WO2021022536A1 - Resource mapping to mitigate interference in full-duplex systems - Google Patents

Resource mapping to mitigate interference in full-duplex systems Download PDF

Info

Publication number
WO2021022536A1
WO2021022536A1 PCT/CN2019/099726 CN2019099726W WO2021022536A1 WO 2021022536 A1 WO2021022536 A1 WO 2021022536A1 CN 2019099726 W CN2019099726 W CN 2019099726W WO 2021022536 A1 WO2021022536 A1 WO 2021022536A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
access node
signal
indication
resource elements
Prior art date
Application number
PCT/CN2019/099726
Other languages
French (fr)
Inventor
Min Huang
Chao Wei
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/099726 priority Critical patent/WO2021022536A1/en
Priority to PCT/CN2020/107373 priority patent/WO2021023257A1/en
Publication of WO2021022536A1 publication Critical patent/WO2021022536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources

Definitions

  • the following relates generally to wireless communications, and more specifically to resource mapping to mitigate interference in full-duplex systems.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (such as time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • DFT-S-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • an LTE or NR base station may provide a mobile device access to the internet via the wireless network.
  • Network access nodes typically have a high-capacity, wired, backhaul connection (such as fiber) to the network. In some deployments, however, it may be desirable to deploy a larger quantity of access nodes in a small area to provide acceptable coverage to users.
  • IAB integrated access and backhaul
  • IAB access nodes with wireless backhaul connections may be desirable to enhance end user coverage. For example, it may be desirable to configure some access nodes to operate in a full-duplex mode such that the access node may concurrently transmit and receive signals using wireless communication links. Operating an access node in a full-duplex mode may increase system bandwidth, but may result in self-interference at the access node (such as interference between a transmitted signal and a concurrently received signal) . Techniques for reducing self-interference to enable effective deployment of full-duplex access nodes may be desirable.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support resource mapping to mitigate interference in full-duplex systems.
  • the described techniques relate to reducing self-interference at an access node configured for full-duplex operation, such as interference between a signal that is transmitted by the access node and a signal that is concurrently (for example, at least partially overlapping) received by the access node.
  • an intermediate access node may determine resources used by or to be used by a child device for transmitting signals to the intermediate access node.
  • the intermediate access node may determine overlapping resources between the resources used by or to be used by the child device and resources allocated to the intermediate access node for transmitting a signal to a parent access node.
  • the intermediate access node may transmit signals to the parent access node by excluding the overlapping resources.
  • the intermediate access node may transmit an indication of the overlapping resources to the parent access node, and the parent access node may demodulate signals received from the intermediate access node by excluding the overlapping resources.
  • a method of wireless communications at an intermediate access node may include transmitting, to a parent access node, an indication of first resources for receiving a first signal from a child device; receiving, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determining one or more overlapping resource elements of the first resources and the second resources; and transmitting the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to: transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device; receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determine one or more overlapping resource elements of the first resources and the second resources; and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • the apparatus may include means for: transmitting, to a parent access node, an indication of first resources for receiving a first signal from a child device; receiving, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determining one or more overlapping resource elements of the first resources and the second resources; and transmitting the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • a non-transitory computer-readable medium storing code for wireless communications at an intermediate access node is described.
  • the code may include instructions executable by a processor to: transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device; receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determine one or more overlapping resource elements of the first resources and the second resources; and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
  • transmitting the second signal to the parent access node may include operations, features, means, or instructions for determining a portion of the second resources that excludes the one or more overlapping resource elements, and transmitting the second signal to the parent access node using the portion of the second resources.
  • transmitting the second signal to the parent access node using the portion of the second resources may include operations, features, means, or instructions for determining a rate matching output length based on a quantity of the one or more overlapping resource elements, and performing a rate matching of the second signal based on the rate matching output length.
  • determining the rate matching output length may include operations, features, means, or instructions for determining the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor, and adjusting an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
  • transmitting the second signal to the parent access node using the portion of the second resources may include operations, features, means, or instructions for performing a rate matching of the second signal based on the second resources, and puncturing the one or more overlapping resource elements.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, and the portion of the second resources excludes the determined resource blocks or OFDM symbols, and performing a rate matching of the second signal excluding the determined resource blocks or OFDM symbols.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a first numerology associated with the first signal is different than a second numerology associated with the second signal, and the one or more overlapping resource elements may be determined using physical time-frequency resource positions based on determining that the first numerology may be different than the second numerology.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the first resources.
  • the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  • the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  • a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  • transmitting the indication of the first resources may include operations, features, means, or instructions for transmitting the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a location of the first resources may have changed, and transmitting, to the parent access node, an indication that the location of the first resources may have changed.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a guard bandwidth associated with the first resources.
  • determining the one or more overlapping resource elements includes determining that the second resources overlap with fourth resources that include the first resources and the guard bandwidth.
  • the first signal may include a physical random access channel (PRACH) transmission, a physical uplink control channel (PUCCH) transmission, a sounding reference signal (SRS) transmission, or a physical uplink shared channel (PUSCH) transmission that includes ultra-reliable low-latency communication (URLLC) data.
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • the second signal may include a PUSCH transmission.
  • the child device may be a child access node and the first signal may be received over a backhaul link.
  • the child device may be a user equipment and the first signal may be received over an access link.
  • a method of wireless communications at a parent access node may include: receiving, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node; transmitting, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determining one or more overlapping resource elements of the first resources and the second resources; and receiving the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to: receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node; transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources; and receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • the apparatus may include means for: receiving, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node, transmitting, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determining one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources; and receiving the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • a non-transitory computer-readable medium storing code for wireless communications at a parent access node is described.
  • the code may include instructions executable by a processor to: receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node; transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources; and receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for demodulating the second signal by excluding the one or more overlapping resource elements.
  • demodulating the second signal by excluding the one or more overlapping resource elements may include operations, features, means, or instructions for determining resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements, and demodulating the second signal by excluding the determined resource blocks or OFDM symbols.
  • demodulating the second signal may include operations, features, means, or instructions for performing one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
  • the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  • the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  • a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  • receiving the indication of the second resources may include operations, features, means, or instructions for receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the intermediate access node, an indication that a location of the second resources may have changed.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a guard bandwidth associated with the first resources.
  • determining the one or more overlapping resource elements includes determining overlapping resource elements between the second resources and fourth resources that include the first resources and the guard bandwidth.
  • a method of wireless communications at a parent access node may include: receiving, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, selecting, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmitting, to the intermediate access node, an uplink grant including an indication of the second resources.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to: receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
  • the apparatus may include means for: receiving, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, selecting, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmitting, to the intermediate access node, an uplink grant including an indication of the second resources.
  • a non-transitory computer-readable medium storing code for wireless communications at a parent access node is described.
  • the code may include instructions executable by a processor to: receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the intermediate access node, the second signal using the second resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining first one or more resource elements of the first resources.
  • selecting the second resources includes selecting second one or more resource elements that exclude the first one or more resource elements.
  • the indication of the second resources includes one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
  • the indication of the second resources includes one or more of a first bitmap associated with time-domain positions of the second resources or a second bitmap associated with frequency-domain positions of the second resources.
  • a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  • receiving the indication of the second resources may include operations, features, means, or instructions for receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  • Figure 1 illustrates an example of a wireless communication system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 2 illustrates an example of a wireless communications system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 3 illustrates an example of a wireless communications system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 4 illustrates an example of a wireless communication system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figures 5A, 5B, and 5C depict examples of resource maps that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 6 illustrates an example of a process flow that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • FIGS 7 and 8 show block diagrams of devices that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 9 shows a block diagram of a communications manager that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 10 shows a diagram of a system including a device that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • FIGS 11 and 12 show block diagrams of devices that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 13 shows a block diagram of a communications manager that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figure 14 shows a diagram of a system including a device that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • Figures 15 through 17 show flowcharts illustrating methods that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • IAB networks may include multiple IAB access nodes that support wireless connections to a core network.
  • IAB networks may support wireless access traffic (such as traffic between an IAB access node and a user equipment (UE) ) and wireless backhaul traffic (such as traffic between separate IAB access nodes, such as between a first IAB access node and a second IAB access node) .
  • An IAB network may share time and frequency resources between access traffic to or from a UE, and backhaul traffic between access nodes.
  • a signal transmitted by the core network through a “donor node” may be wirelessly relayed through a chain of one or more relay nodes to reach a UE (which may be referred to as “hopping” through the access nodes) , and a signal transmitted by a UE may similarly be wirelessly relayed through a chain of multiple relay nodes (for example, to reach the core network) .
  • access nodes may operate in a half-duplex mode, in which the access node may transmit a signal on a wireless communication link or receive a signal on a wireless communication link, but may not transmit and receive signals concurrently.
  • Wireless full-duplex communication is a relatively new communications technique that may be capable of doubling link capacity by enabling radio network nodes, such as access nodes, to concurrently transmit and receive signals over a same time slot.
  • An access node configured for full-duplex communications may potentially communicate concurrently on uplink (UL) and downlink (DL) communication links with two devices (such as two half-duplex access nodes or UEs) using the same radio resources.
  • a full-duplex relay node may potentially communicate concurrently with a parent access node that is upstream of the relay node in the direction of a donor node that provides access to the core network, and with a child device (such as a UE or child access node that is downstream from the relay node) in a “one-hop” scenario, or with two or more other relay nodes in a “multi-hop” scenario.
  • a relay node may be referred to as an intermediate access node because it may communicate with a parent access node on one side and with a child device on the other.
  • Full-duplex operation may significantly increase system throughput for wireless communication networks, and may also reduce the transfer latency for time-critical services.
  • an access node in a full-duplex mode may result in self-interference at the access node, such as interference between a signal that is wirelessly transmitted by the access node and a signal that is concurrently wirelessly received by the access node.
  • the transmitted signal may interfere with the received signal if the transmitted signal uses time-frequency resources that overlap with the time-frequency resources used by the received signal.
  • Such self-interference may be particularly problematic when the access node is receiving “critical” transmissions (for example, from a child device) , such as transmissions that are used for control information or for coordinating timing between the access node and the child device (such as physical random access channel (PRACH) , physical uplink control channel (PUCCH) , or sounding reference signal (SRS) transmissions) or transmissions that include data that is intended to be received with high reliability and low latency (such as ultra-reliable low-latency communication (URLLC) data, in which the data packet is mapped to a physical uplink shared channel (PUSCH) resource that is expected to have very little interference) .
  • “critical” transmissions for example, from a child device
  • transmissions that are used for control information or for coordinating timing between the access node and the child device such as physical random access channel (PRACH) , physical uplink control channel (PUCCH) , or sounding reference signal (SRS) transmissions
  • In-band full-duplex communication may be configured using techniques for canceling self-interference between downlink and uplink signals. While some cancellation techniques may help with self-interference, if the transmit power of an access node is large, however, there may still be some remaining self-interference after the cancellation. This self-interference may impair the performance of the reception of the received signal. In addition, in the process of cancellation, some signal energy may leak into adjacent frequency bands, which may cause self-interference in these adjacent frequency bands.
  • full-duplex access nodes may use different time-frequency resources for transmitting signals than for receiving signals, particularly when receiving critical transmissions from a child device (such as a UE or a child access node) .
  • Other networks may not support this functionality, however, for several reasons.
  • the uplink backhaul link from an intermediate access node to a parent access node may belong to a different cell than the uplink communication link from a child device (such as a UE or child access node) to the intermediate access node. That is, the uplink backhaul link from the intermediate access node to the parent access node may be in a cell that is controlled by the parent access node (or the donor node) , while the uplink communication link from the child device may be in a cell that is controlled by the intermediate access node.
  • the parent access node may not have access to information regarding the resources used for communications from a child device to the intermediate access node, and therefore may assign uplink resources to the intermediate node that conflict with (such as overlap) resources used by the child device.
  • the radio resources used for uplink transmissions may occupy a subset of OFDM symbols in one slot.
  • the unused resources at the frequency subcarriers (where the uplink transmissions are located) may not be co-granted to a transmitting device, for example, an intermediate access node, without the uplink transmissions using correct (for example, current) signaling formats (such as the format of downlink control information) .
  • correct (for example, current) signaling formats such as the format of downlink control information) .
  • these two kinds of subcarriers for example, PUSCH subcarriers
  • a device such as an intermediate access node may determine (for example, identify) resources used by or to be used by a child device for transmitting one or more signals (such as critical transmissions) to the intermediate access node, and may determine whether any of the resources used by the child device overlap with resources allocated to the intermediate access node for uplink transmissions to the parent access node. If the intermediate access node determines that there are overlapping resources, the intermediate access node may exclude the overlapping resources when transmitting a signal to the parent access node to avoid interference with signals received from the child device.
  • the intermediate access node may exclude the overlapping resources when transmitting a signal to the parent access node to avoid interference with signals received from the child device.
  • the intermediate access node may identify overlapping resource elements, resource blocks, or symbols (such as OFDM symbols) , and may exclude such overlapping resources when transmitting a signal to the parent access node.
  • the intermediate access node may transmit signals to the parent access node using a subset of the resources allocated to the intermediate access node by the parent access node.
  • the intermediate access node may transmit, to the parent access node, an indication of the resources used by the child device, such as an indication of the time-frequency positions of resources used for one or more critical transmissions.
  • the parent access node may then determine (for example, independently determine) whether any of the resources assigned to the intermediate access node for transmissions to the parent access node overlap with any of the resources used by the child device. If the parent access node determines that the resources overlap, the parent access node may demodulate signals received from the intermediate access node by excluding the overlapping resources. That is, the parent access node may operate based on a condition that the intermediate access node will not use (for example, exclude) the overlapping resources when transmitting a signal to the parent access node, and the parent access node may demodulate the received signal accordingly.
  • Techniques provided herein may enhance the efficiency and accuracy of wireless communications systems by enabling full-duplex wireless connections between network devices (such as IAB intermediate access nodes) for wireless backhaul communications while mitigating the potential for self-interference at the intermediate access nodes. For example, such techniques may enable the use of full-duplex communications to increase system bandwidth and reduce latency without degrading the quality of signals received from one or more child devices (such as a UE or a child access node) .
  • aspects of the disclosure are initially described in the context of a wireless communications system.
  • Example wireless communications systems, resource maps, signaling, and process flows implementing the discussed techniques are then described.
  • aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to resource mapping to mitigate interference in full-duplex systems.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more network devices 105 (such as base stations or access nodes) , one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (such as mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable such as mission critical
  • the network devices 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the network devices 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each network device 105 may provide a coverage area 110 over which the UEs 115 and the network device 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a network device 105 and a UE 115 support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, network devices 105, or network equipment (such as core network nodes, relay devices, IAB nodes, or other network equipment) , as shown in Figure 1.
  • the network devices 105 may communicate with the core network 130, or with one another, or both.
  • the network devices 105 may interface with the core network 130 through one or more backhaul links 120 (such as via an S1, N2, N3, or other interface) .
  • the network devices 105 may communicate with one another over the backhaul links 120 (such as via an X2, Xn, or other interface) either directly (such as directly between network devices 105) , or indirectly (such as via the core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless backhaul links, such as in an IAB network.
  • One or more of the network devices 105 described herein may include or may be referred to by a person of ordinary skill in the art as a base transceiver station, a radio base station, an access point, a network node, an access node, an IAB node, a wireless node, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • the wireless communications system 100 may include network devices 105 of different types (such as macro or small cell base stations, donor network devices including a central unit (CU) connected to the core network 130, relay network devices including mobile-termination (MT) functionality and distributed unit (DU) functionality) .
  • network devices 105 of different types such as macro or small cell base stations, donor network devices including a central unit (CU) connected to the core network 130, relay network devices including mobile-termination (MT) functionality and distributed unit (DU) functionality.
  • MT mobile-termination
  • DU distributed unit
  • the UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology in which the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • the UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • the UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, vehicles, or meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as network devices 105 and network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as network devices 105 and network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • the UEs 115 and the network devices 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (such as a bandwidth part (BWP) ) that is operated according to physical layer channels for a given radio access technology (such as LTE, LTE-A, LTE-A Pro, NR) .
  • Each physical layer channel may carry acquisition signaling (such as synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with the UE 115 using carrier aggregation or multi-carrier operation.
  • the UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a network device 105, or downlink transmissions from a network device 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (such as in an FDD mode) or may be configured to carry downlink and uplink communications (such as in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (such as 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 (such as the network devices 105, UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include network devices 105, UEs 115, or both that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (such as a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (such as using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (such as a duration of one modulation symbol) and one subcarrier, in which the symbol period and subcarrier spacing are inversely related.
  • the quantity of bits carried by each resource element may depend on the modulation scheme (such as the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (such as spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, in which a numerology may include a subcarrier spacing ( ⁇ f ) and a cyclic prefix.
  • a carrier may be divided into BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier is active at a given time, and communications for the UE 115 may be restricted to active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (such as 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (such as ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (such as in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (such as depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (such as N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (such as in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration (such as the number of symbol periods in a TTI) may be variable.
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (such as in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region (such as a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (such as CORESETs) may be configured for a set of the UEs 115.
  • the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (such as control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each network device 105 may provide communication coverage via one or more cells, for example, a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a network device 105 (such as over a carrier) and may be associated with an identifier for distinguishing neighboring cells (such as a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (such as a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (such as a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network device 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (such as several kilometers in radius) and may allow unrestricted access by UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered network device 105, as compared with a macro cell, and a small cell may operate in the same or different (such as licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to UEs 115 with service subscriptions with the network provider or may provide restricted access to UEs 115 having an association with the small cell (such as UEs 115 in a closed subscriber group (CSG) , or UEs 115 associated with users in a home or office, among other examples) .
  • a network device 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a network device 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same network device 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different network devices 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network devices 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable, low-latency or mission critical communications.
  • UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (such as mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (such as using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a network device 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a network device 105 or be otherwise unable to receive transmissions from a network device 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a network device 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a network device 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (such as a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (such as a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN gateway Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for UEs 115 served by network devices 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with UEs 115 through a number of other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or network device 105 may be distributed across various network devices (such as radio heads and ANCs) or consolidated into a single network device (such as a network device 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter ranges (such as less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as network devices 105 and UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (such as LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a network device 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a network device 105 or UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a network device 105 may be located in diverse geographic locations.
  • a network device 105 may have an antenna array with a number of rows and columns of antenna ports that the network device 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (such as a network device 105 or a UE 115) to shape or steer an antenna beam (such as a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (such as with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a network device 105 or UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a network device 105 may use multiple antennas or antenna arrays (such as antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals (such as synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a network device 105 multiple times in different directions.
  • the network device 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (such as by a transmitting device, such as a network device 105, or a receiving device, such as a UE 115) a beam direction for subsequent transmission or reception by the network device 105.
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network device 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • Network devices 105 may support functionality for IAB network operation. For example, network devices 105 may be split into support entities (such as functionalities) for promoting wireless backhaul density in collaboration with NR communication access.
  • a network device 105 (such as a donor network device or donor IAB node) may be split into associated CU and DU entities, in which one or more DUs may be partially controlled by an associated CU.
  • the CU entity of the network device 105 may facilitate connection between the core network 130 and the network device (such as an access node) , for example, via a wireline or wireless connection to the core network 130.
  • the one or more DUs of the network device 105 may control or schedule functionality for additional devices (such as one or more alternative network devices 105 or UEs 115) according to configured access and backhaul links. Based on supported CU and DU entities at a network device 105, such a network device 105 may be referred to as a donor base station (such as an IAB donor or donor node) .
  • a donor base station such as an IAB donor or donor node
  • a network device 105 may be split into associated MT and base station DU entities, in which the MT functionality of the network device 105 may be controlled or scheduled by the DU entities of the one or more donor base stations (such as via a Uu interface) .
  • DUs associated with such a network device 105 may be controlled by MT functionality.
  • DUs of the network device 105 may be partially controlled by signaling messages from CU entities of associated donor network devices (such as donor nodes) on the configured access and backhaul links of a network connection (such as via an F1-application protocol (AP) ) .
  • the DUs of the one or more network devices 105 may support one of multiple serving cells of a network coverage area.
  • the DUs of the one or more network devices 105 may control or schedule functionality for additional devices (such as one or more alternative network devices 105, UEs 115) according to configured access and backhaul links. Based on supported MT and DU entities at a network device 105, such a network device may be referred to as an intermediate access node (such as an IAB relay node) .
  • an intermediate access node such as an IAB relay node
  • one or more network devices 105 may include CUs and DUs, in which one or more DUs associated with a donor base station may be partially controlled by a CU associated with the donor base station.
  • a CU may be a component of a network management function, database, data center, or core network 130 (such as a 5G NR core network (5GC) ) .
  • a CU may communicate with core network 130 via a backhaul link 132 (such as a wireline backhaul or a wireless backhaul) .
  • a backhaul link 132 such as a wireline backhaul or a wireless backhaul
  • a CU (such as a donor network device 105) may communicate with the core network 130 (such as the NGC) via a backhaul link 132 (such as a wireline backhaul or wireless backhaul) .
  • the donor network device 105 may be referred to, for example, in an IAB network, as an IAB donor and may be in communication with one or more IAB nodes (such as other network devices 105) operating as DUs relative to the IAB donor and one or more UEs.
  • an IAB network may include a chain of wireless devices (such as starting with a donor network device 105, a radio access network (RAN) node that terminates an interface with the core network, and ending with a UE 115, with any number of relay nodes in between) .
  • Intermediate or relay network devices may support MT functionality (which may also be referred to as UE function (UE-F) ) controlled and scheduled by an IAB donor, or another parent network device, such as a parent access node.
  • Such network devices may also support DU functionality (which may also be referred to as an access node function (AN-F) ) relative to additional entities (such as IAB nodes and UEs) within the relay chain or configuration of the access network (such as downstream) .
  • DU functionality which may also be referred to as an access node function (AN-F)
  • additional entities such as IAB nodes and UEs
  • MT functionality may refer to an implementation that supports at least some aspects of an MT or a UE.
  • These relay mechanisms may forward traffic along to the additional entities, extend the range of wireless access for one or more base stations, or enhance the density of backhaul capability within serving cells.
  • wireless communications system 100 may employ one or more wired and wireless backhaul links (such as backhaul link 132 or backhaul link 134) for establishing connectivity between a core network (such as core network 130) and the one or more wireless nodes within wireless communications system 100.
  • wireless communications system 100 may include multiple network devices 105 (such as base stations, or remote radio heads) , in which at least one network device 105 is coupled to a wireline backhaul link, such as an optical fiber cable. Additional network devices 105 may not be directly coupled to the core network 130 or to another network devices 105 via a wired backhaul link, and may use wireless backhaul links to communicate backhaul traffic.
  • the network devices 105 may wirelessly communicate backhaul access traffic to a high-capacity fiber point (such as a location where a network device is coupled with a wireline link to core network 130) .
  • a high-capacity fiber point such as a location where a network device is coupled with a wireline link to core network 130.
  • Each of the backhaul links 132 and 134 may carry packets from the one or more established PDN gateways through the SGi interface and subsequently direct the packets through the core network and to the coupled wireless nodes over the S1 interface.
  • wireless backhaul communications may support multi-hop transport (such as through multiple intermediate access nodes) and provide robustness through topological redundancy (such as alternative paths for data exchange within a wireless communications network) .
  • Underlying links using wireless backhaul communications may be symmetric in nature and use large-scale resource coordination among the wireless communication links.
  • a network device 105 may be configured to operate in a full-duplex mode, in which the intermediate access node may concurrently transmit a signal to a parent access node (such as an upstream network device 105) and receive a signal from a child device (such as a child access node that is a downstream network device 105 or a UE 115) .
  • a parent access node such as an upstream network device 105
  • a child device such as a child access node that is a downstream network device 105 or a UE 115
  • an intermediate access node configured for full-duplex operation may determine overlapping time-frequency resources between first resources used for transmitting signals to the parent access node and second resources used for receiving signals from the child device, and may exclude such overlapping resources when transmitting a signal to the parent access node to reduce self-interference at the intermediate access node, among other advantages.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports resource mapping to mitigate interference in full-duplex systems in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may support one or more network devices 105 (for example, access nodes) supporting network access to one or more UEs 115 within the cells 205.
  • One or more of the network devices 105 may be connected to a core network 130 via a wireline backhaul connection 220.
  • Infrastructure and spectral resources for network access within the wireless communications system 200 additionally support wireless backhaul links 210 between the network devices 105.
  • the wireless backhaul links 210 may support an IAB network architecture with the network devices 105 serving as IAB nodes.
  • the wireless communications system 200 may implement an IAB architecture by connecting one access node (an IAB “donor” node) , such as the network device 105-a, in the wireless communications system 200 to the core network 130 via a fiber point backhaul connection 220.
  • Other network devices 105 in the wireless communications system 200 may propagate access traffic to and from the donor IAB node via the wireless backhaul network using the wireless backhaul links 210 (such as using beamformed wireless backhaul transmissions) .
  • Each network device 105 may then communicate the access traffic with the one or more UEs 115 that it serves over the access network using the wireless access links 215 (such as using beamformed wireless access transmissions) .
  • the network device 105-a may be split into associated base station CU and DU entities, in which one or more DU entities ( “DUs” ) may be partially controlled by an associated CU entity ( “CU” ) .
  • the CU entity of the network device 105-a may facilitate connection between the core network 130 and the network device 105-a (such as via a wireline backhaul link 220 or, in some examples, a wireless connection to the core network) .
  • the DUs of the network device 105-a may control or schedule functionality for additional devices (such as for intermediate access nodes that may include, for example, the network device 105-b, the network device 105-c, or for the UEs 115) according to the configured wireless backhaul links 210 and the wireless access links 215.
  • additional devices such as for intermediate access nodes that may include, for example, the network device 105-b, the network device 105-c, or for the UEs 115
  • the network device 105-a may be referred to as an IAB donor.
  • An intermediate access node (such as the network device 105-b and the network device 105-c) may support link connectivity with the IAB donor (such as the network device 105-a) as part of a relay chain within the IAB network architecture.
  • the network device 105-b may be split into associated MT and DU entities, in which MT functionality of the network device 105-b may be controlled or scheduled by a DU entity of the network device 105-a.
  • DUs associated with the network device 105-b may be controlled by MT functionality of the network device 105-b.
  • one or more DUs of the network device 105-b may be partially controlled by signaling messages from CU entities of associated IAB donor nodes (such as a CU of the network device 105-a) of the network connection (such as via an F1-application protocol (AP) ) .
  • the DU of the network device 105-b may support a serving cell 205 of the IAB network coverage area, and may provide for communications with one or more UEs 115 via the access links 215.
  • the network device 105-b may be referred to as an intermediate access node, a relay network device, an IAB node, or a relay node, among other examples.
  • a network device 105 may thus be configured for access network functionality (ANF) and UE functionality (UEF) to allow the network device 105 to act as a scheduling entity and a receiving entity (for example, a scheduled entity) .
  • Each of the functionalities may be operated via the one or more backhaul links 210.
  • ANF functionality may enable each network device 105 to operate as a scheduling entity over one or more access links 225, and communicate with one or more UEs 115 located within the IAB network.
  • ANF functionality may further enable each network device 105 to operate as a scheduling entity over one or more coupled backhaul links 210 or to facilitate communication between the one or more other network devices 105 of the IAB network (via the mesh topology) .
  • UEF functionality may enable each network device 105 to operate as a scheduled entity and communicate with one or more other network devices 105 to receive data.
  • a network device 105 may include a routing table for examining a received data packet and forwarding the packet along the best path of the IAB network toward the specified IP address of the packet’s destination.
  • each relay network device 105 (for example, a network device operating as an intermediate access node) may be associated with a single MT function, and may employ backhaul relaying as shown.
  • a relay network device 105 may support multiple MT functions, in which case the relay network devices 105 may be capable of multi-connected cellular backhaul.
  • the wireless communications system 200 may employ one or more wireless access links 215 for establishing mobile access to one or more coupled UEs 115.
  • Each of the network devices 105 and the UEs 115 may be configured to support cellular radio access technologies (RATs) , such as mmWave-based RATs, for access traffic between the UEs 115 and the network devices 105.
  • RATs cellular radio access technologies
  • each of network devices 105 may share resources of the configured RATs for access traffic with backhaul traffic over the network (such as in the case of IAB) .
  • An access link using a mmWave-based radio access technology may be designed as an asymmetric single-hop link, which may be used for assigning control and scheduling tasks to a network device 105 while providing instruction to one or more UEs 115 for scheduling communication.
  • a network device 105 may coordinate wireless resources among multiple UEs 115, while each UE 115 may be assigned to one or more network devices 105.
  • inter-node links between network devices 105 may be symmetric in nature and may enable the network devices 105 to form mesh topologies for enhanced robustness allowing wireless transport to occur along multiple hops.
  • the combination of the UEF and ANF capabilities at a network device 105 of the IAB network may allow the network device 105 to utilize switching operations over the wireless spectrum associated with the RAT, to transmit access traffic to or from UEs 115 and backhaul traffic to/from core network 130 (such as via backhaul links 210 to network device 105-a) providing coupled access to one or more PDNs.
  • a network device 105 operating as a parent access node or intermediate access node may employ resource mapping to mitigate interference in full-duplex systems by excluding overlapping resources for transmitting signals and receiving signals.
  • Figure 3 illustrates an example of a wireless communications system 300 that supports resource mapping to mitigate interference in full-duplex systems in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 300 may implement aspects of the wireless communications system 100 and the wireless communications system 200 described with reference to Figures 1 and 2, respectively.
  • the wireless communications system 300 may be an NR system that supports the sharing of infrastructure and spectral resources for NR access with wireless backhaul link capabilities, in supplement to wireline backhaul connections, providing an IAB network architecture.
  • the wireless communications system 300 may include a core network 305 (such as NGC) and network devices 320 (such as base stations and IAB nodes that may operate as parent access nodes, intermediate access nodes, or child access nodes) that may be split into one or more support entities (such as functionalities) to improve the efficiency of network communications.
  • a core network 305 such as NGC
  • network devices 320 such as base stations and IAB nodes that may operate as parent access nodes, intermediate access nodes, or child access nodes
  • support entities such as functionalities
  • the wireless communications system 300 may include a donor network device (such as a donor IAB node or donor base station. ) split into an associated CU 310 and one or more DUs 315 (including DUs 315-a and 315-b) , in which the DUs 315 associated with the donor network device may be partially controlled by the associated CU 310 of the network device.
  • the CU 310, the DU 315-a, and the DU 315-b may be located within a single device.
  • the DU 315-a and the DU 315-b of the donor network device may be externally located, and may be in wired or wireless communication with the CU 310.
  • the CU 310 may be a component of a database, data center, core network, or network cloud, and may host layer 3 (L3) (such as radio resource control (RRC) , service data adaption protocol (SDAP) , or packet data convergence protocol (PDCP) ) functionality and signaling.
  • L3 such as radio resource control (RRC) , service data adaption protocol (SDAP) , or packet data convergence protocol (PDCP)
  • RRC radio resource control
  • SDAP service data adaption protocol
  • PDCP packet data convergence protocol
  • the CU 310 of the donor network device may communicate with the core network 305 over, for example, an NG interface (which may be an example of a portion of a backhaul link) .
  • the DUs 315 may host lower layer, such as layer 1 (L1) and layer 2 (L2) (such as radio link control (RLC) , media access control (MAC) , or physical (PHY) ) functionality and signaling.
  • RLC radio link control
  • MAC
  • a DU 315 of a donor network node may support one of multiple serving cells of the network coverage according to connections associated with backhaul and access links of the IAB network.
  • the DUs 315 of the donor network device may control both access links and backhaul links within the corresponding network coverage and provide controlling and scheduling for descendant devices such as relay network devices 320 (intermediate access nodes) or UEs 115.
  • Each of the network devices 320 may be split into associated MT and DU entities.
  • MT functionality (such as UE-F) of each network device 320 may be controlled or scheduled by one or more antecedent, parent access nodes such as by a donor node or another upstream access node of the established connectivity via access and backhaul links of a coverage area.
  • DUs of a network device 320 may be controlled by the MT of the network device.
  • the DUs of the network devices 320 may be partially controlled by signaling messages from the CU 310 entities of associated donor network devices of the network connection (such as via an F1-AP interface) .
  • the DUs of the network devices 320 may support one of multiple serving cells of the network coverage area.
  • DU functionality (such as AN-F) may schedule child access nodes and UEs, and may control both access links and backhaul links under its coverage.
  • a network device 320 operating as an intermediate access node may relay communications between a network device 320 operating as a parent access node (such as an IAB donor or an IAB node upstream or higher on the relay chain) and a network device 320 operating as a child access node (such as an IAB node downstream or lower on the relay chain) or a UE 115.
  • an intermediate access node may refer to the DU or access node function (AN-F) of a relay network device.
  • a child device may refer to an IAB node (such as the MT of the IAB node) or a UE that is the child of another IAB node.
  • the wireless communications system 300 may implement 5G NR technologies (such as mmWave) to support an access network (such as between each access node, such as one of network devices 320, and associated UEs 115) and a backhaul network (such as between access nodes, such as network devices 320) .
  • An IAB donor (or an “anchor” ) may refer to a network device that has a wireline connection to the core network, and an IAB node may refer to a network device that relays traffic to or from the donor through one or more hops. IAB networks may thus share resources between access links and backhaul links, and may reuse aspects of access network frameworks.
  • an IAB node may hold MT and DU functions.
  • the MT of network device 320-d may act as or serve as a scheduled node (similar to a UE) scheduled by its parent access node (such as the network device 320-a) .
  • the DU of network device 320-d may act as or serve as a scheduling node that schedules child devices of the network device 320-d (such as the UEs 115) .
  • the DU of network device 320-a may also schedule child IAB nodes downstream in the relay chain (such as network device 320-d) .
  • wireless communications systems may be associated with resource direction types (such as for time-domain resources in NR) .
  • a time-domain resource may be assigned (such as or configured by the network) as a downlink resource, an uplink resource or a flexible resource.
  • a downlink (DL) resource may refer to a resource on which downlink communication (such as downstream communications from a parent access node to an intermediate access node or downstream communications from an intermediate access node to a child access node or a UE) is allowed (such as synchronization signal block (SSB) resources, channel state information reference signal (CSI-RS) resources, physical downlink control channel (PDCCH) resources, or physical downlink shared channel (PDSCH) resources) .
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • An uplink (UL) resource may refer to a resource on which uplink communication (such as upstream communications from a UE or child access node to an intermediate access node or upstream communications from an intermediate access node to a parent access node) is allowed (such PRACH resources, PUCCH resources, PUSCH resources, or SRS resources) .
  • a flexible resource may refer to a resource on which the communication direction may be overwritten (such as to uplink or downlink) later by a scheduling node (such as by a donor node or a parent access node) .
  • an intermediate access node configured for full-duplex operation may determine overlapping resources between first resources (such as uplink resources allocated to the intermediate access node) for transmitting signals to a parent access node and second resources (such as uplink resources allocated to a child device, such as a child access node or UE) for receiving signals from the child device.
  • the intermediate access node may then transmit signals to the parent access node by excluding the overlapping resources, thereby reducing or eliminating self-interference at the intermediate access node.
  • Figure 4 illustrates an example of a wireless communication system 400 that supports resource mapping to mitigate interference in full-duplex systems in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 400 may implement aspects of the wireless communications system 100, the wireless communications system 200, or the wireless communication system 300 described with reference to Figures 1–3, respectively.
  • the wireless communication system 400 may include a parent access node 405, an intermediate access node 410, a child access node 415, and a UE 420.
  • the parent access node 405, the intermediate access node 410, and the child access node 415 may be examples of the network devices 105 and 320 described with reference to Figures 1–3.
  • the intermediate access node 410 may be configured to communicate with the parent access node 405 via a downlink wireless backhaul link 425 (such as for signals transmitted by the parent access node 405 and received by the intermediate access node 410) and an uplink wireless backhaul link 430 (such as for signals transmitted by the intermediate access node 410 and received by the parent access node 405) .
  • a downlink wireless backhaul link 425 such as for signals transmitted by the parent access node 405 and received by the intermediate access node 410
  • an uplink wireless backhaul link 430 such as for signals transmitted by the intermediate access node 410 and received by the parent access node 405 .
  • the intermediate access node 410 may be configured to communicate with the child access node 415 via a downlink wireless backhaul link 435 (such as for signals transmitted by the intermediate access node 410 and received by the child access node 415) and an uplink wireless backhaul link 440 (such as for signals transmitted by the child access node 415 and received by the intermediate access node 410) .
  • a downlink wireless backhaul link 435 such as for signals transmitted by the intermediate access node 410 and received by the child access node 41
  • an uplink wireless backhaul link 440 such as for signals transmitted by the child access node 415 and received by the intermediate access node 410 .
  • the intermediate access node 410 may be configured to communicate with the UE 420 via a downlink wireless access link 445 (such as for signals transmitted by the intermediate access node 410 and received by the UE 420) and an uplink wireless access link 450 (such as for signals transmitted by UE 420 and received by the intermediate access node 410) .
  • a downlink wireless access link 445 such as for signals transmitted by the intermediate access node 410 and received by the UE 420
  • an uplink wireless access link 450 such as for signals transmitted by UE 420 and received by the intermediate access node 410 .
  • the intermediate access node 410 may be configured for full-duplex communication, in which the intermediate access node 410 may concurrently transmit a signal and receive a signal.
  • the intermediate access node 410 may be capable of transmitting a signal to the parent access node 405 using the uplink wireless backhaul link 430 concurrently with receiving a signal from the child access node 415 using the uplink wireless backhaul link 440, or concurrently with receiving a signal from the UE 420 using the uplink child access link 450.
  • the intermediate access node 410 may be capable of receiving a signal from the parent access node 405 via the downlink wireless backhaul link 425 concurrently with transmitting a signal to the child access node 415 using the downlink wireless backhaul link 435, or concurrently with transmitting a signal to the UE 420 using the downlink wireless access link 445.
  • the parent access node 405 may belong to a different cell than the child access node 415 and the UE 420, and may not have access to information regarding time-frequency resources that may be assigned to the child access node 415 or to the UE 420.
  • the parent access node 405 may assign some of the same resources that are assigned to the child access node 415 or the UE 420 for uplink transmissions from the child device to the intermediate access node 410.
  • one or more of the resources allocated by the parent access node 405 to the intermediate access node 410 for uplink transmissions from the intermediate access node 410 to the parent access node 405 may overlap with (for example, may be the same as, may include, may collide with) some of the resources assigned to a child device (such as child access node 415 or UE 420) for uplink transmissions from the child device to the intermediate access node 410.
  • full-duplex operation of the intermediate access node 410 may result in self-interference at the intermediate access node 410 for the overlapping resources such that a signal communicated with the parent access node 405 may interfere with an in-band signal that is concurrently communicated with a child device (such as child access node 415 or UE 420) .
  • a child device such as child access node 415 or UE 420
  • the power associated with transmitting a signal from the intermediate access node 410 may be higher than the power associated with receiving a signal at the intermediate access node 410, and thus the effect of self-interference on the received signal may be more significant than the effect of self-interference on the transmitted signal. That is, for an intermediate access node 410 (for example, an IAB node) that is configured for full-duplex operation, the transmitted signal in any transmission link may cause self-interference with the received signal in any reception link. When the interference strength is large enough (for example, when it is larger than the thermal noise power) , it may impair the reception performance of the corresponding channel or signal.
  • Such self-interference may be particularly problematic if the received signal is a critical uplink transmission from a child device, such an uplink transmission that is used for time-frequency tracking between the intermediate access node 410 and the child device, or a signal that is expected to be received with high reliability or low latency.
  • Such critical uplink transmissions may include, for example, PRACH, PUCCH, or SRS transmissions, or PUSCH transmissions that include URLLC data.
  • Other types of transmissions may also experience such self-interference and may also benefit from techniques described herein.
  • the intermediate access node 410 may determine overlapping resource elements between the resources assigned for uplink transmissions to the parent access node 405 and the resources assigned for uplink transmissions from a child device to the intermediate access node 410. The intermediate access node 410 may then exclude such overlapping resource elements from the resources used to transmit signals to the parent access node 405 to avoid self-interference with signals received from a child device. That is, the intermediate access node 410 may perform resource mapping for uplink transmissions (such as for PUSCH transmissions to the parent access node 405) to exclude the overlapping resources.
  • Figures 5A, 5B, and 5C depict examples of resource maps 500-a, 500-b, and 500-c that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the resource map 500-a depicts uplink time-frequency resources 505 that may be used by an intermediate access node (such as an intermediate access node 410) for transmitting an uplink signal to a parent access node (such as parent access node 405) .
  • the time-frequency resources 505 may be assigned or allocated to the intermediate access node by the parent access node in an uplink grant that includes an indication of the time-frequency resources 505.
  • the time-frequency resources 505 may be resources that are associated within a single time slot.
  • the intermediate access node may determine (based on, for example, information in the uplink grant) that there are one or more overlapping resources 510 (such as resource elements, resource blocks, or OFDM symbols) between the uplink time-frequency resources 505 assigned to the intermediate access node and resources associated with receiving a signal from a child device (such as a child access node 415 or a UE 420) .
  • overlapping resources 510 may include positions (such as positions associated with one or more of time or frequency) associated with critical uplink transmissions from the child device to the intermediate access node, such as the positions of PRACH, PUCCH, or SRS transmissions from the child device, or the positions of PUSCH transmissions from the child device that include URLLC data.
  • the intermediate access node may, based on determining the overlapping resources 510, transmit uplink signals to the parent access node using a subset of the uplink time-frequency resources 505 that excludes the overlapping resources 510. For example, the intermediate access node may perform resource mapping for uplink PUSCH signals (such as PUSCH signals to be transmitted from the intermediate access node to the parent access node) by excluding the overlapping resources 510.
  • uplink PUSCH signals such as PUSCH signals to be transmitted from the intermediate access node to the parent access node
  • the intermediate access node may also transmit, to a parent access node, either an indication of the resources used by or to be used by a child device for transmitting signals to the intermediate access node (to enable the parent access node to determine the overlapping resources 510) , or an explicit indication of the positions of the overlapping resources 510 (in which case the parent access node may not need to determine the positions of the overlapping resources 510 because they are explicitly signaled) .
  • the intermediate access node may transmit, to the parent access node, an indication of the resources associated with receiving a signal from the child device to the intermediate access node.
  • Such resources may include overlapping resources 510, and may, in some examples, include additional resources that are not overlapping.
  • the indication of the resources may include an indication of the position (s) of one or more resource elements that may be used, by a child device, for transmitting critical uplink transmissions to the intermediate access node.
  • the parent access node may then independently determine or identify, based on the indication of the resources from the intermediate access node, the one or more overlapping resources 510 between the uplink time-frequency resources 505 assigned to the intermediate access node and the resources associated with transmitting a signal from a child device.
  • the intermediate access node may, additionally or alternatively, transmit an indication of the position of the one or more overlapping resources 510, in which case the parent access node may not make an independent determination of the one or more overlapping resources 510.
  • the parent access node may then demodulate signals received from the intermediate access node based on the determination of the overlapping resources 510 (or based on receiving an indication of the overlapping resources 510) , such as by excluding the overlapping resources 510 from the demodulation.
  • the parent access node may exclude overlapping resource elements, overlapping resource blocks, or overlapping OFDM symbols from the demodulation.
  • the resource map 500-b depicts another example of resource mapping in which the determination of overlapping resources takes into account the bandwidth of guard bands between the transmission band and the reception band used by the intermediate access node.
  • a guard band may be used to increase signal quality and decrease the likelihood of self-interference at the intermediate access node.
  • the guard bandwidth may include an upper guard bandwidth 525, a lower guard bandwidth 530, or both that may be added (appended) to the frequency-domain resources 520 assigned to a child device for uplink transmissions to reduce or eliminate the potential for self-interference. It may be desirable for such guard bandwidths to be kept empty (such as not scheduled by the parent access node for transmissions from the intermediate access node) .
  • the intermediate access node or the parent access node may determine whether there are overlapping resources based on the resources used by the child device added with the upper and lower guard bands. That is, the overlapping resources may include one or more of the upper guard bandwidth 525, the resources 520 used by a child device to transmit a signal to the intermediate access node, or the lower guard bandwidth 530. The intermediate access node and parent access node may then exclude the overlapping resources as described with reference to Figure 5A.
  • the size or range of the upper and lower guard bandwidths 525 and 530 may be selected or configured by the parent access node or by the intermediate access node based on various considerations that may be related to the likelihood of self-interference at the intermediate node. If the likelihood is relatively high, for example, larger guard bandwidths may be used. If the likelihood is relatively low, for example, smaller guard bandwidths may be used. In some examples, the guard bandwidth may not be not used; that is, the guard bandwidth may be set to zero (as described with reference to the resource map 500-a or Figure 5A) .
  • the guard bandwidths may depend on one or more of the capability of the intermediate access node to mitigate self-interference, on the transmit power of signals transmitted by the intermediate access node, or on the numerology of the OFDM waveform transmitted by the intermediate access node or by the child device, among other factors.
  • the parent access mode may configure the guard bandwidths and indicate the guard bandwidths to the intermediate access node, or, in some examples, the intermediate access node may configure the guard bandwidths and indicate the guard bandwidths to the parent access node.
  • the resource map 500-c depicts an example of resource mapping when the intermediate access node transmits the indication of the resources to the parent access node before receiving the uplink grant from the parent access node.
  • the parent access node may pre-emptively eliminate the potential for self-interference at the intermediate access node by selecting (allocating) uplink time-frequency resources 540 for the intermediate access node that exclude the indicated resources 535.
  • the intermediate access node may then transmit signals using the uplink time-frequency resources 540 (without excluding any of the resources 535) , and the parent access node may then demodulate signals received from the intermediate access node using the assigned uplink time-frequency resources 535 (without excluding any of the uplink time-frequency resources 535) .
  • Figure 6 illustrates an example of a process flow 600 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the process flow 600 may implement aspects of the wireless communication system 100, 200, or 300 described with reference to Figures 1–3, respectively, using resource maps such as those described with reference to Figures 5A, 5B, and 5C.
  • the process flow 600 may depict signaling and operations performed by a parent access node 605, an intermediate access node 610, and a child device 615, which may be examples of the devices described with reference to Figures 1–5.
  • the signals and operations of the parent access node 605, the intermediate access node 610, and the child device 615 may be transmitted or performed in a different order than the exemplary order shown. In some examples, some operations or transmissions may also be omitted from the process flow 600, or other operations may be added to the process flow 600.
  • the intermediate access node 610 receives a signal from the child device 615.
  • the signal is received using first resources that may include resource elements, resource blocks, or OFDM symbols that may be used to determine the first resources.
  • the signal may include an indication of the first resources.
  • the intermediate access node 610 may determine the first resources based on the signal received from the child device 615.
  • the intermediate access node 610 may determine the first resources by determining the position (such as one or more of a time-domain position or a frequency-domain position) of critical uplink transmissions from the child device, such as the positions of PRACH, PUCCH, or SRS transmissions, or the position of PUSCH transmissions that may include URLLC data.
  • the intermediate node may determine the first resources by determining one or more of a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources, among other factors.
  • the intermediate access node 610 may transmit an indication of the first resources to the parent access node based on determining the first resources at 625.
  • the indication of the first resources may include, for example, one or more positions of critical uplink transmissions from the child device.
  • the parameters of PRACH, PUCCH or SRS associated with critical uplink transmissions may be configured in an RRC layer.
  • a base station may communicate the applied PRACH/PUCCH/SRS parameter configurations to the UE.
  • the resources used for PRACH, PUCCH, and SRS may be indicated or specified in different manners.
  • PRACH, PUCCH, or SRS may occupy a block of time-frequency resource (for example, a quantity of continuous OFDM symbols/slots and a quantity of continuous physical resource blocks) .
  • One SRS resource may occupy a part of resource elements (such as a comb bin or comb offset) in a comb pattern.
  • the indication of the first resources may represent the position of critical uplink transmissions from the child device using a set of configuration parameters.
  • the configuration parameters may include one or more of a time-domain position, a frequency-domain position, or a periodic pattern of the PRACH, among other parameters.
  • the configuration parameters may include one or more of a time-domain position, a frequency-domain position, a periodic pattern, or a frequency-hopping mode of the PUCCH, among other parameters.
  • the configuration parameters may include one or more of a time-domain position, a frequency-domain position, a periodic pattern, or a comb offset of the SRS, among other parameters.
  • the configuration parameters may include one or more of a time-domain position or a frequency-domain position of the PUSCH, among other parameters.
  • the indication of the first resources may represent the position of critical uplink transmissions from the child device by time-domain positions and frequency-domain positions of its radio resources, which may be expressed by bitmaps (or by other expressions, such as start position and length, or start position, or end position, or any combination of these) having a resource-block symbol granularity.
  • the indication of the first resources may include a first bitmap that is associated with time-domain positions of the first resources.
  • the first bitmap may have a length that corresponds to a quantity of OFDM symbols in a slot, such as the maximum quantity of OFDM symbols of a PUSCH transmission in one slot.
  • the indication of the first resources may include a second bitmap that is associated with frequency-domain positions of the first resources.
  • the second bitmap may have a length that corresponds to a quantity of resource blocks in a slot, such as the maximum quantity of resource blocks of a PUSCH transmission in one slot.
  • the intermediate access node 610 may transmit the indication of the first resources at 630 using higher-layer signaling, such as RRC signaling.
  • RRC signaling may enable the intermediate access node 610 to update the information provided to the parent access node 605 statically or semi-statically, among other implementations.
  • the intermediate access node 610 may, at 630, transmit the indication of the first resources (including the position of critical uplink transmissions from the child device) via RRC signaling.
  • the intermediate access node 610 may transmit an indication that the position of the first resources has changed to the parent access node 605, such as by transmitting a second indication of the first resources that includes the new position of the critical uplink transmissions.
  • the intermediate access node 610 may transmit the indication of the first resources at 630 using other types of dynamic signaling, such as in a PHY/MAC-layer message transmitted in DCI or a MAC CE that may index or specify one of a list of configurations defined in a higher-layer message, such as a list of configuration parameters or bitmaps as described earlier.
  • the parent access node 605 may transmit an uplink grant to the intermediate access node 610.
  • the uplink grant may include an indication of second resources to be used by the intermediate access node 610 for transmitting uplink signals to the parent access node 605.
  • the parent access node 605 may transmit the uplink grant before receiving the indication of the first resources from the intermediate access node 610. In other examples, the parent access node 605 may transmit the uplink grant after receiving the indication of the first resources from the intermediate access node 610.
  • the parent access node 605 may select the second resources based on the indication of the first resources such that there may be no overlapping resource elements between the second resources and the first resources. In other examples, the parent access node 605 may select the second resources independently of the indication of the first resources (whether the indication of the first resources have been received or not) .
  • the intermediate access node 610 may determine (for example, identify) , based on the indication of the first resources (such as based on the first resources determined at 625) and based on the indication of the second resources received from the parent access node 605 in the uplink grant, overlapping resource elements of the first resources and the second resources.
  • overlapping resource elements may be resource elements of the first resources that have the same time-frequency positions as resource elements of the second resources.
  • the intermediate access node 610 may identify overlapping resource elements using the indexes of resource elements, resource blocks, or OFDM symbols. In some examples, if the numerology of signals transmitted on the communication link between the child device 615 and the intermediate access node 610 is different than the numerology of signals transmitted on the communication link between the intermediate access node 610 and the parent access node 605, the intermediate access node 610 may identify overlapping resource elements using physical time-frequency resource positions rather than using the indexes of the resource elements, resource blocks, or OFDM symbols.
  • the intermediate access node 610 may consider upper and lower guard bandwidths when determining the overlapping resource elements, such as described with reference to Figure 5B. That is, in some examples, overlapping resource elements may be resource elements of the first resources and of the upper and lower guard bandwidths that overlap with resource elements of the second resources.
  • the parent access node 605 may optionally determine (for example, identify) , based on the indication of the first resources received from the intermediate access node and on the indication of the second resources (such as based on the second resources selected by the parent access node 605 for inclusion in the uplink grant) , overlapping resource elements of the first resources and the second resources. That is, at 645, the parent access node 605 may independently determine the overlapping resource elements in a manner similar to (or the same as) the manner in which the intermediate access node 610 determines the overlapping resource elements at 640.
  • the intermediate access node 610 may optionally transmit an indication of the overlapping resource elements to the parent access node 605, in which case the parent access node 605 may not independently determine the overlapping resource elements at 645.
  • the parent access node 605 may not need to determine overlapping resource elements at 645, and the remaining aspects of process flow 600 that are related to excluding overlapping resource elements may not be performed.
  • the intermediate access node 610 may perform resource mapping for an uplink transmission to the parent access node 605 by excluding the overlapping resource elements.
  • resource mapping may also include rate matching that excludes the overlapping resource elements.
  • the intermediate access node 610 may perform physical resource mapping and rate matching by excluding the overlapping resource elements for a PUSCH transmission to the parent access node 605.
  • the intermediate access node 610 may perform resource mapping by excluding the overlapping resource elements using one or more techniques.
  • a partial time-frequency resource of a resource element or a resource block of a PUSCH in one link is overlapping with the time-frequency resource of a critical uplink transmission in the other link (such as a communication link from the child device 615 to the intermediate access node 610) when the waveforms of the two links have different numerologies, then the entire resource of the resource element or resource block may be excluded from PUSCH resource mapping.
  • the intermediate access node 610 may exclude the overlapping resource elements by determining the output length of a rate matching procedure based on the quantify of overlapping resource elements, such as by subtracting the quantity of the overlapping resource elements (n overlap ) multiplied by the modulation degree (n modulation , which may be equal to 2 for BPSK, 4 for 16 QAM, 6 for 64 QAM, 8 for 256 QAM, 10 for 1024 QAM, 12 for 4096 QAM, or another modulation degree) multiplied by the number of spatial multiplexing degree (n MIMO ) . That is, the number of rate-matched bits may subtract n overlap *n modulation *n MIMO from the number of rate-matched bits for the second resources including the overlapping resource elements.
  • the intermediate access node 610 may exclude the overlapping resource elements by performing rate-matching based on the number of resource elements in the second resources including the overlapping resource elements, and may then puncture (remove) the bits in the overlapping resource elements. That is, the rate-matched bits may be mapped into all of the resource elements of the second resources including the overlapping resource elements, but the bits in the overlapping resource elements may then be removed.
  • the intermediate access node 610 may exclude the overlapping resource elements by determining resource blocks that include one or more overlapping resource elements, and excluding these resource blocks in the same manner as described above for excluding the overlapping resource elements. That is, the entire resource blocks that include one or more overlapping resource elements may be excluded from the PUSCH resource mapping and rate matching.
  • the intermediate access node 610 may exclude the overlapping resource elements by determining OFDM (or OFDM/SC-FDM) symbols that include one or more overlapping resource elements, and excluding these symbols in the same manner as described above for excluding the overlapping resource elements. That is, the entire OFDM (or OFDM/SC-FDM) symbols that include one or more overlapping resource elements may be excluded from the PUSCH resource mapping and rate matching.
  • excluding (only) the overlapping resource elements or excluding the resource blocks that include overlapping resource elements may be appropriate for transmitting OFDM waveforms, whereas excluding the symbols that include overlapping resource elements may be appropriate for transmitting SC-FDM waveforms.
  • excluding the overlapping resource elements results in higher spectral efficiency than excluding resource blocks or symbols (because fewer resource elements may be excluded) , but may result in higher computational complexity.
  • the intermediate access node 610 may transmit a signal to the parent access node 605 by excluding the overlapping resource elements.
  • the intermediate access node 610 may transmit the signal based on the resource mapping performed at 655, which may include physical resource mapping and rate matching that excludes the overlapping resource elements (or that excludes the resource blocks or symbols that include overlapping resource elements) .
  • the intermediate access node 610 may receive a signal from the child device 615 using the first resources (which may be performed, for example, concurrently with transmitting the signal to the parent access node 605) .
  • the intermediate access node 610 may receive a signal from the child device 615 over a first duration that overlaps with a second duration over which the intermediate access node 610 is transmitting a signal to the parent access node 605, such as via full-duplex operation of the intermediate access node 610.
  • the parent access node 605 may receive the signal from the intermediate access node 610 using a portion of the second resources that excludes the overlapping resource elements and may demodulate the signal by excluding the overlapping resource elements.
  • the parent access node 605 may demodulate the signal by performing physical resource de-mapping or rate de-matching that excludes the overlapping resource elements, such as by performing the inverse of the physical resource mapping and rate matching performed by the intermediate access node 610 at 655.
  • Figure 7 shows a block diagram of a device 705 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a network device 105 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the communications manager 715 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node, transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node, determine one or more overlapping resource elements of the first resources and the second resources, and receive the second signal from the intermediate access node such that the overlapping resources are excluded from the reception of the second signal.
  • the communications manager 715 may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node and select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the communications manager 715 may transmit, to the intermediate access node based on selecting the second resources, an uplink grant including an indication of the second resources.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
  • the communications manager 715 may be implemented in hardware, code (such as software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code such as software or firmware executed by a processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate
  • the communications manager 715 may be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver component.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • Figure 8 shows a block diagram of a device 805 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705 or a network device 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 845.
  • the communications manager 815 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a resource indication component 820, a grant component 825, an overlapping resource determination component 830, a signal reception component 835, and a resource selection component 840.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the resource indication component 820 may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node.
  • the grant component 825 may transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the overlapping resource determination component 830 may determine one or more overlapping resource elements of the first resources and the second resources.
  • the signal reception component 835 may receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • the resource indication component 820 may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node.
  • the resource selection component 840 may select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the grant component 825 may transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
  • the transmitter 845 may transmit signals generated by other components of the device.
  • the transmitter 845 may be collocated with a receiver 810 in a transceiver component.
  • the transmitter 845 may be an example of aspects of the transceiver 1020 described with reference to Figure 10.
  • the transmitter 845 may utilize a single antenna or a set of antennas.
  • Figure 9 shows a block diagram of a communications manager 905 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a resource indication component 910, a grant component 915, an overlapping resource determination component 920, a signal reception component 925, and a resource selection component 930. Each of these components may communicate, directly or indirectly, with one another (such as via one or more buses) .
  • the resource indication component 910 may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node.
  • the resource indication component 910 may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node.
  • receiving the indication of the second resources includes receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  • the resource indication component 910 may receive, from the intermediate access node, an indication that a location of the second resources have changed.
  • receiving the indication of the second resources includes receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  • the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  • the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  • a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  • the indication of the second resources includes one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
  • the indication of the second resources includes one or more of a first bitmap associated with time-domain positions of the second resources or a second bitmap associated with frequency-domain positions of the second resources.
  • a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  • the grant component 915 may transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the grant component 915 may transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
  • the overlapping resource determination component 920 may determine one or more overlapping resource elements of the first resources and the second resources.
  • the overlapping resource determination component 920 may determine a guard bandwidth associated with the first resources. In some examples, determining the one or more overlapping resource elements includes determining overlapping resource elements between the second resources and fourth resources that include the first resources and the guard bandwidth.
  • the signal reception component 925 may receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • the signal reception component 925 may demodulate the second signal by excluding the one or more overlapping resource elements.
  • the signal reception component 925 may determine resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements.
  • the signal reception component 925 may demodulate the second signal by excluding the determined resource blocks or OFDM symbols.
  • the signal reception component 925 may perform one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
  • the signal reception component 925 may receive, from the intermediate access node, the second signal using the second resources.
  • the resource selection component 930 may select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the resource selection component 930 may determine first one or more resource elements of the first resources and select the second resources by selecting second one or more resource elements that exclude the first one or more resource elements.
  • Figure 10 shows a diagram of a system including a device 1005 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a network device 105 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a network communications manager 1015, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an inter-station communications manager 1045. These components may be in electronic communication via one or more buses (such as bus 1050) .
  • buses such as bus 1050
  • the communications manager 1010 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device, receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node, determine one or more overlapping resource elements of the first resources and the second resources, and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • the network communications manager 1015 may manage communications with the core network (such as via one or more wired backhaul links) .
  • the network communications manager 1015 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some examples the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include RAM, ROM, or a combination thereof.
  • the memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (such as the processor 1040) cause the device to perform various functions described herein.
  • the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1040 may include an intelligent hardware device, (such as a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (such as the memory 1030) to cause the device 1005 to perform various functions (such as functions or tasks supporting resource mapping to mitigate interference in full-duplex systems) .
  • the inter-station communications manager 1045 may manage communications with other network devices 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network devices 105. For example, the inter-station communications manager 1045 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1045 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between network devices 105.
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 1035 may not be directly executable by the processor 1040 but may cause a computer (such as when compiled and executed) to perform functions described herein.
  • Figure 11 shows a block diagram of a device 1105 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a network device 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120.
  • the communications manager 1115 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device, receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node, determine one or more overlapping resource elements of the first resources and the second resources, and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • the communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
  • the communications manager 1115 may be implemented in hardware, code (such as software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code such as software or firmware executed by a processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate
  • the communications manager 1115 may be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1115, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1115, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1120 may transmit signals generated by other components of the device 1105.
  • the transmitter 1120 may be collocated with a receiver 1110 in a transceiver component.
  • the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the transmitter 1120 may utilize a single antenna or a set of antennas.
  • Figure 12 shows a block diagram of a device 1205 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a device 1105, or a network device 105 as described herein.
  • the device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1240.
  • the communications manager 1215 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein.
  • the communications manager 1215 may include a resource indication component 1220, a grant component 1225, an overlapping resource determination component 1230, and a concurrent communication component 1235.
  • the communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
  • the resource indication component 1220 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device.
  • the grant component 1225 may receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node.
  • the overlapping resource determination component 1230 may determine one or more overlapping resource elements of the first resources and the second resources.
  • the concurrent communication component 1235 may transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • the transmitter 1240 may transmit signals generated by other components of the device 1205.
  • the transmitter 1240 may be collocated with a receiver 1210 in a transceiver component.
  • the transmitter 1240 may be an example of aspects of the transceiver 1420 described with reference to Figure 14.
  • the transmitter 1240 may utilize a single antenna or a set of antennas.
  • Figure 13 shows a block diagram of a communications manager 1305 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein.
  • the communications manager 1305 may include a resource indication component 1310, a grant component 1315, an overlapping resource determination component 1320, a concurrent communication component 1325, and a resource determination component 1330. Each of these components may communicate, directly or indirectly, with one another (such as via one or more buses) .
  • the resource indication component 1310 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device.
  • transmitting the indication of the first resources includes transmitting the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  • the resource indication component 1310 may transmit, to the parent access node, an indication that the location of the first resources has changed.
  • the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  • the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  • a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  • a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  • the first signal includes a PRACH transmission, a PUCCH transmission, an SRS transmission, or a PUSCH transmission that includes URLLC data.
  • the second signal includes a PUSCH transmission.
  • the child device is a child access node and the first signal is received over a backhaul link. In some examples, the child device is a user equipment and the first signal is received over an access link.
  • the grant component 1315 may receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node.
  • the overlapping resource determination component 1320 may determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources.
  • the overlapping resource determination component 1320 may determine that a first numerology associated with the first signal is different than a second numerology associated with the second signal.
  • the one or more overlapping resource elements are determined using physical time-frequency resource positions based on determining that the first numerology is different than the second numerology.
  • the concurrent communication component 1325 may transmit the second signal to the parent access node based on determining the one or more overlapping resource elements of the first resources and the second resources.
  • the concurrent communication component 1325 may receive the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
  • the concurrent communication component 1325 may determine a portion of the second resources that excludes the one or more overlapping resource elements.
  • the concurrent communication component 1325 may transmit the second signal to the parent access node using the portion of the second resources.
  • the concurrent communication component 1325 may determine a rate matching output length based on a quantity of the one or more overlapping resource elements.
  • the concurrent communication component 1325 may perform a rate matching of the second signal based on the rate matching output length.
  • the concurrent communication component 1325 may determine the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor.
  • the concurrent communication component 1325 may adjust an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
  • the concurrent communication component 1325 may perform a rate matching of the second signal based on the second resources.
  • the concurrent communication component 1325 may puncture the one or more overlapping resource elements.
  • the concurrent communication component 1325 may determine resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, in which the portion of the second resources excludes the determined resource blocks or OFDM symbols.
  • the concurrent communication component 1325 may perform a rate matching of the second signal excluding the determined resource blocks or OFDM symbols.
  • the resource determination component 1330 may determine the first resources.
  • the resource determination component 1330 may determine that a location of the first resources has changed.
  • Figure 14 shows a diagram of a system including a device 1405 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of or include the components of device 1105, device 1205, or a network device 105 as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (such as bus 1450) .
  • buses such as bus 1450
  • the communications manager 1410 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device, receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node, determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources, and transmit the second signal to the parent access node based on determining the one or more overlapping resource elements of the first resources and the second resources.
  • the network communications manager 1415 may manage communications with the core network (such as via one or more wired backhaul links) .
  • the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1425. However, in some examples the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1430 may include RAM, ROM, or a combination thereof.
  • the memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (such as the processor 1440) cause the device to perform various functions described herein.
  • the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1440 may include an intelligent hardware device, (such as a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1440 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1440.
  • the processor 1440 may be configured to execute computer-readable instructions stored in a memory (such as the memory 1430) to cause the device 1405 to perform various functions (such as functions or tasks supporting resource mapping to mitigate interference in full-duplex systems) .
  • the inter-station communications manager 1445 may manage communications with other network devices 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network devices 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between network devices 105.
  • the code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 1435 may not be directly executable by the processor 1440 but may cause a computer (such as when compiled and executed) to perform functions described herein.
  • Figure 15 shows a flowchart illustrating a method 1500 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by an intermediate access node or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to Figures 11–14.
  • an intermediate access node may execute a set of instructions to control the functional elements of the intermediate access node to perform the functions described below. Additionally or alternatively, an intermediate access node may perform aspects of the functions described below using special-purpose hardware.
  • the intermediate access node may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a resource indication component as described with reference to Figures 11–14.
  • the intermediate access node may receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a grant component as described with reference to Figures 11–14.
  • the intermediate access node may determine one or more overlapping resource elements of the first resources and the second resources.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an overlapping resource determination component as described with reference to Figures 11–14.
  • the intermediate access node may transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a concurrent communication component as described with reference to Figures 11–14.
  • Figure 16 shows a flowchart illustrating a method 1600 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a parent access node or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to Figures 7–10.
  • a parent access node may execute a set of instructions to control the functional elements of the parent access node to perform the functions described below. Additionally or alternatively, a parent access node may perform aspects of the functions described below using special-purpose hardware.
  • the parent access node may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a resource indication component as described with reference to Figures 7–10.
  • the parent access node may transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a grant component as described with reference to Figures 7–10.
  • the parent access node may determine one or more overlapping resource elements of the first resources and the second resources.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an overlapping resource determination component as described with reference to Figures 7–10.
  • the parent access node may receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a signal reception component as described with reference to Figures 7–10.
  • Figure 17 shows a flowchart illustrating a method 1700 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a parent access node or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to Figures 7–10.
  • a parent access node may execute a set of instructions to control the functional elements of the parent access node to perform the functions described below. Additionally or alternatively, a parent access node may perform aspects of the functions described below using special-purpose hardware.
  • the parent access node may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a resource indication component as described with reference to Figures 7–10.
  • the parent access node may select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a resource selection component as described with reference to Figures 7–10.
  • the parent access node may transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a grant component as described with reference to Figures 7–10.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. An access node, such as an intermediate access node, may be configured for full-duplex operation that may include transmitting a signal to a parent access node and concurrently receiving a signal from a child device. The intermediate access node may determine overlapping resources between first resources used by the child device for transmitting signals to the intermediate access node and second resources allocated to the intermediate access node for transmitting signals to the parent access node. The intermediate access node may exclude the overlapping resources when transmitting a signal to the parent access node to reduce or eliminate self-interference between signals that are concurrently transmitted and received at the intermediate access node. The intermediate access node may transmit an indication of the first resources to the parent access node.

Description

RESOURCE MAPPING TO MITIGATE INTERFERENCE IN FULL-DUPLEX SYSTEMS BACKGROUND
The following relates generally to wireless communications, and more specifically to resource mapping to mitigate interference in full-duplex systems.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (such as time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) .
A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . For example, an LTE or NR base station may provide a mobile device access to the internet via the wireless network. Network access nodes typically have a high-capacity, wired, backhaul connection (such as fiber) to the network. In some deployments, however, it may be desirable to deploy a larger quantity of access nodes in a small area to provide acceptable coverage to users. In such deployments, it may be impractical to connect each access node to the network via a wired connection, and some networks or portions thereof may be configured as integrated access and backhaul (IAB) networks in which one or more access nodes have wireless backhaul connections to the network.
Efficient deployment and operation of IAB access nodes with wireless backhaul connections may be desirable to enhance end user coverage. For example, it may be desirable to configure some access nodes to operate in a full-duplex mode such that the  access node may concurrently transmit and receive signals using wireless communication links. Operating an access node in a full-duplex mode may increase system bandwidth, but may result in self-interference at the access node (such as interference between a transmitted signal and a concurrently received signal) . Techniques for reducing self-interference to enable effective deployment of full-duplex access nodes may be desirable.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support resource mapping to mitigate interference in full-duplex systems. Generally, the described techniques relate to reducing self-interference at an access node configured for full-duplex operation, such as interference between a signal that is transmitted by the access node and a signal that is concurrently (for example, at least partially overlapping) received by the access node. In some examples, an intermediate access node may determine resources used by or to be used by a child device for transmitting signals to the intermediate access node. The intermediate access node may determine overlapping resources between the resources used by or to be used by the child device and resources allocated to the intermediate access node for transmitting a signal to a parent access node. The intermediate access node may transmit signals to the parent access node by excluding the overlapping resources. In some examples, the intermediate access node may transmit an indication of the overlapping resources to the parent access node, and the parent access node may demodulate signals received from the intermediate access node by excluding the overlapping resources.
A method of wireless communications at an intermediate access node is described. The method may include transmitting, to a parent access node, an indication of first resources for receiving a first signal from a child device; receiving, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determining one or more overlapping resource elements of the first resources and the second resources; and transmitting the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
An apparatus for wireless communications at an intermediate access node is described. The apparatus may include a processor, memory coupled with the processor, and  instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to: transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device; receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determine one or more overlapping resource elements of the first resources and the second resources; and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
Another apparatus for wireless communications at an intermediate access node is described. The apparatus may include means for: transmitting, to a parent access node, an indication of first resources for receiving a first signal from a child device; receiving, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determining one or more overlapping resource elements of the first resources and the second resources; and transmitting the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
A non-transitory computer-readable medium storing code for wireless communications at an intermediate access node is described. The code may include instructions executable by a processor to: transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device; receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node; determine one or more overlapping resource elements of the first resources and the second resources; and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the second signal to the parent access node may include operations, features, means, or instructions for determining a portion of the  second resources that excludes the one or more overlapping resource elements, and transmitting the second signal to the parent access node using the portion of the second resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the second signal to the parent access node using the portion of the second resources may include operations, features, means, or instructions for determining a rate matching output length based on a quantity of the one or more overlapping resource elements, and performing a rate matching of the second signal based on the rate matching output length.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the rate matching output length may include operations, features, means, or instructions for determining the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor, and adjusting an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the second signal to the parent access node using the portion of the second resources may include operations, features, means, or instructions for performing a rate matching of the second signal based on the second resources, and puncturing the one or more overlapping resource elements.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, and the portion of the second resources excludes the determined resource blocks or OFDM symbols, and performing a rate matching of the second signal excluding the determined resource blocks or OFDM symbols.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a first numerology associated with the first signal is different than a second numerology associated with the second signal, and the one or more overlapping resource  elements may be determined using physical time-frequency resource positions based on determining that the first numerology may be different than the second numerology.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the first resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the first resources may include operations, features, means, or instructions for transmitting the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  determining that a location of the first resources may have changed, and transmitting, to the parent access node, an indication that the location of the first resources may have changed.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a guard bandwidth associated with the first resources. In some examples, determining the one or more overlapping resource elements includes determining that the second resources overlap with fourth resources that include the first resources and the guard bandwidth.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first signal may include a physical random access channel (PRACH) transmission, a physical uplink control channel (PUCCH) transmission, a sounding reference signal (SRS) transmission, or a physical uplink shared channel (PUSCH) transmission that includes ultra-reliable low-latency communication (URLLC) data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second signal may include a PUSCH transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the child device may be a child access node and the first signal may be received over a backhaul link.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the child device may be a user equipment and the first signal may be received over an access link.
A method of wireless communications at a parent access node is described. The method may include: receiving, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node; transmitting, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determining one or more overlapping resource elements of the first resources and the second resources; and receiving the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
An apparatus for wireless communications at a parent access node is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to: receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node; transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources; and receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
Another apparatus for wireless communications at a parent access node is described. The apparatus may include means for: receiving, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node, transmitting, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determining one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources; and receiving the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
A non-transitory computer-readable medium storing code for wireless communications at a parent access node is described. The code may include instructions executable by a processor to: receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node; transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node; determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources; and receive the second signal from the intermediate access  node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for demodulating the second signal by excluding the one or more overlapping resource elements.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, demodulating the second signal by excluding the one or more overlapping resource elements may include operations, features, means, or instructions for determining resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements, and demodulating the second signal by excluding the determined resource blocks or OFDM symbols.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, demodulating the second signal may include operations, features, means, or instructions for performing one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the second resources may include operations, features, means, or instructions for receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the intermediate access node, an indication that a location of the second resources may have changed.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a guard bandwidth associated with the first resources. In some examples, determining the one or more overlapping resource elements includes determining overlapping resource elements between the second resources and fourth resources that include the first resources and the guard bandwidth.
A method of wireless communications at a parent access node is described. The method may include: receiving, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, selecting, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmitting, to the intermediate access node, an uplink grant including an indication of the second resources.
An apparatus for wireless communications at a parent access node is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to: receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, select, based on the indication of the first resources, second resources for receiving, at the parent access node,  a second signal from the intermediate access node, and transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
Another apparatus for wireless communications at a parent access node is described. The apparatus may include means for: receiving, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, selecting, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmitting, to the intermediate access node, an uplink grant including an indication of the second resources.
A non-transitory computer-readable medium storing code for wireless communications at a parent access node is described. The code may include instructions executable by a processor to: receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node, select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node, and transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the intermediate access node, the second signal using the second resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining first one or more resource elements of the first resources. In some examples, selecting the second resources includes selecting second one or more resource elements that exclude the first one or more resource elements.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the second resources includes one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the second resources includes one or more of a first bitmap associated with time-domain positions of the second resources or a second bitmap associated with frequency-domain positions of the second resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the indication of the second resources may include operations, features, means, or instructions for receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an example of a wireless communication system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 2 illustrates an example of a wireless communications system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 3 illustrates an example of a wireless communications system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 4 illustrates an example of a wireless communication system that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figures 5A, 5B, and 5C depict examples of resource maps that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 6 illustrates an example of a process flow that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figures 7 and 8 show block diagrams of devices that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 9 shows a block diagram of a communications manager that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 10 shows a diagram of a system including a device that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figures 11 and 12 show block diagrams of devices that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 13 shows a block diagram of a communications manager that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figure 14 shows a diagram of a system including a device that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
Figures 15 through 17 show flowcharts illustrating methods that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Integrated access and backhaul (IAB) networks may include multiple IAB access nodes that support wireless connections to a core network. Such IAB networks may support wireless access traffic (such as traffic between an IAB access node and a user equipment (UE) ) and wireless backhaul traffic (such as traffic between separate IAB access nodes, such as between a first IAB access node and a second IAB access node) . An IAB network may share time and frequency resources between access traffic to or from a UE, and backhaul traffic between access nodes. In some examples, a signal transmitted by the core network through a “donor node” may be wirelessly relayed through a chain of one or more relay nodes to reach a UE (which may be referred to as “hopping” through the access nodes) , and a signal transmitted by a UE may similarly be wirelessly relayed through a chain of multiple relay nodes (for example, to reach the core network) .
In some cases, access nodes may operate in a half-duplex mode, in which the access node may transmit a signal on a wireless communication link or receive a signal on a wireless communication link, but may not transmit and receive signals concurrently. Wireless full-duplex communication is a relatively new communications technique that may be capable of doubling link capacity by enabling radio network nodes, such as access nodes, to concurrently transmit and receive signals over a same time slot.
An access node configured for full-duplex communications may potentially communicate concurrently on uplink (UL) and downlink (DL) communication links with two devices (such as two half-duplex access nodes or UEs) using the same radio resources. A full-duplex relay node may potentially communicate concurrently with a parent access node that is upstream of the relay node in the direction of a donor node that provides access to the core network, and with a child device (such as a UE or child access node that is downstream from the relay node) in a “one-hop” scenario, or with two or more other relay nodes in a “multi-hop” scenario. Thus, a relay node may be referred to as an intermediate access node because it may communicate with a parent access node on one side and with a child device on the other.
Full-duplex operation may significantly increase system throughput for wireless communication networks, and may also reduce the transfer latency for time-critical services.
Operating an access node in a full-duplex mode, however, may result in self-interference at the access node, such as interference between a signal that is wirelessly transmitted by the access node and a signal that is concurrently wirelessly received by the access node. In some examples, the transmitted signal may interfere with the received signal if the transmitted signal uses time-frequency resources that overlap with the time-frequency resources used by the received signal. Such self-interference may be particularly problematic when the access node is receiving “critical” transmissions (for example, from a child device) , such as transmissions that are used for control information or for coordinating timing between the access node and the child device (such as physical random access channel (PRACH) , physical uplink control channel (PUCCH) , or sounding reference signal (SRS) transmissions) or transmissions that include data that is intended to be received with high reliability and low latency (such as ultra-reliable low-latency communication (URLLC) data, in which the data packet is mapped to a physical uplink shared channel (PUSCH) resource that is expected to have very little interference) .
In-band full-duplex communication may be configured using techniques for canceling self-interference between downlink and uplink signals. While some cancellation techniques may help with self-interference, if the transmit power of an access node is large, however, there may still be some remaining self-interference after the cancellation. This self-interference may impair the performance of the reception of the received signal. In addition, in the process of cancellation, some signal energy may leak into adjacent frequency bands, which may cause self-interference in these adjacent frequency bands.
To reduce the likelihood or severity of self-interference, it may be desirable for full-duplex access nodes to use different time-frequency resources for transmitting signals than for receiving signals, particularly when receiving critical transmissions from a child device (such as a UE or a child access node) . Other networks may not support this functionality, however, for several reasons.
For example, the uplink backhaul link from an intermediate access node to a parent access node may belong to a different cell than the uplink communication link from a child device (such as a UE or child access node) to the intermediate access node. That is, the  uplink backhaul link from the intermediate access node to the parent access node may be in a cell that is controlled by the parent access node (or the donor node) , while the uplink communication link from the child device may be in a cell that is controlled by the intermediate access node. The parent access node may not have access to information regarding the resources used for communications from a child device to the intermediate access node, and therefore may assign uplink resources to the intermediate node that conflict with (such as overlap) resources used by the child device.
Moreover, for some critical transmissions, the radio resources used for uplink transmissions may occupy a subset of OFDM symbols in one slot. The unused resources at the frequency subcarriers (where the uplink transmissions are located) may not be co-granted to a transmitting device, for example, an intermediate access node, without the uplink transmissions using correct (for example, current) signaling formats (such as the format of downlink control information) . This can be because these two kinds of subcarriers (for example, PUSCH subcarriers) may have different timing lengths. This may cause a loss of spectrum efficiency, especially when there is a single transmitting device (such as an intermediate access node) in the uplink backhaul link.
As described herein, in some examples, a device (such as an intermediate access node) may determine (for example, identify) resources used by or to be used by a child device for transmitting one or more signals (such as critical transmissions) to the intermediate access node, and may determine whether any of the resources used by the child device overlap with resources allocated to the intermediate access node for uplink transmissions to the parent access node. If the intermediate access node determines that there are overlapping resources, the intermediate access node may exclude the overlapping resources when transmitting a signal to the parent access node to avoid interference with signals received from the child device. For example, the intermediate access node may identify overlapping resource elements, resource blocks, or symbols (such as OFDM symbols) , and may exclude such overlapping resources when transmitting a signal to the parent access node. In this case, the intermediate access node may transmit signals to the parent access node using a subset of the resources allocated to the intermediate access node by the parent access node.
In some examples, the intermediate access node may transmit, to the parent access node, an indication of the resources used by the child device, such as an indication of the  time-frequency positions of resources used for one or more critical transmissions. The parent access node may then determine (for example, independently determine) whether any of the resources assigned to the intermediate access node for transmissions to the parent access node overlap with any of the resources used by the child device. If the parent access node determines that the resources overlap, the parent access node may demodulate signals received from the intermediate access node by excluding the overlapping resources. That is, the parent access node may operate based on a condition that the intermediate access node will not use (for example, exclude) the overlapping resources when transmitting a signal to the parent access node, and the parent access node may demodulate the received signal accordingly.
Techniques provided herein may enhance the efficiency and accuracy of wireless communications systems by enabling full-duplex wireless connections between network devices (such as IAB intermediate access nodes) for wireless backhaul communications while mitigating the potential for self-interference at the intermediate access nodes. For example, such techniques may enable the use of full-duplex communications to increase system bandwidth and reduce latency without degrading the quality of signals received from one or more child devices (such as a UE or a child access node) .
Aspects of the disclosure are initially described in the context of a wireless communications system. Example wireless communications systems, resource maps, signaling, and process flows implementing the discussed techniques are then described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to resource mapping to mitigate interference in full-duplex systems.
Figure 1 illustrates an example of a wireless communications system 100 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more network devices 105 (such as base stations or access nodes) , one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (such as  mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The network devices 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The network devices 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each network device 105 may provide a coverage area 110 over which the UEs 115 and the network device 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a network device 105 and a UE 115 support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, network devices 105, or network equipment (such as core network nodes, relay devices, IAB nodes, or other network equipment) , as shown in Figure 1.
The network devices 105 may communicate with the core network 130, or with one another, or both. For example, the network devices 105 may interface with the core network 130 through one or more backhaul links 120 (such as via an S1, N2, N3, or other interface) . The network devices 105 may communicate with one another over the backhaul links 120 (such as via an X2, Xn, or other interface) either directly (such as directly between network devices 105) , or indirectly (such as via the core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless backhaul links, such as in an IAB network.
One or more of the network devices 105 described herein may include or may be referred to by a person of ordinary skill in the art as a base transceiver station, a radio base station, an access point, a network node, an access node, an IAB node, a wireless node, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology. The wireless communications system 100 may include network  devices 105 of different types (such as macro or small cell base stations, donor network devices including a central unit (CU) connected to the core network 130, relay network devices including mobile-termination (MT) functionality and distributed unit (DU) functionality) .
The UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology in which the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. The UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, the UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, vehicles, or meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as network devices 105 and network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
The UEs 115 and the network devices 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (such as a bandwidth part (BWP) ) that is operated according to physical layer channels for a given radio access technology (such as LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (such as synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with the UE 115 using carrier aggregation or multi-carrier operation. The UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a  carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a network device 105, or downlink transmissions from a network device 105 to a UE 115. Carriers may carry downlink or uplink communications (such as in an FDD mode) or may be configured to carry downlink and uplink communications (such as in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (such as 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (such as the network devices 105, UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include network devices 105, UEs 115, or both that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (such as a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (such as using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (such as a duration of one modulation symbol) and one subcarrier, in which the symbol period and subcarrier spacing are inversely related. The quantity of bits carried by each resource element may depend on the modulation scheme (such as the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that the UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a  spatial resource (such as spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, in which a numerology may include a subcarrier spacing (Δf ) and a cyclic prefix. A carrier may be divided into BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier is active at a given time, and communications for the UE 115 may be restricted to active BWPs.
Time intervals for the network devices 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T S= 1/ (Δf max·N f) seconds, in which Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (such as 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (such as ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (such as in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (such as depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (such as N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (such as in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (such as the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (such as in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (such as a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (such as CORESETs) may be configured for a set of the UEs 115. For example, the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (such as control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each network device 105 may provide communication coverage via one or more cells, for example, a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. The term “cell” may refer to a logical communication entity used for communication with a network device 105 (such as over a carrier) and may be associated with an identifier for distinguishing neighboring cells (such as a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (such as a sector) over which the logical communication entity operates. Such cells may range from smaller areas (such as a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network device 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (such as several kilometers in radius) and may allow unrestricted access by UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered network device 105, as compared with a macro cell, and a  small cell may operate in the same or different (such as licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to UEs 115 with service subscriptions with the network provider or may provide restricted access to UEs 115 having an association with the small cell (such as UEs 115 in a closed subscriber group (CSG) , or UEs 115 associated with users in a home or office, among other examples) . A network device 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a network device 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same network device 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different network devices 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network devices 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable, low-latency or mission critical communications. UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (such as mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (such as using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be  within the geographic coverage area 110 of a network device 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a network device 105 or be otherwise unable to receive transmissions from a network device 105. In some examples, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a network device 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a network device 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (such as a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (such as a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for UEs 115 served by network devices 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a network device 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with UEs 115 through a number of other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or network device 105 may be distributed across various network devices (such as radio heads and ANCs) or consolidated into a single network device (such as a network device 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, because the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter ranges (such as less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as network devices 105 and UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (such as LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
network device 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a network device 105 or UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a network device 105 may be located in diverse geographic locations. A network device 105 may have an antenna array with a number of rows and columns of antenna ports that the network device 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or  beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (such as a network device 105 or a UE 115) to shape or steer an antenna beam (such as a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (such as with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
network device 105 or UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a network device 105 may use multiple antennas or antenna arrays (such as antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (such as synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a network device 105 multiple times in different directions. For example, the network device 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (such as by a transmitting device, such as a network device 105, or a receiving device, such as a UE 115) a beam direction for subsequent transmission or reception by the network device 105.
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over  logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network device 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
Network devices 105 may support functionality for IAB network operation. For example, network devices 105 may be split into support entities (such as functionalities) for promoting wireless backhaul density in collaboration with NR communication access. In some examples, a network device 105 (such as a donor network device or donor IAB node) may be split into associated CU and DU entities, in which one or more DUs may be partially controlled by an associated CU. The CU entity of the network device 105 may facilitate connection between the core network 130 and the network device (such as an access node) , for example, via a wireline or wireless connection to the core network 130. The one or more DUs of the network device 105 may control or schedule functionality for additional devices (such as one or more alternative network devices 105 or UEs 115) according to configured access and backhaul links. Based on supported CU and DU entities at a network device 105, such a network device 105 may be referred to as a donor base station (such as an IAB donor or donor node) .
Additionally, in some examples, a network device 105 may be split into associated MT and base station DU entities, in which the MT functionality of the network device 105 may be controlled or scheduled by the DU entities of the one or more donor base stations (such as via a Uu interface) . DUs associated with such a network device 105 may be controlled by MT functionality. In addition, DUs of the network device 105 may be partially controlled by signaling messages from CU entities of associated donor network devices (such as donor nodes) on the configured access and backhaul links of a network connection (such as via an F1-application protocol (AP) ) . The DUs of the one or more network devices 105 may support one of multiple serving cells of a network coverage area. The DUs of the one or more network devices 105 may control or schedule functionality for additional devices (such as one or more alternative network devices 105, UEs 115) according to configured access and  backhaul links. Based on supported MT and DU entities at a network device 105, such a network device may be referred to as an intermediate access node (such as an IAB relay node) .
As discussed above, in wireless communications system 100, one or more network devices 105 (such as donor network devices or donor IAB nodes) may include CUs and DUs, in which one or more DUs associated with a donor base station may be partially controlled by a CU associated with the donor base station. A CU may be a component of a network management function, database, data center, or core network 130 (such as a 5G NR core network (5GC) ) . A CU may communicate with core network 130 via a backhaul link 132 (such as a wireline backhaul or a wireless backhaul) . In IAB networks, a CU (such as a donor network device 105) may communicate with the core network 130 (such as the NGC) via a backhaul link 132 (such as a wireline backhaul or wireless backhaul) . The donor network device 105 may be referred to, for example, in an IAB network, as an IAB donor and may be in communication with one or more IAB nodes (such as other network devices 105) operating as DUs relative to the IAB donor and one or more UEs.
For example, an IAB network may include a chain of wireless devices (such as starting with a donor network device 105, a radio access network (RAN) node that terminates an interface with the core network, and ending with a UE 115, with any number of relay nodes in between) . Intermediate or relay network devices (intermediate access nodes, parent access nodes, child access nodes, IAB nodes, relay base stations, relay nodes) may support MT functionality (which may also be referred to as UE function (UE-F) ) controlled and scheduled by an IAB donor, or another parent network device, such as a parent access node. Such network devices may also support DU functionality (which may also be referred to as an access node function (AN-F) ) relative to additional entities (such as IAB nodes and UEs) within the relay chain or configuration of the access network (such as downstream) . In some examples, MT functionality may refer to an implementation that supports at least some aspects of an MT or a UE. These relay mechanisms may forward traffic along to the additional entities, extend the range of wireless access for one or more base stations, or enhance the density of backhaul capability within serving cells.
In some examples, wireless communications system 100 may employ one or more wired and wireless backhaul links (such as backhaul link 132 or backhaul link 134) for  establishing connectivity between a core network (such as core network 130) and the one or more wireless nodes within wireless communications system 100. For example, wireless communications system 100 may include multiple network devices 105 (such as base stations, or remote radio heads) , in which at least one network device 105 is coupled to a wireline backhaul link, such as an optical fiber cable. Additional network devices 105 may not be directly coupled to the core network 130 or to another network devices 105 via a wired backhaul link, and may use wireless backhaul links to communicate backhaul traffic. In such cases, the network devices 105 may wirelessly communicate backhaul access traffic to a high-capacity fiber point (such as a location where a network device is coupled with a wireline link to core network 130) . Each of the backhaul links 132 and 134 may carry packets from the one or more established PDN gateways through the SGi interface and subsequently direct the packets through the core network and to the coupled wireless nodes over the S1 interface.
Although mobile access may sometimes be associated with single-hop communication links between a source and destination (such as an asymmetric link) , wireless backhaul communications may support multi-hop transport (such as through multiple intermediate access nodes) and provide robustness through topological redundancy (such as alternative paths for data exchange within a wireless communications network) . Underlying links using wireless backhaul communications may be symmetric in nature and use large-scale resource coordination among the wireless communication links.
In some examples, a network device 105, for example, serving as an intermediate access node, may be configured to operate in a full-duplex mode, in which the intermediate access node may concurrently transmit a signal to a parent access node (such as an upstream network device 105) and receive a signal from a child device (such as a child access node that is a downstream network device 105 or a UE 115) . As described herein, an intermediate access node configured for full-duplex operation may determine overlapping time-frequency resources between first resources used for transmitting signals to the parent access node and second resources used for receiving signals from the child device, and may exclude such overlapping resources when transmitting a signal to the parent access node to reduce self-interference at the intermediate access node, among other advantages.
Figure 2 illustrates an example of a wireless communications system 200 that supports resource mapping to mitigate interference in full-duplex systems in accordance with one or more aspects of the present disclosure. In some examples, the wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may support one or more network devices 105 (for example, access nodes) supporting network access to one or more UEs 115 within the cells 205. One or more of the network devices 105 may be connected to a core network 130 via a wireline backhaul connection 220. Infrastructure and spectral resources for network access within the wireless communications system 200 additionally support wireless backhaul links 210 between the network devices 105. For example, the wireless backhaul links 210 may support an IAB network architecture with the network devices 105 serving as IAB nodes. For example, the wireless communications system 200 may implement an IAB architecture by connecting one access node (an IAB “donor” node) , such as the network device 105-a, in the wireless communications system 200 to the core network 130 via a fiber point backhaul connection 220. Other network devices 105 in the wireless communications system 200 (such as the network device 105-b, the network device 105-c, the network device 105-d, and the network device 105-e) may propagate access traffic to and from the donor IAB node via the wireless backhaul network using the wireless backhaul links 210 (such as using beamformed wireless backhaul transmissions) . Each network device 105 may then communicate the access traffic with the one or more UEs 115 that it serves over the access network using the wireless access links 215 (such as using beamformed wireless access transmissions) .
In some examples, the network device 105-a may be split into associated base station CU and DU entities, in which one or more DU entities ( “DUs” ) may be partially controlled by an associated CU entity ( “CU” ) . The CU entity of the network device 105-a may facilitate connection between the core network 130 and the network device 105-a (such as via a wireline backhaul link 220 or, in some examples, a wireless connection to the core network) . The DUs of the network device 105-a may control or schedule functionality for additional devices (such as for intermediate access nodes that may include, for example, the network device 105-b, the network device 105-c, or for the UEs 115) according to the configured wireless backhaul links 210 and the wireless access links 215. Based on the  supported entities at the network device 105-a (such as the CU entity) , the network device 105-a may be referred to as an IAB donor.
An intermediate access node (such as the network device 105-b and the network device 105-c) may support link connectivity with the IAB donor (such as the network device 105-a) as part of a relay chain within the IAB network architecture. For example, the network device 105-b may be split into associated MT and DU entities, in which MT functionality of the network device 105-b may be controlled or scheduled by a DU entity of the network device 105-a. DUs associated with the network device 105-b may be controlled by MT functionality of the network device 105-b. In addition, in some examples, one or more DUs of the network device 105-b may be partially controlled by signaling messages from CU entities of associated IAB donor nodes (such as a CU of the network device 105-a) of the network connection (such as via an F1-application protocol (AP) ) . The DU of the network device 105-b may support a serving cell 205 of the IAB network coverage area, and may provide for communications with one or more UEs 115 via the access links 215. Based on the supported entities at the network device 105-b, the network device 105-b may be referred to as an intermediate access node, a relay network device, an IAB node, or a relay node, among other examples.
A network device 105 (such as an intermediate access node) may thus be configured for access network functionality (ANF) and UE functionality (UEF) to allow the network device 105 to act as a scheduling entity and a receiving entity (for example, a scheduled entity) . Each of the functionalities may be operated via the one or more backhaul links 210. ANF functionality may enable each network device 105 to operate as a scheduling entity over one or more access links 225, and communicate with one or more UEs 115 located within the IAB network. ANF functionality may further enable each network device 105 to operate as a scheduling entity over one or more coupled backhaul links 210 or to facilitate communication between the one or more other network devices 105 of the IAB network (via the mesh topology) . UEF functionality may enable each network device 105 to operate as a scheduled entity and communicate with one or more other network devices 105 to receive data. In some examples, a network device 105 may include a routing table for examining a received data packet and forwarding the packet along the best path of the IAB network toward the specified IP address of the packet’s destination. In some examples, each relay network device 105 (for example, a network device operating as an intermediate access  node) may be associated with a single MT function, and may employ backhaul relaying as shown. In some other examples, a relay network device 105 may support multiple MT functions, in which case the relay network devices 105 may be capable of multi-connected cellular backhaul.
As described above, the wireless communications system 200 may employ one or more wireless access links 215 for establishing mobile access to one or more coupled UEs 115. Each of the network devices 105 and the UEs 115 may be configured to support cellular radio access technologies (RATs) , such as mmWave-based RATs, for access traffic between the UEs 115 and the network devices 105. Moreover, each of network devices 105 may share resources of the configured RATs for access traffic with backhaul traffic over the network (such as in the case of IAB) .
An access link using a mmWave-based radio access technology (RAT) may be designed as an asymmetric single-hop link, which may be used for assigning control and scheduling tasks to a network device 105 while providing instruction to one or more UEs 115 for scheduling communication. In such cases, a network device 105 may coordinate wireless resources among multiple UEs 115, while each UE 115 may be assigned to one or more network devices 105. In some examples, inter-node links between network devices 105 may be symmetric in nature and may enable the network devices 105 to form mesh topologies for enhanced robustness allowing wireless transport to occur along multiple hops. The combination of the UEF and ANF capabilities at a network device 105 of the IAB network may allow the network device 105 to utilize switching operations over the wireless spectrum associated with the RAT, to transmit access traffic to or from UEs 115 and backhaul traffic to/from core network 130 (such as via backhaul links 210 to network device 105-a) providing coupled access to one or more PDNs.
Using techniques described herein, a network device 105 operating as a parent access node or intermediate access node may employ resource mapping to mitigate interference in full-duplex systems by excluding overlapping resources for transmitting signals and receiving signals.
Figure 3 illustrates an example of a wireless communications system 300 that supports resource mapping to mitigate interference in full-duplex systems in accordance with one or more aspects of the present disclosure. In some examples, the wireless  communications system 300 may implement aspects of the wireless communications system 100 and the wireless communications system 200 described with reference to Figures 1 and 2, respectively. For example, the wireless communications system 300 may be an NR system that supports the sharing of infrastructure and spectral resources for NR access with wireless backhaul link capabilities, in supplement to wireline backhaul connections, providing an IAB network architecture. The wireless communications system 300 may include a core network 305 (such as NGC) and network devices 320 (such as base stations and IAB nodes that may operate as parent access nodes, intermediate access nodes, or child access nodes) that may be split into one or more support entities (such as functionalities) to improve the efficiency of network communications.
The wireless communications system 300 may include a donor network device (such as a donor IAB node or donor base station. ) split into an associated CU 310 and one or more DUs 315 (including DUs 315-a and 315-b) , in which the DUs 315 associated with the donor network device may be partially controlled by the associated CU 310 of the network device. In some examples, the CU 310, the DU 315-a, and the DU 315-b may be located within a single device. In other examples, the DU 315-a and the DU 315-b of the donor network device may be externally located, and may be in wired or wireless communication with the CU 310. The CU 310 may be a component of a database, data center, core network, or network cloud, and may host layer 3 (L3) (such as radio resource control (RRC) , service data adaption protocol (SDAP) , or packet data convergence protocol (PDCP) ) functionality and signaling. The CU 310 of the donor network device may communicate with the core network 305 over, for example, an NG interface (which may be an example of a portion of a backhaul link) . The DUs 315 may host lower layer, such as layer 1 (L1) and layer 2 (L2) (such as radio link control (RLC) , media access control (MAC) , or physical (PHY) ) functionality and signaling. A DU 315 of a donor network node may support one of multiple serving cells of the network coverage according to connections associated with backhaul and access links of the IAB network. The DUs 315 of the donor network device may control both access links and backhaul links within the corresponding network coverage and provide controlling and scheduling for descendant devices such as relay network devices 320 (intermediate access nodes) or UEs 115.
Each of the network devices 320 may be split into associated MT and DU entities. MT functionality (such as UE-F) of each network device 320 may be controlled or scheduled  by one or more antecedent, parent access nodes such as by a donor node or another upstream access node of the established connectivity via access and backhaul links of a coverage area. DUs of a network device 320 may be controlled by the MT of the network device. In addition, the DUs of the network devices 320 may be partially controlled by signaling messages from the CU 310 entities of associated donor network devices of the network connection (such as via an F1-AP interface) . The DUs of the network devices 320 may support one of multiple serving cells of the network coverage area. DU functionality (such as AN-F) may schedule child access nodes and UEs, and may control both access links and backhaul links under its coverage.
As described above, a network device 320 operating as an intermediate access node may relay communications between a network device 320 operating as a parent access node (such as an IAB donor or an IAB node upstream or higher on the relay chain) and a network device 320 operating as a child access node (such as an IAB node downstream or lower on the relay chain) or a UE 115. In some examples, an intermediate access node may refer to the DU or access node function (AN-F) of a relay network device. A child device may refer to an IAB node (such as the MT of the IAB node) or a UE that is the child of another IAB node.
As such, the wireless communications system 300 may implement 5G NR technologies (such as mmWave) to support an access network (such as between each access node, such as one of network devices 320, and associated UEs 115) and a backhaul network (such as between access nodes, such as network devices 320) . An IAB donor (or an “anchor” ) may refer to a network device that has a wireline connection to the core network, and an IAB node may refer to a network device that relays traffic to or from the donor through one or more hops. IAB networks may thus share resources between access links and backhaul links, and may reuse aspects of access network frameworks.
As described above, an IAB node may hold MT and DU functions. For example, the MT of network device 320-d may act as or serve as a scheduled node (similar to a UE) scheduled by its parent access node (such as the network device 320-a) . The DU of network device 320-d may act as or serve as a scheduling node that schedules child devices of the network device 320-d (such as the UEs 115) . The DU of network device 320-a may also schedule child IAB nodes downstream in the relay chain (such as network device 320-d) .
In some examples, wireless communications systems may be associated with resource direction types (such as for time-domain resources in NR) . For example, a time-domain resource may be assigned (such as or configured by the network) as a downlink resource, an uplink resource or a flexible resource. A downlink (DL) resource may refer to a resource on which downlink communication (such as downstream communications from a parent access node to an intermediate access node or downstream communications from an intermediate access node to a child access node or a UE) is allowed (such as synchronization signal block (SSB) resources, channel state information reference signal (CSI-RS) resources, physical downlink control channel (PDCCH) resources, or physical downlink shared channel (PDSCH) resources) . An uplink (UL) resource may refer to a resource on which uplink communication (such as upstream communications from a UE or child access node to an intermediate access node or upstream communications from an intermediate access node to a parent access node) is allowed (such PRACH resources, PUCCH resources, PUSCH resources, or SRS resources) . A flexible resource may refer to a resource on which the communication direction may be overwritten (such as to uplink or downlink) later by a scheduling node (such as by a donor node or a parent access node) .
In some examples, an intermediate access node configured for full-duplex operation may determine overlapping resources between first resources (such as uplink resources allocated to the intermediate access node) for transmitting signals to a parent access node and second resources (such as uplink resources allocated to a child device, such as a child access node or UE) for receiving signals from the child device. The intermediate access node may then transmit signals to the parent access node by excluding the overlapping resources, thereby reducing or eliminating self-interference at the intermediate access node.
Figure 4 illustrates an example of a wireless communication system 400 that supports resource mapping to mitigate interference in full-duplex systems in accordance with one or more aspects of the present disclosure. In some examples, the wireless communications system 400 may implement aspects of the wireless communications system 100, the wireless communications system 200, or the wireless communication system 300 described with reference to Figures 1–3, respectively.
The wireless communication system 400 may include a parent access node 405, an intermediate access node 410, a child access node 415, and a UE 420. The parent access  node 405, the intermediate access node 410, and the child access node 415 may be examples of the  network devices  105 and 320 described with reference to Figures 1–3.
The intermediate access node 410 may be configured to communicate with the parent access node 405 via a downlink wireless backhaul link 425 (such as for signals transmitted by the parent access node 405 and received by the intermediate access node 410) and an uplink wireless backhaul link 430 (such as for signals transmitted by the intermediate access node 410 and received by the parent access node 405) .
The intermediate access node 410 may be configured to communicate with the child access node 415 via a downlink wireless backhaul link 435 (such as for signals transmitted by the intermediate access node 410 and received by the child access node 415) and an uplink wireless backhaul link 440 (such as for signals transmitted by the child access node 415 and received by the intermediate access node 410) .
The intermediate access node 410 may be configured to communicate with the UE 420 via a downlink wireless access link 445 (such as for signals transmitted by the intermediate access node 410 and received by the UE 420) and an uplink wireless access link 450 (such as for signals transmitted by UE 420 and received by the intermediate access node 410) .
In some examples, the intermediate access node 410 may be configured for full-duplex communication, in which the intermediate access node 410 may concurrently transmit a signal and receive a signal. For example, the intermediate access node 410 may be capable of transmitting a signal to the parent access node 405 using the uplink wireless backhaul link 430 concurrently with receiving a signal from the child access node 415 using the uplink wireless backhaul link 440, or concurrently with receiving a signal from the UE 420 using the uplink child access link 450. Similarly, the intermediate access node 410 may be capable of receiving a signal from the parent access node 405 via the downlink wireless backhaul link 425 concurrently with transmitting a signal to the child access node 415 using the downlink wireless backhaul link 435, or concurrently with transmitting a signal to the UE 420 using the downlink wireless access link 445.
In some examples, as depicted in Figure 4, the parent access node 405 may belong to a different cell than the child access node 415 and the UE 420, and may not have access to information regarding time-frequency resources that may be assigned to the child access node  415 or to the UE 420. Thus, when the parent access node 405 assigns time-frequency resources to the intermediate access node 410 for uplink transmissions (such as by transmitting an uplink grant to intermediate access node 410) , the parent access node 405 may assign some of the same resources that are assigned to the child access node 415 or the UE 420 for uplink transmissions from the child device to the intermediate access node 410. That is, one or more of the resources allocated by the parent access node 405 to the intermediate access node 410 for uplink transmissions from the intermediate access node 410 to the parent access node 405 may overlap with (for example, may be the same as, may include, may collide with) some of the resources assigned to a child device (such as child access node 415 or UE 420) for uplink transmissions from the child device to the intermediate access node 410.
In this case, full-duplex operation of the intermediate access node 410 may result in self-interference at the intermediate access node 410 for the overlapping resources such that a signal communicated with the parent access node 405 may interfere with an in-band signal that is concurrently communicated with a child device (such as child access node 415 or UE 420) .
In some examples, the power associated with transmitting a signal from the intermediate access node 410 may be higher than the power associated with receiving a signal at the intermediate access node 410, and thus the effect of self-interference on the received signal may be more significant than the effect of self-interference on the transmitted signal. That is, for an intermediate access node 410 (for example, an IAB node) that is configured for full-duplex operation, the transmitted signal in any transmission link may cause self-interference with the received signal in any reception link. When the interference strength is large enough (for example, when it is larger than the thermal noise power) , it may impair the reception performance of the corresponding channel or signal.
Such self-interference may be particularly problematic if the received signal is a critical uplink transmission from a child device, such an uplink transmission that is used for time-frequency tracking between the intermediate access node 410 and the child device, or a signal that is expected to be received with high reliability or low latency. Such critical uplink transmissions may include, for example, PRACH, PUCCH, or SRS transmissions, or PUSCH  transmissions that include URLLC data. Other types of transmissions may also experience such self-interference and may also benefit from techniques described herein.
As described herein, in some examples, the intermediate access node 410 may determine overlapping resource elements between the resources assigned for uplink transmissions to the parent access node 405 and the resources assigned for uplink transmissions from a child device to the intermediate access node 410. The intermediate access node 410 may then exclude such overlapping resource elements from the resources used to transmit signals to the parent access node 405 to avoid self-interference with signals received from a child device. That is, the intermediate access node 410 may perform resource mapping for uplink transmissions (such as for PUSCH transmissions to the parent access node 405) to exclude the overlapping resources.
Figures 5A, 5B, and 5C depict examples of resource maps 500-a, 500-b, and 500-c that support resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure.
The resource map 500-a depicts uplink time-frequency resources 505 that may be used by an intermediate access node (such as an intermediate access node 410) for transmitting an uplink signal to a parent access node (such as parent access node 405) . For example, the time-frequency resources 505 may be assigned or allocated to the intermediate access node by the parent access node in an uplink grant that includes an indication of the time-frequency resources 505. In some examples, the time-frequency resources 505 may be resources that are associated within a single time slot.
The intermediate access node may determine (based on, for example, information in the uplink grant) that there are one or more overlapping resources 510 (such as resource elements, resource blocks, or OFDM symbols) between the uplink time-frequency resources 505 assigned to the intermediate access node and resources associated with receiving a signal from a child device (such as a child access node 415 or a UE 420) . In some examples, such overlapping resources 510 may include positions (such as positions associated with one or more of time or frequency) associated with critical uplink transmissions from the child device to the intermediate access node, such as the positions of PRACH, PUCCH, or SRS transmissions from the child device, or the positions of PUSCH transmissions from the child device that include URLLC data.
In some examples, the intermediate access node may, based on determining the overlapping resources 510, transmit uplink signals to the parent access node using a subset of the uplink time-frequency resources 505 that excludes the overlapping resources 510. For example, the intermediate access node may perform resource mapping for uplink PUSCH signals (such as PUSCH signals to be transmitted from the intermediate access node to the parent access node) by excluding the overlapping resources 510.
In some examples, the intermediate access node may also transmit, to a parent access node, either an indication of the resources used by or to be used by a child device for transmitting signals to the intermediate access node (to enable the parent access node to determine the overlapping resources 510) , or an explicit indication of the positions of the overlapping resources 510 (in which case the parent access node may not need to determine the positions of the overlapping resources 510 because they are explicitly signaled) .
For example, the intermediate access node may transmit, to the parent access node, an indication of the resources associated with receiving a signal from the child device to the intermediate access node. Such resources may include overlapping resources 510, and may, in some examples, include additional resources that are not overlapping. In some examples, the indication of the resources may include an indication of the position (s) of one or more resource elements that may be used, by a child device, for transmitting critical uplink transmissions to the intermediate access node. The parent access node may then independently determine or identify, based on the indication of the resources from the intermediate access node, the one or more overlapping resources 510 between the uplink time-frequency resources 505 assigned to the intermediate access node and the resources associated with transmitting a signal from a child device.
As described above, the intermediate access node may, additionally or alternatively, transmit an indication of the position of the one or more overlapping resources 510, in which case the parent access node may not make an independent determination of the one or more overlapping resources 510.
In some examples, the parent access node may then demodulate signals received from the intermediate access node based on the determination of the overlapping resources 510 (or based on receiving an indication of the overlapping resources 510) , such as by excluding the overlapping resources 510 from the demodulation. For example, the parent  access node may exclude overlapping resource elements, overlapping resource blocks, or overlapping OFDM symbols from the demodulation.
The resource map 500-b depicts another example of resource mapping in which the determination of overlapping resources takes into account the bandwidth of guard bands between the transmission band and the reception band used by the intermediate access node. A guard band may be used to increase signal quality and decrease the likelihood of self-interference at the intermediate access node. The guard bandwidth may include an upper guard bandwidth 525, a lower guard bandwidth 530, or both that may be added (appended) to the frequency-domain resources 520 assigned to a child device for uplink transmissions to reduce or eliminate the potential for self-interference. It may be desirable for such guard bandwidths to be kept empty (such as not scheduled by the parent access node for transmissions from the intermediate access node) .
When guard bands are used, the intermediate access node or the parent access node (or both) may determine whether there are overlapping resources based on the resources used by the child device added with the upper and lower guard bands. That is, the overlapping resources may include one or more of the upper guard bandwidth 525, the resources 520 used by a child device to transmit a signal to the intermediate access node, or the lower guard bandwidth 530. The intermediate access node and parent access node may then exclude the overlapping resources as described with reference to Figure 5A.
In some examples, the size or range of the upper and  lower guard bandwidths  525 and 530 may be selected or configured by the parent access node or by the intermediate access node based on various considerations that may be related to the likelihood of self-interference at the intermediate node. If the likelihood is relatively high, for example, larger guard bandwidths may be used. If the likelihood is relatively low, for example, smaller guard bandwidths may be used. In some examples, the guard bandwidth may not be not used; that is, the guard bandwidth may be set to zero (as described with reference to the resource map 500-a or Figure 5A) .
For example, the guard bandwidths may depend on one or more of the capability of the intermediate access node to mitigate self-interference, on the transmit power of signals transmitted by the intermediate access node, or on the numerology of the OFDM waveform transmitted by the intermediate access node or by the child device, among other factors. In  some examples, the parent access mode may configure the guard bandwidths and indicate the guard bandwidths to the intermediate access node, or, in some examples, the intermediate access node may configure the guard bandwidths and indicate the guard bandwidths to the parent access node.
The resource map 500-c depicts an example of resource mapping when the intermediate access node transmits the indication of the resources to the parent access node before receiving the uplink grant from the parent access node. In this case, the parent access node may pre-emptively eliminate the potential for self-interference at the intermediate access node by selecting (allocating) uplink time-frequency resources 540 for the intermediate access node that exclude the indicated resources 535. As a result, there may not be any overlap between the uplink time-frequency resources 540 assigned to the intermediate access node and the indicated resources 535 that may be used by a child device for transmitting signals to the intermediate access node, thereby potentially reducing or precluding self-interference at the intermediate access node. The intermediate access node may then transmit signals using the uplink time-frequency resources 540 (without excluding any of the resources 535) , and the parent access node may then demodulate signals received from the intermediate access node using the assigned uplink time-frequency resources 535 (without excluding any of the uplink time-frequency resources 535) .
Additional details regarding the signaling and functionality of the parent access node, the intermediate access node, and child devices in the context of full-duplex operations are described herein, such as with reference to Figure 6.
Figure 6 illustrates an example of a process flow 600 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. In some examples, the process flow 600 may implement aspects of the  wireless communication system  100, 200, or 300 described with reference to Figures 1–3, respectively, using resource maps such as those described with reference to Figures 5A, 5B, and 5C. The process flow 600 may depict signaling and operations performed by a parent access node 605, an intermediate access node 610, and a child device 615, which may be examples of the devices described with reference to Figures 1–5.
In the following description of the process flow 600, the signals and operations of the parent access node 605, the intermediate access node 610, and the child device 615 may  be transmitted or performed in a different order than the exemplary order shown. In some examples, some operations or transmissions may also be omitted from the process flow 600, or other operations may be added to the process flow 600.
At 620, the intermediate access node 610 receives a signal from the child device 615. The signal is received using first resources that may include resource elements, resource blocks, or OFDM symbols that may be used to determine the first resources. In some other examples, the signal may include an indication of the first resources.
At 625, the intermediate access node 610 may determine the first resources based on the signal received from the child device 615. In some examples, the intermediate access node 610 may determine the first resources by determining the position (such as one or more of a time-domain position or a frequency-domain position) of critical uplink transmissions from the child device, such as the positions of PRACH, PUCCH, or SRS transmissions, or the position of PUSCH transmissions that may include URLLC data. In some examples, the intermediate node may determine the first resources by determining one or more of a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources, among other factors.
At 630, the intermediate access node 610 may transmit an indication of the first resources to the parent access node based on determining the first resources at 625. The indication of the first resources may include, for example, one or more positions of critical uplink transmissions from the child device.
In some examples, the parameters of PRACH, PUCCH or SRS associated with critical uplink transmissions may be configured in an RRC layer. For example, when a UE is connected to the cell, a base station may communicate the applied PRACH/PUCCH/SRS parameter configurations to the UE. The resources used for PRACH, PUCCH, and SRS may be indicated or specified in different manners. In physical resource mapping, PRACH, PUCCH, or SRS may occupy a block of time-frequency resource (for example, a quantity of continuous OFDM symbols/slots and a quantity of continuous physical resource blocks) . One SRS resource may occupy a part of resource elements (such as a comb bin or comb offset) in a comb pattern.
In some examples, the indication of the first resources may represent the position of critical uplink transmissions from the child device using a set of configuration parameters.
For example, for a PRACH transmission from the child device, the configuration parameters may include one or more of a time-domain position, a frequency-domain position, or a periodic pattern of the PRACH, among other parameters. For example, for a PUCCH transmission from the child device, the configuration parameters may include one or more of a time-domain position, a frequency-domain position, a periodic pattern, or a frequency-hopping mode of the PUCCH, among other parameters. For example, for an SRS transmission from the child device, the configuration parameters may include one or more of a time-domain position, a frequency-domain position, a periodic pattern, or a comb offset of the SRS, among other parameters. For example, for an PUSCH transmission from the child device that includes URLLC data, the configuration parameters may include one or more of a time-domain position or a frequency-domain position of the PUSCH, among other parameters.
In some examples, the indication of the first resources may represent the position of critical uplink transmissions from the child device by time-domain positions and frequency-domain positions of its radio resources, which may be expressed by bitmaps (or by other expressions, such as start position and length, or start position, or end position, or any combination of these) having a resource-block symbol granularity.
For example, the indication of the first resources may include a first bitmap that is associated with time-domain positions of the first resources. The first bitmap may have a length that corresponds to a quantity of OFDM symbols in a slot, such as the maximum quantity of OFDM symbols of a PUSCH transmission in one slot.
Additionally, the indication of the first resources may include a second bitmap that is associated with frequency-domain positions of the first resources. The second bitmap may have a length that corresponds to a quantity of resource blocks in a slot, such as the maximum quantity of resource blocks of a PUSCH transmission in one slot.
In some examples, the intermediate access node 610 may transmit the indication of the first resources at 630 using higher-layer signaling, such as RRC signaling. In some examples, using RRC signaling may enable the intermediate access node 610 to update the information provided to the parent access node 605 statically or semi-statically, among other implementations. For example, the intermediate access node 610 may, at 630, transmit the indication of the first resources (including the position of critical uplink transmissions from  the child device) via RRC signaling. If the intermediate access node 610 subsequently detects that the position of the critical uplink transmissions has changed, the intermediate access node 610 may transmit an indication that the position of the first resources has changed to the parent access node 605, such as by transmitting a second indication of the first resources that includes the new position of the critical uplink transmissions.
In some other examples, the intermediate access node 610 may transmit the indication of the first resources at 630 using other types of dynamic signaling, such as in a PHY/MAC-layer message transmitted in DCI or a MAC CE that may index or specify one of a list of configurations defined in a higher-layer message, such as a list of configuration parameters or bitmaps as described earlier.
At 635, the parent access node 605 may transmit an uplink grant to the intermediate access node 610. In some examples, the uplink grant may include an indication of second resources to be used by the intermediate access node 610 for transmitting uplink signals to the parent access node 605.
In some examples, the parent access node 605 may transmit the uplink grant before receiving the indication of the first resources from the intermediate access node 610. In other examples, the parent access node 605 may transmit the uplink grant after receiving the indication of the first resources from the intermediate access node 610.
In some examples, if the parent access node 605 receives the indication of the first resources before transmitting the uplink grant, the parent access node 605 may select the second resources based on the indication of the first resources such that there may be no overlapping resource elements between the second resources and the first resources. In other examples, the parent access node 605 may select the second resources independently of the indication of the first resources (whether the indication of the first resources have been received or not) .
At 640, the intermediate access node 610 may determine (for example, identify) , based on the indication of the first resources (such as based on the first resources determined at 625) and based on the indication of the second resources received from the parent access node 605 in the uplink grant, overlapping resource elements of the first resources and the second resources. For example, overlapping resource elements may be resource elements of  the first resources that have the same time-frequency positions as resource elements of the second resources.
In some examples, the intermediate access node 610 may identify overlapping resource elements using the indexes of resource elements, resource blocks, or OFDM symbols. In some examples, if the numerology of signals transmitted on the communication link between the child device 615 and the intermediate access node 610 is different than the numerology of signals transmitted on the communication link between the intermediate access node 610 and the parent access node 605, the intermediate access node 610 may identify overlapping resource elements using physical time-frequency resource positions rather than using the indexes of the resource elements, resource blocks, or OFDM symbols.
In some examples, the intermediate access node 610 may consider upper and lower guard bandwidths when determining the overlapping resource elements, such as described with reference to Figure 5B. That is, in some examples, overlapping resource elements may be resource elements of the first resources and of the upper and lower guard bandwidths that overlap with resource elements of the second resources.
At 645, the parent access node 605 may optionally determine (for example, identify) , based on the indication of the first resources received from the intermediate access node and on the indication of the second resources (such as based on the second resources selected by the parent access node 605 for inclusion in the uplink grant) , overlapping resource elements of the first resources and the second resources. That is, at 645, the parent access node 605 may independently determine the overlapping resource elements in a manner similar to (or the same as) the manner in which the intermediate access node 610 determines the overlapping resource elements at 640.
Alternatively, at 650, the intermediate access node 610 may optionally transmit an indication of the overlapping resource elements to the parent access node 605, in which case the parent access node 605 may not independently determine the overlapping resource elements at 645.
Alternatively, if the parent access node 605 selected second resources for inclusion in the uplink grant that did not include any overlapping resource elements with the first resources, the parent access node 605 may not need to determine overlapping resource  elements at 645, and the remaining aspects of process flow 600 that are related to excluding overlapping resource elements may not be performed.
At 655, the intermediate access node 610 may perform resource mapping for an uplink transmission to the parent access node 605 by excluding the overlapping resource elements. Such resource mapping may also include rate matching that excludes the overlapping resource elements. For example, the intermediate access node 610 may perform physical resource mapping and rate matching by excluding the overlapping resource elements for a PUSCH transmission to the parent access node 605.
The intermediate access node 610 may perform resource mapping by excluding the overlapping resource elements using one or more techniques.
In some examples, if a partial time-frequency resource of a resource element or a resource block of a PUSCH in one link (such as a communication link from the intermediate access node 610 to the parent access node 605) is overlapping with the time-frequency resource of a critical uplink transmission in the other link (such as a communication link from the child device 615 to the intermediate access node 610) when the waveforms of the two links have different numerologies, then the entire resource of the resource element or resource block may be excluded from PUSCH resource mapping.
In some examples, the intermediate access node 610 may exclude the overlapping resource elements by determining the output length of a rate matching procedure based on the quantify of overlapping resource elements, such as by subtracting the quantity of the overlapping resource elements (n overlap) multiplied by the modulation degree (n modulation, which may be equal to 2 for BPSK, 4 for 16 QAM, 6 for 64 QAM, 8 for 256 QAM, 10 for 1024 QAM, 12 for 4096 QAM, or another modulation degree) multiplied by the number of spatial multiplexing degree (n MIMO) . That is, the number of rate-matched bits may subtract n overlap *n modulation *n MIMO from the number of rate-matched bits for the second resources including the overlapping resource elements.
In some examples, the intermediate access node 610 may exclude the overlapping resource elements by performing rate-matching based on the number of resource elements in the second resources including the overlapping resource elements, and may then puncture (remove) the bits in the overlapping resource elements. That is, the rate-matched bits may be  mapped into all of the resource elements of the second resources including the overlapping resource elements, but the bits in the overlapping resource elements may then be removed.
For example, the intermediate access node 610 may exclude the overlapping resource elements by determining resource blocks that include one or more overlapping resource elements, and excluding these resource blocks in the same manner as described above for excluding the overlapping resource elements. That is, the entire resource blocks that include one or more overlapping resource elements may be excluded from the PUSCH resource mapping and rate matching.
As another example, the intermediate access node 610 may exclude the overlapping resource elements by determining OFDM (or OFDM/SC-FDM) symbols that include one or more overlapping resource elements, and excluding these symbols in the same manner as described above for excluding the overlapping resource elements. That is, the entire OFDM (or OFDM/SC-FDM) symbols that include one or more overlapping resource elements may be excluded from the PUSCH resource mapping and rate matching.
In some examples, excluding (only) the overlapping resource elements or excluding the resource blocks that include overlapping resource elements may be appropriate for transmitting OFDM waveforms, whereas excluding the symbols that include overlapping resource elements may be appropriate for transmitting SC-FDM waveforms.
In some examples, excluding the overlapping resource elements results in higher spectral efficiency than excluding resource blocks or symbols (because fewer resource elements may be excluded) , but may result in higher computational complexity.
At 660-a, the intermediate access node 610 may transmit a signal to the parent access node 605 by excluding the overlapping resource elements. For example, the intermediate access node 610 may transmit the signal based on the resource mapping performed at 655, which may include physical resource mapping and rate matching that excludes the overlapping resource elements (or that excludes the resource blocks or symbols that include overlapping resource elements) .
At 660-b, the intermediate access node 610 may receive a signal from the child device 615 using the first resources (which may be performed, for example, concurrently with transmitting the signal to the parent access node 605) . For example, the intermediate  access node 610 may receive a signal from the child device 615 over a first duration that overlaps with a second duration over which the intermediate access node 610 is transmitting a signal to the parent access node 605, such as via full-duplex operation of the intermediate access node 610.
At 665 the parent access node 605 may receive the signal from the intermediate access node 610 using a portion of the second resources that excludes the overlapping resource elements and may demodulate the signal by excluding the overlapping resource elements. For example, the parent access node 605 may demodulate the signal by performing physical resource de-mapping or rate de-matching that excludes the overlapping resource elements, such as by performing the inverse of the physical resource mapping and rate matching performed by the intermediate access node 610 at 655.
Figure 7 shows a block diagram of a device 705 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a network device 105 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The communications manager 715 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node, transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node, determine one or more overlapping resource elements of the first resources and the second resources, and receive the second signal from the  intermediate access node such that the overlapping resources are excluded from the reception of the second signal.
In some examples, the communications manager 715 may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node and select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node. The communications manager 715 may transmit, to the intermediate access node based on selecting the second resources, an uplink grant including an indication of the second resources. The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (such as software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver component. For example, the transmitter 720 may be an example of aspects of  the transceiver 1020 described with reference to Figure 10. The transmitter 720 may utilize a single antenna or a set of antennas.
Figure 8 shows a block diagram of a device 805 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705 or a network device 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 845. The communications manager 815 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device. The receiver 810 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a resource indication component 820, a grant component 825, an overlapping resource determination component 830, a signal reception component 835, and a resource selection component 840. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
The resource indication component 820 may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node.
The grant component 825 may transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node.
The overlapping resource determination component 830 may determine one or more overlapping resource elements of the first resources and the second resources.
The signal reception component 835 may receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
The resource indication component 820 may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node.
The resource selection component 840 may select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node.
The grant component 825 may transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
The transmitter 845 may transmit signals generated by other components of the device. In some examples, the transmitter 845 may be collocated with a receiver 810 in a transceiver component. For example, the transmitter 845 may be an example of aspects of the transceiver 1020 described with reference to Figure 10. The transmitter 845 may utilize a single antenna or a set of antennas.
Figure 9 shows a block diagram of a communications manager 905 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a resource indication component 910, a grant component 915, an overlapping resource determination component 920, a signal reception component 925, and a resource selection component 930. Each of these components may communicate, directly or indirectly, with one another (such as via one or more buses) .
The resource indication component 910 may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node.
In some examples, the resource indication component 910 may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node.
In some examples, receiving the indication of the second resources includes receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
In some examples, the resource indication component 910 may receive, from the intermediate access node, an indication that a location of the second resources have changed.
In some examples, receiving the indication of the second resources includes receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
In some examples, the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
In some examples, the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
In some examples, a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot. In some examples, a length of the second bitmap corresponds to a quantity of resource blocks in a slot. In some examples, a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
In some examples, the indication of the second resources includes one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
In some examples, the indication of the second resources includes one or more of a first bitmap associated with time-domain positions of the second resources or a second bitmap associated with frequency-domain positions of the second resources.
In some examples, a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot. In some examples, a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
In some examples, a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
The grant component 915 may transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node.
In some examples, the grant component 915 may transmit, to the intermediate access node, an uplink grant including an indication of the second resources.
The overlapping resource determination component 920 may determine one or more overlapping resource elements of the first resources and the second resources.
In some examples, the overlapping resource determination component 920 may determine a guard bandwidth associated with the first resources. In some examples, determining the one or more overlapping resource elements includes determining overlapping resource elements between the second resources and fourth resources that include the first resources and the guard bandwidth.
The signal reception component 925 may receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal.
In some examples, the signal reception component 925 may demodulate the second signal by excluding the one or more overlapping resource elements.
In some examples, the signal reception component 925 may determine resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements.
In some examples, the signal reception component 925 may demodulate the second signal by excluding the determined resource blocks or OFDM symbols.
In some examples, the signal reception component 925 may perform one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
In some examples, the signal reception component 925 may receive, from the intermediate access node, the second signal using the second resources.
The resource selection component 930 may select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node.
In some examples, the resource selection component 930 may determine first one or more resource elements of the first resources and select the second resources by selecting second one or more resource elements that exclude the first one or more resource elements.
Figure 10 shows a diagram of a system including a device 1005 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a network device 105 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a network communications manager 1015, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an inter-station communications manager 1045. These components may be in electronic communication via one or more buses (such as bus 1050) .
The communications manager 1010 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device, receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node, determine one or more overlapping resource elements of the first resources and the second resources, and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
The network communications manager 1015 may manage communications with the core network (such as via one or more wired backhaul links) . For example, the network  communications manager 1015 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some examples, the wireless device may include a single antenna 1025. However, in some examples the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include RAM, ROM, or a combination thereof. The memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (such as the processor 1040) cause the device to perform various functions described herein. In some examples, the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (such as a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some examples, the processor 1040 may be configured to operate a memory array using a memory controller. In some examples, a memory controller may be integrated into processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (such as the memory 1030) to cause the device 1005 to perform various functions (such as functions or tasks supporting resource mapping to mitigate interference in full-duplex systems) .
The inter-station communications manager 1045 may manage communications with other network devices 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network devices 105. For example, the inter-station communications manager 1045 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint  transmission. In some examples, the inter-station communications manager 1045 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between network devices 105.
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (such as when compiled and executed) to perform functions described herein.
Figure 11 shows a block diagram of a device 1105 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a network device 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120. The communications manager 1115 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device, receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node, determine one or more overlapping resource elements of the first resources and the second resources, and transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal. The communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
The communications manager 1115, or its sub-components, may be implemented in hardware, code (such as software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1115, or its sub-components, may be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1115, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1115, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1120 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1120 may be collocated with a receiver 1110 in a transceiver component. For example, the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The transmitter 1120 may utilize a single antenna or a set of antennas.
Figure 12 shows a block diagram of a device 1205 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The device 1205 may be an example of aspects of a device 1105, or a network device 105 as described herein. The device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1240. The communications manager 1215 may be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (such as via one or more buses) .
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (such as control channels, data channels, and information related to resource mapping to mitigate interference in full-duplex systems) . Information may be passed on to other components of the device 1205. The receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The receiver 1210 may utilize a single antenna or a set of antennas.
The communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein. The communications manager 1215 may include a resource indication component 1220, a grant component 1225, an overlapping resource determination component 1230, and a concurrent communication component 1235. The communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
The resource indication component 1220 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device.
The grant component 1225 may receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node.
The overlapping resource determination component 1230 may determine one or more overlapping resource elements of the first resources and the second resources.
The concurrent communication component 1235 may transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
The transmitter 1240 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1240 may be collocated with a receiver 1210 in a transceiver component. For example, the transmitter 1240 may be an example of aspects of the transceiver 1420 described with reference to Figure 14. The transmitter 1240 may utilize a single antenna or a set of antennas.
Figure 13 shows a block diagram of a communications manager 1305 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The communications manager 1305 may be an example of  aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein. The communications manager 1305 may include a resource indication component 1310, a grant component 1315, an overlapping resource determination component 1320, a concurrent communication component 1325, and a resource determination component 1330. Each of these components may communicate, directly or indirectly, with one another (such as via one or more buses) .
The resource indication component 1310 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device.
In some examples, transmitting the indication of the first resources includes transmitting the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
In some examples, the resource indication component 1310 may transmit, to the parent access node, an indication that the location of the first resources has changed.
In some examples, the indication of the first resources includes one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
In some examples, the indication of the first resources includes one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
In some examples, a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot. In some examples, a length of the second bitmap corresponds to a quantity of resource blocks in a slot. In some examples, a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
In some examples, the first signal includes a PRACH transmission, a PUCCH transmission, an SRS transmission, or a PUSCH transmission that includes URLLC data. In some examples, the second signal includes a PUSCH transmission.
In some examples, the child device is a child access node and the first signal is received over a backhaul link. In some examples, the child device is a user equipment and the first signal is received over an access link.
The grant component 1315 may receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node.
The overlapping resource determination component 1320 may determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources.
In some examples, the overlapping resource determination component 1320 may determine that a first numerology associated with the first signal is different than a second numerology associated with the second signal. In some examples, the one or more overlapping resource elements are determined using physical time-frequency resource positions based on determining that the first numerology is different than the second numerology.
In some examples, determining a guard bandwidth associated with the first resources. In some examples, determining the one or more overlapping resource elements includes determining that the second resources overlap with fourth resources that include the first resources and the guard bandwidth.
The concurrent communication component 1325 may transmit the second signal to the parent access node based on determining the one or more overlapping resource elements of the first resources and the second resources.
In some examples, the concurrent communication component 1325 may receive the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
In some examples, the concurrent communication component 1325 may determine a portion of the second resources that excludes the one or more overlapping resource elements.
In some examples, the concurrent communication component 1325 may transmit the second signal to the parent access node using the portion of the second resources.
In some examples, the concurrent communication component 1325 may determine a rate matching output length based on a quantity of the one or more overlapping resource elements.
In some examples, the concurrent communication component 1325 may perform a rate matching of the second signal based on the rate matching output length.
In some examples, the concurrent communication component 1325 may determine the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor.
In some examples, the concurrent communication component 1325 may adjust an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
In some examples, the concurrent communication component 1325 may perform a rate matching of the second signal based on the second resources.
In some examples, the concurrent communication component 1325 may puncture the one or more overlapping resource elements.
In some examples, the concurrent communication component 1325 may determine resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, in which the portion of the second resources excludes the determined resource blocks or OFDM symbols.
In some examples, the concurrent communication component 1325 may perform a rate matching of the second signal excluding the determined resource blocks or OFDM symbols.
The resource determination component 1330 may determine the first resources.
In some examples, the resource determination component 1330 may determine that a location of the first resources has changed.
Figure 14 shows a diagram of a system including a device 1405 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The device 1405 may be an example of or include the components  of device 1105, device 1205, or a network device 105 as described herein. The device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (such as bus 1450) .
The communications manager 1410 may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device, receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node, determine one or more overlapping resource elements of the first resources and the second resources based on the indication of the first resources and the indication of the second resources, and transmit the second signal to the parent access node based on determining the one or more overlapping resource elements of the first resources and the second resources.
The network communications manager 1415 may manage communications with the core network (such as via one or more wired backhaul links) . For example, the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some examples, the wireless device may include a single antenna 1425. However, in some examples the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1430 may include RAM, ROM, or a combination thereof. The memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (such as the processor 1440) cause the device to perform various  functions described herein. In some examples, the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1440 may include an intelligent hardware device, (such as a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some examples, the processor 1440 may be configured to operate a memory array using a memory controller. In some examples, a memory controller may be integrated into processor 1440. The processor 1440 may be configured to execute computer-readable instructions stored in a memory (such as the memory 1430) to cause the device 1405 to perform various functions (such as functions or tasks supporting resource mapping to mitigate interference in full-duplex systems) .
The inter-station communications manager 1445 may manage communications with other network devices 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other network devices 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between network devices 105.
The code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (such as when compiled and executed) to perform functions described herein.
Figure 15 shows a flowchart illustrating a method 1500 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by an intermediate access node or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to Figures  11–14. In some examples, an intermediate access node may execute a set of instructions to control the functional elements of the intermediate access node to perform the functions described below. Additionally or alternatively, an intermediate access node may perform aspects of the functions described below using special-purpose hardware.
At 1505, the intermediate access node may transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a resource indication component as described with reference to Figures 11–14.
At 1510, the intermediate access node may receive, from the parent access node, an uplink grant including an indication of second resources for transmitting a second signal to the parent access node. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a grant component as described with reference to Figures 11–14.
At 1515, the intermediate access node may determine one or more overlapping resource elements of the first resources and the second resources. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an overlapping resource determination component as described with reference to Figures 11–14.
At 1520, the intermediate access node may transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a concurrent communication component as described with reference to Figures 11–14.
Figure 16 shows a flowchart illustrating a method 1600 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a parent access node or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to Figures 7–10. In some examples, a parent access node may execute a set of instructions to control the functional elements of the parent access node to perform the functions described below.  Additionally or alternatively, a parent access node may perform aspects of the functions described below using special-purpose hardware.
At 1605, the parent access node may receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a resource indication component as described with reference to Figures 7–10.
At 1610, the parent access node may transmit, to the intermediate access node, an uplink grant including an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a grant component as described with reference to Figures 7–10.
At 1615, the parent access node may determine one or more overlapping resource elements of the first resources and the second resources. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by an overlapping resource determination component as described with reference to Figures 7–10.
At 1620, the parent access node may receive the second signal from the intermediate access node using at least a portion of the second resources such that the overlapping resources are excluded from the reception of the second signal. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a signal reception component as described with reference to Figures 7–10.
Figure 17 shows a flowchart illustrating a method 1700 that supports resource mapping to mitigate interference in full-duplex systems in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a parent access node or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to Figures 7–10. In some examples, a parent access node may execute a set of instructions to control the functional elements of the parent access node to perform the functions described below.  Additionally or alternatively, a parent access node may perform aspects of the functions described below using special-purpose hardware.
At 1705, the parent access node may receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a resource indication component as described with reference to Figures 7–10.
At 1710, the parent access node may select, based on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a resource selection component as described with reference to Figures 7–10.
At 1715, the parent access node may transmit, to the intermediate access node, an uplink grant including an indication of the second resources. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a grant component as described with reference to Figures 7–10.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (such as a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic  disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (such as a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (Aand B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein  means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (129)

  1. A method for wireless communications at an intermediate access node, comprising:
    transmitting, to a parent access node, an indication of first resources for receiving a first signal from a child device;
    receiving, from the parent access node, an uplink grant comprising an indication of second resources for transmitting a second signal to the parent access node;
    determining one or more overlapping resource elements of the first resources and the second resources; and
    transmitting the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  2. The method of claim 1, further comprising receiving the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
  3. The method of claim 1 or 2, wherein transmitting the second signal to the parent access node comprises:
    determining a portion of the second resources that excludes the one or more overlapping resource elements; and
    transmitting the second signal to the parent access node using the portion of the second resources.
  4. The method of claim 3, wherein transmitting the second signal to the parent access node using the portion of the second resources comprises:
    determining a rate matching output length based at least in part on a quantity of the one or more overlapping resource elements; and
    performing a rate matching of the second signal based at least in part on the rate matching output length.
  5. The method of claim 4, wherein determining the rate matching output length comprises:
    determining the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor; and
    adjusting an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
  6. The method of claim 3, wherein transmitting the second signal to the parent access node using the portion of the second resources comprises:
    performing a rate matching of the second signal based at least in part on the second resources; and
    puncturing the one or more overlapping resource elements.
  7. The method of any of claims 3-6, further comprising:
    determining resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, wherein the portion of the second resources excludes the determined resource blocks or OFDM symbols; and
    performing a rate matching of the second signal excluding the determined resource blocks or OFDM symbols.
  8. The method of any of claims 3-6, further comprising determining that a first numerology associated with the first signal is different than a second numerology associated with the second signal, wherein the one or more overlapping resource elements are determined using physical time-frequency resource positions based at least in part on determining that the first numerology is different than the second numerology.
  9. The method of any of claims 1-8, further comprising determining the first resources.
  10. The method of any of claims 1-9, wherein the indication of the first resources comprises one or more of a time-domain position of the first resources, a frequency-domain  position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  11. The method of any of claims 1-10, wherein the indication of the first resources comprises one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  12. The method of claim 11, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  13. The method of claim 11 or 12, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  14. The method of claim 11 or 12, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  15. The method of any of claim 1-14, wherein transmitting the indication of the first resources comprises transmitting the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  16. The method of any of claims 1-15, further comprising:
    determining that a location of the first resources has changed; and
    transmitting, to the parent access node, an indication that the location of the first resources has changed.
  17. The method of any of claims 1-16, further comprising determining a guard bandwidth associated with the first resources, wherein determining the one or more overlapping resource elements comprises determining that the second resources overlap with fourth resources that comprise the first resources and the guard bandwidth.
  18. The method of any of claims 1-17, wherein the first signal comprises a physical random access channel (PRACH) transmission, a physical uplink control channel (PUCCH) transmission, a sounding reference signal (SRS) transmission, or a physical uplink shared channel (PUSCH) transmission that includes ultra-reliable low-latency communication (URLLC) data.
  19. The method of any of claims 1-18, wherein the second signal comprises a physical uplink shared channel (PUSCH) transmission.
  20. The method of any of claims 1-19, wherein the child device is a child access node and the first signal is received over a backhaul link.
  21. The method of any of claims 1-19, wherein the child device is a user equipment and the first signal is received over an access link.
  22. A method for wireless communications at a parent access node, comprising:
    receiving, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node;
    transmitting, to the intermediate access node, an uplink grant comprising an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node;
    determining one or more overlapping resource elements of the first resources and the second resources; and
    receiving the second signal from the intermediate access node using at least a portion of the second resources.
  23. The method of claim 22, further comprising demodulating the second signal by excluding the one or more overlapping resource elements.
  24. The method of claim 23, wherein demodulating the second signal by excluding the one or more overlapping resource elements comprises:
    determining resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements; and
    demodulating the second signal by excluding the determined resource blocks or OFDM symbols.
  25. The method of claim 24, wherein demodulating the second signal comprises performing one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
  26. The method of any of claims 22-25, wherein the indication of the first resources comprises one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  27. The method of any of claims 22-26, wherein the indication of the first resources comprises one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  28. The method of claim 27, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  29. The method of claim 27 or 28, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  30. The method of claim 27 or 28, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  31. The method of any of claims 22-30, wherein receiving the indication of the second resources comprises receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  32. The method of any of claims 22-31, further comprising receiving, from the intermediate access node, an indication that a location of the second resources have changed.
  33. The method of any of claims 22-33, further comprising determining a guard bandwidth associated with the first resources, wherein determining the one or more overlapping resource elements comprises determining overlapping resource elements between the second resources and fourth resources that comprise the first resources and the guard bandwidth.
  34. A method for wireless communications at a parent access node, comprising:
    receiving, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node;
    selecting, based at least in part on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node; and
    transmitting, to the intermediate access node, an uplink grant comprising an indication of the second resources.
  35. The method of claim 34, further comprising receiving, from the intermediate access node, the second signal using the second resources.
  36. The method of claim 34 or 35, further comprising determining first one or more resource elements of the first resources, wherein selecting the second resources comprises selecting second one or more resource elements that exclude the first one or more resource elements.
  37. The method of any of claims 34-36, wherein the indication of the second resources comprises one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
  38. The method of any of claims 34-37, wherein the indication of the second resources comprises one or more of a first bitmap associated with time-domain positions of  the second resources or a second bitmap associated with frequency-domain positions of the second resources.
  39. The method of claim 38, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  40. The method of claim 38 or 39, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  41. The method of claim 38 or 39, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  42. The method of any of claims 34-41, wherein receiving the indication of the second resources comprises receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  43. An apparatus for wireless communications at an intermediate access node, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device;
    receive, from the parent access node, an uplink grant comprising an indication of second resources for transmitting a second signal to the parent access node;
    determine one or more overlapping resource elements of the first resources and the second resources; and
    transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to receive the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
  45. The apparatus of claim 43 or 44, wherein the instructions to transmit the second signal to the parent access node are executable by the processor to cause the apparatus to:
    determine a portion of the second resources that excludes the one or more overlapping resource elements; and
    transmit the second signal to the parent access node using the portion of the second resources.
  46. The apparatus of claim 45, wherein the instructions to transmit the second signal to the parent access node using the portion of the second resources are executable by the processor to cause the apparatus to:
    determine a rate matching output length based at least in part on a quantity of the one or more overlapping resource elements; and
    perform a rate matching of the second signal based at least in part on the rate matching output length.
  47. The apparatus of claim 46, wherein the instructions to determine the rate matching output length are executable by the processor to cause the apparatus to:
    determine the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor; and
    adjust an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
  48. The apparatus of claim 45, wherein the instructions to transmit the second signal to the parent access node using the portion of the second resources are executable by the processor to cause the apparatus to:
    perform a rate matching of the second signal based at least in part on the second resources; and
    puncture the one or more overlapping resource elements.
  49. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, wherein the portion of the second resources excludes the determined resource blocks or OFDM symbols; and
    perform a rate matching of the second signal excluding the determined resource blocks or OFDM symbols.
  50. The apparatus of any of claims 45-49, wherein the instructions are further executable by the processor to cause the apparatus to determine that a first numerology associated with the first signal is different than a second numerology associated with the second signal, wherein the one or more overlapping resource elements are determined using physical time-frequency resource positions based at least in part on determining that the first numerology is different than the second numerology.
  51. The apparatus of any of claims 43-50, wherein the instructions are further executable by the processor to cause the apparatus to determine the first resources.
  52. The apparatus of any of claims 43-50, wherein the indication of the first resources comprises one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  53. The apparatus of any of claims 43-50, wherein the indication of the first resources comprises one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  54. The apparatus of claim 53, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  55. The apparatus of claim 53 or 54, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  56. The apparatus of claim 53 or 54, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  57. The apparatus of any of claims 43-56, wherein the instructions to transmit the indication of the first resources are executable by the processor to cause the apparatus to transmit the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  58. The apparatus of any of claims 43-57, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a location of the first resources has changed; and
    transmit, to the parent access node, an indication that the location of the first resources has changed.
  59. The apparatus of any of claims 43-58, wherein the instructions are further executable by the processor to cause the apparatus to determine a guard bandwidth associated with the first resources, wherein the instructions for determining the one or more overlapping resource elements are executable by the processor to cause the apparatus to determine that the second resources overlap with fourth resources that comprise the first resources and the guard bandwidth.
  60. The apparatus of any of claims 43-59, wherein the first signal comprises a physical random access channel (PRACH) transmission, a physical uplink control channel (PUCCH) transmission, a sounding reference signal (SRS) transmission, or a physical uplink shared channel (PUSCH) transmission that includes ultra-reliable low-latency communication (URLLC) data.
  61. The apparatus of any of claims 43-60, wherein the second signal comprises a physical uplink shared channel (PUSCH) transmission.
  62. The apparatus of any of claims 43-61, wherein the child device is a child access node and the first signal is received over a backhaul link.
  63. The apparatus of any of claims 43-61, wherein the child device is a user equipment and the first signal is received over an access link.
  64. An apparatus for wireless communications at a parent access node, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node;
    transmit, to the intermediate access node, an uplink grant comprising an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node;
    determine one or more overlapping resource elements of the first resources and the second resources; and
    receive the second signal from the intermediate access node using at least a portion of the second resources.
  65. The apparatus of claim 64, wherein the instructions are further executable by the processor to cause the apparatus to demodulate the second signal by excluding the one or more overlapping resource elements.
  66. The apparatus of claim 65, wherein the instructions to demodulate the second signal by excluding the one or more overlapping resource elements are executable by the processor to cause the apparatus to:
    determine resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements; and
    demodulate the second signal by excluding the determined resource blocks or OFDM symbols.
  67. The apparatus of claim 66, wherein the instructions to demodulate the second signal are executable by the processor to cause the apparatus to:
    perform one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
  68. The apparatus of any of claims 64-67, wherein the indication of the first resources comprises one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  69. The apparatus of any of claims 64-67, wherein the indication of the first resources comprises one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  70. The apparatus of claim 69, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  71. The apparatus of claim 69 or 70, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  72. The apparatus of claim 69 or 70, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  73. The apparatus of any of claims 64-72, wherein the instructions to receive the indication of the second resources are executable by the processor to cause the apparatus to receive the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  74. The apparatus of any of claims 64-73, wherein the instructions are further executable by the processor to cause the apparatus to receive, from the intermediate access node, an indication that a location of the second resources have changed.
  75. The apparatus of any of claims 64-74, wherein the instructions are further executable by the processor to cause the apparatus to determine a guard bandwidth associated with the first resources, wherein the instructions for determining the one or more overlapping resource elements are executable by the processor to cause the apparatus to determine overlapping resource elements between the second resources and fourth resources that comprise the first resources and the guard bandwidth.
  76. An apparatus for wireless communications at a parent access node, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node;
    select, based at least in part on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node; and
    transmit, to the intermediate access node, an uplink grant comprising an indication of the second resources.
  77. The apparatus of claim 76, wherein the instructions are further executable by the processor to cause the apparatus to receive, from the intermediate access node, the second signal using the second resources.
  78. The apparatus of claim 76 or 77, wherein the instructions are further executable by the processor to cause the apparatus to determine first one or more resource elements of the first resources, wherein the instructions for selecting the second resources are  executable by the processor to cause the apparatus to select second one or more resource elements that exclude the first one or more resource elements.
  79. The apparatus of any of claims 76-78, wherein the indication of the second resources comprises one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
  80. The apparatus of any of claims 76-79, wherein the indication of the second resources comprises one or more of a first bitmap associated with time-domain positions of the second resources or a second bitmap associated with frequency-domain positions of the second resources.
  81. The apparatus of claim 80, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  82. The apparatus of claim 80 or 81, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  83. The apparatus of claim 80 or 81, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  84. The apparatus of any of claims 76-83, wherein the instructions to receive the indication of the second resources are executable by the processor to cause the apparatus to receive the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  85. An apparatus for wireless communications at an intermediate access node, comprising:
    means for transmitting, to a parent access node, an indication of first resources for receiving a first signal from a child device;
    means for receiving, from the parent access node, an uplink grant comprising an indication of second resources for transmitting a second signal to the parent access node;
    means for determining one or more overlapping resource elements of the first resources and the second resources; and
    means for transmitting the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  86. The apparatus of claim 85, further comprising means for receiving the first signal from the child device using the first resources concurrently with transmitting the second signal to the parent access node.
  87. The apparatus of claim 85 or 86, wherein the means for transmitting the second signal to the parent access node comprise:
    means for determining a portion of the second resources that excludes the one or more overlapping resource elements; and
    means for transmitting the second signal to the parent access node using the portion of the second resources.
  88. The apparatus of claim 87, wherein the means for transmitting the second signal to the parent access node using the portion of the second resources comprise:
    means for determining a rate matching output length based at least in part on a quantity of the one or more overlapping resource elements; and
    means for performing a rate matching of the second signal based at least in part on the rate matching output length.
  89. The apparatus of claim 88, wherein the means for determining the rate matching output length comprise:
    means for determining the rate matching output length using the quantity of the one or more overlapping resource elements, a modulation degree, and a quantity of a spatial multiplexing degree to generate an adjustment factor; and
    means for adjusting an initial rate matching output length associated with the second resources using the adjustment factor to generate the rate matching output length.
  90. The apparatus of claim 87, wherein the means for transmitting the second signal to the parent access node using the portion of the second resources comprise:
    means for performing a rate matching of the second signal based at least in part on the second resources; and
    means for puncturing the one or more overlapping resource elements.
  91. The apparatus of claim 87, further comprising:
    means for determining resource blocks or OFDM symbols that include at least one of the one or more overlapping resource elements, wherein the portion of the second resources excludes the determined resource blocks or OFDM symbols; and
    means for performing a rating matching of the second signal excluding the determined resource blocks or OFDM symbols.
  92. The apparatus of any of claims 87-91, further comprising means for determining that a first numerology associated with the first signal is different than a second numerology associated with the second signal, wherein the one or more overlapping resource elements are determined using physical time-frequency resource positions based at least in part on determining that the first numerology is different than the second numerology.
  93. The apparatus of any of claims 85-92, further comprising means for determining the first resources.
  94. The apparatus of any of claims 85-93, wherein the indication of the first resources comprises one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  95. The apparatus of any of claims 85-94, wherein the indication of the first resources comprises one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  96. The apparatus of claim 95, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  97. The apparatus of claim 95 or 96, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  98. The apparatus of claim 95 or 96, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  99. The apparatus of any of claims 85-98, wherein the means for transmitting the indication of the first resources comprises means for transmitting the indication of the first resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  100. The apparatus of any of claims 85-99, further comprising:
    means for determining that a location of the first resources has changed; and
    means for transmitting, to the parent access node, an indication that the location of the first resources has changed.
  101. The apparatus of any of claims 85-100, further comprising means for determining a guard bandwidth associated with the first resources, wherein determining the one or more overlapping resource elements comprises determining that the second resources overlap with fourth resources that comprise the first resources and the guard bandwidth.
  102. The apparatus of any of claims 85-101, wherein the first signal comprises a physical random access channel (PRACH) transmission, a physical uplink control channel (PUCCH) transmission, a sounding reference signal (SRS) transmission, or a physical uplink shared channel (PUSCH) transmission that includes ultra-reliable low-latency communication (URLLC) data.
  103. The apparatus of any of claims 85-102, wherein the second signal comprises a physical uplink shared channel (PUSCH) transmission.
  104. The apparatus of any of claims 85-103, wherein the child device is a child access node and the first signal is received over a backhaul link.
  105. The apparatus of any of claims 85-103, wherein the child device is a user equipment and the first signal is received over an access link.
  106. An apparatus for wireless communications at a parent access node, comprising:
    means for receiving, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node;
    means for transmitting, to the intermediate access node, an uplink grant comprising an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node;
    means for determining one or more overlapping resource elements of the first resources and the second resources; and
    means for receiving the second signal from the intermediate access node using at least a portion of the second resources.
  107. The apparatus of claim 106, further comprising means for demodulating the second signal by excluding the one or more overlapping resource elements.
  108. The apparatus of claim 107, wherein the means for demodulating the second signal by excluding the one or more overlapping resource elements comprise:
    means for determining resource blocks or OFDM symbols of the second resources that include at least one of the one or more overlapping resource elements; and
    means for demodulating the second signal by excluding the determined resource blocks or OFDM symbols.
  109. The apparatus of claim 108, wherein the means for demodulating the second signal comprise:
    means for performing one or more of de-mapping physical resources associated with the second signal or de-matching a rate associated with the second signal.
  110. The apparatus of any of claims 106-109, wherein the indication of the first resources comprises one or more of a time-domain position of the first resources, a frequency-domain position of the first resources, a periodic pattern of the first resources, a frequency hopping mode of the first resources, or a comb offset of the first resources.
  111. The apparatus of any of claims 106-109, wherein the indication of the first resources comprises one or more of a first bitmap associated with time-domain positions of the first resources or a second bitmap associated with frequency-domain positions of the first resources.
  112. The apparatus of claim 111, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  113. The apparatus of claim 111 or 112, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  114. The apparatus of claim 111 or 112, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  115. The apparatus of any of claims 106-114, wherein the means for receiving the indication of the second resources comprise means for receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  116. The apparatus of any of claims 106-115, further comprising means for receiving, from the intermediate access node, an indication that a location of the second resources have changed.
  117. The apparatus of any of claims 106-116, further comprising means for determining a guard bandwidth associated with the first resources, wherein the means for determining the one or more overlapping resource elements comprise means for determining  overlapping resource elements between the second resources and fourth resources that comprise the first resources and the guard bandwidth.
  118. An apparatus for wireless communications at a parent access node, comprising:
    means for receiving, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node;
    means for selecting, based at least in part on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node; and
    means for transmitting, to the intermediate access node, an uplink grant comprising an indication of the second resources.
  119. The apparatus of claim 118, further comprising means for receiving, from the intermediate access node, the second signal using the second resources.
  120. The apparatus of claim 118 of 119, further comprising means for determining first one or more resource elements of the first resources, wherein selecting the second resources comprises selecting second one or more resource elements that exclude the first one or more resource elements.
  121. The apparatus of any of claims 118-120, wherein the indication of the second resources comprises one or more of a time-domain position of the second resources, a frequency-domain position of the second resources, a periodic pattern of the second resources, a frequency hopping mode of the second resources, or a comb offset of the second resources.
  122. The apparatus of any of claims 118-121, wherein the indication of the second resources comprises one or more of a first bitmap associated with time-domain positions of the second resources or a second bitmap associated with frequency-domain positions of the second resources.
  123. The apparatus of claim 122, wherein a length of the first bitmap corresponds to a quantity of OFDM symbols in a slot.
  124. The apparatus of claim 122 or 123, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot.
  125. The apparatus of claim 122 o 123, wherein a length of the second bitmap corresponds to a quantity of resource blocks in a slot added with a second quantity of bits representing a comb offset.
  126. The apparatus of any of claims 118-125, wherein the means for receiving the indication of the second resources comprises means for receiving the indication of the second resources using radio resource control signaling, using downlink control information, or using a medium access control control element.
  127. A non-transitory computer-readable medium storing code for wireless communications at an intermediate access node, the code comprising instructions executable by a processor to:
    transmit, to a parent access node, an indication of first resources for receiving a first signal from a child device;
    receive, from the parent access node, an uplink grant comprising an indication of second resources for transmitting a second signal to the parent access node;
    determine one or more overlapping resource elements of the first resources and the second resources; and
    transmit the second signal to the parent access node such that the overlapping resources are excluded from the transmission of the second signal.
  128. A non-transitory computer-readable medium storing code for wireless communications at a parent access node, the code comprising instructions executable by a processor to:
    receive, from an intermediate access node, an indication of first resources for transmission of a first signal from a child device to the intermediate access node;
    transmit, to the intermediate access node, an uplink grant comprising an indication of second resources for receiving, at the parent access node, a second signal from the intermediate access node;
    determine one or more overlapping resource elements of the first resources and the second resources; and
    receive the second signal from the intermediate access node using at least a portion of the second resources.
  129. A non-transitory computer-readable medium storing code for wireless communications at a parent access node, the code comprising instructions executable by a processor to:
    receive, from an intermediate access node, an indication of first resources for transmission of a signal from a child device to the intermediate access node;
    select, based at least in part on the indication of the first resources, second resources for receiving, at the parent access node, a second signal from the intermediate access node; and
    transmit, to the intermediate access, an uplink grant comprising an indication of the second resources.
PCT/CN2019/099726 2019-08-08 2019-08-08 Resource mapping to mitigate interference in full-duplex systems WO2021022536A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/099726 WO2021022536A1 (en) 2019-08-08 2019-08-08 Resource mapping to mitigate interference in full-duplex systems
PCT/CN2020/107373 WO2021023257A1 (en) 2019-08-08 2020-08-06 Resource mapping to mitigate interference in full-duplex systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099726 WO2021022536A1 (en) 2019-08-08 2019-08-08 Resource mapping to mitigate interference in full-duplex systems

Publications (1)

Publication Number Publication Date
WO2021022536A1 true WO2021022536A1 (en) 2021-02-11

Family

ID=74502820

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/099726 WO2021022536A1 (en) 2019-08-08 2019-08-08 Resource mapping to mitigate interference in full-duplex systems
PCT/CN2020/107373 WO2021023257A1 (en) 2019-08-08 2020-08-06 Resource mapping to mitigate interference in full-duplex systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107373 WO2021023257A1 (en) 2019-08-08 2020-08-06 Resource mapping to mitigate interference in full-duplex systems

Country Status (1)

Country Link
WO (2) WO2021022536A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101143A1 (en) * 2017-11-23 2019-05-31 华为技术有限公司 Scheduling method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101143A1 (en) * 2017-11-23 2019-05-31 华为技术有限公司 Scheduling method and device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Duplexing options for IAB", 3GPP DRAFT; R1-1807224, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, South Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051442420 *
INTEL CORPORATION: "Mechanisms for Resource Multiplexing among Backhaul and Access links", 3GPP DRAFT; R1-1904292, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699608 *
QUALCOMM INCORPORATED: "IAB Resource Management", 3GPP DRAFT; R1-1809444, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 17 August 2018 (2018-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516809 *

Also Published As

Publication number Publication date
WO2021023257A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US11252715B2 (en) Dynamic resource management
US11115972B2 (en) Techniques for updating resource types
US11240801B2 (en) Dynamic resource management
US10687353B2 (en) Management of conflicting scheduling commands in wireless networks
US20210298043A1 (en) Scheduling uplink transmission of a relay
US11064392B2 (en) Resource partitioning between access and backhaul communication links
US20210227458A1 (en) Techniques for selecting an uplink control information reporting mode
WO2022183422A1 (en) Techniques for sub-bandwidth part configurations
US11601967B2 (en) Techniques for semi-static codebook design
WO2022141613A1 (en) Techniques for bandwidth part switching patterns
WO2021023257A1 (en) Resource mapping to mitigate interference in full-duplex systems
EP4022994A1 (en) Notifications of coordination information in wireless backhaul systems
EP4147407B1 (en) Sidelink shared channel demodulation reference signal configuration schemes
US20230133900A1 (en) Techniques for scheduling full-duplex communications
US20220279500A1 (en) Sidelink transmission pre-emption
WO2023082174A1 (en) Supplementary uplink switching for switching multiple radio frequency bands
WO2023142018A1 (en) Unified transmission configuration indicator type switching
WO2021253282A1 (en) Aligned frequency hopping
WO2021088713A1 (en) Signaling in asynchronous carrier aggregation
KR20230154843A (en) Supports adaptive frequency domain resource configuration for relay nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940374

Country of ref document: EP

Kind code of ref document: A1