WO2021023024A1 - 防控病虫害的植物生长光照装置及其控制方法 - Google Patents
防控病虫害的植物生长光照装置及其控制方法 Download PDFInfo
- Publication number
- WO2021023024A1 WO2021023024A1 PCT/CN2020/104296 CN2020104296W WO2021023024A1 WO 2021023024 A1 WO2021023024 A1 WO 2021023024A1 CN 2020104296 W CN2020104296 W CN 2020104296W WO 2021023024 A1 WO2021023024 A1 WO 2021023024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- light
- source part
- plant
- lighting device
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/04—Electric or magnetic or acoustic treatment of plants for promoting growth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
Definitions
- the present invention relates to a plant growth lighting device and a control method thereof, in particular to a plant growth lighting device and a control method thereof for providing workers in a plant lighting environment to prevent and control diseases and insect pests.
- blue light B (for example, 460nm) can help the growth of plant roots and has the most obvious effect on the early plant; red light R (for example, 660nm) is good for plant stems and leaves, flowering and fruit growth; ultraviolet light FR (for example, 730nm) is good for Control plant flowering and nutrient synthesis in the body.
- the current LED plant growth lamps are all plant LED growth lamps manufactured by a white LED light source or a mixture of red and blue LED light sources or a mixture of red, blue, and white LED light sources. Due to the low luminous efficiency of red light, in order to meet the spectrum and light intensity required by the plant photosynthetic pigment system, the plant LED growth lamp has high power and a sharp increase in cost.
- the ratio of the number of photons of red light to ultraviolet light (R/FR) in the spectrum has an important influence on plant morphology and adjustment of plant height. Since the total number of red and blue LEDs is far more than the number of infrared, it is difficult to achieve uniform distribution of ultraviolet light in the design of the lamp, and it is difficult to uniformly illuminate plants.
- the LED plant growth lamp When the LED plant growth lamp is in the red light and ultraviolet light working state, the user performing the cultivation operation will bear the psychological burden due to the long time in the red light and ultraviolet light environment. In addition, under red light and ultraviolet light environments, the visibility is poor and it is difficult to judge the growth state of the plant by visually observing the color of the plant. Therefore, the workability and efficiency of plant cultivation are reduced.
- the present invention adopts the following technical solutions.
- a plant growth lighting device for preventing and controlling plant diseases and insect pests, comprising a control part and a light emitting part, wherein,
- the light emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits ultraviolet light,
- the control unit respectively controls the first light source unit and the second light source unit.
- the blue light component emitted by the first light source part has a luminous peak within a wavelength range of 400-480 nm, which corresponds to the absorption peak of the blue light domain of chlorophyll,
- the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
- the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source part to the light quantum flux density B in the range of 400 nm to 490 nm is 4-19;
- the wavelength of the ultraviolet light emitted by the second light source part is in the range of 280-380 nm.
- the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
- the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
- the second light source part is a GaN, AlGaN, InAlGaN-based solid light emitting chip that emits ultraviolet light.
- the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing The yellow light and/or green light phosphors that emit white light are converted by exciting light.
- it also includes a timer that sets a time period for the first light source unit, the second light source unit, and the third light source unit to perform the irradiation operation, and the control unit is based on the time set by the timer
- the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section and the second light source section are performed with a cumulative irradiance time of 10-16h Irradiation.
- the light quantum flux density of the first light source part and the radiation intensity of the second light source part, and the light intensity of the third light source part are adjusted by adjusting the PWM waveform and duty ratio of the current.
- the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
- the spectrum ratio of the lighting device suitable for plant growth is adjusted.
- the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the third light source part of the lighting device.
- the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
- the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
- An input and output unit that implements the input of data and information to the plant growth lighting device for preventing and controlling diseases and insect pests and the output from the plant growth lighting device for preventing and controlling diseases and insect pests to the outside;
- Data storage department which stores relevant data for retrieval and use at any time
- An arithmetic unit which uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
- the plant growth lighting device for preventing and controlling diseases and insect pests obtains the type of plant, the growth stage of the plant, and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant , Red or blue light quantum flow density ratio data, green light light quantum flow density, one or more of the demand data of ultraviolet light radiation intensity;
- the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source and the lighting environment according to the simulated result. Mentioned second light source part.
- the input data related to the plant includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
- the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
- the light quantum flow density ratio of blue light, red light and green light, and the radiation intensity of ultraviolet light can be adjusted by the control unit according to the plant species and plant growth stage.
- the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source The variation range of the radiation intensity of the ultraviolet light and the variation range of the light quantum flow density of the blue light, red light, and green light of the third light source unit;
- the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
- One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
- it also includes a human body sensing part, which turns off at least the first light source part and the second light source part when it senses that a person enters the light environment.
- the human body sensing unit further transmits a signal to the control unit, and the control unit adjusts the light intensity of the third light source unit to less than 1000 lux.
- the human body sensing part adopts infrared sensing, voice control sensing or microwave sensing to sense the human body entering the light environment.
- a control method of a plant growth lighting device for preventing and controlling plant diseases and insect pests as described above includes the following steps:
- control part controls the first light source part, the second light source part and the third light source part to turn on;
- the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
- the control part controls the first light source part, the second light source part and the third light source part to turn off.
- the human body sensing part senses whether the human body enters the light environment.
- the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
- a plant growth lighting device for preventing and controlling plant diseases and insect pests, comprising a control part and a light emitting part, wherein,
- the light-emitting part includes a first light source part, a second light source part, and a third light source part.
- the first light source part emits red light and blue light
- the second light source part emits ultraviolet light
- the third light source part emits white light.
- first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
- the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
- it also includes a driving element and a heat dissipation element.
- the plant growth lighting device for preventing and controlling diseases and insect pests can be used in facility agriculture, artificial climate room or light incubator.
- a plant growth lighting device for preventing and controlling diseases and insect pests based on biometrics
- the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits ultraviolet light;
- the control unit includes a controller, and a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
- the controller is based on the photosensitive sensor , Temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or face biometric device detect data, compare the first light source unit and the second light source unit Control separately.
- the blue light component emitted by the first light source part has a luminous peak in the range of wavelength 380-490nm, which corresponds to the blue light domain absorption peak of chlorophyll,
- the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
- the ratio of the light quantum flux density R in the range of 600nm-700nm emitted by the first light source part to the light quantum flux density B in the range of 380-490nm is 4-19;
- the wavelength of the ultraviolet light emitted by the second light source part is in the range of 280-380 nm.
- the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
- the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
- the second light source part is a GaN, AlGaN, InAlGaN-based solid light emitting chip that emits ultraviolet light.
- the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing The yellow light and/or green light phosphors that emit white light are converted by exciting light.
- the control unit is based on the time set by the timer
- the first light source section, the second light source section, and the third light source section are controlled in stages, wherein the timer is set to: the first light source section, the second light source section, and/or the third light source section are set to 10 ⁇ 16h accumulated irradiance time for irradiation; or separately set the first light source part and second light source part to irradiate with 10-16h accumulated irradiance time.
- the light quantum flux density of the first light source part and the radiation intensity of the second light source part, and the light intensity of the third light source part are adjusted by adjusting the PWM waveform and duty ratio of the current.
- the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
- the spectrum ratio of the lighting device suitable for plant growth is adjusted.
- the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the third light source part of the lighting device.
- the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
- the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
- the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the controller, and the controller controls when the intensity of the external light is greater than a preset threshold
- the first light source part, the second light source part and/or the third light source part are turned off.
- the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the controller, where the internal temperature of the plant production facility is greater than a preset value.
- the upper limit is set, lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant production facility is lower than the preset lower limit, raise the first light source part, The emission power of the second light source part and/or the third light source part.
- the voice biometric device judges whether there are workers in the plant factory according to the decibel value in the plant factory, and outputs a switch signal to the controller; the controller controls the first switch signal according to the switch signal returned by the voice biometric device
- the light source part, the second light source part and/or the third light source part are turned on and/or off; the infrared biometric device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric device
- the controller judges whether there is an operator in the plant factory based on the signal detected by the infrared biometric device, and when there is an operator, it controls the first light source part, the second light source part and/or the second light source The three light sources are closed.
- the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter,
- the voice biometric device is directly connected to the IO port of the controller;
- the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
- the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
- the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
- the light source part, the second light source part and/or the third light source part are closed;
- the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
- the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
- the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
- the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
- controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
- a method for controlling a plant growth lighting device for preventing and controlling plant diseases and insect pests based on biometric identification as described above includes the following steps:
- control part controls the first light source part, the second light source part and the third light source part to turn on;
- the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
- control section controls the first light source section, the second light source section and the third light source section to turn off.
- the human body sensing part senses whether the human body enters the light environment.
- the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
- a plant growth lighting device for preventing and controlling plant diseases and insect pests based on biometrics including a control part and a light-emitting part, wherein,
- the light-emitting part includes a first light source part, a second light source part, and a third light source part.
- the first light source part emits red light and blue light
- the second light source part emits ultraviolet light
- the third light source part emits white light.
- first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and
- the control unit controls the third light source unit in the following manner, that is, the control unit regulates the overall spectrum by controlling the color temperature and the number of turns on of the third light source unit.
- it also includes a driving element and a heat dissipation element.
- the plant growth lighting device for preventing and controlling plant diseases and insect pests based on biometrics can be used in facility agriculture, artificial climate room or light incubator.
- a server-based plant growth lighting device for preventing and controlling diseases and insect pests
- the light-emitting part includes a first light source part and a second light source part, the first light source part emits red light and blue light, and the second light source part emits ultraviolet light;
- the control unit is connected to the server, and is used to receive instructions from the server to control the first light source unit and the second light source unit respectively.
- server and the control unit are connected by wired communication or wireless communication.
- the server uses the photosensitive sensor, temperature sensor, infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a face biometric device.
- the server uses the photosensitive sensor, temperature sensor, infrared
- the data detected by the biometric device, ultrasonic biometric device, voice biometric device, iris biometric device, and/or facial biometric device sends instructions to the control unit.
- the blue light component emitted by the first light source part has a luminous peak in the range of wavelength 380-490nm, which corresponds to the blue light domain absorption peak of chlorophyll,
- the wavelength of the red light component emitted by the first light source part is in the range of 600 to 700 nm
- the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source part to the light quantum flux density B in the range of 400 nm to 490 nm is 4-19;
- the wavelength of the ultraviolet light emitted by the second light source part is in the range of 280-380 nm.
- the first light source unit includes a solid light emitting chip and a coating layer arranged on the outside of the solid light emitting chip, and the coating layer contains the excitation light that can absorb the excitation light emitted by the solid light emitting chip to convert to emit red light.
- the red light phosphor so as to realize the light source with main wavelength of red light and blue light through the solid light emitting chip;
- the second light source part is a GaN, AlGaN, InAlGaN-based solid light emitting chip that emits ultraviolet light.
- the third light source portion includes a solid light emitting chip and a coating layer disposed on the outside of the solid light emitting chip, the coating layer containing a solid light emitting chip capable of absorbing The yellow light and/or green light phosphors that emit white light are converted by exciting light.
- the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instruction sent by the server, wherein the timer is set to: the first A light source unit, a second light source unit and/or a third light source unit are irradiated with a cumulative irradiance time of 10-16h; or the first light source unit and a second light source unit are separately arranged to irradiate with a cumulative irradiance time of 10-16h .
- the light quantum flux density of the first light source part and the radiation intensity of the second light source part, and the light intensity of the third light source part are adjusted by adjusting the PWM waveform and duty ratio of the current.
- the ratio of the light quantum flux density of the red light and the blue light of the first light source part is fixed;
- the spectrum ratio of the lighting device suitable for plant growth is adjusted.
- the light quantum flux density of the yellow and green light of the third light source part does not exceed 30% of the total effective light quantum flux density of the first light source part and the third light source part of the lighting device.
- the color temperature of the third light source part is 2000-10000K, and the light intensity in the irradiated plant canopy is above 100 lux;
- the ratio of the red light, blue light and green light of the plant growth lighting device in the overall effective light quantum flow density is adjusted.
- the photosensitive sensor is used to detect the intensity of external light, and send the detected external light intensity data to the server.
- the control section controls the first light source section, the second light source section, and/or the third light source section to turn off according to the instructions sent by the server; when the intensity of the external light is less than the preset lower threshold, the server sends instructions to The control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on according to the instruction sent by the server.
- the temperature sensor is used to detect the internal temperature of the plant production facility, and send the detected internal temperature data of the plant production facility to the server, where the internal temperature of the plant production facility is greater than a preset upper limit
- the control unit sends a power down instruction to the control unit, and the control unit reduces the transmission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power down instruction sent by the server
- the server sends an instruction to increase the power to the control unit, and the control unit increases the first power according to the instruction to increase the power sent by the server The emission power of the light source part, the second light source part and/or the third light source part.
- the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server, and the server judges according to the signal detected by the infrared biometric device Whether there is an operator in the plant production facility, and according to the judgment result, issue an instruction to the control unit, which controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instruction;
- the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
- the control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or turn off according to the instructions sent by the server;
- the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
- the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or close;
- the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
- the control part controls the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the instructions sent by the server;
- the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
- the control unit sends instructions, and the control unit controls the turning on and/or turning off of the first light source, the second light source, and/or the third light source according to the instructions sent by the server.
- the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, so The voice biometric device is directly connected to the IO port of the server.
- control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part, the second light source part and the third light source part.
- a server-based control method of a plant growth lighting device for preventing and controlling plant diseases and insect pests includes the following steps:
- control part controls the first light source part, the second light source part and the third light source part to turn on;
- the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
- the control part controls the first light source part, the second light source part and the third light source part to turn off.
- the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
- a server-based plant growth lighting device for preventing and controlling plant diseases and insect pests, including a control part, a light-emitting part and a server, wherein,
- the light-emitting part includes a first light source part, a second light source part, and a third light source part.
- the first light source part emits red light and blue light
- the second light source part emits ultraviolet light
- the third light source part emits white light.
- the first light source part, the second light source part, and the third light source part are connected in parallel and/or in series, and
- the control unit controls the third light source unit in the following manner. That is, the control unit adjusts the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit according to an instruction of the server.
- it also includes a driving element and a heat dissipation element.
- server-based plant growth lighting device for preventing and controlling plant diseases and insect pests can be used in facility agriculture, artificial climate room or light incubator
- the invention can adjust the irradiation of red light and ultraviolet light through the combination and control of the first light source part, the second light source part and the third light source part, thereby protecting the personnel working in the plant lighting environment; at the same time, white light can be used to supplement The green light and other components in the first light source part and the second light source part further enrich the spectrum, thereby creating an environment more conducive to plant growth.
- Figure 1 is a structural block diagram of the plant growth lighting device for preventing and controlling diseases and insect pests of the present invention
- FIG. 2 is a schematic diagram of the structure of the plant growth lighting device for preventing and controlling diseases and insect pests of the present invention
- FIG. 3 is a flow chart of the control method of the plant growth lighting device for preventing and controlling diseases and insect pests of the present invention
- FIG. 4 is a flowchart of the control method of the plant growth lighting device for preventing and controlling diseases and insect pests of the present invention.
- This embodiment provides a plant growth lighting device for preventing and controlling plant diseases and insect pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part.
- the light source part emits red light and blue light; the second light source part emits ultraviolet light, the third light source part emits white light, and the control part responds to the first light source part, the second light source part, and the third light source part. Control separately.
- the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
- the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and ultraviolet light emitted by the first light source part and the second light source part on the human body can be minimized.
- the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
- Convert the red phosphor that emits red light so as to realize the photosynthetic solid light emitting chip with the dominant wavelengths of red and blue light through the solid light emitting chip; preferably, the solid light emitting chip can be a blue solid light emitting chip, so that the cost can be lower
- the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
- the second light source part is a GaN, AlGaN, InAlGaN-based solid light emitting chip emitting ultraviolet light, and the ultraviolet light emitted by the second light source part has a luminous peak in the range of 280-380 nm.
- the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
- the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
- the wavelength is in the range of 600 to 700 nm, and the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source part to the light quantum flux density B in the range of 400 nm to 490 nm is 4-19.
- the single fruit of strawberry can be made The quality and fruit quality have been greatly improved.
- the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
- the ultraviolet light includes UV-B (wavelength range of 280 to 340nm) and setting UV-C (wavelength range of 250 to 280nm);
- the control unit controls the first light source unit to emit a total radiation amount of about 50 ⁇ W/cm 2
- the irradiation amount of ultraviolet light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of ultraviolet light in the above-mentioned wavelength region of 270 to 290 nm.
- the plant growth lighting device for preventing and controlling diseases and insect pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform irradiation operations, and during the time period Inside, the control part controls the first light source part, the second light source part and the third light source part to light up, so that the plant can receive light irradiation within a prescribed time period, and preferably, the timer is set It is: the first light source part, the second light source part and the third light source part are irradiated with a cumulative irradiance time of 10-16h/day, so that the first light source part and the second light source part can be turned off when the daylight is sufficient. And the power supply of the third light source section to save energy.
- the light quantum flow density of the first light source part and the radiation intensity of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the second light source part can be adjusted.
- the light intensity of the three light source parts; when the first light source part is determined, the light quantum flow density ratio of red light and blue light is fixed.
- the radiation intensity of ultraviolet light can be adjusted by adjusting the number of second light source parts; and on the basis of the first light source part and the second light source part, a third light source part including a different number and color temperature is added, thereby making
- the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow-green light of the third light source part does not exceed the light quantum flow density of the lighting device 30% of the total effective light quantum flow density of the first light source part and the third light source part.
- the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K, and 7000K can be selected.
- the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
- the plant growth lighting device for preventing and controlling diseases and insect pests further includes: an input and output unit, and data storage Department and Computing Department.
- the input and output unit implements the input of data and information to the plant growth lighting device for preventing and controlling pests and diseases and the output from the plant growth lighting device for preventing and controlling pests to the outside;
- the data storage department stores relevant data for retrieval and use at any time
- the arithmetic unit uses the data acquired by the input and output unit or the data stored in the data storage unit to perform correlation operations, and the correlation operations include analog operations;
- the plant growth lighting device for preventing and controlling diseases and insect pests obtains the type of plant, the growth stage of the plant and specific information through the input and output part or the data storage part, wherein the specific information includes the total effective light quantum flux density suitable for the growth of the plant, One or more of red or blue light quantum flow density ratio data, green light quantum flow density, and ultraviolet light radiation intensity data;
- the control unit simulates and constructs a lighting environment consistent with or close to the lighting environment of the specific information through the calculation unit according to the specific information of the plant, so as to control the first light source unit and the lighting environment according to the simulated result.
- the second light source part The second light source part.
- the input data related to plants includes: plant species, plant growth stage, and optimal lighting environment parameters at this growth stage,
- the illumination environment includes light quantum flow density ratio, total effective light quantum flow density, and illumination time,
- the light quantum flow density ratio of blue light, red light, and green light, and the radiation intensity of ultraviolet light can be adjusted by the control unit according to the plant species and the plant growth stage.
- the simulation construction adopted by the arithmetic unit adopts working current and photosynthetic effective quantum current density modeling, including the light quantum current density variation range of the first light source unit blue and red light under different working currents per unit time, and the second light source unit The variation range of the radiation intensity of the ultraviolet light and the variation range of the light quantum flow density of the blue, red, and green light of the third light source part,
- the simulated results include the combination of whether each solid-state light-emitting light source is energized and lit according to the installation position and number of the solid-state light-emitting light sources in the first light source part, the second light source part and the third light source part.
- One or more of energization current and energization time are included in the first light source part, the second light source part and the third light source part.
- the plant growth lighting device for preventing and controlling plant diseases and insect pests of this embodiment may further include a human body sensing part, which senses that people enter the light environment The first light source part and the second light source part are turned off in the middle.
- the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
- the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
- the plant growth lighting device for preventing and controlling diseases and insect pests also includes a driving element and a heat dissipation element, the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element is used to The first light source part, the second light source part and the third light source part dissipate heat.
- the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
- This embodiment provides a method for controlling a plant growth lighting device for preventing and controlling diseases and insect pests.
- the plant growth lighting device for preventing and controlling diseases and insect pests may adopt the plant growth lighting device for preventing and controlling diseases and insect pests disclosed in the embodiments, which includes:
- control part controls the first light source part, the second light source part and the third light source part to turn on;
- the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
- the control part controls the first light source part, the second light source part and the third light source part to turn off.
- the human body sensing part senses whether the human body enters the light environment.
- the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
- This embodiment provides a biometric-based plant growth lighting device for preventing and controlling plant diseases and insect pests, which includes a control part and a light-emitting part, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part, The first light source part emits red light and blue light; the second light source part emits ultraviolet light, the third light source part emits white light, and the control part includes a photosensitive sensor, a temperature sensor, an infrared biometric device, and a voice biometric.
- the controller separately responds to the first light source, the second light source, and the third light source based on data detected by the photosensitive sensor, temperature sensor, infrared biometric device, and voice biometric device Take control.
- the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
- the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the controller through an AD converter, and the voice The biometric device is directly connected to the IO port of the controller;
- the infrared biometric device emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the controller, which is based on the signal detected by the infrared biometric device Determine whether there is an operator in the plant production facility, and control the opening and/or closing of the first light source part, the second light source part and/or the third light source part according to the judgment result;
- the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the controller.
- the controller controls the first location near the worker based on the location information of the worker detected by the ultrasonic biometric device.
- the light source part, the second light source part and/or the third light source part are closed;
- the sound biometric device is used to receive the sound in the plant production facility, and transmit the detected sound signal to the controller.
- the controller judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part according to the sound signal detected by the sound biometric identification device;
- the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the controller, and the controller controls the first light source unit according to the iris information of the human eye detected by the iris biometric device, Turning on and/or off the second light source part and/or the third light source part;
- the face biometric recognition device detects the image information of the workers in the plant production facility, and transmits the collected image information to the controller, which is based on the image information of the workers detected by the face biometric device , Controlling the turning on and/or turning off of the first light source part, the second light source part and/or the third light source part.
- the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and ultraviolet light emitted by the first light source part and the second light source part on the human body can be minimized.
- the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
- Convert the red phosphor that emits red light so as to realize the photosynthetic solid light emitting chip with the dominant wavelengths of red and blue light through the solid light emitting chip; preferably, the solid light emitting chip can be a blue solid light emitting chip, so that the cost can be lower
- the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
- the second light source part is a GaN, AlGaN, InAlGaN-based solid light emitting chip emitting ultraviolet light, and the ultraviolet light emitted by the second light source part has a luminous peak in the range of 280-380 nm.
- the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
- the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
- the wavelength is in the range of 600 to 700 nm, and the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source part to the light quantum flux density B in the range of 380 to 490 nm is 4-19.
- the single fruit of strawberry can be made The quality and fruit quality have been greatly improved.
- the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
- the ultraviolet light includes UV-B (wavelength range of 280 to 340nm) and setting UV-C (wavelength range of 250 to 280nm);
- the control unit controls the first light source unit to emit a total radiation amount of about 50 ⁇ W/cm 2
- the irradiation amount of ultraviolet light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of ultraviolet light in the above-mentioned wavelength region of 270 to 290 nm.
- the plant growth lighting device for preventing and controlling plant diseases and insect pests based on biometrics further includes a timer that sets a time period for the first light source part, the second light source part, and the third light source part to perform irradiation operations, and During this period of time, the control unit controls the first light source unit, the second light source unit, and the third light source unit to light up so that the plant can receive light irradiation within a prescribed period of time, and preferably, the timing The device is set to: the first light source part, the second light source part and/or the third light source part irradiate with a cumulative irradiance time of 10-16h/day, or irradiate according to a predetermined time, so that the sun can be illuminated during the day When sufficient, turn off the power of the first light source part, the second light source part and the third light source part to save energy.
- the pest can be trapped or sterilized when the second light source part is turned on separately to irradiate plants.
- the light quantum flow density of the first light source part and the radiation intensity of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the second light source part can be adjusted.
- the light intensity of the three light source parts; when the first light source part is determined, the light quantum flow density ratio of red light and blue light is fixed.
- the radiation intensity of ultraviolet light can be adjusted by adjusting the number of second light source parts; and on the basis of the first light source part and the second light source part, a third light source part including a different number and color temperature is added, thereby making
- the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow-green light of the third light source part does not exceed the light quantum flow density of the lighting device 30% of the total effective light quantum flow density of the first light source part and the third light source part.
- the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K, and 7000K can be selected.
- the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
- the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
- the light intensity data of is sent to the controller, and the controller controls the second light source part to turn off when the intensity of the external light is greater than a preset threshold.
- the temperature sensor is used to detect the internal temperature of the plant factory, and send the detected internal temperature data of the plant factory to the controller, and the controller adjusts when the internal temperature of the plant factory is greater than a preset upper limit value. Lower the emission power of the first light source part, the second light source part and/or the third light source part; when the internal temperature of the plant factory is lower than the preset lower limit, increase the first light source part, the second light source part and/or The emission power of the third light source part.
- the voice biometric device of this embodiment determines whether there are workers in the plant factory based on the decibel value in the plant factory, and outputs a switch signal to the controller; the controller uses the voice biometric device
- the returned switch signal controls the opening and/or closing of the first light source part, the second light source part and/or the third light source part, that is, when a job is considered to be located in the plant factory, the first light source part and the second light source part are turned off.
- the light source part and/or the third light source part when no operator is located in the plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part and the second light source part
- the part and/or the third light source part are in an open state.
- the infrared biometric identification device is used to detect the infrared signal in the plant factory, and send the infrared signal detected by the infrared biometric identification device to the controller, and the controller judges according to the signal detected by the infrared biometric identification device Whether there is an operator in the plant factory, and when there is an operator, the first light source part, the second light source part and/or the third light source part are controlled to be turned off; when the data detected by the infrared biometric device is judged by the controller as no operation When a person is in a plant factory, turn on the first light source part, the second light source part and/or the third light source part, or keep the first light source part, the second light source part and/or the third light source part in an open state.
- the controller is connected to a control device through a GPIO interface, and the control device is connected to the first light source portion, the second light source portion and the third light source portion.
- the human body sensing part further transmits a signal to the control part, and the control part adjusts the light intensity of the third light source part to 1000 lux or less (or Between 200-800lux).
- the human body induction part adopts infrared induction, voice control induction or microwave induction to sense and identify whether the human body enters the light environment.
- the biological recognition-based plant growth lighting device for preventing and controlling plant diseases and insect pests further includes a driving element and a heat dissipation element, and the driving element is used to drive the first light source part, the second light source part, and the third light source part.
- the element is used for heat dissipation of the first light source part, the second light source part and the third light source part.
- the high visual safety plant growth lighting device can be used in facility agriculture, artificial climate chambers or light incubators.
- This embodiment provides a method for controlling a plant growth lighting device for preventing and controlling diseases and insect pests based on biometrics.
- the plant growth lighting device for preventing and controlling diseases and insect pests based on biometrics may adopt the biometrics-based prevention and control disclosed in the embodiment.
- Plant growth lighting devices for plant diseases and insect pests which include:
- control part controls the first light source part, the second light source part and the third light source part to turn on;
- the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
- the control part controls the first light source part, the second light source part and the third light source part to turn off.
- the human body sensing part senses whether the human body enters the light environment.
- the control part controls at least the first light source part and the second light source The part is closed, and when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
- This embodiment provides a server-based plant growth lighting device for preventing and controlling plant diseases and insect pests, which includes a control part, a light-emitting part and a server, wherein the light-emitting part includes a first light source part, a second light source part, and a third light source part , The first light source part emits red light and blue light; the second light source part emits ultraviolet light, and the third light source part emits white light, wherein the control part is connected to the server for receiving instructions from the server , Controlling the first light source part, the second light source part and the third light source part respectively.
- the server and the control unit are connected by wired communication or wireless communication;
- the server can be a cloud server or a local server, and a communication device that implements wired communication or wireless communication can implement a cloud server Signal transmission (communication) with the control unit, or signal transmission (communication) between the local server and the control unit.
- the server-based high-visual security plant growth lighting device further includes a photosensitive sensor, a temperature sensor, an infrared biometric device, an ultrasonic biometric device, a voice biometric device, an iris biometric device, and/or a signal connected to the server Face biometric device, the server controls the data based on the data detected by the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device
- the control unit sends an instruction, and at this time, the control unit controls the first light source unit and the second light source unit respectively according to the instruction sent by the server to the control unit.
- the first light source part, the second light source part and the third light source part are connected in parallel and/or in series, and the control part controls the third light source part in the following manner: That is, the control unit regulates the overall spectrum by controlling the color temperature and the number of on-offs of the third light source unit.
- the demand for light components during the growth of plants can be met, and on the other hand, through the control of the first light source part and the second light source part Therefore, the influence of the red light and ultraviolet light emitted by the first light source part and the second light source part on the human body can be minimized.
- the first light source part includes a solid light emitting chip, and a coating layer disposed on the outside of the solid light emitting chip, and the coating layer contains excitation light that can absorb the excitation light emitted by the solid light emitting chip.
- Convert the red phosphor that emits red light so as to realize the photosynthetic solid light emitting chip with the dominant wavelengths of red and blue light through the solid light emitting chip; preferably, the solid light emitting chip can be a blue solid light emitting chip, so that the cost can be lower
- the low blue solid light-emitting chip realizes the generation of blue and red light, which saves the expenditure of the solid light-emitting chip.
- the second light source part is a GaN, AlGaN, InAlGaN-based solid light emitting chip emitting ultraviolet light, and the ultraviolet light emitted by the second light source part has a luminous peak in the range of 280-380 nm.
- the third light source part is a solid-state light-emitting chip and a coating layer disposed on the outside of the solid-state light-emitting chip, and the coating layer contains yellow light and white light that can absorb excitation light emitted by the solid-state light-emitting chip and convert white light. / Or green phosphor.
- the blue light component emitted by the first light source part has a luminous peak in the wavelength range of 400-490 nm, which corresponds to the absorption peak of chlorophyll in the blue region; the red light component emitted by the first light source part
- the wavelength is in the range of 600 to 700 nm, and the ratio of the light quantum flux density R in the range of 600 nm to 700 nm emitted by the first light source part to the light quantum flux density B in the range of 400 nm to 490 nm is 4-19.
- the single fruit of strawberry can be made The quality and fruit quality have been greatly improved.
- the average single fruit quality has increased by about 40% compared to conventional sunlight; the soluble solid content of ripe strawberry fruits has increased by the largest 15%; based on the vitamin C content of ripe strawberry fruit, the maximum increase is 10%; based on the soluble sugar content of ripe strawberry fruit, the maximum increase is 4.5%.
- the ultraviolet light includes UV-B (wavelength range of 280 to 340nm) and setting UV-C (wavelength range of 250 to 280nm);
- the control unit controls the first light source unit to emit a total radiation amount of about 50 ⁇ W/cm 2
- the irradiation amount of ultraviolet light in the wavelength region of 310 nm to 400 nm is less than 50% of the irradiation amount of ultraviolet light in the above-mentioned wavelength region of 270 to 290 nm.
- the server-based plant growth lighting device for preventing and controlling plant diseases and insect pests further includes a timer that sets a time period during which the first light source part, the second light source part, and the third light source part perform irradiation operations, the The server sends an instruction to the control unit according to the time period set by the timer, and the control unit controls the first light source unit, the second light source unit, and the third light source unit according to the instructions sent by the server, wherein the The timer is set to: the first light source part, the second light source part and/or the third light source part are irradiated with a cumulative irradiance time of 8-16h/day, or irradiate according to a predetermined time, so that it can be irradiated during the day When the sunlight is sufficient, the power supply of the first light source part, the second light source part and the third light source part are turned off to save energy.
- the pest can be trapped or sterilized when the second light source part is turned on separately to irradiate plants.
- the light quantum flow density of the first light source part and the radiation intensity of the second light source part can be adjusted by adjusting the PWM waveform and duty cycle of the current, and the second light source part can be adjusted.
- the light intensity of the three light source parts; when the first light source part is determined, the light quantum flow density ratio of red light and blue light is fixed.
- the radiation intensity of ultraviolet light can be adjusted by adjusting the number of second light source parts; and on the basis of the first light source part and the second light source part, a third light source part including a different number and color temperature is added, thereby making
- the light irradiated to plants includes white light, so that the spectral ratio of the lighting device suitable for plant growth can be adjusted more conveniently; and more preferably, the light quantum flow density of the yellow-green light of the third light source part does not exceed the light quantum flow density of the lighting device 30% of the total effective light quantum flow density of the first light source part and the third light source part.
- the color temperature of the third light source part is 2000-10000K, for example, 3000K, 5000K and 7000K can be selected, the light intensity in the irradiated plant canopy is above 100lux, and by selecting different color temperatures and numbers
- the white light solid light source of the third light source part adjusts the ratio of the red light, blue light and green light of the plant growth lighting device to the overall effective light quantum flow density.
- the photosensitive sensor is used to detect the intensity of the external light, and the detected external light
- the server sends an instruction to the control unit, and the control unit controls the first light source unit and the second light source unit according to the instructions sent by the server.
- the light source part and/or the third light source part are turned off; when the intensity of the external light is less than the preset lower threshold, the server sends an instruction to the control part, and the control part controls the first light source part and the second light source part according to the instructions sent by the server.
- the second light source part and/or the third light source part are turned on.
- the temperature sensor is used to detect the internal temperature of the plant production facility and send the detected internal temperature data of the plant production facility to the server.
- the server Sending a power-down instruction to the control unit, and the control unit reduces the emission power of the first light source unit, the second light source unit, and/or the third light source unit according to the power-down instruction sent by the server;
- the server sends an instruction to increase the power to the control unit, and the control unit increases the first light source unit, The emission power of the second light source part and/or the third light source part.
- the infrared biometric device of this implementation emits infrared rays and receives the infrared signal reflected by the human body, and transmits the infrared signal reflected by the human body to the server.
- the server judges whether there is an operator in the plant production facility based on the signal detected by the infrared biometric device, and sends an instruction to the control unit according to the judgment result, and the control unit controls the first light source unit, the second light source unit and/or according to the instruction
- the third light source part is turned on and/or off; that is, when there are workers inside the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn off; when there is no plant production facility When the worker is working, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on.
- the ultrasonic biometric device detects the location of the worker in real time, and transmits the location information of the worker to the server, and the server sends an instruction to the control unit based on the location information of the worker detected by the ultrasonic biometric device.
- the control unit controls the first light source unit, the second light source unit and/or the third light source unit near the operator to turn on and/or off according to the instructions sent by the server; that is, when there is an operator inside the plant production facility, the control unit controls the operation The first light source part, the second light source part and/or the third light source part near the person are turned off; when there is no worker in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source Department opened.
- the sound biometric device is used to receive the sound in the plant production facility and transmit the detected sound signal to the server, and the server judges whether there is an operator in the plant production facility according to the decibel value in the plant production facility, And according to the judgment result, it sends an instruction to the control unit.
- the control unit controls the first light source unit, the second light source unit, and/or the third light source unit to turn on according to the instructions sent by the server. And/or shut down; that is, when there is an operator inside the plant production facility, the control unit controls the first light source part, the second light source part and/or the third light source part to shut down; when there is no operator in the plant production facility, control The part controls the first light source part, the second light source part and/or the third light source part to turn on.
- the iris biometric device detects the iris information of the human eye, and transmits the collected iris signal to the server, and the server sends an instruction to the control unit based on the iris information of the human eye detected by the iris biometric device.
- the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or off according to the instructions sent by the server; that is, when there are workers in the plant production facility, the control unit controls the first light source unit , The second light source part and/or the third light source part are turned off; when there is no operator in the plant production facility, the control part controls the first light source part, the second light source part and/or the third light source part to turn on.
- the face biometric device detects the image information of the workers in the plant production facility, and transmits the collected image information to the server, and the server controls the image information of the workers detected by the face biometric device.
- the control unit sends an instruction, and the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn on and/or turn off according to the instructions sent by the server. That is, when there is an operator in the plant production facility, the control unit controls the first light source unit, the second light source unit and/or the third light source unit to turn off; when there is no operator in the plant production facility, the control unit controls the first light source Part, the second light source part and/or the third light source part are turned on.
- the photosensitive sensor, temperature sensor, infrared biometric device, ultrasonic biometric device, voice biometric device, iris biometric device and/or face biometric device are all connected to the server through an AD converter, and the voice biometric device
- the identification device is directly connected to the IO port of the server.
- the control part is connected to a control device through a GPIO interface, and the control device is connected to the first light source part and the second light source part.
- control unit adjusts the light intensity of the third light source unit to below 1000 lux (or between 200-800 lux).
- the server-based plant growth lighting device for preventing and controlling plant diseases and insect pests further includes a driving element and a heat dissipation element.
- the driving element is used to drive the first light source part, the second light source part and the third light source part, and the heat dissipation element It is used to dissipate heat from the first light source part, the second light source part and the third light source part.
- the first light emitting part and the second light emitting part include a solid light emitting chip and a circuit board electrically connected to the solid light emitting chip.
- the solid light emitting element includes a light emitting diode, an organic light emitting diode, and a vertical cavity surface emitting laser , At least one of the laser diodes.
- LED in this embodiment should be understood to include any electroluminescent diode or other types of carrier injection-based systems capable of generating radiation in response to electrical signals. Therefore, the term LED includes various semiconductor-based structures, light-emitting polymers, organic light-emitting diodes (OLED), electroluminescent tapes, etc. that emit light in response to current, but is not limited thereto.
- an LED does not limit the type of physical and/or electrical packaging of the LED.
- an LED may refer to a single light emitting device having multiple dies (eg, may or may not be individually controllable) configured to emit different radiation spectra, respectively.
- the LED may be associated with a phosphor that is considered an integral part of the LED (for example, some types of white LEDs).
- the term LED can refer to packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T package mounted LEDs, radial packaged LEDs, power packaged LEDs, including some types of packaging and/or optical components (e.g., Diffuse lens) LED, etc.
- the circuit board includes a PCB board, a substrate, a flexible board or a rigid-flex board.
- the server-based plant growth lighting device for preventing and controlling plant diseases and insect pests can be used in facility agriculture, artificial climate room or light incubator.
- This embodiment provides a method for controlling a server-based plant growth lighting device for preventing and controlling plant diseases and insect pests.
- the server-based plant growth lighting device for preventing and controlling plant diseases and insect pests may adopt the server-based plant growth lighting device disclosed in the embodiment.
- Growth lighting device which includes:
- control part controls the first light source part, the second light source part and the third light source part to turn on;
- the control part controls the operation of the first light source part, the second light source part and the third light source part according to the illumination parameters
- the control part controls the first light source part, the second light source part and the third light source part to turn off.
- the control part controls at least the first light source part and the second light source part to turn off, Moreover, when the human body enters the light environment and leaves the light environment, the control part controls at least the first light source part and the second light source part to turn on.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Environmental Sciences (AREA)
- Cultivation Of Plants (AREA)
- Catching Or Destruction (AREA)
Abstract
本发明公开了一种防控病虫害的植物生长光照装置及其控制方法,其中所述防控病虫害的植物生长光照装置包括控制部和发光部,其中,所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述控制部对所述第一光源部和所述第二光源部分别进行控制。本发明能够通过第一光源部、第二光源部和第三光源部的组合和控制来调整红光和紫外光的照射,从而保护了在植物照明环境中工作的人员;同时还可以利用白光补充第一光源部和第二光源部里的绿光等成分,进一步使光谱丰富,从而营造更有利于植物生长的环境。
Description
本发明涉及植物生长光照装置及其控制方法,尤其涉及给在植物照明环境中的工作人员提供防控病虫害的植物生长光照装置及其控制方法。
在自然环境中,植物通过获取太阳光中有效波长的光成分,进行光合作用和发育成长。但自然环境存在多变性,也有虫害等风险。因此,近年来在封闭空间,如在室内种植植物,并通过人造照明灯模拟自然光的植物工厂逐渐兴起,包括飞利浦、欧司朗、GE、西门子等各大企业纷纷进入这一领域。
在自然光中包含的各种波长的光当中不是所有的光都可以被植物利用,基本上只有蓝光和红光才能被植物吸收。具体来说,蓝光B(例如460nm)可以帮助植物根的生长,对植物早期效果最明显;红光R(例如660nm)利于植物茎叶,开花及果实生长;紫外光FR(例如730nm)有利于控制植物花期以及体内营养合成。根据植物的种类和生长阶段,设定合适的红光和蓝光的波长以及两者之间的红蓝比例(B/R),可以获得对该植物最佳的光照环境;最终的目的是获得植物的高且稳定的产量、以及高且稳定的营养成分,同时还要实现防虫等效果。
例如,在“李小娥等.不同红蓝LED组合光源对西瓜幼苗生长和生理参数的影响[J].中国瓜菜,2015,28(3):14-17”的文献中描述了以下内容:对于西瓜种植,以荧光灯为对照(光照强度为150μmol.m-2s-1),探讨了相同光照强度下,不同红光蓝光配比(R/B)LED组合光源(7:1、7:2、7:3)对西瓜幼苗生长和生理参数的影响;结果表明,红蓝LED组合光源下西瓜幼苗茎租度、鲜质量、干质量、壮苗指数均有所增加,其中在RB=7:3下表现尤为突出。
发明内容
但是,目前的LED植物生长灯全部是白光LED光源或者红蓝光LED光源混合或者红、蓝、白LED光源混合制造的植物LED生长灯。由于红光发光效率低,为满足植物光合色素系统所需的光谱以及光照强度,植物LED生长灯功率高,成本急剧增加。
光谱中红光与紫外光光子数的比值(R/FR)对植物形态建成,调节植株高度具有重要影响。由于红、蓝LED总数量远多于红外数量,在灯具设计上很难实现紫外光的均匀分布,难以对植物均匀照射。
在LED植物生长灯处于红光和紫外光工作状态时,进行栽培作业的用户会由于长时间处于红光和紫外光环境里承受心理负担。此外在红光和紫外光环境下,视觉性差难以通过目视观察植物的颜色来判断植物生长状态等,因此,植物栽培的作业性和效率降低。
而且,在植物生产过程中,常常会伴随着病虫害的发生。利用200~380nm的紫外线能够大量诱杀昆虫是已知通常使用技术。但是,因为该波长范围的光对DNA和人眼视网膜造成损伤,所以存在不仅对菌类而且对人的生物安全也具有有害性这一问题。研究表明,夜出型蛾类的复眼在白天日光下处于“明适应”,也称“亮眼”状态,在夜间处于“暗适应”,也称“暗眼”状态,而一般的夜出型蛾类的取食交尾产卵活动都是在夜间的“暗适应”状态下进行,当夜间给予足够的绿色光照强度,一些蛾类将仍然处于“明适应”状态,如棉铃虫成虫复眼的屏蔽色素仍然像白天一样覆盖复眼,这样绿色灯就可能对夜出型蛾类的生物学习性产生影响并在害虫密度的控制上发挥作用。
为解决上述的问题,本发明采用以下的技术方案。
一种防控病虫害的植物生长光照装置,包括控制部和发光部,其中,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,
所述控制部对所述第一光源部和所述第二光源部分别进行控制。
进一步的,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~19;
所述第二光源部所发出紫外光的波长在280~380nm的范围内。
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;
所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片。
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及第三光源部的光照强度。
进一步的,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;
通过调节所述第二光源部的数量调节紫外光的辐射强度;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和第三光源部的总有效光量子流密度的30%。
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
进一步的,还包括:
输入输出部,其实施数据和信息向所述防控病虫害的植物生长光照装置的输入和从所述防控病虫害的植物生长光照装置向外部的输出;
数据存储部,其存储相关数据,以备随时调取使用;
运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;
所述防控病虫害的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度、紫外光辐射强度需求数据中的一种或者多种;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。
进一步的,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,
蓝光、红光和绿光的光量子流密度比例,以及紫外光的辐射强度可根据植物种类和植物生长阶段通过控制部进行调整。
进一步的,所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部紫外光的辐射强度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围;
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。
进一步的,还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。
进一步的,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。
进一步的,所述人体感应部采用红外感应、声控感应或微波感应,对人体 进入光照环境进行感应。
一种如上所述的防控病虫害的植物生长光照装置的控制方法,包括以下步骤:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;
判断被照射植物,根据被照射植物的种类确定光照参数;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
一种防控病虫害的植物生长光照装置,包括控制部和发光部,其中,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述第三光源部发出白光,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
进一步的,还包括驱动元件和散热元件。
进一步的,所述防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
一种基于生物识别的防控病虫害的植物生长光照装置,
包括控制部和发光部,其中,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光;
所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生 物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。
进一步的,所述第一光源部所发出的蓝光成分在波长380~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与380~490nm的范围内的光量子流密度B之比为4~19;
所述第二光源部所发出紫外光的波长在280~380nm的范围内。
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;
所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片。
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及第三光源部的光照强度。
进一步的,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;
通过调节所述第二光源部的数量调节紫外光的辐射强度;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和第三光源部的总有效光量子流密度的30%。
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第一光源部、第二光源部和/或第三光源部关闭。
进一步的,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述控制器,所述控制器在植物生产设施的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物生产设施的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。
进一步的,所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。
进一步的,所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部第二光源部和第三光源部。
一种如上所述的基于生物识别的防控病虫害的植物生长光照装置的控制方法,包括以下步骤:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;
判断被照射植物,根据被照射植物的种类确定光照参数;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
进一步的,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
一种基于生物识别的防控病虫害的植物生长光照装置,包括控制部和发光 部,其中,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述第三光源部发出白光,
其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
进一步的,还包括驱动元件和散热元件。
进一步的,所述的基于生物识别的防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
一种基于服务器的防控病虫害的植物生长光照装置,
包括控制部、发光部和服务器,其中,
所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光;
所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。
进一步的,所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接。
进一步的,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。
进一步的,所述第一光源部所发出的蓝光成分在波长380~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,
所述第一光源部所发出的红光成分的波长在600~700nm的范围,
所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~19;
所述第二光源部所发出紫外光的波长在280~380nm的范围内。
进一步的,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;
所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片。
进一步的,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
进一步的,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。
进一步的,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及第三光源部的光照强度。
进一步的,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;
通过调节所述第二光源部的数量调节紫外光的辐射强度;
通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。
进一步的,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和第三光源部的总有效光量子流密度的30%。
进一步的,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;
并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
进一步的,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设 的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。
进一步的,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。
进一步的,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。
进一步的,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。
进一步的,所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。
一种基于服务器的防控病虫害的植物生长光照装置的控制方法,包括以下步骤:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;
判断被照射植物,根据被照射植物的种类确定光照参数;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
进一步的,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
一种基于服务器的防控病虫害的植物生长光照装置,包括控制部、发光部和服务器,其中,
所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述第三光源部发出白光;
所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,
所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据 所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
进一步的,还包括驱动元件和散热元件。
进一步的,所述的基于服务器的防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱
本发明能够通过第一光源部、第二光源部和第三光源部的组合和控制来调整红光和紫外光的照射,从而保护了在植物照明环境中工作的人员;同时还可以利用白光补充第一光源部和第二光源部里的绿光等成分,进一步使光谱丰富,从而营造更有利于植物生长的环境。
图1为本发明的防控病虫害的植物生长光照装置的结构框图;
图2为本发明的防控病虫害的植物生长光照装置的结构示意图;
图3为本发明的防控病虫害的植物生长光照装置的控制方法的流程图;
图4为本发明的防控病虫害的植物生长光照装置的控制方法的流程图。
下面结合实施例及附图对本发明的技术方案作进一步阐述。
实施例1
本实施例提供了一种防控病虫害的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出紫外光,所述第三光源部发出白光,所述控制部对所述第一光源部、所述第二光源部和第三光源部分别进行控制。
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和紫外光对人体的影响降到最低。
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。
所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片,所述第二光源部所发出的紫外光在280~380nm的范围内拥有发光峰。
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~19。
以通过植物工厂种植草莓为例,对照区内未照射紫外光的草莓白粉病的发病率为20%~55.5%,紫外线照射区的发病率为0~5%,草莓白粉病的发病率被大幅抑制。该结果显示出紫外线照射对草莓病的防除效果。
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子流密度比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。
其中,所述紫外光包括UV-B(波长范围280至340nm)和设置UV-C(波长范围250至280nm);所述控制部控制所述第一光源部发射总照射量为约50μW/cm
2所述UV-C和所述UV-B,以及每天综合照射量为约0.2~50uW/cm
2的所述UV-C和所述UV-B。
并且310nm~400nm的波长区域的紫外光的照射量小于上述270~290nm的波长区域的紫外光的照射量的50%。
所述防控病虫害的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和第三光源部以10-16h/天的累计辐射照度时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子流密度比例是固定的。但是可以通过调整第二光源部的数量来来调整紫外光的辐射强度;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述防控病虫害的植物生长光照装置还包括:输入输出部、数据存储部和运算部。
所述输入输出部实施数据和信息向所述防控病虫害的植物生长光照装置的输入和从所述防控病虫害的植物生长光照装置向外部的输出;
数据存储部存储相关数据,以备随时调取使用;
运算部利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;
所述防控病虫害的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度、紫外光的辐射强度数据中的一种或者多种;
所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源部和所述第二光源部。
进一步地,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,
所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,
蓝光、红光、绿光的光量子流密度比例,以及紫外光的辐射强度可根据植物种类和植物生长阶段通过控制部进行调整。
所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光、红光的光量子流密度变化范围、所述第二光源部紫外光的辐射强度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围,
其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。
尤其是,当人进入到包括本实施例的防控病虫害的植物生长光照装置植物工厂后,考虑到红光和紫外光的影响,此时需要至少关闭第一光源部和第二光源部,使得植物工厂内的蓝光和紫外光被降低至合理的水平;由此,本实施例的防控病虫害的植物生长光照装置还可以包括人体感应部,所述人体感应部在感应到人进入到光照环境中时关闭所述第一光源部和第二光源部。
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。
所述的防控病虫害的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。
而且,所述高视觉安全性植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
实施例2
本实施例提供了一种防控病虫害的植物生长光照装置的控制方法,所述防控病虫害的植物生长光照装置可以采用实施例所公开的防控病虫害的植物生长光照装置,其包括:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;
判断被照射植物,根据被照射植物的种类确定光照参数;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
实施例3
本实施例提供了一种基于生物识别的防控病虫害的植物生长光照装置,其包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三 光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出紫外光,所述第三光源部发出白光,所述控制部包括光敏传感器、温度传感器、红外生物识别装置、声音生物识别装置和控制器,所述控制器根据光敏传感器、温度传感器、红外生物识别装置和声音生物识别装置所检测的数据,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;
其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测 的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和紫外光对人体的影响降到最低。
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。
所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片,所述第二光源部所发出的紫外光在280~380nm的范围内拥有发光峰。
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与380~490nm的范围内的光量子流密度B之比为4~19。
以通过植物工厂种植草莓为例,对照区内未照射紫外光的草莓白粉病的发病率为20%~55.5%,紫外线照射区的发病率为0~5%,草莓白粉病的发病率被大幅抑制。该结果显示出紫外线照射对草莓病的防除效果。
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子流密度比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计, 最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。
其中,所述紫外光包括UV-B(波长范围280至340nm)和设置UV-C(波长范围250至280nm);所述控制部控制所述第一光源部发射总照射量为约50μW/cm
2所述UV-C和所述UV-B,以及每天综合照射量为约0.2~50uW/cm
2的所述UV-C和所述UV-B。
并且310nm~400nm的波长区域的紫外光的照射量小于上述270~290nm的波长区域的紫外光的照射量的50%。
所述基于生物识别的防控病虫害的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,并在该时间段内,控制部控制所述第一光源部、第二光源部和第三光源部点亮,以使得植物能够在规定的时间段内接收到光的照射,并且优选地,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可进行害虫的诱杀或者进行灭菌。
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子流密度比例是固定的。但是可以通过调整第二光源部的数量来来调整紫外光的辐射强度;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所 述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第二光源部关闭。
所述温度传感器用于检测植物工厂的内部温度,并将检测到的植物工厂的内部温度数据发送至所述控制器,所述控制器在植物工厂的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物工厂的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。
尤其是,当人进入到包括本实施例的高视觉安全性植物生长光照装置植物工厂后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物工厂内的蓝光被降低至合理的水平;由此,本实施例的所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭,即当有作业认为位于所述植物工厂内时,关闭第一光源部、第二光源部和/或第三光源部,当没有作业人员位于所述植物工厂内时,开启第一光源部、第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。
所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭;当红外生物识别装置检测的数据被控制器判定为不存在作业人员在植物工厂时,开启第一光源部、第二光源部和/或第三光源部,或者保持第一光源部、第二光源部和/或第三光源部处于打开状态。
所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部第二光源部和第三光源部。
更进一步,为防止强光对人体的损害,例如对人眼的损害,所述人体感应 部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。
所述人体感应部采用红外感应、声控感应或微波感应,对人体是否进入光照环境进行感应和识别。
所述的基于生物识别的防控病虫害的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。
而且,所述高视觉安全性植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
实施例4
本实施例提供了一种基于生物识别的防控病虫害的植物生长光照装置的控制方法,所述基于生物识别的防控病虫害的植物生长光照装置可以采用实施例所公开的基于生物识别的防控病虫害的植物生长光照装置,其包括:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;
判断被照射植物,根据被照射植物的种类确定光照参数;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
更进一步,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
实施例5
本实施例提供了一种基于服务器的防控病虫害的植物生长光照装置,其包括控制部、发光部和服务器,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光;所述第二光源部发出紫外光, 所述第三光源部发出白光,其中,所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部、所述第二光源部和第三光源部分别进行控制。
所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接;所述服务器可以采用云服务器方式,也可以采用本地服务器方式,实现有线通信方式或者无线通信方式的通信装置能够实现云端服务器和控制部之间的信号传输(通信),或者实现本地服务器和控制部之间的信号传输(通信)。
所述基于服务器的高视觉安全性植物生长光照装置还包括与所述服务器信号连接的光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令,此时控制部根据所述服务器向控制部发送的指令对所述第一光源部和所述第二光源部分别进行控制。
本实施例中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
本实施例中,通过第一光源部和第二光源部的设置,一方面能够满足植物在生长过程中对光成分的需求,另一方面,通过对第一光源部和第二光源部的控制,能够使得第一光源部和第二光源部所发出的红光和紫外光对人体的影响降到最低。
作为一种实现形式,所述第一光源部包括固体发光芯片,以及设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光合固体发光芯片;优选地,所述固体发光芯片可以采用蓝光固体发光芯片,从而可以通过成本较低的蓝光固体发光芯片实现蓝光和红光的发生,节约了固体发光芯片的支出。
所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片,所述第二光源部所发出的紫外光在280~380nm的范围内拥有发光峰。
所述第三光源部为固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
更优选地,所述第一光源部所发出的蓝光成分在波长400~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应;所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~19。
以通过植物工厂种植草莓为例,对照区内未照射紫外光的草莓白粉病的发病率为20%~55.5%,紫外线照射区的发病率为0~5%,草莓白粉病的发病率被大幅抑制。该结果显示出紫外线照射对草莓病的防除效果。
以通过植物工厂种植草莓为例,当将第一光源部所发出的红光和蓝光的有效光量子流密度比例即R/B在5:1~10:1的范围内时,能够使得草莓的单果质量及果实品质有较大的提升,从实验数据看,以平均单果质量计,相比于常规的日光照射,最大提升了40%左右;以草莓成熟果实的可溶性固形物含量计,最大提升了15%;以草莓成熟果实的维生素C含量计,最大提升了10%;以草莓成熟果实的可溶性糖含量计,最大提升了4.5%。
其中,所述紫外光包括UV-B(波长范围280至340nm)和设置UV-C(波长范围250至280nm);所述控制部控制所述第一光源部发射总照射量为约50μW/cm
2所述UV-C和所述UV-B,以及每天综合照射量为约0.2~50uW/cm
2的所述UV-C和所述UV-B。
并且310nm~400nm的波长区域的紫外光的照射量小于上述270~290nm的波长区域的紫外光的照射量的50%。
所述基于服务器的防控病虫害的植物生长光照装置还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以8-16h/天的累计辐射照度时间进行照射,或者根据预定时间进行照射,从而可 以在白天日光充足时,关闭第一光源部、第二光源部和第三光源部的电源,以节约能源。
或者单独设置第一光源部和第二光源部以10-16h/天的累计辐射照度时间进行照射。在单独打开第二光源部照射植物时可进行害虫的诱杀或者进行灭菌。
作为一种实现形式,本实施例中,可以通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及调节所述第三光源部的光照强度;当第一光源部被确定后,其红光和蓝光的光量子流密度比例是固定的。但是可以通过调整第二光源部的数量来来调整紫外光的辐射强度;并且在所述第一光源部和第二光源部的基础上增加包括不同数量和色温的第三光源部,由此使得向植物照射的光中包括白光,从而可以更方便地调整适宜植物生长光照装置的光谱比例;并且更优选地,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和所述第三光源部总有效光量子流密度的30%。
作为优选方案,所述第三光源部的色温是2000-10000K,例如可以选择3000K,5000K和7000K,在所辐射的植物冠层的光照强度是在100lux以上,并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
本实施例中,为使得控制部能够更精确地控制所述第一光源部、第二光源部和第三光源部,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。
所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控 制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。
尤其是,当人进入到包括本实施例的基于服务器的高视觉安全性植物生长光照装置植物生产设施后,考虑到蓝光对人体的影响,此时需要关闭第一光源部,使得植物生产设施内的蓝光被降低至合理的水平;由此,本实施的所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。
所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。
所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。
所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向 控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭;即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。
所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部开启和/或关闭。即,当植物生产设施内部存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部关闭;当植物生产设施内不存在作业人员时,控制部控制第一光源部、第二光源部和/或第三光源部开启。
所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。
所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部和第二光源部。
更进一步,为防止强光对人体的损害,例如对人眼的损害,控制部调整所述第三光源部的光照强度调整至1000lux以下(或200-800lux之间)。
所述的基于服务器的防控病虫害的植物生长光照装置还包括驱动元件和散热元件,所述驱动元件用于驱动所述第一光源部、第二光源部和第三光源部,所述散热元件用于对所述第一光源部、第二光源部和第三光源部进行散热。
所述第一发光部和第二发光部包括固体发光芯片和与所述固体发光芯片电性相连的电路板,优选地,所述固体发光元件包括发光二极管、有机发光二极管、垂直腔面发射激光器、激光二极管中的至少一个。
本实施例中的术语“LED”应当被理解为包括任意电致发光二极管或者能够响应于电信号而生成辐射的其它类型的基于载子注入的系统。因此,术语LED包括响应于电流而发光的各种基于半导体的结构、发光聚合物、有机发光二极 管(OLED)、电致发光带等,但是并不局限于此。
术语LED并不限制LED的物理和/或电气封装的类型。例如,如以上所讨论的,LED可以是指具有被配置为分别发出不同辐射光谱的多个裸片(例如,可以或无法可单独控制)的单个发光设备。而且,LED可以与被认为是LED(例如,一些类型的白色LED)的整体部分的磷光体相关联。通常,术语LED可以是指封装LED、非封装LED、表面安装LED、板载芯片LED、T封装安装LED、径向封装LED、功率封装LED、包括一些类型的包装和/或光学元件(例如,漫射透镜)的LED,等等。
在本发明的具体实施方式中,所述电路板包括PCB板、基板、软板或软硬结合板。
而且,所述的基于服务器的防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
实施例6
本实施例提供了一种基于服务器的防控病虫害的植物生长光照装置的控制方法,所述基于服务器的防控病虫害的植物生长光照装置可以采用实施例所公开的基于服务器的防控病虫害的植物生长光照装置,其包括:
设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;
判断被照射植物,根据被照射植物的种类确定光照参数;
控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;
判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
更进一步,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
以上实施例的先后顺序仅为便于描述,不代表实施例的优劣。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限 制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (60)
- 一种防控病虫害的植物生长光照装置,其特征在于,包括控制部和发光部,其中,所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述控制部对所述第一光源部和所述第二光源部分别进行控制。
- 根据权利要求1所述的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部所发出的蓝光成分在波长400~480nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~19;所述第二光源部所发出紫外光的波长在280~380nm的范围内。
- 根据权利要求1所述的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片。
- 根据权利要求1所述的防控病虫害的植物生长光照装置,其特征在于,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
- 根据权利要求4所述的防控病虫害的植物生长光照装置,其特征在于,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。
- 根据权利要求1所述的防控病虫害的植物生长光照装置,其特征在于,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及第三光源部的光照强度。
- 根据权利要求1所述的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;通过调节所述第二光源部的数量调节紫外光的辐射强度;通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。
- 根据权利要求5所述的防控病虫害的植物生长光照装置,其特征在于,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和第三光源部的总有效光量子流密度的30%。
- 根据权利要求5所述的防控病虫害的植物生长光照装置,其特征在于,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
- 根据权利要求5所述的防控病虫害的植物生长光照装置,其特征在于,还包括:输入输出部,其实施数据和信息向所述防控病虫害的植物生长光照装置的输入和从所述防控病虫害的植物生长光照装置向外部的输出;数据存储部,其存储相关数据,以备随时调取使用;运算部,其利用输入输出部获取的数据或数据存储部中存储的数据,进行相关运算,该相关运算包括模拟运算;所述防控病虫害的植物生长光照装置通过所述输入输出部或者数据存储部获取植物的种类、该植物的生长阶段、以及特定信息,其中特定信息包括适于该植物生长的总有效光量子流密度、红或蓝光量子流密度比例数据、绿光光量子流密度、紫外光辐射强度需求数据中的一种或者多种;所述控制部根据所述植物的所述特定信息,通过运算部模拟构建出与所述特定信息的光照环境一致或接近的光照环境,以根据该模拟出的结果控制所述第一光源和所述第二光源部。
- 根据权利要求10所述的防控病虫害的植物生长光照装置,其特征在于,与植物相关的输入的数据包括:植物种类、植物生长阶段、在该生长阶段下最佳的光照环境参数,所述光照环境包括光量子流密度比例、总有效光量子流密度、光照时间,蓝光、红光和绿光的光量子流密度比例,以及紫外光的辐射强度可根据植物种类和植物生长阶段通过控制部进行调整。
- 根据权利要求10所述的防控病虫害的植物生长光照装置,其特征在于,所述运算部采用的模拟构建采用工作电流与光合有效量子流密度建模,包括单位时间内不同工作电流下的第一光源部蓝光和红光的光量子流密度变化范围、第二光源部紫外光的辐射强度变化范围和所述第三光源部蓝光、红光、绿光的光量子流密度的变化范围;其模拟出的结果包括根据所述第一光源部、所述第二光源部和所述第三光源部中的固体发光光源的安装位置和数量确定的各固体发光光源是否通电点亮的组合、通电电流、通电时间中的一种或多种。
- 根据权利要求12所述的防控病虫害的植物生长光照装置,其特征在于,还包括人体感应部,其在感应到人进入到光照环境中时至少关闭所述第一光源部和第二光源部。
- 根据权利要求13所述的防控病虫害的植物生长光照装置,其特征在于,所述人体感应部进一步将信号传输至控制部,控制部调整所述第三光源部的光照强度至1000lux以下。
- 根据权利要求13所述的防控病虫害的植物生长光照装置,其特征在于,所述人体感应部采用红外感应、声控感应或微波感应,对人体进入光照环境进行感应。
- 一种如权利要求1所述的防控病虫害的植物生长光照装置的控制方 法,其特征在于,包括以下步骤:设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;判断被照射植物,根据被照射植物的种类确定光照参数;控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
- 根据权利要求16所述的防控病虫害的植物生长光照装置的控制方法,其特征在于,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
- 一种防控病虫害的植物生长光照装置,其特征在于,包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述第三光源部发出白光,其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
- 根据权利要求18所述的防控病虫害的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。
- 根据权利要求18所述的防控病虫害的植物生长光照装置,其特征在于,所述防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
- 一种基于生物识别的防控病虫害的植物生长光照装置,其特征在于,包括控制部和发光部,其中,所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝 光,所述第二光源部发出紫外光;所述控制部包括控制器,以及光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述控制器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,对所述第一光源部和所述第二光源部分别进行控制。
- 根据权利要求21所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部所发出的蓝光成分在波长380~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与380~490nm的范围内的光量子流密度B之比为4~19;所述第二光源部所发出紫外光的波长在280~380nm的范围内。
- 根据权利要求21所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片。
- 根据权利要求21所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
- 根据权利要求24所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述控制部根据所述定时器设置的时间段控制所 述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。
- 根据权利要求21所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度和所述第二光源部的辐射强度,以及第三光源部的光照强度。
- 根据权利要求21所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;通过调节所述第二光源部的数量调节紫外光的辐射强度;通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。
- 根据权利要求25所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和第三光源部的总有效光量子流密度的30%。
- 根据权利要求25所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
- 根据权利要求25所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述控制器,所述控制器在外部光线的强度大于预设的阈值时,控制第一光源部、第二光源部和/或第三光源部关闭。
- 根据权利要求30所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述控制器,所述控制器在植物生产设施的内部温度大于预设上限值时,调低第一光源部、第二光源部和/或第三光源部的发射功率;在植物生产设施的内部温度低于预设下限值时,调高第一光源部、第二光源部和/或第三光源部的发射功率。
- 根据权利要求30所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述声音生物识别装置根据植物工厂内的分贝值判断植物工厂内是否存在作业人员,并向控制器输出开关信号;所述控制器根据声音生物识别装置所返回的开关信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述红外生物识别装置用于检测植物工厂内的红外信号,并将该红外生物识别装置所检测的红外信号发送至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物工厂内是否存在作业人员,并且在存在作业人员时,控制第一光源部、第二光源部和/或第三光源部关闭。
- 根据权利要求32所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述控制器,所述声音生物识别装置直接连接于所述控制器的IO端口;其中,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述控制器,所述控制器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述控制器,控制器根据超声波生物识别装置所检测的作业人员的位置信息,控制作业人员附近的第一光源部、第二光源部和/或第三光源部关闭;所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述控制器,控制器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据所述声音生物识别装置所检测的声音信号控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述控制器,所述控制器根据所述虹膜生物识别装置所检测人眼的虹膜信息控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述控制器,所述控制器根据人脸生物识别装置所检测的作业人员的图像信息,控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。
- 根据权利要求33所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述控制器通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部第二光源部和第三光源部。
- 一种如权利要求1所述的基于生物识别的防控病虫害的植物生长光照装置的控制方法,其特征在于,包括以下步骤:设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;判断被照射植物,根据被照射植物的种类确定光照参数;控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
- 根据权利要求35所述的基于生物识别的防控病虫害的植物生长光照装置的控制方法,其特征在于,在第一光源部、第二光源部和第三光源部工作期间,人体感应部感应人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
- 一种基于生物识别的防控病虫害的植物生长光照装置,其特征在于,包括控制部和发光部,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述第三光源部发出白光,其中,所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
- 根据权利要求37所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。
- 根据权利要求37所述的基于生物识别的防控病虫害的植物生长光照装置,其特征在于,所述的基于生物识别的防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
- 一种基于服务器的防控病虫害的植物生长光照装置,其特征在于,包括控制部、发光部和服务器,其中,所述发光部包括第一光源部和第二光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光;所述控制部与所述服务器连接,用于接收服务器的指令,对所述第一光源部和所述第二光源部分别进行控制。
- 根据权利要求40所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述服务器与控制部之间采用有线通信或者无线通信的方式进行连接。
- 根据权利要求41所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,还包括光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置,所述服务器根据光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置所检测的数据,向控制部发送指令。
- 根据权利要求42所述的基于服务器的防控病虫害的植物生长光照装 置,其特征在于,所述第一光源部所发出的蓝光成分在波长380~490nm的范围内拥有发光峰,从而与叶绿素的蓝光域吸收峰相对应,所述第一光源部所发出的红光成分的波长在600~700nm的范围,所述第一光源部所发出的600nm~700nm的范围内的光量子流密度R与400nm~490nm的范围内的光量子流密度B之比为4~19;所述第二光源部所发出紫外光的波长在280~380nm的范围内。
- 根据权利要求40所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出红光的红光荧光粉,从而通过固体发光芯片来实现主波长为红光和蓝光的光源;所述第二光源部为发射紫外光的GaN、AlGaN、InAlGaN基固体发光芯片。
- 根据权利要求40所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,还包括第三光源部,所述第三光源部包括固体发光芯片和设置在所述固体发光芯片的外侧的包覆层,所述包覆层含有能够吸收所述固体发光芯片射出的激发光而转换发出白光的黄光和/或绿光荧光粉。
- 根据权利要求40所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,还包括定时器,所述定时器设定使所述第一光源部、第二光源部和第三光源部进行照射动作的时间段,所述服务器根据所述定时器设置的时间段,向控制部发送指令,所述控制部根据所述服务器所发送的指令控制所述第一光源部、第二光源部和第三光源部,其中,该定时器被设定为:所述第一光源部、第二光源部和/或第三光源部以10-16h的累计辐射照度时间进行照射;或者单独设置第一光源部和第二光源部以10-16h的累计辐射照度时间进行照射。
- 根据权利要求40所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,通过调整电流的PWM波形和占空比来调节所述第一光源部的光量子流密度 和所述第二光源部的辐射强度,以及第三光源部的光照强度。
- 根据权利要求40所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述第一光源部的红光和蓝光的光量子流密度比例是固定的;通过调节所述第二光源部的数量调节紫外光的辐射强度;通过变化第三光源部的数量和色温,调整适宜植物生长光照装置的光谱比例。
- 根据权利要求46所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述第三光源部的黄绿光的光量子流密度不超过所述光照装置的所述第一光源部和第三光源部的总有效光量子流密度的30%。
- 根据权利要求46所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述第三光源部的色温是2000-10000K,在所辐射的植物冠层的光照强度是在100lux以上;并且通过选择不同色温和数量的所述第三光源部的白光固体发光光源,调整所述植物生长光照装置的红光、蓝光和绿光在整体有效光量子流密度的比例。
- 根据权利要求42所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述光敏传感器用于检测外部的光线的强度,并将检测到的外部的光线强度数据发送至所述服务器,所述服务器在外部光线的强度大于预设的上限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部关闭;所述服务器在外部光线的强度小于预设的下限阈值时,向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部开启。
- 根据权利要求51所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述温度传感器用于检测植物生产设施的内部温度,并将检测到的植物生产设施的内部温度数据发送至所述服务器,所述服务器在植物生产设施的内部 温度大于预设上限值时,向控制部发送调低功率的指令,所述控制部根据所述服务器发送的调低功率的指令,调低第一光源部、第二光源部和/或第三光源部的发射功率;所述服务器在植物生产设施的内部温度低于预设下限值时,向控制部发送调高功率的指令,所述控制部根据所述服务器发送的调高功率的指令,调高第一光源部、第二光源部和/或第三光源部的发射功率。
- 根据权利要求52所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述红外生物识别装置发射红外射线和接收人体反射回来的红外信号,并将该人体反射回来的红外信号传输至所述服务器,所述服务器根据该红外生物识别装置所检测的信号判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发出指令,所述控制部根据指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述超声波生物识别装置实时检测作业人员的位置,并将作业人员的位置信息传输至所述服务器,所述服务器根据超声波生物识别装置所检测的作业人员的位置信息向控制部发送指令,所述控制部根据服务器发送的指令控制作业人员附近的第一光源部、第二光源部和/或第三光源部开启和/或关闭;所述声音生物识别装置用于接收植物生产设施内的声音,并将其检测的声音信号传输至所述服务器,所述服务器根据植物生产设施内的分贝值判断植物生产设施内是否存在作业人员,并根据判断结果向控制部发送指令,所述控制部根据服务器发送的指令,所述控制部所述服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述虹膜生物识别装置检测人眼的虹膜信息,将采集到的虹膜信号传输至所述服务器,所述服务器根据所述虹膜生物识别装置所检测人眼的虹膜信息向控制部发送指令,所述控制部根据服务器所发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭;所述人脸生物识别装置检测植物生产设施内的作业人员的图像信息,并将采集的图像信息传输至所述服务器,所述服务器根据人脸生物识别装置所检测的作业人员的图像信息向控制部发送指令,所述控制部根据所述服务器发送的指令控制第一光源部、第二光源部和/或第三光源部的开启和/或关闭。
- 根据权利要求42所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述光敏传感器、温度传感器、红外生物识别装置、超声波生物识别装置、声音生物识别装置、虹膜生物识别装置和/或人脸生物识别装置均通过AD转换器连接于所述服务器,所述声音生物识别装置直接连接于所述服务器的IO端口。
- 根据权利要求53所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述控制部通过GPIO接口连接于控制装置,所述控制装置连接于所述第一光源部、第二光源部和第三光源部。
- 一种基于服务器的防控病虫害的植物生长光照装置的控制方法,其特征在于,包括以下步骤:设置开始光照的时间和工作时段,并且在达到光照开始时间后,控制部控制第一光源部、第二光源部和第三光源部开启;判断被照射植物,根据被照射植物的种类确定光照参数;控制部根据光照参数控制第一光源部、第二光源部和第三光源部工作;判断第一光源部、第二光源部和第三光源部的工作时长是否达到工作时段,如果达到工作时段,则控制部控制第一光源部、第二光源部和第三光源部关闭。
- 根据权利要求56所述的基于服务器的防控病虫害的植物生长光照装置的控制方法,其特征在于,在第一光源部、第二光源部和第三光源部工作期间,判断人体是否进入光照环境,当人体进入光照环境后,控制部至少控制第一光源部和第二光源部关闭,而且,当人体进入光照环境后并从光照环境离开后,控制部至少控制第一光源部和第二光源部打开。
- 一种基于服务器的防控病虫害的植物生长光照装置,其特征在于,包括控制部、发光部和服务器,其中,所述发光部包括第一光源部、第二光源部和第三光源部,所述第一光源部发出红光和蓝光,所述第二光源部发出紫外光,所述第三光源部发出白光;所述第一光源部、第二光源部和第三光源部通过并联和/或串联的方式进行 电路连接,所述控制部按以下方式对所述第三光源部进行控制,即,所述控制部根据所述服务器的指令通过对所述第三光源部的色温和接通数量进行控制来调控整体光谱。
- 根据权利要求58所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,还包括驱动元件和散热元件。
- 根据权利要求58所述的基于服务器的防控病虫害的植物生长光照装置,其特征在于,所述的基于服务器的防控病虫害的植物生长光照装置可用于设施农业、人工气候室或光照培养箱。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910727842.XA CN112335448A (zh) | 2019-08-07 | 2019-08-07 | 基于服务器的防控病虫害的植物生长光照装置及其控制方法 |
CN201910727652.8 | 2019-08-07 | ||
CN201910727651.3 | 2019-08-07 | ||
CN201910727842.X | 2019-08-07 | ||
CN201910727652.8A CN112335442A (zh) | 2019-08-07 | 2019-08-07 | 防控病虫害的植物生长光照装置及其控制方法 |
CN201910727651.3A CN112335441A (zh) | 2019-08-07 | 2019-08-07 | 基于生物识别的防控病虫害的植物生长光照装置及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021023024A1 true WO2021023024A1 (zh) | 2021-02-11 |
Family
ID=74502685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/104296 WO2021023024A1 (zh) | 2019-08-07 | 2020-07-24 | 防控病虫害的植物生长光照装置及其控制方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021023024A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114847099A (zh) * | 2022-06-02 | 2022-08-05 | 中国科学院长春应用化学研究所 | 一种草莓生长的光调控方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102748627A (zh) * | 2012-06-29 | 2012-10-24 | 晶科电子(广州)有限公司 | 一种多功能的led农业照明装置 |
CN102917493A (zh) * | 2012-09-29 | 2013-02-06 | 杭州汉徽光电科技有限公司 | 用于植物生长的智能半导体光照系统及其光谱调制方法 |
CN104322297A (zh) * | 2014-11-28 | 2015-02-04 | 北京中农腾达科技有限公司 | 一种促进植物生长的光源照射装置 |
KR20150076838A (ko) * | 2013-12-27 | 2015-07-07 | 농업회사법인 토담식품(주) | 식물 재배용 조명장치 및 조명 제어 방법 |
US20180014374A1 (en) * | 2016-07-08 | 2018-01-11 | Hubbell Incorporated | Horticultural light |
CN208919785U (zh) * | 2018-11-08 | 2019-05-31 | 深圳长弓半导体技术有限公司 | 植物生长补光灯 |
CN111256236A (zh) * | 2020-01-22 | 2020-06-09 | 杭州汉徽光电科技有限公司 | 一种用于病原微生物治理的植物净化空气系统 |
CN111279914A (zh) * | 2020-01-22 | 2020-06-16 | 杭州汉徽光电科技有限公司 | 一种用于气态羰基化合物治理的植物净化空气系统 |
-
2020
- 2020-07-24 WO PCT/CN2020/104296 patent/WO2021023024A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102748627A (zh) * | 2012-06-29 | 2012-10-24 | 晶科电子(广州)有限公司 | 一种多功能的led农业照明装置 |
CN102917493A (zh) * | 2012-09-29 | 2013-02-06 | 杭州汉徽光电科技有限公司 | 用于植物生长的智能半导体光照系统及其光谱调制方法 |
KR20150076838A (ko) * | 2013-12-27 | 2015-07-07 | 농업회사법인 토담식품(주) | 식물 재배용 조명장치 및 조명 제어 방법 |
CN104322297A (zh) * | 2014-11-28 | 2015-02-04 | 北京中农腾达科技有限公司 | 一种促进植物生长的光源照射装置 |
US20180014374A1 (en) * | 2016-07-08 | 2018-01-11 | Hubbell Incorporated | Horticultural light |
CN208919785U (zh) * | 2018-11-08 | 2019-05-31 | 深圳长弓半导体技术有限公司 | 植物生长补光灯 |
CN111256236A (zh) * | 2020-01-22 | 2020-06-09 | 杭州汉徽光电科技有限公司 | 一种用于病原微生物治理的植物净化空气系统 |
CN111279914A (zh) * | 2020-01-22 | 2020-06-16 | 杭州汉徽光电科技有限公司 | 一种用于气态羰基化合物治理的植物净化空气系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114847099A (zh) * | 2022-06-02 | 2022-08-05 | 中国科学院长春应用化学研究所 | 一种草莓生长的光调控方法 |
CN114847099B (zh) * | 2022-06-02 | 2024-03-29 | 中国科学院长春应用化学研究所 | 一种草莓生长的光调控方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020115880A (ja) | 光子変調管理システム | |
TWI424809B (zh) | 植物病害防除用照明系統 | |
CA2815886C (en) | Method and means for acclimatizing seedlings for outdoor life | |
KR100944359B1 (ko) | 식물 재배용 다광원 조명장치 및 이를 이용한 식물 재배 방법 | |
JP2001028947A (ja) | 有用植物の育成方法 | |
KR101451911B1 (ko) | 줄기식물 재배용 발광다이오드 조명기구 | |
WO2015151405A1 (ja) | 植物育成用照明装置及び植物育成方法 | |
KR101164006B1 (ko) | 지능형 식물 재배용 조명장치 및 방법 | |
WO2021023022A1 (zh) | 高视觉安全性植物生长光照装置及其控制方法 | |
RU2454066C2 (ru) | Светодиодный фитооблучатель | |
CN106025791A (zh) | 激光辐射源植物生长装置 | |
WO2021023024A1 (zh) | 防控病虫害的植物生长光照装置及其控制方法 | |
WO2020081828A1 (en) | Growth enhancement using scalar effects and light frequency manipulation | |
CN112425403A (zh) | 基于生物识别的防除害虫的植物生长光照装置及其控制方法 | |
TWI574608B (zh) | Plant factory with light recipe verification platform | |
WO2021023025A1 (zh) | 植物生长光照装置及其控制方法 | |
CN112335440A (zh) | 基于服务器的具有光信号的植物生长光照装置及其控制方法 | |
CN112335439A (zh) | 基于生物识别的具有光信号的植物生长光照装置及其控制方法 | |
CN112437525A (zh) | 基于服务器的高视觉安全性植物生长光照装置及其控制方法 | |
TWM624126U (zh) | 防止荔枝細蛾蟲害之照明裝置 | |
KR101277053B1 (ko) | 소규모 식물 재배용 발광다이오드형 조명기구 | |
CN112432063A (zh) | 基于服务器的抑制害虫变态发育的植物生长光照装置及其控制方法 | |
CN112335447A (zh) | 基于服务器的诱杀害虫的植物生长光照装置及其控制方法 | |
CN112335445A (zh) | 基于生物识别的抑制害虫变态发育的植物生长光照装置及其控制方法 | |
CN112335446A (zh) | 基于服务器的防除害虫的植物生长光照装置及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20849472 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20849472 Country of ref document: EP Kind code of ref document: A1 |