WO2021023025A1 - Plant growth illumination apparatus and control method therefor - Google Patents

Plant growth illumination apparatus and control method therefor Download PDF

Info

Publication number
WO2021023025A1
WO2021023025A1 PCT/CN2020/104349 CN2020104349W WO2021023025A1 WO 2021023025 A1 WO2021023025 A1 WO 2021023025A1 CN 2020104349 W CN2020104349 W CN 2020104349W WO 2021023025 A1 WO2021023025 A1 WO 2021023025A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
source part
plant growth
lighting device
Prior art date
Application number
PCT/CN2020/104349
Other languages
French (fr)
Chinese (zh)
Inventor
潘翔
李许可
潘皖瑜
Original Assignee
潘翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910727698.XA external-priority patent/CN112432063A/en
Priority claimed from CN201910727654.7A external-priority patent/CN112335444A/en
Priority claimed from CN201910727653.2A external-priority patent/CN112335443A/en
Priority claimed from CN201910727759.2A external-priority patent/CN112425403A/en
Priority claimed from CN201910727801.0A external-priority patent/CN112335446A/en
Priority claimed from CN201910727841.5A external-priority patent/CN112335447A/en
Priority claimed from CN201910727760.5A external-priority patent/CN112432064A/en
Priority claimed from CN201910727699.4A external-priority patent/CN112425402A/en
Priority claimed from CN201910727700.3A external-priority patent/CN112335445A/en
Application filed by 潘翔 filed Critical 潘翔
Publication of WO2021023025A1 publication Critical patent/WO2021023025A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/04Attracting insects by using illumination or colours

Definitions

  • the invention relates to a plant growth lighting device and a control method thereof, in particular to a plant growth lighting device and a control method thereof provided to workers in a plant lighting environment.
  • blue light B e.g. 460nm
  • red light R e.g. 660nm
  • far-infrared light FR e.g. 730nm
  • the current LED plant growth lamps are all plant LED growth lamps manufactured by a white LED light source or a mixture of red and blue LED light sources or a mixture of red, blue, and white LED light sources. Due to the low luminous efficiency of red light, in order to meet the spectrum and light intensity required by the plant photosynthetic pigment system, the plant LED growth lamp has high power and a sharp increase in cost.
  • the ratio of the number of red light, blue light and green light photons in the spectrum has an important influence on plant morphology and adjustment of plant height. Since the total number of red and blue LEDs is far more than the number of infrared, it is difficult to achieve uniform distribution of green light in the design of the lamp, and it is difficult to uniformly illuminate plants.
  • the present invention adopts the following technical solutions.
  • a plant growth lighting device capable of attracting and killing pests, comprising a control part and a light-emitting part, wherein,
  • the light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light simultaneously, and the second light source part emits green light,
  • the control unit respectively controls the first light source unit and the second light source unit.
  • the blue light component emitted by the solid in the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the light quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the light quantum flux density B in the range of 400nm ⁇ 490nm is 4-10:1;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains a material capable of absorbing the excitation light emitted by the solid-state light-emitting chip and converting it to emit yellow or green light.
  • Yellow or green phosphor; or the solid light emitting chip is one of AlGaInP/GaAs and GaP/GaP based chips emitting yellow or green light.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
  • Adjusting the light quantum flow density ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow or green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer
  • the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
  • an input and output unit which implements the input of data and information to the plant growth lighting device that can attract and kill pests and the output of the plant growth lighting device that can attract and kill pests to the outside;
  • Data storage department which stores relevant data for retrieval and use at any time
  • An arithmetic unit which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
  • the plant growth lighting device capable of attracting and killing pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green or yellow light quantum flow density demand data at one or more;
  • the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
  • the input data related to the plant includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
  • the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
  • the light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
  • the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source A change range of the light quantum flow density of the green light and the change range of the light quantum flow density of the blue, red, yellow or green light of the third light source;
  • the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
  • One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
  • it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
  • the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
  • a method for controlling a plant growth lighting device capable of attracting and killing pests as described above includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a plant growth lighting device capable of attracting and killing pests, comprising a control part and a light-emitting part, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow or green light, and the third light source part Emit white light,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature, the operating current, and the number of turns on of the third light source unit.
  • it also includes a driving element and a heat dissipation element.
  • the plant growth lighting device capable of attracting and killing pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a plant growth lighting device for trapping and killing pests based on biometrics comprising a control part and a light-emitting part, wherein,
  • the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits green or yellow light;
  • the control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
  • the controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid light emitting chip to convert green light Phosphors; or solid-state light-emitting chips are AlGaInP/GaAs, GaP/GaP-based chips that emit green light.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the control unit is based on the time set by the timer
  • the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 ⁇ 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the light quantum ratio of the red light and the blue light of the first light source part is fixed
  • Adjusting the light quantum ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold
  • the second light source part is turned off.
  • the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, where the internal temperature of the plant factory is greater than a preset upper limit When the emission power of the first light source part, the second light source part and/or the third light source part is lowered; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part and the second light source part And/or the emission power of the third light source part.
  • the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device
  • the light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device
  • the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter,
  • the voice biometric device is directly connected to the IO port of the controller;
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
  • the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
  • the light source part, the second light source part and/or the third light source part are closed;
  • the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
  • the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
  • the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  • controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • a control method of the above-mentioned biological recognition-based plant growth lighting device for trapping and killing pests includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a plant growth lighting device for trapping and killing pests based on biometrics including a control part and a light-emitting part, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits green light, and the third light source part emits white light ,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  • it also includes a driving element and a heat dissipation element.
  • the plant growth lighting device for trapping and killing pests based on biometrics can be used in facility agriculture, artificial climate chambers or light incubators.
  • a server-based plant growth lighting device for trapping and killing pests including a control part, a light-emitting part and a server, wherein,
  • the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow or green light;
  • the control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
  • server and the control unit are connected by wired communication or wireless communication.
  • the server uses the photosensitive sensor, temperature sensor, infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
  • the server uses the photosensitive sensor, temperature sensor, infrared
  • the data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density G in the range of 500-600 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light-emitting chip and a coating layer arranged on the outside of the solid-state light-emitting chip, and the coating layer contains yellow or yellow light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light.
  • Green phosphor; or solid light-emitting chip is AlGaInP/GaAs, GaP/GaP-based chip emitting green light.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the light quantum ratio of the red light and the blue light of the first light source part is fixed
  • Adjusting the light quantum ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light, blue light and yellow or green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server.
  • the control section controls the first light source section, the second light source section, and/or the third light source section to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server sends instructions to The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on according to the instruction sent by the server.
  • the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit
  • the control unit sends a power down instruction to the control unit, and the control unit reduces the transmission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power down instruction sent by the server
  • the server sends an instruction to increase the power to the control unit, and the control unit increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the control unit, which controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instruction;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
  • the control part controls and/or turns off the first light source part, the second light source part and/or the third light source part near the operator according to the instructions sent by the server;
  • the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
  • the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
  • the control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
  • the control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
  • control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • a server-based control method of a plant growth lighting device for trapping and killing pests includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a server-based plant growth lighting device for trapping and killing pests including a control part, a light-emitting part and a server, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits green light, and the third light source part emits white light ,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
  • it also includes a driving element and a heat dissipation element.
  • server-based plant growth lighting device for trapping and killing pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a plant growth lighting device for inhibiting the metamorphic development of pests comprising a control part and a light-emitting part, wherein,
  • the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light,
  • the control unit respectively controls the first light source unit and the second light source unit.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ;
  • the solid-state light-emitting chip is a GaAlAs or GaAs-based chip emitting blue light.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer
  • the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • An input and output unit which implements the input of data and information to the plant growth lighting device for inhibiting the metamorphic development of pests and the output from the plant growth lighting device for inhibiting the metamorphic development of pests to the outside;
  • Data storage department which stores relevant data for retrieval and use at any time
  • An arithmetic unit which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
  • the plant growth lighting device for inhibiting the metamorphic development of pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flow suitable for the growth of the plant One or more of density, red or blue quantum flow density ratio data, and green light quantum flow density demand data;
  • the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
  • the input data related to the plant includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
  • the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
  • the light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
  • the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source
  • the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
  • One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
  • it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
  • the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
  • a control method of a plant growth lighting device for inhibiting the metamorphic development of pests as described above includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a plant growth lighting device for inhibiting the metamorphic development of pests comprising a control part and a light-emitting part, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  • it also includes a driving element and a heat dissipation element.
  • the plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition comprising a control part and a light emitting part, wherein,
  • the light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light;
  • the control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
  • the controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ;
  • the solid-state light-emitting chip is a GaAlAs or GaAs-based chip emitting blue light.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the control unit is based on the time set by the timer
  • the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 ⁇ 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the light quantum ratio of the red light and the blue light of the first light source part is fixed
  • Adjusting the light quantum ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold
  • the second light source part is turned off.
  • the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, where the internal temperature of the plant factory is greater than a preset upper limit When the emission power of the first light source part, the second light source part and/or the third light source part is lowered; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part and the second light source part And/or the emission power of the third light source part.
  • the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device
  • the light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device
  • the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter,
  • the voice biometric device is directly connected to the IO port of the controller;
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
  • the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
  • the light source part, the second light source part and/or the third light source part are closed;
  • the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
  • the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
  • the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  • controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • a method for controlling a plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition as described above includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition comprising a control part and a light emitting part, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light,
  • first light source part, the second light source part, and the third light source part are electrically connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  • it also includes a driving element and a heat dissipation element.
  • the biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a server-based plant growth lighting device for inhibiting the metamorphic development of pests comprising a control part, a light-emitting part and a server, wherein,
  • the light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light;
  • the control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
  • server and the controller are connected by wired communication or wireless communication.
  • the server uses the photosensitive sensor, temperature sensor, infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
  • the server uses the photosensitive sensor, temperature sensor, infrared
  • the data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ;
  • the solid light-emitting chip is a blue-emitting GaAlAs, GaAs-based chip.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the light quantum ratio of the red light and the blue light of the first light source part is fixed
  • Adjusting the light quantum ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server.
  • the controller sends instructions, and the controller controls the first light source, the second light source, and/or the third light source to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server The controller sends instructions, and the controller controls the first light source part, the second light source part, and/or the third light source part to turn on according to the instructions sent by the server.
  • the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit
  • the controller sends a power down instruction to the controller, and the controller adjusts the transmit power of the first light source part, the second light source part and/or the third light source part according to the power down instruction sent by the server
  • the server sends an instruction to increase the power to the controller when the internal temperature of the plant production facility is lower than the preset lower limit, and the controller increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the controller, and the controller controls the first light source part, the second light source part and/or the third light source part to turn on and/or off according to the instruction;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends instructions to the controller according to the location information of the worker detected by the ultrasonic biometric device.
  • the controller controls the first light source part, the second light source part and/or the third light source part near the operator to turn on and/or turn off according to the instructions sent by the server;
  • the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And send instructions to the controller according to the judgment result, the controller according to the instructions sent by the server, and the controller controls the turning on of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server And/or close;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the controller according to the iris information of the human eye detected by the iris biometric device.
  • the controller controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
  • the controller sends instructions, and the controller controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
  • controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • a server-based control method of a plant growth lighting device for inhibiting the metamorphic development of pests includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a server-based plant growth lighting device for inhibiting the metamorphic development of pests comprising a control part, a light-emitting part and a server, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light;
  • the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner. That is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
  • it also includes a driving element and a heat dissipation element.
  • server-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a plant growth lighting device capable of preventing and removing pests, comprising a control part and a light-emitting part, wherein,
  • the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light,
  • the control unit respectively controls the first light source unit and the second light source unit.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light.
  • Phosphor; or solid-state light-emitting chip is a yellow-emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chip.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer
  • the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
  • Adjusting the light quantum flow density ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • An input and output unit that implements the input of data and information to the pest-preventable plant growth lighting device and the output of the pest-preventable plant growth lighting device to the outside;
  • Data storage department which stores relevant data for retrieval and use at any time
  • An arithmetic unit which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
  • the plant growth lighting device capable of preventing and eliminating pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green light light quantum flow density, yellow light light quantum flow density demand data of one or more;
  • the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
  • the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
  • the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
  • the light quantum flow density ratio of blue light, red light, green light and yellow light can be adjusted by the control unit according to plant species and plant growth stage.
  • the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source A variation range of the light quantum flow density of the yellow light and the variation range of the light quantum flow density of the blue light, red light, and green light of the third light source;
  • the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
  • One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
  • it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
  • the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
  • a method for controlling a plant growth lighting device capable of preventing and eliminating pests as described above includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a plant growth lighting device capable of preventing and removing pests, comprising a control part and a light-emitting part, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  • it also includes a driving element and a heat dissipation element.
  • the plant growth lighting device capable of preventing and eliminating pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a server-based plant growth lighting device for preventing and eliminating pests, comprising a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part and a second light source part, and the first light source part emits red light and blue light , The second light source part emits yellow light;
  • the control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
  • server and the control unit are connected by wired communication or wireless communication.
  • the server uses the photosensitive sensor, temperature sensor, infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
  • the server uses the photosensitive sensor, temperature sensor, infrared
  • the data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light.
  • Phosphors; or solid-state light-emitting chips are GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chips emitting yellow light.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the light quantum ratio of the red light and the blue light of the first light source part is fixed
  • Adjusting the light quantum ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server.
  • the control section controls the first light source section, the second light source section, and/or the third light source section to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server sends instructions to The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and the third light source unit to turn on according to the instructions sent by the server.
  • the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit
  • the control unit sends a power down instruction to the control unit, and the control unit reduces the transmission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power down instruction sent by the server
  • the server sends an instruction to increase the power to the control unit, and the control unit increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the control unit, which controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instruction;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or turn off according to the instructions sent by the server;
  • the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
  • the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
  • the control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
  • the control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
  • control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • a server-based control method of a plant growth lighting device for preventing and eliminating pests includes the following steps:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a server-based plant growth lighting device for preventing and eliminating pests, comprising a control part, a light-emitting part and a server, wherein:
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
  • it also includes a driving element and a heat dissipation element.
  • server-based plant growth lighting device for preventing and eliminating pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • a plant growth lighting device for preventing and eliminating pests based on biometrics, comprising a control part and a light-emitting part, wherein,
  • the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light;
  • the control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
  • the controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
  • the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
  • the ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm
  • the ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
  • the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
  • the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
  • the second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light.
  • Phosphor; or solid-state light-emitting chip is a yellow-emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chip.
  • the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
  • the control unit is based on the time set by the timer
  • the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 ⁇ 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  • the light quantum ratio of the red light and the blue light of the first light source part is fixed
  • Adjusting the light quantum ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
  • the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  • the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
  • the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  • the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold
  • the second light source part is turned off.
  • the controller reduces the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is low
  • the emission power of the first light source part, the second light source part and/or the third light source part is increased.
  • the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device
  • the light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device
  • the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter,
  • the voice biometric device is directly connected to the IO port of the controller;
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
  • the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
  • the light source part, the second light source part and/or the third light source part are closed;
  • the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
  • the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the opening and/or closing of the first light source part, the second light source part and/or the third light source part.
  • controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • the method includes the following steps: setting the time and working period for starting illumination, and after reaching the illumination starting time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • a plant growth lighting device for preventing and eliminating pests based on biometrics, comprising a control part and a light-emitting part, wherein,
  • the light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
  • first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
  • the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  • it also includes a driving element and a heat dissipation element.
  • the biological recognition-based plant growth lighting device for preventing and eliminating pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • the present invention can adjust the irradiation of red light and green light through the combination and control of the first light source part, the second light source part and the third light source part, thereby protecting the personnel working in the plant lighting environment; at the same time, white light can be used to supplement The green light in the first light source part and the second light source part further enrich the spectrum, thereby creating an environment more conducive to plant growth.
  • FIG. 1 is a structural block diagram of the plant growth lighting device of the present invention.
  • Figure 2 is a schematic diagram of the structure of the plant growth lighting device of the present invention.
  • Figure 3 is a flow chart of the control method of the plant growth lighting device of the present invention.
  • Fig. 4 is a flow chart of the control method of the plant growth lighting device of the present invention.
  • This embodiment provides a plant growth lighting device capable of attracting and killing pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part.
  • the light source part emits red light and blue light; the second light source part emits green light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
  • the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-off of the third light source unit.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the green light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid-state light-emitting chip and a coating layer disposed on the outer side of the solid-state light-emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light to be emitted.
  • Phosphor so as to realize the light source of green light through solid light emitting chip; or solid light emitting chip is AlGaInP/GaAs, GaP/GaP based chip emitting green light.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source unit is 3-8.
  • the single fruit of strawberry can be made The quality and fruit quality have been greatly improved.
  • the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the plant growth lighting device capable of attracting and killing pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform irradiation operations, and during the time period Inside, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is: the first light source part, the second light source part and the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source part and the second light source part can be turned off when the daylight is sufficient. And the power supply of the third light source section to save energy.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum flow density ratio of the red light and the blue light is fixed.
  • the light quantum flow density ratio of red light, blue light and green light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different The number and color temperature of the third light source part, so that the light irradiated to the plant includes white light, so that the spectral ratio of the light device suitable for plant growth can be adjusted more conveniently; and more preferably, the yellow-green light of the third light source part
  • the light quantum flow density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the illumination device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
  • the plant growth lighting device capable of attracting and killing pests further includes: an input and output part, and a data storage Department and Computing Department.
  • the input and output unit implements the input of data and information to the plant growth lighting device capable of attracting and killing pests and the output of the plant growth lighting device capable of attracting and killing pests to the outside;
  • the data storage department stores relevant data for retrieval and use at any time
  • the arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
  • the plant growth lighting device capable of attracting and killing pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant, One or more of red or blue light quantum flow density data and green light quantum flow density data;
  • the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result.
  • the second light source part The second light source part.
  • the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
  • the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
  • the light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
  • the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit The variation range of the light quantum flow density of green light and the variation range of the light quantum flow density of blue, red, and green light of the third light source part,
  • the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
  • One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
  • the plant growth lighting device capable of attracting and killing pests of this embodiment may further include a human body sensing part that is turned off when it senses that a person enters the light environment The first light source part and the second light source part.
  • the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
  • the plant growth lighting device capable of attracting and killing pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used to The first light source part, the second light source part and the third light source part dissipate heat.
  • the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a plant growth lighting device capable of attracting and killing pests.
  • the plant growth lighting device capable of attracting and killing pests may adopt the plant growth lighting device capable of attracting and killing pests disclosed in the embodiment, which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a plant growth lighting device for trapping and killing pests based on biometrics, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part.
  • the first light source part emits red light and blue light; the second light source part emits green light, the third light source part emits white light, and the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric device
  • the controller performs the first light source unit, the second light source unit, and the third light source unit based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device. control.
  • the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-off of the third light source unit.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
  • the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
  • the light source part, the second light source part and/or the third light source part are closed;
  • the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
  • the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
  • the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the green light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid-state light-emitting chip and a coating layer disposed on the outer side of the solid-state light-emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light to be emitted.
  • Phosphor so as to realize the light source of green light through solid light emitting chip; or solid light emitting chip is AlGaInP/GaAs, GaP/GaP based chip emitting green light.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source unit is 3-8.
  • the quality of each strawberry can be improved.
  • the fruit quality has been greatly improved.
  • the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%.
  • the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the plant growth lighting device for trapping and killing pests based on biometrics further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, and During this time period, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer It is set to: the first light source part, the second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that there is sufficient sunlight during the day At this time, the power supplies of the first light source part, the second light source part and the third light source part are turned off to save energy.
  • the pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed.
  • the light quantum ratio of red light, blue light, and green light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
  • the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
  • the light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
  • the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
  • the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device
  • the returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off.
  • the light source part and/or the third light source part when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part
  • the part and/or the third light source part are in an open state.
  • the infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
  • the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
  • the biological recognition-based plant growth lighting device for trapping and killing pests further includes a driving element and a heat dissipation element, and the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element It is used to dissipate heat from the first light source part, the second light source part and the third light source part.
  • the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a plant growth lighting device for trapping and killing pests based on biometrics.
  • the plant growth lighting device for trapping and killing pests based on biometrics can use the biometric-based pest trapping plants disclosed in the embodiment.
  • Growth lighting device which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a server-based plant growth lighting device for trapping and killing pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part and a third light source part, The first light source part emits red light and blue light; the second light source part emits green light, and the third light source part emits white light.
  • the control part is connected to the server for receiving instructions from the server, The first light source part, the second light source part and the third light source part are respectively controlled.
  • the server and the control unit are connected by wired communication or wireless communication;
  • the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the control unit, or signal transmission (communication) between the local server and the control unit.
  • the server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device
  • the control unit sends an instruction, and at this time, the control unit controls the first light source unit and the second light source unit respectively according to the instruction sent by the server to the control unit.
  • the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-off of the third light source unit.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the green light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid-state light-emitting chip and a coating layer disposed on the outer side of the solid-state light-emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light to be emitted.
  • Phosphor so as to realize the light source of green light through solid light emitting chip; or solid light emitting chip is AlGaInP/GaAs, GaP/GaP based chip emitting green light.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source unit is 3-8.
  • the quality of each strawberry can be improved.
  • the fruit quality has been greatly improved.
  • the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%.
  • the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the server-based plant growth lighting device for trapping and killing pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform an irradiation action, the server According to the time period set by the timer, an instruction is sent to the control unit, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timing The device is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the sun can be illuminated during the day When sufficient, turn off the power of the first light source part, the second light source part and the third light source part to save energy.
  • the pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed.
  • the light quantum ratio of red light, blue light, and green light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
  • the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
  • the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server.
  • the light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server.
  • the second light source part and/or the third light source part are turned on.
  • the temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server.
  • the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server;
  • the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
  • the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server.
  • the server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction
  • the third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
  • the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
  • the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to shut down; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
  • the control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device
  • the identification device is directly connected to the IO port of the server.
  • the control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
  • control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
  • the server-based plant growth lighting device for trapping and killing pests further includes a driving element and a heat dissipation element, and the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used for To dissipate heat from the first light source part, the second light source part and the third light source part.
  • the first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip.
  • the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
  • LED in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light emitting polymers, organic light emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
  • an LED does not limit the type of physical and/or electrical packaging of the LED.
  • an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively.
  • the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs).
  • the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
  • the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
  • server-based plant growth lighting device for trapping and killing pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a server-based plant growth lighting device for trapping and killing pests.
  • the server-based plant growth lighting device for trapping and killing pests may adopt the server-based plant growth lighting device for trapping and killing pests disclosed in the embodiment. , which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a plant growth lighting device for inhibiting the metamorphic development of pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part.
  • a light source part emits red light and blue light; the second light source part emits blue light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
  • the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and blue light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor capable of absorbing the excitation light emitted by the solid light emitting chip and converting to emit blue light Therefore, the blue light source is realized by the solid light emitting chip; or the solid light emitting chip is a blue-emitting GaAlAs or GaAs-based chip.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source unit is 3-8.
  • the single fruit of strawberry can be made The quality and fruit quality have been greatly improved.
  • the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the plant growth lighting device for inhibiting the metamorphic development of pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform the irradiation operation, and at the time During the period, the control section controls the first light source section, the second light source section, and the third light source section to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is determined that the first light source, the second light source, and the third light source are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source and the second light source can be turned off when the daylight is sufficient. And the third light source to save energy.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum flow density ratio of the red light and the blue light is fixed.
  • the light quantum flow density ratio of red light and blue light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and color temperatures are added.
  • the third light source part of the third light source part thereby making the light irradiated to the plants include white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow and green light of the third light source part It does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density.
  • the plant growth lighting device for inhibiting the metamorphic development of pests further includes: an input and output unit, data Storage unit and computing unit.
  • the input and output unit implements the input of data and information to the plant growth lighting device for inhibiting the metamorphic development of pests and the output from the plant growth lighting device for inhibiting the metamorphic development of pests to the outside;
  • the data storage department stores relevant data for retrieval and use at any time
  • the arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
  • the plant growth lighting device for inhibiting the metamorphic development of pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green light light quantum flow density demand data at one or more;
  • the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result.
  • the second light source part The second light source part.
  • the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
  • the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
  • the light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
  • the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit The variation range of the light quantum flow density of blue light and the variation range of the light quantum flow density of blue, red, and green light of the third light source part,
  • the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
  • One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
  • the plant growth lighting device for inhibiting the metamorphic development of pests of this embodiment may further include a human body sensing part, which senses when a person enters the light environment. Turn off the first light source part and the second light source part.
  • the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
  • the plant growth lighting device for inhibiting the metamorphic development of pests further includes a driving element and a heat dissipation element, the driving element is used for driving the first light source part, the second light source part and the third light source part, and the heat dissipation element is used for Heat the first light source part, the second light source part and the third light source part.
  • the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a plant growth lighting device that inhibits the metamorphic development of pests.
  • the plant growth lighting device that inhibits the metamorphic development of pests may adopt the plant growth lighting device that inhibits the metamorphic development of pests disclosed in the embodiments, which includes :
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a biometric-based plant growth lighting device for inhibiting the metamorphic development of pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part ,
  • the first light source part emits red light and blue light;
  • the second light source part emits blue light,
  • the third light source part emits white light
  • the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric A device and a controller, the controller separately responds to the first light source, the second light source, and the third light source based on data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device Take control.
  • the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
  • the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
  • the light source part, the second light source part and/or the third light source part are closed;
  • the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
  • the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
  • the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and blue light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor capable of absorbing the excitation light emitted by the solid light emitting chip and converting to emit blue light Therefore, the blue light source is realized by the solid light emitting chip; or the solid light emitting chip is a blue-emitting GaAlAs or GaAs-based chip.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source unit is 3-8.
  • the quality of each strawberry can be improved.
  • the fruit quality has been greatly improved.
  • the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%.
  • the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, And in this time period, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the The timer is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that it can be irradiated during the day When the sunlight is sufficient, the power supply of the first light source part, the second light source part and the third light source part are turned off to save energy.
  • first light source part and the second light source part can separately set to irradiate with a cumulative irradiance time of 10-16h/day.
  • the metamorphic development of pests can be suppressed when the second light source part is turned on alone to irradiate plants.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed.
  • the light quantum ratio of the red light and the blue light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, a second light source including a different number and color temperature can be added.
  • the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density.
  • the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
  • the light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
  • the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
  • the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device
  • the returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off.
  • the light source part and/or the third light source part when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part
  • the part and/or the third light source part are in an open state.
  • the infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
  • the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  • the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
  • the biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a driving element and a heat dissipation element.
  • the driving element is used to drive the first light source part, the second light source part, and the third light source part.
  • the heat dissipation element is used for dissipating heat of the first light source part, the second light source part and the third light source part.
  • the plant growth lighting device with high visual safety can be used in facility agriculture or artificial climate chamber lighting incubators.
  • This embodiment provides a method for controlling a plant growth lighting device for inhibiting the metamorphic development of pests based on biometrics.
  • the plant growth lighting device for inhibiting the metamorphic development of pests based on biometrics can adopt the biometrics-based lighting device disclosed in the embodiment.
  • the plant growth lighting device for inhibiting the metamorphic development of pests includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a server-based plant growth lighting device for inhibiting the metamorphic development of pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source Part, the first light source part emits red light and blue light; the second light source part emits blue light, and the third light source part emits white light, wherein the control part is connected to the server for receiving instructions from the server , Controlling the first light source part, the second light source part and the third light source part respectively.
  • the server and the controller are connected by wired communication or wireless communication;
  • the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the controller, or signal transmission (communication) between the local server and the controller.
  • the server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device
  • the controller sends instructions, and at this time, the controller controls the first light source part and the second light source part respectively according to the instructions sent by the server to the controller.
  • the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and blue light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor capable of absorbing the excitation light emitted by the solid light emitting chip and converting to emit blue light Therefore, the blue light source is realized by the solid light emitting chip; or the solid light emitting chip is a blue-emitting GaAlAs or GaAs-based chip.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-9;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source unit is 3-8.
  • the quality of each strawberry can be improved.
  • the fruit quality has been greatly improved.
  • the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%.
  • the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the server-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, so
  • the server sends an instruction to the control unit according to the time period set by the timer, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instructions sent by the server, wherein,
  • the timer is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the When there is sufficient sunlight during the day, the power of the first light source part, the second light source part and the third light source part are turned off to save energy.
  • first light source part and the second light source part can separately set to irradiate with a cumulative irradiance time of 10-16h/day.
  • the metamorphic development of pests can be suppressed when the second light source part is turned on alone to irradiate plants.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed.
  • the light quantum ratio of the red light and the blue light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, a second light source including a different number and color temperature can be added.
  • the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density.
  • the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
  • the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server.
  • the light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server.
  • the second light source part and/or the third light source part are turned on.
  • the temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server.
  • the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server;
  • the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
  • the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server.
  • the server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction
  • the third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
  • the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
  • the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
  • the control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device
  • the identification device is directly connected to the IO port of the server.
  • the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
  • control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
  • the server-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a driving element and a heat dissipation element.
  • the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element
  • the element is used for heat dissipation of the first light source part, the second light source part and the third light source part.
  • the first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip.
  • the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
  • LED in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light emitting polymers, organic light emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
  • an LED does not limit the type of physical and/or electrical packaging of the LED.
  • an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively.
  • the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs).
  • the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
  • the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
  • server-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a server-based plant growth lighting device for inhibiting pest metamorphosis.
  • the server-based plant growth lighting device for inhibiting pest metamorphosis may adopt the server-based pest metamorphosis suppression disclosed in the embodiment.
  • Developmental plant growth lighting device which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a plant growth lighting device capable of preventing and removing pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part.
  • the light source part emits red light and blue light; the second light source part emits yellow light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
  • the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the yellow light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light.
  • Phosphor so that the light source of yellow light is realized by solid light emitting chip; or the solid light emitting chip is GaAsP/GaP, AlGaInP/GaAs, GaP/GaP based chip emitting yellow light.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source unit is 3-8.
  • the single fruit of strawberry can be made The quality and fruit quality have been greatly improved.
  • the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the plant growth lighting device capable of preventing and eliminating pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform irradiation operations, and during the time period Inside, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is: the first light source part, the second light source part and the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source part and the second light source part can be turned off when the daylight is sufficient. And the power supply of the third light source section to save energy.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum flow density ratio of the red light and the blue light is fixed.
  • the light quantum flow density ratio of red light, blue light and yellow light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different The number and color temperature of the third light source part, so that the light irradiated to the plant includes white light, so that the spectrum ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the yellow-green light of the third light source part
  • the light quantum flow density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the illumination device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and yellow light of the plant growth lighting device to the overall effective light quantum flow density.
  • the plant growth lighting device capable of preventing and eliminating pests further includes: an input and output unit, and a data storage unit. Department and Computing Department.
  • the input and output unit implements the input of data and information to the pest control plant growth lighting device and the output from the pest control plant growth lighting device to the outside;
  • the data storage department stores relevant data for retrieval and use at any time
  • the arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
  • the plant growth lighting device capable of preventing and eliminating pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant, One or more of red or blue light quantum flow density ratio data, green light quantum flow density, and yellow light quantum flow density demand data;
  • the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result.
  • the second light source part The second light source part.
  • the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
  • the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
  • the light quantum flow density ratio of blue light, red light, green light and yellow light can be adjusted by the control unit according to plant species and plant growth stage.
  • the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit
  • the variation range of the light quantum flow density of yellow light and the variation range of the light quantum flow density of blue, red, and green light of the third light source part
  • the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
  • One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
  • the plant growth lighting device capable of preventing pests of this embodiment may further include a human body sensing part, which is turned off when it senses that a person enters the light environment The first light source part and the second light source part.
  • the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
  • the plant growth lighting device capable of preventing and removing pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used to The first light source part, the second light source part and the third light source part dissipate heat.
  • the plant growth lighting device with high visual safety can be used in facility agriculture or artificial climate chamber lighting incubators.
  • This embodiment provides a method for controlling a plant growth lighting device capable of preventing and removing pests.
  • the plant growth lighting device capable of preventing and removing pests may adopt the plant growth lighting device capable of preventing and removing pests disclosed in the embodiment, which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a server-based plant growth lighting device for preventing and eliminating pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part, The first light source part emits red light and blue light; the second light source part emits yellow light, and the third light source part emits white light.
  • the control part is connected to the server for receiving instructions from the server, The first light source part, the second light source part and the third light source part are respectively controlled.
  • the server and the control unit are connected by wired communication or wireless communication;
  • the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the control unit, or signal transmission (communication) between the local server and the control unit.
  • the server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device
  • the control unit sends an instruction, and at this time, the control unit controls the first light source unit and the second light source unit respectively according to the instruction sent by the server to the control unit.
  • the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the yellow light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light.
  • Phosphor so that the light source of yellow light is realized by solid light emitting chip; or the solid light emitting chip is GaAsP/GaP, AlGaInP/GaAs, GaP/GaP based chip emitting yellow light.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source unit is 3-8.
  • the quality of each strawberry can be improved.
  • the fruit quality has been greatly improved.
  • the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%.
  • the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the server-based plant growth lighting device for preventing and eliminating pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform an irradiation operation, the server According to the time period set by the timer, an instruction is sent to the control unit, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timing The device is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the sun can be illuminated during the day When sufficient, turn off the power of the first light source part, the second light source part and the third light source part to save energy.
  • the pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed.
  • the light quantum ratio of red light, blue light, and yellow light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and yellow light of the plant growth lighting device to the overall effective light quantum flow density.
  • the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
  • the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server.
  • the light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server.
  • the second light source part and/or the third light source part are turned on.
  • the temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server.
  • the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server;
  • the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
  • the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server.
  • the server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction
  • the third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
  • the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
  • the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to shut down; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
  • the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
  • the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
  • the control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device
  • the identification device is directly connected to the IO port of the server.
  • the control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
  • control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
  • the server-based plant growth lighting device for preventing and eliminating pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used for To dissipate heat from the first light source part, the second light source part and the third light source part.
  • the first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip.
  • the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
  • LED in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light emitting polymers, organic light emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
  • an LED does not limit the type of physical and/or electrical packaging of the LED.
  • an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively.
  • the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs).
  • the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
  • the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
  • the server-based plant growth lighting device for preventing and eliminating pests of the present invention can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a server-based plant growth lighting device for preventing and eliminating pests.
  • the server-based plant growth lighting device for preventing and eliminating pests may adopt the server-based plant growth lighting device for preventing pests disclosed in the embodiment. , which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  • This embodiment provides a biometric-based plant growth lighting device for preventing pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part.
  • the first light source part emits red and blue light; the second light source part emits yellow light, the third light source part emits white light, and the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric device
  • the controller performs the first light source unit, the second light source unit, and the third light source unit based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device. control.
  • the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
  • the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
  • the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
  • the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
  • the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
  • the light source part, the second light source part and/or the third light source part are closed;
  • the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
  • the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
  • the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
  • the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  • the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the yellow light emitted by the first light source part and the second light source part on the human body can be minimized.
  • the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
  • Convert the red phosphor that emits red light so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective
  • the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
  • the second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light.
  • Phosphor so as to realize the light source of yellow light through solid light emitting chip; or the solid light emitting chip is a yellow light emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP based chip.
  • the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
  • the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
  • the wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10;
  • the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source unit is 3-8.
  • the quality of each strawberry can be improved.
  • the fruit quality has been greatly improved.
  • the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%.
  • the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
  • the biological recognition-based plant growth lighting device for preventing and eliminating pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform the irradiation operation, and During this time period, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer It is set to: the first light source part, the second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that there is sufficient sunlight during the day At this time, the power supplies of the first light source part, the second light source part and the third light source part are turned off to save energy.
  • the pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
  • the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed.
  • the light quantum ratio of red light, blue light, and yellow light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
  • the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
  • the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and yellow light of the plant growth lighting device to the overall effective light quantum flow density.
  • the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
  • the light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
  • the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
  • the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device
  • the returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off.
  • the light source part and/or the third light source part when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part
  • the part and/or the third light source part are in an open state.
  • the infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
  • the controller is connected to a control device through a DA converter and an operational amplifier, and the control device is connected to the first light source part, the second light source part, and the third light source part.
  • the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
  • the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
  • the biological recognition-based plant growth lighting device for preventing and eliminating pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element It is used to dissipate heat from the first light source part, the second light source part and the third light source part.
  • the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
  • This embodiment provides a method for controlling a plant growth lighting device for preventing and eliminating pests based on biometrics.
  • the plant growth lighting device for preventing and eliminating pests based on biometrics may adopt the biometrics-based pest control of plants disclosed in the embodiment.
  • Growth lighting device which includes:
  • control part controls the first light source part, the second light source part and the third light source part to turn on;
  • the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
  • the control part controls the first light source part, the second light source part and the third light source part to turn off.
  • the human body sensing part senses whether the human body enters the light environment.
  • the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Catching Or Destruction (AREA)

Abstract

Disclosed are a plant growth illumination apparatus capable of trapping and killing pests, and a control method therefor. The plant growth illumination apparatus capable of trapping and killing pests comprises a control portion and a light-emitting portion, wherein the light-emitting portion comprises a first light source portion and a second light source portion, the first light source portion emits red light and blue light, the second light source portion emits green light, and the control portion respectively controls the first light source portion and the second light source portion. In the present invention, irradiation by red light and green light is adjusted by means of the combination and control of a first light source portion, a second light source portion and a third light source portion, such that the circadian rhythm of pests is interfered with, and the occurrence of pests damaging a plant is effectively controlled; in addition, components, such as the green light, in the first light source portion and the second light source portion is supplemented by means of white light, such that a spectrum is further enriched, thereby creating a better environment for plant growth.

Description

植物生长光照装置及其控制方法Plant growth lighting device and control method thereof 技术领域Technical field
本发明涉及植物生长光照装置及其控制方法,尤其涉及给在植物光照环境中的工作人员提供的植物生长光照装置及其控制方法。The invention relates to a plant growth lighting device and a control method thereof, in particular to a plant growth lighting device and a control method thereof provided to workers in a plant lighting environment.
背景技术Background technique
在自然环境中,植物通过获取太阳光中有效波长的光成分,进行光合作用和发育成长。但自然环境存在多变性,也有虫害等风险。因此,近年来在封闭空间,如在室内种植植物,并通过人造照明灯模拟自然光的植物工厂逐渐兴起,包括飞利浦、欧司朗、GE、西门子等各大企业纷纷进入这一领域。In the natural environment, plants photosynthesize and grow by obtaining light components of effective wavelengths in sunlight. However, the natural environment is volatile and there are risks such as pests. Therefore, in recent years, in closed spaces, such as planting plants indoors and using artificial lighting to simulate natural light, plant factories have gradually emerged, including Philips, Osram, GE, Siemens and other major companies have entered this field.
在自然光中包含的各种波长的光当中不是所有的光都可以被植物利用,基本上只有蓝光和红光才能被植物吸收。具体来说,蓝光B(例如460nm)可以帮助植物根的生长,对植物早期效果最明显;红光R(例如660nm)利于植物茎叶,开花及果实生长;远红外光FR(例如730nm)有利于控制植物花期以及体内营养合成。根据植物的种类和生长阶段,设定合适的红光和蓝光的波长以及两者之间的红蓝比例(B/R),可以获得对该植物最佳的光照环境;最终的目的是获得植物的高且稳定的产量、以及高且稳定的营养成分,同时还要实现防虫等效果。Not all of the light of various wavelengths contained in natural light can be used by plants, and basically only blue and red light can be absorbed by plants. Specifically, blue light B (e.g. 460nm) can help the growth of plant roots and has the most obvious effect on the early plant; red light R (e.g. 660nm) is good for plant stems and leaves, flowering and fruit growth; far-infrared light FR (e.g. 730nm) has Conducive to the control of plant flowering and nutrient synthesis in the body. According to the type and growth stage of the plant, setting the appropriate wavelengths of red and blue light and the ratio of red to blue (B/R) between the two can obtain the best lighting environment for the plant; the ultimate goal is to obtain the plant The high and stable yield, and high and stable nutrients, while also achieving the effects of insect control.
例如,在“李小娥等.不同红蓝LED组合光源对西瓜幼苗生长和生理参数的影响[J].中国瓜菜,2015,28(3):14-17”的文献中描述了以下内容:对于西瓜种植,以荧光灯为对照(光照强度为150μmol.m-2s-1),探讨了相同光照强度下,不同红光蓝光配比(R/B)LED组合光源(7:1、7:2、7:3)对西瓜幼苗生长和生理参数的影响;结果表明,红蓝LED组合光源下西瓜幼苗茎租度、鲜质量、干质量、壮苗指数均有所增加,其中在RB=7:3下表现尤为突出。For example, in "Li Xiao'e et al. The effect of different red and blue LED light sources on the growth and physiological parameters of watermelon seedlings[J]. China Guicai, 2015,28(3):14-17", the following content is described: Watermelon planting, with fluorescent lamp as the control (light intensity 150μmol.m-2s-1), under the same light intensity, different red and blue ratio (R/B) LED combination light source (7:1, 7:2) 7:3) Effects on the growth and physiological parameters of watermelon seedlings; the results showed that the stem rent, fresh quality, dry quality and strong seedling index of watermelon seedlings all increased under the combination of red and blue LED light sources, where RB=7:3 The next performance is particularly outstanding.
发明内容Summary of the invention
但是,目前的LED植物生长灯全部是白光LED光源或者红蓝光LED光源混合或者红、蓝、白LED光源混合制造的植物LED生长灯。由于红光发光效率低,为满足植物光合色素系统所需的光谱以及光照强度,植物LED生长灯功率高,成本急剧增加。However, the current LED plant growth lamps are all plant LED growth lamps manufactured by a white LED light source or a mixture of red and blue LED light sources or a mixture of red, blue, and white LED light sources. Due to the low luminous efficiency of red light, in order to meet the spectrum and light intensity required by the plant photosynthetic pigment system, the plant LED growth lamp has high power and a sharp increase in cost.
光谱中红光、蓝光与绿光光子数的比值对植物形态建成,调节植株高度具有重要影响。由于红、蓝LED总数量远多于红外数量,在灯具设计上很难实现绿光的均匀分布,难以对植物均匀照射。The ratio of the number of red light, blue light and green light photons in the spectrum has an important influence on plant morphology and adjustment of plant height. Since the total number of red and blue LEDs is far more than the number of infrared, it is difficult to achieve uniform distribution of green light in the design of the lamp, and it is difficult to uniformly illuminate plants.
在LED植物生长灯处于红光和绿光工作状态时,进行栽培作业的用户会由于长时间处于红光和绿光环境里承受心理负担。此外在红光和绿光环境下,视觉性差难以通过目视观察植物的颜色来判断植物生长状态等,因此,植物栽培的作业性和效率降低。When the LED plant growth lamp is in the red light and green light working state, the users who carry out the cultivation operation will bear the psychological burden due to the long time in the red light and green light environment. In addition, under red light and green light environments, the visibility is poor and it is difficult to judge the growth state of the plant by visually observing the color of the plant. Therefore, the workability and efficiency of plant cultivation are reduced.
为解决上述的问题,本发明采用以下的技术方案。To solve the above-mentioned problems, the present invention adopts the following technical solutions.
一种可诱杀害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device capable of attracting and killing pests, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部同时发出红光和蓝光,所述第二光源部发出绿光,The light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light simultaneously, and the second light source part emits green light,
所述控制部对所述第一光源部和所述第二光源部分别进行控制。The control unit respectively controls the first light source unit and the second light source unit.
进一步的,所述第一光源部由固体所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the solid in the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10:1;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的500~600nm的范围内的光量子流密度G的比值3~8。The ratio of the light quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the light quantum flux density B in the range of 400nm~490nm is 4-10:1; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包 覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄或绿光的黄或绿光荧光体;或者固体发光芯片为发射黄或绿光的AlGaInP/GaAs、GaP/GaP基芯片的其中一种。The second light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains a material capable of absorbing the excitation light emitted by the solid-state light-emitting chip and converting it to emit yellow or green light. Yellow or green phosphor; or the solid light emitting chip is one of AlGaInP/GaAs and GaP/GaP based chips emitting yellow or green light.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;Further, the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和绿光的光量子流密度比例;Adjusting the light quantum flow density ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄或绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow or green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer The first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
进一步的,还包括:输入输出部,其实施数据和信息向所述可诱杀害虫的植物生长光照装置的输入和从所述可诱杀害虫的植物生长光照装置向外部的输出;Further, it also includes: an input and output unit, which implements the input of data and information to the plant growth lighting device that can attract and kill pests and the output of the plant growth lighting device that can attract and kill pests to the outside;
数据存储部,其存储相关数据,以备随时调取使用;Data storage department, which stores relevant data for retrieval and use at any time;
运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;An arithmetic unit, which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
所述可诱杀害虫的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿或黄光量子流密度需求数据中的一种或者多种;The plant growth lighting device capable of attracting and killing pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green or yellow light quantum flow density demand data at one or more;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
进一步的,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,Further, the input data related to the plant includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
蓝光、红光和绿光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
进一步的,所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部绿光的光量子流密度变化范围和所述第三光源部蓝光、红光、黄或绿光的光量子流密度的变化范围;Further, the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source A change range of the light quantum flow density of the green light and the change range of the light quantum flow density of the blue, red, yellow or green light of the third light source;
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
进一步的,还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。Further, it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
进一步的,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。Further, the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
进一步的,所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。Further, the human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
一种如上所述的可诱杀害虫的植物生长光照装置的控制方法,包括以下步骤:A method for controlling a plant growth lighting device capable of attracting and killing pests as described above includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种可诱杀害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device capable of attracting and killing pests, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄或绿光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow or green light, and the third light source part Emit white light,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温、工作电流和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature, the operating current, and the number of turns on of the third light source unit.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述的可诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the plant growth lighting device capable of attracting and killing pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种基于生物识别的诱杀害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for trapping and killing pests based on biometrics, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出绿或黄光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits green or yellow light;
所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。The control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的500~600nm的范围内的光量子流密度G的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的绿光荧光体;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid light emitting chip to convert green light Phosphors; or solid-state light-emitting chips are AlGaInP/GaAs, GaP/GaP-based chips that emit green light.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer The first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 − 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子比例是固定的;Further, the light quantum ratio of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和绿光的光量子比例;Adjusting the light quantum ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。Further, the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold The second light source part is turned off.
进一步的,所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。Further, the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, where the internal temperature of the plant factory is greater than a preset upper limit When the emission power of the first light source part, the second light source part and/or the third light source part is lowered; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part and the second light source part And/or the emission power of the third light source part.
进一步的,所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。Further, the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device The light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device To the controller, the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;Further, the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, The voice biometric device is directly connected to the IO port of the controller;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
进一步的,所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。Further, the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
一种如上所述的基于生物识别的诱杀害虫的植物生长光照装置的控制方法,包括以下步骤:A control method of the above-mentioned biological recognition-based plant growth lighting device for trapping and killing pests includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种基于生物识别的诱杀害虫的植物生长光照装置,包括控制部和发光部, 其中,A plant growth lighting device for trapping and killing pests based on biometrics, including a control part and a light-emitting part, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出绿光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits green light, and the third light source part emits white light ,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述的基于生物识别的诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the plant growth lighting device for trapping and killing pests based on biometrics can be used in facility agriculture, artificial climate chambers or light incubators.
一种基于服务器的诱杀害虫的植物生长光照装置,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for trapping and killing pests, including a control part, a light-emitting part and a server, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄或绿光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow or green light;
所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。The control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
进一步的,所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接。Further, the server and the control unit are connected by wired communication or wireless communication.
进一步的,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。Further, it also includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The server uses the photosensitive sensor, temperature sensor, infrared The data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的 500-600nm的范围内的光量子流密度G的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density G in the range of 500-600 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的黄或绿光荧光体;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light-emitting chip and a coating layer arranged on the outside of the solid-state light-emitting chip, and the coating layer contains yellow or yellow light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light. Green phosphor; or solid light-emitting chip is AlGaInP/GaAs, GaP/GaP-based chip emitting green light.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer, which sets a time period for the first light source part, the second light source part, and the third light source part to perform the irradiation action, and the server sets the time period according to the timer , Send an instruction to the control unit, the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子比例是固定的;Further, the light quantum ratio of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和绿光的光量子比例;Adjusting the light quantum ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层 的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄或绿光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow or green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。Further, the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server. When the intensity of the external light is greater than a preset upper threshold, The control section controls the first light source section, the second light source section, and/or the third light source section to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server sends instructions to The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on according to the instruction sent by the server.
进一步的,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。Further, the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit When the value is set, the control unit sends a power down instruction to the control unit, and the control unit reduces the transmission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power down instruction sent by the server When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
进一步的,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Further, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the control unit, which controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instruction;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部和/或关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control part controls and/or turns off the first light source part, the second light source part and/or the third light source part near the operator according to the instructions sent by the server;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制 部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。Further, the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
进一步的,所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。Further, the control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
一种基于服务器的诱杀害虫的植物生长光照装置的控制方法,包括以下步骤:A server-based control method of a plant growth lighting device for trapping and killing pests includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, it is judged whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种基于服务器的诱杀害虫的植物生长光照装置,包括控制部、发光部和 服务器,其中,A server-based plant growth lighting device for trapping and killing pests, including a control part, a light-emitting part and a server, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出绿光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits green light, and the third light source part emits white light ,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述基于服务器的诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the server-based plant growth lighting device for trapping and killing pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种抑制害虫变态发育的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for inhibiting the metamorphic development of pests, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light,
所述控制部对所述第一光源部和所述第二光源部分别进行控制。The control unit respectively controls the first light source unit and the second light source unit.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的400nm~490nm的范围内的光量子流密度B的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体;或者固体发光芯片为发射蓝光的GaAlAs、GaAs基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ; Or the solid-state light-emitting chip is a GaAlAs or GaAs-based chip emitting blue light.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer The first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;Further, the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光和蓝光的光量子流密度比例;Adjusting the light quantum flow density ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,还包括:Further, it also includes:
输入输出部,其实施数据和信息向所述抑制害虫变态发育的植物生长光照装置的输入和从所述抑制害虫变态发育的植物生长光照装置向外部的输出;An input and output unit which implements the input of data and information to the plant growth lighting device for inhibiting the metamorphic development of pests and the output from the plant growth lighting device for inhibiting the metamorphic development of pests to the outside;
数据存储部,其存储相关数据,以备随时调取使用;Data storage department, which stores relevant data for retrieval and use at any time;
运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;An arithmetic unit, which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
所述抑制害虫变态发育的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿 光光量子流密度需求数据中的一种或者多种;The plant growth lighting device for inhibiting the metamorphic development of pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flow suitable for the growth of the plant One or more of density, red or blue quantum flow density ratio data, and green light quantum flow density demand data;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
进一步的,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,Further, the input data related to the plant includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
蓝光、红光和绿光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
进一步的,所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部蓝光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围;Further, the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source The light quantum flow density change range of the blue light and the light quantum flow density change range of the blue light, red light, and green light of the third light source unit;
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
进一步的,还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。Further, it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
进一步的,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。Further, the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
进一步的,所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。Further, the human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
一种如上所述的抑制害虫变态发育的植物生长光照装置的控制方法,包括以下步骤:A control method of a plant growth lighting device for inhibiting the metamorphic development of pests as described above includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段, 如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。Determine whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种抑制害虫变态发育的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for inhibiting the metamorphic development of pests, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种基于生物识别的抑制害虫变态发育的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition, comprising a control part and a light emitting part, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光;The light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light;
所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。The control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发 出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的400nm~490nm的范围内的光量子流密度B的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体;或者固体发光芯片为发射蓝光的GaAlAs、GaAs基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ; Or the solid-state light-emitting chip is a GaAlAs or GaAs-based chip emitting blue light.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer The first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 − 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子比例是固定的;Further, the light quantum ratio of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光和蓝光的光量子比例;Adjusting the light quantum ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。Further, the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold The second light source part is turned off.
进一步的,所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。Further, the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, where the internal temperature of the plant factory is greater than a preset upper limit When the emission power of the first light source part, the second light source part and/or the third light source part is lowered; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part and the second light source part And/or the emission power of the third light source part.
进一步的,所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。Further, the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device The light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device To the controller, the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;Further, the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, The voice biometric device is directly connected to the IO port of the controller;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声 音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
进一步的,所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。Further, the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
一种如上所述的基于生物识别的抑制害虫变态发育的植物生长光照装置的控制方法,包括以下步骤:A method for controlling a plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition as described above, includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种基于生物识别的抑制害虫变态发育的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition, comprising a control part and a light emitting part, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方 式进行电路连接,Wherein, the first light source part, the second light source part, and the third light source part are electrically connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述基于生物识别的抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种基于服务器的抑制害虫变态发育的植物生长光照装置,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for inhibiting the metamorphic development of pests, comprising a control part, a light-emitting part and a server, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光;The light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light;
所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。The control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
进一步的,所述服务器与控制器之间采用有线通信或者无线通信的方式进行连接。Further, the server and the controller are connected by wired communication or wireless communication.
进一步的,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。Further, it also includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The server uses the photosensitive sensor, temperature sensor, infrared The data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的400nm~490nm的范围内的光量子流密度B的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝 光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体;或者固体发光芯片为发射蓝光GaAlAs、GaAs基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ; Or the solid light-emitting chip is a blue-emitting GaAlAs, GaAs-based chip.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer, which sets a time period for the first light source part, the second light source part, and the third light source part to perform the irradiation action, and the server sets the time period according to the timer , Send an instruction to the control unit, the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子比例是固定的;Further, the light quantum ratio of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光和蓝光的光量子比例;Adjusting the light quantum ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设 的上限阈值时,向控制器发送指令,所述控制器根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制器发送指令,所述控制器根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。Further, the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server. When the intensity of the external light is greater than a preset upper threshold, The controller sends instructions, and the controller controls the first light source, the second light source, and/or the third light source to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server The controller sends instructions, and the controller controls the first light source part, the second light source part, and/or the third light source part to turn on according to the instructions sent by the server.
进一步的,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制器发送调低功率的指令,所述控制器根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制器发送调高功率的指令,所述控制器根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。Further, the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit When the value is set, the controller sends a power down instruction to the controller, and the controller adjusts the transmit power of the first light source part, the second light source part and/or the third light source part according to the power down instruction sent by the server The server sends an instruction to increase the power to the controller when the internal temperature of the plant production facility is lower than the preset lower limit, and the controller increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
进一步的,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制器发出指令,所述控制器根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Further, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the controller, and the controller controls the first light source part, the second light source part and/or the third light source part to turn on and/or off according to the instruction;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制器发送指令,所述控制器根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends instructions to the controller according to the location information of the worker detected by the ultrasonic biometric device. The controller controls the first light source part, the second light source part and/or the third light source part near the operator to turn on and/or turn off according to the instructions sent by the server;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制器发送指令,所述控制器根据服务器发送的指令,所述控制器所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And send instructions to the controller according to the judgment result, the controller according to the instructions sent by the server, and the controller controls the turning on of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server And/or close;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制器发送指令,所述控制器根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the controller according to the iris information of the human eye detected by the iris biometric device. The controller controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制器发送指令,所述控制器根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The controller sends instructions, and the controller controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server.
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。Further, the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
进一步的,所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。Further, the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
一种基于服务器的抑制害虫变态发育的植物生长光照装置的控制方法,包括以下步骤:A server-based control method of a plant growth lighting device for inhibiting the metamorphic development of pests includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, it is judged whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种基于服务器的抑制害虫变态发育的植物生长光照装置,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for inhibiting the metamorphic development of pests, comprising a control part, a light-emitting part and a server, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,所述第三光源部发出白光;The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light;
所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,The first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据 所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner. That is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述基于服务器的抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the server-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种可防除害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device capable of preventing and removing pests, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light,
所述控制部对所述第一光源部和所述第二光源部分别进行控制。The control unit respectively controls the first light source unit and the second light source unit.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体;或者固体发光芯片为发射黄光GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor; or solid-state light-emitting chip is a yellow-emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chip.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时 间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer The first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;Further, the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和黄光的光量子流密度比例;Adjusting the light quantum flow density ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,还包括:Further, it also includes:
输入输出部,其实施数据和信息向所述可防除害虫的植物生长光照装置的输入和从所述可防除害虫的植物生长光照装置向外部的输出;An input and output unit that implements the input of data and information to the pest-preventable plant growth lighting device and the output of the pest-preventable plant growth lighting device to the outside;
数据存储部,其存储相关数据,以备随时调取使用;Data storage department, which stores relevant data for retrieval and use at any time;
运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;An arithmetic unit, which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
所述可防除害虫的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度、黄光光量子流密度需求数据中的一种或者多种;The plant growth lighting device capable of preventing and eliminating pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green light light quantum flow density, yellow light light quantum flow density demand data of one or more;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
进一步的,与植物相关的输入的数据包括:植物种类、植物生长阶段、在 该生长阶段下最佳的光照环境参数,Further, the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
蓝光、红光、绿光和黄光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light, green light and yellow light can be adjusted by the control unit according to plant species and plant growth stage.
进一步的,所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部黄光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围;Further, the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source A variation range of the light quantum flow density of the yellow light and the variation range of the light quantum flow density of the blue light, red light, and green light of the third light source;
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
进一步的,还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。Further, it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
进一步的,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。Further, the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
进一步的,所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。Further, the human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
一种如上所述的可防除害虫的植物生长光照装置的控制方法,包括以下步骤:A method for controlling a plant growth lighting device capable of preventing and eliminating pests as described above includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种可防除害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device capable of preventing and removing pests, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述的可防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the plant growth lighting device capable of preventing and eliminating pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种基于服务器的防除害虫的植物生长光照装置,包括控制部、发光部和服务器,其中,所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光;A server-based plant growth lighting device for preventing and eliminating pests, comprising a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part and a second light source part, and the first light source part emits red light and blue light , The second light source part emits yellow light;
所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。The control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
进一步的,所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接。Further, the server and the control unit are connected by wired communication or wireless communication.
进一步的,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。Further, it also includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The server uses the photosensitive sensor, temperature sensor, infrared The data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体;或者固体发光芯片为发射黄光的GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphors; or solid-state light-emitting chips are GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chips emitting yellow light.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer, which sets a time period for the first light source part, the second light source part, and the third light source part to perform the irradiation action, and the server sets the time period according to the timer , Send an instruction to the control unit, the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子比例是固定的;Further, the light quantum ratio of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和黄光的光量子比例;Adjusting the light quantum ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部第三光源部开启。Further, the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server. When the intensity of the external light is greater than a preset upper threshold, The control section controls the first light source section, the second light source section, and/or the third light source section to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server sends instructions to The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and the third light source unit to turn on according to the instructions sent by the server.
进一步的,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。Further, the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit When the value is set, the control unit sends a power down instruction to the control unit, and the control unit reduces the transmission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power down instruction sent by the server When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
进一步的,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Further, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the control unit, which controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instruction;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or turn off according to the instructions sent by the server;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。Further, the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
进一步的,所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。Further, the control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
一种基于服务器的防除害虫的植物生长光照装置的控制方法,包括以下步骤:A server-based control method of a plant growth lighting device for preventing and eliminating pests includes the following steps:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, it is judged whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种基于服务器的防除害虫的植物生长光照装置,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for preventing and eliminating pests, comprising a control part, a light-emitting part and a server, wherein:
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部 发出红光和蓝光,所述第二光源部发出黄光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述的基于服务器的防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the server-based plant growth lighting device for preventing and eliminating pests can be used in facility agriculture, artificial climate chambers or light incubators.
一种基于生物识别的防除害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for preventing and eliminating pests based on biometrics, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light;
所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。The control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,Further, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;Further, the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light. The red light phosphor, so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体;或者固体发光芯片为发射黄光GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor; or solid-state light-emitting chip is a yellow-emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chip.
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。Further, it further includes a third light source portion, the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing Excitation light converts yellow light and/or green light emitting phosphor into white light.
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。Further, it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer The first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 − 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。Further, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
进一步的,所述第一光源部的红光和蓝光的光量子比例是固定的;Further, the light quantum ratio of the red light and the blue light of the first light source part is fixed;
通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和黄光的光量子比例;Adjusting the light quantum ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。Further, the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;Further, the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。Further, the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold The second light source part is turned off.
进一步的,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。Further, when the internal temperature of the plant factory is greater than the preset upper limit, the controller reduces the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is low When the lower limit is preset, the emission power of the first light source part, the second light source part and/or the third light source part is increased.
进一步的,所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。Further, the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device The light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device To the controller, the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;Further, the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, The voice biometric device is directly connected to the IO port of the controller;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将 采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the opening and/or closing of the first light source part, the second light source part and/or the third light source part.
进一步的,所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。Further, the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
进一步的,包括以下步骤:设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Further, the method includes the following steps: setting the time and working period for starting illumination, and after reaching the illumination starting time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Further, during the working period of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
一种基于生物识别的防除害虫的植物生长光照装置,包括控制部和发光部,其中,A plant growth lighting device for preventing and eliminating pests based on biometrics, comprising a control part and a light-emitting part, wherein,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
进一步的,还包括驱动元件和散热元件。Further, it also includes a driving element and a heat dissipation element.
进一步的,所述的基于生物识别的防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Further, the biological recognition-based plant growth lighting device for preventing and eliminating pests can be used in facility agriculture, artificial climate chambers or light incubators.
本发明能够通过第一光源部、第二光源部和第三光源部的组合和控制来调整红光和绿光的照射,从而保护了在植物光照环境中工作的人员;同时还可以利用白光补充第一光源部和第二光源部里的绿光等成分,进一步使光谱丰富, 从而营造更有利于植物生长的环境。The present invention can adjust the irradiation of red light and green light through the combination and control of the first light source part, the second light source part and the third light source part, thereby protecting the personnel working in the plant lighting environment; at the same time, white light can be used to supplement The green light in the first light source part and the second light source part further enrich the spectrum, thereby creating an environment more conducive to plant growth.
附图说明Description of the drawings
图1为本发明的植物生长光照装置的结构框图;Figure 1 is a structural block diagram of the plant growth lighting device of the present invention;
图2为本发明的植物生长光照装置的结构示意图;Figure 2 is a schematic diagram of the structure of the plant growth lighting device of the present invention;
图3为本发明的植物生长光照装置的控制方法的流程图;Figure 3 is a flow chart of the control method of the plant growth lighting device of the present invention;
图4为本发明的植物生长光照装置的控制方法的流程图。Fig. 4 is a flow chart of the control method of the plant growth lighting device of the present invention.
具体实施方式detailed description
下面结合实施例及附图对本发明的技术方案作进一步阐述。The technical solution of the present invention will be further described below in conjunction with the embodiments and drawings.
实施例1Example 1
本实施例提供了一种可诱杀害虫的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出绿光,所述第三光源部发出白光,所述控制部对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a plant growth lighting device capable of attracting and killing pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part. The light source part emits red light and blue light; the second light source part emits green light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
本实施例中,其所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-off of the third light source unit.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和绿光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the green light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝 光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的绿光荧光体,从而通过固体发光芯片来实现绿光的光源;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part is a solid-state light-emitting chip and a coating layer disposed on the outer side of the solid-state light-emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light to be emitted. Phosphor, so as to realize the light source of green light through solid light emitting chip; or solid light emitting chip is AlGaInP/GaAs, GaP/GaP based chip emitting green light.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的500-600nm的范围内的光量子流密度G的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子流密度比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the ratio of the effective light quantum flux density of the red light and blue light emitted by the first light source part, that is, R/B in the range of 5:1-10:1, the single fruit of strawberry can be made The quality and fruit quality have been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述可诱杀害虫的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和第三光源部以10-16h/天的累计辐射照度时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The plant growth lighting device capable of attracting and killing pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform irradiation operations, and during the time period Inside, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is: the first light source part, the second light source part and the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source part and the second light source part can be turned off when the daylight is sufficient. And the power supply of the third light source section to save energy.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子流密度比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光、蓝光和绿光的光量子流密度比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum flow density ratio of the red light and the blue light is fixed. However, the light quantum flow density ratio of red light, blue light and green light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different The number and color temperature of the third light source part, so that the light irradiated to the plant includes white light, so that the spectral ratio of the light device suitable for plant growth can be adjusted more conveniently; and more preferably, the yellow-green light of the third light source part The light quantum flow density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the illumination device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述可诱杀害虫的植物生长光照装置还包括:输入输出部、数据存储部和运算部。In this embodiment, in order to enable the control part to more accurately control the first light source part, the second light source part and the third light source part, the plant growth lighting device capable of attracting and killing pests further includes: an input and output part, and a data storage Department and Computing Department.
所述输入输出部实施数据和信息向所述可诱杀害虫的植物生长光照装置的输入和从所述可诱杀害虫的植物生长光照装置向外部的输出;The input and output unit implements the input of data and information to the plant growth lighting device capable of attracting and killing pests and the output of the plant growth lighting device capable of attracting and killing pests to the outside;
数据存储部存储相关数据,以备随时调取使用;The data storage department stores relevant data for retrieval and use at any time;
运算部利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;The arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
所述可诱杀害虫的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度数据中的一种或者多种;The plant growth lighting device capable of attracting and killing pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant, One or more of red or blue light quantum flow density data and green light quantum flow density data;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源部和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result. The second light source part.
进一步地,与植物相关的输入的数据包括:植物种类、植物生长阶段、在 该生长阶段下最佳的光照环境参数,Further, the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
蓝光、红光和绿光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光、红光的光量子流密度变化范围、所述第二光源部绿光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围,The simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit The variation range of the light quantum flow density of green light and the variation range of the light quantum flow density of blue, red, and green light of the third light source part,
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
尤其是,当人进入到包括本实施例的可诱杀害虫的植物生长光照装置植物工厂后,考虑到红光和绿光的影响,此时需要至少关闭第一光源部和第二光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的可诱杀害虫的植物生长光照装置还可以包括人体感应部,所述人体感应部在感应到人进入到光照环境中时关闭所述第一光源部和第二光源部。Especially, when a person enters a plant factory including the plant growth lighting device capable of attracting and killing pests of this embodiment, considering the influence of red light and green light, it is necessary to turn off at least the first light source part and the second light source part at this time, so that The blue light in the plant factory is reduced to a reasonable level; therefore, the plant growth lighting device capable of attracting and killing pests of this embodiment may further include a human body sensing part that is turned off when it senses that a person enters the light environment The first light source part and the second light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent damage to the human body by strong light, such as damage to the human eyes, the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
所述的可诱杀害虫的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The plant growth lighting device capable of attracting and killing pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used to The first light source part, the second light source part and the third light source part dissipate heat.
而且,所述高视觉安全性植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Moreover, the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
实施例2Example 2
本实施例提供了一种可诱杀害虫的植物生长光照装置的控制方法,所述可 诱杀害虫的植物生长光照装置可以采用实施例所公开的可诱杀害虫的植物生长光照装置,其包括:This embodiment provides a method for controlling a plant growth lighting device capable of attracting and killing pests. The plant growth lighting device capable of attracting and killing pests may adopt the plant growth lighting device capable of attracting and killing pests disclosed in the embodiment, which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例3Example 3
本实施例提供了一种基于生物识别的诱杀害虫的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出绿光,所述第三光源部发出白光,所述控制部包括光敏传感器、温度传感器、红外生物识别装置、声音生物识别装置和控制器,所述控制器根据光敏传感器、温度传感器、红外生物识别装置和声音生物识别装置所检测的数据,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a plant growth lighting device for trapping and killing pests based on biometrics, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part. The first light source part emits red light and blue light; the second light source part emits green light, the third light source part emits white light, and the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric device And a controller, the controller performs the first light source unit, the second light source unit, and the third light source unit based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device. control.
本实施例中,其所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-off of the third light source unit.
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和绿光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the green light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆 层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的绿光荧光体,从而通过固体发光芯片来实现绿光的光源;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part is a solid-state light-emitting chip and a coating layer disposed on the outer side of the solid-state light-emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light to be emitted. Phosphor, so as to realize the light source of green light through solid light emitting chip; or solid light emitting chip is AlGaInP/GaAs, GaP/GaP based chip emitting green light.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的500-600nm的范围内的光量子流密度G的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the effective light quantum ratio of the red light and blue light emitted by the first light source, that is, R/B is in the range of 5:1 to 10:1, the quality of each strawberry can be improved. The fruit quality has been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%. Calculated by the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述基于生物识别的诱杀害虫的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The plant growth lighting device for trapping and killing pests based on biometrics further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, and During this time period, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer It is set to: the first light source part, the second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that there is sufficient sunlight during the day At this time, the power supplies of the first light source part, the second light source part and the third light source part are turned off to save energy.
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可进行害虫的诱杀。Or separately set the first light source part and the second light source part to irradiate with a cumulative irradiance time of 10-16h/day. The pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空 比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光、蓝光和绿光的光量子比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed. However, the light quantum ratio of red light, blue light, and green light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the photosensitive sensor is used to detect the intensity of the external light, and the detected external light The light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
尤其是,当人进入到包括本实施例的高视觉安全性植物生长光照装置植物工厂后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭,即当有作业认为位于所述植物工厂内时,关闭第一光源部、第二光源部和/或第三光源部,当没有作业人员位于所述植物工厂内时,开启第一光源部、第二光源部和/或第三光源部,或者保 持第一光源部、第二光源部和/或第三光源部处于打开状态。Especially, when a person enters a plant factory including the high visual safety plant growth lighting device of this embodiment, considering the impact of blue light on the human body, the first light source part needs to be turned off at this time, so that the blue light in the plant factory is reduced to Therefore, the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device The returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off. The light source part and/or the third light source part, when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part The part and/or the third light source part are in an open state.
所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭;当红外生物识别装置检测的数据被控制器判定为不存在作业人员在植物工厂时,开启第一光源部、第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。The infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent damage to the human body by strong light, such as damage to the human eyes, the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
所述的基于生物识别的诱杀害虫的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The biological recognition-based plant growth lighting device for trapping and killing pests further includes a driving element and a heat dissipation element, and the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element It is used to dissipate heat from the first light source part, the second light source part and the third light source part.
而且,所述高视觉安全性植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Moreover, the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
实施例4Example 4
本实施例提供了一种基于生物识别的诱杀害虫的植物生长光照装置的控制方法,所述基于生物识别的诱杀害虫的植物生长光照装置可以采用实施例所公开的基于生物识别的诱杀害虫的植物生长光照装置,其包括:This embodiment provides a method for controlling a plant growth lighting device for trapping and killing pests based on biometrics. The plant growth lighting device for trapping and killing pests based on biometrics can use the biometric-based pest trapping plants disclosed in the embodiment. Growth lighting device, which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例5Example 5
本实施例提供了一种基于服务器的诱杀害虫的植物生长光照装置,其包括控制部、发光部和服务器,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出绿光,所述第三光源部发出白光,其中,所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a server-based plant growth lighting device for trapping and killing pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part and a third light source part, The first light source part emits red light and blue light; the second light source part emits green light, and the third light source part emits white light. The control part is connected to the server for receiving instructions from the server, The first light source part, the second light source part and the third light source part are respectively controlled.
所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接;所述服务器可以采用云服务器方式,也可以采用本地服务器方式,实现有线通信方式或者无线通信方式的通信装置能够实现云端服务器和控制部之间的信号传输(通信),或者实现本地服务器和控制部之间的信号传输(通信)。The server and the control unit are connected by wired communication or wireless communication; the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the control unit, or signal transmission (communication) between the local server and the control unit.
所述基于服务器的高视觉安全性植物生长光照装置还包括与所述服务器信号连接的光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令,此时控制部根据所述服务器向控制部发送的指令对所述第一光源部和所述第二光源部分别进行控制。The server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device The control unit sends an instruction, and at this time, the control unit controls the first light source unit and the second light source unit respectively according to the instruction sent by the server to the control unit.
本实施例中,其所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-off of the third light source unit.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物 在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和绿光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the green light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的绿光荧光体,从而通过固体发光芯片来实现绿光的光源;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part is a solid-state light-emitting chip and a coating layer disposed on the outer side of the solid-state light-emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light to be emitted. Phosphor, so as to realize the light source of green light through solid light emitting chip; or solid light emitting chip is AlGaInP/GaAs, GaP/GaP based chip emitting green light.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的500-600nm的范围内的光量子流密度G的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the effective light quantum ratio of the red light and blue light emitted by the first light source, that is, R/B is in the range of 5:1 to 10:1, the quality of each strawberry can be improved. The fruit quality has been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%. Calculated by the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述基于服务器的诱杀害虫的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The server-based plant growth lighting device for trapping and killing pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform an irradiation action, the server According to the time period set by the timer, an instruction is sent to the control unit, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timing The device is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the sun can be illuminated during the day When sufficient, turn off the power of the first light source part, the second light source part and the third light source part to save energy.
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可进行害虫的诱杀。Or separately set the first light source part and the second light source part to irradiate with a cumulative irradiance time of 10-16h/day. The pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光、蓝光和绿光的光量子比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed. However, the light quantum ratio of red light, blue light, and green light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送 的指令控制第一光源部、第二光源部和/或第三光源部开启。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the photosensitive sensor is used to detect the intensity of the external light, and the detected external light When the intensity of the external light is greater than the preset upper threshold, the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server. The light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server. The second light source part and/or the third light source part are turned on.
所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server. When the internal temperature of the plant production facility is greater than a preset upper limit, the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server; When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
尤其是,当人进入到包括本实施例的基于服务器的高视觉安全性植物生长光照装置植物生产设施后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物生产设施内的蓝光被降低至合理的水平;由此,本实施的所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。In particular, when a person enters a plant production facility including the server-based high visual safety plant growth lighting device of this embodiment, taking into account the impact of blue light on the human body, the first light source part needs to be turned off at this time to make the plant production facility The blue light of the body is reduced to a reasonable level; thus, the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server. The server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction The third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源 部、第二光源部和/或第三光源部的开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to shut down; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭。即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device The identification device is directly connected to the IO port of the server.
所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部和第二光源部。The control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent the strong light from damaging the human body, such as damage to human eyes, the control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
所述的基于服务器的诱杀害虫的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The server-based plant growth lighting device for trapping and killing pests further includes a driving element and a heat dissipation element, and the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used for To dissipate heat from the first light source part, the second light source part and the third light source part.
所述第一发光部和第二发光部包括固体发光芯片和与所述固体发光芯片电性相连的电路板,优选地,所述固体发光元件包括发光二极管、有机发光二极管、垂直腔面发射激光器、激光二极管中的至少一个。The first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip. Preferably, the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
本实施例中的术语“LED”应当被理解为包括任意电致发光二极管或者能够响应于电信号而生成辐射的其它类型的基于载子注入的系统。因此,术语LED包括响应于电流而发光的各种基于半导体的结构、发光聚合物、有机发光二极管(OLED)、电致发光带等,但是并不局限于此。The term "LED" in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light emitting polymers, organic light emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
术语LED并不限制LED的物理和/或电气封装的类型。例如,如以上所讨论的,LED可以是指具有被配置为分别发出不同辐射光谱的多个裸片(例如,可以或无法可单独控制)的单个发光设备。而且,LED可以与被认为是LED(例如,一些类型的白色LED)的整体部分的磷光体相关联。通常,术语LED可以是指封装LED、非封装LED、表面安装LED、板载芯片LED、T封装安装LED、径向封装LED、功率封装LED、包括一些类型的包装和/或光学元件(例如,漫射透镜)的LED,等等。The term LED does not limit the type of physical and/or electrical packaging of the LED. For example, as discussed above, an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively. Moreover, the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs). Generally, the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
在本发明的具体实施方式中,所述电路板包括PCB板、基板、软板或软硬结合板。In a specific embodiment of the present invention, the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
而且,所述基于服务器的诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Moreover, the server-based plant growth lighting device for trapping and killing pests can be used in facility agriculture, artificial climate chambers or light incubators.
实施例6Example 6
本实施例提供了一种基于服务器的诱杀害虫的植物生长光照装置的控制方法,所述基于服务器的诱杀害虫的植物生长光照装置可以采用实施例所公开的基于服务器的诱杀害虫的植物生长光照装置,其包括:This embodiment provides a method for controlling a server-based plant growth lighting device for trapping and killing pests. The server-based plant growth lighting device for trapping and killing pests may adopt the server-based plant growth lighting device for trapping and killing pests disclosed in the embodiment. , Which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, it is determined whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例7Example 7
本实施例提供了一种抑制害虫变态发育的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出蓝光,所述第三光源部发出白光,所述控制部对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a plant growth lighting device for inhibiting the metamorphic development of pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part. A light source part emits red light and blue light; the second light source part emits blue light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和蓝光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and blue light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体,从而通过固体发光芯片来实现蓝光的光源;或者固体发光芯片为发射蓝光GaAlAs、GaAs基芯片。The second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor capable of absorbing the excitation light emitted by the solid light emitting chip and converting to emit blue light Therefore, the blue light source is realized by the solid light emitting chip; or the solid light emitting chip is a blue-emitting GaAlAs or GaAs-based chip.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的400~490nm的范围内的光量子流密度B的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子流密度比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the ratio of the effective light quantum flux density of the red light and blue light emitted by the first light source part, that is, R/B in the range of 5:1-10:1, the single fruit of strawberry can be made The quality and fruit quality have been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述抑制害虫变态发育的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和第三光源部以10-16h/天的累计辐射照度时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The plant growth lighting device for inhibiting the metamorphic development of pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform the irradiation operation, and at the time During the period, the control section controls the first light source section, the second light source section, and the third light source section to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is determined that the first light source, the second light source, and the third light source are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source and the second light source can be turned off when the daylight is sufficient. And the third light source to save energy.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子流密度比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光和蓝光的光量子流密度比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射 的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum flow density ratio of the red light and the blue light is fixed. However, the light quantum flow density ratio of red light and blue light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and color temperatures are added. The third light source part of the third light source part, thereby making the light irradiated to the plants include white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow and green light of the third light source part It does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述抑制害虫变态发育的植物生长光照装置还包括:输入输出部、数据存储部和运算部。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the plant growth lighting device for inhibiting the metamorphic development of pests further includes: an input and output unit, data Storage unit and computing unit.
所述输入输出部实施数据和信息向所述抑制害虫变态发育的植物生长光照装置的输入和从所述抑制害虫变态发育的植物生长光照装置向外部的输出;The input and output unit implements the input of data and information to the plant growth lighting device for inhibiting the metamorphic development of pests and the output from the plant growth lighting device for inhibiting the metamorphic development of pests to the outside;
数据存储部存储相关数据,以备随时调取使用;The data storage department stores relevant data for retrieval and use at any time;
运算部利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;The arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
所述抑制害虫变态发育的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度需求数据中的一种或者多种;The plant growth lighting device for inhibiting the metamorphic development of pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green light light quantum flow density demand data at one or more;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源部和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result. The second light source part.
进一步地,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,Further, the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
蓝光、红光和绿光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光、红光的光量子流密度变化范 围、所述第二光源部蓝光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围,The simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit The variation range of the light quantum flow density of blue light and the variation range of the light quantum flow density of blue, red, and green light of the third light source part,
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
尤其是,当人进入到包括本实施例的抑制害虫变态发育的植物生长光照装置植物工厂后,考虑到红光和蓝光的影响,此时需要至少关闭第一光源部和第二光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的抑制害虫变态发育的植物生长光照装置还可以包括人体感应部,所述人体感应部在感应到人进入到光照环境中时关闭所述第一光源部和第二光源部。Especially, when a person enters a plant factory including the plant growth lighting device for inhibiting the metamorphic development of pests of this embodiment, considering the influence of red light and blue light, at least the first light source part and the second light source part need to be turned off at this time, so that The blue light in the plant factory is reduced to a reasonable level; therefore, the plant growth lighting device for inhibiting the metamorphic development of pests of this embodiment may further include a human body sensing part, which senses when a person enters the light environment. Turn off the first light source part and the second light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent damage to the human body by strong light, such as damage to the human eyes, the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
所述的抑制害虫变态发育的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The plant growth lighting device for inhibiting the metamorphic development of pests further includes a driving element and a heat dissipation element, the driving element is used for driving the first light source part, the second light source part and the third light source part, and the heat dissipation element is used for Heat the first light source part, the second light source part and the third light source part.
而且,所述高视觉安全性植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Moreover, the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
实施例8Example 8
本实施例提供了一种抑制害虫变态发育的植物生长光照装置的控制方法,所述抑制害虫变态发育的植物生长光照装置可以采用实施例所公开的抑制害虫变态发育的植物生长光照装置,其包括:This embodiment provides a method for controlling a plant growth lighting device that inhibits the metamorphic development of pests. The plant growth lighting device that inhibits the metamorphic development of pests may adopt the plant growth lighting device that inhibits the metamorphic development of pests disclosed in the embodiments, which includes :
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例9Example 9
本实施例提供了一种基于生物识别的抑制害虫变态发育的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出蓝光,所述第三光源部发出白光,所述控制部包括光敏传感器、温度传感器、红外生物识别装置、声音生物识别装置和控制器,所述控制器根据光敏传感器、温度传感器、红外生物识别装置和声音生物识别装置所检测的数据,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a biometric-based plant growth lighting device for inhibiting the metamorphic development of pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part , The first light source part emits red light and blue light; the second light source part emits blue light, the third light source part emits white light, and the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric A device and a controller, the controller separately responds to the first light source, the second light source, and the third light source based on data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device Take control.
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的 位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和蓝光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and blue light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体,从而通过固体发光芯片来实现蓝光的光源;或者固体发光芯片为发射蓝光GaAlAs、GaAs基芯片。The second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor capable of absorbing the excitation light emitted by the solid light emitting chip and converting to emit blue light Therefore, the blue light source is realized by the solid light emitting chip; or the solid light emitting chip is a blue-emitting GaAlAs or GaAs-based chip.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的400~490nm的范围内的光量子流密度B的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the effective light quantum ratio of the red light and blue light emitted by the first light source, that is, R/B is in the range of 5:1 to 10:1, the quality of each strawberry can be improved. The fruit quality has been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%. Calculated by the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述基于生物识别的抑制害虫变态发育的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, And in this time period, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the The timer is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that it can be irradiated during the day When the sunlight is sufficient, the power supply of the first light source part, the second light source part and the third light source part are turned off to save energy.
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可抑制害虫的变态发育。Or separately set the first light source part and the second light source part to irradiate with a cumulative irradiance time of 10-16h/day. The metamorphic development of pests can be suppressed when the second light source part is turned on alone to irradiate plants.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光和蓝光的光量子比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白 光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed. However, the light quantum ratio of the red light and the blue light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, a second light source including a different number and color temperature can be added. There are three light source parts, so that the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the photosensitive sensor is used to detect the intensity of the external light, and the detected external light The light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
尤其是,当人进入到包括本实施例的高视觉安全性植物生长光照装置植物工厂后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭,即当有作业认为位于所述植物工厂内时,关闭第一光源部、第二光源部和/或第三光源部,当没有作业人员位于所述植物工厂内时,开启第一光源部、第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。Especially, when a person enters a plant factory including the high visual safety plant growth lighting device of this embodiment, considering the impact of blue light on the human body, the first light source part needs to be turned off at this time, so that the blue light in the plant factory is reduced to Therefore, the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device The returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off. The light source part and/or the third light source part, when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part The part and/or the third light source part are in an open state.
所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭;当红外生物识别装置 检测的数据被控制器判定为不存在作业人员在植物工厂时,开启第一光源部、第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。The infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent damage to the human body by strong light, such as damage to the human eyes, the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
所述的基于生物识别的抑制害虫变态发育的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a driving element and a heat dissipation element. The driving element is used to drive the first light source part, the second light source part, and the third light source part. The heat dissipation element is used for dissipating heat of the first light source part, the second light source part and the third light source part.
而且,所述高视觉安全性植物生长光照装置可用于设施农业或人工气候室光照培养箱。Moreover, the plant growth lighting device with high visual safety can be used in facility agriculture or artificial climate chamber lighting incubators.
实施例10Example 10
本实施例提供了一种基于生物识别的抑制害虫变态发育的植物生长光照装置的控制方法,所述基于生物识别的抑制害虫变态发育的植物生长光照装置可以采用实施例所公开的基于生物识别的抑制害虫变态发育的植物生长光照装置,其包括:This embodiment provides a method for controlling a plant growth lighting device for inhibiting the metamorphic development of pests based on biometrics. The plant growth lighting device for inhibiting the metamorphic development of pests based on biometrics can adopt the biometrics-based lighting device disclosed in the embodiment. The plant growth lighting device for inhibiting the metamorphic development of pests includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应 部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例11Example 11
本实施例提供了一种基于服务器的抑制害虫变态发育的植物生长光照装置,其包括控制部、发光部和服务器,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出蓝光,所述第三光源部发出白光,其中,所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a server-based plant growth lighting device for inhibiting the metamorphic development of pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source Part, the first light source part emits red light and blue light; the second light source part emits blue light, and the third light source part emits white light, wherein the control part is connected to the server for receiving instructions from the server , Controlling the first light source part, the second light source part and the third light source part respectively.
所述服务器与控制器之间采用有线通信或者无线通信的方式进行连接;所述服务器可以采用云服务器方式,也可以采用本地服务器方式,实现有线通信方式或者无线通信方式的通信装置能够实现云端服务器和控制器之间的信号传输(通信),或者实现本地服务器和控制器之间的信号传输(通信)。The server and the controller are connected by wired communication or wireless communication; the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the controller, or signal transmission (communication) between the local server and the controller.
所述基于服务器的高视觉安全性植物生长光照装置还包括与所述服务器信号连接的光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制器发送指令,此时控制器根据所述服务器向控制器发送的指令对所述第一光源部和所述第二光源部分别进行控制。The server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device The controller sends instructions, and at this time, the controller controls the first light source part and the second light source part respectively according to the instructions sent by the server to the controller.
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和蓝光对人体的影响降 到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and blue light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体,从而通过固体发光芯片来实现蓝光的光源;或者固体发光芯片为发射蓝光GaAlAs、GaAs基芯片。The second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor capable of absorbing the excitation light emitted by the solid light emitting chip and converting to emit blue light Therefore, the blue light source is realized by the solid light emitting chip; or the solid light emitting chip is a blue-emitting GaAlAs or GaAs-based chip.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~9;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的400~490nm的范围内的光量子流密度B的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-9; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the effective light quantum ratio of the red light and blue light emitted by the first light source, that is, R/B is in the range of 5:1 to 10:1, the quality of each strawberry can be improved. The fruit quality has been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%. Calculated by the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述基于服务器的抑制害虫变态发育的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的 时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The server-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, so The server sends an instruction to the control unit according to the time period set by the timer, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instructions sent by the server, wherein, The timer is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the When there is sufficient sunlight during the day, the power of the first light source part, the second light source part and the third light source part are turned off to save energy.
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可抑制害虫的变态发育。Or separately set the first light source part and the second light source part to irradiate with a cumulative irradiance time of 10-16h/day. The metamorphic development of pests can be suppressed when the second light source part is turned on alone to irradiate plants.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光和蓝光的光量子比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed. However, the light quantum ratio of the red light and the blue light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, a second light source including a different number and color temperature can be added. There are three light source parts, so that the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the photosensitive sensor is used to detect the intensity of the external light, and the detected external light When the intensity of the external light is greater than the preset upper threshold, the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server. The light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server. The second light source part and/or the third light source part are turned on.
所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生 产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server. When the internal temperature of the plant production facility is greater than a preset upper limit, the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server; When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
尤其是,当人进入到包括本实施例的基于服务器的高视觉安全性植物生长光照装置植物生产设施后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物生产设施内的蓝光被降低至合理的水平;由此,本实施的所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。In particular, when a person enters a plant production facility including the server-based high visual safety plant growth lighting device of this embodiment, taking into account the impact of blue light on the human body, the first light source part needs to be turned off at this time to make the plant production facility The blue light of the body is reduced to a reasonable level; thus, the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server. The server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction The third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭; 当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭。即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device The identification device is directly connected to the IO port of the server.
所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部和第二光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent the strong light from damaging the human body, such as damage to human eyes, the control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
所述的基于服务器的抑制害虫变态发育的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The server-based plant growth lighting device for inhibiting the metamorphic development of pests further includes a driving element and a heat dissipation element. The driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element The element is used for heat dissipation of the first light source part, the second light source part and the third light source part.
所述第一发光部和第二发光部包括固体发光芯片和与所述固体发光芯片电 性相连的电路板,优选地,所述固体发光元件包括发光二极管、有机发光二极管、垂直腔面发射激光器、激光二极管中的至少一个。The first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip. Preferably, the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
本实施例中的术语“LED”应当被理解为包括任意电致发光二极管或者能够响应于电信号而生成辐射的其它类型的基于载子注入的系统。因此,术语LED包括响应于电流而发光的各种基于半导体的结构、发光聚合物、有机发光二极管(OLED)、电致发光带等,但是并不局限于此。The term "LED" in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light emitting polymers, organic light emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
术语LED并不限制LED的物理和/或电气封装的类型。例如,如以上所讨论的,LED可以是指具有被配置为分别发出不同辐射光谱的多个裸片(例如,可以或无法可单独控制)的单个发光设备。而且,LED可以与被认为是LED(例如,一些类型的白色LED)的整体部分的磷光体相关联。通常,术语LED可以是指封装LED、非封装LED、表面安装LED、板载芯片LED、T封装安装LED、径向封装LED、功率封装LED、包括一些类型的包装和/或光学元件(例如,漫射透镜)的LED,等等。The term LED does not limit the type of physical and/or electrical packaging of the LED. For example, as discussed above, an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively. Moreover, the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs). Generally, the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
在本发明的具体实施方式中,所述电路板包括PCB板、基板、软板或软硬结合板。In a specific embodiment of the present invention, the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
而且,所述基于服务器的抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Moreover, the server-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, artificial climate chambers or light incubators.
实施例12Example 12
本实施例提供了一种基于服务器的抑制害虫变态发育的植物生长光照装置的控制方法,所述基于服务器的抑制害虫变态发育的植物生长光照装置可以采用实施例所公开的基于服务器的抑制害虫变态发育的植物生长光照装置,其包括:This embodiment provides a method for controlling a server-based plant growth lighting device for inhibiting pest metamorphosis. The server-based plant growth lighting device for inhibiting pest metamorphosis may adopt the server-based pest metamorphosis suppression disclosed in the embodiment. Developmental plant growth lighting device, which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段, 如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。Determine whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, it is determined whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例13Example 13
本实施例提供了一种可防除害虫的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出黄光,所述第三光源部发出白光,所述控制部对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a plant growth lighting device capable of preventing and removing pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part. The light source part emits red light and blue light; the second light source part emits yellow light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和黄光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the yellow light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体,从而通过固体发光芯片来实现黄光的光源;或者固体发光芯片 为发射黄光的GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor, so that the light source of yellow light is realized by solid light emitting chip; or the solid light emitting chip is GaAsP/GaP, AlGaInP/GaAs, GaP/GaP based chip emitting yellow light.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子流密度比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the ratio of the effective light quantum flux density of the red light and blue light emitted by the first light source part, that is, R/B in the range of 5:1-10:1, the single fruit of strawberry can be made The quality and fruit quality have been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述可防除害虫的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和第三光源部以10-16h/天的累计辐射照度时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The plant growth lighting device capable of preventing and eliminating pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform irradiation operations, and during the time period Inside, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is: the first light source part, the second light source part and the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source part and the second light source part can be turned off when the daylight is sufficient. And the power supply of the third light source section to save energy.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子流密度比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光、蓝光和黄光的光量子流密度比例;并且在所述第一光源部 和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum flow density ratio of the red light and the blue light is fixed. However, the light quantum flow density ratio of red light, blue light and yellow light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different The number and color temperature of the third light source part, so that the light irradiated to the plant includes white light, so that the spectrum ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the yellow-green light of the third light source part The light quantum flow density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the illumination device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light, blue light and yellow light of the plant growth lighting device to the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述可防除害虫的植物生长光照装置还包括:输入输出部、数据存储部和运算部。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the plant growth lighting device capable of preventing and eliminating pests further includes: an input and output unit, and a data storage unit. Department and Computing Department.
所述输入输出部实施数据和信息向所述可防除害虫的植物生长光照装置的输入和从所述可防除害虫的植物生长光照装置向外部的输出;The input and output unit implements the input of data and information to the pest control plant growth lighting device and the output from the pest control plant growth lighting device to the outside;
数据存储部存储相关数据,以备随时调取使用;The data storage department stores relevant data for retrieval and use at any time;
运算部利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;The arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
所述可防除害虫的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度、黄光量子流密度需求数据中的一种或者多种;The plant growth lighting device capable of preventing and eliminating pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant, One or more of red or blue light quantum flow density ratio data, green light quantum flow density, and yellow light quantum flow density demand data;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源部和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result. The second light source part.
进一步地,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,Further, the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
蓝光、红光、绿光和黄光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light, green light and yellow light can be adjusted by the control unit according to plant species and plant growth stage.
所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包 括单位时间内不同工作电流下的第一光源部蓝光、红光的光量子流密度变化范围、所述第二光源部黄光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围,The simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit The variation range of the light quantum flow density of yellow light and the variation range of the light quantum flow density of blue, red, and green light of the third light source part,
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
尤其是,当人进入到包括本实施例的可防除害虫的植物生长光照装置植物工厂后,考虑到红光和黄光的影响,此时需要至少关闭第一光源部和第二光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的可防除害虫的植物生长光照装置还可以包括人体感应部,所述人体感应部在感应到人进入到光照环境中时关闭所述第一光源部和第二光源部。Especially, when a person enters a plant factory including the plant growth lighting device capable of preventing pests of this embodiment, taking into account the influence of red light and yellow light, it is necessary to turn off at least the first light source part and the second light source part at this time, so that The blue light in the plant factory is reduced to a reasonable level; therefore, the plant growth lighting device capable of preventing and eliminating pests of this embodiment may further include a human body sensing part, which is turned off when it senses that a person enters the light environment The first light source part and the second light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent damage to the human body by strong light, such as damage to the human eyes, the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
所述的可防除害虫的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The plant growth lighting device capable of preventing and removing pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used to The first light source part, the second light source part and the third light source part dissipate heat.
而且,所述高视觉安全性植物生长光照装置可用于设施农业或人工气候室光照培养箱。Moreover, the plant growth lighting device with high visual safety can be used in facility agriculture or artificial climate chamber lighting incubators.
实施例14Example 14
本实施例提供了一种可防除害虫的植物生长光照装置的控制方法,所述可防除害虫的植物生长光照装置可以采用实施例所公开的可防除害虫的植物生长光照装置,其包括:This embodiment provides a method for controlling a plant growth lighting device capable of preventing and removing pests. The plant growth lighting device capable of preventing and removing pests may adopt the plant growth lighting device capable of preventing and removing pests disclosed in the embodiment, which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例15Example 15
本实施例提供了一种基于服务器的防除害虫的植物生长光照装置,其包括控制部、发光部和服务器,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出黄光,所述第三光源部发出白光,其中,所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a server-based plant growth lighting device for preventing and eliminating pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part, The first light source part emits red light and blue light; the second light source part emits yellow light, and the third light source part emits white light. The control part is connected to the server for receiving instructions from the server, The first light source part, the second light source part and the third light source part are respectively controlled.
所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接;所述服务器可以采用云服务器方式,也可以采用本地服务器方式,实现有线通信方式或者无线通信方式的通信装置能够实现云端服务器和控制部之间的信号传输(通信),或者实现本地服务器和控制部之间的信号传输(通信)。The server and the control unit are connected by wired communication or wireless communication; the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the control unit, or signal transmission (communication) between the local server and the control unit.
所述基于服务器的高视觉安全性植物生长光照装置还包括与所述服务器信号连接的光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令,此时控制部根据所述服务器向控制部发送的指令对所述第一光源部和所述第二光源部分别进行控制。The server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device The control unit sends an instruction, and at this time, the control unit controls the first light source unit and the second light source unit respectively according to the instruction sent by the server to the control unit.
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体 光谱。In this embodiment, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和黄光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the yellow light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体,从而通过固体发光芯片来实现黄光的光源;或者固体发光芯片为发射黄光的GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor, so that the light source of yellow light is realized by solid light emitting chip; or the solid light emitting chip is GaAsP/GaP, AlGaInP/GaAs, GaP/GaP based chip emitting yellow light.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提 升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the effective light quantum ratio of the red light and blue light emitted by the first light source, that is, R/B is in the range of 5:1 to 10:1, the quality of each strawberry can be improved. The fruit quality has been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%. Calculated by the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述基于服务器的防除害虫的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The server-based plant growth lighting device for preventing and eliminating pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform an irradiation operation, the server According to the time period set by the timer, an instruction is sent to the control unit, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timing The device is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the sun can be illuminated during the day When sufficient, turn off the power of the first light source part, the second light source part and the third light source part to save energy.
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可进行害虫的诱杀。Or separately set the first light source part and the second light source part to irradiate with a cumulative irradiance time of 10-16h/day. The pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光、蓝光和黄光的光量子比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed. However, the light quantum ratio of red light, blue light, and yellow light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light, blue light and yellow light of the plant growth lighting device to the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控 制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the photosensitive sensor is used to detect the intensity of the external light, and the detected external light When the intensity of the external light is greater than the preset upper threshold, the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server. The light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server. The second light source part and/or the third light source part are turned on.
所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server. When the internal temperature of the plant production facility is greater than a preset upper limit, the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server; When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
尤其是,当人进入到包括本实施例的基于服务器的高视觉安全性植物生长光照装置植物生产设施后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物生产设施内的蓝光被降低至合理的水平;由此,本实施的所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。In particular, when a person enters a plant production facility including the server-based high visual safety plant growth lighting device of this embodiment, taking into account the impact of blue light on the human body, the first light source part needs to be turned off at this time to make the plant production facility The blue light of the body is reduced to a reasonable level; thus, the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server. The server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction The third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物 生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to shut down; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭。即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device The identification device is directly connected to the IO port of the server.
所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部和第二光源部。The control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent the strong light from damaging the human body, such as damage to human eyes, the control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
所述的基于服务器的防除害虫的植物生长光照装置还包括驱动元件和散热 元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The server-based plant growth lighting device for preventing and eliminating pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used for To dissipate heat from the first light source part, the second light source part and the third light source part.
所述第一发光部和第二发光部包括固体发光芯片和与所述固体发光芯片电性相连的电路板,优选地,所述固体发光元件包括发光二极管、有机发光二极管、垂直腔面发射激光器、激光二极管中的至少一个。The first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip. Preferably, the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
本实施例中的术语“LED”应当被理解为包括任意电致发光二极管或者能够响应于电信号而生成辐射的其它类型的基于载子注入的系统。因此,术语LED包括响应于电流而发光的各种基于半导体的结构、发光聚合物、有机发光二极管(OLED)、电致发光带等,但是并不局限于此。The term "LED" in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light emitting polymers, organic light emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
术语LED并不限制LED的物理和/或电气封装的类型。例如,如以上所讨论的,LED可以是指具有被配置为分别发出不同辐射光谱的多个裸片(例如,可以或无法可单独控制)的单个发光设备。而且,LED可以与被认为是LED(例如,一些类型的白色LED)的整体部分的磷光体相关联。通常,术语LED可以是指封装LED、非封装LED、表面安装LED、板载芯片LED、T封装安装LED、径向封装LED、功率封装LED、包括一些类型的包装和/或光学元件(例如,漫射透镜)的LED,等等。The term LED does not limit the type of physical and/or electrical packaging of the LED. For example, as discussed above, an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively. Moreover, the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs). Generally, the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
在本发明的具体实施方式中,所述电路板包括PCB板、基板、软板或软硬结合板。In a specific embodiment of the present invention, the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
本发明的基于服务器的防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The server-based plant growth lighting device for preventing and eliminating pests of the present invention can be used in facility agriculture, artificial climate chambers or light incubators.
实施例16Example 16
本实施例提供了一种基于服务器的防除害虫的植物生长光照装置的控制方法,所述基于服务器的防除害虫的植物生长光照装置可以采用实施例所公开的基于服务器的防除害虫的植物生长光照装置,其包括:This embodiment provides a method for controlling a server-based plant growth lighting device for preventing and eliminating pests. The server-based plant growth lighting device for preventing and eliminating pests may adopt the server-based plant growth lighting device for preventing pests disclosed in the embodiment. , Which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, it is determined whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
实施例17Example 17
本实施例提供了一种基于生物识别的防除害虫的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出黄光,所述第三光源部发出白光,所述控制部包括光敏传感器、温度传感器、红外生物识别装置、声音生物识别装置和控制器,所述控制器根据光敏传感器、温度传感器、红外生物识别装置和声音生物识别装置所检测的数据,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。This embodiment provides a biometric-based plant growth lighting device for preventing pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part. The first light source part emits red and blue light; the second light source part emits yellow light, the third light source part emits white light, and the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric device And a controller, the controller performs the first light source unit, the second light source unit, and the third light source unit based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device. control.
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。In this embodiment, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的 位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和黄光对人体的影响降到最低。In this embodiment, through the arrangement of the first light source part and the second light source part, on the one hand, the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and the yellow light emitted by the first light source part and the second light source part on the human body can be minimized.
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。As an implementation form, the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip. Convert the red phosphor that emits red light, so as to realize the photosynthetic solid light-emitting chip with the dominant wavelengths of red and blue light through the solid-state light-emitting chip; preferably, the solid-state light-emitting chip can be a blue solid-state light-emitting chip, which can be cost-effective The low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
所述第二光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体,从而通过固体发光芯片来实现黄光的光源;或者固体发光芯片为发射黄光GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part is a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor, so as to realize the light source of yellow light through solid light emitting chip; or the solid light emitting chip is a yellow light emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP based chip.
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。The third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。More preferably, the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part The wavelength is in the range of 600-700nm, and the ratio of the optical quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the optical quantum flux density B in the range of 400nm-490nm is 4-10; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source unit to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source unit is 3-8.
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。Taking strawberry planting through a plant factory as an example, when the effective light quantum ratio of the red light and blue light emitted by the first light source, that is, R/B is in the range of 5:1 to 10:1, the quality of each strawberry can be improved. The fruit quality has been greatly improved. According to the experimental data, the average single fruit quality has increased by about 40% compared with conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by 15%. Calculated by the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; Calculated by the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
所述基于生物识别的防除害虫的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。The biological recognition-based plant growth lighting device for preventing and eliminating pests further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform the irradiation operation, and During this time period, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer It is set to: the first light source part, the second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that there is sufficient sunlight during the day At this time, the power supplies of the first light source part, the second light source part and the third light source part are turned off to save energy.
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可进行害虫的诱杀。Or separately set the first light source part and the second light source part to irradiate with a cumulative irradiance time of 10-16h/day. The pest can be trapped and killed when the second light source part is turned on separately to irradiate plants.
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子比例是固定的。但是可以通过调整第一光源部和第二光源部的数量来来调整红光、蓝光和黄光的光量子比例;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更 优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。As an implementation form, in this embodiment, the light quantum flow density of the first light source part and the light quantum flow density of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the The light intensity of the third light source part; when the first light source part is determined, the light quantum ratio of its red light and blue light is fixed. However, the light quantum ratio of red light, blue light, and yellow light can be adjusted by adjusting the number of the first light source part and the second light source part; and on the basis of the first light source part and the second light source part, different numbers and The third light source part of the color temperature, so that the light irradiated to the plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow of the yellow and green light of the third light source part The density does not exceed 30% of the total effective light quantum flow density of the first light source part and the third light source part of the lighting device.
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。As a preferred solution, the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers The white light solid light source of the third light source part adjusts the ratio of the red light, blue light and yellow light of the plant growth lighting device to the overall effective light quantum flow density.
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。In this embodiment, in order to enable the control unit to more accurately control the first light source unit, the second light source unit, and the third light source unit, the photosensitive sensor is used to detect the intensity of the external light, and the detected external light The light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
尤其是,当人进入到包括本实施例的高视觉安全性植物生长光照装置植物工厂后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭,即当有作业认为位于所述植物工厂内时,关闭第一光源部、第二光源部和/或第三光源部,当没有作业人员位于所述植物工厂内时,开启第一光源部、第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。Especially, when a person enters a plant factory including the high visual safety plant growth lighting device of this embodiment, considering the impact of blue light on the human body, the first light source part needs to be turned off at this time, so that the blue light in the plant factory is reduced to Therefore, the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device The returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off. The light source part and/or the third light source part, when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part The part and/or the third light source part are in an open state.
所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭;当红外生物识别装置检测的数据被控制器判定为不存在作业人员在植物工厂时,开启第一光源部、 第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。The infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
所述控制器以此通过DA转换器、运算放大器连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a DA converter and an operational amplifier, and the control device is connected to the first light source part, the second light source part, and the third light source part.
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。Furthermore, in order to prevent damage to the human body by strong light, such as damage to the human eyes, the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
所述的基于生物识别的防除害虫的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。The biological recognition-based plant growth lighting device for preventing and eliminating pests further includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element It is used to dissipate heat from the first light source part, the second light source part and the third light source part.
而且,所述高视觉安全性植物生长光照装置可用于设施农业、人工气候室或光照培养箱。Moreover, the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
实施例18Example 18
本实施例提供了一种基于生物识别的防除害虫的植物生长光照装置的控制方法,所述基于生物识别的防除害虫的植物生长光照装置可以采用实施例所公开的基于生物识别的防除害虫的植物生长光照装置,其包括:This embodiment provides a method for controlling a plant growth lighting device for preventing and eliminating pests based on biometrics. The plant growth lighting device for preventing and eliminating pests based on biometrics may adopt the biometrics-based pest control of plants disclosed in the embodiment. Growth lighting device, which includes:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。Furthermore, during the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
以上实施例的先后顺序仅为便于描述,不代表实施例的优劣。The sequence of the above embodiments is only for ease of description, and does not represent the advantages and disadvantages of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions recorded in the foregoing embodiments are modified, or some of the technical features are equivalently replaced; these modifications or replacements do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (180)

  1. 一种可诱杀害虫的植物生长光照装置,其特征在于,A plant growth lighting device capable of attracting and killing pests, characterized in that:
    包括控制部和发光部,其中,Including the control part and the light-emitting part, of which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部同时发出红光和蓝光,所述第二光源部发出绿光,The light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light simultaneously, and the second light source part emits green light,
    所述控制部对所述第一光源部和所述第二光源部分别进行控制。The control unit respectively controls the first light source unit and the second light source unit.
  2. 根据权利要求1所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 1, wherein:
    所述第一光源部由固体所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the solid from the first light source has a luminous peak in the wavelength range of 400-480 nm, which corresponds to the blue light absorption peak of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10:1;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的500~600nm的范围内的光量子流密度G的比值3~8。The ratio of the light quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the light quantum flux density B in the range of 400nm~490nm is 4-10:1; The ratio of the light quantum flux density R in the range of 600 nm to 700 nm to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source is 3-8.
  3. 根据权利要求1所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 1, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄或绿光的黄或绿光荧光体;或者固体发光芯片为发射黄或绿光的AlGaInP/GaAs、GaP/GaP基芯片的其中一种。The second light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains a material capable of absorbing the excitation light emitted by the solid-state light-emitting chip and converting it to emit yellow or green light. Yellow or green phosphor; or the solid light emitting chip is one of AlGaInP/GaAs and GaP/GaP based chips emitting yellow or green light.
  4. 根据权利要求1所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 1, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  5. 根据权利要求1所述的可诱杀害虫的植物生长光照装置,其特征在于,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所 述第二光源部的光量子流密度。The plant growth lighting device capable of attracting and killing pests according to claim 1, wherein the light quantum flux density of the first light source part and the light quantum flow density of the second light source part are adjusted by adjusting the PWM waveform and the duty cycle of the current. Light quantum flow density.
  6. 根据权利要求5所述的可诱杀害虫的植物生长光照装置,其特征在于,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;The plant growth lighting device capable of attracting and killing pests according to claim 5, wherein the light quantum flux ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和绿光的光量子流密度比例;Adjusting the light quantum flow density ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  7. 根据权利要求1所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 1, wherein:
    所述第三光源部的黄或绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flux density of the yellow or green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the second light source part of the lighting device.
  8. 根据权利要求6所述的可诱杀害虫的植物生长光照装置,其特征在于,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The plant growth lighting device capable of attracting and killing pests according to claim 6, wherein the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  9. 根据权利要求5所述的可诱杀害虫的植物生长光照装置,其特征在于,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。The plant growth lighting device capable of attracting and killing pests according to claim 5, further comprising a timer, and the timer setting makes the first light source part, the second light source part and the third light source part irradiate The control unit controls the first light source unit, the second light source unit, and the third light source unit according to the time period set by the timer, wherein the timer is set to: the first The light source part and the second light source part are irradiated with a cumulative irradiance time of 10-16h.
  10. 根据权利要求5所述的可诱杀害虫的植物生长光照装置,其特征在于,还包括:The plant growth lighting device capable of attracting and killing pests according to claim 5, further comprising:
    输入输出部,其实施数据和信息向所述可诱杀害虫的植物生长光照装置的输入和从所述可诱杀害虫的植物生长光照装置向外部的输出;An input and output unit, which implements the input of data and information to the plant growth lighting device that can attract and kill pests and the output of the plant growth lighting device that can attract and kill pests to the outside;
    数据存储部,其存储相关数据,以备随时调取使用;Data storage department, which stores relevant data for retrieval and use at any time;
    运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;An arithmetic unit, which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
    所述可诱杀害虫的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于 该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿或黄光量子流密度需求数据中的一种或者多种;The plant growth lighting device capable of attracting and killing pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green or yellow light quantum flow density demand data at one or more;
    所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
  11. 根据权利要求10所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 10, wherein:
    与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,The input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
    所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
    蓝光、红光和绿光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
  12. 根据权利要求10所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 10, wherein:
    所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部绿光的光量子流密度变化范围和所述第三光源部蓝光、红光、黄或绿光的光量子流密度的变化范围;The simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source part blue and red light under different working currents per unit time, and the second light source part green light The light quantum flow density change range of and the light quantum flow density change range of the blue, red, yellow or green light of the third light source part;
    其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
  13. 根据权利要求12所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 12, wherein:
    还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。It also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
  14. 根据权利要求13所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 13, characterized in that,
    所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。The human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to below 1000 lux.
  15. 根据权利要求13所述的可诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of attracting and killing pests according to claim 13, characterized in that,
    所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
  16. 一种如权利要求1所述的可诱杀害虫的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A control method of a plant growth lighting device capable of attracting and killing pests according to claim 1, characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  17. 根据权利要求16所述的可诱杀害虫的植物生长光照装置的控制方法,其特征在于,The control method of a plant growth lighting device capable of attracting and killing pests according to claim 16, characterized in that:
    在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  18. 一种可诱杀害虫的植物生长光照装置,其特征在于,包括控制部和发光部,其中,A plant growth lighting device capable of attracting and killing pests is characterized by comprising a control part and a light-emitting part, wherein,
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄或绿光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow or green light, and the third light source part Emit white light,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温、工作电流和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature, the operating current, and the number of turns on of the third light source unit.
  19. 根据权利要求18所述的可诱杀害虫的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The plant growth lighting device capable of attracting and killing pests according to claim 18, further comprising a driving element and a heat dissipation element.
  20. 根据权利要求18所述的可诱杀害虫的植物生长光照装置,其特征在 于,所述的可诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The plant growth lighting device capable of attracting and killing pests according to claim 18, characterized in that the plant growth lighting device capable of attracting and killing pests can be used in facility agriculture, artificial climate room or light incubator.
  21. 一种基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,A plant growth lighting device for trapping and killing pests based on biometrics, characterized in that:
    包括控制部和发光部,其中,Including the control part and the light-emitting part, of which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出绿或黄光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits green or yellow light;
    所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。The control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
  22. 根据权利要求21所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 21, characterized in that,
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的500~600nm的范围内的光量子流密度G的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density G in the range of 500 to 600 nm emitted by the second light source is 3-8.
  23. 根据权利要求21所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 21, characterized in that,
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的绿光荧光体;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains green light that can absorb the excitation light emitted by the solid light emitting chip to convert green light Phosphors; or solid-state light-emitting chips are AlGaInP/GaAs, GaP/GaP-based chips that emit green light.
  24. 根据权利要求21所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 21, characterized in that,
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  25. 根据权利要求24所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 24, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit controls the control unit according to the time period set by the timer. The first light source part, the second light source part and the third light source part, wherein the timer is set to: the first light source part, the second light source part and/or the third light source part are accumulated in 10-16h Irradiation is performed during the irradiance time; or the first light source part and the second light source part are separately arranged to irradiate with the cumulative irradiance time of 10-16h.
  26. 根据权利要求21所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 21, characterized in that,
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  27. 根据权利要求21所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 21, characterized in that,
    所述第一光源部的红光和蓝光的光量子比例是固定的;The light quantum ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和绿光的光量子比例;Adjusting the light quantum ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  28. 根据权利要求25所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 25, characterized in that,
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  29. 根据权利要求25所述的基于生物识别的诱杀害虫的植物生长光照装 置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 25, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  30. 根据权利要求25所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 25, characterized in that,
    所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。The photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls the second light source when the intensity of the external light is greater than a preset threshold Department closed.
  31. 根据权利要求30所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 30, wherein:
    所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
  32. 根据权利要求30所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 30, wherein:
    所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。The voice biometric device judges whether there is an operator in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first light source unit, according to the switch signal returned by the voice biometric device, The second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and sends the infrared signal detected by the infrared biometric device to the Controller, the controller judges whether there is an operator in the plant factory according to the signal detected by the infrared biometric device, and when there is an operator, controls the first light source part, the second light source part and/or the third light source part shut down.
  33. 根据权利要求32所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 32, characterized in that,
    所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、 声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
    其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
    所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
    所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
    所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
    所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  34. 根据权利要求33所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,The plant growth lighting device for trapping and killing pests based on biometrics according to claim 33, characterized in that,
    所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  35. 一种如权利要求21所述的基于生物识别的诱杀害虫的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A control method of a plant growth lighting device for trapping and killing pests based on biometrics as claimed in claim 21, characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  36. 根据权利要求35所述的基于生物识别的诱杀害虫的植物生长光照装置的控制方法,其特征在于,The control method of a plant growth lighting device for trapping and killing pests based on biometrics according to claim 35, characterized in that,
    在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  37. 一种基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,包括控制部和发光部,其中,A plant growth lighting device for trapping and killing pests based on biometrics, which is characterized by comprising a control part and a light-emitting part, wherein,
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出绿光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits green light, and the third light source part emits white light ,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  38. 根据权利要求37所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The plant growth lighting device for trapping and killing pests based on biometric recognition of claim 37, further comprising a driving element and a heat dissipation element.
  39. 根据权利要求37所述的基于生物识别的诱杀害虫的植物生长光照装置,其特征在于,所述的基于生物识别的诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The plant growth lighting device for trapping and killing pests based on biometrics according to claim 37, characterized in that the plant growth lighting device for trapping and killing pests based on biometrics can be used in facility agriculture, artificial climate room or light incubator.
  40. 一种基于服务器的诱杀害虫的植物生长光照装置,其特征在于,A server-based plant growth lighting device for trapping and killing pests, characterized in that:
    包括控制部、发光部和服务器,其中,Including the control part, the light-emitting part and the server, among which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄或绿光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow or green light;
    所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。The control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
  41. 根据权利要求40所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接。The server-based plant growth lighting device for trapping and killing pests according to claim 40, wherein the server and the control unit are connected by wired communication or wireless communication.
  42. 根据权利要求41所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。The server-based plant growth lighting device for trapping and killing pests according to claim 41, further comprising a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and /Or a face biometric device, the server based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device, Send instructions to the control unit.
  43. 根据权利要求42所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 42, wherein:
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的500-600nm的范围内的光量子流密度G的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density G in the range of 500-600 nm emitted by the second light source is 3-8.
  44. 根据权利要求40所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 40, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出绿光的黄或绿光荧光体;或者固体发光芯片为发射绿光的AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light-emitting chip and a coating layer arranged on the outside of the solid-state light-emitting chip, and the coating layer contains yellow or yellow light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert green light. Green phosphor; or solid light-emitting chip is AlGaInP/GaAs, GaP/GaP-based chip emitting green light.
  45. 根据权利要求40所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 40, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  46. 根据权利要求43所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 43, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer. The timer sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform irradiation operations, and the server controls the time period according to the time period set by the timer. The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first light source unit , The second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h; or the first light source part and the second light source part are separately arranged to irradiate with a cumulative irradiance time of 10-16h.
  47. 根据权利要求40所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 40, wherein:
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  48. 根据权利要求40所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 40, wherein:
    所述第一光源部的红光和蓝光的光量子比例是固定的;The light quantum ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和绿光的光量子比例;Adjusting the light quantum ratio of red light, blue light and green light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  49. 根据权利要求46所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 46, wherein:
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  50. 根据权利要求46所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 46, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度 是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄或绿光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow or green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  51. 根据权利要求42所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 42, wherein:
    所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。The photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server. When the intensity of the external light is greater than a preset upper threshold, the server sends an instruction to the control unit The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn off according to the instructions sent by the server; the server sends to the control unit when the intensity of the external light is less than the preset lower threshold Instruction, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on according to the instruction sent by the server.
  52. 根据权利要求51所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 51, wherein:
    所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server. When the internal temperature of the plant production facility is greater than a preset upper limit, the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server; When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
  53. 根据权利要求52所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 52, wherein:
    所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges the plant production facility based on the signal detected by the infrared biometric device Whether there is an operator inside, and issue an instruction to the control part according to the judgment result, and the control part controls the first light source part, the second light source part and/or the third light source part to turn on and/or off according to the instruction;
    所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置 信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部和/或关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control unit controls and/or turns off the first light source unit, the second light source unit and/or the third light source unit near the operator according to the instructions sent by the server;
    所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
    所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
    所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
  54. 根据权利要求42所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 42, wherein:
    所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device The identification device is directly connected to the IO port of the server.
  55. 根据权利要求53所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for trapping and killing pests according to claim 53, wherein:
    所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  56. 一种基于服务器的诱杀害虫的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A server-based control method of a plant growth lighting device for trapping and killing pests is characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控 制第一光源部、第二光源部和第三光源部开启;Set the time and working period to start lighting, and when the lighting start time is reached, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  57. 根据权利要求56所述的基于服务器的诱杀害虫的植物生长光照装置的控制方法,其特征在于,The control method of a server-based plant growth lighting device for trapping and killing pests according to claim 56, characterized in that,
    在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the working period of the first light source part, the second light source part and the third light source part, it is judged whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, and when After the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  58. 一种基于服务器的诱杀害虫的植物生长光照装置,其特征在于,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for trapping and killing pests is characterized by comprising a control part, a light-emitting part and a server, wherein:
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出绿光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits green light, and the third light source part emits white light ,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
  59. 根据权利要求58所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The server-based plant growth lighting device for trapping and killing pests according to claim 58, further comprising a driving element and a heat dissipation element.
  60. 根据权利要求58所述的基于服务器的诱杀害虫的植物生长光照装置,其特征在于,所述基于服务器的诱杀害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The server-based plant growth lighting device for trapping and killing pests according to claim 58, wherein the server-based plant growth lighting device for trapping and killing pests can be used in facility agriculture, an artificial climate room or a light incubator.
  61. 一种抑制害虫变态发育的植物生长光照装置,其特征在于,A plant growth lighting device for inhibiting the metamorphic development of pests, characterized in that:
    包括控制部和发光部,其中,Including the control part and the light-emitting part, of which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light,
    所述控制部对所述第一光源部和所述第二光源部分别进行控制。The control unit respectively controls the first light source unit and the second light source unit.
  62. 根据权利要求61所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 61, wherein:
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的400nm~490nm的范围内的光量子流密度B的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
  63. 根据权利要求61所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 61, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体;或者固体发光芯片为发射蓝光的GaAlAs、GaAs基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ; Or the solid-state light-emitting chip is a GaAlAs or GaAs-based chip emitting blue light.
  64. 根据权利要求61所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 61, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  65. 根据权利要求64所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 64, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit controls the control unit according to the time period set by the timer. The first light source part, the second light source part and the third light source part, wherein the timer is set such that the first light source part and the second light source part are irradiated with a cumulative irradiance time of 10-16h.
  66. 根据权利要求61所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 61, wherein:
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  67. 根据权利要求61所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 61, wherein:
    所述第一光源部的红光和蓝光的光量子流密度比例是固定的;The ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光和蓝光的光量子流密度比例;Adjusting the light quantum flow density ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  68. 根据权利要求65所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 65, wherein:
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  69. 根据权利要求65所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 65, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  70. 根据权利要求65所述的抑制害虫变态发育的植物生长光照装置,其特征在于,还包括:The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 65, further comprising:
    输入输出部,其实施数据和信息向所述抑制害虫变态发育的植物生长光照装置的输入和从所述抑制害虫变态发育的植物生长光照装置向外部的输出;An input and output unit which implements the input of data and information to the plant growth lighting device for inhibiting the metamorphic development of pests and the output from the plant growth lighting device for inhibiting the metamorphic development of pests to the outside;
    数据存储部,其存储相关数据,以备随时调取使用;Data storage department, which stores relevant data for retrieval and use at any time;
    运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;An arithmetic unit, which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
    所述抑制害虫变态发育的植物生长光照装置通过所述输入输出部或者数据 存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度需求数据中的一种或者多种;The plant growth lighting device for inhibiting the metamorphic development of pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flow suitable for the growth of the plant One or more of density, red or blue quantum flow density ratio data, and green light quantum flow density demand data;
    所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
  71. 根据权利要求70所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 70, wherein:
    与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,The input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
    所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
    蓝光、红光和绿光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light and green light can be adjusted by the control unit according to the plant species and plant growth stage.
  72. 根据权利要求70所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 70, wherein:
    所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部蓝光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围;The simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the variation range of light quantum current density of blue light and red light of the first light source part under different working currents per unit time, and the blue light of the second light source part. The light quantum flow density change range and the light quantum flow density change range of the blue light, red light, and green light of the third light source part;
    其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
  73. 根据权利要求72所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 72, wherein:
    还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。It also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
  74. 根据权利要求73所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 73, wherein:
    所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部 的光照强度至1000lux以下。The human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to 1000 lux or less.
  75. 根据权利要求73所述的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 73, wherein:
    所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
  76. 一种如权利要求61所述的抑制害虫变态发育的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A control method of a plant growth lighting device for inhibiting the metamorphic development of pests according to claim 61, characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  77. 根据权利要求76所述的抑制害虫变态发育的植物生长光照装置的控制方法,其特征在于,The control method of a plant growth lighting device for inhibiting the metamorphic development of pests according to claim 76, wherein:
    在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  78. 一种抑制害虫变态发育的植物生长光照装置,其特征在于,包括控制部和发光部,其中,A plant growth lighting device for inhibiting the metamorphic development of pests, which is characterized by comprising a control part and a light-emitting part, wherein,
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  79. 根据权利要求78所述的抑制害虫变态发育的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 78, further comprising a driving element and a heat dissipation element.
  80. 根据权利要求78所述的抑制害虫变态发育的植物生长光照装置,其特征在于,所述抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The plant growth lighting device for inhibiting the metamorphic development of pests according to claim 78, wherein the plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, an artificial climate room or a light incubator.
  81. 一种基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,A plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition, characterized in that:
    包括控制部和发光部,其中,Including the control part and the light-emitting part, of which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光;The light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light;
    所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。The control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
  82. 根据权利要求81所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition of claim 81, wherein:
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的400nm~490nm的范围内的光量子流密度B的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
  83. 根据权利要求81所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition of claim 81, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝 光的蓝光荧光体;或者固体发光芯片为发射蓝光的GaAlAs、GaAs基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ; Or the solid-state light-emitting chip is a GaAlAs or GaAs-based chip emitting blue light.
  84. 根据权利要求81所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition of claim 81, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  85. 根据权利要求84所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 84, characterized in that,
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit controls the control unit according to the time period set by the timer. The first light source part, the second light source part and the third light source part, wherein the timer is set to: the first light source part, the second light source part and/or the third light source part are accumulated in 10-16h Irradiation is performed during the irradiance time; or the first light source part and the second light source part are separately arranged to irradiate with the cumulative irradiance time of 10-16h.
  86. 根据权利要求81所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition of claim 81, wherein:
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  87. 根据权利要求81所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition of claim 81, wherein:
    所述第一光源部的红光和蓝光的光量子比例是固定的;The light quantum ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光和蓝光的光量子比例;Adjusting the light quantum ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  88. 根据权利要求85所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 85, characterized in that,
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  89. 根据权利要求85所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 85, characterized in that,
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  90. 根据权利要求85所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 85, characterized in that,
    所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。The photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls the second light source when the intensity of the external light is greater than a preset threshold Department closed.
  91. 根据权利要求90所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 90, characterized in that,
    所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
  92. 根据权利要求90所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 90, characterized in that,
    所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。The voice biometric device judges whether there is an operator in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first light source unit, according to the switch signal returned by the voice biometric device, The second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and sends the infrared signal detected by the infrared biometric device to the Controller, the controller judges whether there is an operator in the plant factory according to the signal detected by the infrared biometric device, and when there is an operator, controls the first light source part, the second light source part and/or the third light source part shut down.
  93. 根据权利要求92所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 92, characterized in that,
    所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
    其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
    所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
    所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
    所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
    所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  94. 根据权利要求93所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 93, wherein:
    所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  95. 一种如权利要求81所述的基于生物识别的抑制害虫变态发育的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A control method of a plant growth lighting device for inhibiting the metamorphic development of pests based on biometrics as claimed in claim 81, characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控 制第一光源部、第二光源部和第三光源部开启;Set the time and working period to start lighting, and when the lighting start time is reached, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  96. 根据权利要求95所述的基于生物识别的抑制害虫变态发育的植物生长光照装置的控制方法,其特征在于,The control method of a plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 95, wherein:
    在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  97. 一种基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,包括控制部和发光部,其中,A biological recognition-based plant growth lighting device for inhibiting the metamorphic development of pests, which is characterized by comprising a control part and a light-emitting part, wherein,
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  98. 根据权利要求97所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition according to claim 97, characterized in that it further comprises a driving element and a heat dissipation element.
  99. 根据权利要求97所述的基于生物识别的抑制害虫变态发育的植物生长光照装置,其特征在于,所述基于生物识别的抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The plant growth lighting device for inhibiting the metamorphic development of pests based on biological recognition of claim 97, wherein the plant growth lighting device for inhibiting the metamorphic development of pests based on biometrics can be used in facility agriculture, artificial climate room or lighting Incubator.
  100. 一种基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,A server-based plant growth lighting device for inhibiting the metamorphic development of pests, characterized in that:
    包括控制部、发光部和服务器,其中,Including the control part, the light-emitting part and the server, among which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光;The light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits blue light;
    所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。The control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
  101. 根据权利要求100所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,所述服务器与控制器之间采用有线通信或者无线通信的方式进行连接。The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 100, wherein the server and the controller are connected by wired communication or wireless communication.
  102. 根据权利要求101所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 101, characterized in that it further comprises a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, and an iris biometric device. Device and/or face biometric device, the server according to the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device detected Data, send instructions to the control unit.
  103. 根据权利要求102所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 102, wherein:
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的400nm~490nm的范围内的光量子流密度B的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the optical quantum flux density R in the range of 700 nm to the optical quantum flux density B in the range of 400 nm to 490 nm emitted by the second light source is 3-8.
  104. 根据权利要求100所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 100, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出蓝光的蓝光荧光体;或者固体发光芯片为发射蓝光GaAlAs、GaAs基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains a blue phosphor that can absorb the excitation light emitted by the solid light emitting chip and convert to emit blue light ; Or the solid light-emitting chip is a blue-emitting GaAlAs, GaAs-based chip.
  105. 根据权利要求100所述的基于服务器的抑制害虫变态发育的植物生 长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 100, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  106. 根据权利要求100所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 100, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer. The timer sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform irradiation operations, and the server controls the time period according to the time period set by the timer. The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first light source unit , The second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h; or the first light source part and the second light source part are separately arranged to irradiate with a cumulative irradiance time of 10-16h.
  107. 根据权利要求100所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 100, wherein:
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  108. 根据权利要求100所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 100, wherein:
    所述第一光源部的红光和蓝光的光量子比例是固定的;The light quantum ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光和蓝光的光量子比例;Adjusting the light quantum ratio of red light and blue light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  109. 根据权利要求106所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 106, wherein:
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  110. 根据权利要求106所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 106, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光和蓝光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light and blue light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  111. 根据权利要求102所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 102, wherein:
    所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制器发送指令,所述控制器根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制器发送指令,所述控制器根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。The photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server, and the server sends an instruction to the controller when the intensity of the external light is greater than a preset upper threshold , The controller controls the first light source part, the second light source part and/or the third light source part to turn off according to the instructions sent by the server; the server sends to the controller when the intensity of the external light is less than the preset lower threshold Instruction, the controller controls the first light source part, the second light source part and/or the third light source part to turn on according to the instruction sent by the server.
  112. 根据权利要求111所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 111, wherein:
    所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制器发送调低功率的指令,所述控制器根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制器发送调高功率的指令,所述控制器根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server. When the internal temperature of the plant production facility is greater than a preset upper limit, the server Sending a power down instruction to the controller, and the controller reduces the emission power of the first light source part, the second light source part and/or the third light source part according to the power down instruction sent by the server; When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the controller, and the controller increases the first light source unit, The emission power of the second light source part and/or the third light source part.
  113. 根据权利要求112所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 112, wherein:
    所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制器发出指令,所述控制器根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges the plant production facility based on the signal detected by the infrared biometric device Whether there is an operator inside, and issue an instruction to the controller according to the judgment result, and the controller controls the first light source part, the second light source part and/or the third light source part to turn on and/or off according to the instruction;
    所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置 信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制器发送指令,所述控制器根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends instructions to the controller according to the location information of the worker detected by the ultrasonic biometric device. The controller controls the first light source part, the second light source part and/or the third light source part near the operator to turn on and/or turn off according to the instructions sent by the server;
    所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制器发送指令,所述控制器根据服务器发送的指令,所述控制器所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And send instructions to the controller according to the judgment result, the controller according to the instructions sent by the server, and the controller controls the turning on of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server And/or close;
    所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制器发送指令,所述控制器根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the controller according to the iris information of the human eye detected by the iris biometric device. The controller controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
    所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制器发送指令,所述控制器根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The controller sends instructions, and the controller controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server.
  114. 根据权利要求102所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 102, wherein:
    所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device The identification device is directly connected to the IO port of the server.
  115. 根据权利要求113所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 113, wherein:
    所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  116. 一种基于服务器的抑制害虫变态发育的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A server-based control method of a plant growth lighting device for inhibiting the metamorphic development of pests is characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控 制第一光源部、第二光源部和第三光源部开启;Set the time and working period to start lighting, and when the lighting start time is reached, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  117. 根据权利要求116所述的基于服务器的抑制害虫变态发育的植物生长光照装置的控制方法,其特征在于,The control method of a server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 116, wherein:
    在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the working period of the first light source part, the second light source part and the third light source part, it is judged whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, and when After the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  118. 一种基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for inhibiting the metamorphic development of pests is characterized by comprising a control part, a light-emitting part and a server, wherein:
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出蓝光,所述第三光源部发出白光;The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits blue light, and the third light source part emits white light;
    所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,The first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
  119. 根据权利要求118所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 118, further comprising a driving element and a heat dissipation element.
  120. 根据权利要求118所述的基于服务器的抑制害虫变态发育的植物生长光照装置,其特征在于,所述基于服务器的抑制害虫变态发育的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The server-based plant growth lighting device for inhibiting the metamorphic development of pests according to claim 118, wherein the server-based plant growth lighting device for inhibiting the metamorphic development of pests can be used in facility agriculture, an artificial climate room or a light incubator .
  121. 一种可防除害虫的植物生长光照装置,其特征在于,A plant growth lighting device capable of preventing and removing pests, characterized in that:
    包括控制部和发光部,其中,Including the control part and the light-emitting part, of which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light,
    所述控制部对所述第一光源部和所述第二光源部分别进行控制。The control unit respectively controls the first light source unit and the second light source unit.
  122. 根据权利要求121所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 121, wherein:
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
  123. 根据权利要求121所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 121, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体;或者固体发光芯片为发射黄光GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor; or solid-state light-emitting chip is a yellow-emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chip.
  124. 根据权利要求121所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 121, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  125. 根据权利要求124所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 124, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第 一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit controls the control unit according to the time period set by the timer. The first light source part, the second light source part and the third light source part, wherein the timer is set such that the first light source part and the second light source part are irradiated with a cumulative irradiance time of 10-16h.
  126. 根据权利要求121所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 121, wherein:
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  127. 根据权利要求121所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 121, wherein:
    所述第一光源部的红光和蓝光的光量子流密度比例是固定的;The ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和黄光的光量子流密度比例;Adjusting the light quantum flow density ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  128. 根据权利要求125所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 125, wherein:
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  129. 根据权利要求125所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 125, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  130. 根据权利要求125所述的可防除害虫的植物生长光照装置,其特征在于,还包括:The plant growth lighting device capable of preventing and eliminating pests according to claim 125, further comprising:
    输入输出部,其实施数据和信息向所述可防除害虫的植物生长光照装置的输入和从所述可防除害虫的植物生长光照装置向外部的输出;An input and output unit that implements the input of data and information to the pest-preventable plant growth lighting device and the output of the pest-preventable plant growth lighting device to the outside;
    数据存储部,其存储相关数据,以备随时调取使用;Data storage department, which stores relevant data for retrieval and use at any time;
    运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;An arithmetic unit, which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
    所述可防除害虫的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度、黄光光量子流密度需求数据中的一种或者多种;The plant growth lighting device capable of preventing and eliminating pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output unit or the data storage unit, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green light light quantum flow density, yellow light light quantum flow density demand data of one or more;
    所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。The control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
  131. 根据权利要求130所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 130, wherein:
    与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,The input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
    所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,The illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
    蓝光、红光、绿光和黄光的光量子流密度比例可根据植物种类和植物生长阶段通过控制部进行调整。The light quantum flow density ratio of blue light, red light, green light and yellow light can be adjusted by the control unit according to plant species and plant growth stage.
  132. 根据权利要求130所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 130, wherein:
    所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部黄光的光量子流密度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围;The simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source part blue and red light under different working currents per unit time, and the second light source part yellow light The light quantum flow density change range of and the light quantum flow density change range of the blue light, red light, and green light of the third light source part;
    其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。The simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part. One or more of energization current and energization time.
  133. 根据权利要求132所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 132, characterized in that,
    还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。It also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
  134. 根据权利要求133所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 133, wherein:
    所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。The human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to below 1000 lux.
  135. 根据权利要求133所述的可防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device capable of preventing and eliminating pests according to claim 133, wherein:
    所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。The human body induction part adopts infrared induction, voice control induction or microwave induction to sense the human body entering the light environment.
  136. 一种如权利要求121所述的可防除害虫的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A control method of a plant growth lighting device capable of preventing and eliminating pests according to claim 121, characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  137. 根据权利要求136所述的可防除害虫的植物生长光照装置的控制方法,其特征在于,The control method of a plant growth lighting device capable of preventing and eliminating pests according to claim 136, wherein:
    在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  138. 一种可防除害虫的植物生长光照装置,其特征在于,包括控制部和发光部,其中,A plant growth lighting device capable of preventing and removing pests is characterized by comprising a control part and a light emitting part, wherein:
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  139. 根据权利要求138所述的可防除害虫的植物生长光照装置,其特征在 于,还包括驱动元件和散热元件。The plant growth lighting device capable of preventing and eliminating pests according to claim 138, characterized in that it further comprises a driving element and a heat dissipation element.
  140. 根据权利要求138所述的可防除害虫的植物生长光照装置,其特征在于,所述的可防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The plant growth lighting device capable of preventing and eliminating pests according to claim 138, characterized in that the plant growth lighting device capable of preventing and eliminating pests can be used in facility agriculture, artificial climate room or light incubator.
  141. 一种基于服务器的防除害虫的植物生长光照装置,其特征在于,A server-based plant growth lighting device for preventing and eliminating pests, characterized in that:
    包括控制部、发光部和服务器,其中,Including the control part, the light-emitting part and the server, among which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light;
    所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。The control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
  142. 根据权利要求141所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接。The server-based plant growth lighting device for preventing and eliminating pests according to claim 141, wherein the server and the control unit are connected by wired communication or wireless communication.
  143. 根据权利要求142所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。The server-based plant growth lighting device for preventing and eliminating pests according to claim 142, further comprising a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and /Or a face biometric device, the server based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device, Send instructions to the control unit.
  144. 根据权利要求143所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 143, wherein:
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
  145. 根据权利要求141所述的基于服务器的防除害虫的植物生长光照装 置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 141, wherein:
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体;或者固体发光芯片为发射黄光的GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphors; or solid-state light-emitting chips are GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chips emitting yellow light.
  146. 根据权利要求141所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 141, wherein:
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  147. 根据权利要求144所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 144, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer. The timer sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform irradiation operations, and the server controls the time period according to the time period set by the timer. The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first light source unit , The second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 10-16h; or the first light source part and the second light source part are separately arranged to irradiate with a cumulative irradiance time of 10-16h.
  148. 根据权利要求141所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 141, wherein:
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  149. 根据权利要求141所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 141, wherein:
    所述第一光源部的红光和蓝光的光量子比例是固定的;The light quantum ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和黄光的光 量子比例;Adjusting the light quantum ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  150. 根据权利要求147所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 147, wherein:
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  151. 根据权利要求147所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 147, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  152. 根据权利要求143所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 143, wherein:
    所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部第三光源部开启。The photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server. When the intensity of the external light is greater than a preset upper threshold, the server sends an instruction to the control unit The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn off according to the instructions sent by the server; the server sends to the control unit when the intensity of the external light is less than the preset lower threshold Instruction, the control unit controls the first light source unit, the second light source unit and the third light source unit to turn on according to the instruction sent by the server.
  153. 根据权利要求152所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 152, wherein:
    所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令, 调高第一光源部、第二光源部和/或第三光源部的发射功率。The temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server. When the internal temperature of the plant production facility is greater than a preset upper limit, the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server; When the internal temperature of the plant production facility is lower than the preset lower limit, the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
  154. 根据权利要求153所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 153, wherein:
    所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges the plant production facility based on the signal detected by the infrared biometric device Whether there is an operator inside, and issue an instruction to the control part according to the judgment result, and the control part controls the first light source part, the second light source part and/or the third light source part to turn on and/or off according to the instruction;
    所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device. The control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or turn off according to the instructions sent by the server;
    所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit. The control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
    所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device. The control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
    所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device. The control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
  155. 根据权利要求143所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 143, wherein:
    所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换 器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device The identification device is directly connected to the IO port of the server.
  156. 根据权利要求154所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,The server-based plant growth lighting device for preventing and eliminating pests according to claim 154, wherein:
    所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  157. 一种基于服务器的防除害虫的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A server-based control method of a plant growth lighting device for preventing and eliminating pests is characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;Set the start time and working period of light, and after reaching the light start time, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  158. 根据权利要求157所述的基于服务器的防除害虫的植物生长光照装置的控制方法,其特征在于,The control method of a server-based plant growth lighting device for preventing and eliminating pests according to claim 157, wherein:
    在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the working period of the first light source part, the second light source part and the third light source part, it is judged whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, and when After the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  159. 一种基于服务器的防除害虫的植物生长光照装置,其特征在于,包括控制部、发光部和服务器,其中,A server-based plant growth lighting device for preventing and eliminating pests is characterized by comprising a control part, a light-emitting part and a server, wherein:
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
  160. 根据权利要求159所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The server-based plant growth lighting device for preventing and eliminating pests according to claim 159, further comprising a driving element and a heat dissipation element.
  161. 根据权利要求159所述的基于服务器的防除害虫的植物生长光照装置,其特征在于,所述的基于服务器的防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The server-based plant growth lighting device for preventing and eliminating pests according to claim 159, wherein the server-based plant growth lighting device for preventing and eliminating pests can be used in facility agriculture, artificial climate room or light incubator.
  162. 一种基于生物识别的防除害虫的植物生长光照装置,其特征在于,A plant growth lighting device for preventing and eliminating pests based on biometrics, characterized in that:
    包括控制部和发光部,其中,Including the control part and the light-emitting part, of which,
    所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光;The light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits yellow light;
    所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。The control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device. The controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
  163. 根据权利要求162所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 162, characterized in that,
    所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,The blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
    所述第一光源部所发出的红光成分的波长在600~700nm的范围,The wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm,
    所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~10;所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与所述第二光源部所发出的700nm~750nm的范围内的光量子流密度FR的比值3~8。The ratio of the photon flux density R in the range of 600nm to 700nm emitted by the first light source part to the photon flux density B in the range of 400nm to 490nm is 4-10; the first light source part emits from 600nm to 600nm The ratio of the light quantum flux density R in the range of 700 nm to the light quantum flux density FR in the range of 700 nm to 750 nm emitted by the second light source is 3-8.
  164. 根据权利要求162所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 162, characterized in that,
    所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光体,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;The first light source part includes a solid light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains red light that can absorb the excitation light emitted by the solid-state light-emitting chip and convert to emit red light. Phosphors, so as to realize light sources with dominant wavelengths of red and blue light through solid light-emitting chips;
    所述第二光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包 覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出黄光的黄光荧光体;或者固体发光芯片为发射黄光GaAsP/GaP、AlGaInP/GaAs、GaP/GaP基芯片。The second light source part includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains yellow light capable of absorbing the excitation light emitted by the solid light emitting chip and converting it to emit yellow light. Phosphor; or solid-state light-emitting chip is a yellow-emitting GaAsP/GaP, AlGaInP/GaAs, GaP/GaP-based chip.
  165. 根据权利要求162所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 162, characterized in that,
    还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光体。It also includes a third light source part, the third light source part comprising a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing the excitation light emitted by the solid light emitting chip Converts yellow and/or green phosphors that emit white light.
  166. 根据权利要求165所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 165, wherein:
    还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。It also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit controls the control unit according to the time period set by the timer. The first light source part, the second light source part and the third light source part, wherein the timer is set to: the first light source part, the second light source part and/or the third light source part are accumulated in 10-16h Irradiation is performed during the irradiance time; or the first light source part and the second light source part are separately arranged to irradiate with the cumulative irradiance time of 10-16h.
  167. 根据权利要求162所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 162, characterized in that,
    通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的光量子流密度。The light quantum current density of the first light source part and the light quantum current density of the second light source part are adjusted by adjusting the PWM waveform and the duty ratio of the current.
  168. 根据权利要求162所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 162, characterized in that,
    所述第一光源部的红光和蓝光的光量子比例是固定的;The light quantum ratio of the red light and the blue light of the first light source part is fixed;
    通过调节所述第一光源部和第二光源部的比例调节红光、蓝光和黄光的光量子比例;Adjusting the light quantum ratio of red light, blue light and yellow light by adjusting the ratio of the first light source part and the second light source part;
    通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。By changing the number and color temperature of the third light source, the spectrum ratio of the lighting device suitable for plant growth is adjusted.
  169. 根据权利要求166所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 166, wherein:
    所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第二光源部总有效光量子流密度的30%。The light quantum flow density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flow density of the first light source part and the second light source part of the lighting device.
  170. 根据权利要求166所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 166, wherein:
    所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;The color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
    并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和黄光在整体有效光量子流密度的比例。And by selecting different color temperatures and numbers of white light solid light sources of the third light source part, the ratio of the red light, blue light and yellow light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
  171. 根据权利要求166所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 166, wherein:
    所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。The photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls the second light source when the intensity of the external light is greater than a preset threshold Department closed.
  172. 根据权利要求171所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometric identification of claim 171, wherein:
    所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。When the internal temperature of the plant factory is greater than the preset upper limit, the controller reduces the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset upper limit At the lower limit, increase the emission power of the first light source part, the second light source part and/or the third light source part.
  173. 根据权利要求171所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometric identification of claim 171, wherein:
    所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。The voice biometric device judges whether there is an operator in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first light source unit, according to the switch signal returned by the voice biometric device, The second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and sends the infrared signal detected by the infrared biometric device to the Controller, the controller judges whether there is an operator in the plant factory according to the signal detected by the infrared biometric device, and when there is an operator, controls the first light source part, the second light source part and/or the third light source part shut down.
  174. 根据权利要求173所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 173, characterized in that,
    所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;The photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
    其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;Wherein, the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
    所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;The ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller. The controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device. The light source part, the second light source part and/or the third light source part are closed;
    所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller. The controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
    所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;The iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
    所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。The face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
  175. 根据权利要求174所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,The plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 174, characterized in that:
    所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。The controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
  176. 一种如权利要求162所述的基于生物识别的防除害虫的植物生长光照装置的控制方法,其特征在于,包括以下步骤:A method for controlling a plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 162, characterized in that it comprises the following steps:
    设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控 制第一光源部、第二光源部和第三光源部开启;Set the time and working period to start lighting, and when the lighting start time is reached, the control part controls the first light source part, the second light source part and the third light source part to turn on;
    判断被照射植物,根据被照射植物的种类确定光照参数;Determine the irradiated plants and determine the light parameters according to the types of irradiated plants;
    控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;The control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters;
    判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。It is determined whether the working hours of the first light source part, the second light source part and the third light source part reach the working time period, and if the working time period is reached, the control part controls the first light source part, the second light source part and the third light source part to turn off.
  177. 根据权利要求176所述的基于生物识别的防除害虫的植物生长光照装置的控制方法,其特征在于,The control method of a plant growth lighting device for preventing and eliminating pests based on biometrics according to claim 176, wherein:
    在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。During the operation of the first light source part, the second light source part and the third light source part, the human body sensing part senses whether the human body enters the light environment. When the human body enters the light environment, the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
  178. 一种基于生物识别的防除害虫的植物生长光照装置,其特征在于,包括控制部和发光部,其中,A plant growth lighting device for preventing and eliminating pests based on biometrics is characterized by comprising a control part and a light emitting part, wherein,
    所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出黄光,所述第三光源部发出白光,The light emitting part includes a first light source part, a second light source part and a third light source part, the first light source part emits red light and blue light, the second light source part emits yellow light, and the third light source part emits white light ,
    其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,Wherein, the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
    所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。The control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
  179. 根据权利要求178所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。The plant growth lighting device for preventing and eliminating pests based on biometric identification of claim 178, further comprising a driving element and a heat dissipation element.
  180. 根据权利要求178所述的基于生物识别的防除害虫的植物生长光照装置,其特征在于,所述的基于生物识别的防除害虫的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。The plant growth lighting device for preventing and eliminating pests based on biometric identification of claim 178, wherein the plant growth lighting device for preventing and eliminating pests based on biometrics can be used in facility agriculture, artificial climate room or light incubator.
PCT/CN2020/104349 2019-08-07 2020-07-24 Plant growth illumination apparatus and control method therefor WO2021023025A1 (en)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN201910727698.XA CN112432063A (en) 2019-08-07 2019-08-07 Server-based plant growth illumination device for inhibiting metamorphosis and development of pests and control method thereof
CN201910727653.2 2019-08-07
CN201910727654.7 2019-08-07
CN201910727841.5 2019-08-07
CN201910727759.2 2019-08-07
CN201910727801.0 2019-08-07
CN201910727654.7A CN112335444A (en) 2019-08-07 2019-08-07 Plant growth illumination device capable of preventing and killing pests and control method thereof
CN201910727653.2A CN112335443A (en) 2019-08-07 2019-08-07 Plant growth illumination device capable of trapping and killing pests and control method thereof
CN201910727759.2A CN112425403A (en) 2019-08-07 2019-08-07 Plant growth illumination device for preventing and killing pests based on biological recognition and control method thereof
CN201910727801.0A CN112335446A (en) 2019-08-07 2019-08-07 Server-based plant growth illumination device for preventing and killing pests and control method thereof
CN201910727760.5 2019-08-07
CN201910727841.5A CN112335447A (en) 2019-08-07 2019-08-07 Plant growth illumination device for trapping and killing pests based on server and control method thereof
CN201910727698.X 2019-08-07
CN201910727699.4 2019-08-07
CN201910727760.5A CN112432064A (en) 2019-08-07 2019-08-07 Plant growth illumination device for inhibiting metamorphosis and development of pests and control method thereof
CN201910727700.3 2019-08-07
CN201910727699.4A CN112425402A (en) 2019-08-07 2019-08-07 Plant growth illumination device for trapping and killing pests based on biological recognition and control method thereof
CN201910727700.3A CN112335445A (en) 2019-08-07 2019-08-07 Plant growth illumination device for inhibiting pest metamorphosis development based on biological recognition and control method thereof

Publications (1)

Publication Number Publication Date
WO2021023025A1 true WO2021023025A1 (en) 2021-02-11

Family

ID=74502704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104349 WO2021023025A1 (en) 2019-08-07 2020-07-24 Plant growth illumination apparatus and control method therefor

Country Status (1)

Country Link
WO (1) WO2021023025A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130292717A1 (en) * 2012-05-04 2013-11-07 Cree, Inc. Light-emitting device with a tunable light emission spectrum
CN203398111U (en) * 2013-07-11 2014-01-15 杭州鸿雁电器有限公司 LED package, LED plant light supplementing lamp and LED module group
CN204598757U (en) * 2015-03-24 2015-09-02 重庆星联云科科技发展有限公司 A kind of plant growing device
CN204901478U (en) * 2015-06-12 2015-12-23 袁想平 A illumination system for vegetation
CN204962448U (en) * 2015-07-31 2016-01-13 深圳市铁汉生态环境股份有限公司 Commercial LED vegetation lamp
CN105766851A (en) * 2016-03-17 2016-07-20 江苏大学 Variable frequency type LED intelligent pest trapping system and method
CN105981703A (en) * 2016-06-30 2016-10-05 哈尔滨尼亚农业有限公司 Deinsectization lamp with multiple insect luring light sources
CN107277977A (en) * 2017-07-11 2017-10-20 广州市力侬照明技术有限公司 A kind of control system of plant growing light supplement lamp
CN107493960A (en) * 2017-08-07 2017-12-22 成都璐城科技有限公司 Suitable for the light-supplementing system of edible fungi growth
CN207766968U (en) * 2018-01-12 2018-08-28 深圳市摩尔森照明科技有限公司 A kind of plant growth lamp
CN208924787U (en) * 2018-09-26 2019-06-04 安徽霍山黑石渡生物科技有限公司 A kind of intelligent implant system of Dendrobidium huoshanness

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130292717A1 (en) * 2012-05-04 2013-11-07 Cree, Inc. Light-emitting device with a tunable light emission spectrum
CN203398111U (en) * 2013-07-11 2014-01-15 杭州鸿雁电器有限公司 LED package, LED plant light supplementing lamp and LED module group
CN204598757U (en) * 2015-03-24 2015-09-02 重庆星联云科科技发展有限公司 A kind of plant growing device
CN204901478U (en) * 2015-06-12 2015-12-23 袁想平 A illumination system for vegetation
CN204962448U (en) * 2015-07-31 2016-01-13 深圳市铁汉生态环境股份有限公司 Commercial LED vegetation lamp
CN105766851A (en) * 2016-03-17 2016-07-20 江苏大学 Variable frequency type LED intelligent pest trapping system and method
CN105981703A (en) * 2016-06-30 2016-10-05 哈尔滨尼亚农业有限公司 Deinsectization lamp with multiple insect luring light sources
CN107277977A (en) * 2017-07-11 2017-10-20 广州市力侬照明技术有限公司 A kind of control system of plant growing light supplement lamp
CN107493960A (en) * 2017-08-07 2017-12-22 成都璐城科技有限公司 Suitable for the light-supplementing system of edible fungi growth
CN207766968U (en) * 2018-01-12 2018-08-28 深圳市摩尔森照明科技有限公司 A kind of plant growth lamp
CN208924787U (en) * 2018-09-26 2019-06-04 安徽霍山黑石渡生物科技有限公司 A kind of intelligent implant system of Dendrobidium huoshanness

Similar Documents

Publication Publication Date Title
JP2020115880A (en) Photon modulation management system
CN108292657A (en) For structure of the continuous disinfection based on light emitting diode and include its luminaire
TWI590757B (en) Plant breeding lighting device and plant breeding method
KR100944359B1 (en) A lamp for plant cultivation with multiple light sources and plant cultivation method thereby
JP2001028947A (en) Method for raising useful plant
KR101451911B1 (en) Horticulture emitting diode lighting device
KR20210121260A (en) LED lighting device and lighting system having same
CN106413382B (en) Light source adapted to the spectral sensitivity of plants
WO2020015396A1 (en) Intelligent lighting system and intelligent lighting method based on full-spectrum led
WO2021023022A1 (en) Plant growth lighting apparatus having high visual security and control method therefor
JP5335721B2 (en) Lighting equipment for plant growth
KR101164006B1 (en) LED Lighting Device for Plant Cultivation and thereby Cultivation Method
KR20140010493A (en) Insect attractor using led
US11950548B2 (en) Growth enhancement using scalar effects and light frequency manipulation
WO2021023024A1 (en) Plant growth illumination device capable of preventing and controlling disease and insect pest, and control method therefor
WO2021023025A1 (en) Plant growth illumination apparatus and control method therefor
CN112425403A (en) Plant growth illumination device for preventing and killing pests based on biological recognition and control method thereof
CN104006306A (en) Light-emitting diode (LED) lamp, use of same applied to plant growth and LED unit
CN112335440A (en) Server-based plant growth illumination device with optical signal and control method thereof
KR20200036102A (en) Led lighting
CN112335439A (en) Plant growth illumination device with optical signal based on biological recognition and control method thereof
CN112432063A (en) Server-based plant growth illumination device for inhibiting metamorphosis and development of pests and control method thereof
CN108200682B (en) LED light-emitting device driven by non-constant current and used for plant illumination
CN112335447A (en) Plant growth illumination device for trapping and killing pests based on server and control method thereof
CN112335444A (en) Plant growth illumination device capable of preventing and killing pests and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849733

Country of ref document: EP

Kind code of ref document: A1