WO2021023072A1 - 上卸扣装置、回转液压驱动装置及液缸同步定位装置 - Google Patents

上卸扣装置、回转液压驱动装置及液缸同步定位装置 Download PDF

Info

Publication number
WO2021023072A1
WO2021023072A1 PCT/CN2020/105445 CN2020105445W WO2021023072A1 WO 2021023072 A1 WO2021023072 A1 WO 2021023072A1 CN 2020105445 W CN2020105445 W CN 2020105445W WO 2021023072 A1 WO2021023072 A1 WO 2021023072A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic cylinder
valve
hydraulic
reversing
base
Prior art date
Application number
PCT/CN2020/105445
Other languages
English (en)
French (fr)
Inventor
李杨
周志雄
方太安
郭秀琴
张娜
金玲
Original Assignee
北京康布尔石油技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910724951.6A external-priority patent/CN112343530A/zh
Priority claimed from CN201910724770.3A external-priority patent/CN112343529A/zh
Priority claimed from CN201910724778.XA external-priority patent/CN112343875A/zh
Application filed by 北京康布尔石油技术发展有限公司 filed Critical 北京康布尔石油技术发展有限公司
Publication of WO2021023072A1 publication Critical patent/WO2021023072A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/16Connecting or disconnecting pipe couplings or joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • the invention relates to the technical field of oil and gas exploitation, in particular to a top-up and shackle device, a rotary hydraulic drive device and a hydraulic cylinder synchronous positioning device.
  • the commonly used equipment for threaded connection make-up operations are hydraulic tongs and iron drillers.
  • the automation degree of hydraulic tongs is low.
  • it uses pure mechanical method to clamp the drilling tool, and the size range of the clamp head of one specification is limited.
  • the iron driller has a higher degree of automation, and the first hydraulic cylinder is used to drive the jaws to clamp the pipe string to buckle, which can adapt to a larger range of drilling tools.
  • the buckling operation of the iron driller needs to be completed step by step, and the drilling tool is clamped multiple times by two sets of clamping devices, which results in low efficiency. Take the make-up operation as an example.
  • the iron driller needs to first complete the turn-up operation with a smaller torque, a faster speed, and a full circle of clamping and continuous rotation, and then use a larger torque, a slower speed, and multiple times. Clamping multiple rotations at a small angle to complete the tightening operation, this step-by-step operation has the following shortcomings: the two operations of small torque fast turning operation and high torque slow tightening operation require at least two clampings to complete, which greatly reduces efficiency ;
  • the pipe string cannot be rotated continuously after being clamped, and can only be clamped to rotate a small angle at a time, and then the clamp is returned to the original position, and then clamped and rotated again, repeating this process until tightened , It is an intermittent rotating tightening process, and the efficiency is low.
  • the clamping mechanism when the iron drill is fastened, the clamping mechanism must be provided with a gap, which serves as a channel for the pipe string, oil pipe, drill pipe, etc. of the clamped part to enter the operation center, clamp the clamped part and drive the clamped part to rotate
  • a gap which serves as a channel for the pipe string, oil pipe, drill pipe, etc. of the clamped part to enter the operation center, clamp the clamped part and drive the clamped part to rotate
  • the existence of the gap in the claw mounting bracket will restrict the setting of the claws, reduce the number of claws, and increase the torque borne by a single claw, resulting in an increase in the depth of the claw bite mark.
  • the basic structure of the device is that a plurality of first hydraulic cylinders are uniformly arranged in the circumferential direction of a disc structure, and the axial direction of the first hydraulic cylinders is consistent with the radial direction of the disc structure.
  • the technical problem to be solved by the embodiments of the present application is to provide a top-up and shackle device, a rotary hydraulic drive device and a hydraulic cylinder synchronous positioning device, which can at least solve one of the above-mentioned problems.
  • a shackle device includes:
  • a housing connected to the base including a first pliers body and a second pliers body, the first pliers body and the second pliers body can be rotated to have an open state and a combined state, In the combined state, the first pliers body and the second pliers body have an annular cavity;
  • a power mechanism that can mesh with the ring gear to drive the rotating body to rotate.
  • a hydraulic driving device for a slewing device includes:
  • a housing the housing having an annular cavity
  • a revolving body which is at least partially disposed in the annular cavity of the casing, the revolving body can rotate relative to the casing in the annular cavity, and the side wall of the revolving body has a ring gear, so The side wall of the revolving body has an opening;
  • a clamping piece which is arranged on the revolving body to realize a clamping function
  • a power mechanism that can mesh with the ring gear and drive the revolving body to rotate relative to the housing;
  • a hydraulic system which is arranged on the revolving body, and is used to drive the clamping member to move and realize the clamping function of the clamping member to the clamped member.
  • the hydraulic system at least includes: driving power fluid to flow A pump, a first hydraulic cylinder that drives the clamping member;
  • a guide rail, a motor, and a second hydraulic oil cylinder arranged on the casing the motor is arranged on the guide rail and can slide on the guide rail, the two ends of the second hydraulic oil cylinder are respectively connected to the casing and The motor is connected to drive the motor to slide on the guide rail to realize the connection and disconnection of the motor and the pump on the revolving body.
  • the motor is connected to the pump, the revolving can be driven
  • the hydraulic system on the body is operated to realize the function of clamping and releasing the clamped part by the clamping member, and the pump and the motor are connected and disconnected through the opening on the rotating body;
  • the hydraulic driving device of the turning equipment has at least two states: in the first state, the second hydraulic cylinder drives the motor to be separated from the pump, and the turning body and the housing can face each other Rotation; In the second state, the second hydraulic cylinder drives the motor to slide on the guide rail and is connected to the pump, so that the motor can drive the pump in the hydraulic system.
  • a synchronous positioning device for a hydraulic cylinder is used to clamp a clamped part.
  • the synchronous positioning device for a hydraulic cylinder includes:
  • a first hydraulic cylinder base on which a plurality of sliding grooves extending in a radial direction are formed;
  • a first hydraulic cylinder and a clamping member driven by the first hydraulic cylinder are arranged in the sliding groove, and the clamping member can move in the sliding groove along the radial direction of the first hydraulic cylinder base ,
  • One side of the axis of the clamping member is provided with a rod body facing the adjacent clamping member on that side, and the other side is provided with an opening through which the rod body on the adjacent clamping member on the other side can be inserted.
  • the acute angle between the axis of the opening and the axis of the clamping member where the opening is located is equal to the acute angle between the axis of the rod on the clamping member and the axis of the clamping member, and both are equal to 90°-180°/ The number of clamps.
  • the on-off device includes the hydraulic cylinder synchronous positioning device as described above, and the hydraulic cylinder synchronous positioning device is used for clamping a clamped part.
  • the upper and lower buckle device during the whole process, the clamping mechanism can continuously rotate in a full circle, without loosening the clamped part and returning to the original position, re-clamping and then rotating, therefore, the upper and lower buckle device is greatly improved The work efficiency of the buckle or shackle.
  • the rotating body is closed to form a full circle without gaps, and the clamping parts installed on the rotating body can be circumferentially Clamp the clamped part evenly to avoid excessive force of the clamp in a certain direction on the clamped part and cause bite marks to remain on the side wall of the clamped part.
  • the hydraulic drive device of the upper and lower buckle device of the present application realizes that the clamping part on the rotating body can realize the clamping operation of the clamped part through automatic hydraulic control, and the external power mechanism can directly pass the ring gear Drive the revolving body to rotate so as to finally achieve various screwing operations such as buckling and unbuckling of the clamped parts.
  • the hydraulic drive device of the upper and lower buckle device of the present application realizes that the clamping part on the rotating body can realize the clamping operation of the clamped part through automatic hydraulic control, and the external power mechanism can directly pass the ring gear to Drive the revolving body to rotate so as to finally achieve various screwing operations such as buckling and unbuckling of the clamped parts.
  • Fig. 1 is a schematic diagram of the top and shackle device in an open state in an embodiment of the application;
  • Fig. 2 is a schematic diagram of the upper and lower shackle devices in the combined state of the embodiment of the application;
  • Fig. 3 is a schematic diagram of a base component in a revolving body in an embodiment of the application
  • FIG. 4 is a schematic structural diagram of the first gear assembly of the revolving body and the first pliers body under positioning in the embodiment of the application;
  • FIG. 5 is a schematic diagram of the structure where the first gear assembly of the revolving body and the first pliers body can rotate in the embodiment of the application;
  • Fig. 6 is a schematic diagram showing that the first gear assembly and the second gear assembly in the revolving body in the embodiment of the application are not locked;
  • FIG. 7 is a schematic diagram of the first gear assembly and the second gear assembly in the rotating body in the embodiment of the application being locked;
  • FIG. 8 is a schematic diagram of the reversing ring mechanism driving the reversing mechanism to press the reversing valve in the embodiment of the application;
  • FIG. 9 is a schematic diagram of the reversing ring mechanism driving the reversing mechanism to release the reversing valve in the embodiment of the application;
  • FIG. 10 is a schematic diagram of the structure of the locking member in the first gear assembly in the embodiment of the application.
  • FIG. 11 is a schematic diagram of the positioning pin of the reversing ring mechanism in the embodiment of the application inserted into the opening on the rotating body;
  • Figure 12 is a schematic diagram of the positioning pin of the reversing ring mechanism in the embodiment of the application being separated from the opening on the rotating body;
  • FIG. 13 is a schematic diagram of a part of the structure of a half-rotating body in an embodiment of the application, and part of the structure of the ring gear and hydraulic components of the rotating body is not shown in the figure;
  • 15 is a schematic diagram of the structure when the motor and the pump are separated in the embodiment of the application;
  • Fig. 16 is a system diagram of the hydraulic system in the first embodiment of the embodiment of the application.
  • FIG. 17 is a system diagram of the hydraulic system in the second embodiment of the embodiment of the application.
  • FIG. 18 is a system diagram of the hydraulic system in the third embodiment of the embodiment of the application.
  • 19 is a system diagram of the hydraulic system in the fourth implementation mode in the embodiment of the application.
  • FIG. 20 is a perspective schematic diagram of a synchronous positioning device for hydraulic cylinders in an embodiment of the application.
  • 21 is a schematic structural diagram of a part of the synchronous positioning device for hydraulic cylinders in an embodiment of the application.
  • Figure 23 is a cross-sectional view of part of the hydraulic cylinder synchronous positioning device in the end position in the embodiment of the application;
  • 24 is a schematic diagram of a partial structure of the hydraulic cylinder synchronous positioning device with 6 hydraulic cylinders in an embodiment of the application;
  • 25 is a cross-sectional view of the hydraulic cylinder synchronous positioning device with 6 hydraulic cylinders in an embodiment of the application;
  • Fig. 26 is a schematic diagram of the return spring in another embodiment of the embodiment of the application.
  • the entire device adopts a split structure, so that the clamped part can be removed from the housing The side directly enters the revolving body, and the entire device is closed to form a full circle without gaps, and the claws can be evenly distributed around the clamped part without being affected by the structure of the pliers body.
  • FIG. 1 is a schematic diagram of the shackle device in an open state in an embodiment of the application
  • Figure 2 is a schematic diagram of the shackle device in a combined state in an embodiment of the application, as shown in Figures 1 and 2
  • the upper and lower shackle device may include: a base 1; a housing 2 connected to the base 1.
  • the housing 2 includes a first pliers body 21 and a second pliers body 22.
  • the first pliers body 21 and the second pliers body 22 can Rotate to have an open state and a combined state.
  • the first pliers body 21 and the second pliers body 22 have an annular cavity; the rotating body 3 is at least partially disposed in the annular cavity, and the rotating body 3 is in the annular The cavity can be rotated.
  • the revolving body 3 includes at least two fan-shaped base parts, and all the base parts are round when combined; the revolving body 3 is equipped with a clamping member 36 and a driving clamp for clamping
  • the first hydraulic cylinder 37 that the holder 36 moves has a ring gear 35 on the side wall of the revolving body 3; a power mechanism 4 that can mesh with the ring gear 35 to drive the revolving body 3 to rotate.
  • the upper and lower buckle device in the present application needs to buckle or unbuckle the clamped part, rotate the first pliers body 21 and the second pliers body 22 in the housing 2 on the base 1 to open
  • at least two base parts of the revolving body 3 are also in a separate state, so that the clamped piece is inserted from the side of the housing 2 between the first pliers body 21 and the second pliers body 22 , And then enter between the base members of the revolving body 3 until the axis of the clamped piece coincides with the revolving center line 8.
  • the first pliers body 21 and the second pliers body 22 of the housing 2 are rotated so that they are combined; at the same time, the first hydraulic cylinder 37 installed on the revolving body 3 extends out to drive the clamp for clamping
  • the holding member 36 makes the holding member 36 clamp the clamped part in the base member. Since all the base parts are round when combined, the revolving body 3 can rotate in the annular cavity of the housing 2. Then, the power mechanism 4 meshes with the ring gear 35 on the revolving body 3 to drive the revolving body 3 to rotate. When the revolving body 3 rotates, it drives the clamped part to rotate until the clamped part completes the buckle or unbuckle operation.
  • the first hydraulic cylinder 37 installed on the revolving body 3 contracts and drives the clamping member 36 for clamping, so that the clamping member 36 loosens the clamped part in the base part; the housing 2 on the base 1
  • the first pliers body 21 and the second pliers body 22 are rotated to the open state.
  • at least two base parts of the revolving body 3 are also in a separated state, so that the clamped part is separated from the first pliers body. Move out between 21 and the second pliers body 22 and between the base parts.
  • the clamping mechanism can continuously rotate in a full circle, without loosening the clamped part and returning to the original position, re-clamping and rotating. Therefore, the upper and lower buckle device greatly improves the work efficiency of buckle or buckle.
  • the rotating body 3 is closed to form a complete circle without notches 39.
  • the clamping member 36 installed on the rotating body 3 can clamp evenly in the circumferential direction. Hold the clamped part to avoid excessive force of the clamped part 36 in a certain direction on the clamped part.
  • the base 1 is used to support the entire housing 2 and is connected to the housing 2.
  • the housing 2 is connected to the base 1, and the housing 2 may have a substantially symmetrical structure.
  • the housing 2 may include a first pliers body 21 and a second pliers body 22.
  • the first pliers body 21 and the second pliers body 22 are respectively substantially semicircular in shape.
  • the first pliers body 21 is hingedly connected to the base 1, the second pliers body 22 is hingedly connected to the base 1, and the first pliers body 21 and the second pliers body 22 are located on the same plane and arranged symmetrically.
  • the first forceps body 21 and the second forceps body 22 can be rotated to have an open state and a combined state. In the combined state, the first forceps body 21 and the second forceps body 22 have an annular cavity.
  • first pliers body 21 and the second pliers body 22 When the first pliers body 21 and the second pliers body 22 are rotated to the opposing surfaces, they are in a merged state. In the merged state, the first pliers body 21 and the second pliers body 22 have an annular cavity, and the annular cavity is Used to install rotating body 3. When the first pliers body 21 and the second pliers body 22 are rotated to the opposite side away from each other, they are in an open state. There is an opening between the first pliers body 21 and the second pliers body 22, through which the clamped part can Move into the rotating body 3 of the housing 2 in the horizontal direction. The middle of the first pliers body 21 and the second pliers body 22 is the rotation center line 8 of the clamped part along the vertical direction, and the center of the pliers body coincides with the rotation center 8 after the pliers body is closed.
  • a first hydraulic cylinder 51 is arranged between the base 1 and one end of the first hydraulic cylinder 51 is hingedly connected to the side wall of the first caliper body 21, and the other end of the first hydraulic cylinder 51 is hingedly connected to the base 1;
  • a second hydraulic cylinder 52 is arranged between the side wall of the second caliper body 22 and the base 1, one end of the second hydraulic cylinder 52 is hingedly connected to the side wall of the second caliper body 22, and the other end of the second hydraulic cylinder 52 It is hinged to the base 1.
  • the first hydraulic cylinder 51 and the second hydraulic cylinder 52 are shortened, so that the first pliers body 21 and the second pliers body 22 are Rotating in directions away from each other, there is an opening between the first pliers body 21 and the second pliers body 22, through which the clamped piece can be moved into the rotating body 3 of the housing 2 or from the housing 2 in the horizontal direction.
  • the revolving body 3 is removed; when the first caliper body 21 and the second caliper body 22 need to be switched to the combined state, the first hydraulic cylinder 51 and the second hydraulic cylinder 52 are extended, so that the first caliper body 21, The second pliers body 22 rotates in the direction facing each other, and finally the opposite surfaces of the first pliers body 21 and the second pliers body 22 are in contact with each other.
  • Fig. 3 is a schematic diagram of the base component of the revolving body in the embodiment of the application.
  • the revolving body 3 is generally arranged in an annular cavity.
  • the edge of the entire revolving body 3 is circular, so that the revolving body 3 can rotate in the annular cavity.
  • the revolving body 3 includes at least two fan-shaped base parts, and all the base parts are round when combined.
  • the revolving body 3 includes two semicircular base parts, and the two base parts form a circular shape when combined.
  • a clamping member 36 for clamping and a first hydraulic cylinder 37 for driving the clamping member 36 to move are installed on the revolving body 3.
  • the clamping member 36 is distributed radially around the center of the revolving body 3.
  • the revolving body 3 has a sliding groove 314 extending in the radial direction of the base member.
  • the clamping member 36 is disposed in the sliding groove 314 and can move in the sliding groove 314.
  • the first hydraulic cylinder 37 can also be arranged in the sliding groove 314, one end of which is connected with the clamping member 36 and the other end is fixed. In this way, the first hydraulic cylinder 37 can drive the clamping member 36 to move in the sliding groove 314, thereby making the clamping
  • the holding member 36 can hold the held member placed at the center of the revolving body 3.
  • the base member may be provided with an elastic member 313 that allows the clamping member 36 to retract toward the first hydraulic cylinder 37.
  • the revolving body 3 includes at least two fan-shaped base parts. In this way, the base parts can be separated from each other.
  • the seat part is also separated with the first pliers body 21 and the second pliers body 22. For example, when there are two base parts in total, one base part follows the first pliers body 21 to move, and the other base part follows the second pliers body 22 to move.
  • FIG. 6 is a schematic diagram of the first gear assembly and the second gear assembly in the revolving body in the embodiment of the application are not locked
  • FIG. 7 is the first gear assembly and the second gear assembly in the revolving body in the embodiment of the application
  • the schematic diagram of the locking as shown in Figures 6 and 7, the side wall of the revolving body 3 has a ring gear 35, which wraps around the side wall of the revolving body 3 for one cycle, so that the power mechanism 4 can drive the revolving body 3 Rotate.
  • the power mechanism 4 can be mounted on the housing 2.
  • the power mechanism 4 can be a motor, and the output shaft of the motor is provided with a gear, and the gear meshes with the ring gear 35, so that the motor The rotation drives the rotating body 3 to rotate in the annular cavity in the housing 2.
  • the revolving body 3 may include a first base member 31 and a second base member 32, and the first base member 31 includes: a first hydraulic cylinder base 33;
  • the first gear assembly 34 is arranged at the outer side wall of the first hydraulic cylinder base 33, and the partial ring gear 35 is located on the outer side wall of the first gear assembly 34.
  • the first hydraulic cylinder base 33 and the first gear assembly 34 may be fixedly connected or clamped together to ensure that the first gear assembly 34 can drive the first hydraulic cylinder base 33 to rotate.
  • the second base component 32 includes: a second hydraulic cylinder base 312; a second gear assembly 311 arranged on the outer side wall of the second hydraulic cylinder base 312, and a part of the ring gear 35 is located on the outer side wall of the second gear assembly 311 .
  • the second hydraulic cylinder base 312 and the second gear assembly 311 may be fixedly connected or clamped together to ensure that the second gear assembly 311 can drive the second hydraulic cylinder base 312 to rotate.
  • the first hydraulic cylinder base 33 and the second hydraulic cylinder base 312 can be used to install the clamping member 36.
  • FIGS. 6 and 7 the end of the first gear assembly 34 facing the second gear assembly 311 has a protruding locking member 38.
  • the locking member 38 may have a spline shaft shape.
  • the end of the second gear assembly 311 facing the locking member of the first gear assembly 34 has a notch 39 that cooperates with the locking member 38.
  • the notch 39 may have a spline groove shape.
  • the locking member 38 can pass through the gap 39.
  • FIG. 10 is a schematic structural diagram of the locking member in the first gear assembly in the embodiment of the application. As shown in FIG. 10, a swing hydraulic cylinder 40 is connected to the tail of the locking member 38, and the swing hydraulic cylinder 40 can drive the locking member 38 rotates to lock the locking member 38 in the notch 39.
  • the first base part 31 and the second base part 32 of the revolving body 3 are also combined to form a complete circle.
  • the ends of the first base member 31 and the second base member 32 are fixed to each other. Insert the locking member 38 of the first gear assembly 34 into the gap 39 of the second gear assembly 311, and then turn on the swing hydraulic cylinder 40, and the swing hydraulic cylinder 40 rotates, so that the locking member 38 rotates to a certain angle, and then As a result, the locking member 38 and the notch 39 are misaligned, and the two cannot be separated.
  • the pressure fluid of the swing hydraulic cylinder 40 can be taken from the hydraulic control system of the first hydraulic cylinder 37 that drives the clamping member 36 to move.
  • the other end of the first gear assembly may also be a notch, and the other end of the second gear assembly may also be a protruding locking member.
  • the power mechanism 4 drives the revolving body 3 to rotate in the annular cavity of the housing 2, when the rotation stops, the relative position between the revolving body 3 and the housing 2 cannot be accurately determined. Therefore, it may happen in most cases.
  • the end surface of the body 21 facing the second pliers body 22 and the end surfaces between different base parts in the revolving body 3 will not lie on the same plane. Therefore, the first pliers body 21 and the second pliers body 22 of the housing 2 are not easily opened , And the clamped piece clamped in the revolving body 3 cannot be removed from the revolving body 3 through the side of the first pliers body 21 and the second pliers body 22.
  • the revolving body 3 and the housing 2 need to be rotated and adjusted to the end face of the first pliers body 21 facing the second pliers body 22 and the first gear assembly 34 facing the second gear assembly 311.
  • the end surface and the end surface of the first hydraulic cylinder base 33 facing the second hydraulic cylinder base 312 are located on the same plane.
  • the second caliper body faces the end face of the first tong body
  • the second gear assembly faces the end face of the first gear assembly
  • the second hydraulic cylinder base faces the first hydraulic cylinder base.
  • the end faces of the seat are on the same plane.
  • FIG. 4 is a schematic structural diagram of the first gear assembly of the revolving body and the first caliper body in the embodiment of the application
  • FIG. 5 is the first gear of the revolving body in the embodiment of the application.
  • the bottom wall of the first pliers body 21 has a recess
  • the first gear assembly 34 is provided with a sleeve 41.
  • the sleeve 41 has a through hole 411 opened in the vertical direction.
  • the through hole 411 is provided with a positioning rod 42 and a spring 43 that allows the positioning rod 42 to move downward.
  • the first pliers body 21 is provided with a jacking hydraulic cylinder 44 ,
  • the jacking hydraulic cylinder 44 is in transmission connection with the jacking member 47.
  • the jacking part of the jacking member 47 is located in the recessed part and below the positioning rod 42.
  • the jacking hydraulic cylinder 44 can drive the jacking member 47 to move upward to make the positioning The bottom of the rod 42 escapes from the recess.
  • the first pliers body 21 and the bottom wall of the first pliers body 21 support the first gear assembly 34 and the second gear assembly 311 of the revolving body 3. As shown in FIG.
  • the jacking hydraulic cylinder 44 can drive the jacking member 47 to move upward, so that the bottom of the positioning rod 42 is free from the recess. At this time, the end face of the lifting member 47 against the positioning rod 42 is level with the bottom wall of the first pliers body 21. In this way, the power mechanism 4 can drive the revolving body 3 to continuously rotate, and the positioning rod 42 will not be stuck into the recess when passing through the recess. Ministry.
  • the first caliper body 21 faces the end surface of the second caliper body 22
  • the first gear assembly 34 faces the end face of the second gear assembly 311
  • the first hydraulic cylinder base 33 faces the second hydraulic cylinder.
  • the end surfaces of the cylinder base 312 are located on the same plane. In this way, the first pliers body 21 and the second pliers body 22 of the housing 2 can be opened, and the clamped piece in the rotating body 3 can pass through the first pliers body 21 and the second pliers body from the rotating body 3 The side of the body 22 moves out.
  • FIG. 8 is a schematic diagram of the reversing ring mechanism driving the reversing mechanism pressing the reversing valve in an embodiment of the application
  • FIG. 9 is a schematic diagram of the reversing ring mechanism driving the reversing mechanism loosened in the embodiment of the application.
  • the upper and lower buckle device may include: a reversing ring mechanism 6 arranged on the housing 2, which at least includes a first pliers body 21 The reversing ring and the second reversing ring that cooperates with the second caliper body 22; the reversing ring hydraulic cylinder 7 that controls the distance between the reversing ring mechanism 6 and the housing 2; is arranged in the first gear assembly 34 or The reversing mechanism 45 and the reversing valve 46 in the two gear assembly 311, the reversing ring mechanism 6 can drive the reversing mechanism 45 when it is close to or away from the housing 2, so that the reversing mechanism 45 controls the reversing valve 46 to switch .
  • the first reversing ring is generally in a semicircular ring shape and is arranged above the first pliers body 21; similarly, the second reversing ring is generally in a semicircular ring shape and is disposed above the second pliers body 22.
  • the reversing ring hydraulic cylinder 7 is connected to the reversing ring mechanism 6, which is used to control the distance between the reversing ring mechanism 6 and the reversing ring hydraulic cylinder 7.
  • the reversing mechanism 45 may include: a linkage rod 451, the upper end of the linkage rod 451 is located below the reversing ring mechanism 6; a return spring 452, one end of the return spring 452 abuts the first gear In the assembly 34 or the second gear assembly 311, the other end of the return spring 452 abuts the linkage rod 451; the rotation rod 453, one end of the rotation rod 453 is hingedly connected to the linkage rod 451, and the rotation rod 453 can rotate around its two ends The point in between rotates so that the other end of the rotating rod 453 can press or release the reversing valve 46.
  • the reversing mechanism 45 can be located on the first gear assembly 34 or on the second gear assembly 311.
  • FIG. 11 is a schematic diagram of the positioning pin of the reversing ring mechanism in the embodiment of the application inserted into the opening on the revolving body
  • FIG. 12 is a schematic diagram of the positioning pin of the reversing ring mechanism in the embodiment of the application being separated from the opening on the revolving body
  • the revolving body 3 has an opening 310
  • the reversing ring mechanism 6 has a positioning pin 61 that can be inserted into the opening 310.
  • the reversing valve 46 is used to control the filling and draining of the first hydraulic cylinder 37 on the revolving body 3. It has at least two states.
  • the reversing ring mechanism 6 In the first state, the reversing ring mechanism 6 is away from the housing 2, and the positioning pin 61 is disengaged Opening the hole 310, the linkage rod 451 moves upward, the other end of the rotating rod 453 can press the reversing valve 46, the first hydraulic cylinder 37 is in an oil-filled state; in the second state, the reversing ring mechanism 6 is close to the housing 2 , The reversing ring mechanism 6 presses the linkage rod 451 to move down, the other end of the rotating rod 453 releases the reversing valve 46, and the first hydraulic cylinder 37 is in a drain state.
  • the positioning pin 61 is inserted into the opening 310.
  • the reversing mechanism 45 is in a state of pressing the reversing valve 46, the reversing ring hydraulic cylinder 7 is in a fully extended state, and the reversing ring mechanism 6 is in the highest position. As shown in Fig. 8, the reversing mechanism 45 is in a state of pressing the reversing valve 46, the reversing ring hydraulic cylinder 7 is in a fully extended state, and the reversing ring mechanism 6 is in the highest position. As shown in Fig.
  • the positioning pin 61 After leaving the hole 310, the rotating body 3 and the housing 2 can rotate.
  • the reversing ring mechanism 6 is separated from the linkage rod 451 in the reversing mechanism 45, and the linkage rod 451 is lifted up under the action of the return spring 452, thereby triggering the rotation of the rotating rod 453 and pressing down the reversing valve 46, thereby triggering the reversing
  • the hydraulic control system in the revolving body 3 fills the first hydraulic cylinder 37 driving the clamping member 36 with pressure fluid, and the clamping member 36 moves to the centerline 8 of rotation.
  • the reversing mechanism 45 and the reversing ring mechanism 6 still maintain the existing state.
  • the reversing mechanism 45 is in a state where the reversing valve 46 is released. After the revolving body 3 rotates around the revolving center line 8, it will stay at any angle around the revolving center line 8, that is, the upper part of the housing 2
  • the opposite end surfaces of the first caliper body 21 and the second pliers body 22 may not coincide with the opposite end surfaces of the first hydraulic cylinder base 33 and the second hydraulic cylinder base 312.
  • the reversing ring mechanism 6 Since the reversing ring mechanism 6 has a circular ring structure, no matter where the revolving body 3 stays, the reversing ring mechanism 6 is pressed down to a certain height under the action of the reversing ring hydraulic cylinder 7, and it will touch the connection of the reversing mechanism 45.
  • the linkage rod 451 moves down, the return spring 452 is compressed, the rotating rod 453 rotates and tilts, the rotating rod 453 and the reversing valve 46 are released, and the first hydraulic cylinder 37 of the clamping member 36 is driven to release the pressure and clamp
  • the holder 36 moves to loosen the clamped part, and realizes the separation of the clamped part 36 and the clamped part.
  • This application also discloses an operating method of the upper and shackle device, the operating method includes the following steps:
  • the first hydraulic cylinder base 33 of appropriate specifications is selected and installed in the revolving body 3.
  • the clamps 36 and the first hydraulic cylinder 37 of the same specifications are installed on different hydraulic cylinder bases. .
  • the clamped parts can be pipe strings, tubing, drill pipes, etc., which need to be buckled and unbuckled.
  • the initial state of the upper and lower buckle device is that the first pliers body 21 and the second pliers body 22 are in an open state, and can be opened to the maximum position, as shown in FIG. 1.
  • the reversing ring mechanism 6 is close to the housing 2, the reversing mechanism 45 is in a state where the reversing valve 46 is released, and the positioning pin 61 is inserted into the side of the revolving body 3 through the housing 2
  • the opening 310 in the ring gear 35 of the wall is shown in FIG. 9.
  • a positioning pin 61 is arranged on the reversing ring mechanism 6, and the positioning pin 61 is inserted into the opening 310 in the state shown in FIG. 11.
  • the first gear assembly 34 of the revolving body 3 is positioned with the first pliers body 21, and the positioning rod 42 is inserted into the recess of the housing 2, as shown in FIG. 4.
  • the lifting hydraulic cylinder 44 drives the lifting member 47 to rise so that the positioning rod 42 is separated from the recessed part of the housing 2, thereby releasing the positioning state of the gear assembly of the housing 2 and the revolving body 3.
  • the reversing ring mechanism 6 moves up under the action of the reversing ring hydraulic cylinder 7, the reversing mechanism 45 moves to the top under the action of the return spring 452, and the rotating rod 453 presses down.
  • the hydraulic system on the gear assembly works to drive the first hydraulic cylinder 37 to move the clamping member 36 to the clamped member until the clamping member 36 clamps the clamped member.
  • the power mechanism 4 drives the ring gear 35 on the gear assembly to perform a rotation operation, so that the clamped part performs a buckling operation or an unbuckling operation.
  • the power mechanism 4 stops rotating.
  • the stop position of the gear assembly in the revolving body 3 can be any position within the range of 360 degrees, which may not necessarily be the same as the first position of the housing 2.
  • the opposite end surfaces of the forceps body 21 and the second forceps body 22 overlap.
  • the reversing ring hydraulic cylinder 7 is retracted, the reversing ring mechanism 6 moves downward for a certain distance, the reversing ring mechanism 6 contacts and presses down the positioning rod 42 in the reversing mechanism 45, and reset
  • the spring 452 is compressed, and the rotating rod 453 is lifted up and disengaged from the reversing valve 46, as shown in FIG. 9.
  • the reversing valve 46 controls the hydraulic system on the gear assembly to release the pressure of the first hydraulic cylinder 37, and the clamping member 36 returns to the initial position under the action of the elastic member 313 inside the hydraulic cylinder base 1. Then the power mechanism 4 drives the revolving body 3 to rotate.
  • the positioning pin 61 rotates to the opening 310 with the revolving body 3
  • the reversing ring mechanism 6 with the positioning pin 61 is pressed down to a low position, and the positioning pin 61 is inserted into the gear assembly In the opening 310 in the upper ring gear 35, the gear assembly and the housing 2 are locked, as shown in FIG. 11.
  • the lifting member 47 is lowered to the lowest position under the driving of the lifting hydraulic cylinder 44, and then the power mechanism 4 drives the revolving body 3 to rotate, when the positioning rod 42 rotates to the shell along with the revolving body 3
  • the positioning rod 42 is pressed into the recess on the housing 2 by the spring 43, as shown in Figure 4, at this time the first pliers body 21 faces the end surface of the second pliers body 22 and the first gear
  • the end surface of the assembly 34 facing the second gear assembly 311 and the end surface of the first hydraulic cylinder base 33 facing the second hydraulic cylinder base 312 are located on the same plane, and the power mechanism 4 stops rotating.
  • the locking member 38 on the gear assembly is reversely rotated under the action of the swing hydraulic cylinder 40 to a position where it can escape from the notch 39, as shown in FIG. 6.
  • the first hydraulic cylinder 51 and the second hydraulic cylinder 52 drive the first caliper body 21 and the second caliper body 22 to rotate around their respective axes on the base 1, and the first caliper body 21 and the second caliper body 22 are opened and The clamping piece can be moved out of the rotating body 3 from the side of the housing 2.
  • Fig. 13 is a schematic structural diagram of a half-revolving body in an embodiment of the application
  • Fig. 14 is a schematic structural diagram of a motor and a pump in an embodiment of the application
  • Fig. 13 is a schematic structural diagram of a motor and a pump in an embodiment of the application
  • the hydraulic driving device of the rotary equipment may include: a housing 2, which has an annular cavity; and a rotary body 3, which is at least partially arranged in the housing In the annular cavity of 2, the revolving body 3 in the housing 2 can rotate relative to the housing 4, the side wall of the revolving body 3 has a ring gear, and the side wall of the revolving body 3 has an opening; the clamping member 36, which It is arranged on the revolving body 3 to realize the clamping function; the power mechanism 4 can engage with the gear ring and drive the revolving body 3 to rotate relative to the housing 2 around the center line of rotation 8; the hydraulic system is arranged on the revolving body 3, It is used to drive the movement of the clamping member 36 and the clamping function of the clamping member 36 to the clamped member.
  • the hydraulic system at least includes: a pump 9 that drives the flow of power fluid, and a first hydraulic pressure that drives the clamping member.
  • the motor 10 is arranged on the guide rail 12 and can slide on the guide rail 12.
  • the two ends of the second hydraulic cylinder 11 are connected to the housing 2 and
  • the motor 10 is connected to drive the motor 10 to slide on the guide rail 12 to realize the connection and disconnection of the motor 10 and the pump 9 on the slewing body 3.
  • the hydraulic driving device of the rotating equipment has at least two states: In the first state, the first The second hydraulic cylinder 11 drives the motor 10 to be separated from the pump 9, and the revolving body 3 and the housing 2 can be relatively rotated; in the second state, the second hydraulic cylinder 11 drives the motor 10 to slide on the guide rail 12 and slides with the pump 9 Connected so that the motor 10 can drive the pump 9 in the hydraulic system to operate.
  • the clamped part When the hydraulic driving device of the rotating equipment needs to clamp the clamped part for rotation for screwing operation, the clamped part is put into the rotating body 3, and the second hydraulic cylinder 11 drives the motor 10 to slide on the guide rail 12.
  • the motor 10 is connected to the pump 9 on the revolving body 3.
  • the motor 10 is rotated to drive the pump 9 to operate, so that the drive pump 9 sucks oil from the oil tank 13 and presses the oil into the first hydraulic cylinder 37 on the revolving body 3, and then the first hydraulic cylinder 37 drives the clamping member 36 to move and clamp Hold the clamped piece.
  • the second hydraulic cylinder 11 drives the motor 10 to slide on the guide rail 12 to separate the motor 10 from the pump 9 on the revolving body 3, so that the entire revolving body 3 can be
  • the housing 2 rotates.
  • the power mechanism 4 is driven by the gear ring to drive the rotating body 3 to rotate, so that the clamping member 36 on the rotating body 3 drives the clamped member to complete the rotation.
  • the first The pressure in the hydraulic oil cylinder 37 causes the clamping member 36 on the rotating body 3 to move away from the clamped member to release the clamped member.
  • the hydraulic driving device through the slewing equipment has two states. In the first state, the motor 10 is separated from the pump 9, and the revolving body 3 and the housing 2 can rotate relatively; in the second state, the second hydraulic The oil cylinder 11 drives the motor 10 to slide on the guide rail 12 to be connected with the pump 9 so that the motor 10 can drive the pump 9 to operate. Since the slewing body 3 needs to be rotated, the motor 10 and other power devices cannot be directly installed on the slewing body 3. Otherwise, when the slewing body 3 rotates, the external power supply or liquid supply line connected to the motor 10 will restrict the slewing body. 3's rotation.
  • the clamping member 36 on the revolving body 3 can realize the clamping operation of the clamped member through automatic hydraulic control, and the external power mechanism 4 can directly drive the revolving body 3 to rotate through the ring gear. Achieve the screwing operation of various pipe strings, casing pipes, drill pipes and other clamped parts.
  • the housing 2 may be a substantially annular box-shaped structure, which is used to fix the power mechanism 4 and support other structures.
  • the middle part of the housing 2 has an annular cavity for allowing the clamped part to pass through, and the clamped part can pass through the housing 2 in the axial direction of the housing 2.
  • the cavity inside the box of the housing 2 can be used to install the rotating body 3.
  • the housing 2 may be composed of a first half pliers body and a second half pliers body, the first half pliers body and the second half pliers body are respectively connected to the base by a hinge connection, In this way, the first half of the pliers body and the second half of the pliers body can rotate at a certain angle around the base, so that in the future, the sides of the first half of the pliers body and the second half of the pliers body can open an opening, and the clamped part can be removed from The side opening moves into the rotating body 3 in the annular cavity.
  • the revolving body 3 is at least partially arranged in the cavity.
  • the rotating body 3 can rotate around its own rotating center line 8 in the annular cavity.
  • the revolving body 3 may include a hydraulic cylinder base, which may be an entire circular disc structure or a disc structure composed of multiple fan-shaped base components.
  • the base of the hydraulic cylinder is a disc structure composed of a plurality of fan-shaped base parts
  • the base parts can be detachably connected to form a circular disc structure.
  • a ring gear is provided on the side wall of the revolving body 3, and the ring gear is used for meshing with the power mechanism 4, so that the power mechanism 4 can drive the revolving body 3 to rotate through the ring gear.
  • the hydraulic cylinder base is composed of two semicircular base parts combined to form an entire circular disc structure.
  • the middle of the entire hydraulic cylinder base has a through hole along the vertical direction for the clamped piece to pass through.
  • a plurality of sliding grooves 314 extending in the radial direction are formed on the base of the hydraulic cylinder.
  • the sliding grooves 314 may be evenly distributed around the axis of the hydraulic cylinder base.
  • Each sliding groove 314 is provided with a first hydraulic cylinder 37 and a clamping member 36.
  • One end of the first hydraulic cylinder 37 abuts or is fixed to the base of the hydraulic cylinder. The other end drives the clamping member 36 so that the clamping member 36 can move in the radial direction of the revolving body 3 in the sliding groove 314.
  • the clamping member 36 may be a claw with a clamping function, or the clamping member 36 includes a mounting base and a claw mounted on the mounting base. Of course, the claw and the mounting base can be integrally formed.
  • An elastic member 313 capable of moving the clamping member 36 outward in the radial direction may be provided between the clamping member 36 and the hydraulic cylinder base.
  • One end of the elastic member 313 abuts against a supporting point on the hydraulic cylinder base near the center of the hydraulic cylinder base, and the other end of the elastic member 313 is connected to the clamping member 36 or against the supporting member connected to the clamping member 36.
  • the elastic member 313 extends, and the elastic member 313 drives the clamping member 36 to move away from the center of the hydraulic cylinder base. At this time, the clamping member 36 is loosened Clamping pieces.
  • the power mechanism 4 is mounted on the housing 2, which can drive the revolving body 3 to rotate as required.
  • the power mechanism 4 may be a device that can be energized or fluidized for rotation, such as a motor, a hydraulic motor, etc., which meshes with a ring gear through a gear to drive the rotating body 3 to rotate.
  • a hydraulic system for supplying oil and maintaining pressure to the first hydraulic cylinder 37 is installed in the revolving body 3, and the hydraulic system at least includes a pump 9 for driving the flow of power fluid.
  • 14 is a schematic diagram of the structure when the motor and pump are connected in the embodiment of the application
  • FIG. 15 is a schematic diagram of the structure when the motor and the pump are disconnected in the embodiment of the application, as shown in FIG. 14 and FIG. 15, the housing 2 is provided with a guide rail 12.
  • the telescopic end of the second hydraulic cylinder 11 is in transmission connection with the motor 10.
  • the motor 10 slides on the guide rail 12 toward the center of the housing 2 to be in contact with the pump 9.
  • the side wall of the rotating body 3 has an opening, and the pump 9 and the motor 10 are connected through the opening.
  • the clamping rail 12 is fixedly connected to the inner bottom surface of the housing 2.
  • One end of the second hydraulic cylinder 11 is connected with the housing 2 and the other end is connected with the motor 10.
  • the motor 10 is installed on the guide rail 12 and can slide along the guide rail 12, and the second hydraulic cylinder 11 can push the motor 10 to slide on the guide rail 12.
  • the second hydraulic cylinder 11 When the second hydraulic cylinder 11 is in a contracted state, the motor 10 does not touch the revolving body 3.
  • the pump 9 is arranged inside the revolving body 3 and is fixedly connected to the revolving body 3 to provide power fluid for the first hydraulic cylinder 37.
  • the outer side wall of the revolving body 3 corresponding to the position of the pump 9 is provided with an opening.
  • the pump 9 is mechanically connected coaxially.
  • the motor 10 provides power for the pump 9, and the pump 9 rotates under the drive of the motor 10.
  • the motor when the second hydraulic cylinder is extended, the motor slides on the guide rail in a direction away from the center of the housing to separate from the pump; When the second hydraulic cylinder is shortened, the motor slides toward the center of the housing on the guide rail to be in contact with the pump.
  • the second hydraulic cylinder 11 drives the motor 10 to disengage from the pump 9 on the revolving body 3, and the motor 10 is out of the revolving range of the revolving body 3.
  • the rotating body 3 can drive the pump 9 and other parts of the hydraulic system to rotate.
  • the hydraulic driving device of the rotating equipment has at least two states. In the first state, the motor 10 is separated from the pump 9, and the rotating body 3 and the housing 2 can rotate relatively; in the second state, The second hydraulic cylinder 11 drives the motor 10 to slide on the guide rail 12 to be connected to the pump 9 so that the motor 10 can drive the pump 9 to operate.
  • the first hydraulic cylinder 37 Since the first hydraulic cylinder 37 is located on the revolving body 3 as the revolving body 3 rotates around its axis, the first hydraulic cylinder 37 cannot supply oil to the first hydraulic cylinder 37 through an external hydraulic source. Therefore, the hydraulic system and the housing The cooperation of the guide rail 12 on the body 2, the motor 10 and the second hydraulic cylinder 11 enables the motor 10 to drive the pump 9 to rotate so that the pump 9 can supply oil to the first hydraulic cylinder 37 on the revolving body 3.
  • FIG. 16 is a system diagram of the hydraulic system in the embodiment of the application in the first implementation manner.
  • the hydraulic system may include: an oil tank 13 and a first cartridge valve 15. , The second cartridge valve 19, the first reversing valve 17, the accumulator 18 and the one-way valve 14.
  • the hydraulic system can realize the functions of extending, retracting and maintaining the pressure of the first hydraulic cylinder 37.
  • the oil tank 13 is connected to the inlet of the pump 9
  • the outlet of the pump 9 is connected to the outlet of the one-way valve 14
  • the outlet of the one-way valve 14 is connected to the A2 port of the second cartridge valve 19 and the accumulator 18.
  • the A1 port of a cartridge valve 15 is connected with the B2 port of the second cartridge valve 19 and the first hydraulic cylinder 37, and the B1 port of the first cartridge valve 15 is connected with the oil tank 13.
  • the control of the first cartridge valve 15 The oil port C1 is connected to the first reversing valve 17, and the control port C2 of the second cartridge valve 19 is connected to the first reversing valve 17; the first reversing valve 17 has two working positions, In position, the control port C1 of the first cartridge valve 15 is connected to the outlet of the one-way valve 14, and the control port C2 of the second cartridge valve 19 is connected to the tank 13, so that the first cartridge valve 15 is in In the disconnected state, the second cartridge valve 19 is in a communicating state; in the second working position, the control port C1 of the first cartridge valve 15 is connected to the tank 13, and the control port C2 of the second cartridge valve 19 is connected to The outlet of the one-way valve 14 is connected, so that the first cartridge valve 15 is in a connected state, and the second cartridge valve 19 is in
  • the motor 10 drives the pump 9 to rotate, so that the drive pump 9 sucks oil from the oil tank and presses the oil into the first hydraulic cylinder 37.
  • the first hydraulic cylinder 37 drives the clamping member 36 to move to the clamped member 36.
  • the first reversing valve 17 enters the first working position.
  • the control oil port C1 of the first cartridge valve 15 communicates with the outlet of the one-way valve 14, which Under the pressure of the power fluid, the control oil port C2 of the second cartridge valve 19 communicates with the oil tank 13, which is close to no pressure.
  • the first cartridge valve 15 is in a disconnected state, and the second cartridge valve
  • the installed valve 19 is in a communicating state. Therefore, the power fluid flows into the first hydraulic cylinder 37 through the pump 9, the one-way valve 14, and the second cartridge valve 19, and at the same time, the accumulator 18 is filled and pressurized.
  • the power fluid flows into the first hydraulic cylinder 37 to extend the cylinder barrel, so that the first hydraulic cylinder 37 drives the clamping member 36 to complete the clamping operation.
  • a pressure sensor 16 is connected to the inlet of the first hydraulic cylinder 37.
  • the pressure sensor 16 measures the pressure in the pipeline to reach the preset pressure, and the pressure sensor 16 sends out a signal, and then ,
  • the motor 10 stops rotating, and the second hydraulic cylinder 11 drives the motor 10 away from the pump 9.
  • the power mechanism 4 drives the ring gear on the revolving body 3 to rotate through gears, thereby driving the clamped member 36 to rotate.
  • the accumulator 18 supplements, discharges and maintains the pressure of the first hydraulic cylinder 37 to prevent the pressure of the first hydraulic cylinder 37 from falling and reduce the clamping force of the clamping member 36.
  • the trigger mechanism on the housing 2 triggers the first reversing valve 17 to enter the second working position, the control oil port C1 of the first cartridge valve 15 is connected to the oil tank 13, and the second The control oil port C2 of the cartridge valve 19 is in communication with the outlet of the one-way valve 14, so that the first cartridge valve 15 is in a communicating state, and the second cartridge valve 19 is in a disconnected state.
  • the power fluid in the first hydraulic oil cylinder 37 flows back to the oil tank 13 through the first cartridge valve 15. In this way, the pressure in the first hydraulic oil cylinder 37 is released, so that the clamping part 36 on the rotating body 3 is against the clamped part. 36 Perform a release action.
  • the clamping member 36 can be returned to the initial position under the action of the elastic member 313 inside the revolving body 3, and the buckling or unbuckling operation of the clamped member 36 is completed through the above process.
  • the hydraulic system may further include: an overflow valve 20.
  • the inlet of the overflow valve 20 is in communication with the outlet of the one-way valve 14, and the outlet of the overflow valve 20 is connected to the oil tank. 13 is connected.
  • the power fluid can be drained into the oil tank 13 through the overflow valve 20 to ensure the safety of the entire pipeline.
  • FIG. 17 is a system diagram of the hydraulic system in the embodiment of the application in the second implementation manner.
  • the hydraulic system may include: an oil tank 13 and a second reversing valve 25 ,
  • the accumulator 18 and the one-way valve 14, the hydraulic system can realize the functions of extending, retracting and maintaining the pressure of the first hydraulic cylinder 37.
  • the oil tank 13 communicates with the inlet of the pump 9
  • the outlet of the pump 9 communicates with the outlet of the one-way valve 14
  • the outlet of the one-way valve 14 communicates with the oil inlet P of the second reversing valve 25 and the accumulator 18.
  • the working port A of the second reversing valve 25 is in communication with the first hydraulic cylinder 37, and the oil return port T of the second reversing valve 25 is in communication with the oil tank 13.
  • the second reversing valve 25 has two working positions. In the first working position, the outlet of the pump 9 is in communication with the first hydraulic cylinder 37; in the second working position, the first hydraulic cylinder 37 is in communication with the oil tank 13. The pump 9 is in a disconnected state.
  • the second reversing valve 25 is controlled by a trigger mechanism provided on the housing 2.
  • the motor 10 drives the pump 9 to rotate, so that the drive pump 9 sucks oil from the oil tank and presses the oil into the first hydraulic cylinder 37.
  • the first hydraulic cylinder 37 drives the clamping member 36 to move to the clamped member 36.
  • the clamping action is completed.
  • the second reversing valve 25 enters the first working position.
  • the pump 9 is in communication with the first hydraulic cylinder 37. Therefore, the power fluid flows into the first hydraulic cylinder 37 through the pump 9, the one-way valve 14, and the second reversing valve 25, and at the same time, the accumulator 18 is charged and pressurized.
  • the power fluid flows into the first hydraulic cylinder 37 to extend the cylinder barrel, so that the first hydraulic cylinder 37 drives the clamping member 36 to complete the clamping operation.
  • a pressure sensor 16 is connected to the inlet of the first hydraulic cylinder 37.
  • the pressure sensor 16 measures the pressure in the pipeline to reach the preset pressure, and the pressure sensor 16 sends out a signal, and then ,
  • the motor 10 stops rotating, and the second hydraulic cylinder 11 drives the motor 10 away from the pump 9.
  • the power mechanism 4 drives the ring gear on the revolving body 3 to rotate through gears, thereby driving the clamped member 36 to rotate.
  • the accumulator 18 supplements, discharges and maintains the pressure of the first hydraulic cylinder 37 to prevent the pressure of the first hydraulic cylinder 37 from falling and reduce the clamping force of the clamping member 36.
  • the trigger mechanism on the housing 2 triggers the second reversing valve 25 to enter the second working position, and the first hydraulic cylinder 37 communicates with the oil tank 13.
  • the power fluid in the first hydraulic oil cylinder 37 flows back to the oil tank 13 through the second reversing valve 25. In this way, the pressure in the first hydraulic oil cylinder 37 is released, so that the clamping piece 36 on the rotating body 3 is opposite to the clamped piece.
  • 36 Perform a release action.
  • the clamping member 36 can return to the initial position under the action of the elastic member 313 inside the rotating body 3, and the buckling or unbuckling operation of the clamped member 36 is completed through the above process.
  • the hydraulic system may further include: an overflow valve 20, the inlet of the overflow valve 20 is in communication with the outlet of the one-way valve 14, and the outlet of the overflow valve 20 is connected to the oil tank. 13 is connected.
  • an overflow valve 20 the inlet of the overflow valve 20 is in communication with the outlet of the one-way valve 14, and the outlet of the overflow valve 20 is connected to the oil tank. 13 is connected.
  • FIG. 18 is a system diagram of the hydraulic system in the embodiment of the application in the third implementation manner.
  • the hydraulic system may include: an oil tank 13, a first cartridge valve 15. , The second cartridge valve 19, the first reversing valve 17, the accumulator 18, the one-way valve 14 and the pressure reducing valve 23, the hydraulic system can realize the function of extending, retracting and maintaining the pressure of the first hydraulic cylinder 37 .
  • the oil tank 13 is connected to the inlet of the pump 9, the outlet of the pump 9 is connected to the outlet of the one-way valve 14, and the outlet of the one-way valve 14 can be connected to the accumulator 18, the A2 port of the second cartridge valve 19, and the first
  • the reversing valve 17 is in communication
  • a third reversing valve 24 may be provided between the outlet of the one-way valve 14 and the accumulator 18, the A1 port of the first cartridge valve 15 and the B2 port of the second cartridge valve 19 and
  • the first hydraulic cylinder 37 is in communication
  • the B1 port of the first cartridge valve 15 is in communication with the oil tank 13
  • the control oil port C1 of the first cartridge valve 15 is in communication with the first reversing valve 17, and the second cartridge valve 19
  • the control oil port C2 is connected with the first reversing valve 17; the first reversing valve 17 has two working positions.
  • the control oil port C1 of the first cartridge valve 15 is connected to the accumulator 18 is connected, the control oil circuit C2 port of the second cartridge valve 19 is connected with the oil tank 13, so that the first cartridge valve 15 is in a disconnected state, and the second cartridge valve 19 is in a connected state; in the second working position Bottom, the control oil circuit port C1 of the first cartridge valve 15 is connected to the oil tank 13, the control oil circuit port C2 of the second cartridge valve 19 is connected to the accumulator 18 and the outlet of the one-way valve 14 is connected to The first cartridge valve 15 is in a connected state, and the second cartridge valve 19 is in a disconnected state.
  • the third reversing valve 24 is first controlled to be in the first working position, so that the pump 9 is in communication with the third reversing valve 24 and the accumulator 18.
  • the motor 10 drives the pump 9 to rotate, and the power fluid passes through The pump 9, the one-way valve 14, and the third reversing valve 24 flow into the accumulator 18.
  • the branch pressure sensor 26 is installed at the inlet of the accumulator 18, and the accumulator 18 is charged and pressurized to the set value.
  • the sensor 26 sends a signal, the third reversing valve 24 cuts into the second working position, the pump 9 is disconnected from the accumulator, then the motor 10 stops rotating, the second hydraulic cylinder 11 drives the motor 10 away from the pump 9, and the pump 9 stops working ,
  • the accumulator 18 enters the standby state as an auxiliary power source.
  • the first reversing valve 17 enters the first working position, so that the first hydraulic cylinder 37 communicates with the accumulator 18, and the pressurized power fluid passes through the accumulator 18 and the pressure reducing valve 23 and the second cartridge valve 19 flow into the first hydraulic cylinder 37.
  • the first hydraulic cylinder 37 drives the clamping member 36 to move to clamp the clamped member.
  • a pressure sensor 16 is installed at the entrance of the first hydraulic cylinder 37.
  • the pressure sensor 16 sends a signal to detect that the motor 10 is completely disconnected from the pump 9, and the power mechanism 4 drives the ring gear on the revolving body 3 to rotate through gears.
  • the clamped member 36 is driven to rotate.
  • the accumulator 18 maintains the pressure of the first hydraulic cylinder 37 to prevent the pressure of the first hydraulic cylinder 37 from decreasing and reducing the clamping force of the clamping member 36.
  • the trigger mechanism on the housing 2 triggers the first reversing valve 17 to enter the second working position, and the first hydraulic cylinder 37 communicates with the oil tank 13.
  • the power fluid in the first hydraulic oil cylinder 37 flows back to the oil tank 13 through the first cartridge valve 15. In this way, the pressure in the first hydraulic oil cylinder 37 is released, so that the clamping part 36 on the rotating body 3 is against the clamped part.
  • 36 Perform a release action.
  • the clamping member 36 can return to the initial position under the action of the elastic member 313 inside the rotating body 3, and the buckling or unbuckling operation of the clamped member 36 is completed through the above process.
  • the hydraulic system may further include: an overflow valve 20.
  • the inlet of the overflow valve 20 is connected to the outlet of the one-way valve 14, and the outlet of the overflow valve 20 is connected to the oil tank. 13 is connected.
  • the overflow valve can also serve as a pressure relief port for the accumulator. Before the accumulator 18 is disassembled, the pressure can be released through the overflow valve 20 to ensure the safety of maintenance.
  • a pressure reducing valve 23 can be connected between the accumulator 18 and the second cartridge valve 19 in this embodiment, and the first hydraulic cylinder 37 can output a stable clamping force according to a set value after pressure reduction.
  • the hydraulic energy is stored in the accumulator 18 in advance, and the accumulator 18 can First, establish the hydraulic pressure in the hydraulic circuit, such as the first hydraulic cylinder 37. After the motor 10 is connected to the pump 9, the accumulator 18 is supplemented with hydraulic energy.
  • the device can directly use the stored hydraulic energy to charge and build pressure on the first hydraulic cylinder 37, which saves the time of connecting, driving and disconnecting the external motor 10 and the pump 9 in the rotating body 3, and the overall operation is more effectiveness.
  • FIG. 19 is a system diagram of the hydraulic system in the embodiment of the application in the fourth implementation manner.
  • the hydraulic system may include: a second reversing valve 25, a third The reversing valve 24, the one-way valve 14, the oil tank 13, the accumulator 18, and the pressure reducing valve 23, the hydraulic system can realize the functions of extending, retracting and maintaining the pressure of the first hydraulic cylinder 37.
  • the oil tank 13 is connected to the inlet of the pump 9
  • the outlet of the pump 9 is connected to the outlet of the one-way valve 14
  • the outlet of the one-way valve 14 can be connected to the accumulator 18, and the outlet of the one-way valve 14 is connected to the accumulator.
  • a third reversing valve 24 is provided between 18, the oil inlet P of the second reversing valve 25 is in communication with the third reversing valve 24 and the accumulator 18, and the port A of the second reversing valve 25 is connected to the first
  • the hydraulic cylinder 37 is connected, the oil return port T of the second reversing valve 25 is connected to the oil tank 13.
  • the second reversing valve 25 has two working positions. When the second reversing valve 25 is in the first working position, the first The hydraulic cylinder 37 is in communication with the third reversing valve 24 and the accumulator 18.
  • the third reversing valve 24 When the second reversing valve 25 is in the second working position, the first hydraulic cylinder 37 is in communication with the oil tank 13; the third reversing valve 24 has two When the third reversing valve 24 is in the first working position, the outlet of the one-way valve 14 is connected to the accumulator 18 and the second reversing valve 25. When the third reversing valve 24 is in the second working position , The third reversing valve 24 is in an off state.
  • the third reversing valve 24 is first controlled to be in the first working position, so that the pump 9 is in communication with the third reversing valve 24 and the accumulator 18.
  • the motor 10 drives the pump 9 to rotate, and the power fluid passes through The pump 9, the one-way valve 14, and the third reversing valve 24 flow into the accumulator 18.
  • the branch pressure sensor 26 is installed at the inlet of the accumulator 18, and the accumulator 18 is charged and pressurized to the set value.
  • the sensor 26 sends a signal, the third reversing valve 24 cuts into the second working position, then the motor 10 stops rotating, the second hydraulic cylinder 11 drives the motor 10 away from the pump 9, the pump 9 stops working, and the accumulator 18 enters standby as an auxiliary power source status.
  • the second reversing valve 25 enters the first working position, so that the first hydraulic cylinder 37 communicates with the third reversing valve 24 and the accumulator 18, and the pressurized power fluid is stored through the accumulator.
  • the energy device 18, the pressure reducing valve 23, and the second reversing valve 25 flow into the first hydraulic cylinder 37.
  • the first hydraulic cylinder 37 drives the clamping member 36 to move to clamp the clamped member.
  • the first hydraulic cylinder 37 A pressure sensor 16 is installed at the inlet.
  • the pressure sensor 16 sends a signal to detect that the motor 10 and the pump 9 are completely disconnected, and the power mechanism 4 drives the rotating body through gears The ring gear on 3 rotates, thereby driving the clamped member 36 to rotate.
  • the accumulator 18 maintains the pressure of the first hydraulic cylinder 37 to prevent the pressure of the first hydraulic cylinder 37 from decreasing and reducing the clamping force of the clamping member 36.
  • the trigger mechanism on the housing 2 triggers the second reversing valve 25 to enter the second working position, and the first hydraulic cylinder 37 communicates with the oil tank 13.
  • the power fluid in the first hydraulic oil cylinder 37 flows back to the oil tank 13 through the second reversing valve 25. In this way, the pressure in the first hydraulic oil cylinder 37 is released, so that the clamping piece 36 on the rotating body 3 is opposite to the clamped piece. 36 Perform a release action.
  • the clamping member 36 can return to the initial position under the action of the elastic member 313 inside the rotating body 3, and the buckling or unbuckling operation of the clamped member 36 is completed through the above process.
  • the hydraulic system may further include: an overflow valve 20, the inlet of the overflow valve 20 is in communication with the outlet of the one-way valve 14, and the outlet of the overflow valve 20 is connected to the oil tank. 13 is connected.
  • an overflow valve 20 When the pump 9 is charging and pressurizing the accumulator 18, when the pressure of the pipeline between the pump 9 and the accumulator 18 is too high, the power fluid can be drained into the oil tank 13 through the overflow valve 20 to ensure the pipeline Safety.
  • the overflow valve can also serve as a pressure relief port for the accumulator. Before the accumulator 18 is disassembled, the pressure can be released through the overflow valve 20 to ensure the safety of maintenance.
  • a pressure reducing valve 23 can be connected between the accumulator 18 and the second reversing valve 25 in this embodiment, and the first hydraulic cylinder 37 can output a stable clamping force according to a set value by pressure reduction.
  • the hydraulic energy is stored in the accumulator 18 in advance, and the accumulator 18 can First, establish the hydraulic pressure in the hydraulic circuit, such as the first hydraulic cylinder 37. After the motor 10 is connected to the pump 9, the accumulator 18 is supplemented with hydraulic energy.
  • the device can directly use the stored hydraulic energy to charge and build pressure on the first hydraulic cylinder 37, which saves the time of connecting, driving and disconnecting the external motor 10 and the pump 9 in the rotating body 3, and the overall operation is more effectiveness.
  • FIG. 20 is a hydraulic cylinder synchronous positioning device in an embodiment of the application.
  • Figure 21 is a schematic structural diagram of a part of the hydraulic cylinder synchronous positioning device in an embodiment of the application.
  • the hydraulic cylinder synchronous positioning device may include: a first hydraulic cylinder base 33, a first hydraulic cylinder A plurality of sliding grooves 314 extending in the radial direction of the first hydraulic cylinder base 33 are formed on the cylinder base 33; the first hydraulic cylinder 37 and the clamping member 36 driven by the first hydraulic cylinder 37 are arranged in the sliding groove 314
  • the clamping member 36 can move in the radial direction in the sliding groove 314, one side of the axis of the clamping member 36 is provided with a rod 361 facing the adjacent clamping member 36, and the other side of the axis of the clamping member 36 is provided with energy
  • the opening into which the rod 361 on the adjacent clamping member 36 is inserted, the acute angle between the axis of the opening 362 and the axis of the clamping member 36 where the opening 362 is located is equal to the axis of the rod 361 on the clamping member 36
  • the acute angle with the axis of the clamping member 36 is equal to 90°-180°/
  • first hydraulic cylinder base 33 when it is necessary to move the different clamping members 36 on the first hydraulic cylinder base 33 synchronously to the middle of the first hydraulic cylinder base 33 under the drive of the first hydraulic cylinder 37, so as to clamp and pass through the first hydraulic cylinder.
  • first hydraulic cylinders 37 need to be extended so that the first hydraulic cylinder 37 drives the clamp 36 to move to the middle of the first hydraulic cylinder base 33.
  • the clamped parts can be pipe strings, oil pipes, drill pipes and other components that need to be screwed and connected by rotation.
  • the first hydraulic cylinder 37 drives the different clamping members 36 to move toward the middle of the first hydraulic cylinder base 33
  • the rod 361 disposed on the clamping member 36 facing the adjacent clamping member 36 is inserted into the adjacent clamping member 36.
  • two adjacent clamping members 36 can drive each other to maintain synchronized movement. In this way, all the clamping members 36 in the first hydraulic cylinder base 33 will drive the adjacent other one by one. Thus, all the clamping members 36 keep moving synchronously.
  • the hydraulic cylinder synchronous positioning device in the present application realizes the synchronous centripetal movement of the plurality of first hydraulic cylinders 37 to drive the clamping member 36 through a simple mechanical structure, thereby reducing the requirements on the hydraulic system and reducing the processing cost of the hydraulic system. Moreover, the positioning accuracy and accuracy of the present application are higher than that of the hydraulic solution, which can effectively improve the consistency of repeated actions.
  • the structure in this application can have many changes, the number of liquid cylinders that can be applied is flexible and variable, and it can be applied to various engineering machinery with similar structures.
  • the first hydraulic cylinder base 33 may be an entire circular disc structure or a disc structure composed of a plurality of fan-shaped base parts 331 combined.
  • the first hydraulic cylinder base 33 is a disc structure formed by a combination of a plurality of fan-shaped base parts 331, the base parts 331 can be detachably connected to each other to form an entire circular disc structure.
  • the first hydraulic cylinder base 33 is composed of two semicircular base parts 331 combined to form an entire circular disc structure.
  • the middle of the entire first hydraulic cylinder base 33 has a through hole along the vertical direction for the clamped parts to pass through, such as a pipe string, an oil pipe, a drill rod, and the like.
  • the first hydraulic cylinder base 33 is composed of a plurality of fan-shaped base parts 331, the first hydraulic cylinder base 33 can be separated, so that the clamped part can be inserted into the first hydraulic cylinder from the side. In the through hole in the middle of the base 33.
  • a plurality of sliding grooves 314 extending in the radial direction are formed on the first hydraulic cylinder base 33.
  • the sliding grooves 314 may be evenly distributed around the axis of the first hydraulic cylinder base 33.
  • FIG. 22 is a cross-sectional view of part of the hydraulic cylinder synchronous positioning device in the initial position in the embodiment of the application
  • FIG. 23 is a cross-sectional view of the part of the hydraulic cylinder synchronization positioning device in the end position in the embodiment of the application
  • the number of sliding grooves 314 is four, and the angle between adjacent sliding grooves 314 is 90 degrees, that is, the angle B.
  • the chute 314 may be opened on the first hydraulic cylinder base 33 having a circular disk structure, or may be opened on the base member 331 having a fan shape.
  • 24 is a partial structural diagram of the hydraulic cylinder synchronous positioning device with 6 hydraulic cylinders in an embodiment of the application
  • FIG. 24 is a partial structural diagram of the hydraulic cylinder synchronous positioning device with 6 hydraulic cylinders in an embodiment of the application
  • FIG. 25 is a cross-sectional view of the hydraulic cylinder synchronous positioning device with 6 hydraulic cylinders in an embodiment of the application, as shown in FIG. 24
  • the number of sliding grooves 314 is six, and the angle between adjacent sliding grooves 314 is 60 degrees, that is, the angle B.
  • each chute 314 is provided with a first hydraulic cylinder 37 and a clamping member 36.
  • One end of the first hydraulic cylinder 37 abuts or is fixed to the first hydraulic cylinder base 33.
  • the other end of the hydraulic cylinder 37 drives the clamping member 36 so that the clamping member 36 can move in the radial direction in the sliding groove 314.
  • the first hydraulic cylinder 37 is filled with oil, the first hydraulic cylinder 37 is extended, thereby pushing the clamping member 36 to move toward the center of the first hydraulic cylinder base 33.
  • the clamping member 36 may be a claw with a clamping function, or the clamping member 36 includes a mounting base and a claw mounted on the mounting base. Of course, the claw and the mounting base can be integrally formed.
  • the clamping member 36 is provided with a rod 361 facing the adjacent clamping member 36, and the adjacent clamping member 36 is provided with an opening 362 through which the rod 361 can be inserted.
  • the included angle between the axis of the opening 362 and the axis of the clamping member 36 is equal to 90 Degree-180 degrees/the number of clamping members 36.
  • the angle between the axis of the opening 362 and the axis of the clamping member 36 where the opening 362 is located is equal to the angle between the axis of the opening 362 and the axis of the adjacent clamping member 36 of the clamping member 36 where the opening 362 is located. Angle; the intersection of the axis of the rod 361 on the clamping member 36 and the axis of the opening 362 on the clamping member 36 is located on the axis of the clamping member 36.
  • the number of clamping members 36 is four, the angle between the axis of the opening 362 and the axis of the clamping member 36 is equal to 45 degrees, and the angle of A Is 90 degrees.
  • the number of clamping members 36 is six, the angle between the axis of the opening 362 and the axis of the clamping member 36 is equal to 60 degrees, and the angle of A is 60 degrees. degree.
  • a rod 361 is provided on the side wall of the clamping member 36 facing one side adjacent to the clamping member 36, and the clamping member 36 faces the other side.
  • An opening 362 for inserting the rod 361 on the other clamping member 36 is formed on the side wall of the adjacent clamping member 36 on one side.
  • the number of clamping members 36 is equal to the number of sliding grooves 314, and the number of clamping members 36 needs to be no less than three and evenly distributed around the circumference of the base 1, otherwise the clamping members The rod 361 on the 36 cannot be inserted into the opening 362 on the adjacent clamping member 36.
  • the clamping member 36 when the first hydraulic cylinder 37 is not extended, the clamping member 36 is located far away from the center of the first hydraulic cylinder base 33. At this time, the end of the rod 361 on the clamping member 36 is slightly inserted In the opening 362 of the adjacent clamping member 36. As shown in Figure 23, when the first hydraulic cylinder 37 is extended, the first hydraulic cylinder 37 drives the clamping member 36 to move to the center of the first hydraulic cylinder base 33, and the rod 361 is inserted into the opening 362 to drive all the clamps. The holder 36 moves synchronously. Finally, the clamping member 36 is located close to the center of the first hydraulic cylinder base 33. At this time, the clamping member 36 can clamp the clamped member. Most of the rod 361 on the clamping member 36 is inserted into the opening 362 of the adjacent clamping member 36.
  • the friction between the side wall of the rod 361 and the opening 362 is reduced to prevent the rod 361 from being stuck in the opening 362, and the rod 361 faces adjacent
  • the diameter of the end of the clamping member 36 is not less than the diameter of the end of the rod 361 away from the adjacent clamping member 36. If the influence of friction is not considered, the diameter of the end of the rod 361 can be equal to the diameter of the rod.
  • the diameter of the end of the rod 361 facing the adjacent clamp 36 is larger than the diameter of the end of the rod 361 away from the adjacent clamp 36.
  • the end of the rod 361 facing the adjacent clamping member 36 may be in a spherical shape with a slightly larger diameter. In this way, only the end of the rod 361 has a larger diameter and is in contact with the side wall of the opening 362. In this way, the rod 361 is inserted In the process of opening the hole 362, the friction between the side wall of the rod body 361 and the opening 362 is greatly reduced.
  • the clamping member 36 has a first limiting opening 363 on the side wall facing the adjacent clamping member 36, and the adjacent clamping member 36 has a second limiting opening 363 on the side wall facing the clamping member 36.
  • the limit opening 364 one end of the return spring 315 is arranged in the first limit opening 363, and the other end of the return spring 315 is arranged in the second limit opening 364.
  • FIG. 26 is a schematic diagram of the return spring in the embodiment of the application in another implementation manner. As shown in FIG.
  • a return spring 315 capable of moving the clamping member 36 and the adjacent clamping member 36 outward in the radial direction may be provided.
  • One end of the return spring 315 abuts against a support point on the first hydraulic cylinder base 33 close to the center of the first hydraulic cylinder base 33, and the other end of the return spring 315 is connected to or against the clamping member 36 Connected support.
  • the return spring 315 expands, and the return spring 315 drives the clamping member 36 and the adjacent clamping member 36 away from the first hydraulic cylinder base.
  • the rod 361 moves out of the opening 362 to drive the clamping member 36 to move synchronously with the adjacent clamping member.
  • the stroke of each first hydraulic cylinder 37 is the same.
  • the present application also proposes a top-up and shackle device, which includes the hydraulic cylinder synchronous positioning device as described above, and the hydraulic cylinder synchronous positioning device is used to clamp the clamped parts, such as pipe strings, Tubing, drill pipe, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Actuator (AREA)

Abstract

一种上卸扣装置、回转液压驱动装置及液缸同步定位装置,其属于油气开发领域,上卸扣装置包括:基座(1);连接在基座(1)上的壳体(2),壳体(2)包括第一钳体(21)和第二钳体(22),第一钳体(21)和第二钳体(22)能进行转动以具有张开状态和合并状态;设置在环形空腔中的回转体(3),回转体(3)包括两个呈扇形的基座部件;在回转体(3)上安装有用于夹持的夹持件(36)和驱动夹持件(36)移动的第一液压油缸(37),回转体(3)的侧壁具有齿圈(35);能与齿圈(35)相啮合以驱动回转体(3)转动的动力机构(4)。

Description

上卸扣装置、回转液压驱动装置及液缸同步定位装置
交叉参考相关引用
本申请要求2019年8月07日提交的申请号为201910724778.X、2019年8月07日提交的申请号为201910724770.3、2019年8月07日提交的申请号为201910724951.6的中国专利申请的优先权,上述申请参考并入本文。
技术领域
本发明涉及油气开采技术领域,尤其涉及一种上卸扣装置、回转液压驱动装置及液缸同步定位装置。
背景技术
在油气开发过程中,特别是石油钻采作业中,需要完成大量螺纹连接的上扣操作,耗时耗力,因此,研制一种能完成上扣操作的高效自动化设备就成为一个备受关注的工程问题。
在目前的石油钻井作业中,螺纹连接上扣操作常用的设备是液压大钳和铁钻工。对于液压大钳而言,液压大钳自动化程度低,同时其采用纯机械方法夹持钻具,而且一种规格的钳头夹持管柱的尺寸范围有限。对于铁钻工而言,铁钻工的自动化程度较高,采用第一液压油缸驱动卡爪夹持管柱上扣,可以适应较大尺寸范围的钻具。但是,铁钻工的上扣操作需分步完成,使用两组夹持装置多次夹持钻具,该过程导致其效率较低。以进行上扣操作为例,铁钻工需先以较小的扭矩、较快的速度、一次夹持整圈连续回转完成旋扣操作,然后以较大的扭矩、较慢的速度、多次夹持多次小角度回转完成紧扣操作,这种分步操作存在着如下不足:小扭矩快速旋扣操作和大扭矩慢速紧扣两种操作至少需要两次夹持才能完成,效率大大降低;尤其是铁钻工大扭矩紧扣时,夹持住管柱后不能连续旋转,只能夹持一次转动一个小角度,然后夹持退回原位,再重新夹持重新旋转,如此反复,直至拧紧,是断续的旋转拧紧过程,效率较低。同时在铁钻工紧扣时,夹持机构必须设置一个缺口,作为被夹持件的管柱、油管、钻杆等进入操作中心的通道,夹持被夹持件并带动被夹持件旋转的卡爪安装支架缺口的存在会使卡爪的设置受到约束,卡爪数量减少,单个卡爪承担的扭矩增大,导致卡爪咬痕的深度增加。
此外,在石油机械的上卸扣装置中,使用液压缸带动卡爪夹持钻具进行操作的机构形式的应用较多,如拆装架、铁钻工等。该装置的基本结构是在一个盘式结构的圆周方向上均匀布置若干个第一液压油缸,第一液压油缸的轴线方向与盘式结构的径向方向一致。当油缸腔中充入液压流体时,液缸的移动端会向盘式结构的圆心位置移动,待夹持的钻具则设置于盘式结构的圆心位置处,如此,液缸移动最终接触钻具,施加压力夹持住钻具。但是,在上述过程中,一旦钻具最终 的夹持位置不位于盘式结构的中心位置,在钻具回转时就会由于偏心而造成钻具抖动,这样会对整个上卸扣装置造成一定的冲击影响,不利于该装置的长久使用。
发明内容
为了克服现有技术的上述缺陷,本申请实施例所要解决的技术问题是提供了一种上卸扣装置、回转液压驱动装置及液缸同步定位装置,其至少能够解决上述问题之一。
本发明的具体技术方案是:
一种上卸扣装置,所述上卸扣装置包括:
基座;
连接在所述基座上的壳体,所述壳体包括第一钳体和第二钳体,所述第一钳体和所述第二钳体能进行转动以具有张开状态和合并状态,在合并状态下,所述第一钳体和所述第二钳体具有环形空腔;
至少部分设置在所述环形空腔中的回转体,所述回转体在所述环形空腔中能够转动,所述回转体包括至少两个呈扇形的基座部件,所有所述基座部件合并在一起时呈圆形状;在所述回转体上安装有用于夹持的夹持件和驱动所述夹持件移动的第一液压油缸,回转体的侧壁具有齿圈;
能与所述齿圈相啮合以驱动所述回转体转动的动力机构。
一种回转设备液压驱动装置,所述回转设备液压驱动装置包括:
壳体,所述壳体具有环形空腔;
回转体,其至少部分设置在所述壳体环形空腔中,所述回转体在所述环形空腔中能够相对于所述壳体转动,所述回转体的侧壁上具有齿圈,所述回转体的侧壁上具有开口;
夹持件,其设置于所述回转体上以实现夹持功能;
动力机构,其能与所述齿圈相啮合并驱动所述回转体相对所述壳体转动;
液压系统,其设置于所述回转体上,其用于驱动所述夹持件移动以及实现所述夹持件对被夹持件的夹持功能,所述液压系统至少包括:驱动动力液流动的泵、驱动所述夹持件的第一液压油缸;
设置于所述壳体上的导轨、马达以及第二液压油缸,所述马达设置在所述导轨上并能在所述导轨上滑动,所述第二液压油缸两端分别与所述壳体和所述马达连接以驱动所述马达在所述导轨上滑动,实现所述马达与所述回转体上所述泵的连接和脱离,当所述马达与所述泵连接时,可驱动所述回转体上所述液压系统运转,实现夹持件对被夹持件的夹持和释放功能,所述泵和所述马达通过所述回转体上的所述开口实现连接和脱离;
所述回转设备液压驱动装置至少具有两种状态:在第一种状态下,所述第二液压油缸驱动所述马达与所述泵相脱离,所述回转体与所述壳体之间能相对转动;在第二种状态下,所述第二液 压油缸驱动所述马达在所述导轨上滑动并与所述泵连接,以使所述马达能驱动所述液压系统中的所述泵运转。
一种液压缸同步定位装置,所述液压缸同步定位装置用于夹持被夹持件,所述液压缸同步定位装置包括:
第一液压缸基座,所述第一液压缸基座上形成有多个沿径向方向延伸的滑槽;
设置在所述滑槽中第一液压油缸以及所述第一液压油缸驱动的夹持件,所述夹持件能在所述滑槽中沿所述第一液压缸基座的径向方向移动,所述夹持件轴线的一侧设置有朝向该侧相邻夹持件的杆体,另一侧则设置有能使另一侧相邻夹持件上所述杆体插入的开孔,所述开孔的轴线与该开孔所在夹持件轴线的锐角夹角等于所述夹持件上杆体的轴线与所述夹持件的轴线的锐角夹角,两者均等于90度-180度/夹持件的个数。
一种上卸扣装置,所述上卸扣装置包括如上述所述的液压缸同步定位装置,所述液压缸同步定位装置用于夹持被夹持件。
1.本申请上卸扣装置,在整个过程中,夹持机构能整圆连续旋转,无需松开被夹持件退回原位,重新夹持再旋转,因此,该上卸扣装置大大提高了上扣或卸扣的作业效率,同时,被夹持件从壳体的侧方直接进入回转体后,回转体闭合后形成无缺口的整圆,安装在回转体上的夹持件能够周向均匀的夹住被夹持件,避免某一方向上的夹持件对被夹持件的作用力过大而导致咬痕残留在被夹持件的侧壁上。
2.本申请的上卸扣装置液压驱动装置,实现了回转体上的夹持件能够通过自动化的液压控制实现对被夹持件的夹持操作,且外部的动力机构能够直接通过齿圈以驱动回转体转动从而最终达到各种被夹持件上扣和卸扣等拧螺纹操作。
3.本申请的上卸扣装置液压驱动装置,实现了回转体上的夹持件能够通过自动化的液压控制实现对被夹持件的夹持操作,且外部的动力机构能够直接通过齿圈以驱动回转体转动从而最终达到各种被夹持件上扣和卸扣等拧螺纹操作。
附图说明
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图1为本申请实施例中上卸扣装置张开状态下的示意图;
图2为本申请实施例中上卸扣装置合并状态下的示意图;
图3为本申请实施例中回转体中基座部件的示意图;
图4为本申请实施例中回转体的第一齿轮总成与第一钳体定位下的结构示意图;
图5为本申请实施例中回转体的第一齿轮总成与第一钳体之间能够转动下的结构示意图;
图6为本申请实施例中回转体中第一齿轮总成与第二齿轮总成未锁死的示意图;
图7为本申请实施例中回转体中第一齿轮总成与第二齿轮总成锁死的示意图;
图8为本申请实施例中换向圈机构驱动换向机构压住换向阀的示意图;
图9为本申请实施例中换向圈机构驱动换向机构松开换向阀的示意图;
图10为本申请实施例中第一齿轮总成中锁紧件处的结构示意图;
图11为本申请实施例中换向圈机构的定位销插入回转体上的开孔的示意图;
图12为本申请实施例中换向圈机构的定位销脱离回转体上的开孔的示意图;
图13为本申请实施例中一半回转体的部分结构示意图,图中未示出回转体的齿圈和液压部件等部分结构;
图14为本申请实施例中马达与泵处于连接时结构示意图;
图15为本申请实施例中马达与泵处于脱离时结构示意图;
图16为本申请实施例中液压系统在第一种实施方式下的系统图;
图17为本申请实施例中液压系统在第二种实施方式下的系统图;
图18为本申请实施例中液压系统在第三种实施方式下的系统图;
图19为本申请实施例中液压系统在第四种实施方式下的系统图;
图20为本申请实施例中液压缸同步定位装置的立体示意图;
图21为本申请实施例中部分液压缸同步定位装置的结构示意图;
图22为本申请实施例中部分液压缸同步定位装置处于初始位置下的剖面图;
图23为本申请实施例中部分液压缸同步定位装置处于终点位置下的剖面图;
图24为本申请实施例中液压缸同步定位装置具有6个液压缸下的部分结构示意图;
图25为本申请实施例中液压缸同步定位装置具有6个液压缸下的剖面图;
图26为本申请实施例中复位弹簧在又一种实施方式中的示意图。
以上附图的附图标记:
1、基座;2、壳体;21、第一钳体;22、第二钳体;3、回转体;31、第一基座部件;32、第二基座部件;33、第一液压缸基座;331、基座部件;34、第一齿轮总成;35、齿圈;36、夹持件;361、杆体;362、开孔;363、第一限位口;364、第二限位口;37、第一液压油缸;38、锁紧件;39、缺口;310、开孔;311、第二齿轮总成;312、第二液压缸基座;313、弹性件;314、滑槽;315、复位弹簧;40、摆动液压缸;41、套筒;411、通孔;42、定位杆;43、弹簧;44、顶举液压缸;45、换向机构;451、连动杆;452、复位弹簧;453、转动杆;46、换向阀;47、顶举件;4、动力机构;51、第一液压缸;52、第二液压缸;6、换向圈机构;61、定位销;7、 换向圈液压缸;8、回转中心线;9、泵;10、马达;11、第二液压油缸;12、导轨;13、油箱;14、单向阀;15、第一插装阀;16、压力传感器;17、第一换向阀;18、蓄能器;19、第二插装阀;20、溢流阀;25、第二换向阀;26、分支压力传感器;23、减压阀;24、第三换向阀。
具体实施方式
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。
为了能够一次夹持就完成整个上卸扣操作,同时夹持机构能整圆连续旋转,使得效率极大提高;另外,整个装置采用剖分式结构,从而使得被夹持件能够从壳体的侧方直接进入回转体,整个装置闭合后形成无缺口的整圆,且卡爪可均匀的分布于被夹持件周围不受钳体结构的影响,在本申请实施例中提出了一种上卸扣装置,图1为本申请实施例中上卸扣装置张开状态下的示意图,图2为本申请实施例中上卸扣装置合并状态下的示意图,如图1和图2所示,上卸扣装置可以包括:基座1;连接在基座1上的壳体2,壳体2包括第一钳体21和第二钳体22,第一钳体21和第二钳体22能进行转动以具有张开状态和合并状态,在合并状态下,第一钳体21和第二钳体22具有环形空腔;至少部分设置在环形空腔中的回转体3,回转体3在环形空腔中能够转动,回转体3包括至少两个呈扇形的基座部件,所有基座部件合并在一起时呈圆形状;在回转体3上安装有用于夹持的夹持件36和驱动夹持件36移动的第一液压油缸37,回转体3的侧壁具有齿圈35;能与齿圈35相啮合以驱动回转体3转动的动力机构4。
当本申请中的上卸扣装置需要对被夹持件进行上扣或卸扣操作时,将基座1上的壳体2中的第一钳体21和第二钳体22转动至张开状态,与此同时,回转体3的至少两个基座部件也处于分开状态,从而使得被夹持件从壳体2的侧方放入至第一钳体21和第二钳体22之间,进而进入至回转体3的基座部件之间,至被夹持件的轴线与回转中心线8重合位置。然后,将壳体2的第一钳体21和第二钳体22进行转动,使得两者至合并状态;同时,回转体3上安装的第一液压油缸37伸出驱动用于夹持的夹持件36,使得夹持件36夹住基座部件中的被夹持件。由于所有基座部件合并在一起时呈圆形状,因此,回转体3在壳体2的环形空腔中能够转动。于是,通过动力机构4与回转体3上的齿圈35相啮合从而驱动回转体3转动。当回转体3转动时,其带动被夹持件旋转,直至被夹持件完成上扣或卸扣操作。最后,回转体3上安装的第一液压油缸37收缩驱动用于夹持的夹持件36,使得夹持件36松开基座部件中的被夹持件;基座1上的壳体2中的第一钳体21和第二钳体22再转动至张开状态,与此同时,回转体3的至少两个基座部件也处于分开状态,从而使得被夹持件从第一钳体21和第二钳体22之间、基座部件之间移出。
在整个过程中,夹持机构能整圆连续旋转,无需松开被夹持件退回原位,重新夹持再旋转,因此,该上卸扣装置大大提高了上扣或卸扣的作业效率,同时,被夹持件从壳体2的侧方直接进入回转体3后,回转体3闭合后形成无缺口39的整圆,安装在回转体3上的夹持件36能够周向均匀的夹住被夹持件,避免某一方向上的夹持件36对被夹持件的作用力过大。
为了能够更好的了解本申请中的上卸扣装置,下面将对其做进一步解释和说明。如图1和图2所示,基座1用于支撑住整个壳体2,其与壳体2相连接。壳体2连接在基座1上,壳体2可以为基本对称结构。具体而言,壳体2可以包括第一钳体21和第二钳体22。第一钳体21和第二钳体22分别大体呈半圆环状。第一钳体21与基座1相铰链连接,第二钳体22与基座1相铰链连接,第一钳体21与第二钳体22位于同一平面且相对称设置。第一钳体21和第二钳体22能进行转动以具有张开状态和合并状态,在合并状态下,第一钳体21和第二钳体22具有环形空腔。
当第一钳体21、第二钳体22转动至相对面相贴合时两者处于合并状态,在合并状态下,第一钳体21和第二钳体22具有环形空腔,环形空腔中用于安装回转体3。当第一钳体21、第二钳体22转动至相对面相远离时两者处于张开状态,第一钳体21和第二钳体22之间具有开口,被夹持件能通过该开口在水平方向上移入至壳体2的回转体3中。第一钳体21和第二钳体22的中间沿竖直方向为被夹持件的回转中心线8,钳体闭合后钳体的中心与回转中心8重合。
为了实现第一钳体21、第二钳体22转动的自动化控制,从而使得壳体2在张开状态和合并状态下切换,如图1和图2所示,第一钳体21的侧壁与基座1之间设置有第一液压缸51,第一液压缸51的一端与第一钳体21的侧壁相铰链连接,第一液压缸51的另一端与基座1相铰链连接;第二钳体22的侧壁与基座1之间设置有第二液压缸52,第二液压缸52的一端与第二钳体22的侧壁相铰链连接,第二液压缸52的另一端与基座1相铰链连接。当需要将第一钳体21、第二钳体22切换至张开状态下时,将第一液压缸51和第二液压缸52缩短,从而使得第一钳体21、第二钳体22向相互背离的方向转动,第一钳体21和第二钳体22之间具有开口,被夹持件能通过该开口在水平方向上移入至壳体2的回转体3中或从壳体2的回转体3中移出;当需要将第一钳体21、第二钳体22切换至合并状态下时,将第一液压缸51和第二液压缸52伸长,从而使得第一钳体21、第二钳体22向相互朝向的方向转动,最终使得第一钳体21、第二钳体22的相对面相贴合。
图3为本申请实施例中回转体中基座部件的示意图,如图1至图3所示,回转体3大体设置在环形空腔中。整个回转体3的边缘呈圆形,如此,回转体3在环形空腔中能够转动。回转体3包括至少两个呈扇形的基座部件,所有基座部件合并在一起时呈圆形状。在一种可行的实施方式中,回转体3包括两个呈半圆形的基座部件,两个基座部件合并在一起时呈圆形状。在回转体3上安装有用于夹持的夹持件36和驱动夹持件36移动的第一液压油缸37。夹持件36绕回转体3 的中心呈放射状分布,回转体3上具有沿基座部件径向延伸的滑槽314,夹持件36设置在滑槽314中并能够在滑槽314中移动。第一液压油缸37可以也设置在滑槽314中,其一端与夹持件36相连接,另一端固定,如此,第一液压油缸37能够驱动夹持件36在滑槽314中移动,进而使得夹持件36能够夹持住放置在回转体3中心处的被夹持件。基座部件上可以设置有使得夹持件36向第一液压油缸37方向缩回的弹性件313。回转体3包括至少两个呈扇形的基座部件,如此,基座部件可以相互分离,当壳体2的第一钳体21和第二钳体22转动至张开状态下时,不同的基座部件也随着第一钳体21和第二钳体22分离。例如,当基座部件总共为两个时,一个基座部件跟随第一钳体21移动,另一个基座部件跟随第二钳体22移动。
图6为本申请实施例中回转体中第一齿轮总成与第二齿轮总成未锁死的示意图,图7为本申请实施例中回转体中第一齿轮总成与第二齿轮总成锁死的示意图,如图6和图7所示,回转体3的侧壁上具有齿圈35,该齿圈35回绕在回转体3的侧壁一周,从而使得动力机构4能够驱动回转体3转动。如图1和图2所示,动力机构4可以安装在壳体2上,例如,动力机构4可以为马达,马达的输出轴上设置有齿轮,齿轮与齿圈35相啮合,从而使得马达的转动带动回转体3在壳体2内的环形空腔中转动。
在一种可行的实施方式中,如图1所示,回转体3可以包括第一基座部件31和第二基座部件32,第一基座部件31包括:第一液压缸基座33;设置在第一液压缸基座33外侧壁处的第一齿轮总成34,部分齿圈35位于第一齿轮总成34的外侧壁。第一液压缸基座33与第一齿轮总成34可以固定连接或卡接在一起,以保证第一齿轮总成34能带动第一液压缸基座33转动。第二基座部件32包括:第二液压缸基座312;设置在第二液压缸基座312外侧壁处的第二齿轮总成311,部分齿圈35位于第二齿轮总成311的外侧壁。第二液压缸基座312与第二齿轮总成311可以固定连接或卡接在一起,以保证第二齿轮总成311能带动第二液压缸基座312转动。如图3所示,第一液压缸基座33、第二液压缸基座312上可以用于安装夹持件36。
如图6和图7所示,第一齿轮总成34朝向第二齿轮总成311的一端端部具有凸出的锁紧件38。例如,锁紧件38可以呈花键轴状。第二齿轮总成311朝向第一齿轮总成34的锁紧件的端部具有与锁紧件38相配合的缺口39。例如,缺口39可以呈花键槽状。锁紧件38能穿过缺口39。图10为本申请实施例中第一齿轮总成中锁紧件处的结构示意图,如图10所示,锁紧件38的尾部连接有摆动液压缸40,摆动液压缸40能带动锁紧件38转动以使锁紧件38锁死在缺口39中。当壳体2的第一钳体21和第二钳体22合并时,回转体3的第一基座部件31和第二基座部件32也合并在一起形成一整圆,此时,需要将第一基座部件31和第二基座部件32的端部相互固定。将第一齿轮总成34的锁紧件38插入至第二齿轮总成311的缺口39中,然后,开启摆动液压缸40,摆动液压缸40转动,从而使得锁紧件38转动一定角度,进而使得锁紧件38与缺口39形成错位,两者无法分离。摆动液压缸40的压力液可以取自与驱动夹持件36移动的第一液压油缸 37的液控系统。同理,所述第一齿轮总成的另一端端部也可以为缺口,所述第二齿轮总成的另一端端部也可以为凸出的锁紧件。
由于动力机构4带动回转体3在壳体2的环形空腔转动,当转动停止后,回转体3与壳体2之间的相对位置无法准确确定,因此大部分情况下可能出现,第一钳体21朝向第二钳体22的端面、回转体3中不同基座部件之间的端面不会位于同一平面上,如此,壳体2的第一钳体21和第二钳体22不易张开,且回转体3中夹持的被夹持件不能从回转体3中通过第一钳体21和第二钳体22的侧方移出。所以,在回转体3停止转动后,需要将回转体3与壳体2转动调整至第一钳体21朝向第二钳体22的端面、第一齿轮总成34朝向第二齿轮总成311的端面、第一液压缸基座33朝向第二液压缸基座312的端面位于同一平面。所述第二钳体朝向所述第一钳体的端面、所述第二齿轮总成朝向所述第一齿轮总成的端面、所述第二液压缸基座朝向所述第一液压缸基座的端面位于同一平面。
在一种可行的实施方式中,图4为本申请实施例中回转体的第一齿轮总成与第一钳体定位下的结构示意图,图5为本申请实施例中回转体的第一齿轮总成与第一钳体之间能够转动下的结构示意图,如图4和图5所示,第一钳体21底壁具有一凹陷部,第一齿轮总成34内设置有套筒41,套筒41具有沿竖直方向开设的通孔411,通孔411内设置有定位杆42以及使得定位杆42具有向下移动趋势的弹簧43,第一钳体21内设置有顶举液压缸44,顶举液压缸44与顶举件47传动连接,顶举件47的顶举部位于凹陷部中并位于定位杆42的下方,顶举液压缸44能带动顶举件47向上移动以使定位杆42的底部脱离凹陷部。第一钳体21、第一钳体21的底壁托住回转体3的第一齿轮总成34和第二齿轮总成311。如图5所示,当动力机构4需要带动回转体3转动时,顶举液压缸44能带动顶举件47向上移动,以使定位杆42的底部脱离凹陷部。此时顶举件47抵住定位杆42的端面与第一钳体21底壁相平,如此,动力机构4能带动回转体3持续转动,定位杆42经过凹陷部时不会卡入至凹陷部中。如图4所示,当转动停止后,需要将回转体3与壳体2之间的相对位置进行准确确定时,将顶举液压缸44能带动顶举件47向下移动,第一钳体21底壁上的凹陷部露出,此时,当再通过动力机构4带动回转体3慢慢转动,当回转体3上的定位杆42移动至凹陷部处时,在弹簧43的作用下,定位杆42下移卡入凹陷部,此时,回转体3与壳体2完成定位,无法继续转动。当定位杆42嵌入凹陷部时,第一钳体21朝向第二钳体22的端面、第一齿轮总成34朝向第二齿轮总成311的端面、第一液压缸基座33朝向第二液压缸基座312的端面位于同一平面。这样以后,壳体2的第一钳体21和第二钳体22能够张开,且回转体3中夹持的被夹持件能从回转体3中通过第一钳体21和第二钳体22的侧方移出。
在一种可行的实施方式中,图8为本申请实施例中换向圈机构驱动换向机构压住换向阀的示意图,图9为本申请实施例中换向圈机构驱动换向机构松开换向阀的示意图,如图8和图9所示,上卸扣装置可以包括:设置在壳体2上的换向圈机构6,其至少包括与第一钳体21相配合的第 一换向圈和与第二钳体22相配合的第二换向圈;控制换向圈机构6与壳体2之间距离的换向圈液压缸7;设置在第一齿轮总成34或第二齿轮总成311中的换向机构45和换向阀46,换向圈机构6在靠近或远离壳体2时能驱动换向机构45,以使换向机构45控制换向阀46进行切换。第一换向圈大体呈半圆环状,其设置在第一钳体21的上方;同理,第二换向圈大体呈半圆环状,其设置在第二钳体22的上方。换向圈液压缸7与换向圈机构6相连接,其用于控制换向圈机构6与换向圈液压缸7之间的距离,换向圈机构6可以是两个,一个设置在第一钳体21处,另一个设置在第二钳体22处。
如图8和图9所示,换向机构45可以包括:连动杆451,连动杆451的上端位于换向圈机构6的下方;复位弹簧452,复位弹簧452的一端抵住第一齿轮总成34或第二齿轮总成311,复位弹簧452的另一端抵住连动杆451;转动杆453,转动杆453的一端与连动杆451相铰链连接,转动杆453能绕其两端之间的一点进行转动,以使转动杆453的另一端能压住或松开换向阀46。换向机构45可位于第一齿轮总成34上,也可以位于第二齿轮总成311上。
图11为本申请实施例中换向圈机构的定位销插入回转体上的开孔的示意图,图12为本申请实施例中换向圈机构的定位销脱离回转体上的开孔的示意图,如图11和图12所示,回转体3上具有开孔310,换向圈机构6上具有能插入开孔310的定位销61。换向阀46用于控制回转体3上第一液压油缸37的充油和泄油,其至少具有两个状态,在第一状态下,换向圈机构6远离壳体2,定位销61脱离开孔310,连动杆451上移,转动杆453的另一端能压住换向阀46,第一液压油缸37处于充油状态;在第二状态下,换向圈机构6靠近壳体2,换向圈机构6压住连动杆451下移,转动杆453的另一端松开换向阀46,第一液压油缸37处于泄油状态。当第一钳体21朝向第二钳体22的端面、第一齿轮总成34朝向第二齿轮总成311的端面、第一液压缸基座33朝向第二液压缸基座312的端面位于同一平面时,定位销61插入在开孔310中。
由于回转体3需要进行不停的周向旋转,因此不易通过具有连接导线的电控方式对安装在回转体3上的换向阀46进行控制从而实现第一液压油缸37的充油和泄油,从而需要在壳体2上设置相应的换向圈机构6以触发换向阀46的切换。如图8所示,换向机构45处于压住换向阀46的状态,换向圈液压缸7处于全伸出状态,换向圈机构6处于最高位置,如图12所示,定位销61脱离开孔310,回转体3与壳体2之间能够转动。换向圈机构6与换向机构45中的连动杆451分离,连动杆451在复位弹簧452的作用下顶升,从而触发转动杆453转动进而下压换向阀46,进而触发换向阀46切换,之后,回转体3中的液控系统向驱动夹持件36的第一液压油缸37充入压力液,夹持件36向回转中心线8移动。回转体3绕回转中心旋转时,换向机构45、换向圈机构6仍保持现有状态。
如图9所示,换向机构45处于松开换向阀46的状态,回转体3绕回转中心线8旋转后,会停留在绕回转中心线8周围的任意角度,即壳体2上第一钳体21、第二钳体22相对的端面与第 一液压缸基座33、第二液压缸基座312相对的端面可能不重合。由于换向圈机构6为圆环状结构,无论回转体3停留在哪个位置,换向圈机构6在换向圈液压缸7的作用下下压一定高度,都会接触到换向机构45的连动杆451上,连动杆451下移,复位弹簧452压缩,转动杆453转动翘起,转动杆453与换向阀46松开,驱动夹持件36的第一液压油缸37泄压,夹持件36移动松开被夹持件,实现夹持件36与被夹持件的分离。随着换向圈机构6与回转体3之间的相对转动,当换向圈机构6上的定位销61移动至回转体3上的开孔310处时,如图11所示,换向圈机构6在换向圈液压缸7的作用下再下压一定高度,使得定位销61穿过壳体2插入回转体3的侧壁的齿圈35中的开孔310中,从而阻止了壳体2与回转体3的相对转动;同时,使得第一钳体21朝向第二钳体22的端面、第一齿轮总成34朝向第二齿轮总成311的端面、第一液压缸基座33朝向第二液压缸基座312的端面位于同一平面。
在本申请中还公开了一种上卸扣装置的操作方法,该操作方法包括以下步骤:
根据需要连接的被夹持件的直径,选择合适规格的第一液压缸基座33安装于回转体3内,不同的液压缸基座上安装同规格的夹持件36和第一液压油缸37。被夹持件可以是管柱、油管、钻杆等等需要进行上扣和卸扣的部件。上卸扣装置初始状态为第一钳体21和第二钳体22处于张开状态,可以张开到最大位置,如图1所示。此时,在一种可行的实施方式中,换向圈机构6靠近壳体2,换向机构45处于松开换向阀46的状态,定位销61穿过壳体2插入回转体3的侧壁的齿圈35中的开孔310,如图9所示。换向圈机构6上布置有定位销61的,定位销61插入至开孔310中,处于图11所示状态。在另一种可行的实施方式中,回转体3的第一齿轮总成34与第一钳体21处于定位下,定位杆42插入壳体2的凹陷部中,如图4所示。
当被夹持件运动到回转体3的中心与闭合后的壳体2的回转中心线8重合的位置后,第一液压缸51和第二液压缸52伸出,第一钳体21和第二钳体22绕着基座1上各自的轴心回转,随着第一液压缸51和第二液压缸52的转动,第一齿轮总成34和第二齿轮总成311端部的锁紧件38穿过对称的缺口39,进入相对齿轮总成的内部。第一钳体21和第二钳体22完全闭合后,锁紧件38完全进入对侧齿轮总成的缺口39,如图6所示。驱动摆动液压缸40使锁紧件38转动一定角度,使锁紧件38无法从缺口39中脱出,从而使得第一齿轮总成34和第二齿轮总成311连接为一个整环结构,如图7所示。在一种可行的实施方式中,顶举液压缸44带动顶举件47上升使定位杆42脱离壳体2的凹陷部,从而将壳体2与回转体3的齿轮总成的定位状态解除,如图5所示。在另一种可行的实施方式中,换向圈机构6在换向圈液压缸7的作用下上移,换向机构45在复位弹簧452的作用下移动到最上方,转动杆453下压,与换向阀46接触,如图8所示。换向圈机构6上的定位销61完全从齿轮总成的开孔310中拔出,如图12所示。齿轮总成上的液压系统工作,驱动第一液压油缸37使夹持件36向被夹持件移动,直到夹持件36夹持住被夹持件。完成夹持后,动力机构4带动齿轮总成上的齿圈35进行回转操作,使得被夹持件进行上扣 操作或卸扣操作。
完成上扣操作或卸扣操作后,动力机构4停止回转,此时回转体3中齿轮总成的停止位置可以在360度范围之内的任何位置,即可能不一定与壳体2的第一钳体21和第二钳体22相对的端面相重合。在一种可行的实施方式中,换向圈液压缸7缩回,换向圈机构6向下移动一段距离,换向圈机构6与换向机构45中的定位杆42接触并下压,复位弹簧452压缩,转动杆453上抬,与换向阀46脱开,如图9所示。换向阀46控制齿轮总成上的液压系统使第一液压油缸37的压力释放,夹持件36在液压缸基座1内部的弹性件313的作用下回到初始位置。随后动力机构4带动回转体3旋转,当定位销61随着回转体3回转到开孔310时,带有定位销61的换向圈机构6下压到低位,定位销61插入到齿轮总成上的齿圈35中的开孔310中,实现齿轮总成与壳体2的锁紧,如图11所示。在另一种可行的实施方式中,顶举件47在顶举液压缸44的带动下下降到最低位置,随后动力机构4带动回转体3旋转,当定位杆42随着回转体3回转到壳体2上的凹陷部时,定位杆42被弹簧43压入壳体2上的凹陷部中,如图4所示,此时第一钳体21朝向第二钳体22的端面、第一齿轮总成34朝向第二齿轮总成311的端面、第一液压缸基座33朝向第二液压缸基座312的端面位于同一平面,动力机构4停止回转。齿轮总成上的锁紧件38在摆动液压缸40的作用下反向旋转到可从缺口39中脱出的位置,如图6所示。第一液压缸51和第二液压缸52带动第一钳体21和第二钳体22分别绕基座1上各自的轴心回转,第一钳体21和第二钳体22张开,被夹持件能够从壳体2的侧方移出回转体3。通过上述步骤即完成了一次操作。
在安装在回转体上的夹持件在夹持液压系统下夹持住被夹持件的前提下,为了回转体能够进行转动从而进行上扣或卸扣等操作,在本申请中提出了一种回转设备液压驱动装置,图13为本申请实施例中一半回转体的结构示意图,图14为本申请实施例中马达与泵处于连接时结构示意图,图15为本申请实施例中马达与泵处于脱离时结构示意图,如图1、图13至图15所示,该回转设备液压驱动装置可以包括:壳体2,壳体2具有环形空腔;回转体3,其至少部分设置在壳体2的环形空腔中,回转体3在壳体2中能够相对于4壳体转动,回转体3的侧壁上具有齿圈,回转体3的侧壁上具有开口;夹持件36,其设置于回转体3上以实现夹持功能;动力机构4,其能与齿圈相啮合并驱动回转体3相对壳体2转动绕回转中心线8;液压系统,其设置于回转体3上,其用于驱动夹持件36移动以及所述夹持件36对被夹持件的夹持功能,液压系统中至少包括:驱动动力液流动的泵9、驱动所述夹持件的第一液压油缸37;设置于壳体2上的导轨12、马达10以及第二液压油缸11,马达10设置在导轨12上并能在导轨12上滑动,第二液压油缸11两端分别与壳体2和马达10连接以驱动马达10在导轨12上滑动,实现马达10与回转体3上泵9的连接和脱离,当马达10与泵9连接时,可驱动回转体3上液压系统运转,实现夹持件36对被夹持件的夹持和释放功能,泵9和马达10通过回转体3上的开口实现连接和脱离;回转设备液压驱动装置至少具有两种状态:在第一种状态下,第二液压油缸11驱动马达10与泵9相脱离, 回转体3与壳体2之间能相对转动;在第二种状态下,第二液压油缸11驱动马达10在导轨12上滑动并与泵9连接,以使马达10能驱动液压系统中的泵9运转。
当回转设备液压驱动装置需要夹持被夹持件进行回转以进行拧螺纹操作时,将被夹持件放入至回转体3中,通过第二液压油缸11驱动马达10在导轨12上滑动以使马达10与回转体3上的泵9相对接。通过马达10转动以驱动泵9运行,从而使得驱动泵9从油箱13吸油并压油至回转体3上的第一液压油缸37中,进而第一液压油缸37带动夹持件36移动并夹持住被夹持件。当夹持件36夹持住被夹持件后,第二液压油缸11驱动马达10在导轨12上滑动以使马达10与回转体3上的泵9相脱离,如此,整个回转体3能在壳体2中转动。动力机构4通过齿圈进行传动以驱动回转体3进行旋转,从而使得回转体3上的夹持件36带动被夹持件完成旋转动作,待被夹持件完成旋转动作后,泄除第一液压油缸37中的压力,以使得回转体3上的夹持件36向远离被夹持件方向运动,对被夹持件进行释放动作。
通过回转设备液压驱动装置具有两种状态,即在第一种状态下,马达10与泵9相脱离,回转体3与壳体2之间能相对转动;在第二种状态下,第二液压油缸11驱动马达10在导轨12上滑动至与泵9相连接,以使马达10能驱动泵9运转。由于回转体3需要进行转动,因此,马达10等动力装置无法直接安装在回转体3上,否则在回转体3转动时,外部与马达10相连接的供电或者供液线路等就会限制回转体3的转动。通过上述方式实现了回转体3上的夹持件36能够通过自动化的液压控制实现对被夹持件的夹持操作,且外部的动力机构4能够直接通过齿圈以驱动回转体3转动从而最终达到各种管柱、套管、钻杆等被夹持件上扣和卸扣等拧螺纹操作。
为了能够更好的了解本申请中的回转设备液压驱动装置,下面将对其做进一步解释和说明。如图1所示,壳体2可以大致为环形的箱型结构,其用于固定动力机构4并支撑其它结构。壳体2的中部具有一环形空腔,该空腔为允许被夹持件穿过,被夹持件可以沿壳体2的轴线方向穿过壳体2。壳体2的箱体内部的空腔可用于安装回转体3。在一种可行的实施方式中,壳体2可以由第一半钳体和第二半钳体构成,第一半钳体和第二半钳体分别通过铰链连接的方式连接在基座上,如此第一半钳体和第二半钳体能够绕基座进行一定角度的转动,这样以后,第一半钳体和第二半钳体的侧面能够张开一开口,被夹持件能够从侧面的开口处移动进入至环形空腔内的回转体3中。
如图1所示,回转体3至少部分设置在空腔中。回转体3在环形空腔中绕自身的回转中心线8能够转动。回转体3可以包括液压油缸基座,其可以为一整个呈圆形的盘式结构或由多个呈扇形的基座部件合并组成的盘式结构。当液压油缸基座为多个呈扇形的基座部件合并组成的盘式结构时,基座部件之间可以可拆卸连接,从而形成一个整个呈圆形的盘式结构。回转体3的侧壁上具有齿圈,该齿圈用于与动力机构4相啮合,从而使得动力机构4能通过齿圈带动回转体3转动。
在一个具体的实施例中,如图13所示,液压油缸基座由两个呈半圆形的基座部件合并组成, 从而形成整个的圆形盘式结构。整个液压油缸基座的中部具有沿竖直方向的贯穿孔,以供被夹持件穿过。当液压油缸基座为多个呈扇形的基座部件合并组成时,液压油缸基座可以被分开,从而使得被夹持件能够从侧边放入至液压油缸基座的中部的贯穿孔中。
如图13所示,液压油缸基座上形成有多个沿径向方向延伸的滑槽314。滑槽314可以绕液压油缸基座的轴线呈圆周均匀分布。滑槽314至少为2个,每一个滑槽314中设置有第一液压油缸37和夹持件36,第一液压油缸37的一端与液压油缸基座相抵或相固定,第一液压油缸37的另一端驱动夹持件36,从而使得夹持件36能在滑槽314中沿回转体3的径向方向移动。当第一液压油缸37进行充油时,第一液压油缸37伸长,从而推动夹持件36向液压油缸基座的中心的方向移动。夹持件36可以是具有夹持功能的卡爪,或夹持件36包括安装座以及安装在安装座上的卡爪,当然,卡爪和安装座可以一体化成型。夹持件36与液压油缸基座之间可以设置有能使夹持件36沿径向方向向外移动的弹性件313。弹性件313的一端抵住液压油缸基座上靠近液压油缸基座中心的一支撑点,弹性件313的另一端与夹持件36相连接或抵住与夹持件36相连接的支撑件。当第一液压油缸37中的液压油压力卸载后,弹性件313伸长,弹性件313驱动夹持件36向背离液压油缸基座的中心的方向移动,此时,夹持件36松开被夹持件。
如图1所示,动力机构4安装于壳体2上,其可以按要求驱动回转体3旋转。例如,动力机构4可以是能够通电或通液进行转动的装置,例如电机、液压马达等,其通过齿轮与齿圈相啮合以驱动回转体3转动。
在回转体3中安装有对第一液压油缸37进行供油和保压的液压系统,液压系统中至少包括:用于驱动动力液流动的泵9。图14为本申请实施例中马达与泵处于连接时结构示意图,图15为本申请实施例中马达与泵处于脱离时结构示意图,如图14和图15所示,壳体2上设置有导轨12、马达10以及第二液压油缸11,其中,马达10设置在导轨12上,第二液压油缸11驱动马达10在导轨12上滑动。第二液压油缸11能进行伸缩的一端与马达10相传动连接,当第二液压油缸11活塞伸出时,马达10在导轨12上向壳体2的中心滑动以与泵9相对接。回转体3的侧壁上具有开口,泵9和马达10通过开口实现对接。具体而言,夹持导轨12固定连接在壳体2内底面上。第二液压油缸11一端与壳体2连接,另一端与马达10连接。马达10安装在导轨12上能够沿导轨12滑动,可由第二液压油缸11推动马达10在导轨12上滑动。第二液压油缸11处于收缩状态时,马达10不与回转体3发生碰触。泵9设置在回转体3内部,与回转体3固定连接,为第一液压油缸37提供动力液。回转体3上与泵9位置对应的外侧壁设置有开口,开口随回转体3转动至与马达10对应的位置时,马达10由第二液压油缸11带动可经由开口进入回转体3内部,与泵9同轴机械连接。马达10为泵9提供动力,泵9在马达10的带动下回转。当然的,在其它实施方式中,也可以是当所述第二液压油缸伸长时,所述马达在所述导轨上向背向所述壳体的中心方向滑动以与所述泵相脱离;当所述第二液压油缸缩短时,所述马达在所述导轨上向所述壳体的中心滑动以与所述泵相对接。
如图15所示,第二液压油缸11带动马达10与回转体3上的泵9相脱离,马达10脱离回转体3的回转范围。回转体3可带动泵9与液压系统的其它部件回转。
当第二液压油缸11活塞缩回时,马达10在导轨12上向背向壳体2的中心方向滑动以与泵9相脱离。通过上述结构使得回转设备液压驱动装置至少具有两种状态,在第一种状态下,马达10与泵9相脱离,回转体3与壳体2之间能相对转动;在第二种状态下,第二液压油缸11驱动马达10在导轨12上滑动至与泵9相连接,以使马达10能驱动泵9运转。
由于第一液压油缸37位于回转体3上随着回转体3绕其轴线转动,第一液压油缸37无法通过外部液压源为第一液压油缸37进行供油,因此,通过液压系统和设置在壳体2上的导轨12、马达10以及第二液压油缸11的配合从而使得马达10能够驱动泵9转动进行让泵9能对回转体3上的第一液压油缸37供油。
在一种可行的实施方式中,图16为本申请实施例中液压系统在第一种实施方式下的系统图,如图16所示,液压系统可以包括:油箱13、第一插装阀15、第二插装阀19、第一换向阀17、蓄能器18和单向阀14,该液压系统可以实现第一液压油缸37的伸出、缩回及保压功能。其中,油箱13与泵9入口相连通,泵9的出口与单向阀14的出口相连通,单向阀14的出口与第二插装阀19的A2口以及蓄能器18相连通,第一插装阀15的A1口与第二插装阀19的B2口以及第一液压油缸37相连通,第一插装阀15的B1口与油箱13相连通,第一插装阀15的控制油口C1与第一换向阀17相连通,第二插装阀19的控制油口C2与第一换向阀17相连通;第一换向阀17具有两个工作位置,在第一工作位置下,第一插装阀15的控制油口C1与单向阀14的出口相连通,第二插装阀19的控制油口C2与油箱13相连通,以使第一插装阀15处于断开状态,第二插装阀19处于连通状态;在第二工作位置下,第一插装阀15的控制油口C1与油箱13相连通,第二插装阀19的控制油口C2与单向阀14的出口相连通,以使第一插装阀15处于连通状态,第二插装阀19处于断开状态。第一换向阀17由设置在壳体2上的触发机构控制。
在上述实施方式中,马达10驱动泵9进行旋转,从而使得驱动泵9从油箱吸油并压油至第一液压油缸37中,第一液压油缸37驱动夹持件36移动对被夹持件36完成夹持动作的过程,在这一步骤中,第一换向阀17进入第一工作位置,此时,第一插装阀15的控制油口C1与单向阀14的出口相连通,其受到动力液的压力,第二插装阀19的控制油口C2与油箱13相连通,其接近无压力,根据插装阀内部原理从而使得第一插装阀15处于断开状态,第二插装阀19处于连通状态。因此,动力液经泵9、单向阀14、第二插装阀19流入第一液压油缸37,并同时给蓄能器18充液加压。动力液流入至第一液压油缸37中使其缸筒伸出,从而第一液压油缸37驱动夹持件36完成夹持操作。在第一液压油缸37的入口连接有压力传感器16,当夹持件36夹持住被夹持件36后压力传感器16测得管路中压力达到预设压力后,压力传感器16发出信号,然后,马达10停止回转,第二液压油缸11带动马达10脱离泵9。马达10与泵9完全脱开后,动力机构4通过齿轮带动回转体3上的齿圈回转,从而 带动被夹持件36旋转。回转体3回转的过程中,蓄能器18对第一液压油缸37进行补泄保压,防止第一液压油缸37压力下降而降低夹持件36的夹持力。待被夹持件36完成旋转动作后,壳体2上的触发机构触发第一换向阀17进入第二工作位置,第一插装阀15的控制油口C1与油箱13相连通,第二插装阀19的控制油口C2与单向阀14的出口相连通,以使第一插装阀15处于连通状态,第二插装阀19处于断开状态。第一液压油缸37中的动力液经过第一插装阀15回流至油箱13中,如此,泄掉第一液压油缸37中的压力,使得回转体3上的夹持件36对被夹持件36进行释放动作。夹持件36可以在回转体3内部的弹性件313的作用下回到初始位置,通过上述过程完成了被夹持件36上扣或下卸扣的操作。
在一种可行的实施方式中,如图16所示,液压系统还可以包括:溢流阀20,溢流阀20的入口与单向阀14的出口相连通,溢流阀20的出口与油箱13相连通。当在夹持件36夹持过程中,泵9与第一液压油缸37之间管线的压力过大时,动力液能够通过溢流阀20排泄至油箱13中,以保证整个管线的安全。
在一种可行的实施方式中,图17为本申请实施例中液压系统在第二种实施方式下的系统图,如图17所示,液压系统可以包括:油箱13、第二换向阀25、蓄能器18和单向阀14,该液压系统可以实现第一液压油缸37的伸出、缩回以及保压功能。其中,油箱13与泵9入口相连通,泵9的出口与单向阀14的出口相连通,单向阀14的出口与第二换向阀25的进油口P、蓄能器18相连通,第二换向阀25的工作口A与第一液压油缸37相连通,第二换向阀25的回油口T与油箱13相连通。第二换向阀25具有两个工作位置,在第一工作位置下,泵9的出口与第一液压油缸37相连通;在第二工作位置下,第一液压油缸37与油箱13相连通,泵9处于断开状态。第二换向阀25由设置在壳体2上的触发机构控制。
在上述实施方式中,马达10驱动泵9进行旋转,从而使得驱动泵9从油箱吸油并压油至第一液压油缸37中,第一液压油缸37驱动夹持件36移动对被夹持件36完成夹持动作,在这一步骤中,第二换向阀25进入第一工作位置,此时,泵9与第一液压油缸37连通。因此,动力液经泵9、单向阀14、第二换向阀25流入第一液压油缸37,并同时给蓄能器18充液加压。动力液流入至第一液压油缸37中使其缸筒伸出,从而第一液压油缸37驱动夹持件36完成夹持操作。在第一液压油缸37的入口连接有压力传感器16,当夹持件36夹持住被夹持件36后压力传感器16测得管路中压力达到预设压力后,压力传感器16发出信号,然后,马达10停止回转,第二液压油缸11带动马达10脱离泵9。马达10与泵9完全脱开后,动力机构4通过齿轮带动回转体3上的齿圈回转,从而带动被夹持件36旋转。回转体3回转的过程中,蓄能器18对第一液压油缸37进行补泄保压,防止第一液压油缸37压力下降而降低夹持件36的夹持力。待被夹持件36完成旋转动作后,壳体2上的触发机构触发第二换向阀25进入第二工作位置,第一液压油缸37与油箱13连通。第一液压油缸37中的动力液经过第二换向阀25回流至油箱13中,如此,泄掉第一液压油缸37中的压力,使得回转体3上的夹持件 36对被夹持件36进行释放动作。夹持件36可以在回转体3内部的弹性件313的作用下回到初始位置,通过上述过程完成了被夹持件36上扣或卸扣的操作。
在一种可行的实施方式中,如图17所示,液压系统还可以包括:溢流阀20,溢流阀20的入口与单向阀14的出口相连通,溢流阀20的出口与油箱13相连通。当在夹持件36夹持过程中,泵9与第一液压油缸37之间管线的压力过大时,动力液能够通过溢流阀20排泄至油箱13中,以保证整个管线的安全。
在一种可行的实施方式中,图18为本申请实施例中液压系统在第三种实施方式下的系统图,如图18所示,液压系统可以包括:油箱13、第一插装阀15、第二插装阀19、第一换向阀17、蓄能器18、单向阀14和减压阀23,该液压系统可以实现第一液压油缸37的伸出、缩回及保压功能。其中,油箱13与泵9入口相连通,泵9的出口与单向阀14的出口相连通,单向阀14的出口能与蓄能器18、第二插装阀19的A2口、第一换向阀17相连通,单向阀14的出口与蓄能器18之间可以设置有第三换向阀24,第一插装阀15的A1口与第二插装阀19的B2口以及第一液压油缸37相连通,第一插装阀15的B1口与油箱13相连通,第一插装阀15的控制油口C1与第一换向阀17相连通,第二插装阀19的控制油口C2与第一换向阀17相连通;第一换向阀17具有两个工作位置,在第一工作位置下,第一插装阀15的控制油路C1口与蓄能器18相连通,第二插装阀19的控制油路C2口与油箱13相连通,以使第一插装阀15处于断开状态,第二插装阀19处于连通状态;在第二工作位置下,第一插装阀15的控制油路C1口与油箱13相连通,第二插装阀19的控制油路C2口与蓄能器18相连通以及单向阀14的出口相连通,以使第一插装阀15处于连通状态,第二插装阀19处于断开状态。
在上述实施方式中,先控制第三换向阀24处于第一工作位置,以使泵9与第三换向阀24、蓄能器18相连通,马达10驱动泵9进行旋转,动力液经泵9、单向阀14以及第三换向阀24流入蓄能器18中,分支压力传感器26安装在蓄能器18的入口,待蓄能器18充液加压至设定值,分支压力传感器26发出信号,第三换向阀24切入第二工作位置,泵9与蓄能器处于断开状态,然后马达10停止回转,第二液压油缸11带动马达10脱离泵9,泵9停止工作,蓄能器18作为辅助动力源进入待命状态。当需夹持被夹持件时,第一换向阀17进入第一工作位置,以使第一液压油缸37与蓄能器18相连通,带压动力液经蓄能器18、减压阀23以及第二插装阀19流入至第一液压油缸37中,第一液压油缸37驱动夹持件36移动对被夹持件进行夹持动作,第一液压油缸37入口安装有压力传感器16,当测得第一液压油缸37管路中压力达到预设压力后,压力传感器16发出信号,检测马达10与泵9完全脱开后,动力机构4通过齿轮带动回转体3上的齿圈回转,从而带动被夹持件36旋转。回转体3回转的过程中,蓄能器18对第一液压油缸37进行保压,防止第一液压油缸37压力下降而降低夹持件36的夹持力。待被夹持件36完成旋转动作后,壳体2上的触发机构触发第一换向阀17进入第二工作位置,第一液压油缸37与油箱 13连通。第一液压油缸37中的动力液经过第一插装阀15回流至油箱13中,如此,泄掉第一液压油缸37中的压力,使得回转体3上的夹持件36对被夹持件36进行释放动作。夹持件36可以在回转体3内部的弹性件313的作用下回到初始位置,通过上述过程完成了被夹持件36上扣或卸扣的操作。
在一种可行的实施方式中,如图18所示,液压系统还可以包括:溢流阀20,溢流阀20的入口与单向阀14的出口相连通,溢流阀20的出口与油箱13相连通。当泵9对蓄能器18进行充液加压过程中,泵9与蓄能器18之间管线的压力过大时,动力液能够通过溢流阀20排泄至油箱13中,以保证管线的安全。溢流阀也可起到蓄能器泄压口的作用,拆卸蓄能器18前,可通过溢流阀20进行泄压,保证检修安全。
该实施方式中的蓄能器18和第二插装阀19之间可以连接减压阀23,经减压可使第一液压油缸37按设定值输出稳定的夹持力。如此,当蓄能器18与第一液压油缸37相连通时,而马达10未与泵9相连接或未驱动泵9转动时,液压能提前储存在蓄能器18中,蓄能器18可以先对液路中例如第一液压油缸37进行液体压力建立。马达10与泵9相连接后,再对蓄能器18进行液压能量的补充。通过上述过程,装置可直接使用储存好的液压能量对第一液压油缸37充液建压,节约了外部马达10与回转体3内的泵9连接、驱动、脱开的时间,整体操作更有效率。
在一种可行的实施方式中,图19为本申请实施例中液压系统在第四种实施方式下的系统图,如图19所示,液压系统可以包括:第二换向阀25、第三换向阀24、单向阀14、油箱13、蓄能器18、减压阀23,该液压系统可以实现第一液压油缸37的伸出、缩回以及保压功能。其中,油箱13与泵9入口相连通,泵9的出口与单向阀14的出口相连通,单向阀14的出口能与蓄能器18相连通,单向阀14的出口与蓄能器18之间设置有第三换向阀24,第二换向阀25的进油口P与第三换向阀24、蓄能器18相连通,第二换向阀25的A口与第一液压油缸37相连通,第二换向阀25的回油口T与油箱13相连通,第二换向阀25具有两个工作位置,第二换向阀25在第一工作位置时,第一液压油缸37与第三换向阀24、蓄能器18相连通,第二换向阀25在第二工作位置时,第一液压油缸37与油箱13相连通;第三换向阀24具有两个工作位置,第三换向阀24在第一工作位置时,单向阀14的出口与蓄能器18、第二换向阀25相连通,第三换向阀24在第二工作位置时,第三换向阀24处于断开状态。
在上述实施方式中,先控制第三换向阀24处于第一工作位置,以使泵9与第三换向阀24、蓄能器18相连通,马达10驱动泵9进行旋转,动力液经泵9、单向阀14以及第三换向阀24流入蓄能器18中,分支压力传感器26安装在蓄能器18的入口,待蓄能器18充液加压至设定值,分支压力传感器26发出信号,第三换向阀24切入第二工作位置,然后马达10停止回转,第二液压油缸11带动马达10脱离泵9,泵9停止工作,蓄能器18作为辅助动力源进入待命状态。当需夹持被夹持件时,第二换向阀25进入第一工作位置,以使第一液压油缸37与第三换向阀24、蓄能器18相连通,带压动 力液经蓄能器18、减压阀23以及第二换向阀25流入至第一液压油缸37中,第一液压油缸37驱动夹持件36移动对被夹持件进行夹持动作,第一液压油缸37入口安装有压力传感器16,当测得第一液压油缸37管路中压力达到预设压力后,压力传感器16发出信号,检测马达10与泵9完全脱开后,动力机构4通过齿轮带动回转体3上的齿圈回转,从而带动被夹持件36旋转。回转体3回转的过程中,蓄能器18对第一液压油缸37进行保压,防止第一液压油缸37压力下降而降低夹持件36的夹持力。待被夹持件36完成旋转动作后,壳体2上的触发机构触发第二换向阀25进入第二工作位置,第一液压油缸37与油箱13连通。第一液压油缸37中的动力液经过第二换向阀25回流至油箱13中,如此,泄掉第一液压油缸37中的压力,使得回转体3上的夹持件36对被夹持件36进行释放动作。夹持件36可以在回转体3内部的弹性件313的作用下回到初始位置,通过上述过程完成了被夹持件36上扣或卸扣的操作。
在一种可行的实施方式中,如图19所示,液压系统还可以包括:溢流阀20,溢流阀20的入口与单向阀14的出口相连通,溢流阀20的出口与油箱13相连通。当泵9对蓄能器18进行充液加压过程中,泵9与蓄能器18之间管线的压力过大时,动力液能够通过溢流阀20排泄至油箱13中,以保证管线的安全。溢流阀也可起到蓄能器泄压口的作用,拆卸蓄能器18前,可通过溢流阀20进行泄压,保证检修安全。
该实施方式中的蓄能器18和第二换向阀25之间可以连接减压阀23,经减压可使第一液压油缸37按设定值输出稳定的夹持力。如此,当蓄能器18与第一液压油缸37相连通时,而马达10未与泵9相连接或未驱动泵9转动时,液压能提前储存在蓄能器18中,蓄能器18可以先对液路中例如第一液压油缸37进行液体压力建立。马达10与泵9相连接后,再对蓄能器18进行液压能量的补充。通过上述过程,装置可直接使用储存好的液压能量对第一液压油缸37充液建压,节约了外部马达10与回转体3内的泵9连接、驱动、脱开的时间,整体操作更有效率。
为了能够在低成本、不增大装置体积的前提下保证液压缸高精度的同步定位,在本申请中提出了一种液压缸同步定位装置,图20为本申请实施例中液压缸同步定位装置的立体示意图,图21为本申请实施例中部分液压缸同步定位装置的结构示意图,如图20和图21所示,液压缸同步定位装置可以包括:第一液压缸基座33,第一液压缸基座33上形成有多个沿第一液压缸基座33的径向方向延伸的滑槽314;设置在滑槽314中第一液压油缸37以及第一液压油缸37驱动的夹持件36,夹持件36能在滑槽314中沿径向方向移动,夹持件36轴线的一侧设置有朝向相邻夹持件36的杆体361,夹持件36轴线的另一侧设置有能使相邻夹持件36上的所述杆体361插入的开孔,开孔362的轴线与该开孔362所在的夹持件36的轴线的锐角夹角等于夹持件36上杆体361的轴线与夹持件36的轴线的锐角夹角,两者均等于90度-180度/夹持件的个数。
在本申请中当需要将第一液压缸基座33上的不同夹持件36在第一液压油缸37的驱动下同步向第一液压缸基座33的中部移动,从而夹持穿设过第一液压缸基座33的被夹持件时,需要将不同 的第一液压油缸37伸长以使第一液压油缸37驱动夹持件36向第一液压缸基座33的中部移动。被夹持件可以是管柱、油管、钻杆等需要通过旋转进行拧螺纹而进行连接的部件。在第一液压油缸37驱动不同的夹持件36向第一液压缸基座33的中部移动中,由于夹持件36上设置的朝向相邻夹持件36的杆体361插入在相邻夹持件36上的开孔362中,相邻的两个夹持件36能够相互带动保持同步移动,如此,第一液压缸基座33中的所有夹持件36均会一个带动相邻的另外一个从而使所有的夹持件36保持同步移动。
本申请中液压缸同步定位装置通过简单的机械结构实现了多个第一液压油缸37驱动夹持件36同步向心移动,从而降低了对液压系统的要求,降低了液压系统的加工成本。而且本申请的定位精度和准确性较液压方案更高,可以有效提高重复动作的一致性。本申请中的结构可以有多种变化,其能应用的液缸数量灵活可变,可以应用于类似结构的各种工程机械上。
为了能够更好的了解本申请中的液压缸同步定位装置,下面将对其做进一步解释和说明。如图20所示,第一液压缸基座33可以为一整个呈圆形的盘式结构或由多个呈扇形的基座部件331合并组成的盘式结构。当第一液压缸基座33为多个呈扇形的基座部件331合并组成的盘式结构时,基座部件331之间可以可拆卸连接,从而形成一个整个呈圆形的盘式结构。在一个具体的实施例中,第一液压缸基座33由两个呈半圆形的基座部件331合并组成,从而形成整个的圆形盘式结构。整个第一液压缸基座33的中部具有沿竖直方向的贯穿孔,以供被夹持件穿过,例如管柱、油管、钻杆等。当第一液压缸基座33为多个呈扇形的基座部件331合并组成时,第一液压缸基座33可以被分开,从而使得被夹持件能够从侧边放入至第一液压缸基座33的中部的贯穿孔中。
如图20所示,第一液压缸基座33上形成有多个沿径向方向延伸的滑槽314。滑槽314可以绕第一液压缸基座33的轴线呈圆周均匀分布。
在一个具体的实施例中,图22为本申请实施例中部分液压缸同步定位装置处于初始位置下的剖面图,图23为本申请实施例中部分液压缸同步定位装置处于终点位置下的剖面图,如图22和图23所示,滑槽314的数量为四个,相邻滑槽314之间的夹角为90度,即B的角度。滑槽314可以开设在为一整个呈圆形的盘式结构的第一液压缸基座33上,也可以开设在呈扇形的基座部件331上。图24为本申请实施例中液压缸同步定位装置具有6个液压缸下的部分结构示意图,图25为本申请实施例中液压缸同步定位装置具有6个液压缸下的剖面图,如图24和图25所示,在又一个具体的实施例中,滑槽314的数量为六个,相邻滑槽314之间的夹角为60度,即B的角度。
如图20至图23所示,每一个滑槽314中设置有第一液压油缸37和夹持件36,第一液压油缸37的一端与第一液压缸基座33相抵或相固定,第一液压油缸37的另一端驱动夹持件36,从而使得夹持件36能在滑槽314中沿径向方向移动。当第一液压油缸37进行充油时,第一液压油缸37伸长,从而推动夹持件36向第一液压缸基座33的中心的方向移动。夹持件36可以是具有夹持功能的卡爪,或夹持件36包括安装座以及安装在安装座上的卡爪,当然,卡爪和安装座可以一体化成型。
如图20至图23所示,夹持件36上设置有朝向相邻夹持件36的杆体361,相邻夹持件36上开设有能使杆体361插入的开孔362。为了能够使得杆体361顺利的进入相邻夹持件36上的开孔362中,并随着夹持件36移动进而产生滑动,开孔362的轴线与夹持件36的轴线的夹角等于90度-180度/夹持件36的个数。开孔362的轴线与该开孔362的所在的夹持件36的轴线的夹角等于开孔362的轴线与该开孔362所在的夹持件36的相邻夹持件36的轴线的夹角;夹持件36上的杆体361的轴线与该夹持件36上的开孔362的轴线的交点位于该夹持件36的轴线上。在一个具体的实施例中,如图22、图23所示,夹持件36的个数为四个,开孔362的轴线与夹持件36的轴线的夹角等于45度,A的角度为90度。在又一个具体的实施例中,如图25所示,夹持件36的个数为六个,开孔362的轴线与夹持件36的轴线的夹角等于60度,A的角度为60度。
如图21至图24所示,对于一个夹持件36而言,该夹持件36的朝向一侧相邻夹持件36的侧壁上设置有杆体361,该夹持件36的朝向另一侧相邻夹持件36的侧壁上开设有供其它夹持件36上的杆体361插入的开孔362。
如图20至图23所示,夹持件36的数量与滑槽314的数量相等,夹持件36的数量需不小于三个,且围绕基座1的圆周方向均匀分布,否则夹持件36上的杆体361无法插入相邻夹持件36上的开孔362中。
如图22和图23所示,当第一液压油缸37驱动夹持件36向第一液压缸基座33的中心移动时,杆体361向开孔362中插入以带动所有夹持件36同步移动。通过每一个夹持件36的位置均被相邻夹持件36所制约,同时也制约另一侧相邻的夹持件36,因此,第一液压缸基座33的滑槽314中的所有夹持件36能够保持绝对同步的移动。
如图22所示,当第一液压油缸37未伸长时,夹持件36位于远离第一液压缸基座33中心的位置,此时,夹持件36上的杆体361的端部略微插入相邻夹持件36的开孔362中。如图23所示,当第一液压油缸37伸长时,第一液压油缸37驱动夹持件36向第一液压缸基座33的中心移动,杆体361向开孔362中插入以带动所有夹持件36同步移动。最终使得夹持件36位于靠近第一液压缸基座33中心的位置,此时,夹持件36能够夹持住被夹持件。夹持件36上的杆体361的大部分均插入相邻夹持件36的开孔362中。
如图24所示,为了使得杆体361便于向开孔362中插入,减小杆体361侧壁与开孔362之间的摩擦力,避免杆体361在开孔362中卡死,杆体361朝向相邻夹持件36的端部的直径不小于杆体361背离相邻夹持件36的一端的直径,如不考虑摩擦影响,杆体361的端部直径可以等于其杆部的直径。作为优选的,杆体361朝向相邻夹持件36的端部的直径大于杆体361背离相邻夹持件36一端的直径。例如,杆体361朝向相邻夹持件36的端部可以呈直径略大的圆球状,如此,杆体361仅端部的直径较大处于开孔362的侧壁相接触,如此,在杆体361插入开孔362的过程中大大减小了杆体361侧壁与开孔362之间的摩擦力。
如图21至图25所示,当第一液压油缸37中的液压油压力卸载后,为了能够使得夹持件36沿径向方向向外移动至远离第一液压缸基座33中心的位置,在一种可行的实施方式中,夹持件36朝向相邻夹持件36的侧壁上具有第一限位口363,相邻夹持件36朝向夹持件36的侧壁上具有第二限位口364,复位弹簧315的一端设置在第一限位口363中,复位弹簧315的另一端设置在第二限位口364中。第一限位口363和第二限位口364的目的是为了在复位弹簧315可拆卸的情况保持其不发生位移,如此,可以便于夹持件36的更换或检修。在另外一种可行的实施方式中,复位弹簧315套设在杆体361上,复位弹簧315的一端抵住夹持件36,另一端抵住相邻夹持件36的侧壁。在又一种可行的实施方式中,图26为本申请实施例中复位弹簧在又一种实施方式中的示意图,如图26所示,夹持件36与第一液压缸基座33之间可以设置有能使夹持件36和相邻夹持件36沿径向方向向外移动的复位弹簧315。复位弹簧315的一端抵住第一液压缸基座33上靠近第一液压缸基座33中心的一支撑点,复位弹簧315的另一端与夹持件36相连接或抵住与夹持件36相连接的支撑件。在上述多种实施方式中,当第一液压油缸37中的液压油压力卸载后,复位弹簧315伸长,复位弹簧315驱动夹持件36和相邻夹持件36向背离第一液压缸基座33的中心的方向移动时,杆体361从开孔362中移出以带动夹持件36与相邻夹持件同步移动,每个第一液压油缸37的行程且相同。
在本申请中还提出了一种上卸扣装置,该上卸扣装置中包括如上述任一的液压缸同步定位装置,液压缸同步定位装置用于夹持被夹持件,例如管柱、油管、钻杆等等。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (27)

  1. 一种上卸扣装置,其特征在于,所述上卸扣装置包括:
    基座;
    连接在所述基座上的壳体,所述壳体包括第一钳体和第二钳体,所述第一钳体和所述第二钳体能进行转动以具有张开状态和合并状态,在合并状态下,所述第一钳体和所述第二钳体具有环形空腔;
    至少部分设置在所述环形空腔中的回转体,所述回转体在所述环形空腔中能够转动,所述回转体包括至少两个呈扇形的基座部件,所有所述基座部件合并在一起时呈圆形状;在所述回转体上安装有用于夹持的夹持件和驱动所述夹持件移动的第一液压油缸,回转体的侧壁具有齿圈;
    能与所述齿圈相啮合以驱动所述回转体转动的动力机构。
  2. 根据权利要求1所述的上卸扣装置,其特征在于,所述第一钳体与所述基座相铰链连接,所述第二钳体与所述基座相铰链连接,所述第一钳体与所述第二钳体位于同一平面且相对称设置,当所述第一钳体、所述第二钳体转动至相对面相贴合时两者处于合并状态,当所述第一钳体、所述第二钳体转动至相对面相远离时两者处于张开状态,所述第一钳体和所述第二钳体之间具有开口,被夹持件能通过该开口在水平方向上移入至所述壳体的回转体中。
  3. 根据权利要求2所述的上卸扣装置,其特征在于,所述第一钳体的侧壁与所述基座之间设置有第一液压缸,所述第一液压缸的一端与所述第一钳体的侧壁相铰链连接,所述第一液压缸的另一端与所述基座相铰链连接;所述第二钳体的侧壁与所述基座之间设置有第二液压缸,所述第二液压缸的一端与所述第二钳体的侧壁相铰链连接,所述第二液压缸的另一端与所述基座相铰链连接。
  4. 根据权利要求1所述的上卸扣装置,其特征在于,所述回转体包括第一基座部件和第二基座部件,所述第一基座部件包括:第一液压缸基座;设置在所述第一液压缸基座外侧壁处的第一齿轮总成,部分所述齿圈位于所述第一齿轮总成的外侧壁;所述第二基座部件包括:第二液压缸基座;设置在所述第二液压缸基座外侧壁处的第二齿轮总成,部分所述齿圈位于所述第二齿轮总成的外侧壁;
    所述第一齿轮总成朝向所述第二齿轮总成的一端端部具有凸出的锁紧件,所述第二齿轮总成朝向所述第一齿轮总成的所述锁紧件的端部具有与所述锁紧件相配合的缺口,所述锁紧件能穿过所述缺口,所述锁紧件的尾部连接有摆动液压缸,所述摆动液压缸能带动所述锁紧件转动以使所述锁紧件锁死在所述缺口中;所述第一齿轮总成的另一端端部为缺口,所述第二齿轮总成的另一端端部为凸出的锁紧件。
  5. 根据权利要求4所述的上卸扣装置,其特征在于,所述第一钳体底壁具有一凹陷部,所述第一齿轮总成内设置有套筒,所述套筒具有沿竖直方向开设的通孔,所述通孔内设置有定位杆以及使得所述定位杆具有向下移动趋势的弹簧,所述第一钳体内设置有顶举液压缸,所述顶举液压缸与顶举件传动连接,所述顶举件的顶举部位于所述凹陷部中并位于所述定位杆的下方,所述顶举液压缸能带动所述顶举件向上移动以使所述定位杆的底部脱离所述凹陷部。
  6. 根据权利要求5所述的上卸扣装置,其特征在于,当所述定位杆嵌入所述凹陷部时,所述第 一钳体朝向所述第二钳体的端面、所述第一齿轮总成朝向所述第二齿轮总成的端面、所述第一液压缸基座朝向所述第二液压缸基座的端面位于同一平面;所述第二钳体朝向所述第一钳体的端面、所述第二齿轮总成朝向所述第一齿轮总成的端面、所述第二液压缸基座朝向所述第一液压缸基座的端面位于同一平面。
  7. 根据权利要求4所述的上卸扣装置,其特征在于,所述上卸扣装置还包括:设置在所述壳体上的换向圈机构,其至少包括与所述第一钳体相配合的第一换向圈和与所述第二钳体相配合的第二换向圈;控制所述换向圈机构与所述壳体之间距离的换向圈液压缸;设置在所述第一齿轮总成或所述第二齿轮总成中的换向机构和换向阀,所述换向圈机构在靠近或远离所述壳体时能驱动所述换向机构,以使所述换向机构控制所述换向阀进行切换。
  8. 根据权利要求7所述的上卸扣装置,其特征在于,所述换向机构包括:连动杆,连动杆的上端位于所述换向圈机构的下方;复位弹簧,所述复位弹簧的一端抵住所述第一齿轮总成或所述第二齿轮总成,所述复位弹簧的另一端抵住连动杆;转动杆,所述转动杆的一端与所述连动杆相铰链连接,所述转动杆能绕其两端之间的一点进行转动,以使所述转动杆的另一端能压住或松开所述换向阀;所述换向机构位于所述第一齿轮总成或所述第二齿轮总成上。
  9. 根据权利要求8所述的上卸扣装置,其特征在于,所述回转体上具有开孔,所述换向圈机构上具有能插入所述开孔的定位销;
    所述换向阀用于控制第一液压油缸的充油和泄油,其至少具有两个状态,在第一状态下,所述换向圈机构远离所述壳体,所述定位销脱离所述开孔,所述连动杆上移,所述转动杆的另一端能压住所述换向阀,所述第一液压油缸处于充油状态;在第二状态下,所述换向圈机构靠近所述壳体,所述换向圈机构压住所述连动杆下移,所述转动杆的另一端松开所述换向阀,所述第一液压油缸处于泄油状态;
    当所述第一钳体朝向所述第二钳体的端面、所述第一齿轮总成朝向所述第二齿轮总成的端面、所述第一液压缸基座朝向所述第二液压缸基座的端面位于同一平面时,所述定位销插入在所述开孔中。
  10. 一种回转设备液压驱动装置,其特征在于,所述回转设备液压驱动装置包括:
    壳体,所述壳体具有环形空腔;
    回转体,其至少部分设置在所述壳体环形空腔中,所述回转体在所述环形空腔中能够相对于所述壳体转动,所述回转体的侧壁上具有齿圈,所述回转体的侧壁上具有开口;
    夹持件,其设置于所述回转体上以实现夹持功能;
    动力机构,其能与所述齿圈相啮合并驱动所述回转体相对所述壳体转动;
    液压系统,其设置于所述回转体上,其用于驱动所述夹持件移动以及实现所述夹持件对被夹持件的夹持功能,所述液压系统至少包括:驱动动力液流动的泵、驱动所述夹持件的第一液压油缸;
    设置于所述壳体上的导轨、马达以及第二液压油缸,所述马达设置在所述导轨上并能在所述导轨上滑动,所述第二液压油缸两端分别与所述壳体和所述马达连接以驱动所述马达在所述导轨上滑动, 实现所述马达与所述回转体上所述泵的连接和脱离,当所述马达与所述泵连接时,可驱动所述回转体上所述液压系统运转,实现夹持件对被夹持件的夹持和释放功能,所述泵和所述马达通过所述回转体上的所述开口实现连接和脱离;
    所述回转设备液压驱动装置至少具有两种状态:在第一种状态下,所述第二液压油缸驱动所述马达与所述泵相脱离,所述回转体与所述壳体之间能相对转动;在第二种状态下,所述第二液压油缸驱动所述马达在所述导轨上滑动并与所述泵连接,以使所述马达能驱动所述液压系统中的所述泵运转。
  11. 根据权利要求10所述的回转设备液压驱动装置,其特征在于,所述第二液油压缸能进行伸缩的一端与所述马达相连接,当所述第二液压油缸伸长时,所述马达在所述导轨上向所述壳体的中心滑动以与所述泵相对接;当所述第二液压油缸缩短时,所述马达在所述导轨上向背向所述壳体的中心方向滑动以与所述泵相脱离;或当所述第二液压油缸伸长时,所述马达在所述导轨上向背向所述壳体的中心方向滑动以与所述泵相脱离;当所述第二液压油缸缩短时,所述马达在所述导轨上向所述壳体的中心滑动以与所述泵相对接。
  12. 根据权利要求10所述的回转设备液压驱动装置,其特征在于,所述液压系统还包括:油箱、第一插装阀、第二插装阀、第一换向阀,所述油箱能与所述回转体上所述泵的入口相连通,所述泵的出口与所述第二插装阀的A2口、第一换向阀相连通,所述第一插装阀的A1口与所述第二插装阀的B2口以及所述第一液压油缸互相连通,所述第一插装阀的B1口与所述油箱、第一换向阀相连通,所述第一插装阀的控制油路C1口与所述第一换向阀的一个接口相连通,所述第二插装阀控制油路C2口与所述第一换向阀的另一个接口相连通;所述第一换向阀至少具有两个工作位置,在第一工作位置下,所述第一插装阀的控制油路C1口与所述回转体上的所述泵的出口相连通,所述第二插装阀的控制油路C2口与所述油箱相连通,以使所述第一插装阀处于断开状态,所述第二插装阀处于连通状态;在第二工作位置下,所述第一插装阀的所述控制油路C1口与所述油箱相连通,所述第二插装阀的所述控制油路C2口与所述回转体上的所述泵的出口相连通,以使所述第一插装阀处于连通状态,所述第二插装阀处于断开状态。
  13. 根据权利要求12所述的回转设备液压驱动装置,其特征在于,所述液压系统还包括:单向阀,所述单向阀的入口与所述泵的出口相连通,所述单向阀的出口与所述第二插装阀的A2口和所述换向阀相连通,所述单向阀能由所述泵向所述第二插装阀和所述换向阀相导通;在所述第一工作位置下,所述第一插装阀的控制油路C1口与所述单向阀的出口相连通;在所述第二工作位置下,所述第二插装阀的控制油路C2口与所述单向阀的出口相连通。
  14. 根据权利要求10所述的回转设备液压驱动装置,其特征在于,所述液压系统还包括:油箱、第二换向阀,所述回转体上所述泵的出口与所述第二换向阀的进油口P相连通,所述回转体上所述泵的入口与所述油箱相连通,所述第二换向阀的另一端工作口A与所述回转体上所述第一液压油缸相连通,所述第二换向阀的回油口T与所述油箱相连通,所述第二换向阀具有两个工作位置,在第一工作位置下,所述回转体上所述泵的出口与所述回转体上所述第一液压油缸相连通;在第二工作位置下, 所述第一液压油缸与所述油箱相连通,所述回转体上所述泵处于断开状态。
  15. 根据权利要求14所述的回转设备液压驱动装置,其特征在于,所述液压系统还包括:单向阀,所述单向阀的入口与所述泵的出口相连通,所述单向阀的出口与所述第二换向阀相连通;在所述第一工作位置下,所述单向阀的出口与所述回转体上所述第一液压油缸相连通;在所述第二工作位置下,所述第一液压油缸与所述油箱相连通,所述单向阀的出口与所述回转体上所述第一液压油缸处于断开状态。
  16. 根据权利要求10所述的回转设备液压驱动装置,其特征在于,所述液压系统还包括:油箱、第一插装阀、第二插装阀、第一换向阀、蓄能器、单向阀,所述油箱与所述回转体上所述泵的入口相连通,所述回转体上所述泵的出口与所述单向阀的入口相连通,所述单向阀的出口与所述蓄能器、所述第二插装阀的A2口、所述第一换向阀相连通,所述第一插装阀的A1口与所述第二插装阀的B2口以及所述第一液压油缸互相连通,所述第一插装阀的B1口与所述油箱相连通,所述第一插装阀的控制油路C1口与所述第一换向阀的一个接口相连通,所述第二插装阀控制油路C2口与所述第一换向阀的另一个接口相连通;所述第一换向阀至少具有两个工作位置,在第一工作位置下,所述第一插装阀的控制油路C1口与所述蓄能器以及所述单向阀的出口相连通,所述第二插装阀的控制油路C2口与所述油箱相连通,以使所述第一插装阀处于断开状态,所述第二插装阀处于连通状态;在第二工作位置下,所述第一插装阀的所述控制油路C1口与所述油箱相连通,所述第二插装阀的所述控制油路C2口与所述蓄能器以及所述单向阀的出口相连通,以使所述第一插装阀处于连通状态,所述第二插装阀处于断开状态。
  17. 根据权利要求10所述的回转设备液压驱动装置,其特征在于,所述液压系统还包括:第二换向阀、油箱、蓄能器、单向阀,所述第二换向阀工作口A与所述回转体上所述第一液压油缸相连通,所述第二换向阀进油口P与所述蓄能器和所述单向阀的出口互相连通,所述单向阀的入口与所述回转体上所述泵相连通,所述第二换向阀回油口T与所述油箱相连通,所述第二换向阀具有两个工作位置,所述第二换向阀在第一工作位置时,所述第一液压油缸与所述蓄能器和所述单向阀的出口互相连通,所述第二换向阀在第二工作位置时,所述第一液压油缸与所述油箱相连通。
  18. 一种液压缸同步定位装置,其特征在于,所述液压缸同步定位装置包括:
    第一液压缸基座,所述第一液压缸基座上形成有多个沿径向方向延伸的滑槽;
    设置在所述滑槽中第一液压油缸以及所述第一液压油缸驱动的夹持件,所述夹持件能在所述滑槽中沿所述第一液压缸基座的径向方向移动,所述夹持件轴线的一侧设置有朝向该侧相邻夹持件的杆体,另一侧则设置有能使另一侧相邻夹持件上所述杆体插入的开孔,所述开孔的轴线与该开孔所在夹持件轴线的锐角夹角等于所述夹持件上杆体的轴线与所述夹持件的轴线的锐角夹角,两者均等于90度-180度/夹持件的个数。
  19. 根据权利要求18所述的液压缸同步定位装置,其特征在于,当所述第一液压油缸驱动所述夹持件向所述第一液压缸基座的中心移动时,所述杆体向所述开孔中插入以带动所有夹持件同步移 动。
  20. 根据权利要求18所述的液压缸同步定位装置,其特征在于,所述夹持件的数量与所述滑槽的数量相等,所述夹持件的数量不小于三个,且在圆周方向均匀分布。
  21. 根据权利要求18所述的液压缸同步定位装置,其特征在于,所述第一液压缸基座为一整个呈圆形的盘式结构或由多个呈扇形的基座部件合并组成的盘式结构;所述夹持件上所述杆体的轴线与该所述夹持件上所述开孔的轴线的交点位于该所述夹持件的轴线上。
  22. 根据权利要求18所述的液压缸同步定位装置,其特征在于,所述杆体朝向相邻夹持件的端部的直径不小于所述杆体背离相邻夹持件的一端的直径。
  23. 根据权利要求18所述的液压缸同步定位装置,其特征在于,所述夹持件与相邻夹持件之间设置有能使所述夹持件和相邻夹持件沿径向方向向外移动的复位弹簧。
  24. 根据权利要求23所述的液压缸同步定位装置,其特征在于,所述夹持件朝向相邻夹持件的侧壁上具有第一限位口,相邻夹持件朝向所述夹持件的侧壁上具有第二限位口,所述复位弹簧的一端设置在所述第一限位口中,所述复位弹簧的另一端设置在所述第二限位口中;或所述复位弹簧套设在所述杆体上。
  25. 根据权利要求18所述的液压缸同步定位装置,其特征在于,所述夹持件与所述第一液压缸基座之间设置有能使所述夹持件和相邻夹持件沿径向方向向外移动的复位弹簧。
  26. 根据权利要求23或25所述的液压缸同步定位装置,其特征在于,当所述复位弹簧伸长时,所述复位弹簧驱动所述夹持件和相邻夹持件向背离所述第一液压缸基座中心的方向移动,所述杆体从所述开孔中移出,以带动所述夹持件与相邻夹持件同步移动。
  27. 一种上卸扣装置,其特征在于,所述上卸扣装置包括如权利要求18至26中任一所述的液压缸同步定位装置,所述液压缸同步定位装置用于夹持被夹持件。
PCT/CN2020/105445 2019-08-07 2020-07-29 上卸扣装置、回转液压驱动装置及液缸同步定位装置 WO2021023072A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910724951.6 2019-08-07
CN201910724770.3 2019-08-07
CN201910724778.X 2019-08-07
CN201910724951.6A CN112343530A (zh) 2019-08-07 2019-08-07 液压缸同步定位装置及上卸扣装置
CN201910724770.3A CN112343529A (zh) 2019-08-07 2019-08-07 上卸扣装置及其操作方法
CN201910724778.XA CN112343875A (zh) 2019-08-07 2019-08-07 回转设备液压驱动装置和驱动方法

Publications (1)

Publication Number Publication Date
WO2021023072A1 true WO2021023072A1 (zh) 2021-02-11

Family

ID=74503270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105445 WO2021023072A1 (zh) 2019-08-07 2020-07-29 上卸扣装置、回转液压驱动装置及液缸同步定位装置

Country Status (1)

Country Link
WO (1) WO2021023072A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417581A (zh) * 2021-08-11 2021-09-21 黄山华能石化机械有限公司 一种液压大钳结构
CN113550703A (zh) * 2021-09-07 2021-10-26 兰州兰石石油装备工程股份有限公司 连续旋转多功能铁钻工
CN114151031A (zh) * 2021-12-10 2022-03-08 北京捷杰西石油设备有限公司 一种用于旋扣钳的增压系统
CN114346709A (zh) * 2022-01-20 2022-04-15 杭州九龙机械制造有限公司 一种壳体回转夹具
CN115365855A (zh) * 2022-09-29 2022-11-22 中国航发动力股份有限公司 一种通用快换装夹装置的设备及使用方法
CN117655692A (zh) * 2023-12-22 2024-03-08 江苏亚力亚气动液压成套设备有限公司 液压油缸组装拆卸居中定位装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080257116A1 (en) * 2005-06-13 2008-10-23 Vatne Per A Power Tong Device
US20100031647A1 (en) * 2005-06-13 2010-02-11 Vatne Per A Hydraulic Circuit Device
US20120104674A1 (en) * 2008-06-18 2012-05-03 National Oilwel Varco Norway As Hydraulic clamping device
CN104563922A (zh) * 2015-01-27 2015-04-29 南通金牛机械制造有限公司 一种无须更换颚板的钻杆动力钳
CN210396668U (zh) * 2019-08-07 2020-04-24 北京康布尔石油技术发展有限公司 液压缸同步定位装置及上卸扣装置
CN210599615U (zh) * 2019-08-07 2020-05-22 北京康布尔石油技术发展有限公司 回转设备液压驱动装置
CN211081757U (zh) * 2019-08-07 2020-07-24 北京康布尔石油技术发展有限公司 上卸扣装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080257116A1 (en) * 2005-06-13 2008-10-23 Vatne Per A Power Tong Device
US20100031647A1 (en) * 2005-06-13 2010-02-11 Vatne Per A Hydraulic Circuit Device
US20120104674A1 (en) * 2008-06-18 2012-05-03 National Oilwel Varco Norway As Hydraulic clamping device
CN104563922A (zh) * 2015-01-27 2015-04-29 南通金牛机械制造有限公司 一种无须更换颚板的钻杆动力钳
CN210396668U (zh) * 2019-08-07 2020-04-24 北京康布尔石油技术发展有限公司 液压缸同步定位装置及上卸扣装置
CN210599615U (zh) * 2019-08-07 2020-05-22 北京康布尔石油技术发展有限公司 回转设备液压驱动装置
CN211081757U (zh) * 2019-08-07 2020-07-24 北京康布尔石油技术发展有限公司 上卸扣装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417581A (zh) * 2021-08-11 2021-09-21 黄山华能石化机械有限公司 一种液压大钳结构
CN113550703A (zh) * 2021-09-07 2021-10-26 兰州兰石石油装备工程股份有限公司 连续旋转多功能铁钻工
CN114151031A (zh) * 2021-12-10 2022-03-08 北京捷杰西石油设备有限公司 一种用于旋扣钳的增压系统
CN114151031B (zh) * 2021-12-10 2024-02-27 北京捷杰西科技股份有限公司 一种用于旋扣钳的增压系统
CN114346709A (zh) * 2022-01-20 2022-04-15 杭州九龙机械制造有限公司 一种壳体回转夹具
CN115365855A (zh) * 2022-09-29 2022-11-22 中国航发动力股份有限公司 一种通用快换装夹装置的设备及使用方法
CN115365855B (zh) * 2022-09-29 2024-03-26 中国航发动力股份有限公司 一种通用快换装夹装置的设备及使用方法
CN117655692A (zh) * 2023-12-22 2024-03-08 江苏亚力亚气动液压成套设备有限公司 液压油缸组装拆卸居中定位装置

Similar Documents

Publication Publication Date Title
WO2021023072A1 (zh) 上卸扣装置、回转液压驱动装置及液缸同步定位装置
US6725938B1 (en) Apparatus and method for facilitating the connection of tubulars using a top drive
CA3032786C (en) Remote fluid grip tong
ITTO940489A1 (it) Dispositivo per la manovra di caricamento ed avvitamento di aste e tubazioni di rivestimento componenti una batteria di trivellazione per impianti di perforazione del sottosuolo.
CN104712868B (zh) 一种水下多路液压快速连接装置
CN211081757U (zh) 上卸扣装置
US10590718B2 (en) Pipe handling unit
CN102658555A (zh) 气压驱动式水下解脱装置
CN107044260A (zh) 一种螺纹驱动全机械式顶驱下套管工具
US3550485A (en) Power pipe tongs with variable brake
US3802057A (en) Method for loosening threaded pipe connections using an earth drilling machine
CN111411914B (zh) 井筒防喷堵塞器
CN210599615U (zh) 回转设备液压驱动装置
CN111734350B (zh) 一种可重复开启和关闭的分离阀
CN201738854U (zh) 一种套管补贴工具
CN206477792U (zh) 一种螺纹驱动全机械式顶驱下套管工具
CN216142734U (zh) 一种采油树辅助工具凸轮旋转锁紧机构
CN104963640A (zh) 水平井连续油管锁定式液力送钻及报警系统
CN112343529A (zh) 上卸扣装置及其操作方法
CN109915046B (zh) 小修作业旋转密封加载工艺及装置
CN220645877U (zh) 一种石油钻井安全接头
CN113550703B (zh) 连续旋转多功能铁钻工
CN112343875A (zh) 回转设备液压驱动装置和驱动方法
CN204212717U (zh) 一种顶驱专用侧挂式液压背钳
RU2268983C2 (ru) Ключ для свинчивания и развинчивания замковых соединений скважинных труб

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850575

Country of ref document: EP

Kind code of ref document: A1