control parameter set number;
集合编号对应的开环功率控制参数编号;The open-loop power control parameter number corresponding to the set number;
}}
PUCCH的功率控制参数集合结构中包括哪些PUCCH的功率控制参数取决于基站。Which PUCCH power control parameters are included in the PUCCH power control parameter set structure depends on the base station.
基站通过RRC信令为UE配置至少一个上述的PUCCH的功率控制参数集合结构。基站通过MAC CE指示其中的一个用于更新PUCCH的功率控制参数集合结构中包括的PUCCH的功率控制参数,其余PUCCH的功率控制参数集合结构中没有包括的PUCCH的功率控制参数保持RRC配置给PUCCH的空间关 系的值,不通过MAC CE更新。The base station configures at least one PUCCH power control parameter set structure for the UE through RRC signaling. The base station instructs one of them to be used to update the power control parameters of the PUCCH included in the power control parameter set structure of the PUCCH through the MAC CE, and the power control parameters of the PUCCH that are not included in the power control parameter set structure of the other PUCCHs keep the RRC configuration for the PUCCH The value of the spatial relationship is not updated by MAC CE.
通过MAC层指示PUCCH的功率控制参数集合编号的好处在于,基站可以将PUCCH的功率控制参数集合与基站侧的波束关联起来,当基站需要更换上行接收波束时,无论UE侧的波束(用PUCCH的空间关系表达)是否变化,基站都可以通过MAC CE灵活地更新PUCCH的功率控制参数。The advantage of indicating the PUCCH power control parameter set number through the MAC layer is that the base station can associate the PUCCH power control parameter set with the beam on the base station side. When the base station needs to change the uplink receiving beam, regardless of the beam on the UE side (using PUCCH Whether the spatial relationship expression) changes, the base station can flexibly update the power control parameters of PUCCH through MAC CE.
或者,PUCCH的功率控制参数的指示信息包括以下至少之一:开环功率控制参数,路损测量参数,闭环功率控制参数。Alternatively, the indication information of the power control parameter of the PUCCH includes at least one of the following: an open loop power control parameter, a path loss measurement parameter, and a closed loop power control parameter.
其中,开环功率控制参数包括:P0值,或P0调整值。P0值是用于PUCCH的UE专有的(UE specific)目标接收功率值。P0调整值是指相对于前一次的P0值需要调整的量。Among them, the open-loop power control parameters include: P0 value, or P0 adjustment value. The P0 value is a UE-specific (UE-specific) target received power value for PUCCH. The P0 adjustment value refers to the amount that needs to be adjusted relative to the previous P0 value.
路损测量参数包括:用于测量路损的参考信号的类型,用于测量路损的参考信号的编号。用于测量路损的参考信号的类型包括以下至少之一:信道状态信息参考信号CSI-RS,SSB。用于测量路损的参考信号的编号用于标识用于测量路损的参考信号的类型。用于测量路损的参考信号的编号可以是参考信号编号,或参考信号资源编号,如,CSI-RS资源编号,SSB编号。The path loss measurement parameters include: the type of the reference signal used to measure the path loss, and the number of the reference signal used to measure the path loss. The type of reference signal used for measuring path loss includes at least one of the following: channel state information reference signal CSI-RS, SSB. The number of the reference signal used to measure the path loss is used to identify the type of the reference signal used to measure the path loss. The number of the reference signal used to measure the path loss may be a reference signal number or a reference signal resource number, such as a CSI-RS resource number and an SSB number.
闭环功率控制参数包括:PUCCH的闭环功率控制编号。当PUCCH的闭环功率控制数量为1时,该域可能不存在。The closed-loop power control parameters include: the closed-loop power control number of the PUCCH. When the number of closed-loop power control of PUCCH is 1, this field may not exist.
MAC CE中的1个R域可以被用作指示PUCCH的功率控制参数是否存在。该R域为“0”表示PUCCH的空间关系激活/去激活相关信息之后没有PUCCH的功率控制参数;该R域为“1”表示PUCCH的空间关系激活/去激活相关信息之后存在PUCCH的功率控制参数。One R field in the MAC CE can be used to indicate whether the PUCCH power control parameter exists. The R field is "0" indicating that there is no PUCCH power control parameter after the PUCCH spatial relationship activation/deactivation related information; the R field is "1" indicates that there is PUCCH power control after the PUCCH spatial relationship activation/deactivation related information parameter.
应用示例2Application example 2
应用示例2是复用SRS激活/去激活MAC CE,更新SRS资源集合或SRS资源的功率控制参数。Application example 2 is to multiplex SRS to activate/deactivate MAC CE, and update SRS resource set or power control parameters of SRS resource.
SRS传输的功率控制参数是通过高层信令RRC基于SRS资源集合配置的,也就是说一个SRS资源集合中的所有SRS资源共用相同的功率控制参数。即SRS的功率控制参数是由高层信令配置的。高层信令还可能配置SRS资源的空间关系。The power control parameters for SRS transmission are configured based on the SRS resource set through high-layer signaling RRC, that is, all SRS resources in an SRS resource set share the same power control parameters. That is, the power control parameters of SRS are configured by high-level signaling. High-level signaling may also configure the spatial relationship of SRS resources.
NR系统支持SP(semi-persistent,半持续)SRS激活/去激活MAC CE,可以对时域特性配置为SP的SRS资源集合中的各个SRS资源激活/去激活,以及对激活的SRS资源指示空间关系。当MAC CE改变了SRS资源的空间关系后, 功率控制参数却无法及时更新。The NR system supports SP (semi-persistent, semi-persistent) SRS activation/deactivation MAC CE, which can activate/deactivate each SRS resource in the SRS resource set configured as SP in time domain characteristics, and indicate space for activated SRS resources relationship. When the MAC CE changes the spatial relationship of the SRS resources, the power control parameters cannot be updated in time.
图15示出了SP SRS激活/去激活MAC CE的示意图,各个域的含义如下:Figure 15 shows a schematic diagram of SP SRS activation/deactivation MAC CE. The meaning of each field is as follows:
A/D:该域指示该MAC CE是激活还是去激活一个SP SRS资源集合。取值1表示激活,否则表示去激活。A/D: This field indicates whether the MAC CE activates or deactivates an SP SRS resource set. A value of 1 means activation, otherwise it means deactivation.
SRS资源集合小区标识(SRS Resource Set's Cell ID):该域指示了一个服务小区的标识,上述SP SRS资源集合属于该服务小区。如果下面的C域设为0,该域也是资源标识i(Resource ID i)域的所有资源的服务小区。该域长度为5比特。 SRS Resource Set's Cell ID (SRS Resource Set's Cell ID): This field indicates the identity of a serving cell, and the above SP SRS resource set belongs to the serving cell. If the following C field is set to 0, this field is also the serving cell of all resources in the Resource ID i (Resource ID i ) field. The length of this field is 5 bits.
集合上行带宽部分标识(SRS Resource Set's BWP ID):该域指示了一个BWP标识,上述SP SRS资源集合属于该BWP。如果下面的C域设为0,该域也是资源标识i域的所有资源的BWP。该域长度是2比特。Set uplink bandwidth part identifier (SRS Resource Set's BWP ID): This field indicates a BWP identifier, and the above-mentioned SP SRS resource set belongs to this BWP. If the following C field is set to 0, this field is also the BWP of all resources in the resource identifier i field. The field length is 2 bits.
C:该域指示Resource Serving Cell ID域以及上行带宽部分标识域的字节是否存在。取值为1时,这两类域的字节存在,否则,不存在。C: This field indicates whether the bytes in the Resource Serving Cell ID field and the uplink bandwidth part identification field exist. When the value is 1, the bytes of these two types of fields exist, otherwise, they do not exist.
补充上行(Supplementary Uplink,SUL):该域指示此MAC CE应用于正常上行链路(normal uplink,NUL)载波或是SUL载波配置。取值为1表明应用于SUL载波配置,0表明应用于NUL载波配置。Supplementary Uplink (SUL): This field indicates that this MAC CE is applied to a normal uplink (NUL) carrier or SUL carrier configuration. A value of 1 indicates that it is applied to SUL carrier configuration, and 0 indicates that it is applied to NUL carrier configuration.
SP SRS资源集合标识(SP SRS Resource Set ID):该域指示待激活/待去激活的SP SRS resource set ID,该域长度为4比特。SP SRS Resource Set ID (SP SRS Resource Set ID): This field indicates the SP SRS resource set ID to be activated/deactivated, and the length of this field is 4 bits.
Fi:该域指示SRS资源的空间关系的资源类型。设置为1表示空间关系的资源是非零功率信道状态信息参考信号资源(Non-Zero Power Channel State Information-Reference Signal resource,NZP CSI-RS)资源编号,设置为0表示空间关系的资源是SSB或SRS资源编号。该域只在A/D域设置为1时存在。Fi: This field indicates the resource type of the spatial relationship of SRS resources. Set to 1 to indicate that the resource of the spatial relationship is a non-zero power channel state information reference signal resource (Non-Zero Power Channel State Information-Reference Signal resource, NZP CSI-RS) resource number, set to 0 to indicate that the resource of the spatial relationship is SSB or SRS Resource number. This field only exists when the A/D field is set to 1.
资源标识i(Resource IDi):该域包括一个用于SRS资源i的空间关系的资源标识。Resource ID0是指SRS资源集合中的第一个SRS资源,Resource ID1对应第二个,以此类推。如果Fi为0,并且该域的第一比特是1,则该域的其余部分包括SSB的编号。如果Fi为0,并且该域的第一比特是0,则该域的其余部分包括SRS资源的编号。该域的长度为7比特。该域只在A/D域设置为1时存在。Resource IDi (Resource IDi): This field includes a resource ID for the spatial relationship of SRS resource i. Resource ID0 refers to the first SRS resource in the SRS resource set, Resource ID1 corresponds to the second one, and so on. If Fi is 0, and the first bit of the field is 1, the rest of the field includes the number of the SSB. If Fi is 0, and the first bit of the field is 0, the rest of the field includes the number of the SRS resource. The length of this field is 7 bits. This field only exists when the A/D field is set to 1.
资源服务小区标识i(Resource Serving Cell Idi):该域指示了一个服务小区的标识,是SRS资源i的空间关系资源所在的服务小区。该域长度为5比特。Resource Serving Cell Idi (Resource Serving Cell Idi): This field indicates the identity of a serving cell, which is the serving cell where the spatial relationship resource of SRS resource i is located. The length of this field is 5 bits.
资源上行带宽部分标识i(Resource BWP Idi):该域指示了一个BWP标识,是SRS资源i的空间关系资源所在的BWP。该域长度为2比特。Resource uplink bandwidth part identifier i (Resource BWP Idi): This field indicates a BWP identifier, which is the BWP where the spatial relationship resource of the SRS resource i is located. The length of this field is 2 bits.
R:保留位,可以设为0,或者设为1。R: Reserved bit, which can be set to 0 or 1.
为实现SRS的灵活功控,基站通过SP SRS激活/去激活MAC CE携带SRS的功率控制参数。In order to realize the flexible power control of SRS, the base station carries SRS power control parameters through SP SRS activation/deactivation MAC CE.
SRS的功率控制参数是基于SRS资源集合的,即在SP SRS激活/去激活相关信息之后添加SRS的功率控制参数。The power control parameters of the SRS are based on the SRS resource set, that is, the power control parameters of the SRS are added after the SP SRS activation/deactivation related information.
SRS的功率控制参数指示包括以下至少之一:开环功率控制参数编号,路损测量参数编号,闭环功率控制编号。其中,开环功率控制参数编号,路损测量参数编号,闭环功率控制编号分别用于标识RRC配置的开环功率控制参数池,路损测量参数池,闭环功率控制编号池中的各个类型的功率控制参数。The power control parameter indication of the SRS includes at least one of the following: an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control number. Among them, the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify each type of power in the RRC configuration open-loop power control parameter pool, path loss measurement parameter pool, and closed-loop power control number pool. Control parameters.
或者,开环功率控制参数编号,路损测量参数编号,闭环功率控制编号分别用于标识RRC配置的开环功率控制参数池的子集,路损测量参数池的子集,闭环功率控制编号池的子集中的各个类型的功率控制参数。Or, the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify the subset of the open-loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed-loop power control number pool. The various types of power control parameters in the subset.
SRS的功率控制参数也可以是指示一个SRS的功率控制参数集合编号。其中SRS的功率控制参数集合编号指示一个SRS的功率控制参数集合结构,其中包括以下参数至少之一:开环功率控制参数编号,路损测量参数编号以及闭环功率控制编号。如下所示:The power control parameter of the SRS may also be a power control parameter set number indicating one SRS. The power control parameter set number of the SRS indicates a power control parameter set structure of an SRS, which includes at least one of the following parameters: an open loop power control parameter number, a path loss measurement parameter number, and a closed loop power control number. As follows:
SRS的功率控制参数集合结构:SRS power control parameter collection structure:
{SRS的功率控制参数集合编号;{SRS power control parameter set number;
集合编号对应的开环功率控制参数编号;The open-loop power control parameter number corresponding to the set number;
集合编号对应的路损测量参数编号;The path loss measurement parameter number corresponding to the set number;
集合编号对应的闭环功率控制编号Closed-loop power control number corresponding to the set number
}}
与PUCCH的功率控制参数集合结构类似,SRS的功率控制参数集合结构还可能只包括部分SRS的功率控制参数,此处不再赘述。SRS的功率控制参数集合结构中包括哪些SRS的功率控制参数取决于基站。Similar to the power control parameter set structure of the PUCCH, the power control parameter set structure of the SRS may also include only part of the power control parameters of the SRS, which will not be repeated here. Which SRS power control parameters are included in the SRS power control parameter set structure depends on the base station.
基站通过RRC信令为UE配置至少一个上述的SRS的功率控制参数集合结构。基站通过MAC CE指示其中的一个用于更新SRS的功率控制参数集合结构中包括的SRS的功率控制参数,其余SRS的功率控制参数集合结构中没有包括的SRS的功率控制参数保持RRC配置给SRS资源集合配置的值,不通过MAC CE更新。The base station configures at least one SRS power control parameter set structure for the UE through RRC signaling. The base station instructs one of them to be used to update the power control parameters of the SRS included in the power control parameter set structure of the SRS through the MAC CE, and the power control parameters of the SRS not included in the power control parameter set structure of the remaining SRS keep the RRC configured for the SRS resource The value of the set configuration is not updated by the MAC CE.
通过MAC层指示SRS的功率控制参数集合编号的好处在于,基站可以将SRS的功率控制参数集合与基站侧的波束关联起来,当基站需要更换上行接收 波束时,无论UE侧的波束(用SRS资源的空间关系表达)是否变化,基站都可以通过MAC CE灵活地更新SRS的功率控制参数。The advantage of indicating the SRS power control parameter set number through the MAC layer is that the base station can associate the SRS power control parameter set with the beam on the base station side. When the base station needs to change the uplink receiving beam, regardless of the beam on the UE side (using SRS resources The base station can flexibly update SRS power control parameters through MAC CE.
类似“PUCCH的空间关系激活/去激活”MAC CE,也可以使用R域指示“SP SRS激活/去激活”MAC CE是否有SRS的功率控制参数的指示信息。或使用R域指示“SP SRS激活/去激活”MAC CE包括RRC配置的路损测量参数的指示信息。Similar to the "PUCCH spatial relationship activation/deactivation" MAC CE, the R field can also be used to indicate whether the "SP SRS activation/deactivation" MAC CE has indication information of the power control parameters of the SRS. Or use the R field to indicate "SP SRS activation/deactivation" MAC CE including indication information of path loss measurement parameters configured by RRC.
上述SRS的功率控制参数是基于SRS资源集合的,即在SP SRS激活/去激活相关信息之后添加SRS的功率控制参数的指示信息,用于该MAC CE指示的SRS资源集合中的所有SRS资源。上述SRS的功率控制参数也可以基于SRS资源指示。即在SP SRS激活/去激活相关信息之后添加SRS的功率控制参数的指示信息,SRS资源集合中的每个SRS资源对应一套SRS的功率控制参数的指示信息。The power control parameters of the SRS are based on the SRS resource set, that is, the indication information of the power control parameters of the SRS is added after the SP SRS activation/deactivation related information, which is used for all SRS resources in the SRS resource set indicated by the MAC CE. The power control parameters of the above SRS may also be based on the SRS resource indication. That is, after the SP SRS activation/deactivation related information, the indication information of the power control parameters of the SRS is added, and each SRS resource in the SRS resource set corresponds to a set of indication information of the power control parameters of the SRS.
可以根据SRS资源集合的用途确定SRS的功率控制参数是基于SRS资源集合还是基于SRS资源的。Whether the power control parameter of the SRS is based on the SRS resource set or the SRS resource can be determined according to the usage of the SRS resource set.
当SRS资源集合的用途为波束管理、天线选择时,SRS的功率控制参数是基于SRS资源集合的。When the purpose of the SRS resource set is beam management and antenna selection, the power control parameters of the SRS are based on the SRS resource set.
当SRS资源集合的用途为码本、非码本时,SRS的功率控制参数是基于SRS资源的。When the use of the SRS resource set is codebook or non-codebook, the power control parameters of SRS are based on SRS resources.
也可以在MAC CE中指示SRS的功率控制参数是基于SRS资源集合还是基于SRS资源的。It is also possible to indicate in the MAC CE whether the power control parameter of the SRS is based on the SRS resource set or the SRS resource.
当SRS的功率控制参数是基于SRS资源集合的,则SRS的功率控制参数只有一套,用于该SRS资源集合的所有SRS资源。When the power control parameters of the SRS are based on the SRS resource set, there is only one set of power control parameters for the SRS, which is used for all SRS resources in the SRS resource set.
当SRS的功率控制参数是基于SRS资源的,则SRS的功率控制参数针对SRS资源集合中的每个SRS资源有一套,分别应用于各个SRS资源的功率控制。When the power control parameters of the SRS are based on SRS resources, the power control parameters of the SRS have a set for each SRS resource in the SRS resource set, and they are respectively applied to the power control of each SRS resource.
MAC CE中的两个R域可以被用作指示SRS的功率控制参数。“00”表示SP SRS激活/去激活相关信息之后没有SRS的功率控制参数;“01”表示SP SRS激活/去激活相关信息之后存在SRS的功率控制参数,是基于SRS资源集合指示的;“10”表示SP SRS激活/去激活相关信息之后存在SRS的功率控制参数,是基于SRS资源指示的,即SRS资源集合中的每个SRS资源对应一套SRS的功率控制参数;“11”为保留值。The two R fields in the MAC CE can be used as power control parameters indicating SRS. "00" indicates that there is no SRS power control parameter after SP SRS activation/deactivation related information; "01" indicates that there is SRS power control parameter after SP SRS activation/deactivation related information, which is indicated based on the SRS resource set; "10 "Indicates that there are SRS power control parameters after SP SRS activation/deactivation related information, which is based on the SRS resource indication, that is, each SRS resource in the SRS resource set corresponds to a set of SRS power control parameters; "11" is the reserved value .
或者,MAC CE中的1个R域可以被用作指示SRS的功率控制参数。该R域为“0”表示SP SRS激活/去激活相关信息之后没有SRS的功率控制参数;该R域为“1”表示SP SRS激活/去激活相关信息之后存在SRS的功率控制参数,是基 于SRS资源集合指示的。Alternatively, one R field in the MAC CE can be used as a power control parameter indicating SRS. The R field is "0" indicating that there is no SRS power control parameter after SP SRS activation/deactivation related information; the R field is "1" indicating that there is SRS power control parameter after SP SRS activation/deactivation related information, which is based on SRS resource set indicates.
应用示例3Application example 3
应用示例3是复用SRS激活/去激活MAC CE,更新PUSCH的功率控制参数。Application example 3 is to multiplex SRS to activate/deactivate MAC CE and update the power control parameters of PUSCH.
NR系统中,PUSCH的波束是通过SRI确定的,其功率控制参数也是通过SRI以及RRC配置的SRI与功率控制参数池中各功率控制参数的编号的关联关系确定的。In the NR system, the PUSCH beam is determined by SRI, and its power control parameters are also determined by the SRI and the correlation between the SRI configured by the RRC and the number of each power control parameter in the power control parameter pool.
如果通信的波束发生变化,基站可以通过MAC层信令改变SRI对应的SRS资源的空间关系,但是无法更新SRI对应的PUSCH的功率参数。If the communication beam changes, the base station can change the spatial relationship of the SRS resources corresponding to the SRI through MAC layer signaling, but cannot update the power parameters of the PUSCH corresponding to the SRI.
为实现PUSCH的灵活功率控制,本应用示例通过SP SRS激活/去激活MAC CE携带PUSCH的功率控制参数。In order to realize the flexible power control of PUSCH, this application example uses SP SRS to activate/deactivate MAC CE to carry PUSCH power control parameters.
PUSCH的功率控制参数是基于SRI关联的。当SRI所对应的SRS资源集合的用途是码本时,SRI与SRS资源集合中的SRS资源是一一对应的,当SRI所对应的SRS资源集合的用途是非码本时,每个SRI与SRS资源集合中的SRS资源或SRS资源组合是一一对应的。即,通过在SP SRS激活/去激活相关信息之后添加PUSCH的功率控制参数实现PUSCH的灵活功率控制。The power control parameters of PUSCH are based on SRI association. When the use of the SRS resource set corresponding to the SRI is a codebook, there is a one-to-one correspondence between the SRI and the SRS resources in the SRS resource set. When the use of the SRS resource set corresponding to the SRI is non-codebook, each SRI and SRS The SRS resources or SRS resource combinations in the resource set have a one-to-one correspondence. That is, the flexible power control of PUSCH is realized by adding the power control parameter of PUSCH after SP SRS activation/deactivation related information.
PUSCH的功率控制参数指示包括以下至少之一:开环功率控制参数编号,路损测量参数编号,闭环功率控制编号。其中,开环功率控制参数编号,路损测量参数编号,闭环功率控制编号分别用于标识RRC配置的开环功率控制参数池,路损测量参数池,闭环功率控制编号池中的各个类型的功率控制参数。The PUSCH power control parameter indication includes at least one of the following: an open-loop power control parameter number, a path loss measurement parameter number, and a closed-loop power control number. Among them, the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify each type of power in the RRC configuration open-loop power control parameter pool, path loss measurement parameter pool, and closed-loop power control number pool. Control parameters.
或者,开环功率控制参数编号,路损测量参数编号,闭环功率控制编号分别用于标识RRC配置的开环功率控制参数池的子集,路损测量参数池的子集,闭环功率控制编号池的子集中的各个类型的功率控制参数。Or, the open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number are used to identify the subset of the open-loop power control parameter pool configured by RRC, the subset of the path loss measurement parameter pool, and the closed-loop power control number pool. The various types of power control parameters in the subset.
PUSCH的功率控制参数也可以是指示一个PUSCH的功率控制参数集合编号。其中PUSCH的功率控制参数集合编号指示一个PUSCH的功率控制参数集合结构,其中包括以下参数至少之一:开环功率控制参数编号,路损测量参数编号以及闭环功率控制编号。如下所示:The PUSCH power control parameter may also be a power control parameter set number indicating a PUSCH. The PUSCH power control parameter set number indicates a PUSCH power control parameter set structure, which includes at least one of the following parameters: open loop power control parameter number, path loss measurement parameter number, and closed loop power control number. As follows:
PUSCH的功率控制参数集合结构:PUSCH power control parameter set structure:
{PUSCH的功率控制参数集合编号;{PUSCH power control parameter set number;
集合编号对应的开环功率控制参数编号;The open-loop power control parameter number corresponding to the set number;
集合编号路损测量参数编号;Set number road loss measurement parameter number;
集合编号闭环功率控制编号Set number closed loop power control number
}}
与PUCCH的功率控制参数集合结构类似,PUSCH的功率控制参数集合结构还可能只包括部分PUSCH的功率控制参数,此处不再赘述。PUSCH的功率控制参数集合结构中包括哪些PUSCH的功率控制参数取决于基站。Similar to the power control parameter set structure of the PUCCH, the power control parameter set structure of the PUSCH may also only include part of the power control parameters of the PUSCH, which will not be repeated here. Which PUSCH power control parameters are included in the PUSCH power control parameter set structure depends on the base station.
可以根据SP SRS激活/去激活MAC CE所激活的SRS资源集合所对应的DCI中的SRI的数量确定PUSCH的功率控制参数的数量。The number of PUSCH power control parameters can be determined according to the number of SRIs in the DCI corresponding to the SRS resource set activated by the SP SRS activation/deactivation MAC CE.
例如,SRS资源集合的用途是码本时,SRS资源集合所对应的DCI中的SRI的数量等于SRS资源集合中的SRS资源,所以PUSCH的功率控制参数的数量等于SRS资源集合中的SRS资源数量。For example, when the use of the SRS resource set is a codebook, the number of SRIs in the DCI corresponding to the SRS resource set is equal to the SRS resources in the SRS resource set, so the number of power control parameters for PUSCH is equal to the number of SRS resources in the SRS resource set .
又如,SRS资源集合的用途是非码本时,SRS资源集合所对应的DCI中的SRI的数量等于SRS资源集合中的SRS资源数量以及SRS资源的组合数量,并且受限于UE支持的最大多输入多输出(Multi Input Multi Output,MIMO)层数(最大秩)。当SRS资源集合中的SRS资源数量为4,最大MIMO层数为1时,SRI有4种取值。所以PUSCH的功率控制参数的数量等于4。当SRS资源集合中的SRS资源数量为4,最大MIMO层数为4时,SRI有15种取值。所以PUSCH的功率控制参数的数量等于15。For another example, when the use of the SRS resource set is not a codebook, the number of SRIs in the DCI corresponding to the SRS resource set is equal to the number of SRS resources in the SRS resource set and the combined number of SRS resources, and is limited by the maximum number supported by the UE. Input multiple output (Multi Input Multi Output, MIMO) layer number (maximum rank). When the number of SRS resources in the SRS resource set is 4 and the maximum number of MIMO layers is 1, SRI has 4 values. Therefore, the number of power control parameters for PUSCH is equal to 4. When the number of SRS resources in the SRS resource set is 4 and the maximum number of MIMO layers is 4, the SRI has 15 values. So the number of power control parameters for PUSCH is equal to 15.
也可以根据SP SRS激活/去激活MAC CE所激活的SRS资源集合的用途以及SRS资源集合中包括的SRS资源数量确定PUSCH的功率控制参数的数量。The number of power control parameters of the PUSCH can also be determined according to the usage of the SRS resource set activated by the SP SRS activation/deactivation MAC CE and the number of SRS resources included in the SRS resource set.
SP SRS激活/去激活MAC CE所激活的SRS资源集合的用途为码本时,PUSCH的功率控制参数的数量等于SRS资源集合中包括的SRS资源数量。When the use of the SRS resource set activated by the SP SRS activation/deactivation MAC CE is a codebook, the number of power control parameters of the PUSCH is equal to the number of SRS resources included in the SRS resource set.
SP SRS激活/去激活MAC CE所激活的SRS资源集合的用途为非码本时,PUSCH的功率控制参数的数量等于SRS资源集合中包括的SRS资源的组合的数量。其中SRS资源的组合包括单个SRS资源。例如,SRS资源集合中包括4个SRS资源时,SRS资源的任意组合的数量为15。When the use of the SRS resource set activated by the SP SRS activation/deactivation MAC CE is not a codebook, the number of power control parameters of the PUSCH is equal to the number of combinations of SRS resources included in the SRS resource set. The combination of SRS resources includes a single SRS resource. For example, when the SRS resource set includes 4 SRS resources, the number of any combination of SRS resources is 15.
在一实施例中,SP SRS激活/去激活MAC CE所激活的SRS资源集合的用途为非码本时,PUSCH的功率控制参数的数量等于考虑UE的最大层数的限制的情况下SRS资源集合中包括的SRS资源的任意组合的数量。In an embodiment, when the use of the SRS resource set activated by the SP SRS activation/deactivation MAC CE is non-codebook, the number of power control parameters of the PUSCH is equal to the SRS resource set considering the limitation of the maximum number of layers of the UE The number of any combination of SRS resources included in.
MAC CE中的1个R域可以被用作指示PUSCH的功率控制参数是否存在。该R域为“0”表示SP SRS激活/去激活相关信息之后没有PUSCH的功率控制参数;该R域为“1”表示SP SRS激活/去激活相关信息之后存在PUSCH的功率控制参数。One R field in the MAC CE can be used to indicate whether the power control parameter of the PUSCH exists. The R field of "0" indicates that there is no PUSCH power control parameter after SP SRS activation/deactivation related information; the R field of "1" indicates that there are PUSCH power control parameters after SP SRS activation/deactivation related information.
应用示例4Application example 4
应用示例4是复用SRS激活/去激活MAC CE,更新PUSCH的功率控制参数和/或SRS的功率控制参数。Application example 4 is to multiplex SRS to activate/deactivate MAC CE, and update the power control parameters of PUSCH and/or the power control parameters of SRS.
为实现SRS和PUSCH的灵活功率控制,基站通过SP SRS激活/去激活MAC CE,或新的MAC CE携带SP SRS激活/去激活相关信息、SRS的功率控制参数和/或PUSCH的功率控制参数。In order to achieve flexible power control of SRS and PUSCH, the base station activates/deactivates MAC CE through SP SRS, or a new MAC CE carries SP SRS activation/deactivation related information, SRS power control parameters, and/or PUSCH power control parameters.
MAC CE(请参考图15)中的两个R域可以被用作指示SRS的功率控制参数和/或PUSCH的功率控制参数。“00”表示SP SRS激活/去激活相关信息之后没有SRS的功率控制参数和/或PUSCH的功率控制参数;“01”表示SP SRS激活/去激活相关信息之后存在SRS的功率控制参数,是基于SRS资源集合指示的;“10”表示SP SRS激活/去激活相关信息之后存在SRS的功率控制参数,是基于SRS资源指示的,即SRS资源集合中的每个SRS资源对应一套SRS的功率控制参数;“11”表示SP SRS激活/去激活相关信息之后存在PUSCH的功率控制参数。The two R fields in the MAC CE (please refer to Figure 15) can be used to indicate the power control parameters of the SRS and/or the power control parameters of the PUSCH. "00" means that there are no SRS power control parameters and/or PUSCH power control parameters after SP SRS activation/deactivation related information; "01" means that there are SRS power control parameters after SP SRS activation/deactivation related information, which is based on SRS resource set indication; "10" means that SP SRS activation/deactivation related information has SRS power control parameters, which are based on SRS resource indication, that is, each SRS resource in the SRS resource set corresponds to a set of SRS power control Parameter; "11" indicates that there are PUSCH power control parameters after SP SRS activation/deactivation related information.
或,MAC CE中(请参考图15)的两个R域可以被用作指示SRS的功率控制参数和/或PUSCH的功率控制参数。“00”表示SP SRS激活/去激活相关信息之后没有SRS的功率控制参数和/或PUSCH的功率控制参数;“01”表示SP SRS激活/去激活相关信息之后存在SRS的功率控制参数,是基于SRS资源集合指示的;“10”表示SP SRS激活/去激活相关信息之后存在PUSCH的功率控制参数;“11”为保留值。Or, the two R fields in the MAC CE (please refer to FIG. 15) can be used to indicate the power control parameters of the SRS and/or the power control parameters of the PUSCH. "00" means that there are no SRS power control parameters and/or PUSCH power control parameters after SP SRS activation/deactivation related information; "01" means that there are SRS power control parameters after SP SRS activation/deactivation related information, which is based on As indicated by the SRS resource set; "10" indicates that there are PUSCH power control parameters after SP SRS activation/deactivation related information; "11" is a reserved value.
应用示例5Application example 5
应用示例5中,基站使用PUSCH的专有功控参数MAC CE更新PUSCH的功率控制参数。In application example 5, the base station uses the PUSCH dedicated power control parameter MAC CE to update the PUSCH power control parameter.
PUSCH的专有功控参数MAC CE包括以下一个或多个域:The dedicated power control parameter MAC CE of PUSCH includes one or more of the following fields:
SRS资源集合小区标识(SRS Resource Set’s Cell ID);SRS Resource Set’s Cell ID (SRS Resource Set’s Cell ID);
SRS资源集合BWP标识(SRS Resource Set’s BWP ID);SRS Resource Set BWP ID (SRS Resource Set’s BWP ID);
SUL;SUL;
SRS资源集合标识(SRS Resource Set ID);SRS Resource Set ID (SRS Resource Set ID);
PUSCH的功率控制参数信息。PUSCH power control parameter information.
基站通过高层参数为UE配置至少一个SRS资源集合,其中只有一个SRS资源集合的用途为码本,一个SRS资源集合的用途为非码本。The base station configures at least one SRS resource set for the UE through high-level parameters, in which only one SRS resource set is used as a codebook, and one SRS resource set is used as a non-codebook.
基站通过高层参数为UE配置PUSCH参数,其中txConfig参数为码本或非码本。UE根据中txConfig参数为码本或非码本选择用途为码本或非码本的SRS资源集合确定PUSCH的传输。The base station configures PUSCH parameters for the UE through high-level parameters, where the txConfig parameter is codebook or non-codebook. The UE determines the transmission of the PUSCH according to the txConfig parameter for selecting the codebook or non-codebook SRS resource set whose usage is the codebook or non-codebook.
PUSCH的功率控制参数信息域包括至少一套PUSCH功率控制参数,当PUSCH的txConfig参数为码本时,则每一套PUSCH功率控制参数分别对应SRS资源集合中的每一个SRS资源;当PUSCH的txConfig参数为非码本时,则每一套PUSCH功率控制参数分别对应SRS资源集合中的每一个SRS资源或者SRS资源的组合。The PUSCH power control parameter information field includes at least one set of PUSCH power control parameters. When the PUSCH txConfig parameter is a codebook, each set of PUSCH power control parameters corresponds to each SRS resource in the SRS resource set; when the PUSCH txConfig When the parameter is not a codebook, each set of PUSCH power control parameters corresponds to each SRS resource or combination of SRS resources in the SRS resource set.
PUSCH的功率控制参数详见应用示例3的描述。For details of PUSCH power control parameters, see the description of Application Example 3.
应用示例6Application example 6
应用示例6中,基站使用SRS的专有功控参数MAC CE更新SRS的功率控制参数。In Application Example 6, the base station uses the SRS dedicated power control parameter MAC CE to update the SRS power control parameter.
SRS的专有功控参数MAC CE包括以下一个或多个域:The proprietary power control parameter MAC CE of SRS includes one or more of the following domains:
SRS资源集合小区标识(SRS Resource Set’s Cell ID);SRS Resource Set’s Cell ID (SRS Resource Set’s Cell ID);
SRS资源集合BWP标识(SRS Resource Set’s BWP ID);SRS Resource Set BWP ID (SRS Resource Set’s BWP ID);
SUL;SUL;
SRS资源集合标识(SRS Resource Set ID);SRS Resource Set ID (SRS Resource Set ID);
SRS的功率控制参数信息。SRS power control parameter information.
SRS的功率控制参数信息域指示SRS资源集合的功率控制参数,并被该SRS资源集合内的所有SRS资源共用。The power control parameter information field of the SRS indicates the power control parameter of the SRS resource set, and is shared by all SRS resources in the SRS resource set.
或者,SRS的功率控制参数域指示SRS资源集合内所有SRS资源的功率控制参数,每个SRS资源对应一套功率控制参数。Alternatively, the power control parameter field of the SRS indicates the power control parameters of all SRS resources in the SRS resource set, and each SRS resource corresponds to a set of power control parameters.
SRS的功率控制参数详见应用示例2的描述。See the description of application example 2 for the power control parameters of SRS.
应用示例7Application example 7
应用示例7中,基站使用PUCCH的专有功控参数MAC CE更新PUCCH的功率控制参数。In application example 7, the base station uses the PUCCH dedicated power control parameter MAC CE to update the PUCCH power control parameter.
PUCCH的专有功控参数MAC CE包括以下一个或多个域:The dedicated power control parameter MAC CE of PUCCH includes one or more of the following fields:
服务小区标识(Serving Cell ID);Serving Cell ID;
BWP标识(BWP ID);BWP ID (BWP ID);
PUCCH的功率控制参数信息。PUCCH power control parameter information.
PUCCH的功率控制参数信息详见应用示例1的描述。For details of PUCCH power control parameter information, see the description of Application Example 1.
应用示例8Application example 8
应用示例8中,基站使用联合的专用功控参数MAC CE更新PUSCH、SRS和/或PUCCH的功率控制参数。In application example 8, the base station uses the joint dedicated power control parameter MAC CE to update the power control parameters of PUSCH, SRS and/or PUCCH.
当PUSCH、SRS、PUCCH的波束都使用相同的方式表达时,即共用一个上行传输控制指示状态(Uplink Transmission Control Indicator,UL TCI-state)池,则可以使用一个联合功率控制的联合的专有功控参数MAC CE实现PUSCH、SRS以及PUCCH的功率控制参数的共同更新。When the PUSCH, SRS, and PUCCH beams are expressed in the same way, that is, they share an uplink transmission control indicator (UL TCI-state) pool, a joint dedicated power control of joint power control can be used The parameter MAC CE realizes the common update of the power control parameters of PUSCH, SRS and PUCCH.
示例性地,联合的专有功控参数MAC CE包括以下的一个或多个域:Exemplarily, the joint proprietary power control parameter MAC CE includes one or more of the following domains:
服务小区标识(Serving Cell ID);Serving Cell ID;
BWP标识(BWP ID);BWP ID (BWP ID);
上行传输控制指示状态标识(UL TCI-state ID);Uplink transmission control indication state ID (UL TCI-state ID);
路损测量参数。Path loss measurement parameters.
其中路损测量参数与UL TCI-state ID关联,当PUSCH、SRS以及PUCCH的波束采用UL TCI-state ID描述时,其路损测量参数就可以确定为该域的值。The path loss measurement parameters are associated with UL TCI-state ID. When the beams of PUSCH, SRS, and PUCCH are described by UL TCI-state ID, the path loss measurement parameters can be determined as the value of this domain.
联合的专有功控参数MAC CE还可能包括以下的一个或多个域:The joint proprietary power control parameter MAC CE may also include one or more of the following domains:
PUCCH的功率控制参数信息;PUCCH power control parameter information;
PUSCH的功率控制参数信息;PUSCH power control parameter information;
SRS的功率控制参数信息。SRS power control parameter information.
此处的PUCCH的功率控制参数信息包括PUCCH的开环功率控制参数信息或PUCCH的闭环功率控制参数信息。The power control parameter information of the PUCCH here includes the open-loop power control parameter information of the PUCCH or the closed-loop power control parameter information of the PUCCH.
此处的PUSCH的功率控制参数信息包括PUSCH的开环功率控制参数信息或PUSCH的闭环功率控制参数信息。The PUSCH power control parameter information here includes PUSCH open-loop power control parameter information or PUSCH closed-loop power control parameter information.
此处的SRS的功率控制参数信息包括SRS的开环功率控制参数信息或SRS的闭环功率控制参数信息。The power control parameter information of the SRS here includes the open-loop power control parameter information of the SRS or the closed-loop power control parameter information of the SRS.
上述PUSCH的功率控制参数信息、PUCCH的功率控制参数信息、SRS的功率控制参数信息可能全部或部分存在,也可能不存在。因此,联合的专有功控参数MAC CE还可能包括以下之一的域:The aforementioned PUSCH power control parameter information, PUCCH power control parameter information, and SRS power control parameter information may exist in whole or in part, or may not exist. Therefore, the joint proprietary power control parameter MAC CE may also include one of the following domains:
PUCCH的功率控制参数状态信息,用于指示PUCCH的功率控制参数信息是否存在;The PUCCH power control parameter status information is used to indicate whether the PUCCH power control parameter information exists;
PUSCH的功率控制参数状态信息,用于指示PUSCH的功率控制参数信息是否存在;PUSCH power control parameter status information is used to indicate whether the PUSCH power control parameter information exists;
SRS的功率控制参数状态信息,用于指示SRS的功率控制参数信息是否存在。The power control parameter status information of the SRS is used to indicate whether the power control parameter information of the SRS exists.
由于可能存在其中一种或多种上行传输的功率控制参数是必须存在的情况,在该情况下,不需要该上行传输的功率控制参数状态信息域。Since there may be a situation where one or more power control parameters for uplink transmission must exist, in this case, the power control parameter status information field of the uplink transmission is not required.
上述联合的专有功控参数MAC CE只针对一个UL TCI-state ID配置上述功率控制参数。联合的专有功控参数MAC CE还可能是针对多个UL TCI-state ID配置上述功率控制参数。The aforementioned joint dedicated power control parameter MAC CE only configures the aforementioned power control parameters for one UL TCI-state ID. The joint dedicated power control parameter MAC CE may also configure the above power control parameters for multiple UL TCI-state IDs.
应用示例9Application example 9
应用示例9提供专有功控参数MAC CE的发送条件。Application example 9 provides transmission conditions for the proprietary power control parameter MAC CE.
基站在更新与UE的之间的部分或全部波束表达后,发送以下至少一种信令:PUSCH的专有功控参数MAC CE、PUCCH的专有功控参数MAC CE、SRS的专有功控参数MAC CE、联合的专有功控参数MAC CE。After updating part or all of the beam expression with the UE, the base station sends at least one of the following signaling: PUSCH dedicated power control parameter MAC CE, PUCCH dedicated power control parameter MAC CE, SRS dedicated power control parameter MAC CE , Joint proprietary power control parameter MAC CE.
波束表达(即参考信号指示)包括以下之一:The beam expression (ie, reference signal indication) includes one of the following:
PUSCH的SRI的对应的SRS资源的空间关系;The spatial relationship of SRS resources corresponding to the SRI of PUSCH;
PUCCH资源的空间关系;The spatial relationship of PUCCH resources;
SRS资源集合中的SRS资源的空间关系;The spatial relationship of SRS resources in the SRS resource set;
UL TCI-state。UL TCI-state.
应用示例10Application example 10
应用示例10提供使用MAC CE更新预先配置的功率控制参数池的方法。Application example 10 provides a method for using MAC CE to update a pre-configured power control parameter pool.
功率控制参数池由高层参数配置,可能会存在以下问题:The power control parameter pool is configured by high-level parameters, and the following problems may exist:
受限于功率控制参数池的大小,可能功率控制参数池不能满足需求。尤其 是路损测量参数。例如,用于路损测量的参考信号(Reference Signal,RS)的数量最大是4,当UE的位置改变时,高层配置的4个路损测量参数都不能用了。Limited by the size of the power control parameter pool, the power control parameter pool may not meet the demand. Especially the road loss measurement parameters. For example, the maximum number of reference signals (Reference Signal, RS) used for path loss measurement is 4, and when the location of the UE changes, all the 4 path loss measurement parameters configured by the higher layer cannot be used.
如果高层没有指示一些功率控制参数与波束之间的对应关系,则默认使用功率控制参数池的第一个。当UE的位置改变时,这种默认的功率控制参数就不合适了。If the higher layer does not indicate the correspondence between some power control parameters and beams, the first one in the power control parameter pool is used by default. When the location of the UE changes, this default power control parameter is inappropriate.
为实现更灵活的功率控制,基站通过功控参数MAC信令携带功率控制参数,以更新预先配置的功率控制参数池。In order to achieve more flexible power control, the base station carries power control parameters through power control parameter MAC signaling to update the pre-configured power control parameter pool.
功率控制参数更新MAC CE包括以下一个或多个域:The power control parameter update MAC CE includes one or more of the following fields:
服务小区标识(Serving Cell ID);Serving Cell ID;
BWP标识(BWP ID);BWP ID (BWP ID);
路损测量参数。Path loss measurement parameters.
其中路损测量参数域可以只包括一个路损测量参数,用于更新高层配置的路损测量参数池中的第一个路损测量参数,即编号最小的,或编号为0的路损测量参数。The path loss measurement parameter field can include only one path loss measurement parameter, which is used to update the first path loss measurement parameter in the path loss measurement parameter pool configured by the upper layer, that is, the path loss measurement parameter with the smallest number or the number 0. .
或者,路损测量参数域包括至少一个路损测量参数,用于更新高层配置的路损测量参数池中的全部路损测量参数。即此处的路损测量参数的数量与高层配置的路损测量参数池中的路损测量参数数量相同。Alternatively, the path loss measurement parameter domain includes at least one path loss measurement parameter, which is used to update all path loss measurement parameters in a path loss measurement parameter pool configured by a higher layer. That is, the number of path loss measurement parameters here is the same as the number of path loss measurement parameters in the path loss measurement parameter pool configured by the higher layer.
或者,路损测量参数域包括至少一个路损测量参数,用于更新高层配置的路损测量参数池中部分路损测量参数。即此处的路损测量参数的数量小于高层配置的路损测量参数池中的路损测量参数数量,按路损测量参数的编号从小到大更新。例如,高层配置的路损测量参数池中的路损测量参数数量为4,编号为0~3,而MAC CE中只包括了2个路损测量参数,则只更新高层配置的编号0、1的路损测量参数。Alternatively, the path loss measurement parameter domain includes at least one path loss measurement parameter, which is used to update some path loss measurement parameters in a path loss measurement parameter pool configured by a higher layer. That is, the number of path loss measurement parameters here is less than the number of path loss measurement parameters in the path loss measurement parameter pool configured by the upper layer, and the number of path loss measurement parameters is updated from small to large. For example, if the number of path loss measurement parameters in the path loss measurement parameter pool configured by the upper layer is 4 and the numbers are 0 to 3, and the MAC CE includes only 2 path loss measurement parameters, only the numbers 0 and 1 of the upper layer configuration will be updated. The path loss measurement parameters.
上述路损测量参数域可能包括以下的一种或多种:PUSCH的路损测量参数,PUCCH的路损测量参数,SRS的路损测量参数。The aforementioned path loss measurement parameter domain may include one or more of the following: PUSCH path loss measurement parameters, PUCCH path loss measurement parameters, and SRS path loss measurement parameters.
一个MAC CE可能只对应PUSCH的路损测量参数池、PUCCH的路损测量参数池或SRS的路损测量参数池中的其中一个参数池的更新,也可能对应多个。A MAC CE may only correspond to the update of one of the PUSCH path loss measurement parameter pool, the PUCCH path loss measurement parameter pool, or the SRS path loss measurement parameter pool, or it may correspond to multiple.
功控参数MAC信令还可能包括以下至少之一的域:The power control parameter MAC signaling may also include at least one of the following fields:
开环功率控制参数;Open loop power control parameters;
闭环功率控制参数。Closed loop power control parameters.
上述开环功率控制参数、闭环功率控制参数可能是用于PUSCH、PUCCH、 SRS的之一或多个。The aforementioned open-loop power control parameters and closed-loop power control parameters may be used for one or more of PUSCH, PUCCH, and SRS.
与路损测量参数类似,开环功率控制参数、闭环功率控制参数也用于更新高层配置的开环功率控制参数池、闭环功率控制参数池的部分或全部。Similar to path loss measurement parameters, open-loop power control parameters and closed-loop power control parameters are also used to update part or all of the open-loop power control parameter pool and closed-loop power control parameter pool configured by the upper layer.
功率控制参数池是指功率控制参数的至少一个可能取值。下面以PUSCH的功率控制参数为例进行说明。The power control parameter pool refers to at least one possible value of the power control parameter. The following takes the power control parameter of PUSCH as an example for description.
PUSCH的参数配置PUSCH-Config参数中包括PUSCH-PowerControl参数。PUSCH parameter configuration PUSCH-Config parameters include PUSCH-PowerControl parameters.
PUSCH-PowerControl参数包括至少一个P0-PUSCH-AlphaSet参数,即开环功率控制参数池。The PUSCH-PowerControl parameter includes at least one P0-PUSCH-AlphaSet parameter, that is, an open-loop power control parameter pool.
PUSCH-PowerControl参数包括至少一个PUSCH-PathlossReferenceRS参数,即路损测量参数池。The PUSCH-PowerControl parameter includes at least one PUSCH-PathlossReferenceRS parameter, that is, a path loss measurement parameter pool.
PUSCH-PowerControl参数包括至少一个twoPUSCH-PC-AdjustmentStates参数,指示闭环功率控制参数的数量,即闭环功率控制参数池。The PUSCH-PowerControl parameter includes at least one twoPUSCH-PC-AdjustmentStates parameter, indicating the number of closed-loop power control parameters, that is, the closed-loop power control parameter pool.
PUSCH-PowerControl参数包括至少一个SRI-PUSCH-PowerControl参数,即功率控制参数集合池。The PUSCH-PowerControl parameter includes at least one SRI-PUSCH-PowerControl parameter, that is, the power control parameter pool.
功控参数MAC信令包括的功率控制参数信息为1套路损测量参数时,更新预配置的编号为0的PUSCH-PathlossReferenceRS参数。When the power control parameter information included in the power control parameter MAC signaling is 1 set of path loss measurement parameters, the pre-configured PUSCH-PathlossReferenceRS parameter numbered 0 is updated.
功控参数MAC信令包括的功率控制参数信息为1套功率控制参数集合时,更新预配置的编号为0的SRI-PUSCH-PowerControl参数。When the power control parameter information included in the power control parameter MAC signaling is a set of power control parameters, the pre-configured SRI-PUSCH-PowerControl parameter numbered 0 is updated.
功控参数MAC信令包括的功率控制参数信息为2套开环功率控制参数时,更新预配置的编号为0、1的P0-PUSCH-AlphaSet参数。When the power control parameter information included in the power control parameter MAC signaling is 2 sets of open loop power control parameters, the pre-configured P0-PUSCH-AlphaSet parameters numbered 0 and 1 are updated.
功控参数MAC信令包括的功率控制参数信息为1套路损测量参数时,则更新预配置的编号为0的用于PUSCH、PUCCH、或SRS至少之一的预先配置的路损测量参数池。When the power control parameter information included in the power control parameter MAC signaling is 1 set of path loss measurement parameters, the pre-configured path loss measurement parameter pool numbered 0 for at least one of PUSCH, PUCCH, or SRS is updated.
应用示例11Application example 11
应用示例11提供UE告知基站自身能力的方法。Application example 11 provides a method for the UE to inform the base station of its own capabilities.
UE通知基站以下的一种或多种信息:The UE notifies the base station of one or more of the following information:
是否支持用MAC信令更新功控参数;Whether to support the use of MAC signaling to update power control parameters;
支持的路损测量参数的最大数量。The maximum number of path loss measurement parameters supported.
当UE支持用MAC信令更新功控参数时,基站可以通过上述功控参数MAC 信令更新UE的功率控制参数,否则基站不能通过功控参数MAC信令更新功率控制参数。When the UE supports the use of MAC signaling to update the power control parameters, the base station can update the power control parameters of the UE through the above-mentioned power control parameter MAC signaling, otherwise the base station cannot update the power control parameters through the power control parameter MAC signaling.
如果UE被同时配置的路损测量的RS数量超过自己支持的路损测量参数的最大数量,UE进行如下之一的操作:If the number of RSs for path loss measurement configured by the UE at the same time exceeds the maximum number of path loss measurement parameters it supports, the UE performs one of the following operations:
UE只维护路损测量参数编号较小的可支持的最大数量的路损测量参数;The UE only maintains the maximum number of path loss measurement parameters that can be supported with a smaller path loss measurement parameter number;
UE只维护最近更新的可支持的最大数量的路损测量参数。The UE only maintains the most recently updated path loss measurement parameters that can be supported.
或者,基站保证不会给UE配置的路损测量参数的个数大于UE支持的路损测量参数的最大数量。Alternatively, the base station guarantees that the number of path loss measurement parameters not configured for the UE is greater than the maximum number of path loss measurement parameters supported by the UE.
或者,UE不期望基站为自己配置的路损测量参数的个数大于自己支持的路损测量参数的最大数量。Or, the UE does not expect that the number of path loss measurement parameters configured by the base station for itself is greater than the maximum number of path loss measurement parameters that it supports.
本发明实施例中,基站代表一种网络侧设备,例如一种或多种类型的基站、传输节点、接入节点(AP,Access Point)、中继、NB(Node B)、陆地无线电接入(UTRA,Universal Terrestrial Radio Access)或演进型陆地无线电接入(EUTRA,Evolved Universal Terrestrial Radio Access)等。UE代表一种终端设备,例如,用户、用户设备数据卡、中继(relay)或移动设备等。In the embodiment of the present invention, a base station represents a network side device, such as one or more types of base stations, transmission nodes, access points (AP, Access Point), relays, NB (Node B), and terrestrial radio access (UTRA, Universal Terrestrial Radio Access) or Evolved Terrestrial Radio Access (EUTRA, Evolved Universal Terrestrial Radio Access), etc. The UE represents a kind of terminal equipment, for example, a user, a user equipment data card, a relay, or a mobile device.
在一个示例性实施方式中,请参考图16所示的本发明实施例提供的通信节点的结构示意图,该通信节点包括:In an exemplary embodiment, please refer to the schematic diagram of the structure of the communication node provided by the embodiment of the present invention shown in FIG. 16, and the communication node includes:
第一接收模块1610,用于接收功控参数介质访问控制MAC信令,功控参数MAC信令包括参考信号指示以及与参考信号指示对应的功率控制参数信息;The first receiving module 1610 is configured to receive power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication;
确定模块1620,用于根据功率控制参数信息确定参考信号指示关联的上行传输的功率控制参数。The determining module 1620 is configured to determine, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
示例性地,上行传输包括物理上行控制信道PUCCH传输、物理上行共享信道PUSCH传输、探测参考信号SRS传输和物理随机接入信道PRACH传输中的至少一种。Exemplarily, the uplink transmission includes at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
示例性地,功控参数MAC信令包括以下的一种:Exemplarily, the power control parameter MAC signaling includes one of the following:
PUCCH的空间关系激活状态MAC控制单元CE、SRS激活状态MAC CE和专有功控参数MAC CE。The spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
示例性地,PUCCH的空间关系激活状态MAC CE包括PUCCH的功率控制参数信息;Exemplarily, the spatial relationship activation state MAC CE of the PUCCH includes the power control parameter information of the PUCCH;
SRS激活状态MAC CE包括PUSCH的功率控制参数信息和SRS的功率控 制参数信息中的至少一种;The SRS activation state MAC CE includes at least one of PUSCH power control parameter information and SRS power control parameter information;
专有功控参数MAC CE包括PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息和PRACH的功率控制参数信息中的至少一种。The dedicated power control parameter MAC CE includes at least one of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
示例性地,功率控制参数信息包括以下至少一种:Exemplarily, the power control parameter information includes at least one of the following:
功率控制参数状态信息,用于指示功控参数MAC信令是否包括功率控制参数的指示信息;The power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information;
功率控制参数的指示信息。Indication information of power control parameters.
示例性地,功率控制参数的指示信息包括以下至少一种:Exemplarily, the indication information of the power control parameter includes at least one of the following:
功率控制参数集合编号,用于在预先配置的功率控制参数集合池中确定至少一个功率控制参数集合;The power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool;
功率控制参数;Power control parameters;
功率控制参数编号,用于在预先配置的功率控制参数池中确定至少一个功率控制参数。The power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
示例性地,功率控制参数集合包括功率控制参数集合编号以及与功率控制参数集合编号对应的至少一个功率控制参数或至少一个功率控制参数编号。Exemplarily, the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
示例性地,功率控制参数包括以下至少一种:Exemplarily, the power control parameter includes at least one of the following:
开环功率控制参数、路损测量参数和闭环功率控制参数;Open loop power control parameters, path loss measurement parameters and closed loop power control parameters;
功率控制参数编号包括以下至少一种:The power control parameter number includes at least one of the following:
开环功率控制参数编号、路损测量参数编号和闭环功率控制编号;开环功率控制参数编号用于在预先配置的开环功率参数池中确定至少一个开环功率控制参数,路损测量参数编号用于在预先配置的路损测量参数池中确定至少一个路损测量参数;闭环功率控制编号用于在预先配置的闭环功率控制参数池中确定至少一个闭环功率控制参数。Open-loop power control parameter number, path loss measurement parameter number, and closed-loop power control number; open-loop power control parameter number is used to determine at least one open-loop power control parameter and path loss measurement parameter number in the pre-configured open-loop power parameter pool It is used to determine at least one path loss measurement parameter in a pre-configured path loss measurement parameter pool; the closed-loop power control number is used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
示例性地,功控参数MAC信令的M个比特位用于承载功率控制参数信息;M个比特位以预设的保持值表示功率控制参数保持为当前值,M个比特位以预设的多个非保持值表示功率控制参数变更为除当前值外的其他功率控制参数值中的一种或多种。Exemplarily, the M bits of the power control parameter MAC signaling are used to carry power control parameter information; the M bits represent the power control parameter as the current value with a preset holding value, and the M bits represent the preset value Multiple non-holding values indicate that the power control parameter is changed to one or more of other power control parameter values except the current value.
示例性地,如图17所示的通信节点的结构示意图,通信节点还包括:Exemplarily, as shown in FIG. 17 for the schematic structural diagram of the communication node, the communication node further includes:
对应模块1710,用于根据以下信息中的一种确定SRS的功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应:The corresponding module 1710 is configured to determine that the power control parameter information of the SRS corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set according to one of the following information:
SRS资源集合的用途;The purpose of the SRS resource collection;
功控参数MAC信令包括的SRS功控参数的对应类型信息,SRS功控参数的对应类型信息用于指示功率控制参数信息与SRS资源集合对应或与SRS资源集合中的SRS资源对应。The power control parameter MAC signaling includes the corresponding type information of the SRS power control parameter, and the corresponding type information of the SRS power control parameter is used to indicate that the power control parameter information corresponds to the SRS resource set or corresponds to the SRS resource in the SRS resource set.
示例性地,如图18所示的通信节点的结构示意图,对应模块1710,包括:Exemplarily, as shown in the schematic structural diagram of the communication node in FIG. 18, the corresponding module 1710 includes:
第一对应单元1810,用于在SRS资源集合的用途为波束管理、天线选择或定位的情况下,功率控制参数信息与SRS资源集合对应;The first corresponding unit 1810 is configured to correspond to the power control parameter information with the SRS resource set when the purpose of the SRS resource set is beam management, antenna selection or positioning;
第二对应单元1820,用于在SRS资源集合的用途为码本或非码本的情况下,功率控制参数信息与SRS资源集合中的每个SRS资源对应。The second corresponding unit 1820 is configured to correspond to each SRS resource in the SRS resource set when the use of the SRS resource set is a codebook or a non-codebook.
示例性地,在功率控制参数信息与SRS资源集合对应的情况下,功率控制参数信息包括一组功率控制参数的指示信息;Exemplarily, in a case where the power control parameter information corresponds to the SRS resource set, the power control parameter information includes a group of power control parameter indication information;
在功率控制参数信息与SRS资源集合中的SRS资源对应的情况下,功率控制参数信息包括至少一组功率控制参数的指示信息,至少一组功率控制参数的指示信息分别与SRS资源集合中的至少一个SRS资源对应。In the case where the power control parameter information corresponds to the SRS resource in the SRS resource set, the power control parameter information includes at least one set of power control parameter indication information, and the at least one set of power control parameter indication information corresponds to at least one of the SRS resource sets. One SRS resource corresponds.
示例性地,如图19所示的通信节点的结构示意图,通信节点还包括:Exemplarily, as shown in the schematic structural diagram of the communication node as shown in FIG. 19, the communication node further includes:
数量确认模块1910,用于根据以下信息中的一种确定功控参数MAC信令中包括的PUSCH的功率控制参数信息的数量:The quantity confirmation module 1910 is configured to determine the quantity of PUSCH power control parameter information included in the power control parameter MAC signaling according to one of the following information:
SRS资源集合的用途;The purpose of the SRS resource collection;
上行传输对应的下行控制信息DCI中的SRS资源指示域的取值个数;The number of values of the SRS resource indication field in the downlink control information DCI corresponding to uplink transmission;
功控参数MAC信令包括的参数数量信息。The number of parameters included in the power control parameter MAC signaling.
示例性地,如图20所示的通信节点的结构示意图,数量确认模块1910,包括以下之一:Exemplarily, as shown in the schematic structural diagram of the communication node as shown in FIG. 20, the quantity confirmation module 1910 includes one of the following:
第一确认单元2010,用于在SRS资源集合的用途是码本的情况下,根据SRS资源集合中的SRS资源数量确定PUSCH的功率控制参数信息的数量;The first confirmation unit 2010 is configured to determine the amount of PUSCH power control parameter information according to the number of SRS resources in the SRS resource set when the use of the SRS resource set is a codebook;
第二确认单元2020,用于在SRS资源集合的用途是非码本的情况下,根据SRS资源集合中的SRS资源的组合数量和/或本通信节点支持的最大秩确定PUSCH的功率控制参数信息的数量。The second confirmation unit 2020 is used to determine the PUSCH power control parameter information according to the combined number of SRS resources in the SRS resource set and/or the maximum rank supported by the communication node when the use of the SRS resource set is not a codebook Quantity.
示例性地,参考信号指示包括SRS资源指示(SRI)、SRS资源集合指示、传输配置指示和空间关系指示中的至少一种。Exemplarily, the reference signal indicator includes at least one of an SRS resource indicator (SRI), an SRS resource set indicator, a transmission configuration indicator, and a spatial relationship indicator.
示例性地,所述参考信号指示与所述功率控制参数信息的对应关系包括以下一种或多种:Exemplarily, the corresponding relationship between the reference signal indication and the power control parameter information includes one or more of the following:
每个参考信号指示对应一个路损测量参数;Each reference signal indicator corresponds to a path loss measurement parameter;
每个参考信号指示对应至少一个开环功率控制参数,至少一个开环功率控制参数对应至少一种上行传输;Each reference signal indication corresponds to at least one open-loop power control parameter, and at least one open-loop power control parameter corresponds to at least one type of uplink transmission;
每个参考信号指示对应至少一个闭环功率控制参数,至少一个闭环功率控制参数对应至少一种上行传输。Each reference signal indication corresponds to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
示例性地,功控参数MAC信令还包括传输类别信息,传输类别信息用于标识上行传输的类型。Exemplarily, the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
示例性地,如图21所示的通信节点的结构示意图,通信节点还可以包括:Exemplarily, as shown in the schematic structural diagram of the communication node as shown in FIG. 21, the communication node may further include:
信息发送单元2110,用于向基站发送能力信息;能力信息用于表示本通信节点是否支持修改功率控制参数。The information sending unit 2110 is used to send capability information to the base station; the capability information is used to indicate whether the communication node supports modification of power control parameters.
作为一种示例性实施例,如图22所示的通信节点的结构示意图,本发明实施例还提供一种通信节点,包括:As an exemplary embodiment, as shown in FIG. 22 for a schematic structural diagram of a communication node, an embodiment of the present invention also provides a communication node, including:
第一接收模块2210,用于接收功控参数介质访问控制MAC信令;The first receiving module 2210 is configured to receive power control parameter media access control MAC signaling;
更新模块2220,用于根据功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。The update module 2220 is configured to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
示例性地,功控参数MAC信令中包括一组或多组功率控制参数信息,一组或多组功率控制参数信息用于指示功率控制参数池中的一组功率控制参数或多组编号从小到大的功率控制参数。Exemplarily, the power control parameter MAC signaling includes one or more sets of power control parameter information, and one or more sets of power control parameter information is used to indicate a set of power control parameters or multiple sets of numbers in the power control parameter pool. To large power control parameters.
示例性地,功控参数MAC信令中的功率控制参数信息用于更新PUSCH的功率控制参数池、PUCCH的功率控制参数池和SRS的功率控制参数池中的一种或多种。Exemplarily, the power control parameter information in the power control parameter MAC signaling is used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
作为一种示例性实施例,如图23所示的通信节点的结构示意图,本发明实施例还提供一种通信节点,包括:As an exemplary embodiment, as shown in FIG. 23, a schematic structural diagram of a communication node, an embodiment of the present invention also provides a communication node, including:
第一发送模块2310,用于发送功控参数介质访问控制MAC信令;功控参数MAC信令包括参考信号指示以及与参考信号指示对应的功率控制参数信息;功控参数MAC信令用于指示第一通信节点根据功率控制参数信息确定参考信号指示关联的上行传输的功率控制参数。The first sending module 2310 is used to send power control parameter media access control MAC signaling; power control parameter MAC signaling includes reference signal indication and power control parameter information corresponding to the reference signal indication; power control parameter MAC signaling is used to indicate The first communication node determines, according to the power control parameter information, the reference signal indicates the power control parameter of the associated uplink transmission.
示例性地,上行传输包括物理上行控制信道PUCCH传输、物理上行共享信道PUSCH传输、探测参考信号SRS传输和物理随机接入信道PRACH传输中的至少一种。Exemplarily, the uplink transmission includes at least one of physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, and physical random access channel PRACH transmission.
示例性地,功控参数MAC信令包括以下的一种:Exemplarily, the power control parameter MAC signaling includes one of the following:
PUCCH的空间关系激活状态MAC控制单元CE、SRS激活状态MAC CE和专有功控参数MAC CE。The spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
示例性地,PUCCH的空间关系激活状态MAC CE包括PUCCH的功率控制参数信息;Exemplarily, the spatial relationship activation state MAC CE of the PUCCH includes the power control parameter information of the PUCCH;
SRS激活状态MAC CE包括PUSCH的功率控制参数信息和SRS的功率控制参数信息的至少一种;The SRS activation state MAC CE includes at least one of PUSCH power control parameter information and SRS power control parameter information;
专有功控参数MAC CE包括PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息和PRACH的功率控制参数信息中的至少一种。The dedicated power control parameter MAC CE includes at least one of PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, and PRACH power control parameter information.
示例性地,功率控制参数信息包括以下至少一种:Exemplarily, the power control parameter information includes at least one of the following:
功率控制参数状态信息,用于指示功控参数MAC信令是否包括功率控制参数的指示信息;The power control parameter status information is used to indicate whether the power control parameter MAC signaling includes power control parameter indication information;
功率控制参数的指示信息。Indication information of power control parameters.
示例性地,功率控制参数的指示信息包括以下至少一种:Exemplarily, the indication information of the power control parameter includes at least one of the following:
功率控制参数集合编号,用于在预先配置的功率控制参数集合池中确定至少一个功率控制参数集合;The power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool;
功率控制参数;Power control parameters;
功率控制参数编号,用于在预先配置的功率控制参数池中确定至少一个功率控制参数。The power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
示例性地,功率控制参数集合包括功率控制参数集合编号以及与功率控制参数集合编号对应的至少一个功率控制参数或至少一个功率控制参数编号。Exemplarily, the power control parameter set includes a power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number.
示例性地,功率控制参数包括以下至少一种:Exemplarily, the power control parameter includes at least one of the following:
开环功率控制参数、路损测量参数和闭环功率控制参数;Open loop power control parameters, path loss measurement parameters and closed loop power control parameters;
功率控制参数编号包括以下至少一种:The power control parameter number includes at least one of the following:
开环功率控制参数编号、路损测量参数编号和闭环功率控制编号;开环功率控制参数编号用于在预先配置的开环功率参数池中确定至少一个开环功率控制参数,路损测量参数编号用于在预先配置的路损测量参数池中确定至少一个路损测量参数;闭环功率控制编号用于在预先配置的闭环功率控制参数池中确定至少一个闭环功率控制参数。Open-loop power control parameter number, path loss measurement parameter number, and closed-loop power control number; open-loop power control parameter number is used to determine at least one open-loop power control parameter and path loss measurement parameter number in the pre-configured open-loop power parameter pool It is used to determine at least one path loss measurement parameter in a pre-configured path loss measurement parameter pool; the closed-loop power control number is used to determine at least one closed-loop power control parameter in a pre-configured closed-loop power control parameter pool.
示例性地,功控参数MAC信令的M个比特位用于承载功率控制参数信息;M个比特位以预设的保持值表示功率控制参数保持为当前值,M个比特位以预 设的多个非保持值表示功率控制参数变更为除当前值外的其他功率控制参数值中的一种或多种。Exemplarily, the M bits of the power control parameter MAC signaling are used to carry power control parameter information; the M bits represent the power control parameter as the current value with a preset holding value, and the M bits represent the preset value Multiple non-holding values indicate that the power control parameter is changed to one or more of other power control parameter values except the current value.
示例性地,参考信号指示包括SRS资源指示、传输配置指示和空间关系指示中的一种。Exemplarily, the reference signal indication includes one of an SRS resource indication, a transmission configuration indication, and a spatial relationship indication.
示例性地,所述参考信号指示与所述功率控制参数信息的对应关系包括以下一种或多种:Exemplarily, the corresponding relationship between the reference signal indication and the power control parameter information includes one or more of the following:
每个参考信号指示对应一个路损测量参数;Each reference signal indicator corresponds to a path loss measurement parameter;
每个参考信号指示对应至少一个开环功率控制参数,至少一个开环功率控制参数对应至少一种上行传输;Each reference signal indication corresponds to at least one open-loop power control parameter, and at least one open-loop power control parameter corresponds to at least one type of uplink transmission;
每个参考信号指示对应至少一个闭环功率控制参数,至少一个闭环功率控制参数对应至少一种上行传输。Each reference signal indication corresponds to at least one closed-loop power control parameter, and at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
示例性地,功控参数MAC信令还包括传输类别信息,传输类别信息用于标识上行传输的类型。Exemplarily, the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
作为一种示例性实施例,如图24所示的通信节点的结构示意图,本发明实施例还提供一种通信节点,包括:As an exemplary embodiment, as shown in FIG. 24 for a schematic structural diagram of a communication node, an embodiment of the present invention also provides a communication node, including:
第一发送模块2410,用于发送功控参数介质访问控制MAC信令;功控参数MAC信令用于指示第一通信节点根据功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。The first sending module 2410 is used to send the power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the pre-configured power according to the power control parameter information in the power control parameter MAC signaling Control parameter pool.
示例性地,所述功控参数MAC信令中包括一组或多组功率控制参数信息,所述一组或多组功率控制参数信息用于指示所述功率控制参数池中的一组功率控制参数或多组编号从小到大的功率控制参数。Exemplarily, the power control parameter MAC signaling includes one or more sets of power control parameter information, and the one or more sets of power control parameter information is used to indicate a set of power control in the power control parameter pool Parameters or groups of power control parameters with numbers from small to large.
示例性地,所述功控参数MAC信令中的功率控制参数信息用于更新PUSCH的功率控制参数池、PUCCH的功率控制参数池和SRS的功率控制参数池中的一种或多种。Exemplarily, the power control parameter information in the power control parameter MAC signaling is used to update one or more of the power control parameter pool of PUSCH, the power control parameter pool of PUCCH, and the power control parameter pool of SRS.
图25为本申请实施例的第一通信节点的结构示意图,如图25所示,本申请实施例提供的第一通信节点130包括:存储器1303与处理器1304。第一通信节点130还可以包括接口1301和总线1302。接口1301、存储器1303与处理器1304通过总线1302相连接。存储器1303用于存储指令。处理器1304被配置为读取指令以执行上述应用于第一通信节点的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。FIG. 25 is a schematic structural diagram of a first communication node according to an embodiment of the present application. As shown in FIG. 25, the first communication node 130 provided in an embodiment of the present application includes a memory 1303 and a processor 1304. The first communication node 130 may further include an interface 1301 and a bus 1302. The interface 1301, the memory 1303 and the processor 1304 are connected through a bus 1302. The memory 1303 is used to store instructions. The processor 1304 is configured to read instructions to execute the technical solutions of the foregoing method embodiments applied to the first communication node. The implementation principles and technical effects are similar, and details are not described herein again.
图26为本申请实施例的第二通信节点的结构示意图,如图26所示,本申 请实施例提供的第二通信节点140包括:存储器1403与处理器1404。第二通信节点140还可以包括接口1401和总线1402。接口1401、存储器1403与处理器1404通过总线1402相连接。存储器1403用于存储指令。处理器1404被配置为读取指令以执行上述应用于第二通信节点的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。FIG. 26 is a schematic structural diagram of a second communication node according to an embodiment of the application. As shown in FIG. 26, the second communication node 140 provided in the embodiment of the application includes a memory 1403 and a processor 1404. The second communication node 140 may further include an interface 1401 and a bus 1402. The interface 1401, the memory 1403 and the processor 1404 are connected through a bus 1402. The memory 1403 is used to store instructions. The processor 1404 is configured to read instructions to execute the technical solutions of the foregoing method embodiments applied to the second communication node. The implementation principles and technical effects are similar, and details are not described herein again.
以上,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。The above are only exemplary embodiments of the present application, and are not used to limit the protection scope of the present application.
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。In general, the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Industry Subversive Alliance,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。The embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware. Computer program instructions can be assembly instructions, Industry Subversive Alliance (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存等。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。RAM可以包括多种形式,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本申请描述的系统和方法的存储器包括但不限于这些和任意其它适合类型的存储器。The block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions. The computer program can be stored on the memory. The memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology. The memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory. Among them, the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory, etc. The volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache. RAM can include many forms, such as static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DR RAM). The memory of the system and method described in this application includes but is not limited to these and any other suitable types of memory.
本申请实施例的处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal  Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑器件(Field-Programmable Gate Array,FGPA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、或者基于多核处理器架构的处理器。通用处理器可以是微处理器或者也可以是任何常规的处理器等。上述的处理器可以实现或者执行本申请实施例中的公开的各方法的步骤。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。The processor in the embodiment of the present application may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FGPA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or processors based on multi-core processor architecture. The general-purpose processor may be a microprocessor or any conventional processor. The foregoing processor may implement or execute the steps of each method disclosed in the embodiments of the present application. The software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers. The storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.

Claims (35)

  1. 一种功率控制方法,包括:A power control method includes:
    接收功控参数介质访问控制MAC信令,所述功控参数MAC信令包括参考信号指示以及与所述参考信号指示对应的功率控制参数信息;Receiving a power control parameter media access control MAC signaling, where the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication;
    根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。Determine, according to the power control parameter information, the power control parameter of the associated uplink transmission that the reference signal indicates.
  2. 根据权利要求1所述的功率控制方法,其中,所述上行传输包括以下至少之一:物理上行控制信道PUCCH传输、物理上行共享信道PUSCH传输、探测参考信号SRS传输、物理随机接入信道PRACH传输。The power control method according to claim 1, wherein the uplink transmission includes at least one of the following: physical uplink control channel PUCCH transmission, physical uplink shared channel PUSCH transmission, sounding reference signal SRS transmission, physical random access channel PRACH transmission .
  3. 根据权利要求1所述的功率控制方法,其中,所述功控参数MAC信令包括以下的一种:The power control method according to claim 1, wherein the power control parameter MAC signaling includes one of the following:
    PUCCH的空间关系激活状态MAC控制单元CE、SRS激活状态MAC CE、专有功控参数MAC CE。The spatial relationship of the PUCCH is the activation state MAC control unit CE, the SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
  4. 根据权利要求3所述的功率控制方法,其中,所述PUCCH的空间关系激活状态MAC CE包括PUCCH的功率控制参数信息;The power control method according to claim 3, wherein the spatial relationship activation state MAC CE of the PUCCH includes PUCCH power control parameter information;
    所述SRS激活状态MAC CE包括以下至少之一:PUSCH的功率控制参数信息、SRS的功率控制参数信息;The SRS active state MAC CE includes at least one of the following: power control parameter information of PUSCH, and power control parameter information of SRS;
    所述专有功控参数MAC CE包括以下至少之一:PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息、PRACH的功率控制参数信息。The dedicated power control parameter MAC CE includes at least one of the following: PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, PRACH power control parameter information.
  5. 根据权利要求1所述的功率控制方法,其中,所述功率控制参数信息包括以下至少一种:The power control method according to claim 1, wherein the power control parameter information includes at least one of the following:
    功率控制参数状态信息,用于指示所述功控参数MAC信令是否包括功率控制参数的指示信息;Power control parameter status information, used to indicate whether the power control parameter MAC signaling includes power control parameter indication information;
    功率控制参数的指示信息。Indication information of power control parameters.
  6. 根据权利要求5所述的功率控制方法,其中,所述功率控制参数的指示信息包括以下至少一种:The power control method according to claim 5, wherein the indication information of the power control parameter includes at least one of the following:
    功率控制参数集合编号,用于在预先配置的功率控制参数集合池中确定至少一个功率控制参数集合;The power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool;
    功率控制参数;Power control parameters;
    功率控制参数编号,用于在预先配置的功率控制参数池中确定至少一个功率控制参数。The power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
  7. 根据权利要求6所述的功率控制方法,其中,所述功率控制参数集合包括所述功率控制参数集合编号以及与所述功率控制参数集合编号对应的至少一个功率控制参数或至少一个功率控制参数编号。The power control method according to claim 6, wherein the power control parameter set includes the power control parameter set number and at least one power control parameter or at least one power control parameter number corresponding to the power control parameter set number .
  8. 根据权利要求6所述的功率控制方法,其中,所述功率控制参数包括以下至少一种:The power control method according to claim 6, wherein the power control parameter includes at least one of the following:
    开环功率控制参数、路损测量参数和闭环功率控制参数;Open loop power control parameters, path loss measurement parameters and closed loop power control parameters;
    所述功率控制参数编号包括以下至少一种:The power control parameter number includes at least one of the following:
    开环功率控制参数编号、路损测量参数编号和闭环功率控制编号;其中,所述开环功率控制参数编号用于在预先配置的开环功率参数池中确定至少一个开环功率控制参数,所述路损测量参数编号用于在预先配置的路损测量参数池中确定至少一个路损测量参数;所述闭环功率控制编号用于在预先配置的闭环功率控制参数池中确定至少一个闭环功率控制参数。The open-loop power control parameter number, the path loss measurement parameter number, and the closed-loop power control number; wherein the open-loop power control parameter number is used to determine at least one open-loop power control parameter in a pre-configured open-loop power parameter pool, so The path loss measurement parameter number is used to determine at least one path loss measurement parameter in a preconfigured path loss measurement parameter pool; the closed loop power control number is used to determine at least one closed loop power control in a preconfigured closed loop power control parameter pool parameter.
  9. 根据权利要求1所述的功率控制方法,其中,所述功控参数MAC信令的M个比特位用于承载所述功率控制参数信息;所述M个比特位以预设的保持值表示功率控制参数保持为当前值,所述M个比特位以预设的多个非保持值表示功率控制参数变更为除所述当前值外的其他功率控制参数值中的至少一种,所述M为正整数。The power control method according to claim 1, wherein the M bits of the power control parameter MAC signaling are used to carry the power control parameter information; the M bits represent power with a preset holding value The control parameter is maintained at the current value, the M bits indicate that the power control parameter is changed to at least one of the other power control parameter values except for the current value with a plurality of preset non-retention values, and the M is Positive integer.
  10. 根据权利要求4所述的功率控制方法,还包括:The power control method according to claim 4, further comprising:
    根据以下信息中的一种确定所述SRS的功率控制参数信息与SRS资源集合对应或所述SRS的功率控制参数信息与所述SRS资源集合中的SRS资源对应:It is determined according to one of the following information that the power control parameter information of the SRS corresponds to an SRS resource set or that the power control parameter information of the SRS corresponds to the SRS resource in the SRS resource set:
    SRS资源集合的用途;The purpose of the SRS resource collection;
    所述功控参数MAC信令包括的SRS功控参数的对应类型信息,所述SRS功控参数的对应类型信息用于指示所述功率控制参数信息与所述SRS资源集合对应或所述功率控制参数信息与所述SRS资源集合中的SRS资源对应。The corresponding type information of the SRS power control parameter included in the power control parameter MAC signaling, and the corresponding type information of the SRS power control parameter is used to indicate that the power control parameter information corresponds to the SRS resource set or the power control The parameter information corresponds to the SRS resource in the SRS resource set.
  11. 根据权利要求10所述的功率控制方法,其中,根据SRS资源集合的用 途确定所述SRS的功率控制参数信息与所述SRS资源集合对应或所述SRS的功率控制参数信息与所述SRS资源集合中的SRS资源对应,包括:The power control method according to claim 10, wherein the power control parameter information of the SRS corresponds to the SRS resource set or the power control parameter information of the SRS and the SRS resource set are determined according to the usage of the SRS resource set Corresponding to SRS resources in, including:
    在SRS资源集合的用途为波束管理、天线选择或定位的情况下,所述SRS的功率控制参数信息与所述SRS资源集合对应;When the purpose of the SRS resource set is beam management, antenna selection or positioning, the power control parameter information of the SRS corresponds to the SRS resource set;
    在SRS资源集合的用途为码本或非码本的情况下,所述SRS的功率控制参数信息与所述SRS资源集合中的每个SRS资源对应。When the use of the SRS resource set is a codebook or a non-codebook, the power control parameter information of the SRS corresponds to each SRS resource in the SRS resource set.
  12. 根据权利要求10所述的功率控制方法,其中,在所述SRS的功率控制参数信息与所述SRS资源集合对应的情况下,所述SRS的功率控制参数信息包括一组功率控制参数的指示信息;The power control method according to claim 10, wherein, in a case where the power control parameter information of the SRS corresponds to the SRS resource set, the power control parameter information of the SRS includes a group of power control parameter indication information ;
    在所述SRS的功率控制参数信息与所述SRS资源集合中的SRS资源对应的情况下,所述SRS的功率控制参数信息包括至少一组功率控制参数的指示信息,所述至少一组功率控制参数的指示信息分别与所述SRS资源集合中的至少一个SRS资源对应。In the case that the power control parameter information of the SRS corresponds to the SRS resource in the SRS resource set, the power control parameter information of the SRS includes at least one set of power control parameter indication information, and the at least one set of power control The indication information of the parameter respectively corresponds to at least one SRS resource in the SRS resource set.
  13. 根据权利要求4所述的功率控制方法,还包括:The power control method according to claim 4, further comprising:
    根据以下信息中的一种确定所述功控参数MAC信令中包括的所述PUSCH的功率控制参数信息的数量:Determine the quantity of the PUSCH power control parameter information included in the power control parameter MAC signaling according to one of the following information:
    SRS资源集合的用途;The purpose of the SRS resource collection;
    所述上行传输对应的下行控制信息DCI中的SRS资源指示域的取值个数;The number of values of the SRS resource indication field in the downlink control information DCI corresponding to the uplink transmission;
    所述功控参数MAC信令包括的参数数量信息。The parameter quantity information included in the power control parameter MAC signaling.
  14. 根据权利要求13所述的功率控制方法,其中,根据SRS资源集合的用途确定所述功控参数MAC信令中包括的所述PUSCH的功率控制参数信息的数量,包括以下之一:The power control method according to claim 13, wherein determining the number of power control parameter information of the PUSCH included in the power control parameter MAC signaling according to the usage of the SRS resource set includes one of the following:
    在所述SRS资源集合的用途是码本的情况下,根据SRS资源集合中的SRS资源数量确定所述PUSCH的功率控制参数信息的数量;In the case where the use of the SRS resource set is a codebook, determining the amount of power control parameter information of the PUSCH according to the number of SRS resources in the SRS resource set;
    在所述SRS资源集合的用途是非码本的情况下,根据SRS资源集合中的以下至少之一确定所述PUSCH的功率控制参数信息的数量:SRS资源的组合数量,本通信节点支持的最大秩。In the case that the use of the SRS resource set is not a codebook, the number of power control parameter information for the PUSCH is determined according to at least one of the following in the SRS resource set: the combined number of SRS resources, the maximum rank supported by the communication node .
  15. 根据权利要求1所述的功率控制方法,其中,所述参考信号指示包括以 下至少之一:SRS资源指示、SRS资源集合指示、传输配置指示、空间关系指示。The power control method according to claim 1, wherein the reference signal indication includes at least one of the following: SRS resource indication, SRS resource set indication, transmission configuration indication, and spatial relationship indication.
  16. 根据权利要求1所述的功率控制方法,其中,所述参考信号指示与所述功率控制参数信息的对应关系包括以下至少一种:The power control method according to claim 1, wherein the corresponding relationship between the reference signal indication and the power control parameter information includes at least one of the following:
    每个参考信号指示对应一个路损测量参数;Each reference signal indicator corresponds to a path loss measurement parameter;
    每个参考信号指示对应至少一个开环功率控制参数,所述至少一个开环功率控制参数对应至少一种上行传输;Each reference signal indication corresponds to at least one open loop power control parameter, and the at least one open loop power control parameter corresponds to at least one type of uplink transmission;
    每个参考信号指示对应至少一个闭环功率控制参数,所述至少一个闭环功率控制参数对应至少一种上行传输。Each reference signal indication corresponds to at least one closed-loop power control parameter, and the at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
  17. 根据权利要求1所述的功率控制方法,其中,所述功控参数MAC信令还包括传输类别信息,所述传输类别信息用于标识所述上行传输的类型。The power control method according to claim 1, wherein the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of uplink transmission.
  18. 根据权利要求1所述的功率控制方法,还包括:The power control method according to claim 1, further comprising:
    向基站发送能力信息;所述能力信息用于表示本通信节点是否支持MAC信令修改功率控制参数。Sending capability information to the base station; the capability information is used to indicate whether the communication node supports MAC signaling to modify power control parameters.
  19. 一种功率控制方法,包括:A power control method includes:
    接收功控参数介质访问控制MAC信令;Receive power control parameter media access control MAC signaling;
    根据所述功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。Update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
  20. 根据权利要求19所述的功率控制方法,其中,所述功控参数MAC信令中包括一组或多组功率控制参数信息,所述一组或多组功率控制参数信息用于指示所述功率控制参数池中的一组功率控制参数或多组编号从小到大的功率控制参数。The power control method according to claim 19, wherein the power control parameter MAC signaling includes one or more sets of power control parameter information, and the one or more sets of power control parameter information are used to indicate the power A group of power control parameters or groups of power control parameters with numbers from small to large in the control parameter pool.
  21. 根据权利要求19所述的功率控制方法,其中,所述功控参数MAC信令中的功率控制参数信息用于更新以下至少之一:物理上行控制信道PUSCH的功率控制参数池、物理上行共享信道PUCCH的功率控制参数池、探测参考信号SRS的功率控制参数池。The power control method according to claim 19, wherein the power control parameter information in the power control parameter MAC signaling is used to update at least one of the following: the power control parameter pool of the physical uplink control channel PUSCH, the physical uplink shared channel The power control parameter pool of PUCCH and the power control parameter pool of sounding reference signal SRS.
  22. 一种功率控制方法,包括:A power control method includes:
    接收功控参数介质访问控制MAC信令;Receive power control parameter media access control MAC signaling;
    根据所述功控参数MAC信令中的功率控制参数信息确定配置授权的物理上行共享信道PUSCH的功率控制参数。The power control parameter of the physical uplink shared channel PUSCH for which the authorization is configured is determined according to the power control parameter information in the power control parameter MAC signaling.
  23. 根据权利要求22所述的功率控制方法,其中,所述功率控制参数信息包括功率控制参数的指示信息;The power control method according to claim 22, wherein the power control parameter information includes power control parameter indication information;
    所述功率控制参数信息还包括以下至少之一:配置授权的PUSCH的类型指示信息、配置授权的PUSCH的编号。The power control parameter information further includes at least one of the following: type indication information of the authorized PUSCH configured and the number of the authorized PUSCH configured.
  24. 根据权利要求23所述的功率控制方法,其中,The power control method according to claim 23, wherein:
    所述功率控制参数的指示信息用于指示类型2的配置授权的PUSCH的功率控制参数;或,The indication information of the power control parameter is used to indicate the power control parameter of the PUSCH authorized by the type 2 configuration; or,
    配置授权的PUSCH的类型和配置授权的PUSCH的编号中的至少一种用于确定至少一组配置授权的PUSCH的功率控制参数,所述功率控制参数的指示信息用于指示所述至少一组配置授权的PUSCH的功率控制参数。At least one of the type of the authorized PUSCH and the number of the authorized PUSCH are used to determine at least one set of power control parameters for the authorized PUSCH, and the indication information of the power control parameters is used to indicate the at least one set of configurations Power control parameters of the authorized PUSCH.
  25. 一种功率控制方法,包括:A power control method includes:
    发送功控参数介质访问控制MAC信令;所述功控参数MAC信令包括参考信号指示以及与所述参考信号指示对应的功率控制参数信息;所述功控参数MAC信令用于指示第一通信节点根据所述功率控制参数信息确定所述参考信号指示关联的上行传输的功率控制参数。Send power control parameter media access control MAC signaling; the power control parameter MAC signaling includes a reference signal indication and power control parameter information corresponding to the reference signal indication; the power control parameter MAC signaling is used to indicate the first The communication node determines according to the power control parameter information that the reference signal indicates the power control parameter of the associated uplink transmission.
  26. 根据权利要求25所述的功率控制方法,其中,所述功控参数MAC信令包括以下的一种:The power control method according to claim 25, wherein the power control parameter MAC signaling comprises one of the following:
    物理上行控制信道PUCCH的空间关系激活状态MAC控制单元CE、探测参考信号SRS激活状态MAC CE、专有功控参数MAC CE。The spatial relationship of the physical uplink control channel PUCCH is the activation state MAC control unit CE, the sounding reference signal SRS activation state MAC CE, and the dedicated power control parameter MAC CE.
  27. 根据权利要求26所述的功率控制方法,其中,所述PUCCH的空间关系激活状态MAC CE包括PUCCH的功率控制参数信息;The power control method according to claim 26, wherein the spatial relationship activation state MAC CE of the PUCCH includes PUCCH power control parameter information;
    所述SRS激活状态MAC CE包括以下至少之一:PUSCH的功率控制参数信息、SRS的功率控制参数信息;The SRS active state MAC CE includes at least one of the following: power control parameter information of PUSCH, and power control parameter information of SRS;
    所述专有功控参数MAC CE包括以下至少之一:PUCCH的功率控制参数信息、PUSCH的功率控制参数信息、SRS的功率控制参数信息、PRACH的功率控制参数信息。The dedicated power control parameter MAC CE includes at least one of the following: PUCCH power control parameter information, PUSCH power control parameter information, SRS power control parameter information, PRACH power control parameter information.
  28. 根据权利要求25所述的功率控制方法,其中,所述功率控制参数信息包括以下至少一种:The power control method according to claim 25, wherein the power control parameter information includes at least one of the following:
    功率控制参数状态信息,用于指示所述功控参数MAC信令是否包括功率控制参数的指示信息;Power control parameter status information, used to indicate whether the power control parameter MAC signaling includes power control parameter indication information;
    功率控制参数的指示信息。Indication information of power control parameters.
  29. 根据权利要求28所述的功率控制方法,其中,所述功率控制参数的指示信息包括以下至少一种:The power control method according to claim 28, wherein the indication information of the power control parameter includes at least one of the following:
    功率控制参数集合编号,用于在预先配置的功率控制参数集合池中确定至少一个功率控制参数集合;The power control parameter set number is used to determine at least one power control parameter set in the pre-configured power control parameter set pool;
    功率控制参数;Power control parameters;
    功率控制参数编号,用于在预先配置的功率控制参数池中确定至少一个功率控制参数。The power control parameter number is used to determine at least one power control parameter in a pre-configured power control parameter pool.
  30. 根据权利要求25所述的功率控制方法,其中,所述参考信号指示包括以下至少之一:SRS资源指示、SRS资源集合指示、传输配置指示、空间关系指示。The power control method according to claim 25, wherein the reference signal indication comprises at least one of the following: SRS resource indication, SRS resource set indication, transmission configuration indication, and spatial relationship indication.
  31. 根据权利要求25所述的功率控制方法,其中,所述参考信号指示与所述功率控制参数信息的对应关系包括以下至少之一:The power control method according to claim 25, wherein the corresponding relationship between the reference signal indication and the power control parameter information comprises at least one of the following:
    每个参考信号指示对应一个路损测量参数;Each reference signal indicator corresponds to a path loss measurement parameter;
    每个参考信号指示对应至少一个开环功率控制参数,所述至少一个开环功率控制参数对应至少一种上行传输;Each reference signal indication corresponds to at least one open loop power control parameter, and the at least one open loop power control parameter corresponds to at least one type of uplink transmission;
    每个参考信号指示对应至少一个闭环功率控制参数,所述至少一个闭环功率控制参数对应至少一种上行传输。Each reference signal indication corresponds to at least one closed-loop power control parameter, and the at least one closed-loop power control parameter corresponds to at least one type of uplink transmission.
  32. 根据权利要求25所述的功率控制方法,其中,所述功控参数MAC信令还包括传输类别信息,所述传输类别信息用于标识所述上行传输的类型。The power control method according to claim 25, wherein the power control parameter MAC signaling further includes transmission type information, and the transmission type information is used to identify the type of the uplink transmission.
  33. 一种功率控制方法,包括:A power control method includes:
    发送功控参数介质访问控制MAC信令;所述功控参数MAC信令用于指示第一通信节点根据所述功控参数MAC信令中的功率控制参数信息更新预先配置的功率控制参数池。Sending power control parameter media access control MAC signaling; the power control parameter MAC signaling is used to instruct the first communication node to update the pre-configured power control parameter pool according to the power control parameter information in the power control parameter MAC signaling.
  34. 一种通信节点,包括处理器,所述处理器用于运行程序时执行根据权利要求1至33中的任一项所述的功率控制方法。A communication node includes a processor configured to execute the power control method according to any one of claims 1 to 33 when running a program.
  35. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-33任一项所述的功率控制方法。A storage medium storing a computer program, which when executed by a processor, implements the power control method of any one of claims 1-33.
PCT/CN2020/107289 2019-08-07 2020-08-06 Power control method, communication nodes and storage medium WO2021023250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910729406.6A CN111093257A (en) 2019-08-07 2019-08-07 Power control method, communication node and storage medium
CN201910729406.6 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021023250A1 true WO2021023250A1 (en) 2021-02-11

Family

ID=70393432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107289 WO2021023250A1 (en) 2019-08-07 2020-08-06 Power control method, communication nodes and storage medium

Country Status (2)

Country Link
CN (1) CN111093257A (en)
WO (1) WO2021023250A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093257A (en) * 2019-08-07 2020-05-01 中兴通讯股份有限公司 Power control method, communication node and storage medium
WO2022011684A1 (en) * 2020-07-17 2022-01-20 Oppo广东移动通信有限公司 Path loss reference signal configuration method, terminal device, and network device
WO2022024299A1 (en) * 2020-07-30 2022-02-03 株式会社Nttドコモ Terminal, radio communication method, and base station
US20230284149A1 (en) * 2020-08-06 2023-09-07 Lenovo (Beijing) Limited Configuring uplink transmission configuration indication power control parameters
JP2024516704A (en) * 2021-05-10 2024-04-16 クゥアルコム・インコーポレイテッド Uplink power control parameter indication scheme

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230010A1 (en) * 2010-11-09 2013-09-05 Lg Electronics Inc. Method and Terminal Apparatus for Transmitting a Power Status Report in a Wireless Communication System
US20190098585A1 (en) * 2017-09-28 2019-03-28 Lenovo (Singapore) Pte. Ltd. Transmit power control command for transmission power adjustment
CN110035484A (en) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 A kind of Poewr control method, the first communication node and the second communication node
CN111093257A (en) * 2019-08-07 2020-05-01 中兴通讯股份有限公司 Power control method, communication node and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602453B2 (en) * 2017-10-20 2020-03-24 Qualcomm Incorporated Uplink power control in wireless systems
CN114885410A (en) * 2017-11-17 2022-08-09 中兴通讯股份有限公司 Power control method, UE, base station, parameter configuration method and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230010A1 (en) * 2010-11-09 2013-09-05 Lg Electronics Inc. Method and Terminal Apparatus for Transmitting a Power Status Report in a Wireless Communication System
US20190098585A1 (en) * 2017-09-28 2019-03-28 Lenovo (Singapore) Pte. Ltd. Transmit power control command for transmission power adjustment
CN110035484A (en) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 A kind of Poewr control method, the first communication node and the second communication node
CN111093257A (en) * 2019-08-07 2020-05-01 中兴通讯股份有限公司 Power control method, communication node and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on Enhancements on Multi-Beam Operation", 3GPP DRAFT; R1-1812324, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 November 2018 (2018-11-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 10, XP051478513 *

Also Published As

Publication number Publication date
CN111093257A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2020199956A1 (en) Power control method, apparatus and system
WO2021023250A1 (en) Power control method, communication nodes and storage medium
WO2021147933A1 (en) Power control parameter determination method and device, and storage medium
JP7258032B2 (en) Power control method, first communication node and second communication node
WO2019170089A1 (en) Information transmission method and apparatus, and communication node
US20230024375A1 (en) Transmission parameter determining method, electronic apparatus, device, and medium
WO2020155179A1 (en) Signal transmission method, terminal device, and network device
CN109302273B (en) SRS transmission method and device
US20220141803A1 (en) Method and device for determining codebook subset, and user equipment
WO2019127199A1 (en) Method for transmitting uplink data and terminal device
US20220369235A1 (en) Method for determining transmit power, terminal device, and network device
JP7346563B2 (en) Wireless communication methods and equipment
WO2022006729A1 (en) Method of sound reference signal time bundling
US20200022132A1 (en) Aperiodic channel state information (csi) and csi-reference signal (rs) resource pooling
WO2018127100A1 (en) Uplink power control method and communication apparatus
KR20220163348A (en) Carrier aggregation using component carrier groups
WO2023000132A1 (en) Systems and methods for activating beam state in wireless communication systems
KR20230051187A (en) Method and system for enhanced indication of TPC command values for uplink transmission in multi-TRP operation
US11985679B2 (en) Wireless communication method and device
US20240107563A1 (en) Systems, methods, and non-transitory processor-readable media for mode switching in wireless communication networks
US20210266947A1 (en) Wireless communication method and device
US20220303989A1 (en) Wireless communication method and apparatus
WO2022213228A1 (en) Method, apparatus, and device for determining power control parameter, and storage medium
WO2022077443A1 (en) Methods and apparatuses for multi-trp transmission
WO2023010389A1 (en) Method and apparatus for physical uplink control channel (pucch) transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851150

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20851150

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20851150

Country of ref document: EP

Kind code of ref document: A1