WO2021022747A1 - 数据发送方法、装置、计算机设备和存储介质 - Google Patents

数据发送方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021022747A1
WO2021022747A1 PCT/CN2019/124672 CN2019124672W WO2021022747A1 WO 2021022747 A1 WO2021022747 A1 WO 2021022747A1 CN 2019124672 W CN2019124672 W CN 2019124672W WO 2021022747 A1 WO2021022747 A1 WO 2021022747A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
remote machine
access
transmission channel
remote
Prior art date
Application number
PCT/CN2019/124672
Other languages
English (en)
French (fr)
Inventor
李俊
黄锦华
翟雄飞
龚贺
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2021022747A1 publication Critical patent/WO2021022747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS

Definitions

  • Microwave communication technology can be divided into point-to-point networking communication and point-to-multipoint networking communication. Due to its flexible and convenient use, large bandwidth, high speed, and small transmission delay, microwave transmission is widely used in various application scenarios. For example: 4G/5G network backhaul, video surveillance backhaul, broadband access, enterprise dedicated lines, operator backbone network erection, rural network backhaul and other application scenarios.
  • an embodiment of the present application provides a data sending method, which includes:
  • the remote machine sends an access request message to the near-end machine on the access channel; wherein the access request message is used to request to establish a connection with the near-end machine and request the allocation of an uplink data transmission channel;
  • the remote machine sends uplink data to the near-end machine on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates all service data of each remote machine According to the priority of business QoS for transmission.
  • the near-end machine receives the access request message sent by the remote machine
  • an embodiment of the present application provides a data sending device, and the device includes:
  • the sending module is used for the remote computer to send uplink data to the near-end computer on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates each remote All service data of the machine is transmitted according to the priority of service QoS.
  • an embodiment of the present application provides a data sending device, which includes:
  • the second access module is used for the near-end machine to receive the access request message sent by the far-end machine;
  • an embodiment of the present application provides a computer device, including a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, any one of the methods provided in the embodiments of the first aspect and the second aspect is implemented step.
  • the remote machine receives the uplink data transmission channel allocated by the near-end machine, it transmits data in the uplink according to the preset uplink physical frame format. Uplink data is sent on the channel, and the transmission is carried out according to the QoS priority of each remote machine's service.
  • FIG. 1 is a block diagram of a point-to-multipoint communication system provided by an embodiment
  • FIG. 2 is a schematic flowchart of a data sending method provided by an embodiment
  • FIG. 3 is a schematic flowchart of a data sending method provided by an embodiment
  • Figure 4 is a schematic diagram of a common physical frame format provided by an embodiment
  • FIG. 5 is a schematic diagram of a special training frame format provided by an embodiment
  • FIG. 6 is a schematic flowchart of a data sending method provided by an embodiment
  • FIG. 7 is a schematic flowchart of a data sending method provided by an embodiment
  • FIG. 8 is a structural block diagram of a data sending device provided by an embodiment
  • FIG. 9 is a structural block diagram of a data sending device provided by an embodiment.
  • FIG. 10 is a structural block diagram of a data sending device according to an embodiment
  • FIG. 11 is a structural block diagram of a data sending device provided by an embodiment
  • Fig. 12 is an internal structure diagram of a computer device in an embodiment.
  • the data sending method provided by this application can be applied to a point-to-multipoint communication system as shown in FIG. 1.
  • the system includes a near-end machine and a remote machine.
  • the communication line can carry out data interaction.
  • the remote machine and the near-end machine exchange data through a data sending method provided in this application, wherein each remote machine can be assigned multiple terminal users.
  • one near-end machine corresponds to multiple remote machines, and the number of each remote machine and the number of remote machines is preset.
  • the embodiments of the present application provide a data transmission method, device, computer equipment, and storage medium, aiming to solve the problem of the inability to dynamically and flexibly allocate wireless resources to the corresponding services when the current frequency domain or time domain resources are allocated, so that the wireless resource utilization Low rate of technical problems.
  • the technical solution of the present application and how the technical solution of the present application solves the above-mentioned technical problems will be described in detail through the embodiments and the accompanying drawings.
  • the following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • the main body can also be a data sending device, where the device can be implemented as part or all of data sending through software, hardware, or a combination of software and hardware.
  • Figure 2 provides a data sending method. This embodiment relates to the specific process of sending uplink data according to a preset uplink physical frame format after a remote machine establishes a connection with a near-end machine, such as As shown in Figure 2, the method includes:
  • the remote machine sends an access request message to the near-end machine on the access channel; where the access request message is used to request to establish a connection with the near-end machine and to request allocation of an uplink data transmission channel.
  • the access channel indicates that the connection between the remote machine and the near-end machine is a channel for sending messages.
  • the access channel can be defined in advance, and this embodiment does not limit the specific access channel.
  • the access request message sent by the remote machine is used to request to establish a connection with the near-end machine and request the remote machine to allocate an uplink data transmission channel. It is understandable that the access channel and the uplink data transmission channel mentioned in this step are not the same channel, and the uplink data transmission channel represents a data transmission channel between the near-end machine and the remote machine.
  • the remote machine receives a response message sent by the near-end machine, where the response message carries the resource identifier of the uplink data transmission channel.
  • the remote machine Based on the access request message sent by the remote machine to the near-end machine in step S101, the remote machine receives the response message sent by the near-end machine, wherein the response message carries the resource identifier of the uplink data transmission channel for indicating The resource location of the uplink data transmission channel allocated by the remote machine.
  • the resource identifier may consist of numbers, letters or a combination of both, which is not limited in this embodiment.
  • the remote machine sends uplink data to the near-end machine on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates all the information of each remote machine.
  • Service data is transmitted according to the priority of service QoS.
  • the remote computer Based on the response message received in step S102, the remote computer sends uplink data to the near-end computer on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format, where the preset uplink physical frame format Indicate the priority of all service quality (Quality of Service, QoS) of each remote machine for transmission, which is equivalent to that when the remote machine sends uplink data on the uplink data transmission channel, it needs to be based on the service of each remote machine.
  • QoS Quality of Service
  • the remote machine After the remote machine receives the uplink data transmission channel allocated by the near-end machine, it sends the uplink data on the uplink data transmission channel according to the preset uplink physical frame format, and the time of transmission is The transmission is carried out according to the QoS priority of each remote machine's service.
  • the allocation method is more comprehensive, and the wireless resources are dynamically and flexibly allocated to the corresponding services, which greatly improves the utilization of wireless resources.
  • an embodiment of the present application also provides a data sending method, which includes:
  • the remote machine searches for the broadcast signal sent by the near-end machine; where the broadcast signal includes the resource identifier of the access channel.
  • the remote machine needs to search for whether the near-end machine has sent a broadcast signal carrying the access channel resource identifier at all times. If the near-end machine sends the broadcast signal, it means that the near-end machine has opened the access channel. Other remote machines can send access request messages on the access channel.
  • the remote unit can send broadcast signals.
  • One way is for the near-end unit to continuously send broadcast signals. When it detects that all corresponding remote units have established connections, it stops. Send the broadcast signal, that is, no longer open the access channel, and other remote machines are not allowed to access.
  • Another way is that the near-end machine periodically sends the broadcast signal. Each time the broadcast signal is sent, it is when the access channel is opened. The access channel can be stopped after a certain period of time. The end machine will be connected after the next time the near-end machine sends a broadcast signal.
  • the remote machine finds a broadcast signal, the remote machine sends an access request message in the access channel to the near-end machine; where the access request message includes the access sequence of the access channel and the remote machine identifier.
  • the remote machine sends an access request message on the access channel corresponding to the resource identifier carried in the broadcast signal, where the access request message includes The access sequence of the access channel and the identification of the remote unit; among them, the access sequence can use a preset special pseudo-random sequence; for all remote units corresponding to a near-end unit, the access channel of the access channel
  • the incoming sequence is the same.
  • the access sequence and the remote machine identifier are both used for the near-end machine to verify whether the remote machine's identity is legal. It can be understood that the legal remote machines that a near-end machine can connect to are all preset, so the remote machine only responds to the access request message sent by the legal remote machine.
  • the remote machine sends the access request message to the near-end machine only after searching for the near-end machine to send the broadcast signal carrying the access channel resource identifier, thus ensuring that the far-end machine
  • the access request message sent by the machine must be the correct access time, which avoids the waste of resources of the remote machine.
  • the remote machine requests the near-end machine to allocate an uplink data transmission channel.
  • the uplink data transmission channel includes two situations, one is the service transmission channel, and the other is the training data transmission channel.
  • the foregoing transmission channel includes a service transmission channel; then, the uplink data sent by the remote machine includes the uplink service data that is exchanged between the remote machine and the near-end machine.
  • the above-mentioned transmission channel includes a training data transmission channel; the uplink data sent by the remote machine includes a training sequence; the training sequence is used for equalization training of the near-end machine.
  • the above-mentioned preset uplink physical frame format includes two cases.
  • the above-mentioned preset uplink physical frame format includes a normal physical frame format and a training dedicated frame format; the normal physical frame format is used to specify the access channel And the resource location of the service transmission channel; the training dedicated frame format is used to specify the resource location of the access channel and the training data transmission channel.
  • the far-end machine Based on the above two data transmission channels corresponding to the two preset uplink physical frame formats, in practical applications, after the remote machine is connected to the near-end machine, if the near-end machine allocates a service transmission channel, the far-end machine will The data transmitted by the end machine on the service transmission channel is the uplink service data that is exchanged between the remote machine and the near end machine, and the uplink service data is sent using the above-mentioned ordinary physical frame format.
  • the embodiment of this application provides a preset format, as shown in FIG. 4, optionally, the common physical frame format includes: random access channel, at least one uplink of each remote machine Time slot resources; uplink time slot resources include pilot frequency domain, service transmission channel, and first user guard interval.
  • the aforementioned random access channel is used to transmit random access sequences; the random access sequences of all remote machines corresponding to the near-end machine are the same.
  • the aforementioned random access channel includes a second user guard interval; the second user guard interval has a mapping relationship with the distance between the near-end machine and the remote machine.
  • the foregoing service transmission channel includes pilot symbols of a preset length that are configured at preset equal intervals.
  • the random access channel is a channel used for all remote machines to initiate random access request messages.
  • the random access channel is used to transmit random access sequences.
  • the random access sequences use special pseudo-random sequences.
  • a near-end machine corresponds to the same sequence used by all remote machines.
  • the random access sequence can use a ZC sequence of length 139.
  • reserve second user guard intervals of different lengths namely GAP2.
  • GAP2 with different distance configurations is: GAP2 is 132us, the corresponding distance is 20km; GAP2 is 66us, the corresponding distance is 10km; GAP2 is 33us, the corresponding distance is 5km.
  • GAP2 takes 66us.
  • the remote machine after all its corresponding remote machines are fully connected, when the remote machine sends uplink service data according to the ordinary physical frame format, it can change the PRACH channel and GAP1 from the ordinary uplink physical Delete the frame to save resources, and reserve all time slot resources for the service transmission channel (TCH) channel for uplink service data transmission, so as to improve resource utilization.
  • TCH service transmission channel
  • the uplink time slot resources include pilot frequency domain, service transmission channel, and first user guard interval.
  • the service transmission channel TCH
  • the service transmission channel TCH
  • the pilot domain preamble
  • the preamble may take 32 baud, which is two identical CHU16 sequences.
  • the first user guard interval GAP1 represents the time slot resource interval of the remote machine user.
  • a certain GAP1 is reserved in the common physical format frame to avoid the overlap between symbols caused by the timing error between the remote machine users at different distances. Interference and multipath influence, preferably, GAP1 in this solution is 500ns, that is, 26 baud.
  • each group of user data in the service transmission channel contains a certain length of pilot symbols (pilot), except for the preamble segment, the rest of the TCH in the ordinary physical frame structure is inserted at equal intervals in the known length of the preset length
  • the symbol is configured as a piolt and configured as a cell parameter, for example, the insertion interval is 8/16/32/64baud.
  • this solution provides a scenario.
  • the symbol rate is 50.8MBuad
  • the design is based on 1ms per frame, so there are a total of 50800 bauds, and then a 1 baud pilot is inserted every 64 baud:
  • the uplink data transmitted by the remote machine in the training data is a training sequence, where the training sequence is used by the near-end machine for equalization training, and the uplink service data is sent using the above-mentioned training dedicated frame format.
  • the training dedicated frame format is a near-end machine equalization training dedicated frame.
  • the training dedicated frame format Send on the training data transmission channel (PUEQCH) channel.
  • PEQCH training data transmission channel
  • the preamble in this format It can be the same as the Preamble used in the ordinary physical frame format.
  • the use of this special training frame format to send training data can help the near-end machine to adjust parameters in real time to ensure the accuracy of the data transmission process.
  • an embodiment of the present application provides a data sending method, and the method includes:
  • S301 The near-end machine receives an access request message sent by the far-end machine.
  • the near-end machine receives the access request message sent by the remote machine, where the access request message is sent by the remote machine on the access channel, and is used to request to establish a connection with the near-end machine and request allocation Uplink data transmission channel message.
  • the near-end machine establishes a connection with the remote machine according to the access request message, and allocates an uplink data transmission channel for the remote machine; wherein, the uplink data transmission channel is used by the remote machine to transmit uplink data according to a preset uplink physical frame format.
  • the uplink data is sent to the near-end machine on the transmission channel; wherein, the preset uplink physical frame format indicates that all service data of each remote machine is transmitted according to the priority of service quality QoS.
  • the near-end machine Based on the access request message in step S301, the near-end machine establishes a connection with the remote machine according to the access request message, and allocates an uplink data transmission channel for the remote machine. Among them, the near-end machine allocates the uplink data transmission channel to the remote machine by sending a response message carrying the resource identifier of the uplink data transmission channel to the remote machine so that the remote machine knows the resource location of the allocated uplink data transmission channel. .
  • the uplink transmission channel is used by the remote machine to send uplink data to the near-end machine on the uplink data transmission channel according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates that each remote machine All the business data of the company is transmitted according to the priority of the business service quality QoS.
  • the near-end machine establishes a connection with the remote machine after receiving the access request message sent by the remote machine, and allocates the uplink data transmission channel for the remote machine.
  • the data transmission channel is used by the remote machine to send uplink data according to the preset uplink physical frame format, and when the remote machine sends the uplink data, it transmits according to the priority of each remote machine’s service QoS, so that different users have different services
  • the hierarchical QoS indicators make the allocation method more comprehensive, dynamically and flexibly allocate wireless resources to the corresponding services, and greatly improve the utilization of wireless resources.
  • an embodiment of the present application provides a data sending method, wherein, before the above-mentioned near-end machine receives an access request message sent by the remote machine, the method includes: The near-end machine sends a broadcast signal carrying the resource identifier of the access channel; among them, the broadcast signal is used for the remote machine to send an access request message in the access channel; among them, the access request message includes the access sequence of the access channel and Remote machine identification; as shown in Figure 7, the above S302 step includes:
  • S401 The near-end machine verifies whether the remote machine is legal according to the access sequence of the access channel and the remote machine identifier.
  • the remote machine sends an access request message carrying the access sequence and the remote machine identification, and the near-end machine verifies whether the remote machine is legal according to the access sequence and the remote machine identification.
  • the legal way can be to check whether the access sequence is correct and whether the remote machine ID is a pre-stored legal remote machine ID. If both are consistent, it can be determined that the remote machine is legal.
  • the near-end machine Based on the verification in step S401 above that the remote machine sending the access request message is legal, the near-end machine establishes a connection with the remote machine, and an uplink data transmission channel is allocated to the remote machine.
  • a connection is established with the remote device only after the near-end device verifies that the remote device is legal, which greatly guarantees the security of the network.
  • the above-mentioned near-end machine may send the broadcast signal carrying the resource identifier of the access channel in two ways.
  • the above-mentioned near-end machine sends the broadcast signal carrying the resource identifier of the access channel, including way 1. : The near-end machine periodically sends the broadcast signal carrying the resource identifier of the access channel; or, the second method: the near-end machine continuously sends the broadcast signal carrying the resource identifier of the access channel, and sends the broadcast signal to all the remote machines corresponding to the near-end machine. After the terminal is connected, it stops sending broadcast signals.
  • PRACH channel and GAP2 appear periodically, that is, the near-end machine periodically sends a broadcast signal carrying an access channel resource identifier, where the period can be determined according to the actual situation, and this embodiment does not do this limited.
  • the PRACH channel is not configured (when no broadcast signal is sent)
  • the PRACH channel and GAP2 do not exist, and all time slot resources are allocated to the TCH channel of each remote device.
  • the period in which the PRACH channel appears can be consistent with the downlink data sent by the near-end machine.
  • the broadcast signal carrying the access channel resource identifier is sent, that is, the PRACH channel and GAP1 appear.
  • the period is 128ms.
  • the near-end machine when the near-end machine detects that all the corresponding remote machines have not been fully connected, the near-end machine continuously sends the broadcast signal carrying the resource identifier of the access channel, that is, the random access channel is always open (PRACH) channel, reserved time slot for the remote machine to access the near-end machine. If the near-end machine detects that all the corresponding remote machines are successfully connected, the near-end machine stops sending broadcast signals, that is, no longer The PRACH channel and the second user guard interval (GAP2) are opened, and all time slot resources are reserved for the service transmission channel (TCH) channel for uplink data transmission.
  • PRACH random access channel is always open
  • GAP2 second user guard interval
  • the open mode of the access channel can realize that when there is no need for a remote machine to access a near-end machine, all time slot resources are reserved for each service transmission channel, which greatly improves resources. Utilization rate.
  • a data sending device includes: a first access module 10, a response module 11, and a sending module 12, wherein:
  • the first access module 10 is used for the remote machine to send an access request message to the near-end machine on the access channel; wherein the access request message is used to request to establish a connection with the near-end machine and request the allocation of an uplink data transmission channel;
  • the response module 11 is used for the remote machine to receive the response message sent by the near-end machine; wherein the response message carries the resource identifier of the uplink data transmission channel;
  • the sending module 12 is used for the remote machine to send uplink data to the near-end machine on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates each remote machine. All service data of the terminal is transmitted according to the priority of service quality QoS.
  • a data sending device is provided, and the device further includes:
  • the search module 13 is used for the remote machine to search for the broadcast signal sent by the near-end machine; where the broadcast signal includes the resource identifier of the access channel;
  • the first access module 10 is configured to send an access request message to the near-end machine in the access channel if the remote machine finds a broadcast signal; wherein, the access request message includes the access sequence of the access channel And remote machine identification.
  • the above-mentioned transmission channel includes a service transmission channel; then, the uplink data sent by the remote machine includes the uplink service data exchanged between the remote machine and the near-end machine.
  • the above-mentioned transmission channel includes a training data transmission channel; the uplink data sent by the remote machine includes a training sequence; the training sequence is used for the near-end machine to perform equalization training.
  • the above-mentioned preset uplink physical frame format includes a normal physical frame format and a training dedicated frame format; the normal physical frame format is used to specify the resource location of the access channel and the service transmission channel; the training dedicated frame format is used to specify The resource location of the access channel and the training data transmission channel.
  • the above-mentioned ordinary physical frame format includes: a random access channel, at least one uplink time slot resource of each remote machine; the uplink time slot resource includes a pilot frequency domain, a service transmission channel, and a first user guard interval.
  • the above-mentioned service transmission channel includes pilot symbols of preset length that are configured at preset equal intervals.
  • the above-mentioned random access channel is used to transmit random access sequences; the random access sequences of all remote machines corresponding to the near-end machine are the same.
  • the above-mentioned random access channel includes a second user guard interval; the second user guard interval has a mapping relationship with the distance between the near-end machine and the remote machine.
  • a data sending device is provided, and the device further includes: a second access module 14 and a management module 15, wherein:
  • the second access module 14 is used for the near-end machine to receive the access request message sent by the far-end machine;
  • the management module 15 is used for the near-end machine to establish a connection with the remote machine according to the access request message, and to allocate an uplink data transmission channel for the remote machine; wherein, the uplink data transmission channel is used for the remote machine according to the preset uplink physical frame
  • the format sends uplink data to the near-end machine on the uplink data transmission channel; wherein the preset uplink physical frame format indicates that all service data of each remote machine is transmitted according to the priority of service quality QoS.
  • a data sending device which includes:
  • the broadcast module is used for the near-end machine to send a broadcast signal carrying the resource identifier of the access channel; among them, the broadcast signal is used for the remote machine to send an access request message in the access channel; wherein, the access request message includes the access channel
  • the access sequence and the remote machine identifier then, as shown in FIG. 11, the management module 15 includes: a verification unit 151 and a connection unit 152, where
  • the verification unit 151 is used for the near-end machine to verify whether the remote machine is legal according to the access sequence of the access channel and the remote machine identifier;
  • connection unit 152 is used for establishing a connection between the near-end machine and the remote machine if it is valid.
  • the above-mentioned broadcast module is specifically used for the near-end machine to periodically send broadcast signals carrying the resource identifier of the access channel; or the near-end machine continuously sends the broadcast signal carrying the resource identifier of the access channel, and After all the remote machines corresponding to the near-end machine are connected, stop sending broadcast signals.
  • the above-mentioned preset uplink physical frame format includes a normal physical frame format and a training dedicated frame format; wherein, the normal physical frame format is used to specify the resource location of the access channel and the service transmission channel; wherein, the training dedicated frame The format is used to specify the resource location of the access channel and the training data transmission channel.
  • the above-mentioned common physical frame format includes a random access channel and at least one uplink time slot resource of each remote machine; the uplink time slot resource includes a pilot frequency domain, a service transmission channel, and a first user guard interval.
  • the above-mentioned service transmission channel includes pilot symbols of preset length that are configured at preset equal intervals.
  • the above-mentioned random access channel is used to transmit random access sequences; the random access sequences of all remote machines corresponding to the near-end machine are the same.
  • the above-mentioned random access channel includes a second user guard interval; wherein, there is a mapping relationship between the second user guard interval and the distance between the near-end machine and the remote machine.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 12.
  • the computer equipment includes a processor, a memory, a network interface, a display screen and an input device connected through a system bus.
  • the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor to realize a data transmission method.
  • the display screen of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer equipment can be a touch layer covered on the display screen, or it can be a button, a trackball or a touchpad set on the housing of the computer equipment , It can also be an external keyboard, touchpad, or mouse.
  • a computer device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the remote machine sends uplink data to the near-end machine on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates all service data of each remote machine
  • the transmission is carried out according to the priority of service quality QoS.
  • the near-end machine receives the access request message sent by the remote machine
  • the near-end machine establishes a connection with the remote machine according to the access request message, and allocates an uplink data transmission channel for the remote machine; among them, the uplink data transmission channel is used by the remote machine in the uplink data transmission channel according to the preset uplink physical frame format
  • the uplink data is sent to the near-end machine; wherein, the preset uplink physical frame format indicates that all service data of each remote machine is transmitted according to the priority of service quality QoS.
  • the remote machine sends an access request message to the near-end machine on the access channel; where the access request message is used to request to establish a connection with the near-end machine and request the allocation of an uplink data transmission channel;
  • the remote machine receives the response message sent by the near-end machine; wherein the response message carries the resource identifier of the uplink data transmission channel;
  • the remote machine sends uplink data to the near-end machine on the uplink data transmission channel corresponding to the resource identifier according to the preset uplink physical frame format; wherein, the preset uplink physical frame format indicates all service data of each remote machine
  • the transmission is carried out according to the priority of service quality QoS.
  • the near-end machine receives the access request message sent by the remote machine
  • the near-end machine establishes a connection with the remote machine according to the access request message, and allocates an uplink data transmission channel for the remote machine; among them, the uplink data transmission channel is used by the remote machine in the uplink data transmission channel according to the preset uplink physical frame format
  • the uplink data is sent to the near-end machine; wherein, the preset uplink physical frame format indicates that all service data of each remote machine is transmitted according to the priority of service quality QoS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请涉及一种数据发送方法、装置、计算机设备和存储介质,远端机在接收到近端机分配的上行数据传输信道后,根据预设的上行物理帧格式在该上行数据传输信道上发送上行数据,且发送的时候是按照各远端机业务QoS的优先级进行传输的,这样根据不同用户不同业务等级的QoS指标,使得分配方式更加全面,动态灵活的分配无线资源给对应的业务,大大提高了无线资源利用率。

Description

数据发送方法、装置、计算机设备和存储介质 技术领域
本申请涉及微波通信技术领域,特别是涉及一种数据发送方法、装置、计算机设备和存储介质。
背景技术
微波通信技术可分为点对点组网通信和点对多点组网通信,由于其使用方式灵活方便、带宽大速率高、传输时延小等特性,使得微波传送广泛应用于各种应用场景中,例如:4G/5G网络回传、视频监控回传、宽带接入、企业专线、运营商骨干网架设、农网回传等应用场景。
在当前的微波点对多点组网通信系统中,实现多用户终端设备接入的方式,通常是通过频分复用或者时分复用的方式进行多址接入,然后将无线资源分配给不同的用户终端设备进行传输。
但是,在当前频域或者时域资源分配时,无法动态灵活的分配无线资源给对应的业务,使得其无线资源利用率较低。
发明内容
基于此,有必要针对上述当前频域或者时域资源分配时,无法动态灵活的分配无线资源给对应的业务,使得其无线资源利用率较低的技术问题,提供一种数据发送方法、装置、计算机设备和存储介质。
第一方面,本申请实施例提供一种数据发送方法,该方法包括:
远端机在接入信道上发送接入请求消息至近端机;其中,接入请求消息用于请求与近端机建立连接,并请求分配上行数据传输信道;
远端机接收近端机发送的响应消息;其中,响应消息携带上行数据传输信道的资源标识;
远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上 行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务QoS的优先级进行传输。
第二方面,本申请实施例提供一种数据发送方法,该方法包括:
近端机接收远端机发送的接入请求消息;
近端机根据接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道;其中,上行数据传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
第三方面,本申请实施例提供一种数据发送装置,装置包括:
第一接入模块,用于远端机在接入信道上发送接入请求消息至近端机;其中接入请求消息用于请求与近端机建立连接,并请求分配上行数据传输信道;
响应模块,用于远端机接收近端机发送的响应消息;其中,响应消息携带上行数据传输信道的资源标识;
发送模块,用于远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务QoS的优先级进行传输。
第四方面,本申请实施例提供一种数据发送装置,该装置包括:
第二接入模块,用于近端机接收远端机发送的接入请求消息;
管理模块,用于近端机根据接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道;其中,上行数据传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
第五方面,本申请实施例提供一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述第一方面和第二方面实施例提供的任一项方法的步骤。
第六方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面和第二方面实施例提供的任一项方法的步骤。
本申请实施例提供的一种数据发送方法、装置、计算机设备和存储介质,远端机在 接收到近端机分配的上行数据传输信道后,根据预设的上行物理帧格式在该上行数据传输信道上发送上行数据,且发送的时候是按照各远端机业务QoS的优先级进行传输的,这样根据不同用户不同业务等级的QoS指标,使得分配方式更加全面,动态灵活的分配无线资源给对应的业务,大大提高了无线资源利用率。
附图说明
图1为一个实施例提供的一种点对多点通信系统框图;
图2为一个实施例提供的一种数据发送方法的流程示意图;
图3为一个实施例提供的一种数据发送方法的流程示意图;
图4为一个实施例提供的一种普通物理帧格式的示意图;
图5为一个实施例提供的一种训练专用帧格式的示意图;
图6为一个实施例提供的一种数据发送方法的流程示意图;
图7为一个实施例提供的一种数据发送方法的流程示意图;
图8为一个实施例提供的一种数据发送装置的结构框图;
图9为一个实施例提供的一种数据发送装置的结构框图;
图10为一个实施例提供的一种数据发送装置的结构框图;
图11为一个实施例提供的一种数据发送装置的结构框图;
图12为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的一种数据发送方法,可以应用于如图1所示的点对多点通信系统中,该系统包括近端机和远端机,近端机与远端机之间通过建立了通信线路,可以进行数据交互,该远端机与近端机通过本申请提供的一种数据发送方法进行数据交互,其中,每个远端机可以分配多个终端用户。在该点对多点通信系统中,一个近端机对应多个远端机,且各远端机及远端机的数量为预先设定好的。
本申请实施例提供一种数据发送方法、装置、计算机设备和存储介质,旨在解决在 当前频域或者时域资源分配时,无法动态灵活的分配无线资源给对应的业务,使得其无线资源利用率较低的技术问题。下面将通过实施例并结合附图具体地对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。需要说明的是,本申请提供的一种数据发送方法,图2-图3的执行主体为远端机,图6-图7的执行主体为近端机,其中,图2-图7的执行主体还可以是数据发送装置,其中该装置可以通过软件、硬件或者软硬件结合的方式实现成为数据发送的部分或者全部。
下面对于执行主体为近端机的一侧涉及的实施例进行说明。
在一个实施例中,图2提供了一种数据发送方法,本实施例涉及的是远端机在与近端机建立连接后,根据预设的上行物理帧格式发送上行数据的具体过程,如图2所示,所述方法包括:
S101,远端机在接入信道上发送接入请求消息至近端机;其中,接入请求消息用于请求与近端机建立连接,并请求分配上行数据传输信道。
本实施例中,接入信道表示远端机与近端机建立连接是发送消息的通道,该接入信道可以预先进行定义,本实施例对具体的接入信道是哪个不做限定。其中,远端机发送的接入请求消息用于请求与近端机建立连接,并请求远端机分配上行数据传输信道。可以理解的是,本步骤中所提及的接入信道和上行数据传输信道不是一个信道,该上行数据传输信道表示近端机与远端机之间传输数据的通道。
S102,远端机接收近端机发送的响应消息;其中,响应消息携带上行数据传输信道的资源标识。
基于上述S101步骤中远端机发送给近端机的接入请求消息,远端机接收近端机发送的响应消息,其中,该响应消息中携带了上行数据传输信道的资源标识,用于指示远端机给分配的上行数据传输信道的资源位置。其中,该资源标识可以有数字、字母或者两者组合构成,本实施例对此不做限定。
S103,远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务QoS的优先级进行传输。
基于上述S102步骤中接收的响应消息,远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上行数据至近端机,其中,该预设的上行物理帧格 式中指示了每个远端机的所有业务服务质量(Quality of Service,QoS)的优先级进行传输,相当于远端机在上行数据传输信道上发送上行数据时,需要根据每个远端机的业务QoS的优先级依次进行传输,以保证需分配给不同用户不同等级业务。
本实施例提供的数据发送方法,远端机在接收到近端机分配的上行数据传输信道后,根据预设的上行物理帧格式在该上行数据传输信道上发送上行数据,且发送的时候是按照各远端机业务QoS的优先级进行传输的,这样根据不同用户不同业务等级的QoS指标,使得分配方式更加全面,动态灵活的分配无线资源给对应的业务,大大提高了无线资源利用率。
其中,上述实施例中,远端机在接入信道上发送接入请求消息至近端机的时机是有限定的,即远端机发送接入请求消息之前需要确定满足发送条件后才可以发送,则基于上述实施例,在一个实施例中,如图3所示,本申请实施例还提供了一种数据发送方法,该方法包括:
S201,远端机搜索近端机发送的广播信号;其中,广播信号包括接入信道的资源标识。
本实施例中,远端机需要时刻搜索近端机是否有发送携带接入信道资源标识的广播信号,其中,若近端机发送了该广播信号,即表示近端机开放了接入信道,其他远端机可以通过在该接入信道发送接入请求消息了。在一个例子中,远端机发送广播信号的方式包括两种方式,其中一种方式为近端机持续发送广播信号,当检测到其对应的所有远端机均已建立了联接后,则停止发送该广播信号,即不再打开接入信道,不允许其他远端机接入。另外一种方式为,近端机周期性的发送该广播信号,每次广播信号发送时即为接入信道开放的时候,接入信道开放一定时间后即可停止,若存在没有接入的远端机,则在下次近端机发送了广播信号后再接入。
S202,若远端机搜索到广播信号,远端机在接入信道中发送接入请求消息至近端机;其中,接入请求消息包括接入信道的接入序列和远端机标识。
基于上述S201步骤中远端机搜索到近端机发送的广播信号后,远端机在广播信号中携带的资源标识对应的接入信道上发送接入请求消息,其中,该接入请求消息包括接入信道的接入序列和远端机标识;其中,该接入序列可以使用预先设定的特殊伪随机序列;对于一个近端机对应的所有远端机来说,该接入信道的接入序列都是一样的。其中该接入序列和远端机标识均用于近端机对远端机的身份是否合法进行的验证。可以理 解的是,一个近端机可以连接的合法远端机都是预先设定好的,因此远端机只对合法的远端机发送的接入请求消息进行响应。
本实施例提供的数据发送方法,由于远端机是在搜索到近端机发送了携带接入信道资源标识的广播信号后,才发送接入请求消息给近端机,这样,保证了远端机发送的接入请求消息时肯定是正确的接入时机,避免了远端机的资源浪费。
在上述实施例中,远端机请求近端机为其分配上行数据传输信道,其中该上行数据传输信道包括两种情况,一种为业务传输信道,另外一种为训练数据传输信道,则基于上述实施例,在一个实施例中,上述传输信道包括业务传输信道;则远端机发送的上行数据包括远端机与近端机之间交互的上行业务数据。在另外一个实施例中,上述传输信道包括训练数据传输信道;则远端机发送的上行数据包括训练序列;训练序列用于近端机进行均衡训练使用。
其中,在上行数据传输信道的两种情况下,由于远端机发送的上行数据不同,其对应的预设的上行物理帧格式也不相同。即上述预设的上行物理帧格式包括两种情况,则在一个实施例中,上述预设的上行物理帧格式包括普通物理帧格式和训练专用帧格式;普通物理帧格式用于规定接入信道和业务传输信道的资源位置;训练专用帧格式用于规定接入信道和训练数据传输信道的资源位置。
则基于上述两种数据传输信道对应两种预设的上行物理帧格式的情况,在实际应用中,在远端机接入近端机后,若近端机分配的是业务传输信道,则远端机在该业务传输信道上传输的数据为远端机与近端机之间交互的上行业务数据,且是采用上述普通物理帧格式发送上行业务数据的。
其中,对于普通物理帧格式,本申请实施例提供一种预设格式,如图4所示,可选地,上述普通物理帧格式包括:随机接入信道、每个远端机的至少一个上行时隙资源;上行时隙资源包括导频域、业务传输信道、第一用户保护间隔。可选地,上述随机接入信道用于传输随机接入序列;近端机对应的所有远端机的随机接入序列相同。可选地,上述随机接入信道包括第二用户保护间隔;第二用户保护间隔与近端机和远端机之间的距离存在映射关系。可选地,上述业务传输信道包括预设等间隔配置的预设长度的导频符号。
其中,随机接入信道(PRACH)是用于所有远端机发起随机接入请求消息的信道,随机接入信道上用于传输随机接入序列,该随机接入序列使用特殊伪随机序列,对于一 个近端机对应的所有远端机使用的序列是一样的,例如,该随机接入序列可以使用139长度的ZC序列。对于该随机接入信道的资源位置,根据远端机与近端机之间的距离,预留不同长度的第二用户保护间隔(即GAP2),示例地,不同距离配置的GAP2为:GAP2为132us,对应距离为20km;GAP2为66us,对应距离为10km;GAP2为33us,对应距离为5km。优选地,远端机与近端机之间距离在5-10km时,GAP2取66us。
其中,对于近端机来说,在其对应的所有远端机全部接入后,远端机这端在发送根据普通物理帧格式发送上行业务数据时,可以将PRACH信道及GAP1从普通上行物理帧中删除,以节省资源,将全部时隙资源预留给业务传输信道(TCH)信道进行上行业务数据发送,以提高资源利用率。
其中,上行时隙资源包括导频域、业务传输信道、第一用户保护间隔。其中,业务传输信道(TCH)中可以容纳一个远端机所有优先级队列进行传输,该远端机被调度时,所有QoS队列是按照优先级组到TCH中进行传输。其中,导频域(preamble)用于时间同步和符号同步,例如,preamble可取32波特,为两个相同的CHU16序列。其中,第一用户保护间隔(GAP1)表示远端机用户时隙资源间隔,在普通物理格式帧中预留一定的GAP1,可以避免不同距离远端机用户之间由于定时误差造成的符号间重叠干扰以及多径影响,优选地,本方案中GAP1为500ns,即26波特。
其中,在业务传输信道(TCH)中每组用户数据包含一定长度的导频符号(pilot),除了preamble段,普通物理帧结构中的其余段TCH中都等间隔插入该预设长度的已知符号作为piolt,作为一个小区参数来配置,例如该插入间隔为8/16/32/64baud。
示例地,本方案提供一种场景,使用56M带宽模式下,符号率50.8MBuad,按照1ms每帧进行设计,则一共50800个波特,然后每隔64波特插入一个1波特的导频:GAP2为66us=3352波特(略大于66us);GAP1设计为500ns=26个波特(略大于500ns);同时设定1个远端机对应8个远端机进行通信,因此,总共开销为139+3352+(32+26)*8=3955个波特,剩余波特数为50800-3955=46845,根据MAC层的QoS调度信息、符号的起止位置以及结合当前8用户通信的场景就可以分别构建8个用户的专属TCH信息,即根据预设上层物理帧格式生成上行业务数据进行发送。这样,够灵活支撑点对多点微波通信系统的空中接口数据通信传输,并匹配支撑用户的QoS策略和属性,在保证点对多点空口正常通信情况下,减少空口控制信息交互的开销,提升了空口资源的利用效率,同步支持多种覆盖距离,满足组网的多种应用场景需求。
同样,基于上述两种数据传输信道对应两种预设的上行物理帧格式的情况,在实际应用中,在远端机接入近端机后,若近端机分配的是训练数据传输信道,则远端机在该训练数据传输的上行数据为训练序列,其中该训练序列用于近端机进行均衡训练使用,且是采用上述训练专用帧格式发送上行业务数据的。
其中,对于训练专用帧格式,本申请实施例提供一种预设格式,如图5所示,该训练专用帧格式为近端机均衡训练专用帧,根据该训练专用帧格式发送训练数据时,在训练数据传输信道(PUEQCH)信道上进行发送,其中发送时,可以仅发送一次,也可以是周期性的进行发送,具体可根据实际情况而定,其中该格式中的导频域(Preamble)与普通物理帧格式中所用的Preamble可以相同。在实际应用中,采用该训练专用帧格式发送训练数据,可以有助于近端机实时调整参数,以保证数据传输过程的准确性。
下面对于执行主体为近端机的一侧涉及的实施例进行说明。需要说明的是,由于近端机一侧的实施例与远端机一侧的实施例为相对应的,因此,对于部分重复内容在近端机这一侧的实施例将不再赘述,具体可参见远端机侧的实施例。
如图6所示,本申请实施例提供一种数据发送方法,该方法包括:
S301,近端机接收远端机发送的接入请求消息。
本实施例中,近端机接收远端机发送的接入请求消息,其中该接入请求消息为远端机在接入信道上发送的,用于请求与近端机建立连接,并请求分配上行数据传输信道的消息。
S302,近端机根据接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道;其中,上行数据传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
基于上述S301步骤中的接入请求消息,近端机根据该接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道。其中,近端机为远端机分配上行数据传输信道的方式为向远端机发送携带上行数据传输信道的资源标识的响应消息,以便远端机知道为其分配的上行数据传输信道的资源位置。其中,该上行传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
本实施例提供的一种数据发送方法,近端机在接收到远端机发送的接入请求消息后,与远端机建立连接,并为远端机分配的上行数据传输信道,由于该上行数据传输信道用于远端机根据预设的上行物理帧格式发送上行数据,且远端机发送上行数据的时候是按照各远端机业务QoS的优先级进行传输的,这样根据不同用户不同业务等级的QoS指标,使得分配方式更加全面,动态灵活的分配无线资源给对应的业务,大大提高了无线资源利用率。
对于上述近端机与远端机建立连接的过程,本申请实施例提供了一种数据发送方法,其中,该方法中在上述近端机接收远端机发送的接入请求消息之前,包括:近端机发送携带接入信道的资源标识的广播信号;其中,广播信号用于远端机在接入信道中发送接入请求消息;其中,接入请求消息包括接入信道的接入序列和远端机标识;则如图7所示,上述S302步骤包括:
S401,近端机根据接入信道的接入序列和远端机标识,验证远端机是否合法。
其中,远端机发送了携带接入序列和远端机标识的接入请求消息,则近端机根据该接入序列和远端机标识,验证远端机是否合法,其中验证远端机是否合法的方式可以是查看该接入序列是否正确,以及远端机标识是否为预先存储的合法远端机标识,如果两者均符合则可以确定该远端机合法。
S402,若合法,则近端机与远端机建立连接。
基于上述S401步骤中的验证了发送接入请求消息的远端机合法,则近端机与该远端机建立连接,并为该远端机分配上行数据传输信道。
本实施例提供的一种数据发送方法,只有在近端机验证远端机合法后才与其建立连接,大大保证了网络的安全性。
另外,上述近端机发送携带接入信道的资源标识的广播信号可以通过两种方式发送,则在一个实施例中,上述近端机发送携带接入信道的资源标识的广播信号,包括方式一:近端机周期性的发送携带接入信道的资源标识的广播信号;或者,方式二:近端机持续性发送携带接入信道的资源标识的广播信号,并在近端机对应的所有远端机接入后,停止发送广播信号。
其中,对于方式一:PRACH信道和GAP2周期性出现,即近端机周期性的发送携带接入信道资源标识的广播信号,其中,该周期可根据实际情况而定,本实施例对此不做限定。在没有配置PRACH信道的时候(没有发送广播信号时),PRACH信道和GAP2不存 在,所有时隙资源分配给各个远端机的TCH信道。例如,PRACH信道出现的周期可以与近端机发送下行数据保持一致,在发送下行数据应时,发送携带接入信道资源标识的广播信号,即出现PRACH信道及GAP1。例如,周期为128ms。
对于方式二:在近端机检测到其对应的所有远端机还未全部接入的情况下,近端机持续性发送携带接入信道的资源标识的广播信号,即一直开放随机接入信道(PRACH)信道,为远端机接入近端机预留时隙,若近端机检测到其对应的所有远端机均成功接入以后,则近端机停止发送广播信号,即不再开放PRACH信道和第二用户保护间隔(GAP2),将全部时隙资源预留给业务传输信道(TCH)信道进行上行数据发送。
本实施例中无论是方式一还是方式二,对于接入信道的开放方式均可以实现在无需远端机接入近端机时,将全部时隙资源留给各业务传输信道,大大提高了资源利用率。
需要说明的是,在近端机这一侧对于预设的上行物理帧格式涉及的实施例与远端机一侧的相同,具体可参见远端机侧对于预设上行物理帧格式的说明,本实施例在此不再赘述。
应该理解的是,虽然图2-7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-7中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图8所示,提供了一种数据发送装置,该装置包括:第一接入模块10、响应模块11和发送模块12,其中,
第一接入模块10,用于远端机在接入信道上发送接入请求消息至近端机;其中接入请求消息用于请求与近端机建立连接,并请求分配上行数据传输信道;
响应模块11,用于远端机接收近端机发送的响应消息;其中,响应消息携带上行数据传输信道的资源标识;
发送模块12,用于远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机 的所有业务数据按照业务服务质量QoS的优先级进行传输。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图9所示,提供了一种数据发送装置,该装置还包括:
搜索模块13,用于远端机搜索近端机发送的广播信号;其中,广播信号包括接入信道的资源标识;
第一接入模块10,用于若远端机搜索到广播信号,远端机在接入信道中发送接入请求消息至近端机;其中,接入请求消息包括接入信道的接入序列和远端机标识。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,上述传输信道包括业务传输信道;则远端机发送的上行数据包括远端机与近端机之间交互的上行业务数据。
在一个实施例中,上述传输信道包括训练数据传输信道;则远端机发送的上行数据包括训练序列;训练序列用于近端机进行均衡训练使用。
在一个实施例中,上述预设的上行物理帧格式包括普通物理帧格式和训练专用帧格式;普通物理帧格式用于规定接入信道和业务传输信道的资源位置;训练专用帧格式用于规定接入信道和训练数据传输信道的资源位置。
在一个实施例中,上述普通物理帧格式包括:随机接入信道、每个远端机的至少一个上行时隙资源;上行时隙资源包括导频域、业务传输信道、第一用户保护间隔。
在一个实施例中,上述业务传输信道包括预设等间隔配置的预设长度的导频符号。
在一个实施例中,上述随机接入信道用于传输随机接入序列;近端机对应的所有远端机的随机接入序列相同。
在一个实施例中,上述随机接入信道包括第二用户保护间隔;第二用户保护间隔与近端机和远端机之间的距离存在映射关系。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图10所示,提供了一种数据发送装置,该装置还包括:第二接入模块14和管理模块15,其中,
第二接入模块14,用于近端机接收远端机发送的接入请求消息;
管理模块15,用于近端机根据接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道;其中,上行数据传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供了一种数据发送装置,该装置包括:
广播模块,用于近端机发送携带接入信道的资源标识的广播信号;其中,广播信号用于远端机在接入信道中发送接入请求消息;其中,接入请求消息包括接入信道的接入序列和远端机标识;则,如图11所示上述管理模块15包括:验证单元151和连接单元152,其中
验证单元151,用于近端机根据接入信道的接入序列和远端机标识,验证远端机是否合法;
连接单元152,用于若合法,则近端机与远端机建立连接。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,上述广播模块具体用于近端机周期性的发送携带接入信道的资源标识的广播信号;或者,近端机持续性发送携带接入信道的资源标识的广播信号,并在近端机对应的所有远端机接入后,停止发送广播信号。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,上述预设的上行物理帧格式包括普通物理帧格式和训练专用帧格式;其中,普通物理帧格式用于规定接入信道和业务传输信道的资源位置;其中,训练专用帧格式用于规定接入信道和训练数据传输信道的资源位置。
在一个实施例中,上述普通物理帧格式包括随机接入信道、每个远端机的至少一个上行时隙资源;上行时隙资源包括导频域、业务传输信道、第一用户保护间隔。
在一个实施例中,上述业务传输信道包括预设等间隔配置的预设长度的导频符号。
在一个实施例中,上述随机接入信道用于传输随机接入序列;近端机对应的所有远端机的随机接入序列相同。
在一个实施例中,上述随机接入信道包括第二用户保护间隔;其中,第二用户保护间隔与近端机和远端机之间的距离存在映射关系。
上述实施例提供的一种数据发送装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图12所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种数据发送方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
远端机在接入信道上发送接入请求消息至近端机;其中,接入请求消息用于请求与近端机建立连接,并请求分配上行数据传输信道;
远端机接收近端机发送的响应消息;其中,响应消息携带上行数据传输信道的资源标识;
远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
或者,该处理器执行计算机程序时实现以下步骤:
近端机接收远端机发送的接入请求消息;
近端机根据接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道;其中,上行数据传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
上述实施例提供的一种计算机设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
远端机在接入信道上发送接入请求消息至近端机;其中,接入请求消息用于请求与近端机建立连接,并请求分配上行数据传输信道;
远端机接收近端机发送的响应消息;其中,响应消息携带上行数据传输信道的资源标识;
远端机根据预设的上行物理帧格式在资源标识对应的上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
或者,计算机程序被处理器执行时实现以下步骤:
近端机接收远端机发送的接入请求消息;
近端机根据接入请求消息与远端机建立连接,并为远端机分配上行数据传输信道;其中,上行数据传输信道用于远端机根据预设的上行物理帧格式在上行数据传输信道上发送上行数据至近端机;其中,预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种数据发送方法,包括:
    远端机在接入信道上发送接入请求消息至近端机;所述接入请求消息用于请求与所述近端机建立连接,并请求分配上行数据传输信道;
    所述远端机接收所述近端机发送的响应消息;所述响应消息携带上行数据传输信道的资源标识;
    所述远端机根据预设的上行物理帧格式在所述资源标识对应的上行数据传输信道上发送上行数据至所述近端机;所述预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
  2. 根据权利要求1所述的方法,所述传输信道包括业务传输信道;则所述远端机发送的上行数据包括所述远端机与所述近端机之间交互的上行业务数据。
  3. 根据权利要求1所述的方法,所述传输信道包括训练数据传输信道;则所述远端机发送的上行数据包括训练序列;所述训练序列用于所述近端机进行均衡训练使用。
  4. 根据权利要求1-3任一项所述的方法,所述预设的上行物理帧格式包括普通物理帧格式和训练专用帧格式;所述普通物理帧格式用于规定所述接入信道和业务传输信道的资源位置;所述训练专用帧格式用于规定所述接入信道和训练数据传输信道的资源位置。
  5. 根据权利要求4所述的方法,所述普通物理帧格式包括:随机接入信道、每个远端机的至少一个上行时隙资源;所述上行时隙资源包括导频域、业务传输信道、第一用户保护间隔。
  6. 根据权利要求5所述的方法,所述业务传输信道包括预设等间隔配置的预设长度的导频符号。
  7. 根据权利要求5或6所述的方法,所述随机接入信道用于传输随机接入序列;所述近端机对应的所有远端机的随机接入序列相同。
  8. 根据权利要求7所述的方法,所述随机接入信道包括第二用户保护间隔;所述第二用户保护间隔与所述近端机和所述远端机之间的距离存在映射关系。
  9. 根据权利要求1所述的方法,在所述远端机在接入信道上发送接入请求消息至近端机之前,所述方法包括:
    所述远端机搜索所述近端机发送的广播信号;所述广播信号包括所述接入信道的资源标识;
    若所述远端机搜索到所述广播信号,所述远端机在所述接入信道中发送所述接入请求消息至所述近端机;所述接入请求消息包括所述接入信道的接入序列和所述远端机标识。
  10. 一种数据发送方法,所述方法包括:
    近端机接收远端机发送的接入请求消息;
    所述近端机根据所述接入请求消息与所述远端机建立连接,并为所述远端机分配上行数据传输信道;所述上行数据传输信道用于所述远端机根据预设的上行物理帧格式在所述上行数据传输信道上发送上行数据至所述近端机;所述预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
  11. 根据权利要求10所述的方法,所述近端机接收远端机发送的接入请求消息之前,所述方法包括:
    所述近端机发送携带接入信道的资源标识的广播信号;所述广播信号用于所述远端机在所述接入信道中发送所述接入请求消息;所述接入请求消息包括所述接入信道的接入序列和所述远端机标识;
    则所述近端机根据所述接入请求消息与所述远端机建立连接包括:
    所述近端机根据所述接入信道的接入序列和所述远端机标识,验证所述远端机是否合法;
    若合法,则所述近端机与所述远端机建立连接。
  12. 根据权利要求11所述的方法,所述近端机发送携带接入信道的资源标识的广播信号,包括:
    所述近端机周期性的发送所述携带接入信道的资源标识的广播信号;或者,
    所述近端机持续性发送所述携带接入信道的资源标识的广播信号,并在所述近端机对应的所有远端机接入后,停止发送所述广播信号。
  13. 根据权利要求10所述的方法,所述预设的上行物理帧格式包括普通物理帧格式和训练专用帧格式;所述普通物理帧格式用于规定所述接入信道和业务传输信道的资源位置;所述训练专用帧格式用于规定所述接入信道和训练数据传输信道的资源位置。
  14. 根据权利要求13所述的方法,所述普通物理帧格式包括:随机接入信道、每个远端机的至少一个上行时隙资源;所述上行时隙资源包括导频域、业务传输信道、第一用户保护间隔。
  15. 根据权利要求13或14所述的方法,所述业务传输信道包括预设等间隔配置的预设长度的导频符号。
  16. 根据权利要求15所述的方法,所述随机接入信道用于传输随机接入序列;所述近端机对应的所有远端机的随机接入序列相同。
  17. 根据权利要求16所述的方法,所述随机接入信道包括第二用户保护间隔;所述第二用户保护间隔与所述近端机和所述远端机之间的距离存在映射关系。
  18. 一种数据发送装置,所述装置包括:
    第一接入模块,远端机在接入信道上发送接入请求消息至近端机;所述接入请求消息用于请求与所述近端机建立连接,并请求分配上行数据传输信道;
    响应模块,所述远端机接收所述近端机发送的响应消息;所述响应消息携带上行数据传输信道的资源标识;
    发送模块,所述远端机根据预设的上行物理帧格式在所述资源标识对应的上行数据传输信道上发送上行数据至所述近端机;所述预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
  19. 一种数据发送装置,所述装置包括:
    第二接入模块,近端机接收远端机发送的接入请求消息;
    管理模块,所述近端机根据所述接入请求消息与所述远端机建立连接,并为所述远端机分配上行数据传输信道;所述上行数据传输信道用于所述远端机根据预设的上行物理帧格式在所述上行数据传输信道上发送上行数据至所述近端机;所述预设的上行物理帧格式中指示了每个远端机的所有业务数据按照业务服务质量QoS的优先级进行传输。
  20. 一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现权利要求1至17中任一项所述的方法的步骤。
  21. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至17中任一项所述的方法的步骤。
PCT/CN2019/124672 2019-08-06 2019-12-11 数据发送方法、装置、计算机设备和存储介质 WO2021022747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910721369.4 2019-08-06
CN201910721369.4A CN110381594B (zh) 2019-08-06 2019-08-06 数据发送方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021022747A1 true WO2021022747A1 (zh) 2021-02-11

Family

ID=68258371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124672 WO2021022747A1 (zh) 2019-08-06 2019-12-11 数据发送方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN110381594B (zh)
WO (1) WO2021022747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114786250A (zh) * 2022-04-24 2022-07-22 中国电信股份有限公司 数据信号的传输方法及装置、存储介质、电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381594B (zh) * 2019-08-06 2021-09-03 京信网络系统股份有限公司 数据发送方法、装置、计算机设备和存储介质
WO2021023268A1 (zh) * 2019-08-06 2021-02-11 京信通信系统(中国)有限公司 数据发送方法、装置、计算机设备和存储介质
CN112261716B (zh) * 2020-10-22 2021-08-17 中国电信股份有限公司 远端机及其时间同步方法和系统、近端机和存储介质
CN112637930B (zh) * 2020-12-18 2023-07-04 京信网络系统股份有限公司 微波通信系统的接入方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055549A1 (en) * 2005-11-14 2007-05-18 Lg Electronics Inc. Method for selecting a determinator of priority to access a network
CN106572480A (zh) * 2015-10-10 2017-04-19 电信科学技术研究院 回传网络的管理方法、接入网管理实体、设备及无线小站
CN107846704A (zh) * 2017-10-26 2018-03-27 北京邮电大学 一种基于移动边缘计算的资源分配及基站服务部署方法
CN110381594A (zh) * 2019-08-06 2019-10-25 京信通信系统(中国)有限公司 数据发送方法、装置、计算机设备和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610563B (zh) * 2008-06-20 2011-01-05 大唐移动通信设备有限公司 基于中继的蜂窝网络的准入控制方法及其蜂窝网络系统
KR20120083651A (ko) * 2011-01-18 2012-07-26 삼성전자주식회사 여러 다른 종류로 이루어진 네트워크에서 네트워크 진입을 위한 방법 및 장치
EP3107331B1 (en) * 2014-03-06 2018-05-02 Huawei Technologies Co., Ltd. Base station, terminal and switching methods
CN107864002A (zh) * 2017-12-20 2018-03-30 成都芯通软件有限公司 一种直放站远端机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055549A1 (en) * 2005-11-14 2007-05-18 Lg Electronics Inc. Method for selecting a determinator of priority to access a network
CN106572480A (zh) * 2015-10-10 2017-04-19 电信科学技术研究院 回传网络的管理方法、接入网管理实体、设备及无线小站
CN107846704A (zh) * 2017-10-26 2018-03-27 北京邮电大学 一种基于移动边缘计算的资源分配及基站服务部署方法
CN110381594A (zh) * 2019-08-06 2019-10-25 京信通信系统(中国)有限公司 数据发送方法、装置、计算机设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114786250A (zh) * 2022-04-24 2022-07-22 中国电信股份有限公司 数据信号的传输方法及装置、存储介质、电子设备
CN114786250B (zh) * 2022-04-24 2023-08-18 中国电信股份有限公司 数据信号的传输方法及装置、存储介质、电子设备

Also Published As

Publication number Publication date
CN110381594A (zh) 2019-10-25
CN110381594B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2021022747A1 (zh) 数据发送方法、装置、计算机设备和存储介质
CN110838899B (zh) 一种直接通信链路资源分配方法及终端
US10805923B2 (en) Allocating transmission resources in communication networks that provide low latency services
US10462785B2 (en) Method and apparatus for real-time transmission in a field broadband bus architecture over an industrial internet
EP3703443B1 (en) Resource determinination
CN111435878A (zh) 一种信息传输方法、终端及网络设备
US20210219333A1 (en) Uplink dynamic grant-free transmission method and apparatus
JP2016502778A (ja) 時分割多重アクセス・ネットワークにおけるデバイス登録およびサウンディング
JP6440126B2 (ja) データ送信方法、装置、及びシステム
EP3425833B1 (en) System implemented on the basis of a field broadband bus architecture of industrial internet
EP4037229A1 (en) Communication method and apparatus, computer-readable medium and electronic device
EP2693818A1 (en) Resource request method, station, and central access point
WO2021023268A1 (zh) 数据发送方法、装置、计算机设备和存储介质
WO2019010808A1 (zh) 传输控制方法及装置
WO2016026087A1 (zh) 数据传输方法和装置
WO2020143454A1 (zh) 数据发送和指示数据发送的方法及设备
TW201943304A (zh) 上行控制訊息傳輸方法及裝置
US11166304B2 (en) Downlink control channel configuration method, network device, and terminal
CN106465040A (zh) 一种用于资源分配的方法、接入点及站点
WO2016191986A1 (zh) 一种数据处理方法及装置
JP7469505B2 (ja) 通信方法、装置及びシステム並びにコンピュータ記憶媒体
WO2019091474A1 (zh) 同步符号的发送方法及装置
WO2019126985A1 (zh) 宽带集群系统组呼业务中用户的上行反馈方法及装置
WO2014139156A1 (zh) 信息上报方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940917

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19940917

Country of ref document: EP

Kind code of ref document: A1