WO2021020411A1 - Measurement system, measurement method, and program - Google Patents

Measurement system, measurement method, and program Download PDF

Info

Publication number
WO2021020411A1
WO2021020411A1 PCT/JP2020/028959 JP2020028959W WO2021020411A1 WO 2021020411 A1 WO2021020411 A1 WO 2021020411A1 JP 2020028959 W JP2020028959 W JP 2020028959W WO 2021020411 A1 WO2021020411 A1 WO 2021020411A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
radio wave
unit
height
building
Prior art date
Application number
PCT/JP2020/028959
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 北山
Original Assignee
日鉄ソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020126548A external-priority patent/JP2021022932A/en
Application filed by 日鉄ソリューションズ株式会社 filed Critical 日鉄ソリューションズ株式会社
Publication of WO2021020411A1 publication Critical patent/WO2021020411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a measurement system, a measurement method, and a program.
  • the radio wave condition between the base station and the mobile terminal is affected in various ways. For example, if a mountain or a high-rise building exists between a base station and a mobile terminal, the radio wave may be bypassed or reflected, which has a great influence on the radio wave condition.
  • high-rise buildings such as buildings and condominiums
  • the upper floors which have few obstacles around them, have stronger radio wave strength than the lower floors, and can receive radio waves from many base stations. This causes a problem that the reception sensitivity of radio waves differs.
  • equipment such as an indoor antenna and a repeater is installed in the building in order to improve the radio wave condition.
  • the radio waves from multiple base stations are similarly strong, the radio waves used may be frequently switched and communication may be interrupted during communication by the mobile terminal. is there.
  • the radio wave intensity on each floor is measured in advance.
  • the number of floors increases due to the heightening of the building, and it takes a lot of time and effort to bring the necessary equipment to each floor and measure the radio wave condition such as the radio wave strength.
  • buildings such as condominiums that have privately owned areas, even if an attempt is made to measure the radio wave condition on each floor, it is often difficult to enter and measure for reasons such as privacy.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to easily measure the radio wave condition in a building.
  • the measurement system includes a moving body that can move in the height direction along the outer surface of the building, a measuring unit that is mounted on the moving body and performs at least one of radio wave intensity measurement and communication test, and the measurement.
  • the position acquisition unit that acquires height information related to the height at which the unit is located and the measurement result obtained by the measurement unit are the height information acquired by the position acquisition unit when the measurement result is obtained. It is characterized by having a storage unit for storing in association with.
  • FIG. 1 is a diagram showing a configuration example of a measurement system according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the measuring device 110.
  • FIG. 3A is a diagram for explaining the measurement of the radio wave condition in the measurement system according to the present embodiment.
  • FIG. 3B is a diagram for explaining the measurement of the radio wave condition in the measurement system according to the present embodiment.
  • FIG. 4A is a diagram illustrating an example using the measurement system according to the present embodiment.
  • FIG. 4B is a diagram illustrating an example using the measurement system according to the present embodiment.
  • FIG. 4C is a diagram illustrating an example using the measurement system in the present embodiment.
  • FIG. 5 is a diagram illustrating an example using the measurement system in the present embodiment.
  • FIG. 6 is a diagram for explaining the measurement results in the present embodiment.
  • FIG. 1 is a diagram showing a configuration example of a measurement system according to an embodiment of the present invention.
  • 110 is a measuring device for measuring a radio wave condition
  • 120 is a mobile body on which the measuring device 110 is mounted
  • 130 is an operation terminal.
  • the measuring device 110 includes a position acquisition unit 111, a measuring unit 112, a storage unit 113, a communication unit 114, and a control unit 115.
  • the position acquisition unit 111 specifies the position of the measurement unit 112 and acquires the position information.
  • the position acquisition unit 111 acquires height information by specifying at least the height at which the measurement unit 112 is located, but in addition to the height information, the position acquisition unit 111 specifies the horizontal position of the measurement unit 112 in the horizontal direction as necessary.
  • the position information related to the above may also be acquired.
  • the height information may be information indicating the height itself such as altitude and ground clearance, or information indicating the number of floors in the building, as long as the position of the measuring unit 112 is clearly known. ..
  • the position acquisition unit 111 can specify (measure) the altitude, such as an altitude sensor, GPS, or barometer, or equip each floor of the building with a beacon or the like to specify the hierarchy by receiving a transmission signal from the beacon. You may. Further, the position information in the horizontal direction may be positioning information obtained by GPS or the like, or may be position information relative to a predetermined reference point.
  • the position acquisition unit 111 may specify the position of the measurement unit 112 itself to acquire the position information, or may specify the position of the moving body 120 on which the measuring device 110 is mounted and based on the position of the moving body 120. The position information related to the measurement unit 112 may be acquired.
  • the measurement unit 112 measures the radio wave condition in communication with the base station.
  • the measurement unit 112 measures the radio wave (electric field) strength of the radio wave from the base station and performs a communication test related to communication via the base station.
  • the communication test is, for example, a test for evaluating the temporal continuity of communication and data communication related to a voice call via a base station, and an evaluation for connectivity when continuously making and receiving calls. Tests to be done.
  • the measurement unit 112 acquires information (ID information or the like) for identifying the base station that transmitted the radio wave, and outputs the measurement result of the radio wave condition including the information for identifying the base station.
  • the storage unit 113 stores the measurement result of the radio wave condition obtained by the measurement unit 112.
  • the storage unit 113 stores the measurement result of the radio wave condition in association with the position information acquired by the position acquisition unit 111 and the information for identifying the base station when the measurement result of the radio wave condition is obtained. For example, when the measuring unit 112 receives radio waves from a plurality of base stations and obtains radio wave condition measurement results for a plurality of base stations, the radio wave condition measurement results for each of the plurality of base stations with respect to the position information. Is associated and stored in the storage unit 113. The measurement result of the radio wave condition to be stored is stored together with the time information at the time of measurement.
  • the communication unit 114 communicates with an external device such as the operation terminal 130.
  • the communication unit 114 receives, for example, an operation instruction to the measuring device 110 from the operation terminal 130 or the like, or transmits data or the like stored in the storage unit 113 to the operation terminal 130 or the like.
  • the communication unit 114 may be wirelessly connected to an external device such as the operation terminal 130 for communication, or may be wiredly connected to an external device such as the operation terminal 130 for communication. Good.
  • the control unit 115 controls each of the functional units 111 to 114 of the measuring device 110. For example, the control unit 115 instructs the measurement unit 112 to execute a process of measuring the radio wave condition.
  • the moving body 120 is equipped with a measuring device 110 and can move along the outer surface (outer surface, outer wall) 101 of the building.
  • the moving body 120 is, for example, a drone or a gondola that can move to the wall surface 101.
  • the moving body 120 can move at least in the height direction (vertical direction) in the building, and may further move in the horizontal direction (horizontal direction) in the building.
  • the operation terminal 130 is a terminal that gives an operation instruction or the like to the measuring device 110. Further, the operation terminal 130 can receive the measurement result of the radio wave condition from the measuring device 110 and hold or display the measurement result of the radio wave condition.
  • the operation terminal 130 is not limited to the operation instruction to the measuring device 110, and may be able to give a movement control instruction to the moving body 120.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the measuring device 110.
  • the measuring device 110 includes a CPU 201, a ROM 202, a RAM 203, a storage device 204, a position detecting device 205, a communication device 206, a communication interface (IF) 207, and an input / output interface (IF) 208.
  • the CPU 201, ROM 202, RAM 203, storage device 204, position detection device 205, communication device 206, communication IF 207, and input / output IF 208 are connected to each other so as to be able to communicate with each other.
  • the CPU 201 comprehensively controls each component of the measuring device by executing a program stored in the ROM 202 or the storage device 204.
  • the CPU 201 controls various processes in the measuring device 110 by reading and executing a processing program from the ROM 202 or the storage device 204.
  • the RAM 203 functions as a main memory, a work area, or the like of the CPU 201.
  • the storage device 204 is a storage device such as a hard disk drive (HDD) or a solid state drive (SSD), and stores data or the like obtained by measuring a program or a radio wave condition.
  • the program executed by the CPU 201 may be provided by a computer-readable non-transitory storage medium.
  • the position detection device 205 detects the position of the measurement device 110 and outputs the position information.
  • the position detection device 205 is, for example, a GPS unit or a position detection sensor such as an altitude sensor or a direction sensor.
  • the position detecting device 205 can obtain information in the height direction and the horizontal direction from instruction data to the device that controls the wire or the like. You may.
  • the building can be appropriately provided with a beacon or the like, and the hierarchy can be specified by identifying the signal from the received beacon.
  • the communication device 206 is a communication device that receives radio waves from a base station, communicates via the base station, or receives a beacon signal.
  • the communication device 206 can measure the radio wave strength and perform a communication test.
  • the communication device 206 may be, for example, a dedicated device capable of measuring the radio wave strength and executing a communication test, or a mobile terminal such as a smartphone capable of performing the measurement of the radio wave strength and the communication test by an application, for example. May be good.
  • the communication IF 207 is an interface used for communication with an external device such as an operation terminal 130.
  • the input / output IF208 is an interface used for input / output of data or the like to the measuring device 100.
  • the moving body 120 equipped with the measuring device 110 is moved in the height direction along the outer surface of the building. .. Then, after moving the moving body 120 to the position of the floor where the radio wave condition is measured, the measurement unit 112 measures the radio wave condition.
  • the moving body 120 equipped with the measuring device 110 moves from the ground floor to the top floor, then horizontally moves to a predetermined position on the top floor, moves from the top floor to the ground floor, and then moves to the ground floor. Then, the movement of horizontally moving to a predetermined position is repeated.
  • the measurement result of the radio wave condition obtained by the measurement is stored in the storage unit 113 in association with the position information including at least the height information acquired by the position acquisition unit 111 at that time.
  • the measurement of the radio wave condition by the measuring unit 112 is sequentially performed on the floor to be measured by moving the moving body 120.
  • FIGS. 3A and 3B show an example in which the moving body 120 is moved so as to pass through the window surface, but this is an example.
  • the wall or the pillar is not visible from the room while avoiding the window surface. It may be moved along the position. By avoiding the window surface in this way, it is possible to carry out measurement by a method that further considers privacy.
  • the moving body 120 equipped with the measuring device 110 is moved in the height direction along the outer surface of the building, and the measuring device 110 measures the radio field intensity on the floor to be measured.
  • the measurement of the radio wave intensity by the measuring unit 112 is performed a plurality of times at a predetermined measurement timing with the moving body 120 stopped at the height of the floor to be measured, and the average value is used as the measured value of the radio wave intensity.
  • the measured value of the measured radio wave intensity is stored in the storage unit 113 in association with the measured position information of the floor.
  • the radio field strength is weaker on the lower floors than on the upper floors in this building, and it can be used to determine the necessity of installing a repeater or the like.
  • the measured number of floors is shown as height information.
  • “8F” indicates the height of the 8th floor of the building.
  • “horizontal position 01" to “horizontal position 05” indicate, for example, measured values for each horizontal position at the height of the 8th floor (the same applies to FIGS. 4B, 4C, and 5 in both rows and columns). ..
  • the radio field intensity is similarly measured on each surface of the building at the same time, and the surface different from the surface from which the information shown in FIG. 4A is obtained (for example, the opposite surface) is shown in FIG. 4B. It is assumed that information on the radio field strength at each measurement target position of such a building is obtained.
  • FIG. 4A By comparing the information shown in FIG. 4A with the information shown in FIG. 4B, it is possible to grasp, for example, which direction side in the building the radio wave with strong radio wave strength can be received, and to determine the necessity of installing a repeater or the like. It can be used to study the installation location. Comparing FIG. 4A and FIG. 4B, it can be understood that the surface corresponding to FIG. 4A has stronger radio field intensity.
  • the radio field strength is measured in the same manner, and it is assumed that information on the radio field strength at each measurement target position of the building as shown in FIG. 4C is obtained.
  • information shown in FIG. 4A with the information shown in FIG. 4C, it can be understood that the radio field strength has decreased for some reason on the lower floors.
  • it is possible to grasp the stability of the radio wave by comparing the information obtained by similarly measuring the radio wave intensity every time a predetermined period elapses.
  • the information is tabulated as shown in FIGS. 4A, 4B, and 4C and provided to the user who uses the measurement result of the radio wave condition, if the information is displayed by coloring according to the radio wave strength, the radio wave strength can be measured. It is possible to make it easier to visually recognize differences.
  • the moving body 120 equipped with the measuring device 110 is moved in the height direction along the outer surface of the building, and the measuring device 110 measures the radio field intensity on the floor to be measured.
  • the measurement of the radio wave intensity by the measuring unit 112 is performed a plurality of times at a predetermined measurement timing with the moving body 120 stopped at the height of the floor to be measured, and the average value is used as the measured value of the radio wave intensity.
  • the measuring unit 112 of the measuring device 110 receives radio waves from a plurality of base stations and measures the radio wave strength of each base station.
  • the measured value of the radio wave intensity for each of the plurality of measured base stations is associated with the measured floor height information and stored in the storage unit 113.
  • the measured value of the radio wave intensity for each base station is displayed for the measured value on each floor, but as shown in FIG. 4A and the like, the measured value is further at the same height from the “horizontal position 01”.
  • the mobile body 120 equipped with the measuring device 110 is moved along the outer surface of the building, and the measuring device 110 performs a communication test related to communication via a base station on the floor to be measured.
  • the communication test by the measuring unit 112 is carried out in a state where the moving body 120 is stopped at the height of the floor to be measured, as in the measurement of the radio wave intensity.
  • the result of the communication test is stored in the storage unit 113 in association with the position information of the floor on which the test was performed.
  • the results of the communication test include information about the evaluation target in each test and the radio field strength of each base station when an event occurs during the test.
  • the communication test a test for evaluating the temporal continuity of the connection in the communication related to the voice call via the base station, and the connectivity when attempting to make and receive a call continuously are performed. There are tests to evaluate.
  • the communication test includes a test for evaluating the temporal continuity of connection for data communication via a base station, and a test for evaluating connectivity when continuously making and receiving calls. .. Communication tests related to communication related to voice calls are performed using voice calls such as weather forecasts and time signals, and communication tests related to data communication are performed, for example, by browsing a predetermined website.
  • FIG. 6 is an example of a diagram showing the measurement results of the communication test.
  • the height direction is the 8th floor of the building, and the result of the test is shown near the 5th window on the west side.
  • a voice call is transmitted 10 times in a row, the success / failure of the transmission is recorded, and the radio wave intensity of each base station that has received the radio wave is also recorded as information. Then, the number of successful transmissions connected to the base station for 10 voice transmissions is calculated as the success rate.
  • the number of continuous transmissions is not limited to 10 times, and may be arbitrarily determined according to the purpose of the test.
  • the result of the communication test stored in the storage unit 113 is analyzed to transmit a handover failure or the like.
  • a plurality of mobile bodies 120 equipped with the measuring device 110 are simultaneously moved along the outer surface of the building, and each measuring device 110 associates the measured value of the radio field intensity with the measured time information and the floor position information. It is stored in the storage unit 113.
  • five mobile bodies 120 equipped with the measuring device 110 are arranged at the same height in the horizontal direction at different positions, and the five mobile bodies 120 are simultaneously moved from the first floor to the eighth floor in parallel to generate radio waves. Measure the strength.
  • the distribution of the radio wave intensity at the same timing can be grasped on each floor.
  • a plurality of mobile bodies 120 equipped with the measuring device 110 are arranged at different positions in the height direction at the same time, and moved in parallel in the horizontal direction to measure the radio wave intensity at the same time.
  • the distribution of radio field intensity in the height direction can be grasped. In any case, it goes without saying that it can be applied not only to radio wave strength but also to measurement of communication test (evaluation of radio wave quality).

Abstract

A measurement unit mounted on a mobile body capable of moving in a height direction along an outer surface of a building performs at least one of a radiowave intensity measurement and a communication test. Height information relating to the height at which the measurement unit is positioned is acquired by a position acquiring unit. A measurement result obtained by the measurement unit is stored in association with the height information acquired when the measurement result was obtained, whereby the radiowave condition in the building can be measured easily.

Description

計測システム、計測方法、及びプログラムMeasurement system, measurement method, and program
 本発明は、計測システム、計測方法、及びプログラムに関する。 The present invention relates to a measurement system, a measurement method, and a program.
 携帯電話などの携帯端末を用いた移動体通信において、基地局と携帯端末との間の電波状況は様々な影響を受ける。例えば、基地局と携帯端末との間に山や高層建物が存在すると、電波が迂回したり反射したりするなど電波状況に対する影響が大きい。ビルやマンションなどの高層建物では、一般的に、周りに障害となるものが少ない高層階の方が低層階よりも電波強度が強く、また多くの基地局からの電波を受けることができ、階層によって電波の受信感度に差が生じるという問題が生じる。このような問題の解消法として、電波状況を改善するために屋内アンテナやレピーターなどの設備を建物内に設置することが行われている。また、高層階であっても、複数の基地局からの電波が同様に強い強度の電波であると、携帯端末による通信中に、利用する電波が頻繁に切り換わって通信が途切れてしまうこともある。 In mobile communication using mobile terminals such as mobile phones, the radio wave condition between the base station and the mobile terminal is affected in various ways. For example, if a mountain or a high-rise building exists between a base station and a mobile terminal, the radio wave may be bypassed or reflected, which has a great influence on the radio wave condition. In high-rise buildings such as buildings and condominiums, in general, the upper floors, which have few obstacles around them, have stronger radio wave strength than the lower floors, and can receive radio waves from many base stations. This causes a problem that the reception sensitivity of radio waves differs. As a solution to such a problem, equipment such as an indoor antenna and a repeater is installed in the building in order to improve the radio wave condition. In addition, even on higher floors, if the radio waves from multiple base stations are similarly strong, the radio waves used may be frequently switched and communication may be interrupted during communication by the mobile terminal. is there.
特開2003-204296号公報Japanese Unexamined Patent Publication No. 2003-204296
 前述したような問題を解消するために建物における電波状況を改善する際には、事前に各フロアなどでの電波強度の測定等が行われる。しかしながら、建物の高層化によりフロア数が多くなり、各フロアに必要となる機器を持ち込んで電波強度等の電波状況を計測することは、多大な時間と労力を要する。また、個人所有の領域があるマンションなどの建物では、各フロアでの電波状況を計測しようとしても、プライバシー等の理由で立ち入っての計測が困難となるケースも多い。 When improving the radio wave condition in a building to solve the above-mentioned problems, the radio wave intensity on each floor is measured in advance. However, the number of floors increases due to the heightening of the building, and it takes a lot of time and effort to bring the necessary equipment to each floor and measure the radio wave condition such as the radio wave strength. In addition, in buildings such as condominiums that have privately owned areas, even if an attempt is made to measure the radio wave condition on each floor, it is often difficult to enter and measure for reasons such as privacy.
 本発明は、このような事情に鑑みてなされたものであり、建物における電波状況を容易に計測できるようにすることを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to easily measure the radio wave condition in a building.
 本発明に係る計測システムは、建物の外面に沿って高さ方向に移動可能な移動体と、前記移動体に搭載され、電波強度の測定及び通信試験の少なくとも一方を行う計測部と、前記計測部が位置する高さに係る高さ情報を取得する位置取得部と、前記計測部により得られた計測結果を、該計測結果を得たときに前記位置取得部により取得された前記高さ情報と関連付けて記憶する記憶部とを有することを特徴とする。 The measurement system according to the present invention includes a moving body that can move in the height direction along the outer surface of the building, a measuring unit that is mounted on the moving body and performs at least one of radio wave intensity measurement and communication test, and the measurement. The position acquisition unit that acquires height information related to the height at which the unit is located and the measurement result obtained by the measurement unit are the height information acquired by the position acquisition unit when the measurement result is obtained. It is characterized by having a storage unit for storing in association with.
 本発明によれば、建物における電波状況を容易に計測することが可能となる。 According to the present invention, it is possible to easily measure the radio wave condition in a building.
図1は、本実施形態における計測システムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a measurement system according to the present embodiment. 図2は、計測装置110のハードウェア構成の例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of the measuring device 110. 図3Aは、本実施形態における計測システムでの電波状況の計測を説明する図である。FIG. 3A is a diagram for explaining the measurement of the radio wave condition in the measurement system according to the present embodiment. 図3Bは、本実施形態における計測システムでの電波状況の計測を説明する図である。FIG. 3B is a diagram for explaining the measurement of the radio wave condition in the measurement system according to the present embodiment. 図4Aは、本実施形態における計測システムを用いた例を説明する図である。FIG. 4A is a diagram illustrating an example using the measurement system according to the present embodiment. 図4Bは、本実施形態における計測システムを用いた例を説明する図である。FIG. 4B is a diagram illustrating an example using the measurement system according to the present embodiment. 図4Cは、本実施形態における計測システムを用いた例を説明する図である。FIG. 4C is a diagram illustrating an example using the measurement system in the present embodiment. 図5は、本実施形態における計測システムを用いた例を説明する図である。FIG. 5 is a diagram illustrating an example using the measurement system in the present embodiment. 図6は、本実施形態における計測結果を説明する図である。FIG. 6 is a diagram for explaining the measurement results in the present embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は、本発明の一実施形態における計測システムの構成例を示す図である。図1において、110は電波状況を計測するための計測装置であり、120は計測装置110が搭載された移動体であり、130は操作端末である。計測装置110は、位置取得部111、計測部112、記憶部113、通信部114、及び制御部115を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration example of a measurement system according to an embodiment of the present invention. In FIG. 1, 110 is a measuring device for measuring a radio wave condition, 120 is a mobile body on which the measuring device 110 is mounted, and 130 is an operation terminal. The measuring device 110 includes a position acquisition unit 111, a measuring unit 112, a storage unit 113, a communication unit 114, and a control unit 115.
 位置取得部111は、計測部112の位置を特定して位置情報を取得する。位置取得部111は、少なくとも計測部112が位置する高さを特定して高さ情報を取得するが、高さ情報に加え必要に応じて計測部112の水平方向における位置を特定して水平方向に係る位置情報も取得するようにしてもよい。ここで、高さ情報は、計測部112の位置が明確にわかればよく、標高や地上高などの高さそのものを示す情報であってもよいし、建物における階数を示す情報であってもよい。位置取得部111は、高度センサ、GPSや気圧計など、高度を特定(測定)できるもの、或いは建物の各階にビーコン等を備えてビーコンからの発信信号を受信することにより階層を特定するなどしても良い。また、水平方向に係る位置情報は、GPSなどにより得られる測位情報であってもよいし、予め定めた基準点に対する相対的な位置情報であってもよい。なお、位置取得部111は、計測部112そのものの位置を特定して位置情報を取得してもよいし、計測装置110が搭載された移動体120の位置を特定し移動体120の位置に基づいて計測部112に係る位置情報を取得してもよい。 The position acquisition unit 111 specifies the position of the measurement unit 112 and acquires the position information. The position acquisition unit 111 acquires height information by specifying at least the height at which the measurement unit 112 is located, but in addition to the height information, the position acquisition unit 111 specifies the horizontal position of the measurement unit 112 in the horizontal direction as necessary. The position information related to the above may also be acquired. Here, the height information may be information indicating the height itself such as altitude and ground clearance, or information indicating the number of floors in the building, as long as the position of the measuring unit 112 is clearly known. .. The position acquisition unit 111 can specify (measure) the altitude, such as an altitude sensor, GPS, or barometer, or equip each floor of the building with a beacon or the like to specify the hierarchy by receiving a transmission signal from the beacon. You may. Further, the position information in the horizontal direction may be positioning information obtained by GPS or the like, or may be position information relative to a predetermined reference point. The position acquisition unit 111 may specify the position of the measurement unit 112 itself to acquire the position information, or may specify the position of the moving body 120 on which the measuring device 110 is mounted and based on the position of the moving body 120. The position information related to the measurement unit 112 may be acquired.
 計測部112は、基地局との通信における電波状況を計測する。計測部112は、基地局からの電波の電波(電界)強度の測定や、基地局を介した通信に係る通信試験を行う。ここで、通信試験は、例えば基地局を介した音声通話に係る通信やデータ通信について、その時間的な継続性を評価する試験や、連続して発信及び着信を試みたときの接続性を評価する試験などである。また、計測部112は、電波状況を計測する際、電波を発信した基地局を識別する情報(ID情報など)を取得し、基地局を識別する情報を含む電波状況の計測結果を出力する。 The measurement unit 112 measures the radio wave condition in communication with the base station. The measurement unit 112 measures the radio wave (electric field) strength of the radio wave from the base station and performs a communication test related to communication via the base station. Here, the communication test is, for example, a test for evaluating the temporal continuity of communication and data communication related to a voice call via a base station, and an evaluation for connectivity when continuously making and receiving calls. Tests to be done. Further, when measuring the radio wave condition, the measurement unit 112 acquires information (ID information or the like) for identifying the base station that transmitted the radio wave, and outputs the measurement result of the radio wave condition including the information for identifying the base station.
 記憶部113は、計測部112により得られた電波状況の計測結果を記憶する。記憶部113は、電波状況の計測結果を得たときに位置取得部111により取得された位置情報及び基地局を識別する情報とそれぞれ関連付けて、電波状況の計測結果を記憶する。例えば、計測部112が複数の基地局からの電波を受けて複数の基地局に関して電波状況の計測結果が得られた場合には、位置情報に対して複数の基地局毎の電波状況の計測結果を関連付けて記憶部113に記憶する。記憶する電波状況の計測結果は、計測時の時刻情報とともに記憶される。 The storage unit 113 stores the measurement result of the radio wave condition obtained by the measurement unit 112. The storage unit 113 stores the measurement result of the radio wave condition in association with the position information acquired by the position acquisition unit 111 and the information for identifying the base station when the measurement result of the radio wave condition is obtained. For example, when the measuring unit 112 receives radio waves from a plurality of base stations and obtains radio wave condition measurement results for a plurality of base stations, the radio wave condition measurement results for each of the plurality of base stations with respect to the position information. Is associated and stored in the storage unit 113. The measurement result of the radio wave condition to be stored is stored together with the time information at the time of measurement.
 通信部114は、操作端末130等の外部機器との間で通信を行う。通信部114は、例えば操作端末130等からの計測装置110に対する操作指示を受信したり、記憶部113に記憶されたデータ等を操作端末130等に送信したりする。なお、通信部114は、操作端末130等の外部機器と無線接続して通信を行うものであってもよいし、操作端末130等の外部機器と有線接続して通信を行うものであってもよい。制御部115は、計測装置110が有する各機能部111~114を制御する。例えば、制御部115は、計測部112による電波状況を計測する処理の実行を指示したりする。 The communication unit 114 communicates with an external device such as the operation terminal 130. The communication unit 114 receives, for example, an operation instruction to the measuring device 110 from the operation terminal 130 or the like, or transmits data or the like stored in the storage unit 113 to the operation terminal 130 or the like. The communication unit 114 may be wirelessly connected to an external device such as the operation terminal 130 for communication, or may be wiredly connected to an external device such as the operation terminal 130 for communication. Good. The control unit 115 controls each of the functional units 111 to 114 of the measuring device 110. For example, the control unit 115 instructs the measurement unit 112 to execute a process of measuring the radio wave condition.
 移動体120は、計測装置110が搭載され、建物の外面(外側面、外壁)101に沿って移動可能である。移動体120は、例えば、壁面101づたいに移動可能なドローンやゴンドラなどである。移動体120は、少なくとも建物における高さ方向(上下方向)に移動可能であり、さらに建物における水平方向(左右方向)に移動可能であってもよい。 The moving body 120 is equipped with a measuring device 110 and can move along the outer surface (outer surface, outer wall) 101 of the building. The moving body 120 is, for example, a drone or a gondola that can move to the wall surface 101. The moving body 120 can move at least in the height direction (vertical direction) in the building, and may further move in the horizontal direction (horizontal direction) in the building.
 操作端末130は、計測装置110に対する操作指示等を行う端末である。また、操作端末130は、計測装置110から電波状況の計測結果を受信して、電波状況の計測結果を保持したり表示したりすることができる。なお、操作端末130は、計測装置110に対する操作指示等に限らず、移動体120に対する移動制御指示等を行えるようにしてもよい。 The operation terminal 130 is a terminal that gives an operation instruction or the like to the measuring device 110. Further, the operation terminal 130 can receive the measurement result of the radio wave condition from the measuring device 110 and hold or display the measurement result of the radio wave condition. The operation terminal 130 is not limited to the operation instruction to the measuring device 110, and may be able to give a movement control instruction to the moving body 120.
 図2は、計測装置110のハードウェア構成の一例を示す図である。計測装置110は、CPU201、ROM202、RAM203、記憶装置204、位置検出装置205、通信装置206、通信インターフェース(IF)207、及び入出力インターフェース(IF)208を含む。CPU201、ROM202、RAM203、記憶装置204、位置検出装置205、通信装置206、通信IF207、及び入出力IF208は、互いに通信可能に接続されている。 FIG. 2 is a diagram showing an example of the hardware configuration of the measuring device 110. The measuring device 110 includes a CPU 201, a ROM 202, a RAM 203, a storage device 204, a position detecting device 205, a communication device 206, a communication interface (IF) 207, and an input / output interface (IF) 208. The CPU 201, ROM 202, RAM 203, storage device 204, position detection device 205, communication device 206, communication IF 207, and input / output IF 208 are connected to each other so as to be able to communicate with each other.
 CPU201は、ROM202又は記憶装置204に記憶されたプログラムを実行することで、計測装置が有する各構成部を統括的に制御する。例えば、CPU201は、ROM202や記憶装置204から処理プログラムを読み出して実行することで、計測装置110における各種処理を制御する。RAM203は、CPU201の主メモリやワークエリア等として機能する。記憶装置204は、ハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)等の記憶装置であり、プログラムや電波状況の計測によって得られたデータ等を記憶する。なお、CPU201が実行するプログラムは、コンピュータ読み取り可能なnon-transitoryな記憶媒体により提供するようにしてもよい。 The CPU 201 comprehensively controls each component of the measuring device by executing a program stored in the ROM 202 or the storage device 204. For example, the CPU 201 controls various processes in the measuring device 110 by reading and executing a processing program from the ROM 202 or the storage device 204. The RAM 203 functions as a main memory, a work area, or the like of the CPU 201. The storage device 204 is a storage device such as a hard disk drive (HDD) or a solid state drive (SSD), and stores data or the like obtained by measuring a program or a radio wave condition. The program executed by the CPU 201 may be provided by a computer-readable non-transitory storage medium.
 位置検出装置205は、計測装置110の位置を検出して位置情報を出力する。位置検出装置205は、例えばGPSユニットや、高度センサや方位センサなどの位置検出センサである。なお、移動体120が例えばゴンドラのようにワイヤー等で支持されている場合、当該ワイヤー等を制御する装置への指示データなどから高さ方向・水平方向の情報を位置検出装置205が得るようにしてもよい。前述の通り、建物に適宜ビーコン等を備えておき、受信したビーコンからの信号を識別することにより階層を特定することもできる。通信装置206は、基地局からの電波を受信したり、基地局を介した通信を行ったり、或いはビーコン信号を受信したりする通信装置である。通信装置206は、電波強度の測定や通信試験を行うことができる。通信装置206は、例えば電波強度の測定や通信試験を実行できる専用の機器であってもよいし、例えばアプリケーションにより電波強度の測定や通信試験を実行できるようにしたスマートフォン等の携帯端末であってもよい。通信IF207は、操作端末130等の外部機器との間の通信に利用されるインターフェースである。入出力IF208は、計測装置100に対するデータ等の入出力に利用されるインターフェースである。 The position detection device 205 detects the position of the measurement device 110 and outputs the position information. The position detection device 205 is, for example, a GPS unit or a position detection sensor such as an altitude sensor or a direction sensor. When the moving body 120 is supported by a wire or the like like a gondola, the position detecting device 205 can obtain information in the height direction and the horizontal direction from instruction data to the device that controls the wire or the like. You may. As described above, the building can be appropriately provided with a beacon or the like, and the hierarchy can be specified by identifying the signal from the received beacon. The communication device 206 is a communication device that receives radio waves from a base station, communicates via the base station, or receives a beacon signal. The communication device 206 can measure the radio wave strength and perform a communication test. The communication device 206 may be, for example, a dedicated device capable of measuring the radio wave strength and executing a communication test, or a mobile terminal such as a smartphone capable of performing the measurement of the radio wave strength and the communication test by an application, for example. May be good. The communication IF 207 is an interface used for communication with an external device such as an operation terminal 130. The input / output IF208 is an interface used for input / output of data or the like to the measuring device 100.
 本実施形態における計測システムを用いた電波状況の計測では、例えば、図3Aに移動軌跡を示すように、計測装置110を搭載した移動体120を、建物の外面に沿って高さ方向に移動させる。そして、電波状況の計測を行うフロアの位置に移動体120を移動させた後、計測部112により電波状況の計測を行う。図3Aでは、計測装置110を搭載した移動体120は、地上階から最上階に向けて移動した後、最上階では所定位置に水平移動し、最上階から地上階へ向けて移動し、地上階では所定位置に水平移動する、という移動を繰り返している。そして、計測により得られた電波状況の計測結果を、そのときに位置取得部111により取得された少なくとも高さ情報を含む位置情報と関連付けて記憶部113に記憶する。この計測部112による電波状況の計測を、移動体120を移動させて計測対象とするフロアにおいて順次行う。 In the measurement of the radio wave condition using the measurement system in the present embodiment, for example, as shown in FIG. 3A, the moving body 120 equipped with the measuring device 110 is moved in the height direction along the outer surface of the building. .. Then, after moving the moving body 120 to the position of the floor where the radio wave condition is measured, the measurement unit 112 measures the radio wave condition. In FIG. 3A, the moving body 120 equipped with the measuring device 110 moves from the ground floor to the top floor, then horizontally moves to a predetermined position on the top floor, moves from the top floor to the ground floor, and then moves to the ground floor. Then, the movement of horizontally moving to a predetermined position is repeated. Then, the measurement result of the radio wave condition obtained by the measurement is stored in the storage unit 113 in association with the position information including at least the height information acquired by the position acquisition unit 111 at that time. The measurement of the radio wave condition by the measuring unit 112 is sequentially performed on the floor to be measured by moving the moving body 120.
 これにより、建物内への立ち入りや建物内での移動を行うことなく、建物における高さ方向での電波状況を容易に短時間で計測することができる。さらには、計測された電波状況を解析することで、例えば建物内におけるレピーター等の設置の要否判断や設置場所の特定などが可能となり、建物内の電波状況を改善することが可能となる。なお、移動体120が建物における水平方向にも移動可能であれば、図3Bに示すような水平移動と垂直移動を繰り返す移動軌跡に従って計測装置110を搭載した移動体120を移動させてもよいことは言うまでもない。また、図3A及び図3Bでは、窓面を通過する形で移動体120を移動させる例を示しているが、これは一例であり、例えば、窓面を避けて壁や柱など室内から見えない位置に沿って移動させるようにしてもよい。このように窓面を避けることにより更にプライバシーに配慮した方式での計測を実施できる。 This makes it possible to easily measure the radio wave condition in the height direction of the building in a short time without entering the building or moving inside the building. Furthermore, by analyzing the measured radio wave condition, for example, it is possible to determine the necessity of installing a repeater or the like in the building and specify the installation location, and it is possible to improve the radio wave condition in the building. If the moving body 120 can also move in the horizontal direction in the building, the moving body 120 equipped with the measuring device 110 may be moved according to a movement locus that repeats horizontal movement and vertical movement as shown in FIG. 3B. Needless to say. Further, FIGS. 3A and 3B show an example in which the moving body 120 is moved so as to pass through the window surface, but this is an example. For example, the wall or the pillar is not visible from the room while avoiding the window surface. It may be moved along the position. By avoiding the window surface in this way, it is possible to carry out measurement by a method that further considers privacy.
 以下、本実施形態における計測システムによる電波状況の計測を適用した例について説明する。
(第1の例:電波強度の測定)
 計測装置110を搭載した移動体120を、建物の外面に沿って高さ方向に移動させ、計測装置110が、計測対象とするフロアでの電波強度の測定を行う。計測部112による電波強度の測定は、例えば計測するフロアの高さで移動体120を停止した状態で、所定の測定タイミングで複数回行い、その平均値を電波強度の測定値とする。そして、計測された電波強度の測定値を、計測したフロアの位置情報と関連付けて記憶部113に記憶する。このような電波強度の測定を行うことで、例えば図4Aに示すような建物の各計測対象位置における電波強度についての情報を得ることができる。図4Aに示す情報から、例えば、この建物では高層階よりも低層階において電波強度が弱いことを把握することができ、またレピーター等の設置の要否判断に利用することができる。なお、図4Aにおいては、計測したフロアの階数を高さ情報として示しており、例えば「8F」は建物の8階の高さであることを示す。また、「水平位置01」から「水平位置05」は、例えば8階の高さにおける水平位置毎の測定値を示すものである(行、列ともに図4B、図4C、図5についても同様)。
Hereinafter, an example in which the measurement of the radio wave condition by the measurement system in the present embodiment is applied will be described.
(First example: Measurement of radio field strength)
The moving body 120 equipped with the measuring device 110 is moved in the height direction along the outer surface of the building, and the measuring device 110 measures the radio field intensity on the floor to be measured. The measurement of the radio wave intensity by the measuring unit 112 is performed a plurality of times at a predetermined measurement timing with the moving body 120 stopped at the height of the floor to be measured, and the average value is used as the measured value of the radio wave intensity. Then, the measured value of the measured radio wave intensity is stored in the storage unit 113 in association with the measured position information of the floor. By measuring the radio wave intensity in this way, it is possible to obtain information about the radio wave intensity at each measurement target position of the building as shown in FIG. 4A, for example. From the information shown in FIG. 4A, for example, it can be understood that the radio field strength is weaker on the lower floors than on the upper floors in this building, and it can be used to determine the necessity of installing a repeater or the like. In FIG. 4A, the measured number of floors is shown as height information. For example, "8F" indicates the height of the 8th floor of the building. Further, "horizontal position 01" to "horizontal position 05" indicate, for example, measured values for each horizontal position at the height of the 8th floor (the same applies to FIGS. 4B, 4C, and 5 in both rows and columns). ..
 また、例えば、同じ時期に建物の各面で、同様に電波強度の測定を行い、図4Aに示す情報が得られた面とは異なる面(例えば、対向する面など)において、図4Bに示すような建物の各計測対象位置における電波強度についての情報が得られたとする。図4Aに示す情報と図4Bに示す情報とを比較することで、例えば建物における何れの方位側で電波強度が強い電波を受信できるか把握することができ、またレピーター等の設置の要否判断や設置場所の検討に利用することができる。図4Aと図4Bとを比較すると、図4Aに対応する側の面のほうが電波強度が強いことを把握することができる。 Further, for example, the radio field intensity is similarly measured on each surface of the building at the same time, and the surface different from the surface from which the information shown in FIG. 4A is obtained (for example, the opposite surface) is shown in FIG. 4B. It is assumed that information on the radio field strength at each measurement target position of such a building is obtained. By comparing the information shown in FIG. 4A with the information shown in FIG. 4B, it is possible to grasp, for example, which direction side in the building the radio wave with strong radio wave strength can be received, and to determine the necessity of installing a repeater or the like. It can be used to study the installation location. Comparing FIG. 4A and FIG. 4B, it can be understood that the surface corresponding to FIG. 4A has stronger radio field intensity.
 また、例えば、数ヶ月等の長い期間が経過した後に、同様に電波強度の測定を行い、図4Cに示すような建物の各計測対象位置における電波強度についての情報が得られたとする。図4Aに示す情報と図4Cに示す情報とを比較することで、低層階において何らかの原因により電波強度が低下したことを把握することができる。また、例えば、所定の期間が経過する毎に、同様に電波強度の測定を行って得られた情報を比較することで電波の安定性などを把握することが可能となる。なお、図4A、図4B、図4Cに示したように情報をテーブル化して電波状況の計測結果を利用するユーザーに提供する場合、電波強度に応じた色付けなどして表示すれば、電波強度の違いなどを視覚的に認識しやすくすることができる。 Further, for example, after a long period such as several months has passed, the radio field strength is measured in the same manner, and it is assumed that information on the radio field strength at each measurement target position of the building as shown in FIG. 4C is obtained. By comparing the information shown in FIG. 4A with the information shown in FIG. 4C, it can be understood that the radio field strength has decreased for some reason on the lower floors. Further, for example, it is possible to grasp the stability of the radio wave by comparing the information obtained by similarly measuring the radio wave intensity every time a predetermined period elapses. When the information is tabulated as shown in FIGS. 4A, 4B, and 4C and provided to the user who uses the measurement result of the radio wave condition, if the information is displayed by coloring according to the radio wave strength, the radio wave strength can be measured. It is possible to make it easier to visually recognize differences.
(第2の例:基地局毎の電波強度の測定)
 計測装置110を搭載した移動体120を、建物の外面に沿って高さ方向に移動させ、計測装置110が、計測対象とするフロアでの電波強度の測定を行う。計測部112による電波強度の測定は、例えば計測するフロアの高さで移動体120を停止した状態で、所定の測定タイミングで複数回行い、その平均値を電波強度の測定値とする。この例では、計測装置110の計測部112は、複数の基地局からの電波を受けており、基地局毎の電波強度を測定する。そして、計測したフロアの高さ情報に対して、計測された複数の基地局毎の電波強度の測定値を関連付けて記憶部113に記憶する。このような電波強度の測定を行うことで、例えば図5に示すような各高さにおいて基地局毎の電波強度についての情報を得ることができ、高さ及び基地局に応じて電波状況を把握することができる。なお、図5では、各階に於いての測定値について基地局毎の電波強度の測定値を表示しているが、図4A等に示したように、更に同じ高さで「水平位置01」から「水平位置05」のように複数の位置で電波強度の測定を行うことにより、より詳細な複数の基地局毎の電波状況を把握することができる。
(Second example: Measurement of radio field strength for each base station)
The moving body 120 equipped with the measuring device 110 is moved in the height direction along the outer surface of the building, and the measuring device 110 measures the radio field intensity on the floor to be measured. The measurement of the radio wave intensity by the measuring unit 112 is performed a plurality of times at a predetermined measurement timing with the moving body 120 stopped at the height of the floor to be measured, and the average value is used as the measured value of the radio wave intensity. In this example, the measuring unit 112 of the measuring device 110 receives radio waves from a plurality of base stations and measures the radio wave strength of each base station. Then, the measured value of the radio wave intensity for each of the plurality of measured base stations is associated with the measured floor height information and stored in the storage unit 113. By measuring the radio wave strength in this way, it is possible to obtain information about the radio wave strength of each base station at each height as shown in FIG. 5, and grasp the radio wave condition according to the height and the base station. can do. In addition, in FIG. 5, the measured value of the radio wave intensity for each base station is displayed for the measured value on each floor, but as shown in FIG. 4A and the like, the measured value is further at the same height from the “horizontal position 01”. By measuring the radio wave intensity at a plurality of positions such as "horizontal position 05", it is possible to grasp the radio wave condition for each of the plurality of base stations in more detail.
(第3の例:通信試験)
 計測装置110を搭載した移動体120を、建物の外面に沿って移動させ、計測装置110が、計測対象とするフロアでの基地局を介した通信に係る通信試験を行う。計測部112による通信試験は、電波強度の測定と同様に、計測するフロアの高さで移動体120を停止した状態で実施する。そして、通信試験の結果を、試験を実施したフロアの位置情報と関連付けて記憶部113に記憶する。通信試験の結果には、各試験における評価対象についての情報及び試験中のイベント発生時の各基地局の電波強度などが含まれる。
(Third example: communication test)
The mobile body 120 equipped with the measuring device 110 is moved along the outer surface of the building, and the measuring device 110 performs a communication test related to communication via a base station on the floor to be measured. The communication test by the measuring unit 112 is carried out in a state where the moving body 120 is stopped at the height of the floor to be measured, as in the measurement of the radio wave intensity. Then, the result of the communication test is stored in the storage unit 113 in association with the position information of the floor on which the test was performed. The results of the communication test include information about the evaluation target in each test and the radio field strength of each base station when an event occurs during the test.
 ここで、例えば、通信試験には、基地局を介した音声通話に係る通信についての、接続の時間的な継続性を評価する試験や、連続して発信及び着信を試みたときの接続性を評価する試験などがある。また、通信試験には、基地局を介したデータ通信についての、接続の時間的な継続性を評価する試験や、連続して発信及び着信を試みたときの接続性を評価する試験などがある。音声通話に係る通信に係る通信試験は、例えば天気予報や時報などの音声通話を用いて行い、データ通信に係る通信試験は、例えば予め定めたウェブサイトの閲覧等により行う。 Here, for example, in the communication test, a test for evaluating the temporal continuity of the connection in the communication related to the voice call via the base station, and the connectivity when attempting to make and receive a call continuously are performed. There are tests to evaluate. In addition, the communication test includes a test for evaluating the temporal continuity of connection for data communication via a base station, and a test for evaluating connectivity when continuously making and receiving calls. .. Communication tests related to communication related to voice calls are performed using voice calls such as weather forecasts and time signals, and communication tests related to data communication are performed, for example, by browsing a predetermined website.
 図6は、通信試験の測定結果を示した図の例である。この例では高さ方向はビルの8階で、西側5番目の窓付近での試験の結果を示している。例えば音声通話の発信を10回連続で行い、発信の成功/失敗を記録するとともに、電波を受信した各基地局の電波強度もそれぞれ情報として記録しておく。そして、10回の音声発信に対して基地局に接続し発信が成功した回数を成功率として算出している。なお、連続発信回数は10回に限らず、試験目的に応じて任意に定めればよい。試験では、音声の発信だけでなく、着信、データ通信の発信/着信、連続通話での切断回数、連続データ通信での切断回数などを目的に応じて選択して行う。このような通信試験を位置を変えながら実施することによって当該建物の外壁面付近での電波強度に加え電波品質の評価用情報を得ることができる。 FIG. 6 is an example of a diagram showing the measurement results of the communication test. In this example, the height direction is the 8th floor of the building, and the result of the test is shown near the 5th window on the west side. For example, a voice call is transmitted 10 times in a row, the success / failure of the transmission is recorded, and the radio wave intensity of each base station that has received the radio wave is also recorded as information. Then, the number of successful transmissions connected to the base station for 10 voice transmissions is calculated as the success rate. The number of continuous transmissions is not limited to 10 times, and may be arbitrarily determined according to the purpose of the test. In the test, not only voice transmission but also incoming call, data communication transmission / reception, number of disconnections in continuous call, number of disconnections in continuous data communication, etc. are selected according to the purpose. By carrying out such a communication test while changing the position, it is possible to obtain information for evaluation of radio wave quality in addition to the radio wave intensity near the outer wall surface of the building.
 例えば、連続して発信及び着信を試みる試験を実施することで、発信又は着信ができなかった場合、記憶部113に記憶されている通信試験の結果を解析することで、ハンドオーバー失敗などの発信又は着信ができなかった理由を特定することが可能となる。 For example, if a test for making and receiving a call is continuously performed and a call or a call cannot be received, the result of the communication test stored in the storage unit 113 is analyzed to transmit a handover failure or the like. Alternatively, it is possible to identify the reason why the incoming call could not be received.
(第4の例:複数台での同時計測)
 計測装置110を搭載した移動体120を、複数台同時に建物の外面に沿って移動させ、各計測装置110が、測定した電波強度の測定値について、計測した時刻情報及びフロアの位置情報と関連付けて記憶部113に記憶する。例えば、計測装置110を搭載した移動体120を同じ高さの水平方向に異なる位置に5台配置し、5台の移動体120を同時に1階から8階に向けて並行して移動させて電波強度の測定を行う。
(Fourth example: Simultaneous measurement with multiple units)
A plurality of mobile bodies 120 equipped with the measuring device 110 are simultaneously moved along the outer surface of the building, and each measuring device 110 associates the measured value of the radio field intensity with the measured time information and the floor position information. It is stored in the storage unit 113. For example, five mobile bodies 120 equipped with the measuring device 110 are arranged at the same height in the horizontal direction at different positions, and the five mobile bodies 120 are simultaneously moved from the first floor to the eighth floor in parallel to generate radio waves. Measure the strength.
 これにより同じ時刻の同じ高さでの電波強度の状況を把握することができる。例えば、このような電波強度の測定を行った結果が図4Aに示すような情報であったとすると、各フロアでは同じタイミングでの電波強度の分布を把握できる。同様に、計測装置110を搭載した移動体120を、高さ方向の位置を異ならせて複数台同時に配置し、水平方向に並行して移動させて同時に電波強度の測定を行うことで、同じタイミングでの高さ方向での電波強度の分布を把握できる。また、いずれの場合も、電波強度に限らず通信試験の測定(電波品質の評価)にも適用できるのは言うまでもない。 This makes it possible to grasp the status of radio field strength at the same height at the same time. For example, if the result of measuring the radio wave intensity is the information shown in FIG. 4A, the distribution of the radio wave intensity at the same timing can be grasped on each floor. Similarly, a plurality of mobile bodies 120 equipped with the measuring device 110 are arranged at different positions in the height direction at the same time, and moved in parallel in the horizontal direction to measure the radio wave intensity at the same time. The distribution of radio field intensity in the height direction can be grasped. In any case, it goes without saying that it can be applied not only to radio wave strength but also to measurement of communication test (evaluation of radio wave quality).
 なお、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 例えば、前記実施形態ではいずれも立方体状の建物を例に挙げて説明したが、円筒形状の建物であれば、ある高さを水平方向に周回移動させて測定/試験を行ってもよい。この場合、図4A、図4B、図4Cに示す水平位置01~水平位置05等には、前記位置検出装置205の方位センサで検出した方位情報を記憶する。あるいは、らせん状に移動し、高さ情報と方位情報とともに測定値を記憶するようにしてもよい。
It should be noted that the above-described embodiments are merely examples of embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by these. That is, the present invention can be implemented in various forms without departing from the technical idea or its main features.
For example, in each of the above-described embodiments, a cubic building has been described as an example, but in the case of a cylindrical building, a certain height may be orbited in the horizontal direction for measurement / testing. In this case, the directional information detected by the directional sensor of the position detecting device 205 is stored in the horizontal positions 01 to 05 shown in FIGS. 4A, 4B, 4C and the like. Alternatively, it may move in a spiral and store the measured value together with the height information and the orientation information.

Claims (11)

  1.  建物の外面に沿って高さ方向に移動可能な移動体と、
     前記移動体に搭載され、電波強度の測定及び通信試験の少なくとも一方を行う計測部と、
     前記計測部が位置する高さに係る高さ情報を取得する位置取得部と、
     前記計測部により得られた計測結果を、該計測結果を得たときに前記位置取得部により取得された前記高さ情報と関連付けて記憶する記憶部とを有することを特徴とする計測システム。
    A moving body that can move in the height direction along the outer surface of the building,
    A measuring unit mounted on the moving body and performing at least one of radio field strength measurement and communication test,
    A position acquisition unit that acquires height information related to the height at which the measurement unit is located, and a position acquisition unit.
    A measurement system characterized by having a storage unit that stores the measurement result obtained by the measurement unit in association with the height information acquired by the position acquisition unit when the measurement result is obtained.
  2.  前記計測部は、少なくとも前記電波強度の測定を行い、
     前記記憶部は、前記計測部により得られた電波強度の測定値を、電波を発信した基地局を識別する情報と関連付けて記憶することを特徴とする請求項1記載の計測システム。
    The measuring unit measures at least the radio wave intensity, and then
    The measurement system according to claim 1, wherein the storage unit stores a measured value of radio wave intensity obtained by the measurement unit in association with information for identifying a base station that has transmitted radio waves.
  3.  前記記憶部は、第1の高さにおいて前記計測部が複数の基地局から電波を受信した場合、前記高さ情報に対して複数の基地局毎の電波強度を関連付けて記憶することを特徴とする請求項2記載の計測システム。 When the measuring unit receives radio waves from a plurality of base stations at a first height, the storage unit is characterized in that the height information is stored in association with the radio wave strength of each of the plurality of base stations. 2. The measurement system according to claim 2.
  4.  前記計測部は、少なくとも前記通信試験を行い、
     前記通信試験は、基地局を介した通信に係る接続の継続性を評価する試験を含むことを特徴とする請求項1~3の何れか1項に記載の計測システム。
    The measuring unit performs at least the communication test and performs the communication test.
    The measurement system according to any one of claims 1 to 3, wherein the communication test includes a test for evaluating the continuity of a connection related to communication via a base station.
  5.  前記計測部は、少なくとも前記通信試験を行い、
     前記通信試験は、基地局を介した通信での発信及び着信に係る接続性を評価する試験を含むことを特徴とする請求項1~4の何れか1項に記載の計測システム。
    The measuring unit performs at least the communication test and performs the communication test.
    The measurement system according to any one of claims 1 to 4, wherein the communication test includes a test for evaluating connectivity related to transmission and reception in communication via a base station.
  6.  前記記憶部は、前記通信試験の結果とともに各基地局の電波強度を記憶することを特徴とする請求項4又は5記載の計測システム。 The measurement system according to claim 4 or 5, wherein the storage unit stores the radio wave intensity of each base station together with the result of the communication test.
  7.  前記移動体は、さらに前記建物の外面に沿って水平方向に移動可能であり、
     前記位置取得部は、さらに前記計測部が位置する水平方向に係る位置情報を取得し、
     前記記憶部は、前記計測部により得られた計測結果を、該計測結果を得たときに前記位置取得部により取得された前記高さ情報及び前記水平方向に係る位置情報と関連付けて記憶することを特徴とする請求項1~6の何れか1項に記載の計測システム。
    The moving body can further move horizontally along the outer surface of the building.
    The position acquisition unit further acquires position information in the horizontal direction in which the measurement unit is located, and obtains position information.
    The storage unit stores the measurement result obtained by the measurement unit in association with the height information acquired by the position acquisition unit when the measurement result is obtained and the position information related to the horizontal direction. The measurement system according to any one of claims 1 to 6, characterized in that.
  8.  前記記憶部に前記高さ情報と関連付けて記憶された計測結果を前記高さ情報と合わせた表示形式で提供することを特徴とする請求項1~7の何れか1項に記載の計測システム。 The measurement system according to any one of claims 1 to 7, wherein the measurement result stored in the storage unit in association with the height information is provided in a display format combined with the height information.
  9.  前記移動体を複数同時に建物の外面に沿って移動させ、各移動体に搭載された各々の計測部により得られた計測結果は、計測時の時刻情報と関連付けて記憶することを特徴とする請求項1~8の何れか1項に記載の計測システム。 A claim characterized in that a plurality of the moving bodies are simultaneously moved along the outer surface of the building, and the measurement results obtained by the respective measuring units mounted on the moving bodies are stored in association with the time information at the time of measurement. Item 6. The measurement system according to any one of Items 1 to 8.
  10.  建物の外面に沿って高さ方向に移動体を移動させる移動工程と、
     前記移動体に搭載された計測部が、電波強度の測定及び通信試験の少なくとも一方を行う計測工程と、
     前記計測部が位置する高さに係る高さ情報を取得する位置取得工程と、
     前記計測工程で得られた計測結果を、該計測結果を得たときに取得された前記高さ情報と関連付けて記憶部に記憶する記憶工程とを有することを特徴とする計測方法。
    The moving process of moving the moving body in the height direction along the outer surface of the building,
    A measurement process in which the measuring unit mounted on the moving body performs at least one of measurement of radio wave strength and communication test, and
    A position acquisition process for acquiring height information related to the height at which the measuring unit is located, and
    A measurement method comprising a storage step of associating a measurement result obtained in the measurement step with the height information acquired when the measurement result is obtained and storing the measurement result in a storage unit.
  11.  建物の外面に沿って高さ方向に移動可能な移動体を順次移動させて、前記移動体に搭載された計測部が、電波強度の測定及び通信試験の少なくとも一方を行う計測ステップと、
     前記計測部が位置する高さに係る高さ情報を取得する位置取得ステップと、
     前記計測ステップで得られた計測結果を、該計測結果を得たときに取得された前記高さ情報と関連付けて記憶部に記憶する記憶ステップとをコンピュータに実行させるためのプログラム。
    A measurement step in which a moving body that can move in the height direction along the outer surface of the building is sequentially moved, and a measuring unit mounted on the moving body performs at least one of radio wave intensity measurement and communication test.
    A position acquisition step for acquiring height information related to the height at which the measuring unit is located, and
    A program for causing a computer to execute a storage step in which a measurement result obtained in the measurement step is associated with the height information acquired when the measurement result is obtained and stored in a storage unit.
PCT/JP2020/028959 2019-07-29 2020-07-29 Measurement system, measurement method, and program WO2021020411A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019138599 2019-07-29
JP2019-138599 2019-07-29
JP2020-126548 2020-07-27
JP2020126548A JP2021022932A (en) 2019-07-29 2020-07-27 Measurement system, measurement method, and program

Publications (1)

Publication Number Publication Date
WO2021020411A1 true WO2021020411A1 (en) 2021-02-04

Family

ID=74230714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028959 WO2021020411A1 (en) 2019-07-29 2020-07-29 Measurement system, measurement method, and program

Country Status (1)

Country Link
WO (1) WO2021020411A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130448A (en) * 2007-11-20 2009-06-11 Nec Corp Communication apparatus, electric wave quality measuring system, electric wave quality measuring method and program
KR101732870B1 (en) * 2016-02-12 2017-05-24 주식회사 이노와이어리스 network optimizing position searching system using drone
JP2019041413A (en) * 2018-11-28 2019-03-14 Kddi株式会社 Measuring apparatus, measuring system and measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130448A (en) * 2007-11-20 2009-06-11 Nec Corp Communication apparatus, electric wave quality measuring system, electric wave quality measuring method and program
KR101732870B1 (en) * 2016-02-12 2017-05-24 주식회사 이노와이어리스 network optimizing position searching system using drone
JP2019041413A (en) * 2018-11-28 2019-03-14 Kddi株式会社 Measuring apparatus, measuring system and measuring method

Similar Documents

Publication Publication Date Title
US11475760B2 (en) Method, digital tool, device and system for detecting movements of objects and/or living beings in a radio range, in particular of an indoor area
CN106452620B (en) Method and system for testing receiving performance of wireless terminal
US10299143B2 (en) Multiple application modules (MAMs) for monitoring signals in components in wireless distribution systems, including distributed antenna systems (DASs), and related systems and methods
CN106210714B (en) A kind of system, method and device for testing set top box WIFI handling capacities
CN103906091B (en) Wireless aps method for testing performance and detecting system in a kind of WIFI
US10608758B2 (en) Simulating service changes in an application module (AM) in a wireless communications system (WCS) to simulate site walks in the wireless communications system
US20180084434A1 (en) Method and apparatus for installing antenna devices and guiding installation
US9949144B2 (en) Method and apparatus for controlling radio parameters, network operation management apparatus, and radio base station
JP2016111397A (en) Radio terminal measurement device and radio terminal measurement method
CN105164546A (en) Methods and apparatuses for characterizing and affecting mobile device location accuracy and/or uncertainty
US20180041872A1 (en) System and method for positioning mobile device by using bluetooth signal
CN107219409A (en) The detection device of terminal antenna
WO2021020411A1 (en) Measurement system, measurement method, and program
KR101546028B1 (en) System and method of posiion pursuit for interior floating population
JP2021022932A (en) Measurement system, measurement method, and program
CN113891334A (en) Directional base station debugging method of high-speed magnetic levitation train ground communication system
TWI565963B (en) Positioning device and positioning method thereof
US10462015B1 (en) Detecting physical topology changes affecting cells and cell edge determination
US20180041911A1 (en) Control apparatus, wireless communication system, and control method
CN111225408B (en) Wireless environment monitoring method, device, equipment and storage medium based on SmallCell base station
Hong et al. Path loss measurement of 2.4 G band radio signal communication in disaster ruins
Wang et al. Enabling Ubiquitous Occupancy Detection in Smart Buildings: A WiFi FTM-Based Approach
JP6912936B2 (en) Coverage hole detector and method
JP7239962B2 (en) Position management system for a receiver moving in a predetermined area
JP6986457B2 (en) Position detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847614

Country of ref document: EP

Kind code of ref document: A1