WO2021020111A1 - Measuring device, atomic force microscope, and measurement method - Google Patents

Measuring device, atomic force microscope, and measurement method Download PDF

Info

Publication number
WO2021020111A1
WO2021020111A1 PCT/JP2020/027391 JP2020027391W WO2021020111A1 WO 2021020111 A1 WO2021020111 A1 WO 2021020111A1 JP 2020027391 W JP2020027391 W JP 2020027391W WO 2021020111 A1 WO2021020111 A1 WO 2021020111A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
vibrating body
amplitude
reference signal
Prior art date
Application number
PCT/JP2020/027391
Other languages
French (fr)
Japanese (ja)
Inventor
圭 小林
邦子 木村
啓文 山田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2021536907A priority Critical patent/JPWO2021020111A1/ja
Publication of WO2021020111A1 publication Critical patent/WO2021020111A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/58SThM [Scanning Thermal Microscopy] or apparatus therefor, e.g. SThM probes

Definitions

  • the present disclosure relates to a measuring device, an atomic force microscope, and a measuring method.
  • the scanning probe microscope detects the interaction between the probe and the sample that occurs when the probe (probe) is brought close to the sample surface, and the probe and the probe are kept constant.
  • the surface shape image is acquired by controlling the distance between the samples and scanning the probe or the sample two-dimensionally.
  • the atomic force microscope (AFM: Atomic Force Microscopy) is the most widely used device, and it has a cantilever with a probe at its free end, an optical displacement sensor that detects the displacement of the cantilever, and an optical displacement sensor. , It is equipped with a scanner that scans the cantilever and the sample relative to each other.
  • the AFM creates a mechanical interaction between the mechanical probe and the sample, and obtains sample information based on the deformation of the cantilever caused by the mechanical interaction.
  • Patent Document 1 discloses an ultrasonic atomic force microscope (UAFM: Ultrasonic Atomic Force Microscopy).
  • UFM Ultrasonic Atomic Force Microscopy
  • the cantilever is vibrated so that the cantilever is always in a resonance state, and the amplitude of the cantilever in the resonance state is detected and detected.
  • the Q value of the cantilever can be obtained based on the amplitude.
  • Non-Patent Document 1 focuses on the thermal noise vibration of the cantilever, and scan-type thermal vibration as a method of obtaining viscoelastic information of the sample surface without vibrating the sample or the cantilever by frequency analysis of the thermal noise vibration.
  • a microscope (STNM: Scanning Thermal Noise Microscopy) is disclosed. In this method, the vibration waveform of the cantilever is recorded and the frequency analysis is performed by the fast Fourier transform, so it is necessary to take time for the measurement. In this respect, the method disclosed in Non-Patent Document 1 has room for improvement.
  • An object of the present disclosure is to provide a measuring device capable of measuring the resonance frequency of the vibrating body at a higher speed without vibrating the vibrating body, an atomic force microscope including the measuring device, and a measuring method. Is to provide.
  • a measuring device is based on a generator that generates a reference signal having a reference frequency set near the resonance frequency of the vibrating body, and a displacement signal of the vibrating body and a reference signal generated by the generating unit. It also includes an amplitude detection unit that detects the thermal vibration amplitude of the vibrating body within a predetermined range including the reference frequency, and a calculation unit that calculates the resonance frequency of the vibrating body based on the detected thermal vibration amplitude.
  • Atomic force microscopes are provided with the above measuring device.
  • the vibrating body is a cantilever.
  • the atomic force microscope further includes an image generation unit that generates an image of the resonance frequency of the cantilever calculated by the measuring device by scanning the probe provided at the tip of the cantilever relative to the sample.
  • the measurement method is based on the step of generating a reference signal having a reference frequency set in the vicinity of the resonance frequency of the vibrating body, and the displacement signal of the vibrating body and the generated reference signal.
  • the step includes a step of detecting the thermal vibration amplitude of the vibrating body within a predetermined range including the reference frequency, and a step of calculating the resonance frequency of the vibrating body based on the detected thermal vibration amplitude.
  • FIG. 1 It is the schematic which shows the whole structure of the AFM according to this embodiment. It is a figure which shows the harmonic oscillator model of a cantilever. It is a figure for demonstrating the configuration example 1 of the signal detection apparatus. It is a figure which shows the thermal vibration spectrum of a cantilever. It is a figure for demonstrating the change of a noise amplitude. It is a functional block diagram of a signal detection device and a computer according to the configuration example 1. It is a figure which shows the configuration example 2 of the signal detection apparatus. It is a figure for demonstrating the noise amplitude detected by the configuration example 2. FIG. It is a functional block diagram of a signal detection device and a computer according to the configuration example 2.
  • FIG. 1 is a schematic view showing an overall configuration of an AFM 100 according to the present embodiment.
  • the AFM 100 includes a scanning mechanism 5, a table 8, a signal detection device 10, a cantilever 11, a laser light source 14, a displacement detector 15, a computer 110, a feedback circuit 120, and Z. It includes a driver 132 and an XY driver 134.
  • the cantilever 11 which is a vibrating body has, for example, a cantilever structure made of silicon, one end of which is supported by a housing (not shown) of the AFM100, and the other end of which has a probe 12.
  • the probe 12 of the cantilever 11 comes into contact with the surface of the measurement sample 2 arranged on the table 8.
  • the laser light source 14 irradiates the back surface of the cantilever 11 with a laser beam.
  • the displacement detector 15 is composed of, for example, an optical lever type optical displacement sensor, and detects a displacement signal of the cantilever 11 based on a laser beam reflected from the back surface of the cantilever 11.
  • the displacement detector 15 detects as a displacement signal a signal indicating an angular displacement proportional to the displacement of the tip of the cantilever 11.
  • the displacement detector 15 may detect a signal indicating the displacement of the tip of the cantilever 11 as a displacement signal.
  • the detected displacement signal is output to the signal detection device 10 and the feedback circuit 120.
  • the scanning mechanism 5 moves the sample 2 and the probe 12 relative to each other in three dimensions.
  • the scanning mechanism 5 includes a Z scanner 6 and an XY scanner 7.
  • the Z scanner 6 is arranged on the XY scanner 7, and the sample 2 is placed via a table 8 fixed to the upper portion of the Z scanner 6 in the vertical direction.
  • the Z scanner 6 is composed of, for example, a piezoelectric element, and moves the sample 2 in the Z direction with respect to the probe 12 in response to the voltage indicated by the Z driver 132.
  • the XY scanner 7 is composed of, for example, a piezoelectric element, and moves the sample 2 in the XY direction with respect to the probe 12 in response to the voltage indicated by the XY driver 134.
  • the Z direction is the vertical direction, that is, the direction perpendicular to the plane on which the sample 2 is placed among the planes of the table 8, and the XY direction is the coordinate axes on the plane orthogonal to the Z direction.
  • the feedback circuit 120 generates a Z control signal based on the displacement signal of the cantilever 11 so that the amount of deflection of the cantilever 11 becomes constant. For example, the feedback circuit 120 generates a Z control signal so that the output signal that has passed through a low-pass filter (not shown) among the displacement signals has a predetermined constant value, and sends the Z control signal to the Z driver 132. Supply.
  • the Z driver 132 controls the Z scanner 6 according to the supplied Z control signal. As a result, the distance between the sample 2 and the probe 12 is controlled so that the output signal becomes a constant value.
  • the signal detection device 10 detects the thermal vibration amplitude of the cantilever 11 based on the displacement signal of the cantilever 11, and viscoelastic information (for example, resonance frequency, Q value) of the cantilever 11 based on the detected thermal vibration amplitude. ) Is detected.
  • viscoelastic information for example, resonance frequency, Q value
  • the computer 110 is, for example, a desktop personal computer.
  • the computer 110 has a hardware configuration such as a processor composed of a CPU (Central Processing Unit) and the like, a memory such as a RAM (Random Access Memory), a ROM (Read-Only Memory), and a hard disk, and an operator. It includes an input device (for example, a keyboard, a mouse, etc.) that receives an instruction input from the computer, a communication interface for transmitting and receiving various signals, a display for displaying various information, and the like.
  • a hardware configuration such as a processor composed of a CPU (Central Processing Unit) and the like, a memory such as a RAM (Random Access Memory), a ROM (Read-Only Memory), and a hard disk, and an operator.
  • It includes an input device (for example, a keyboard, a mouse, etc.) that receives an instruction input from the computer, a communication interface for transmitting and receiving various signals, a display for displaying various information, and the like.
  • the computer 110 receives the Z control signal from the feedback circuit 120.
  • the computer 110 sends a scanning signal to the XY driver 134 to scan the XY scanner 7 in the XY direction.
  • the computer 110 stores the position of the table 8 in the Z direction corresponding to the Z control signal when the table 8 moves in the XY axis direction.
  • the computer 110 generates various images by scanning the probe 12 relative to the sample 2 while the probe 12 is in contact with the sample surface. Specifically, the computer 110 generates a surface shape image of the sample 2 and displays it on the display by plotting the stored position in the Z direction in the coordinate system of the XYZ axes.
  • the computer 110 calculates the resonance frequency and the Q value of the cantilever 11 based on the signal from the signal detection device 10, generates an image showing the viscoelasticity of the surface of the sample 2, and displays it on the display.
  • the signal detection device 10 and the computer 110 realize a measuring device that measures the resonance frequency and the Q value of the cantilever 11.
  • FIG. 2 is a diagram showing a harmonic oscillator model of a cantilever.
  • m * , ⁇ , and kz indicate the effective mass, damping constant, and spring constant of the cantilever, respectively.
  • the probe 12 is controlled to be in contact with the sample 2.
  • the contact elasticity k * and the contact viscosity ⁇ s on the sample 2 side affect the resonance characteristics (resonance frequency and Q value) of the cantilever 11. Therefore, the viscoelastic information of the sample surface can be obtained by obtaining the resonance characteristics of the cantilever 11 at the time of contact between the cantilever 11 and the sample. Further, when the subsurface structure of the sample 2 affects the viscoelasticity of the sample surface, the subsurface structure can be visualized.
  • the spurious peak described above is generated, and there are also the following adverse effects.
  • the frequency spectrum obtained by excitation often shows vibration amplitude dependence, and a large amplitude distorts the frequency spectrum.
  • the probe may be greatly pushed into the sample due to the vibration of the probe, which may damage the sample. Therefore, it is desirable to obtain the resonance frequency of the cantilever (hereinafter, also referred to as “contact resonance frequency”) at the time of contact between the cantilever and the sample in a non-invasive manner without vibrating the cantilever.
  • the cantilever is constantly vibrating due to the thermal fluctuation of the surroundings without applying a vibrating external force.
  • This vibration is referred to as thermal noise vibration or thermal vibration
  • the magnitude of the energy, the Boltzmann constant k B, when the environmental temperature is T, is given by k B T. Therefore, the root mean square ⁇ x th (t) 2 > of the displacement x th (t) due to thermal vibration is expressed by the following equation (1).
  • the displacement signal of the cantilever is recorded at each scanning point of the contact mode AFM, the frequency spectrum of the thermal vibration amplitude is obtained by Fourier transform, and this is compared with the equation (1).
  • the contact resonance frequency and Q value of the cantilever were acquired. However, since the amplitude of thermal vibration is very small, the sensitivity is low and the measurement time becomes long.
  • the contact resonance frequency of the cantilever 11 (hereinafter, simply referred to as "resonant frequency f c.") Near the reference frequency set in the vicinity of detecting the thermal vibration amplitude in the frequency range, measuring the resonance frequency f c on the basis of the thermal vibration amplitude.
  • resonant frequency f c Near the reference frequency set in the vicinity of detecting the thermal vibration amplitude in the frequency range, measuring the resonance frequency f c on the basis of the thermal vibration amplitude.
  • FIG. 3 is a diagram for explaining a configuration example 1 of the signal detection device 10.
  • the probe 12 of the cantilever 11 is set in contact with the surface of the sample 2.
  • the operator adjusts the positions of the laser light source 14 and the displacement detector 15 with the sample 2 away from the probe 12 so that a displacement signal representing the deflection of the cantilever 11 can be obtained with optimum sensitivity.
  • the Z driver 132 operates the Z scanner 6 to bring the sample 2 into contact with the probe 12.
  • the feedback circuit 120 supplies the Z driver 132 with a Z control signal that makes the output signal of the low-pass filter constant among the displacement signals that change due to contact.
  • the Z driver 132 controls the Z scanner 6 according to the Z control signal. As a result, the probe 12 is controlled to be in contact with the surface of the sample 2.
  • the signal detection device 10A corresponding to the configuration example 1 detects a signal related to the thermal vibration of the cantilever 11 in a state where the probe 12 is in contact with the sample 2.
  • the signal detection device 10A includes a lock-in amplifier 20 and an oscillator 25.
  • the signal detection device 10A corresponds to the signal detection device 10 shown in FIG. 1, but is provided with an additional reference numeral such as “A” for convenience in order to distinguish it from the following other configuration examples. This also applies to other configuration examples.
  • the oscillator 25 is a voltage controlled oscillator (VCO: Voltage-Controlled Oscillator) that controls the transmission frequency with a control voltage.
  • VCO Voltage-Controlled Oscillator
  • the oscillator 25 generates a signal cos (2 ⁇ f ref t) that changes with a frequency f ref . This signal is used as a reference signal V x of the lock-in amplifier 20.
  • the lock-in amplifier 20 is, for example, a two-phase lock-in amplifier, and includes multipliers 21 and 21A, low-pass filters (LPF) 22, 22A, a phase shifter 24, and a vector calculation circuit 27. ..
  • the displacement signal of the cantilever 11 is input to the multipliers 21 and 21A.
  • the reference signal V x output from the oscillator 25 is input to the multiplier 21.
  • the signal V y obtained by passing the reference signal V x through the phase shifter 24 at + 90 ° is input to the multiplier 21A as a reference signal.
  • the multiplier 21 multiplies the reference signal V x by the displacement signal, and the multiplied displacement signal is output to the LPF 22.
  • the LPF 22 removes the high frequency component of the displacement signal and outputs it to the vector calculation circuit 27.
  • the multiplier 21A multiplies the reference signal V y by the displacement signal, and the multiplied displacement signal is output to the LPF 22A.
  • the LPF 22A removes the high frequency component of the displacement signal and outputs it to the vector calculation circuit 27.
  • the vector calculation circuit 27 calculates the absolute value R and the argument ⁇ of the complex input (X + jY).
  • the absolute value R is (X 2 + Y 2 ) 1/2
  • the argument ⁇ is arg (Y / X).
  • the absolute value R (hereinafter, also referred to as “signal R”) corresponds to the amplitude effective value Arms of the displacement signal.
  • the declination ⁇ corresponds to the phase difference ⁇ between the reference signal V x and the displacement signal.
  • the lock-in amplifier 20 is a band pass filter equivalent to extract only signal component included in the scope of f ref ⁇ f LPF in frequency space.
  • the signal R is the square root of the integral value of the squares of the random signal components included in the range of f ref ⁇ f LPF centered on the frequency f ref , that is, the root mean square (RMS) value. Equivalent to. That is, the signal R roughly corresponds to the thermal vibration amplitude (hereinafter, also referred to as “noise amplitude”) in the integrated frequency range (that is, fref ⁇ f LPF ).
  • the declination ⁇ is a random value because it is the phase difference between the random signal component included in the range of f ref ⁇ f LPF and the reference signal V x . Therefore, no meaningful information can be obtained from the declination ⁇ .
  • FIG. 4 is a diagram showing a thermal vibration spectrum of the cantilever 11.
  • the frequency spectrum 301 represents the frequency dependence of the displacement noise density of the cantilever 11.
  • the horizontal axis shows the frequency, and the vertical axis shows the displacement noise density.
  • Displacement noise density is maximized at the resonance frequency f c of the cantilever 11.
  • the area of the region 305 (shaded portion in FIG. 4) over the frequency range (f ref ⁇ f LPF ) roughly corresponds to the R signal (that is, the noise amplitude).
  • Frequency f ref of the reference signal has been set slightly higher resonant frequency f c
  • the setting is performed as follows.
  • the computer 110 records the displacement signal of the cantilever 11 at the scanning start point where the probe 12 and the sample 2 are in contact with each other according to the operator's instruction.
  • the computer 110 acquires the thermal vibration spectrum at the scanning start point by Fourier transforming this displacement signal.
  • the operator from thermal oscillation spectrum, determines the resonance frequency f c of the cantilever 11 at the scan start point (e.g., 100kHz so).
  • Oscillator 25 in accordance with the instruction of the operator to set the frequency f ref in the vicinity of the resonance frequency f c (e.g., increase the number kHz). Note that oscillator 25 is slightly lower than the resonance frequency f c the frequency f ref (e.g., by a few kHz lower) may be set to.
  • FIG. 5 is a diagram for explaining a change in noise amplitude.
  • the frequency spectrum 301 to move from one scan point to another scanning point, if the resonant frequency f c from the state of FIG. 4 was shifted in the negative direction, the frequency spectrum 301, as the frequency spectrum 303 Change.
  • the area of the region 307 corresponding to the signal R after the change in the frequency spectrum 303 is smaller than the area of the region 305 corresponding to the signal R before the change (see FIG. 4).
  • Signal R (i.e., noise amplitude) decrease in the other case where the shifted resonance frequency f c is in the negative direction as the frequency spectrum 303, shifted greatly resonance frequency f c is in the positive direction as shown in the frequency spectrum 304 It can also occur when the integrated frequency range is to the left of the center of the resonance curve, or when the Q value changes and the sharpness of the resonance curve changes. However, for example, also the scanning point is changed to the next scanning point, not the resonance frequency f c is large shifts in the positive direction, and, if it can be assumed that the Q value is not greatly changed, the change of the signal R is generally represents the change in the resonant frequency f c.
  • the computer 110 based on a signal R from time to time detected from the scan starting point can be calculated the resonance frequency f c of the cantilever 11 at each scanning point.
  • R s be the signal R detected at the scanning start point
  • f cs be the resonance frequency f c at the scanning start point.
  • the computer 110 calculates the resonance frequency as f cs + ⁇ f.
  • ⁇ f which is the change in the resonance frequency f c when R s changes by ⁇ R, is acquired in advance by actual measurement or simulation, and is stored in the memory.
  • FIG. 6 is a functional block diagram of the signal detection device and the computer according to the configuration example 1.
  • the signal detection device 10A includes a generation unit 202A (for example, corresponding to the oscillator 25) and an amplitude detection unit 204A (for example, corresponding to the lock-in amplifier 20) as main functional configurations.
  • the computer 110 includes a calculation unit 206A and an image generation unit 208A as main functional configurations. Note that these functional configurations may be realized by other hardware.
  • Generating unit 202A the reference frequency set in the vicinity of the resonance frequency f c of the cantilever 11 (e.g., a frequency f ref) for generating a reference signal having a.
  • the amplitude detection unit 204A detects the noise amplitude (that is, signal R) of the cantilever 11 in a predetermined range including the reference frequency (for example, fref ⁇ f LPF ) based on the displacement signal of the cantilever 11 and the reference signal. To do.
  • Calculator 206A based on the detected noise amplitude, to calculate the resonance frequency f c of the cantilever 11.
  • the image generation unit 208A calculated the resonance frequency by scanning the probe 12 relative to the sample 2 in a state where the probe 12 provided at the tip of the cantilever 11 is in contact with the surface of the sample 2. An image (resonant frequency image) relating to f c is generated.
  • the noise amplitude of the cantilever 11 (i.e., signal R) by observing the changes in, without vibrating the cantilever 11 can calculate the resonant frequency f c in real time. Further, an image of the resonance frequency corresponding to the signal R can be displayed on the display.
  • the change in the signal R generally represents the change in the Q value.
  • the computer 110 for example, the calculation unit 206A calculates the Q value as Q s + ⁇ Q when the signal R changes from R s to ⁇ R.
  • ⁇ Q which is the amount of change in the Q value when R s changes by ⁇ R
  • the computer 110 may generate an image relating to the calculated Q value.
  • FIG. 7 is a diagram showing a configuration example 2 of the signal detection device 10. Similar to the first configuration example, the probe 12 of the cantilever 11 is in contact with the sample 2. This also applies to the following configuration examples.
  • the signal detection device 10B corresponding to the configuration example 2 includes a lock-in amplifier 20_1, 20_2, an oscillator 25_1, 25_2, an adder / subtractor 31, 32, an adder 33, and a PI controller (Proportional). -Integral Controller) 34 and included.
  • the configurations of the lock-in amplifiers 20_1 and 20_2 are shown in a simplified manner in order to facilitate the illustration, but these configurations are the same as those of the lock-in amplifier 20 in FIG.
  • the oscillators 25_1 and 25_2 are described as separate oscillators for the sake of simplification of description, they may be configured to be realized by one oscillator.
  • Oscillator 25_1 generates a signal that varies at a frequency f 1. This signal is used as a reference signal for the lock-in amplifier 20_1. Lock-in amplifier 20_1 multiplies the reference signal generated by the displacement signal and the oscillator 25_1, high frequency components are removed by LPF, and outputs the signal R 1 by performing a vector operation.
  • the signal R 1 corresponds to the noise amplitude in the integrated frequency range centered on the frequency f 1 (that is, f 1 ⁇ f LPF ).
  • the frequency f 1 is set to be slightly lower than the resonance frequency f c .
  • Oscillator 25_2 generates a signal that varies at the frequency f 2. This signal is used as a reference signal for the lock-in amplifier 20_2.
  • the lock-in amplifier 20_2 multiplies the displacement signal by the reference signal generated by the oscillator 25_2, removes the high frequency component by the LPF, executes a vector calculation, and outputs the signal R 2 .
  • the signal R 2 corresponds to the noise amplitude in the integrated frequency range around the frequency f 2 (ie, f 2 ⁇ f LPF ).
  • the frequency f 2 is set slightly higher than the resonance frequency f c .
  • FIG. 8 is a diagram for explaining the noise amplitude detected by the configuration example 2.
  • the area of the region 313 corresponds to the integral frequency range of the left than the resonance frequency f c (i.e., f 1 ⁇ f LPF) noise amplitude in (i.e., signal R 1).
  • Area of the region 315 corresponds to the right side of the integrating frequency range than the resonance frequency f c (i.e., f 2 ⁇ f LPF) noise amplitude (i.e., signal R 2).
  • the intermediate value between the frequency f 1 and the frequency f 2 is the resonance frequency fc. It becomes.
  • f c (f 1 + f 2 ) / 2.
  • Q value of the cantilever 11 is high (e.g., 10 or higher) when is the resonance characteristics and displacement noise density curve can be regarded as symmetrical around the f c. Therefore, the resonance frequency f c is adjusted by adjusting the frequency f 1 and the frequency f 2 so that the signal R 1 and the signal R 2 coincide with each other while keeping the difference between the frequency f 1 and the frequency f 2 constant. Can be sought.
  • the adder-subtractor 31 calculates the difference between the signal R 1 and the signal R 2, and outputs the difference to a PI controller 34.
  • the PI controller 34 outputs a frequency (that is, (f 1 + f 2 ) / 2) at which this difference becomes 0 (that is, the signal R1 and the signal R 2 coincide).
  • the adder 33 adds the frequency and the offset frequency off . This added value becomes the frequency f 2 of the reference signal oscillator 25_2.
  • the output signal of the PI controller 34 is input to the computer 110, the computer 110 calculates the output signal as a resonance frequency f c.
  • the computer 110 may generate an image of the resonant frequency f c in real time based on the frequency f 1, f 2. It is also possible to estimate the change in the Q value by observing the changes in the signals R 1 and R 2 . For example, let R s be the signals R 1 and R 2 at the scanning start point, and let Q s be the Q value at the scanning start point. Computer 110 observes the change of the signal R 1, R 2 accepts input signals R 1, R 2.
  • the computer 110 calculates the Q value as Q s + ⁇ Q.
  • ⁇ Q which is the amount of change in the Q value when R s changes by ⁇ R, is acquired in advance by actual measurement or the like and stored in the memory. As a result, the Q value can be obtained in real time.
  • FIG. 9 is a functional block diagram of the signal detection device and the computer according to the configuration example 2.
  • the signal detection device 10B includes a generation unit 202B, an amplitude detection unit 204B, and a setting unit 210B as main functional configurations.
  • the generation unit 202B corresponds to, for example, oscillators 25_1, 25_2.
  • the amplitude detection unit 204B corresponds to, for example, lock-in amplifiers 20_1 and 20_2.
  • the setting unit 210B corresponds to the adder / subtractor 31, 32, the adder 33, and the PI controller 34.
  • the computer 110 includes a calculation unit 206B and an image generation unit 208B as main functional configurations.
  • the generating unit 202B has a first reference frequency which is set in the vicinity of the resonance frequency f c (e.g., a frequency f 1) and the first reference signal having a second reference frequency (e.g., frequency f 2) To generate a second reference signal having.
  • the amplitude detection unit 204B detects the noise amplitude (for example, signal R 1 ) within a predetermined range (for example, f 1 ⁇ f LPF ) including the frequency f 1 based on the displacement signal of the cantilever 11 and the first reference signal.
  • the noise amplitude (for example, signal R 2 ) within a predetermined range including the frequency f 2 (for example, f 2 ⁇ f LPF ) is detected.
  • Setting unit 210B is in a state of fixing the difference of frequencies f 1 and frequency f 2, to set the frequency f 1 and frequency f 2 as the signal R 1 and the signal R 2 are identical.
  • Image generation unit 208B by which relatively scans the probe 12 and the sample 2, and generates an image (resonance frequency image) relating to the resonance frequency f c which is calculated.
  • noise amplitude at two integration frequency ranges i.e., signal R 1, R 2
  • signal R 1, R 2 without the cantilever 11 to vibrate, high accuracy and real-time resonance frequency f c
  • This allows displaying an image of high precision resonance frequency f c to the display in real time.
  • FIG. 10 is a diagram showing a partial configuration of the configuration example 3 of the signal detection device 10.
  • the signal detection device 10C corresponding to the configuration example 3 includes a lock-in amplifier 20 and oscillators 41 and 43.
  • Oscillator 41 supplies a cosine wave of a frequency f m of the (modulated signal) as a control voltage of the oscillator 43, the oscillator 43.
  • the frequency f vco of the oscillator frequency i.e.
  • FIG. 11 to 13 are diagrams showing noise amplitudes that change according to fluctuations in the reference signal.
  • the center frequency f ctr of the reference signal indicates a change in noise amplitude is smaller than the resonance frequency f c (i.e., f ctr ⁇ f c).
  • FIG. 12 shows the change in noise amplitude when the center frequency f ctr is larger than the resonance frequency f c (that is, f c tr > f c ).
  • the waveform 323 shows the waveform of the signal R (that is, the noise amplitude) output from the lock-in amplifier 20.
  • the signal R changes as a cosine wave reference signal and in phase.
  • the signal R changes like a cosine wave, but changes in the opposite phase to the reference signal.
  • FIG. 14 is a diagram showing a configuration in which a lock-in amplifier is added to the configuration of FIG.
  • the signal detection device 10C further includes a lock-in amplifier 50 in addition to the configuration shown in FIG.
  • the lock-in amplifier 50 is, for example, a one-phase lock-in amplifier, and includes a multiplier 51 and an LPF 52.
  • Lock-in amplifier 50, the component of the frequency f m in the signal R i.e., the modulation component
  • the signal R output from the lock-in amplifier 20 is input to the multiplier 51. Further, the modulation signal output from the oscillator 41 is input to the multiplier 51 as the reference signal V xm of the lock-in amplifier 50.
  • the multiplier 51 multiplies the reference signal V xm by the signal R, and the multiplied signal R is output to the LPF 52.
  • a m is the amplitude effective value of the frequency f m component included in the signal R.
  • ⁇ m is the phase difference between the reference signal V x m and the signal R.
  • the signal X m corresponds to the modulation component contained in the signal R.
  • FIG. 15 is a diagram showing the center frequency dependence of the signal X m output from the lock-in amplifier 50.
  • curve 331 shows the change of signal X m with respect to the center frequency. For example, when the resonance frequency f c shifts in the negative direction by ⁇ f as in the frequency spectrum 303, the curve 331 also shifts in the negative direction. At this time, the signal X m changes by ⁇ X m .
  • FIG. 16 is a diagram showing an overall configuration of configuration example 3 of the signal detection device 10.
  • the signal detection device 10C further includes a PI controller 55 and an adder 57 in addition to the configuration shown in FIG.
  • the PI controller 55 outputs a frequency f dc feedback-controlled so that the signal X m becomes zero.
  • the PI controller 55 has a current center such that when the signal X m is negative, the center frequency fctr coincides with the resonant frequency f c (ie, the signal X m is zero).
  • the frequency f dc that lowers the frequency f ctr is output.
  • Frequency f dc is the frequency for adjusting the center frequency f ctr of the reference signal output from the oscillator 43 to the resonant frequency f c.
  • the adder 57 inputs the added value of the frequency fdc and the modulated signal to the oscillator 43.
  • the reference signal outputted from the oscillator 43 has a center frequency f ctr that matches with the resonance frequency f c, and the signal varying at the frequency f m.
  • the frequency f dc is also supplied to the computer 110.
  • Computer 110 calculates the center frequency f ctr in the initial state stored in advance in the memory, the sum of the frequency f dc as the resonant frequency f c.
  • the computer 110 may generate an image of the resonant frequency f c in real time.
  • FIG. 17 is a functional block diagram of the signal detection device and the computer according to the configuration example 3.
  • the signal detection device 10C includes a generation unit 202C, an amplitude detection unit 204C, a modulation component detection unit 212C, and an adjustment unit 214C as main functional configurations.
  • the generator 202C corresponds, for example, to oscillators 41, 43 and adder 57.
  • the amplitude detection unit 204C corresponds to, for example, the lock-in amplifier 20.
  • the modulation component detection unit 212C corresponds to, for example, the lock-in amplifier 50.
  • the adjusting unit 214C corresponds to, for example, the PI controller 55 and the adder 57.
  • the computer 110 includes a calculation unit 206C and an image generation unit 208C as main functional configurations.
  • the generating unit 202C is in the vicinity of the resonance frequency f c of the cantilever 11, modulates the reference frequency of the reference signal input to the amplitude detector 204C at a predetermined frequency (e.g., frequency f m).
  • the amplitude detection unit 204C detects the noise amplitude of the cantilever 11 within a predetermined range including the reference frequency (for example, fref ⁇ f LPF ) based on the displacement signal of the cantilever 11 and the modulated reference signal.
  • the modulation component detection unit 212C detects the modulation component (for example, signal X m ) of the noise amplitude (that is, signal R) when the reference frequency of the reference signal is modulated at a predetermined frequency.
  • the adjusting unit 214C adjusts the center frequency fctr of the modulated reference signal so that the modulation component of the noise amplitude becomes zero.
  • Calculator 206C calculates the adjusted center frequency f ctr as a resonance frequency f c of the cantilever 11.
  • Image generation unit 208C by which relatively scans the probe 12 and the sample 2, and generates an image (resonance frequency image) relating to the resonance frequency f c which is calculated.
  • a frequency-modulated reference signal is input to the lock-in amplifier 20 to detect the noise amplitude (signal R), and the center frequency of the reference signal is set so that the modulation component appearing in the signal R becomes zero.
  • f ctr is controlled.
  • the resonance frequency is simply recorded by recording the signal X m. It is also possible to calculate f c .
  • the center frequency f ctr at the scanning start point is assumed to be preset to the resonance frequency f cs. In this case, referring to FIG.
  • the computer 110 if the signal X m changes [Delta] X m from X ms, can be calculated resonant frequency as f cs + ⁇ f.
  • Delta] f signal X ms is the change of the resonance frequency f c in the case of change [Delta] X m is obtained in advance by actual measurement or simulation, and is stored in the memory.
  • the change in the signal X m generally represents the change in the Q value. Therefore, when the Q value at the scan start point and Q s, the computer 110, if the signal X m changes [Delta] X m from X ms, calculates a Q value as Q s + Delta] Q. It should be noted that ⁇ Q, which is the change in the Q value when the signal X ms changes by ⁇ X m , is stored in the memory in advance.
  • FIG. 18 is a diagram showing measurement example 1 of sample 2.
  • a thin film (film thickness: about 300 nm) obtained by spin-coating a N-methyl-2-pyrrolidone solution of a photopolymer on a silicon substrate and annealing it was used as a sample to be measured.
  • FIG. 18A is a surface shape image of this sample by contact mode AFM. This surface shape image is an image obtained by plotting the position in the Z direction corresponding to the Z control signal from the feedback circuit 120 in the coordinate system of the XYZ axes.
  • the cantilever used is a silicon cantilever, the spring constant of which is about 1.5 N / m, and the free resonance frequency is about 27.2 kHz.
  • the contact force of the probe was set to about 10 nN.
  • the scanning region of FIG. 18A is 1000 nm ⁇ 1000 nm, and the number of pixels is 256 ⁇ 256.
  • the time required for the measurement was about 8 minutes. From this surface shape image, it was found that the sample surface was approximately flat, but there were dome-shaped raised regions in some places.
  • FIG. 18B is a cross-sectional profile of the straight line portion 401 of FIG. 18A. From FIG. 18 (b), it was found that the vicinity of the center of this raised region was about 15 nm higher than the periphery.
  • FIG. 18 (c) shows a contact resonance frequency image acquired at the same time as the image shown in FIG. 18 (a) using the signal detection device 10C.
  • 110kHz contact resonance frequency of the scanning start point approximately, because the Q value was about 90
  • f ctr 110kHz
  • f dev 2.5kHz
  • f m 1.1 kHz.
  • FIG. 18D is a cross-sectional profile of the straight portion 403 of FIG. 18C. The position of the straight line portion 401 and the position of 403 in sample 2 are the same. It was found that the contact resonance frequency was lowered by about 2.5 kHz in this raised region.
  • the center frequency f ctr of the reference signal of the lock-in amplifier 20 is controlled so as to coincide with the resonance frequency f c, it can detect the noise amplitude at the vicinity of the resonance frequency f c.
  • the noise amplitude integrated in the entire frequency domain has no Q value dependence.
  • the displacement noise density N th (omega 0) in the vicinity of the resonance frequency f c from the equation (2) is expressed by the following equation (4).
  • the displacement noise density N th (omega 0) is, Q value (i.e., the sharpness of the resonance peak) seen to be dependent on the square root of. Therefore, if measuring the noise amplitude at the vicinity of the resonance frequency f c, information about the viscosity of the sample is obtained.
  • the configuration example 4 of the signal detection device 10 adopts the first method for obtaining the Q value in the configuration example 3. Specifically, in the configuration example 4, the Q value is calculated based on the time average amplitude of the signal R output from the lock-in amplifier 20 of FIG.
  • FIG. 19 is a diagram showing a configuration example 4 of the signal detection device 10.
  • the signal detection device 10D corresponding to the configuration example 4 is a signal detection device 10C (see FIG. 16) corresponding to the configuration example 3 with a lock-in amplifier 20D added.
  • the lock-in amplifier 20D is, for example, a two-phase lock-in amplifier.
  • the time constant of the lock-in amplifier 20D is set larger than the time constant of the lock-in amplifier 20.
  • the cutoff frequency of the LPF22D in the lock-in amplifier 20D is set to be smaller than the cutoff frequency of the LPF22 of the lock-in amplifier 20.
  • Other configurations of the lock-in amplifier 20D are the same as those of the lock-in amplifier 20.
  • the signal R output from the lock-in amplifier 20 is modulated at a frequency 2f m (see FIG. 13) .
  • the sampling rate used in recording the signal R as a digital image since much slower than the frequency 2f m, the low-frequency components contained in the consequently signals R amplitude, i.e., the time average amplitude of the signal R Is recorded. Therefore, the time average amplitude of the signal R is considered to correspond to that eliminate frequency 2f m component through LPF to a signal R.
  • signals R v outputted from the lock-in amplifier 20D corresponds to the time average amplitude of the signal R.
  • an LPF that receives the input of the signal R output from the lock-in amplifier 20 may be provided.
  • the LPF is a signal obtained by removing the frequency 2f m component from the signal R, is detected as a time average amplitude of the signal R.
  • FIG. 20 is a diagram for explaining the relationship between the time average amplitude and the Q value.
  • frequency spectra 341 and 342 are thermal vibration spectra at scanning points P1 and P2, respectively.
  • Waveforms 343 and 344 indicate waveforms of the signal R at scanning points P1 and P2, respectively. For example, assume that the Q value corresponding to the frequency spectrum 341 is 100 and the Q value corresponding to the frequency spectrum 342 is 90.
  • the scanning point P1 is moved to the scanning point P2.
  • the Q value is changed to 90, the signal R at the resonance frequency f c is about 0.95 a (90/100) 1/2.
  • the Q value is calculated based on the time average amplitude.
  • the time average amplitude of the signal R at the scanning start point is R vs
  • the Q value at the scanning start point is Q s .
  • the computer 110 calculates the time average amplitude as Q s + ⁇ Q when R vs changes by ⁇ R v .
  • ⁇ Q which is the change in the Q value when R vs changes by ⁇ R v
  • the Q value can be calculated in real time.
  • FIG. 21 is a diagram showing measurement example 2 of sample 2. Specifically, the image shown in FIG. 21 is a time average amplitude image detected by the signal detection device 10D. The image shown in FIG. 21 was obtained at the same time as the image shown in FIG. According to the time average amplitude image shown in FIG. 21, the time average amplitude is slightly smaller in the raised region. Therefore, it is presumed that the Q value is low in the raised region and the viscosity in this region is high.
  • the signal detection device 10D has, as main functional configurations, the functional configurations of configuration example 3 shown in FIG. 17 (generation unit 202C, amplitude detection unit 204C, modulation component detection unit 212C, adjustment unit 214C) and time average amplitude detection. Including part.
  • Time average amplitude detector for example, lock-in amplifier 20D (or, LPF to remove the frequency 2f m component from the signal R) corresponding to.
  • the time average amplitude detector, the reference frequency of the reference signal outputted from the oscillator 43 is a predetermined frequency (e.g., frequency f m) if it is modulated, the time average amplitude of the noise amplitude (e.g., signal R v) To detect.
  • the calculation unit 206C calculates the Q value of the cantilever 11 based on the time average amplitude. According to the signal detection unit 10D and the computer 110 can calculate the resonant frequency f c and Q values in real time.
  • the configuration example 5 of the signal detection device 10 adopts the second method for obtaining the Q value in the configuration example 3. Specifically, in the configuration example 5, Q values based on the amplitude effective value of the components that are modulated at a frequency 2f m in the signal R is calculated.
  • FIG. 22 is a diagram showing a configuration example 5 of the signal detection device 10.
  • the signal detection device 10E corresponding to the configuration example 5 is a signal detection device 10C (see FIG. 16) corresponding to the configuration example 3 to which the lock-in amplifier 20E and the multiplier 65 are added. ..
  • the signal detection device 10E since the center frequency f ctr is controlled to coincide with the resonance frequency f c, the signal R is modulated at a frequency 2f m (see FIG. 13).
  • Lock-in amplifier 20E detects an amplitude effective value of the components that are modulated at a frequency 2f m contained in the signal R.
  • the multiplier 65 by squaring the modulated signal of a frequency f m which is outputted from the oscillator 41, and outputs a signal of frequency 2f m (2 harmonic signal).
  • the double wave signal is used as a reference signal for the lock-in amplifier 20E.
  • the lock-in amplifier 20E is, for example, a two-phase lock-in amplifier, and is substantially the same as the lock-in amplifier 20.
  • the lock-in amplifier 20E, the reference signal of the lock-in amplifier 20 is output from the signal R, and the frequency 2f m is input.
  • Lock-in amplifier 20E detects the frequency 2f m component included in the signal R. Specifically, the lock-in amplifier 20E outputs the amplitude effective value R 2 m of the frequency 2 fm component.
  • the amplitude effective value R 2m frequency 2f m component represents noise amplitude attenuation in the peak and the skirt of the peak of the frequency spectrum 301 (sharpness of resonance). That is, the effective amplitude value R 2m corresponds to the rate of change (slope) between the peak and the tail of the peak.
  • the scanning point P1 is moved to the scanning point P2.
  • the effective amplitude value of the signal R is about 0.18 ( ⁇ (1-0.5) / (2 * 2 1/2 )) R p0 .
  • the Q value is to have changed to 90, the signal R at the resonance frequency f c is about 0.95 R p0 is (90/100) 1/2 R p0.
  • the rate of change of the amplitude effective value when the Q value decreases by 10% is estimated to be about 13%.
  • the rate of change in the time average amplitude when the Q value decreased by 10% was about 3%, indicating that Configuration Example 5 has higher sensitivity than Configuration Example 4. ..
  • the Q value is calculated based on the effective amplitude value. For example, the amplitude effective value of the frequency 2f m component included in the signal R at the scanning start point and R 2 ms, the Q value at the scan start point and Q s.
  • the computer 110 calculates the Q value as Q s + ⁇ Q when the effective amplitude value R 2 ms changes by ⁇ R 2 m .
  • ⁇ Q which is the change in the Q value when R 2ms changes by ⁇ R 2m , is stored in the memory in advance by actual measurement or the like. As a result, the Q value can be calculated in real time.
  • FIG. 23 is a diagram showing measurement example 3 of sample 2.
  • the image shown in FIG. 23 is an image obtained by the measurement performed following the measurement result of FIG. Specifically, the image of FIG. 23A shows a surface shape image by the contact mode AFM.
  • the image of FIG. 23B shows a contact resonance frequency image.
  • the image of FIG. 23 (c) is an amplitude effective value image obtained by the configuration example 5. With reference to FIG. 23 (c), since the amplitude effective value is small in the raised region, it is inferred that the Q value is low and the viscosity is high in this region. Compared with the time average amplitude image shown in FIG. 21, it can be seen that the amplitude effective value image is drawn more clearly and has high sensitivity.
  • the signal detection device 10E has, as main functional configurations, the functional configurations (generation unit 202C, amplitude detection unit 204C, modulation component detection unit 212C, adjustment unit 214C) of configuration example 3 shown in FIG. 17, and amplitude effective value detection. Including the part.
  • the amplitude effective value detection unit corresponds to, for example, the lock-in amplifier 20E.
  • Amplitude effective value detection unit, the reference frequency of the reference signal outputted from the oscillator 43 is a predetermined frequency (e.g., frequency f m) if it is modulated by, the noise amplitude, double frequency component of a predetermined frequency (e.g. detects the amplitude effective value R 2m) of the frequency 2f m component.
  • the calculation unit 206C calculates the Q value of the cantilever 11 based on the double frequency component. According to the signal detection unit 10E and the computer 110 can calculate the resonant frequency f c and Q values at the time of contact between the cantilever 11 and the sample 2 in real time.
  • Configuration Example 6 The configuration example 6 of the signal detection device 10 adopts the third method for obtaining the Q value in the configuration example 3.
  • the Q value is calculated based on the noise amplitude around the center frequency detected based on the displacement signal of the cantilever 11.
  • FIG. 24 is a diagram showing a configuration example 6 of the signal detection device 10.
  • the signal detection device 10F corresponding to the configuration example 6 is a signal detection device 10C (see FIG. 16) corresponding to the configuration example 3 with an oscillator 75 and a lock-in amplifier 20F added.
  • the center frequency f ctr is controlled so as to coincide with the resonance frequency f c (see FIG. 13).
  • Lock-in amplifier 20F, the center frequency f ctr included in the displacement signal i.e., the resonance frequency f c
  • the oscillator 75 is composed of the same oscillator as the oscillator 43. Specifically, the maximum frequency shifts in the oscillator 75 and the oscillator 43 are the same. Further, the frequency fdc output from the PI controller 55 is input to the oscillator 75. Therefore, the center frequencies fctr of the oscillator 75 and the oscillator 43 are the same. However, unlike the oscillator 43, the modulation signal is not input to the oscillator 75, so that the output signal of the oscillator 75 is not frequency-modulated. The output signal of the oscillator 75 is used as a reference signal of the lock-in amplifier 20F.
  • the lock-in amplifier 20F is, for example, a two-phase lock-in amplifier, and is substantially the same as the lock-in amplifier 20.
  • the displacement signal of the cantilever 11 and the reference signal output from the oscillator 75 are input to the lock-in amplifier 20F.
  • the lock-in amplifier 20F multiplies the displacement signal and the reference signal, removes the high frequency component by the LPF, executes the vector operation, and outputs the signal R p .
  • the signal R p corresponds to the noise amplitude in the integrated frequency range (ie, f ctr ⁇ f LPF ) centered on the center frequency f ctr (ie, resonance frequency f c ). That is, the signal R p corresponds to the peak amplitude of the thermal vibration spectrum.
  • the scanning point P1 is moved to the scanning point P2.
  • Q value is the signal R (i.e., signal R p corresponding to the peak amplitude) at the resonance frequency f c of the case 100 a and R p0.
  • the Q value is to have changed to 90, the signal R p at the resonance frequency f c is about 0.95 R p0 is (90/100) 1/2 R p0. Therefore, the rate of change in peak amplitude when the Q value decreases by 10% is estimated to be about 5%.
  • the Q value is calculated based on the peak amplitude. For example, let the signal R p at the scanning start point be R ps, and let the Q value at the scanning start point be Q s .
  • the computer 110 calculates the Q value as Q s + ⁇ Q when R ps changes by ⁇ R p .
  • ⁇ Q which is the amount of change in the Q value when R ps changes by ⁇ R p , is stored in the memory in advance by actual measurement or the like. As a result, the Q value can be calculated in real time.
  • the above-mentioned signal detection device 10F has, as main functional configurations, a functional configuration (generation unit 202C, amplitude detection unit 204C, modulation component detection unit 212C, adjustment unit 214C) of configuration example 3 shown in FIG. 17, and a signal generation unit. , Includes a peak amplitude detector.
  • the signal generator corresponds to, for example, the oscillator 75.
  • the peak amplitude detection unit corresponds to, for example, the lock-in amplifier 20F.
  • the signal generation unit generates a reference signal having the center frequency fctr adjusted by the adjustment unit 214C as a reference frequency.
  • the peak amplitude detection unit Based on the displacement signal of the cantilever 11 and the reference signal generated by the signal generation unit, the peak amplitude detection unit has a noise amplitude (for example, fctr ⁇ f LPF ) within a predetermined range including the reference frequency of the reference signal. For example, the signal R p ) is detected.
  • the calculation unit 206C (for example, the computer 110) calculates the Q value of the cantilever 11 based on the noise amplitude. According to the signal detection unit 10F and the computer 110 can calculate the resonant frequency f c and Q values in real time.
  • the resonance frequency and the Q value can be calculated in real time based on the noise amplitude of the cantilever 11 without vibrating the cantilever 11. Therefore, it is not necessary to add a special high-frequency excitation mechanism such as a piezoelectric element to the existing AFM, and the viscoelasticity of the sample surface and the structure under the sample surface can be visualized at the same time as normal sample surface observation. In addition, the measurement time of the sample can be significantly reduced.
  • the configuration for calculating the resonance frequency and the Q value of the cantilever by using the noise amplitude of the cantilever of the AFM has been described, but the configuration is not limited to this.
  • the resonance frequency and Q value of the vibrating body can be calculated based on the noise amplitude of the vibrating body (for example, a MEMS (Micro Electro Mechanical Systems) sensor or the like) in which it is difficult to excite the vibration from the outside.
  • MEMS Micro Electro Mechanical Systems
  • the resonance frequency and the Q value can be calculated in real time based on the noise amplitude of the vibrating body. Can be done.
  • the lock-in amplifier 20 composed of the two-phase lock-in amplifier is used, and the noise amplitude (R signal) is set as the root mean square (RMS) value of the displacement noise density in a certain frequency range.
  • RMS root mean square
  • the configuration for calculating the resonance frequency and the Q value of the cantilever by using the noise amplitude when the cantilever of the AFM is brought into contact with the sample has been described, but the configuration is not limited to this. .. Specifically, even if the cantilever is not in contact with the sample, the cantilever resonates when an interaction force acts on the probe of the cantilever (for example, when the cantilever is close to the sample placed in water). The frequency changes. Therefore, the resonance frequency and the Q value of the cantilever may be calculated by using the noise amplitude detected without bringing the cantilever into contact with the sample. In this case, the displacement detector 15 may detect as a displacement signal a signal indicating a time change (velocity) of the displacement of the tip of the cantilever 11.
  • the configuration exemplified as the above-described embodiment is an example of the configuration of the present invention, can be combined with another known technique, and a part thereof is not deviated from the gist of the present invention. It is also possible to change the configuration by omitting it. Further, in the above-described embodiment, the configuration described in the other embodiments may be appropriately adopted and implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A measuring device (10A, 110) comprises: a generation unit (202A) that generates a reference signal having a reference frequency set close to a resonance frequency of a vibrator (11); an amplitude detection unit (204A) that detects, on the basis of a displacement signal of the vibrator (11) and the reference signal generated by the generation unit (202A), a thermal vibration amplitude of the vibrator (11) within a prescribed range including the reference frequency; and a calculation unit (206A) that calculates the resonance frequency of the vibrator (11) on the basis of the detected thermal vibration amplitude.

Description

計測装置、原子間力顕微鏡、および計測方法Measuring device, atomic force microscope, and measuring method
 本開示は、計測装置、原子間力顕微鏡、および計測方法に関する。 The present disclosure relates to a measuring device, an atomic force microscope, and a measuring method.
 走査型プローブ顕微鏡(SPM:Scanning Probe Microscopy)は、探針(プローブ)を試料表面に近接させたときに生じる探針および試料間の相互作用を検出し、これを一定に保つように探針および試料間の距離を制御し、探針または試料を2次元的に走査することによって表面形状像を取得する。SPMのなかでも、原子間力顕微鏡(AFM:Atomic Force Microscopy)は、最も広く使用されている装置であり、探針をその自由端に持つカンチレバー、カンチレバーの変位を検出する光学式変位センサ、および、カンチレバーと試料とを相対的に走査するスキャナを備えている。AFMは、機械的探針と試料の間に力学的な相互作用を生じさせ、その力学的な相互作用によって生じるカンチレバーの変形に基づいて試料の情報を得る。 The scanning probe microscope (SPM) detects the interaction between the probe and the sample that occurs when the probe (probe) is brought close to the sample surface, and the probe and the probe are kept constant. The surface shape image is acquired by controlling the distance between the samples and scanning the probe or the sample two-dimensionally. Among the SPMs, the atomic force microscope (AFM: Atomic Force Microscopy) is the most widely used device, and it has a cantilever with a probe at its free end, an optical displacement sensor that detects the displacement of the cantilever, and an optical displacement sensor. , It is equipped with a scanner that scans the cantilever and the sample relative to each other. The AFM creates a mechanical interaction between the mechanical probe and the sample, and obtains sample information based on the deformation of the cantilever caused by the mechanical interaction.
 特開2002-277378号公報(特許文献1)は、超音波原子間力顕微鏡(UAFM:Ultrasonic Atomic Force Microscopy)を開示している。このUAFMでは、カンチレバーに取り付けられた探針を試料に接触させた状態で、カンチレバーが常に共振状態となるようにカンチレバーを加振させ、その共振状態におけるカンチレバーの振幅を検出し、その検出された振幅に基づいてカンチレバーのQ値が求められる。 Japanese Unexamined Patent Publication No. 2002-277378 (Patent Document 1) discloses an ultrasonic atomic force microscope (UAFM: Ultrasonic Atomic Force Microscopy). In this UAFM, with the probe attached to the cantilever in contact with the sample, the cantilever is vibrated so that the cantilever is always in a resonance state, and the amplitude of the cantilever in the resonance state is detected and detected. The Q value of the cantilever can be obtained based on the amplitude.
特開2002-277378号公報JP-A-2002-277378
 特許文献1に係るUAFMでは、圧電素子(超音波振動子)等を用いてカンチレバーが常に共振状態となるようにカンチレバーを加振する必要がある。一方で、カンチレバーホルダー等、カンチレバーや試料の周辺部品にも共振周波数が存在するため、圧電素子に印加する周波数がこれに一致すると探針-試料系全体が大きく振動してしまう。この場合、周波数スペクトルにおいて、カンチレバーの共振周波数付近に現れる寄生振動のピーク(スプリアスピーク)によりカンチレバーの共振特性(振幅および位相)が大きく歪む。そのため、本来の共振周波数とは異なる周波数で探針-試料系が加振され、試料や探針にダメージを与えたり、誤った粘弾性情報が得られたりするといった問題がある。 In UAFM according to Patent Document 1, it is necessary to vibrate the cantilever by using a piezoelectric element (ultrasonic oscillator) or the like so that the cantilever is always in a resonance state. On the other hand, since the resonance frequency also exists in the cantilever and the peripheral parts of the sample such as the cantilever holder, if the frequency applied to the piezoelectric element matches this, the entire probe-sample system vibrates greatly. In this case, in the frequency spectrum, the resonance characteristics (amplitude and phase) of the cantilever are greatly distorted by the peak (spurious peak) of the parasitic vibration appearing near the resonance frequency of the cantilever. Therefore, the probe-sample system is vibrated at a frequency different from the original resonance frequency, which causes problems such as damage to the sample and the probe and incorrect viscoelastic information.
 また、非特許文献1には、カンチレバーの熱雑音振動に着目し、熱雑音振動の周波数解析によって、試料やカンチレバーを加振させることなく試料表面の粘弾性情報を得る手法として、走査型熱振動顕微鏡(STNM:Scanning Thermal Noise Microscopy)が開示されている。この手法ではカンチレバーの振動波形を記録しておき、それを高速フーリエ変換によって周波数解析を行なうため、計測に時間をかける必要があった。この点において、非特許文献1に開示された手法には改善の余地がある。 Further, Non-Patent Document 1 focuses on the thermal noise vibration of the cantilever, and scan-type thermal vibration as a method of obtaining viscoelastic information of the sample surface without vibrating the sample or the cantilever by frequency analysis of the thermal noise vibration. A microscope (STNM: Scanning Thermal Noise Microscopy) is disclosed. In this method, the vibration waveform of the cantilever is recorded and the frequency analysis is performed by the fast Fourier transform, so it is necessary to take time for the measurement. In this respect, the method disclosed in Non-Patent Document 1 has room for improvement.
 本開示のある局面における目的は、振動体を加振することなく、より高速に振動体の共振周波数を計測することが可能な計測装置、当該計測装置を含む原子間力顕微鏡、および計測方法を提供することである。 An object of the present disclosure is to provide a measuring device capable of measuring the resonance frequency of the vibrating body at a higher speed without vibrating the vibrating body, an atomic force microscope including the measuring device, and a measuring method. Is to provide.
 ある実施の形態に従う計測装置は、振動体の共振周波数の近傍に設定された参照周波数を有する参照信号を生成する生成部と、振動体の変位信号と生成部により生成された参照信号とに基づいて、参照周波数を含む所定範囲内における振動体の熱振動振幅を検出する振幅検出部と、検出された熱振動振幅に基づいて、振動体の共振周波数を算出する算出部とを備える。 A measuring device according to an embodiment is based on a generator that generates a reference signal having a reference frequency set near the resonance frequency of the vibrating body, and a displacement signal of the vibrating body and a reference signal generated by the generating unit. It also includes an amplitude detection unit that detects the thermal vibration amplitude of the vibrating body within a predetermined range including the reference frequency, and a calculation unit that calculates the resonance frequency of the vibrating body based on the detected thermal vibration amplitude.
 他の実施の形態に従う原子間力顕微鏡は、上記の計測装置を備える。振動体はカンチレバーである。原子間力顕微鏡は、カンチレバーの先端に設けられた探針を試料と相対的に走査させることによって、計測装置で算出されたカンチレバーの共振周波数に関する像を生成する像生成部をさらに備える。 Atomic force microscopes according to other embodiments are provided with the above measuring device. The vibrating body is a cantilever. The atomic force microscope further includes an image generation unit that generates an image of the resonance frequency of the cantilever calculated by the measuring device by scanning the probe provided at the tip of the cantilever relative to the sample.
 さらに他の実施の形態に従う計測方法は、振動体の共振周波数の近傍に設定された参照周波数を有する参照信号を生成するステップと、振動体の変位信号と生成された参照信号とに基づいて、参照周波数を含む所定範囲内における振動体の熱振動振幅を検出するステップと、検出された熱振動振幅に基づいて、振動体の共振周波数を算出するステップとを含む。 The measurement method according to still another embodiment is based on the step of generating a reference signal having a reference frequency set in the vicinity of the resonance frequency of the vibrating body, and the displacement signal of the vibrating body and the generated reference signal. The step includes a step of detecting the thermal vibration amplitude of the vibrating body within a predetermined range including the reference frequency, and a step of calculating the resonance frequency of the vibrating body based on the detected thermal vibration amplitude.
 本開示によると、振動体を加振することなく、より高速に振動体の共振周波数を計測することが可能となる。 According to the present disclosure, it is possible to measure the resonance frequency of the vibrating body at a higher speed without vibrating the vibrating body.
本実施の形態に従うAFMの全体構成を示す概略図である。It is the schematic which shows the whole structure of the AFM according to this embodiment. カンチレバーの調和振動子モデルを示す図である。It is a figure which shows the harmonic oscillator model of a cantilever. 信号検出装置の構成例1を説明するための図である。It is a figure for demonstrating the configuration example 1 of the signal detection apparatus. カンチレバーの熱振動スペクトルを示す図である。It is a figure which shows the thermal vibration spectrum of a cantilever. ノイズ振幅の変化を説明するための図である。It is a figure for demonstrating the change of a noise amplitude. 構成例1に従う信号検出装置およびコンピュータの機能ブロック図である。It is a functional block diagram of a signal detection device and a computer according to the configuration example 1. 信号検出装置の構成例2を示す図である。It is a figure which shows the configuration example 2 of the signal detection apparatus. 構成例2により検出されるノイズ振幅を説明するための図である。It is a figure for demonstrating the noise amplitude detected by the configuration example 2. FIG. 構成例2に従う信号検出装置およびコンピュータの機能ブロック図である。It is a functional block diagram of a signal detection device and a computer according to the configuration example 2. 信号検出装置の構成例3のうちの一部の構成を示す図である。It is a figure which shows the structure of a part of the configuration example 3 of a signal detection device. 参照信号の変動に応じて変化するノイズ振幅を示す図である。It is a figure which shows the noise amplitude which changes according to the fluctuation of a reference signal. 参照信号の変動に応じて変化するノイズ振幅を示す図である。It is a figure which shows the noise amplitude which changes according to the fluctuation of a reference signal. 参照信号の変動に応じて変化するノイズ振幅を示す図である。It is a figure which shows the noise amplitude which changes according to the fluctuation of a reference signal. 図10の構成にロックインアンプを追加した構成を示す図である。It is a figure which shows the structure which added the lock-in amplifier to the structure of FIG. ロックインアンプの出力信号の中心周波数依存性を示す図である。It is a figure which shows the center frequency dependence of the output signal of a lock-in amplifier. 信号検出装置の構成例3の全体構成を示す図である。It is a figure which shows the whole structure of the configuration example 3 of a signal detection device. 構成例3に従う信号検出装置およびコンピュータの機能ブロック図である。It is a functional block diagram of a signal detection device and a computer according to the configuration example 3. 試料の測定例1を示す図である。It is a figure which shows the measurement example 1 of a sample. 信号検出装置の構成例4を示す図である。It is a figure which shows the configuration example 4 of the signal detection apparatus. 時間平均振幅とQ値との関係を説明するための図である。It is a figure for demonstrating the relationship between the time average amplitude and Q value. 試料の測定例2を示す図である。It is a figure which shows the measurement example 2 of a sample. 信号検出装置の構成例5を示す図である。It is a figure which shows the configuration example 5 of the signal detection apparatus. 試料の測定例3を示す図である。It is a figure which shows the measurement example 3 of a sample. 信号検出装置の構成例6を示す図である。It is a figure which shows the structural example 6 of the signal detection apparatus.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての同一部分については、その詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of the same parts of them will not be repeated.
 <全体構成>
 図1は、本実施の形態に従うAFM100の全体構成を示す概略図である。図1を参照して、AFM100は、走査機構5と、テーブル8と、信号検出装置10と、カンチレバー11と、レーザ光源14と、変位検出器15と、コンピュータ110と、フィードバック回路120と、Zドライバ132と、XYドライバ134とを含む。
<Overall configuration>
FIG. 1 is a schematic view showing an overall configuration of an AFM 100 according to the present embodiment. With reference to FIG. 1, the AFM 100 includes a scanning mechanism 5, a table 8, a signal detection device 10, a cantilever 11, a laser light source 14, a displacement detector 15, a computer 110, a feedback circuit 120, and Z. It includes a driver 132 and an XY driver 134.
 振動体であるカンチレバー11は、例えば、シリコンで構成された片持ち梁の構造を有し、一端がAFM100の図示しない筐体に支持され、他端に探針12を有している。カンチレバー11の探針12は、テーブル8に配置された計測用の試料2の表面に接触される。レーザ光源14は、カンチレバー11の背面にレーザ光を照射する。変位検出器15は、例えば、光てこ式の光学式変位センサで構成されており、カンチレバー11の背面から反射されたレーザ光に基づいてカンチレバー11の変位信号を検出する。具体的には、変位検出器15は、変位信号として、カンチレバー11の先端の変位に比例した角度変位を示す信号を検出する。なお、変位検出器15は、変位信号として、カンチレバー11の先端の変位を示す信号を検出してもよい。検出された変位信号は、信号検出装置10およびフィードバック回路120に出力される。 The cantilever 11 which is a vibrating body has, for example, a cantilever structure made of silicon, one end of which is supported by a housing (not shown) of the AFM100, and the other end of which has a probe 12. The probe 12 of the cantilever 11 comes into contact with the surface of the measurement sample 2 arranged on the table 8. The laser light source 14 irradiates the back surface of the cantilever 11 with a laser beam. The displacement detector 15 is composed of, for example, an optical lever type optical displacement sensor, and detects a displacement signal of the cantilever 11 based on a laser beam reflected from the back surface of the cantilever 11. Specifically, the displacement detector 15 detects as a displacement signal a signal indicating an angular displacement proportional to the displacement of the tip of the cantilever 11. The displacement detector 15 may detect a signal indicating the displacement of the tip of the cantilever 11 as a displacement signal. The detected displacement signal is output to the signal detection device 10 and the feedback circuit 120.
 走査機構5は、試料2と探針12とを三次元的に相対的に移動させる。走査機構5は、Zスキャナ6と、XYスキャナ7とを含む。Zスキャナ6はXYスキャナ7上に配置されており、Zスキャナ6の鉛直方向上部に固定されるテーブル8を介して試料2が載置される。Zスキャナ6は、例えば圧電素子によって構成され、Zドライバ132から指示される電圧に応じて、探針12に対して試料2をZ方向に移動させる。XYスキャナ7は、例えば圧電素子によって構成され、XYドライバ134から指示される電圧に応じて、探針12に対して試料2をXY方向に移動させる。Z方向は、鉛直方向、すなわち、テーブル8の面のうち試料2が載置される平面に垂直な方向であり、XY方向は、Z方向に直交する平面上の座標軸である。 The scanning mechanism 5 moves the sample 2 and the probe 12 relative to each other in three dimensions. The scanning mechanism 5 includes a Z scanner 6 and an XY scanner 7. The Z scanner 6 is arranged on the XY scanner 7, and the sample 2 is placed via a table 8 fixed to the upper portion of the Z scanner 6 in the vertical direction. The Z scanner 6 is composed of, for example, a piezoelectric element, and moves the sample 2 in the Z direction with respect to the probe 12 in response to the voltage indicated by the Z driver 132. The XY scanner 7 is composed of, for example, a piezoelectric element, and moves the sample 2 in the XY direction with respect to the probe 12 in response to the voltage indicated by the XY driver 134. The Z direction is the vertical direction, that is, the direction perpendicular to the plane on which the sample 2 is placed among the planes of the table 8, and the XY direction is the coordinate axes on the plane orthogonal to the Z direction.
 フィードバック回路120は、カンチレバー11の変位信号に基づいて、カンチレバー11のたわみ量が一定になるようなZ制御信号を生成する。例えば、フィードバック回路120は、変位信号のうちのローパスフィルタ(図示しない)を経由した出力信号が、予め定められた一定値になるようにZ制御信号を生成し、Z制御信号をZドライバ132に供給する。Zドライバ132は、供給されるZ制御信号に従ってZスキャナ6を制御する。その結果、出力信号が一定値になるように試料2と探針12の間の距離が制御される。 The feedback circuit 120 generates a Z control signal based on the displacement signal of the cantilever 11 so that the amount of deflection of the cantilever 11 becomes constant. For example, the feedback circuit 120 generates a Z control signal so that the output signal that has passed through a low-pass filter (not shown) among the displacement signals has a predetermined constant value, and sends the Z control signal to the Z driver 132. Supply. The Z driver 132 controls the Z scanner 6 according to the supplied Z control signal. As a result, the distance between the sample 2 and the probe 12 is controlled so that the output signal becomes a constant value.
 信号検出装置10は、カンチレバー11の変位信号に基づいて、カンチレバー11の熱振動振幅を検出し、当該検出された熱振動振幅に基づいて、カンチレバー11の粘弾性情報(例えば、共振周波数、Q値)に関する信号を検出する。信号検出装置10の具体的な構成については後述する。 The signal detection device 10 detects the thermal vibration amplitude of the cantilever 11 based on the displacement signal of the cantilever 11, and viscoelastic information (for example, resonance frequency, Q value) of the cantilever 11 based on the detected thermal vibration amplitude. ) Is detected. The specific configuration of the signal detection device 10 will be described later.
 コンピュータ110は、例えば、デスクトップ型のパーソナルコンピュータである。典型的には、コンピュータ110は、ハードウェア構成として、CPU(Central Processing Unit)等で構成されるプロセッサと、RAM(Random Access Memory)、ROM(Read-Only Memory)、ハードディスク等のメモリと、オペレータからの指示入力を受け付ける入力装置(例えば、キーボード、マウス等)と、各種信号を送受信する通信インターフェイスと、各種情報を表示するためのディスプレイ等を含む。 The computer 110 is, for example, a desktop personal computer. Typically, the computer 110 has a hardware configuration such as a processor composed of a CPU (Central Processing Unit) and the like, a memory such as a RAM (Random Access Memory), a ROM (Read-Only Memory), and a hard disk, and an operator. It includes an input device (for example, a keyboard, a mouse, etc.) that receives an instruction input from the computer, a communication interface for transmitting and receiving various signals, a display for displaying various information, and the like.
 コンピュータ110は、フィードバック回路120からZ制御信号を受信する。コンピュータ110は、XYドライバ134に走査信号を送って、XYスキャナ7をXY方向に走査させる。コンピュータ110は、テーブル8がXY軸方向に移動するとき、Z制御信号に対応するZ方向のテーブル8の位置を記憶する。コンピュータ110は、探針12が試料表面に接触されている状態において、探針12を試料2と相対的に走査させることによって、各種画像を生成する。具体的には、コンピュータ110は、記憶したZ方向の位置をXYZ軸の座標系でプロットすることによって、試料2の表面形状像を生成しディスプレイに表示する。また、コンピュータ110は、信号検出装置10からの信号に基づいて、カンチレバー11の共振周波数やQ値を算出し、試料2の表面の粘弾性を示す像を生成しディスプレイに表示する。例えば、信号検出装置10およびコンピュータ110により、カンチレバー11の共振周波数やQ値を計測する計測装置が実現される。 The computer 110 receives the Z control signal from the feedback circuit 120. The computer 110 sends a scanning signal to the XY driver 134 to scan the XY scanner 7 in the XY direction. The computer 110 stores the position of the table 8 in the Z direction corresponding to the Z control signal when the table 8 moves in the XY axis direction. The computer 110 generates various images by scanning the probe 12 relative to the sample 2 while the probe 12 is in contact with the sample surface. Specifically, the computer 110 generates a surface shape image of the sample 2 and displays it on the display by plotting the stored position in the Z direction in the coordinate system of the XYZ axes. Further, the computer 110 calculates the resonance frequency and the Q value of the cantilever 11 based on the signal from the signal detection device 10, generates an image showing the viscoelasticity of the surface of the sample 2, and displays it on the display. For example, the signal detection device 10 and the computer 110 realize a measuring device that measures the resonance frequency and the Q value of the cantilever 11.
 <信号検出装置の構成>
 (はじめに)
 図2は、カンチレバーの調和振動子モデルを示す図である。図2を参照して、m、γ、kは、それぞれカンチレバーの有効質量、減衰定数、ばね定数を示している。本実施の形態では、探針12が試料2に接触した状態に制御される。この場合、試料2側の接触弾性kおよび接触粘性γが、カンチレバー11の共振特性(共振周波数およびQ値)に影響を与える。したがって、カンチレバー11と試料との接触時におけるカンチレバー11の共振特性を得ることにより、試料表面の粘弾性情報が得られる。また、試料2の表面下構造が試料表面の粘弾性に影響を与える場合には、その表面下構造を可視化できる。
<Configuration of signal detection device>
(Introduction)
FIG. 2 is a diagram showing a harmonic oscillator model of a cantilever. With reference to FIG. 2, m * , γ, and kz indicate the effective mass, damping constant, and spring constant of the cantilever, respectively. In the present embodiment, the probe 12 is controlled to be in contact with the sample 2. In this case, the contact elasticity k * and the contact viscosity γ s on the sample 2 side affect the resonance characteristics (resonance frequency and Q value) of the cantilever 11. Therefore, the viscoelastic information of the sample surface can be obtained by obtaining the resonance characteristics of the cantilever 11 at the time of contact between the cantilever 11 and the sample. Further, when the subsurface structure of the sample 2 affects the viscoelasticity of the sample surface, the subsurface structure can be visualized.
 ここで、特許文献1のようにカンチレバーや試料を加振した場合には、上述したスプリアスピークが発生する他、次のような弊害もある。例えば、加振によって得られる周波数スペクトルは、しばしば振動振幅依存性を示し、振幅が大きいと周波数スペクトルが歪む。また、柔らかい試料については探針の振動によって試料に探針が大きく押し込まれ、試料にダメージを与える場合もある。そのため、カンチレバーと試料との接触時におけるカンチレバーの共振周波数(以下、「接触共振周波数」とも称する。)を、カンチレバーを加振することなく非侵襲で求めることが望ましい。 Here, when the cantilever or the sample is vibrated as in Patent Document 1, the spurious peak described above is generated, and there are also the following adverse effects. For example, the frequency spectrum obtained by excitation often shows vibration amplitude dependence, and a large amplitude distorts the frequency spectrum. Further, for a soft sample, the probe may be greatly pushed into the sample due to the vibration of the probe, which may damage the sample. Therefore, it is desirable to obtain the resonance frequency of the cantilever (hereinafter, also referred to as “contact resonance frequency”) at the time of contact between the cantilever and the sample in a non-invasive manner without vibrating the cantilever.
 ここで、カンチレバーは、振動的な外力を与えなくても、周囲の熱揺らぎによって常に振動している。この振動は熱雑音振動または熱振動と呼ばれ、そのエネルギーの大きさは、ボルツマン定数をk、環境温度をTとすると、kTで与えられる。したがって、熱振動による変位xth(t)の二乗平均<xth(t)>は以下の式(1)により表される。 Here, the cantilever is constantly vibrating due to the thermal fluctuation of the surroundings without applying a vibrating external force. This vibration is referred to as thermal noise vibration or thermal vibration, the magnitude of the energy, the Boltzmann constant k B, when the environmental temperature is T, is given by k B T. Therefore, the root mean square <x th (t) 2 > of the displacement x th (t) due to thermal vibration is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 熱ゆらぎによってカンチレバーは全ての周波数において単位周波数帯域あたり一定のエネルギー密度で加振されるため、熱振動の周波数スペクトルNth(ω)(すなわち、変位ノイズ密度)の角周波数依存性は以下の式(2)により表される。 Because cantilever is vibrated at constant energy density per unit frequency band at all frequencies by thermal fluctuation, the frequency spectrum N th of the thermal oscillation (omega) (i.e., displacement noise density) angular frequency dependence following formula It is represented by (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ωは、カンチレバーの共振角周波数であり、ω=(k/m1/2で与えられる。共振周波数と共振ピーク幅の比で定義されるQはQ=k/(ωγ)で与えられ、Q値と称される。熱振動の周波数スペクトルNth(ω)を全周波数領域で積分すると以下の式(3)が得られる。 ω 0 is the resonance angular frequency of the cantilever, and is given by ω 0 = (k z / m * ) 1/2 . Q, which is defined by the ratio of the resonance frequency to the resonance peak width, is given by Q = k z / (ω 0 γ) and is called the Q value. The following equation the frequency spectrum N th of the thermal vibrations of the (omega) is integrated over the entire frequency range (3) is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このことから、周波数スペクトルNth(ω)(すなわち、変位ノイズ密度)の二乗の全周波数領域での積分値は、時間平均<xth(t)>と一致する。 From this, the integrated value of the square of the frequency spectrum N th (ω) (that is, the displacement noise density) in the entire frequency domain agrees with the time average <x th (t) 2 >.
 非特許文献1に係る手法では、コンタクトモードAFMの各走査点においてカンチレバーの変位信号を記録し、フーリエ変換により熱振動振幅の周波数スペクトルを得て、これを式(1)と比較することで、カンチレバーの接触共振周波数とQ値を取得していた。ただし、熱振動の振幅は非常に小さいため感度が低く、計測時間が長くなってしまう。 In the method according to Non-Patent Document 1, the displacement signal of the cantilever is recorded at each scanning point of the contact mode AFM, the frequency spectrum of the thermal vibration amplitude is obtained by Fourier transform, and this is compared with the equation (1). The contact resonance frequency and Q value of the cantilever were acquired. However, since the amplitude of thermal vibration is very small, the sensitivity is low and the measurement time becomes long.
 そこで、本実施の形態に従う計測装置(信号検出装置10およびコンピュータ110)では、カンチレバー11の接触共振周波数(以下、単に「共振周波数f」とも称する。)の近傍に設定された参照周波数の周辺の周波数範囲における熱振動振幅を検出し、当該熱振動振幅に基づいて共振周波数fを計測する。これにより、リアルタイムで共振周波数fを計測することができ、計測時間を大幅に短くできる。以下、信号検出装置10の構成例1~6について具体的に説明する。 Therefore, in the measurement apparatus according to the present embodiment (the signal detection apparatus 10 and the computer 110), the contact resonance frequency of the cantilever 11 (hereinafter, simply referred to as "resonant frequency f c.") Near the reference frequency set in the vicinity of detecting the thermal vibration amplitude in the frequency range, measuring the resonance frequency f c on the basis of the thermal vibration amplitude. Thus, it is possible to measure the resonant frequency f c in real time can be greatly shortened measurement time. Hereinafter, configuration examples 1 to 6 of the signal detection device 10 will be specifically described.
 (構成例1)
 図3は、信号検出装置10の構成例1を説明するための図である。なお、カンチレバー11の探針12は、試料2の表面に接触された状態に設定される。例えば、オペレータは、カンチレバー11のたわみを表す変位信号が最適感度で得られるように、試料2が探針12と離れた状態でレーザ光源14および変位検出器15の位置を調整する。これらの位置が調整されると、Zドライバ132は、Zスキャナ6を動作させることで試料2を探針12と接触させる。フィードバック回路120は、接触により変化する変位信号のうちのローパスフィルタの出力信号を一定値にするZ制御信号をZドライバ132に供給する。Zドライバ132は、Z制御信号に従ってZスキャナ6を制御する。これにより、探針12が試料2の表面に接触された状態に制御される。
(Configuration Example 1)
FIG. 3 is a diagram for explaining a configuration example 1 of the signal detection device 10. The probe 12 of the cantilever 11 is set in contact with the surface of the sample 2. For example, the operator adjusts the positions of the laser light source 14 and the displacement detector 15 with the sample 2 away from the probe 12 so that a displacement signal representing the deflection of the cantilever 11 can be obtained with optimum sensitivity. When these positions are adjusted, the Z driver 132 operates the Z scanner 6 to bring the sample 2 into contact with the probe 12. The feedback circuit 120 supplies the Z driver 132 with a Z control signal that makes the output signal of the low-pass filter constant among the displacement signals that change due to contact. The Z driver 132 controls the Z scanner 6 according to the Z control signal. As a result, the probe 12 is controlled to be in contact with the surface of the sample 2.
 図3を参照して、構成例1に対応する信号検出装置10Aは、探針12が試料2に接触された状態において、カンチレバー11の熱振動に関する信号を検出する。信号検出装置10Aは、ロックインアンプ20と、発振器25とを含む。信号検出装置10Aは、図1に示す信号検出装置10に対応するが、以下の他の構成例との区別のため、便宜上「A」といった追加の符号を付している。これは、他の構成例についても同様である。 With reference to FIG. 3, the signal detection device 10A corresponding to the configuration example 1 detects a signal related to the thermal vibration of the cantilever 11 in a state where the probe 12 is in contact with the sample 2. The signal detection device 10A includes a lock-in amplifier 20 and an oscillator 25. The signal detection device 10A corresponds to the signal detection device 10 shown in FIG. 1, but is provided with an additional reference numeral such as “A” for convenience in order to distinguish it from the following other configuration examples. This also applies to other configuration examples.
 発振器25は、制御電圧で発信周波数を制御する電圧制御発振器(VCO:Voltage-Controlled Oscillator)である。発振器25は、周波数frefで変化する信号cos(2πfreft)を生成する。この信号は、ロックインアンプ20の参照信号Vとして利用される。 The oscillator 25 is a voltage controlled oscillator (VCO: Voltage-Controlled Oscillator) that controls the transmission frequency with a control voltage. The oscillator 25 generates a signal cos (2πf ref t) that changes with a frequency f ref . This signal is used as a reference signal V x of the lock-in amplifier 20.
 ロックインアンプ20は、例えば、2位相ロックインアンプであり、乗算器21,21Aと、ローパスフィルタ(LPF:Low-Pass Filter)22,22Aと、位相シフタ24と、ベクトル演算回路27とを含む。乗算器21,21Aには、カンチレバー11の変位信号が入力される。また、乗算器21には、発振器25から出力された参照信号Vが入力される。乗算器21Aには、参照信号Vを+90°の位相シフタ24に通して得られた信号Vが参照信号として入力される。 The lock-in amplifier 20 is, for example, a two-phase lock-in amplifier, and includes multipliers 21 and 21A, low-pass filters (LPF) 22, 22A, a phase shifter 24, and a vector calculation circuit 27. .. The displacement signal of the cantilever 11 is input to the multipliers 21 and 21A. Further, the reference signal V x output from the oscillator 25 is input to the multiplier 21. The signal V y obtained by passing the reference signal V x through the phase shifter 24 at + 90 ° is input to the multiplier 21A as a reference signal.
 乗算器21は参照信号Vを変位信号と乗算し、乗算された変位信号はLPF22に出力される。LPF22は、当該変位信号の高周波成分を除去してベクトル演算回路27に出力する。LPF22の出力信号はX(=Armscosφ)である。Armsは、変位信号の振幅実効値である。φは、参照信号Vと変位信号との位相差である。乗算器21Aは参照信号Vを変位信号と乗算し、乗算された変位信号はLPF22Aに出力される。LPF22Aは、当該変位信号の高周波成分を除去してベクトル演算回路27に出力する。LPF22Aの出力信号はY(=Armssinφ)である。 The multiplier 21 multiplies the reference signal V x by the displacement signal, and the multiplied displacement signal is output to the LPF 22. The LPF 22 removes the high frequency component of the displacement signal and outputs it to the vector calculation circuit 27. The output signal of LPF22 is X (= Arms cosφ). Arms is the amplitude effective value of the displacement signal. φ is the phase difference between the reference signal V x and the displacement signal. The multiplier 21A multiplies the reference signal V y by the displacement signal, and the multiplied displacement signal is output to the LPF 22A. The LPF 22A removes the high frequency component of the displacement signal and outputs it to the vector calculation circuit 27. The output signal of LPF22A is Y (= A rms sinφ).
 ベクトル演算回路27は、複素入力(X+jY)の絶対値Rおよび偏角θを計算する。ここで、絶対値Rは、(X+Y1/2であり、偏角θは、arg(Y/X)である。絶対値R(以下、「信号R」とも称する。)は、変位信号の振幅実効値Armsに相当する。一方、偏角θは、参照信号Vと変位信号の位相差φに相当する。 The vector calculation circuit 27 calculates the absolute value R and the argument θ of the complex input (X + jY). Here, the absolute value R is (X 2 + Y 2 ) 1/2 , and the argument θ is arg (Y / X). The absolute value R (hereinafter, also referred to as “signal R”) corresponds to the amplitude effective value Arms of the displacement signal. On the other hand, the declination θ corresponds to the phase difference φ between the reference signal V x and the displacement signal.
 LPF22,22Aのカットオフ周波数をfLPFとすると、ロックインアンプ20は、周波数空間においてfref±fLPFの範囲に含まれる信号成分だけを抽出するバンドパスフィルタと等価となる。この場合、信号Rは、周波数frefを中心とするfref±fLPFの範囲に含まれるランダムな信号成分の二乗の積分値の平方根、つまり、二乗平均平方根(RMS:Root Mean Square)値に相当する。すなわち、信号Rは、概ね積分周波数範囲(すなわち、fref±fLPF)における熱振動振幅(以下、「ノイズ振幅」とも称する。)に相当する。偏角θは、fref±fLPFの範囲に含まれるランダムな信号成分と参照信号Vとの位相差であるため、ランダムな値となる。そのため、偏角θからは意味のある情報は得られない。 If the cutoff frequency of LPF22,22A and f LPF, the lock-in amplifier 20 is a band pass filter equivalent to extract only signal component included in the scope of f ref ± f LPF in frequency space. In this case, the signal R is the square root of the integral value of the squares of the random signal components included in the range of f ref ± f LPF centered on the frequency f ref , that is, the root mean square (RMS) value. Equivalent to. That is, the signal R roughly corresponds to the thermal vibration amplitude (hereinafter, also referred to as “noise amplitude”) in the integrated frequency range (that is, fref ± f LPF ). The declination θ is a random value because it is the phase difference between the random signal component included in the range of f ref ± f LPF and the reference signal V x . Therefore, no meaningful information can be obtained from the declination θ.
 図4は、カンチレバー11の熱振動スペクトルを示す図である。図4を参照して、周波数スペクトル301は、カンチレバー11の変位ノイズ密度の周波数依存性を表わしている。横軸は周波数を示しており、縦軸は変位ノイズ密度を示している。変位ノイズ密度は、カンチレバー11の共振周波数fで最大となる。周波数範囲(fref±fLPF)にわたる領域305(図4の斜線部分)の面積は、概ねR信号(すなわち、ノイズ振幅)に相当する。 FIG. 4 is a diagram showing a thermal vibration spectrum of the cantilever 11. With reference to FIG. 4, the frequency spectrum 301 represents the frequency dependence of the displacement noise density of the cantilever 11. The horizontal axis shows the frequency, and the vertical axis shows the displacement noise density. Displacement noise density is maximized at the resonance frequency f c of the cantilever 11. The area of the region 305 (shaded portion in FIG. 4) over the frequency range (f ref ± f LPF ) roughly corresponds to the R signal (that is, the noise amplitude).
 参照信号の周波数frefは、共振周波数fのやや高めに設定されているが、この設定は次のように行なわれる。コンピュータ110は、オペレータの指示に従って、探針12と試料2とが接触している走査開始点において、カンチレバー11の変位信号を記録する。コンピュータ110は、この変位信号をフーリエ変換することにより、走査開始点における熱振動スペクトルを取得する。オペレータは、熱振動スペクトルから、走査開始点におけるカンチレバー11の共振周波数f(例えば、100kHz前後)を決定する。発振器25は、オペレータの指示に従って、周波数frefを共振周波数fの近傍(例えば、数kHzだけ高め)に設定する。なお、発振器25は、周波数frefを共振周波数fよりもやや低め(例えば、数kHzだけ低め)に設定してもよい。 Frequency f ref of the reference signal has been set slightly higher resonant frequency f c, the setting is performed as follows. The computer 110 records the displacement signal of the cantilever 11 at the scanning start point where the probe 12 and the sample 2 are in contact with each other according to the operator's instruction. The computer 110 acquires the thermal vibration spectrum at the scanning start point by Fourier transforming this displacement signal. The operator, from thermal oscillation spectrum, determines the resonance frequency f c of the cantilever 11 at the scan start point (e.g., 100kHz so). Oscillator 25 in accordance with the instruction of the operator to set the frequency f ref in the vicinity of the resonance frequency f c (e.g., increase the number kHz). Note that oscillator 25 is slightly lower than the resonance frequency f c the frequency f ref (e.g., by a few kHz lower) may be set to.
 図5は、ノイズ振幅の変化を説明するための図である。図5を参照して、例えば、ある走査点から他の走査点に移動して、図4の状態から共振周波数fが負方向にシフトした場合、周波数スペクトル301は、周波数スペクトル303のように変化する。周波数スペクトル303に変化後の信号Rに対応する領域307の面積は、変化前の信号Rに対応する領域305の面積(図4参照)よりも減少している。 FIG. 5 is a diagram for explaining a change in noise amplitude. Referring to FIG. 5, for example, to move from one scan point to another scanning point, if the resonant frequency f c from the state of FIG. 4 was shifted in the negative direction, the frequency spectrum 301, as the frequency spectrum 303 Change. The area of the region 307 corresponding to the signal R after the change in the frequency spectrum 303 is smaller than the area of the region 305 corresponding to the signal R before the change (see FIG. 4).
 信号R(すなわち、ノイズ振幅)の減少は、周波数スペクトル303のように共振周波数fが負方向にシフトした場合の他、周波数スペクトル304のように共振周波数fが正方向に大きくシフトして積分周波数範囲が共振曲線の中心よりも左側になった場合、あるいは、Q値が変化して共振曲線の鋭さが変化した場合にも発生し得る。しかし、例えば、走査点が次の走査点へ変化しても、共振周波数fが正方向に大きくシフトせず、かつ、Q値が大きく変化しないと仮定できる場合には、信号Rの変化は、概ね共振周波数fの変化を表わす。 Signal R (i.e., noise amplitude) decrease in the other case where the shifted resonance frequency f c is in the negative direction as the frequency spectrum 303, shifted greatly resonance frequency f c is in the positive direction as shown in the frequency spectrum 304 It can also occur when the integrated frequency range is to the left of the center of the resonance curve, or when the Q value changes and the sharpness of the resonance curve changes. However, for example, also the scanning point is changed to the next scanning point, not the resonance frequency f c is large shifts in the positive direction, and, if it can be assumed that the Q value is not greatly changed, the change of the signal R is generally represents the change in the resonant frequency f c.
 したがって、コンピュータ110は、走査開始点から随時検出される信号Rに基づいて、各走査点におけるカンチレバー11の共振周波数fを算出できる。例えば、走査開始点で検出された信号RをRとし、走査開始点における共振周波数fをfcsとする。コンピュータ110は、信号RがRからΔR変化した場合、共振周波数をfcs+Δfとして算出する。なお、RがΔR変化した場合の共振周波数fの変化分であるΔfは、予め実測あるいはシミュレーション等により取得され、メモリに記憶されている。 Thus, the computer 110, based on a signal R from time to time detected from the scan starting point can be calculated the resonance frequency f c of the cantilever 11 at each scanning point. For example, let R s be the signal R detected at the scanning start point, and let f cs be the resonance frequency f c at the scanning start point. When the signal R changes from R s by ΔR, the computer 110 calculates the resonance frequency as f cs + Δ f. It should be noted that Δf, which is the change in the resonance frequency f c when R s changes by ΔR, is acquired in advance by actual measurement or simulation, and is stored in the memory.
 図6は、構成例1に従う信号検出装置およびコンピュータの機能ブロック図である。図6を参照して、信号検出装置10Aは、主な機能構成として、生成部202Aと(例えば、発振器25に対応)と、振幅検出部204Aと(例えば、ロックインアンプ20に対応)とを含む。コンピュータ110は、主な機能構成として、算出部206Aと、像生成部208Aとを含む。なお、これらの機能構成は、他のハードウェアによって実現されてもよい。 FIG. 6 is a functional block diagram of the signal detection device and the computer according to the configuration example 1. With reference to FIG. 6, the signal detection device 10A includes a generation unit 202A (for example, corresponding to the oscillator 25) and an amplitude detection unit 204A (for example, corresponding to the lock-in amplifier 20) as main functional configurations. Including. The computer 110 includes a calculation unit 206A and an image generation unit 208A as main functional configurations. Note that these functional configurations may be realized by other hardware.
 生成部202Aは、カンチレバー11の共振周波数fの近傍に設定された参照周波数(例えば、周波数fref)を有する参照信号を生成する。振幅検出部204Aは、カンチレバー11の変位信号と当該参照信号とに基づいて、参照周波数を含む所定範囲内(例えば、fref±fLPF)におけるカンチレバー11のノイズ振幅(すなわち、信号R)を検出する。算出部206Aは、検出されたノイズ振幅に基づいて、カンチレバー11の共振周波数fを算出する。像生成部208Aは、カンチレバー11の先端に設けられた探針12が試料2の表面に接触されている状態において、探針12を試料2と相対的に走査させることによって、算出された共振周波数fに関する像(共振周波数像)を生成する。 Generating unit 202A, the reference frequency set in the vicinity of the resonance frequency f c of the cantilever 11 (e.g., a frequency f ref) for generating a reference signal having a. The amplitude detection unit 204A detects the noise amplitude (that is, signal R) of the cantilever 11 in a predetermined range including the reference frequency (for example, fref ± f LPF ) based on the displacement signal of the cantilever 11 and the reference signal. To do. Calculator 206A, based on the detected noise amplitude, to calculate the resonance frequency f c of the cantilever 11. The image generation unit 208A calculated the resonance frequency by scanning the probe 12 relative to the sample 2 in a state where the probe 12 provided at the tip of the cantilever 11 is in contact with the surface of the sample 2. An image (resonant frequency image) relating to f c is generated.
 信号検出装置10Aおよびコンピュータ110によると、カンチレバー11のノイズ振幅(すなわち、信号R)の変化を観測することで、カンチレバー11を加振することなく、共振周波数fをリアルタイムで算出できる。また、信号Rに対応する共振周波数の像をディスプレイに表示できる。なお、上記において、走査点が変化しても共振周波数が変化しないと仮定できる場合には、信号Rの変化は、概ねQ値の変化を表わすことになる。走査開始点におけるQ値をQとすると、コンピュータ110(例えば、算出部206A)は、信号RがRからΔR変化した場合、Q値をQ+ΔQとして算出する。なお、RがΔR変化した場合のQ値の変化分であるΔQは、予めメモリに記憶されている。この場合、コンピュータ110(例えば、像生成部208A)は、算出されたQ値に関する像を生成してもよい。 According to the signal detection unit 10A and the computer 110, the noise amplitude of the cantilever 11 (i.e., signal R) by observing the changes in, without vibrating the cantilever 11 can calculate the resonant frequency f c in real time. Further, an image of the resonance frequency corresponding to the signal R can be displayed on the display. In the above, when it can be assumed that the resonance frequency does not change even if the scanning point changes, the change in the signal R generally represents the change in the Q value. Assuming that the Q value at the scanning start point is Q s , the computer 110 (for example, the calculation unit 206A) calculates the Q value as Q s + ΔQ when the signal R changes from R s to ΔR. Note that ΔQ, which is the amount of change in the Q value when R s changes by ΔR, is stored in the memory in advance. In this case, the computer 110 (for example, the image generation unit 208A) may generate an image relating to the calculated Q value.
 (構成例2)
 構成例1では、例えば、Q値が変化しないと仮定して、信号Rの変化が共振周波数fの変化とみなして共振周波数fを算出する構成について説明した。構成例2では、上記仮定をすることなく共振周波数fを算出する構成について説明する。
(Configuration Example 2)
In Structural Example 1, for example, assuming that Q value is not changed, the change of the signal R has been described structure for calculating the resonant frequency f c is regarded as a change in the resonant frequency f c. In Structural Example 2, a configuration of calculating the resonance frequency f c without the above assumption.
 図7は、信号検出装置10の構成例2を示す図である。構成例1と同様に、カンチレバー11の探針12は、試料2に接触された状態である。これは、以下の構成例についても同様である。図7を参照して、構成例2に対応する信号検出装置10Bは、ロックインアンプ20_1,20_2と、発振器25_1,25_2と、加減算器31,32と、加算器33と、PI制御器(Proportional-Integral Controller)34とを含む。図7では、図解を容易にするために、ロックインアンプ20_1,20_2の構成を簡略化して図示しているが、これらの構成は図3のロックインアンプ20と同一である。なお、説明の容易化のため、発振器25_1,25_2は別々の発振器として記載しているが、1つの発振器によって実現される構成であってもよい。 FIG. 7 is a diagram showing a configuration example 2 of the signal detection device 10. Similar to the first configuration example, the probe 12 of the cantilever 11 is in contact with the sample 2. This also applies to the following configuration examples. With reference to FIG. 7, the signal detection device 10B corresponding to the configuration example 2 includes a lock-in amplifier 20_1, 20_2, an oscillator 25_1, 25_2, an adder / subtractor 31, 32, an adder 33, and a PI controller (Proportional). -Integral Controller) 34 and included. In FIG. 7, the configurations of the lock-in amplifiers 20_1 and 20_2 are shown in a simplified manner in order to facilitate the illustration, but these configurations are the same as those of the lock-in amplifier 20 in FIG. Although the oscillators 25_1 and 25_2 are described as separate oscillators for the sake of simplification of description, they may be configured to be realized by one oscillator.
 発振器25_1は、周波数fで変化する信号を生成する。この信号は、ロックインアンプ20_1の参照信号として利用される。ロックインアンプ20_1は、変位信号と発振器25_1により生成された参照信号とを乗算し、LPFにより高周波成分を除去し、ベクトル演算を実行して信号Rを出力する。信号Rは、周波数fを中心とする積分周波数範囲(すなわち、f±fLPF)におけるノイズ振幅に相当する。周波数fは、共振周波数fよりもやや低めに設定される。 Oscillator 25_1 generates a signal that varies at a frequency f 1. This signal is used as a reference signal for the lock-in amplifier 20_1. Lock-in amplifier 20_1 multiplies the reference signal generated by the displacement signal and the oscillator 25_1, high frequency components are removed by LPF, and outputs the signal R 1 by performing a vector operation. The signal R 1 corresponds to the noise amplitude in the integrated frequency range centered on the frequency f 1 (that is, f 1 ± f LPF ). The frequency f 1 is set to be slightly lower than the resonance frequency f c .
 発振器25_2は、周波数fで変化する信号を生成する。この信号は、ロックインアンプ20_2の参照信号として利用される。ロックインアンプ20_2は、変位信号と発振器25_2により生成された参照信号とを乗算し、LPFにより高周波成分を除去し、ベクトル演算を実行して信号Rを出力する。信号Rは、周波数fを中心とする積分周波数範囲(すなわち、f±fLPF)におけるノイズ振幅に相当する。周波数fは、共振周波数fよりもやや高めに設定される。 Oscillator 25_2 generates a signal that varies at the frequency f 2. This signal is used as a reference signal for the lock-in amplifier 20_2. The lock-in amplifier 20_2 multiplies the displacement signal by the reference signal generated by the oscillator 25_2, removes the high frequency component by the LPF, executes a vector calculation, and outputs the signal R 2 . The signal R 2 corresponds to the noise amplitude in the integrated frequency range around the frequency f 2 (ie, f 2 ± f LPF ). The frequency f 2 is set slightly higher than the resonance frequency f c .
 図8は、構成例2により検出されるノイズ振幅を説明するための図である。図8を参照して、領域313の面積は、共振周波数fよりも左側の積分周波数範囲(すなわち、f±fLPF)におけるノイズ振幅(すなわち、信号R)に相当する。領域315の面積は、共振周波数fよりも右側の積分周波数範囲(すなわち、f±fLPF)のノイズ振幅(すなわち、信号R)に相当する。 FIG. 8 is a diagram for explaining the noise amplitude detected by the configuration example 2. Referring to FIG. 8, the area of the region 313 corresponds to the integral frequency range of the left than the resonance frequency f c (i.e., f 1 ± f LPF) noise amplitude in (i.e., signal R 1). Area of the region 315 corresponds to the right side of the integrating frequency range than the resonance frequency f c (i.e., f 2 ± f LPF) noise amplitude (i.e., signal R 2).
 ここで、信号Rと信号Rとが同一(すなわち、領域313の面積と領域315の面積が同一)である場合には、周波数fと周波数fとの中間値が共振周波数fとなる。このとき、f=(f+f)/2となる。なぜなら、カンチレバー11のQ値が高い(例えば、10以上)場合には、共振特性および変位ノイズ密度曲線がfを中心に左右対称とみなせるためである。したがって、周波数fと周波数fとの差を一定に保った状態で、信号Rと信号Rとが一致するように周波数fと周波数fとを調整することで共振周波数fを求めることができる。 Here, when the signal R 1 and the signal R 2 are the same (that is, the area of the region 313 and the area of the region 315 are the same), the intermediate value between the frequency f 1 and the frequency f 2 is the resonance frequency fc. It becomes. At this time, f c = (f 1 + f 2 ) / 2. This is because, Q value of the cantilever 11 is high (e.g., 10 or higher) when is the resonance characteristics and displacement noise density curve can be regarded as symmetrical around the f c. Therefore, the resonance frequency f c is adjusted by adjusting the frequency f 1 and the frequency f 2 so that the signal R 1 and the signal R 2 coincide with each other while keeping the difference between the frequency f 1 and the frequency f 2 constant. Can be sought.
 再び、図7を参照して、加減算器31は、信号Rと信号Rとの差分を演算し、当該差分をPI制御器34に出力する。PI制御器34は、この差分が0(すなわち、信号R1と信号Rとが一致)になる周波数(すなわち、(f+f)/2)を出力する。加減算器32は、当該周波数からオフセット周波数foff{=(f-f)/2}を減算する。この減算値が発振器25_1の参照信号の周波数fとなる。加算器33は、当該周波数とオフセット周波数foffとを加算する。この加算値が発振器25_2の参照信号の周波数fとなる。PI制御器34の出力信号は、コンピュータ110に入力され、コンピュータ110はこの出力信号を共振周波数fとして算出する。 Referring again to FIG. 7, the adder-subtractor 31 calculates the difference between the signal R 1 and the signal R 2, and outputs the difference to a PI controller 34. The PI controller 34 outputs a frequency (that is, (f 1 + f 2 ) / 2) at which this difference becomes 0 (that is, the signal R1 and the signal R 2 coincide). Subtracter 32, the offset frequency f off {= (f 2 -f 1) / 2} from the frequency subtracts. This subtraction value is frequency f 1 of the reference signal oscillator 25_1. The adder 33 adds the frequency and the offset frequency off . This added value becomes the frequency f 2 of the reference signal oscillator 25_2. The output signal of the PI controller 34 is input to the computer 110, the computer 110 calculates the output signal as a resonance frequency f c.
 信号検出装置10Bによると、各走査点において、周波数fと周波数fとの差分が一定、かつ信号Rと信号Rとが同一になるように各周波数f,fが設定される。これにより、コンピュータ110は、各周波数f,fに基づいてリアルタイムで共振周波数fの像を生成できる。また、信号R,Rの変化を観測することにより、Q値の変化を推定することもできる。例えば、走査開始点における信号R,RをRとし、走査開始点におけるQ値をQとする。コンピュータ110は、信号R,Rの入力を受け付けて信号R,Rの変化を観測する。コンピュータ110は、信号R,RがRからΔR変化した場合、Q値をQ+ΔQとして算出する。なお、RがΔR変化した場合のQ値の変化分であるΔQは、予め実測等により取得されメモリに記憶されている。これにより、リアルタイムでQ値も求めることができる。 According to the signal detection device 10B, at each scanning point, the difference between the frequencies f 1 and f 2 is constant, and the signal R 1 and the signal R 2 and the frequencies f 1 to become the same, f 2 is set To. Thus, the computer 110 may generate an image of the resonant frequency f c in real time based on the frequency f 1, f 2. It is also possible to estimate the change in the Q value by observing the changes in the signals R 1 and R 2 . For example, let R s be the signals R 1 and R 2 at the scanning start point, and let Q s be the Q value at the scanning start point. Computer 110 observes the change of the signal R 1, R 2 accepts input signals R 1, R 2. When the signals R 1 and R 2 change by ΔR from R s , the computer 110 calculates the Q value as Q s + ΔQ. It should be noted that ΔQ, which is the amount of change in the Q value when R s changes by ΔR, is acquired in advance by actual measurement or the like and stored in the memory. As a result, the Q value can be obtained in real time.
 図9は、構成例2に従う信号検出装置およびコンピュータの機能ブロック図である。図9を参照して、信号検出装置10Bは、主な機能構成として、生成部202Bと、振幅検出部204Bと、設定部210Bとを含む。生成部202Bは、例えば、発振器25_1,25_2に対応する。振幅検出部204Bは、例えば、ロックインアンプ20_1,20_2に対応する。設定部210Bは、加減算器31,32、加算器33およびPI制御器34に対応する。コンピュータ110は、主な機能構成として、算出部206Bと、像生成部208Bとを含む。 FIG. 9 is a functional block diagram of the signal detection device and the computer according to the configuration example 2. With reference to FIG. 9, the signal detection device 10B includes a generation unit 202B, an amplitude detection unit 204B, and a setting unit 210B as main functional configurations. The generation unit 202B corresponds to, for example, oscillators 25_1, 25_2. The amplitude detection unit 204B corresponds to, for example, lock-in amplifiers 20_1 and 20_2. The setting unit 210B corresponds to the adder / subtractor 31, 32, the adder 33, and the PI controller 34. The computer 110 includes a calculation unit 206B and an image generation unit 208B as main functional configurations.
 具体的には、生成部202Bは、共振周波数fの近傍に設定された第1参照周波数(例えば、周波数f)を有する第1参照信号と、第2参照周波数(例えば、周波数f)を有する第2参照信号とを生成する。振幅検出部204Bは、カンチレバー11の変位信号と第1参照信号とに基づいて、周波数fを含む所定範囲内(例えば、f±fLPF)におけるノイズ振幅(例えば、信号R)を検出し、カンチレバー11の変位信号と第2参照信号とに基づいて、周波数fを含む所定範囲内(例えば、f±fLPF)におけるノイズ振幅(例えば、信号R)を検出する。設定部210Bは、周波数fおよび周波数fの差分を固定した状態で、信号Rと信号Rとが一致するように周波数fおよび周波数fを設定する。算出部206Bは、設定された周波数fおよび周波数fに基づいて、カンチレバー11の共振周波数f{=(f+f)/2}を算出する。像生成部208Bは、探針12を試料2と相対的に走査させることによって、算出された共振周波数fに関する像(共振周波数像)を生成する。 Specifically, the generating unit 202B has a first reference frequency which is set in the vicinity of the resonance frequency f c (e.g., a frequency f 1) and the first reference signal having a second reference frequency (e.g., frequency f 2) To generate a second reference signal having. The amplitude detection unit 204B detects the noise amplitude (for example, signal R 1 ) within a predetermined range (for example, f 1 ± f LPF ) including the frequency f 1 based on the displacement signal of the cantilever 11 and the first reference signal. Then, based on the displacement signal of the cantilever 11 and the second reference signal, the noise amplitude (for example, signal R 2 ) within a predetermined range including the frequency f 2 (for example, f 2 ± f LPF ) is detected. Setting unit 210B is in a state of fixing the difference of frequencies f 1 and frequency f 2, to set the frequency f 1 and frequency f 2 as the signal R 1 and the signal R 2 are identical. The calculation unit 206B calculates the resonance frequency f c {= (f 1 + f 2 ) / 2} of the cantilever 11 based on the set frequencies f 1 and f 2 . Image generation unit 208B, by which relatively scans the probe 12 and the sample 2, and generates an image (resonance frequency image) relating to the resonance frequency f c which is calculated.
 信号検出装置10Bおよびコンピュータ110によると、2つの積分周波数範囲におけるノイズ振幅(すなわち、信号R,R)を用いて、カンチレバー11を加振することなく、共振周波数fを高精度かつリアルタイムに算出できる。これにより、リアルタイムで高精度な共振周波数fの像をディスプレイに表示できる。 According to the signal detection device 10B and a computer 110, noise amplitude at two integration frequency ranges (i.e., signal R 1, R 2) with, without the cantilever 11 to vibrate, high accuracy and real-time resonance frequency f c Can be calculated. This allows displaying an image of high precision resonance frequency f c to the display in real time.
 (構成例3)
 構成例1では、参照信号の周波数が固定されている構成について説明した。構成例3では、参照信号を周波数変調(FM:Frequency Modulation)して、周波数変調された参照信号を利用して、カンチレバー11の共振周波数fを算出する構成について説明する。以下では、理解の容易化のため、まず、図10~図13を参照して、構成例3のうちの一部の構成を説明する。次に、図14および図15を参照して、構成例3のうちの他の一部の構成を説明する。そして、図16を参照して、構成例3の最終的な構成を説明する。
(Configuration Example 3)
In the configuration example 1, a configuration in which the frequency of the reference signal is fixed has been described. In Structural Example 3, the reference signal frequency-modulated (FM: Frequency Modulation) to, by using a reference signal which is frequency modulated, a configuration of calculating the resonance frequency f c of the cantilever 11. In the following, in order to facilitate understanding, first, a part of the configuration of the configuration example 3 will be described with reference to FIGS. 10 to 13. Next, the configuration of another part of the configuration example 3 will be described with reference to FIGS. 14 and 15. Then, with reference to FIG. 16, the final configuration of the configuration example 3 will be described.
 図10は、信号検出装置10の構成例3のうちの一部の構成を示す図である。図10を参照して、構成例3に対応する信号検出装置10Cは、ロックインアンプ20と、発振器41,43とを含む。発振器41は、周波数fの余弦波(変調信号)を発振器43の制御電圧として、発振器43に供給する。発振器43の中心周波数をfctrとし、制御電圧に対する最大の周波数偏移をfdevとする。この場合、発振器43の発振周波数、すなわちロックインアンプ20へ入力される参照信号の周波数fvcoは、fvco=fctr+fdevcos(2πft)となり、周波数fで変動(変調)する。そのため、ロックインアンプ20から出力される信号Rは、参照信号の変動に応じて変化する。 FIG. 10 is a diagram showing a partial configuration of the configuration example 3 of the signal detection device 10. With reference to FIG. 10, the signal detection device 10C corresponding to the configuration example 3 includes a lock-in amplifier 20 and oscillators 41 and 43. Oscillator 41 supplies a cosine wave of a frequency f m of the (modulated signal) as a control voltage of the oscillator 43, the oscillator 43. The center frequency of the oscillator 43 and f ctr, the maximum frequency shift with respect to the control voltage and f dev. In this case, the frequency f vco of the oscillator frequency, i.e. the reference signal input to the lock-in amplifier 20 of oscillator 43 f vco = f ctr + f dev cos (2πf m t) , and the variation in the frequency f m (modulation) .. Therefore, the signal R output from the lock-in amplifier 20 changes according to the fluctuation of the reference signal.
 図11~図13は、参照信号の変動に応じて変化するノイズ振幅を示す図である。具体的には、図11は、参照信号の中心周波数fctrが共振周波数fよりも小さい(すなわち、fctr<f)場合のノイズ振幅の変化を示している。図12は、中心周波数fctrが共振周波数fよりも大きい(すなわち、fctr>f)場合のノイズ振幅の変化を示している。図13は、中心周波数fctrが共振周波数fと同一である(すなわち、fctr=f)場合のノイズ振幅の変化を示している。 11 to 13 are diagrams showing noise amplitudes that change according to fluctuations in the reference signal. Specifically, FIG. 11, the center frequency f ctr of the reference signal indicates a change in noise amplitude is smaller than the resonance frequency f c (i.e., f ctr <f c). FIG. 12 shows the change in noise amplitude when the center frequency f ctr is larger than the resonance frequency f c (that is, f c tr > f c ). FIG. 13 shows the change in noise amplitude when the center frequency f ctr is the same as the resonance frequency f c (that is, f c tr = f c ).
 図11を参照して、波形323は、ロックインアンプ20から出力される信号R(すなわち、ノイズ振幅)の波形を示している。波形325は、周波数f(周期T=t-t)で変動する参照信号の波形を示している。fctr<fの場合、信号Rは参照信号と同相で余弦波のように変化する。一方、図12を参照して、fctr>fの場合、信号Rは余弦波のように変化するが、参照信号とは逆位相で変化する。また、図13を参照して、fctr=fの場合、信号Rには周波数fの成分は現れず、信号Rは周波数fの2倍の周波数(以下、「周波数2f」とも称する。)で変化する。 With reference to FIG. 11, the waveform 323 shows the waveform of the signal R (that is, the noise amplitude) output from the lock-in amplifier 20. Waveform 325 shows the waveform of the reference signal that varies at the frequency f m (period T m = t 2 -t 1) . For f ctr <f c, the signal R changes as a cosine wave reference signal and in phase. On the other hand, referring to FIG. 12, when f ctr > f c , the signal R changes like a cosine wave, but changes in the opposite phase to the reference signal. Further, referring to FIG. 13, the case of f ctr = f c, not appear component of the frequency f m is the signal R, the signal R is twice the frequency (frequencies below f m, both "frequency 2f m" It changes with).
 図14は、図10の構成にロックインアンプを追加した構成を示す図である。図14を参照して、信号検出装置10Cは、図10に示す構成に加えて、ロックインアンプ50をさらに含む。ロックインアンプ50は、例えば、1位相ロックインアンプであり、乗算器51と、LPF52とを含む。ロックインアンプ50は、信号Rに含まれる周波数fの成分(すなわち、変調成分)を検出する。 FIG. 14 is a diagram showing a configuration in which a lock-in amplifier is added to the configuration of FIG. With reference to FIG. 14, the signal detection device 10C further includes a lock-in amplifier 50 in addition to the configuration shown in FIG. The lock-in amplifier 50 is, for example, a one-phase lock-in amplifier, and includes a multiplier 51 and an LPF 52. Lock-in amplifier 50, the component of the frequency f m in the signal R (i.e., the modulation component) is detected.
 具体的には、乗算器51には、ロックインアンプ20から出力される信号Rが入力される。また、乗算器51には、発振器41から出力される変調信号が、ロックインアンプ50の参照信号Vxmとして入力される。乗算器51は、参照信号Vxmを信号Rと乗算し、乗算された信号RはLPF52に出力される。LPF52は、当該信号Rの高周波成分を除去した信号X(=Acosφ)を出力する。Aは、信号Rに含まれる周波数f成分における振幅実効値である。φは、参照信号Vxmと信号Rとの位相差である。信号Xは、信号Rに含まれる変調成分に対応する。 Specifically, the signal R output from the lock-in amplifier 20 is input to the multiplier 51. Further, the modulation signal output from the oscillator 41 is input to the multiplier 51 as the reference signal V xm of the lock-in amplifier 50. The multiplier 51 multiplies the reference signal V xm by the signal R, and the multiplied signal R is output to the LPF 52. LPF52 outputs the signal to remove high-frequency components of the signal R X m (= A m cosφ m). A m is the amplitude effective value of the frequency f m component included in the signal R. φ m is the phase difference between the reference signal V x m and the signal R. The signal X m corresponds to the modulation component contained in the signal R.
 図15は、ロックインアンプ50から出力される信号Xの中心周波数依存性を示す図である。図15を参照して、曲線331は、信号Xの中心周波数に対する変化を示している。例えば、周波数スペクトル303のように共振周波数fがΔfだけ負方向にシフトした場合、曲線331も負方向にシフトする。このとき、信号XはΔXだけ変化する。 FIG. 15 is a diagram showing the center frequency dependence of the signal X m output from the lock-in amplifier 50. With reference to FIG. 15, curve 331 shows the change of signal X m with respect to the center frequency. For example, when the resonance frequency f c shifts in the negative direction by Δf as in the frequency spectrum 303, the curve 331 also shifts in the negative direction. At this time, the signal X m changes by ΔX m .
 ここで、中心周波数fctrが共振周波数fよりも小さい場合、信号Rの変調成分は参照信号Vxmと同相(すなわち、φ=0°)となり、信号Xは正となる。中心周波数fctrが共振周波数fよりも大きい場合、信号Rの変調成分は参照信号Vxmと逆相(すなわち、φ=180°)となり、信号Xは負となる。中心周波数fctrが共振周波数fの近傍領域(図15中の網掛け領域)に位置する場合には信号Xは単調に変化する。中心周波数fctrが共振周波数fと一致する場合には、信号Xがゼロとなる。このことから、信号Xがゼロとなるように中心周波数fctrが制御されている場合、その中心周波数fctrが共振周波数fと一致することになる。 Here, when the center frequency f ctr is smaller than the resonance frequency f c, the modulation component of the signal R is the reference signal V xm same phase (i.e., φ m = 0 °), and the signal X m becomes positive. If the center frequency f ctr is greater than the resonance frequency f c, the modulation component of the signal R is the reference signal V xm opposite phase (i.e., φ m = 180 °), and the signal X m is negative. When the center frequency f ctr is located in the vicinity region (shaded region in FIG. 15) of the resonance frequency f c , the signal X m changes monotonically. When the center frequency f ctr coincides with the resonance frequency f c , the signal X m becomes zero. Therefore, if the center frequency f ctr as signal X m is zero is controlled, so that the center frequency f ctr coincides with the resonance frequency f c.
 図16は、信号検出装置10の構成例3の全体構成を示す図である。図16を参照して、信号検出装置10Cは、図14に示す構成に加えて、PI制御器55と、加算器57とをさらに含む。PI制御器55は、信号Xがゼロになるようにフィードバック制御した周波数fdcを出力する。具体的には、PI制御器55は、信号Xが負の場合には、中心周波数fctrが共振周波数fと一致する(すなわち、信号Xをゼロにする)ように、現在の中心周波数fctrを低下させる周波数fdcを出力する。PI制御器55は、信号Xが正の場合には、中心周波数fctrが共振周波数fと一致するように、現在の中心周波数fctrを増大させる周波数fdcを出力する。周波数fdcは、発振器43から出力される参照信号の中心周波数fctrを共振周波数fに調整するための周波数である。加算器57は、周波数fdcと変調信号との加算値を発振器43に入力する。これにより、発振器43から出力される参照信号は、共振周波数fと一致した中心周波数fctrを有し、かつ周波数fで変動する信号となる。 FIG. 16 is a diagram showing an overall configuration of configuration example 3 of the signal detection device 10. With reference to FIG. 16, the signal detection device 10C further includes a PI controller 55 and an adder 57 in addition to the configuration shown in FIG. The PI controller 55 outputs a frequency f dc feedback-controlled so that the signal X m becomes zero. Specifically, the PI controller 55 has a current center such that when the signal X m is negative, the center frequency fctr coincides with the resonant frequency f c (ie, the signal X m is zero). The frequency f dc that lowers the frequency f ctr is output. PI controller 55, when the signal X m is positive, so that the center frequency f ctr coincides with the resonance frequency f c, and outputs a frequency f dc to increase the current center frequency f ctr. Frequency f dc is the frequency for adjusting the center frequency f ctr of the reference signal output from the oscillator 43 to the resonant frequency f c. The adder 57 inputs the added value of the frequency fdc and the modulated signal to the oscillator 43. Thus, the reference signal outputted from the oscillator 43 has a center frequency f ctr that matches with the resonance frequency f c, and the signal varying at the frequency f m.
 周波数fdcはコンピュータ110にも供給される。コンピュータ110は、予めメモリに記憶された初期状態での中心周波数fctrと、周波数fdcとの加算値を共振周波数fとして算出する。これにより、コンピュータ110は、リアルタイムで共振周波数fの像を生成することができる。 The frequency f dc is also supplied to the computer 110. Computer 110 calculates the center frequency f ctr in the initial state stored in advance in the memory, the sum of the frequency f dc as the resonant frequency f c. Thus, the computer 110 may generate an image of the resonant frequency f c in real time.
 図17は、構成例3に従う信号検出装置およびコンピュータの機能ブロック図である。図17を参照して、信号検出装置10Cは、主な機能構成として、生成部202C、振幅検出部204Cと、変調成分検出部212Cと、調整部214Cとを含む。生成部202Cは、例えば、発振器41,43および加算器57に対応する。振幅検出部204Cは、例えば、ロックインアンプ20に対応する。変調成分検出部212Cは、例えば、ロックインアンプ50に対応する。調整部214Cは、例えば、PI制御器55および加算器57に対応する。コンピュータ110は、主な機能構成として、算出部206Cと、像生成部208Cとを含む。 FIG. 17 is a functional block diagram of the signal detection device and the computer according to the configuration example 3. With reference to FIG. 17, the signal detection device 10C includes a generation unit 202C, an amplitude detection unit 204C, a modulation component detection unit 212C, and an adjustment unit 214C as main functional configurations. The generator 202C corresponds, for example, to oscillators 41, 43 and adder 57. The amplitude detection unit 204C corresponds to, for example, the lock-in amplifier 20. The modulation component detection unit 212C corresponds to, for example, the lock-in amplifier 50. The adjusting unit 214C corresponds to, for example, the PI controller 55 and the adder 57. The computer 110 includes a calculation unit 206C and an image generation unit 208C as main functional configurations.
 具体的には、生成部202Cは、カンチレバー11の共振周波数fの近傍において、振幅検出部204Cに入力される参照信号の参照周波数を所定周波数(例えば、周波数f)で変調する。振幅検出部204Cは、カンチレバー11の変位信号と変調された参照信号とに基づいて、参照周波数を含む所定範囲内(例えば、fref±fLPF)におけるカンチレバー11のノイズ振幅を検出する。変調成分検出部212Cは、参照信号の参照周波数が所定周波数で変調されている場合に、ノイズ振幅(すなわち、信号R)の変調成分(例えば、信号X)を検出する。調整部214Cは、ノイズ振幅の変調成分がゼロとなるように、変調されている参照信号の中心周波数fctrを調整する。算出部206Cは、調整された中心周波数fctrをカンチレバー11の共振周波数fとして算出する。像生成部208Cは、探針12を試料2と相対的に走査させることによって、算出された共振周波数fに関する像(共振周波数像)を生成する。 Specifically, the generating unit 202C is in the vicinity of the resonance frequency f c of the cantilever 11, modulates the reference frequency of the reference signal input to the amplitude detector 204C at a predetermined frequency (e.g., frequency f m). The amplitude detection unit 204C detects the noise amplitude of the cantilever 11 within a predetermined range including the reference frequency (for example, fref ± f LPF ) based on the displacement signal of the cantilever 11 and the modulated reference signal. The modulation component detection unit 212C detects the modulation component (for example, signal X m ) of the noise amplitude (that is, signal R) when the reference frequency of the reference signal is modulated at a predetermined frequency. The adjusting unit 214C adjusts the center frequency fctr of the modulated reference signal so that the modulation component of the noise amplitude becomes zero. Calculator 206C calculates the adjusted center frequency f ctr as a resonance frequency f c of the cantilever 11. Image generation unit 208C, by which relatively scans the probe 12 and the sample 2, and generates an image (resonance frequency image) relating to the resonance frequency f c which is calculated.
 信号検出装置10Cによると、ロックインアンプ20に周波数変調された参照信号を入力してノイズ振幅(信号R)を検出し、信号Rに現れる変調成分がゼロとなるように当該参照信号の中心周波数fctrが制御される。これにより、カンチレバー11を加振することなく、共振周波数fをリアルタイムで高精度に算出でき、共振周波数像をディスプレイに表示できる。 According to the signal detection device 10C, a frequency-modulated reference signal is input to the lock-in amplifier 20 to detect the noise amplitude (signal R), and the center frequency of the reference signal is set so that the modulation component appearing in the signal R becomes zero. f ctr is controlled. Thus, without vibrating the cantilever 11 can be calculated with high accuracy the resonant frequency f c in real time, it can be displayed resonant frequency images on the display.
 なお、信号検出装置10CではPI制御器55を用いる構成について説明したが、走査点が変化してもQ値が大きく変化しないと仮定できる場合には、単に信号Xを記録することによって共振周波数fを算出することもできる。例えば、走査開始点で検出された信号XをXmsとし、走査開始点における共振周波数fをfcsとする。ここで、走査開始点での中心周波数fctrは、共振周波数fcsに予め設定されているものとする。この場合、図15を参照して、共振周波数fがfcsから負にシフト(Δf<0)した場合には、信号XがXmsから負にシフト(ΔX<0)する。一方、共振周波数fがfcsから正にシフト(Δf>0)した場合には、信号XがXmsから正にシフト(ΔX>0)する。そのため、コンピュータ110は、信号XがXmsからΔX変化した場合、共振周波数をfcs+Δfとして算出できる。なお、信号XmsがΔX変化した場合の共振周波数fの変化分であるΔfは、予め実測あるいはシミュレーション等により取得され、メモリに記憶されている。 Although the configuration using the PI controller 55 has been described in the signal detection device 10C, if it can be assumed that the Q value does not change significantly even if the scanning point changes, the resonance frequency is simply recorded by recording the signal X m. It is also possible to calculate f c . For example, a signal X m detected by the scanning start point and X ms, the resonance frequency f c at the scan start point and f cs. Here, the center frequency f ctr at the scanning start point is assumed to be preset to the resonance frequency f cs. In this case, referring to FIG. 15, when the resonance frequency f c shifts negatively from f cs (Δf <0), the signal X m shifts negatively from X ms (ΔX m <0). On the other hand, when the resonance frequency f c is positively shifted from f cs (Δf> 0), the signal X m is positively shifted from X ms (ΔX m > 0). Therefore, the computer 110, if the signal X m changes [Delta] X m from X ms, can be calculated resonant frequency as f cs + Δf. Incidentally, Delta] f signal X ms is the change of the resonance frequency f c in the case of change [Delta] X m is obtained in advance by actual measurement or simulation, and is stored in the memory.
 また、走査点が変化しても共振周波数が変化しないと仮定できる場合には、信号Xの変化は、概ねQ値の変化を表わすことになる。そのため、走査開始点におけるQ値をQとすると、コンピュータ110は、信号XがXmsからΔX変化した場合、Q値をQ+ΔQとして算出する。なお、信号XmsがΔX変化した場合のQ値の変化分であるΔQは、予めメモリに記憶されている。 Further, when it can be assumed that the resonance frequency does not change even if the scanning point changes, the change in the signal X m generally represents the change in the Q value. Therefore, when the Q value at the scan start point and Q s, the computer 110, if the signal X m changes [Delta] X m from X ms, calculates a Q value as Q s + Delta] Q. It should be noted that ΔQ, which is the change in the Q value when the signal X ms changes by ΔX m , is stored in the memory in advance.
 図18は、試料2の測定例1を示す図である。ここでは、シリコン基板上にフォトポリマーのN-メチル-2-ピロリドン溶液をスピンコートし、アニール処理して得られた薄膜(膜厚:約300nm)を測定対象の試料とした。図18(a)は、コンタクトモードAFMによるこの試料の表面形状像である。この表面形状像は、フィードバック回路120からのZ制御信号に対応するZ方向の位置をXYZ軸の座標系でプロットすることによって得られた画像である。 FIG. 18 is a diagram showing measurement example 1 of sample 2. Here, a thin film (film thickness: about 300 nm) obtained by spin-coating a N-methyl-2-pyrrolidone solution of a photopolymer on a silicon substrate and annealing it was used as a sample to be measured. FIG. 18A is a surface shape image of this sample by contact mode AFM. This surface shape image is an image obtained by plotting the position in the Z direction corresponding to the Z control signal from the feedback circuit 120 in the coordinate system of the XYZ axes.
 使用したカンチレバーはシリコン製のカンチレバーであり、そのばね定数は約1.5N/m、自由共振周波数は約27.2kHzである。また、探針の接触力は約10nNとした。図18(a)の走査領域は1000nm×1000nm、画素数は256×256である。なお、測定の所要時間は約8分であった。この表面形状像から、試料表面はおよそ平坦な表面であるが、所々ドーム状に隆起した領域があることがわかった。図18(b)は、図18(a)の直線部401の断面プロファイルである。図18(b)により、この隆起領域の中心付近は周囲より約15nm高いことがわかった。 The cantilever used is a silicon cantilever, the spring constant of which is about 1.5 N / m, and the free resonance frequency is about 27.2 kHz. The contact force of the probe was set to about 10 nN. The scanning region of FIG. 18A is 1000 nm × 1000 nm, and the number of pixels is 256 × 256. The time required for the measurement was about 8 minutes. From this surface shape image, it was found that the sample surface was approximately flat, but there were dome-shaped raised regions in some places. FIG. 18B is a cross-sectional profile of the straight line portion 401 of FIG. 18A. From FIG. 18 (b), it was found that the vicinity of the center of this raised region was about 15 nm higher than the periphery.
 信号検出装置10Cを用いて、図18(a)に示す画像と同時に取得された接触共振周波数像を図18(c)に示す。走査開始時点での接触共振周波数がおよそ110kHz、Q値が約90であったため、fctr=110kHz、fdev=2.5kHz、f=1.1kHzとした。図18(d)は、図18(c)の直線部403の断面プロファイルである。なお、試料2における直線部401の位置と,403の位置とは同一である。この隆起領域では、接触共振周波数が2.5kHz程度低くなっていることがわかった。 FIG. 18 (c) shows a contact resonance frequency image acquired at the same time as the image shown in FIG. 18 (a) using the signal detection device 10C. 110kHz contact resonance frequency of the scanning start point approximately, because the Q value was about 90, and f ctr = 110kHz, f dev = 2.5kHz, and f m = 1.1 kHz. FIG. 18D is a cross-sectional profile of the straight portion 403 of FIG. 18C. The position of the straight line portion 401 and the position of 403 in sample 2 are the same. It was found that the contact resonance frequency was lowered by about 2.5 kHz in this raised region.
 (構成例4)
 構成例3に従う信号検出装置10Cでは、ロックインアンプ20の参照信号の中心周波数fctrは共振周波数fに一致するように制御されており、共振周波数f近傍でのノイズ振幅を検出できる。上記の式(3)に示すように、全周波数領域で積分したノイズ振幅にはQ値依存性がない。しかし、共振周波数f近傍での変位ノイズ密度Nth(ω)は式(2)から、以下の式(4)のように表わされる。
(Configuration Example 4)
In the signal detection device 10C according to the configuration example 3, the center frequency f ctr of the reference signal of the lock-in amplifier 20 is controlled so as to coincide with the resonance frequency f c, it can detect the noise amplitude at the vicinity of the resonance frequency f c. As shown in the above equation (3), the noise amplitude integrated in the entire frequency domain has no Q value dependence. However, the displacement noise density N th (omega 0) in the vicinity of the resonance frequency f c from the equation (2) is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)により、変位ノイズ密度Nth(ω)は、Q値(すなわち、共振ピークの鋭さ)の平方根に依存することがわかる。したがって、共振周波数f近傍でのノイズ振幅を計測できれば、試料の粘性に関する情報が得られる。信号検出装置10の構成例4は、構成例3においてQ値を得るための第1の方式を採用したものである。具体的には、構成例4では、図16のロックインアンプ20から出力される信号Rの時間平均振幅に基づいてQ値が算出される。 The equation (4), the displacement noise density N th (omega 0) is, Q value (i.e., the sharpness of the resonance peak) seen to be dependent on the square root of. Therefore, if measuring the noise amplitude at the vicinity of the resonance frequency f c, information about the viscosity of the sample is obtained. The configuration example 4 of the signal detection device 10 adopts the first method for obtaining the Q value in the configuration example 3. Specifically, in the configuration example 4, the Q value is calculated based on the time average amplitude of the signal R output from the lock-in amplifier 20 of FIG.
 図19は、信号検出装置10の構成例4を示す図である。構成例4に対応する信号検出装置10Dは、構成例3に対応する信号検出装置10C(図16参照)にロックインアンプ20Dを追加したものである。ロックインアンプ20Dは、例えば、2位相ロックインアンプである。ロックインアンプ20Dの時定数は、ロックインアンプ20の時定数よりも大きく設定される。具体的には、ロックインアンプ20DにおけるLPF22Dのカットオフ周波数は、ロックインアンプ20のLPF22のカットオフ周波数よりも小さく設定される。ロックインアンプ20Dの他の構成は、ロックインアンプ20と同一である。 FIG. 19 is a diagram showing a configuration example 4 of the signal detection device 10. The signal detection device 10D corresponding to the configuration example 4 is a signal detection device 10C (see FIG. 16) corresponding to the configuration example 3 with a lock-in amplifier 20D added. The lock-in amplifier 20D is, for example, a two-phase lock-in amplifier. The time constant of the lock-in amplifier 20D is set larger than the time constant of the lock-in amplifier 20. Specifically, the cutoff frequency of the LPF22D in the lock-in amplifier 20D is set to be smaller than the cutoff frequency of the LPF22 of the lock-in amplifier 20. Other configurations of the lock-in amplifier 20D are the same as those of the lock-in amplifier 20.
 信号検出装置10Dでは、中心周波数fctrが共振周波数fと一致するように制御されているため、ロックインアンプ20から出力される信号Rは周波数2fで変調されている(図13参照)。ただし、信号Rをデジタル画像として記録する際に用いられるサンプリングレートは、周波数2fよりも非常に遅いため、結果的に信号Rに含まれる低周波成分の振幅、すなわち、信号Rの時間平均振幅が記録される。したがって、信号Rの時間平均振幅は、信号RにLPFを通して周波数2f成分を除去したものに相当すると考えられる。 In the signal detection device 10D, since the center frequency f ctr is controlled so as to coincide with the resonance frequency f c, the signal R output from the lock-in amplifier 20 is modulated at a frequency 2f m (see FIG. 13) .. However, the sampling rate used in recording the signal R as a digital image, since much slower than the frequency 2f m, the low-frequency components contained in the consequently signals R amplitude, i.e., the time average amplitude of the signal R Is recorded. Therefore, the time average amplitude of the signal R is considered to correspond to that eliminate frequency 2f m component through LPF to a signal R.
 そのため、LPF22Dのカットオフ周波数を周波数2fよりも小さくすることにより、ロックインアンプ20Dから出力される信号Rは、信号Rの時間平均振幅に相当する。なお、構成例4のようにロックインアンプ20Dを追加する代わりに、ロックインアンプ20から出力される信号Rの入力を受けるLPFを設けてもよい。このLPFは、信号Rから周波数2f成分を除去した信号を、信号Rの時間平均振幅として検出する。 Therefore, to be smaller than the frequency 2f m cutoff frequency of LPF22D, signals R v outputted from the lock-in amplifier 20D corresponds to the time average amplitude of the signal R. Instead of adding the lock-in amplifier 20D as in the configuration example 4, an LPF that receives the input of the signal R output from the lock-in amplifier 20 may be provided. The LPF is a signal obtained by removing the frequency 2f m component from the signal R, is detected as a time average amplitude of the signal R.
 図20は、時間平均振幅とQ値との関係を説明するための図である。図20を参照して、周波数スペクトル341、342は、それぞれ走査点P1,P2における熱振動スペクトルである。波形343、344は、それぞれ走査点P1,P2における信号Rの波形を示している。例えば、周波数スペクトル341に対応するQ値は100であり、周波数スペクトル342に対応するQ値が90であるとする。 FIG. 20 is a diagram for explaining the relationship between the time average amplitude and the Q value. With reference to FIG. 20, frequency spectra 341 and 342 are thermal vibration spectra at scanning points P1 and P2, respectively. Waveforms 343 and 344 indicate waveforms of the signal R at scanning points P1 and P2, respectively. For example, assume that the Q value corresponding to the frequency spectrum 341 is 100 and the Q value corresponding to the frequency spectrum 342 is 90.
 ここで、走査点P1から走査点P2に移動した場合を想定する。走査点P1において、Q値が100のときの共振周波数fにおける信号Rを“1”とし、信号Rが最も小さくなる瞬間(すなわち、fvco=fctr±fdev)における信号Rが“0.5”であったとすると、信号Rの時間平均振幅は約0.75(=(1+0.5)/2)となる。走査点P2において、Q値が90に変化すると、共振周波数fにおける信号Rは(90/100)1/2であり約0.95となる。一方、信号Rが最も小さくなる瞬間における信号Rはほとんど変化せず0.51程度である。そのため、信号Rの時間平均振幅は約0.73(=(0.95+0.51)/2)となる。したがって、Q値が10%減少したときの時間平均振幅の変化率は約3%と推定される。 Here, it is assumed that the scanning point P1 is moved to the scanning point P2. In the scanning point P1, the signal R at the resonance frequency f c when Q value is 100 to "1", the moment the signal R becomes smallest (i.e., f vco = f ctr ± f dev) is in the signal R "0 If it is .5 ”, the time average amplitude of the signal R is about 0.75 (= (1 + 0.5) / 2). In scanning point P2, the Q value is changed to 90, the signal R at the resonance frequency f c is about 0.95 a (90/100) 1/2. On the other hand, the signal R at the moment when the signal R becomes the smallest hardly changes and is about 0.51. Therefore, the time average amplitude of the signal R is about 0.73 (= (0.95 + 0.51) / 2). Therefore, the rate of change of the time average amplitude when the Q value decreases by 10% is estimated to be about 3%.
 構成例4では、時間平均振幅に基づいてQ値を算出される。例えば、走査開始点における信号Rの時間平均振幅をRvsとし、走査開始点におけるQ値をQとする。コンピュータ110は、時間平均振幅をRvsがΔR変化した場合、Q値をQ+ΔQとして算出する。なお、RvsがΔR変化した場合のQ値の変化分であるΔQは、実測等によって予めメモリに記憶されている。これにより、リアルタイムでQ値を算出できる。 In Configuration Example 4, the Q value is calculated based on the time average amplitude. For example, the time average amplitude of the signal R at the scanning start point is R vs, and the Q value at the scanning start point is Q s . The computer 110 calculates the time average amplitude as Q s + ΔQ when R vs changes by ΔR v . It should be noted that ΔQ, which is the change in the Q value when R vs changes by ΔR v , is stored in the memory in advance by actual measurement or the like. As a result, the Q value can be calculated in real time.
 図21は、試料2の測定例2を示す図である。具体的には、図21に示す画像は、信号検出装置10Dによって検出された時間平均振幅像である。なお、図21に示す画像は、図18に示す画像と同時に得られたものである。図21に示す時間平均振幅像によると、隆起領域において時間平均振幅は若干小さくなっている。そのため、隆起領域ではQ値が低く、この領域の粘性が高くなっていると推察される。 FIG. 21 is a diagram showing measurement example 2 of sample 2. Specifically, the image shown in FIG. 21 is a time average amplitude image detected by the signal detection device 10D. The image shown in FIG. 21 was obtained at the same time as the image shown in FIG. According to the time average amplitude image shown in FIG. 21, the time average amplitude is slightly smaller in the raised region. Therefore, it is presumed that the Q value is low in the raised region and the viscosity in this region is high.
 上記の信号検出装置10Dは、主な機能構成として、図17に示す構成例3の機能構成(生成部202C、振幅検出部204C、変調成分検出部212C、調整部214C)と、時間平均振幅検出部とを含む。時間平均振幅検出部は、例えば、ロックインアンプ20D(あるいは、信号Rから周波数2f成分を除去するLPF)に対応する。時間平均振幅検出部は、発振器43から出力される参照信号の参照周波数が所定周波数(例えば、周波数f)で変調されている場合に、ノイズ振幅の時間平均振幅(例えば、信号R)を検出する。算出部206C(例えば、コンピュータ110)は、時間平均振幅に基づいて、カンチレバー11のQ値を算出する。信号検出装置10Dおよびコンピュータ110によると、共振周波数fおよびQ値をリアルタイムで算出できる。 The signal detection device 10D has, as main functional configurations, the functional configurations of configuration example 3 shown in FIG. 17 (generation unit 202C, amplitude detection unit 204C, modulation component detection unit 212C, adjustment unit 214C) and time average amplitude detection. Including part. Time average amplitude detector, for example, lock-in amplifier 20D (or, LPF to remove the frequency 2f m component from the signal R) corresponding to. The time average amplitude detector, the reference frequency of the reference signal outputted from the oscillator 43 is a predetermined frequency (e.g., frequency f m) if it is modulated, the time average amplitude of the noise amplitude (e.g., signal R v) To detect. The calculation unit 206C (for example, the computer 110) calculates the Q value of the cantilever 11 based on the time average amplitude. According to the signal detection unit 10D and the computer 110 can calculate the resonant frequency f c and Q values in real time.
 (構成例5)
 信号検出装置10の構成例5は、構成例3においてQ値を得るための第2の方式を採用したものである。具体的には、構成例5では、信号Rに含まれる周波数2fで変調されている成分の振幅実効値に基づいてQ値が算出される。
(Configuration Example 5)
The configuration example 5 of the signal detection device 10 adopts the second method for obtaining the Q value in the configuration example 3. Specifically, in the configuration example 5, Q values based on the amplitude effective value of the components that are modulated at a frequency 2f m in the signal R is calculated.
 図22は、信号検出装置10の構成例5を示す図である。図22を参照して、構成例5に対応する信号検出装置10Eは、構成例3に対応する信号検出装置10C(図16参照)に、ロックインアンプ20Eおよび乗算器65を追加したものである。信号検出装置10Eでは、中心周波数fctrが共振周波数fと一致するように制御されるため、信号Rは周波数2fで変調される(図13参照)。ロックインアンプ20Eは、信号Rに含まれる周波数2fで変調されている成分の振幅実効値を検出する。 FIG. 22 is a diagram showing a configuration example 5 of the signal detection device 10. With reference to FIG. 22, the signal detection device 10E corresponding to the configuration example 5 is a signal detection device 10C (see FIG. 16) corresponding to the configuration example 3 to which the lock-in amplifier 20E and the multiplier 65 are added. .. In the signal detection device 10E, since the center frequency f ctr is controlled to coincide with the resonance frequency f c, the signal R is modulated at a frequency 2f m (see FIG. 13). Lock-in amplifier 20E detects an amplitude effective value of the components that are modulated at a frequency 2f m contained in the signal R.
 乗算器65は、発振器41から出力される周波数fの変調信号を2乗することにより、周波数2fの信号(2倍波信号)を出力する。2倍波信号はロックインアンプ20Eの参照信号として利用される。ロックインアンプ20Eは、例えば、2位相ロックインアンプであり、実質的にロックインアンプ20と同一である。ロックインアンプ20Eには、ロックインアンプ20から出力された信号R、および周波数2fの参照信号が入力される。ロックインアンプ20Eは、信号Rに含まれる周波数2f成分を検出する。具体的には、ロックインアンプ20Eは、周波数2f成分の振幅実効値R2mを出力する。 The multiplier 65, by squaring the modulated signal of a frequency f m which is outputted from the oscillator 41, and outputs a signal of frequency 2f m (2 harmonic signal). The double wave signal is used as a reference signal for the lock-in amplifier 20E. The lock-in amplifier 20E is, for example, a two-phase lock-in amplifier, and is substantially the same as the lock-in amplifier 20. The lock-in amplifier 20E, the reference signal of the lock-in amplifier 20 is output from the signal R, and the frequency 2f m is input. Lock-in amplifier 20E detects the frequency 2f m component included in the signal R. Specifically, the lock-in amplifier 20E outputs the amplitude effective value R 2 m of the frequency 2 fm component.
 図13に示すように、中心周波数fctrが共振周波数fと一致している場合には、検出されるノイズ振幅は共振周波数f近傍で変化する。そのため、周波数2f成分の振幅実効値R2mは、周波数スペクトル301のピークおよびピークの裾におけるノイズ振幅の減衰度(共振の鋭さ)を表わしている。すなわち、振幅実効値R2mは、ピークと、ピークの裾との間の変化の割合(傾き)に相当する。 As shown in FIG. 13, when the center frequency f ctr is equal to the resonant frequency f c, the noise amplitude detected varies near the resonance frequency f c. Therefore, the amplitude effective value R 2m frequency 2f m component represents noise amplitude attenuation in the peak and the skirt of the peak of the frequency spectrum 301 (sharpness of resonance). That is, the effective amplitude value R 2m corresponds to the rate of change (slope) between the peak and the tail of the peak.
 構成例4と同様に、走査点P1から走査点P2に移動した場合を想定する。走査点P1において、Q値が100のときの共振周波数fにおける信号RをRp0とし、信号Rが最も小さくなる瞬間(すなわち、fvco=fctr±fdev)における信号Rが0.5Rp0であったとすると、信号Rの振幅実効値は約0.18(≒(1-0.5)/(2*21/2))Rp0となる。走査点P2において、Q値が90に変化したとすると、共振周波数fにおける信号Rは(90/100)1/2p0であり約0.95Rp0となる。一方、信号Rが最も小さくなる瞬間における信号Rはほとんど変化せず0.51Rp0程度であるため、信号Rの振幅実効値は約0.15(≒(0.95-0.51)/(2*21/2))Rp0となる。したがって、Q値が10%減少したときの振幅実効値の変化率は約13%と推定される。構成例4の場合には、Q値が10%減少したときの時間平均振幅の変化率は約3%であったことから、構成例5の方が構成例4よりも感度が高いことがわかる。 As in the configuration example 4, it is assumed that the scanning point P1 is moved to the scanning point P2. In the scanning point P1, the signal R and R p0 Q value at the resonance frequency f c of the case 100, the instant the signal R becomes smallest (i.e., f vco = f ctr ± f dev) in the signal R is 0.5R Assuming that it is p0 , the effective amplitude value of the signal R is about 0.18 (≈ (1-0.5) / (2 * 2 1/2 )) R p0 . In scanning point P2, the Q value is to have changed to 90, the signal R at the resonance frequency f c is about 0.95 R p0 is (90/100) 1/2 R p0. On the other hand, at the moment when the signal R becomes the smallest, the signal R hardly changes and is about 0.51R p0, so that the effective amplitude value of the signal R is about 0.15 (≈ (0.95-0.51) / (. 2 * 2 1/2 )) R p0 . Therefore, the rate of change of the amplitude effective value when the Q value decreases by 10% is estimated to be about 13%. In the case of Configuration Example 4, the rate of change in the time average amplitude when the Q value decreased by 10% was about 3%, indicating that Configuration Example 5 has higher sensitivity than Configuration Example 4. ..
 構成例5では、振幅実効値に基づいてQ値を算出される。例えば、走査開始点における信号Rに含まれる周波数2f成分の振幅実効値をR2msとし、走査開始点におけるQ値をQとする。コンピュータ110は、振幅実効値R2msがΔR2m変化した場合、Q値をQ+ΔQとして算出する。なお、R2msがΔR2m変化した場合のQ値の変化分であるΔQは、実測等により予めメモリに記憶されている。これにより、リアルタイムでQ値を算出できる。また、振幅実効値R2mは、ピークと、ピークの裾との傾きに相当するため、R2m=(dR/df)/Rp0=Q/(2fp0)と定義できる。そのため、共振周波数fと振幅実効値R2mとから、Q値を直接求めることもできる。 In Configuration Example 5, the Q value is calculated based on the effective amplitude value. For example, the amplitude effective value of the frequency 2f m component included in the signal R at the scanning start point and R 2 ms, the Q value at the scan start point and Q s. The computer 110 calculates the Q value as Q s + ΔQ when the effective amplitude value R 2 ms changes by Δ R 2 m . It should be noted that ΔQ, which is the change in the Q value when R 2ms changes by ΔR 2m , is stored in the memory in advance by actual measurement or the like. As a result, the Q value can be calculated in real time. Further, since the amplitude effective value R 2m corresponds to the slope between the peak and the tail of the peak, it can be defined as R 2m = (dR / df) / R p0 = Q / (2f c R p0 ). Therefore, it is possible to determine from the resonance frequency f c and amplitude effective value R 2m, the Q values directly.
 図23は、試料2の測定例3を示す図である。図23に示す画像は、図18の測定結果に続いて行なわれた測定により得られた画像である。具体的には、図23(a)の画像は、コンタクトモードAFMによる表面形状像を示している。図23(b)の画像は、接触共振周波数像を示している。図23(c)の画像は、構成例5によって得られた振幅実効値像である。図23(c)を参照すると、隆起領域において振幅実効値が小さくなっているため、この領域ではQ値が低く、粘性が高くなっていることが推察される。なお、図21に示す時間平均振幅像と比較すると、振幅実効値像はより鮮明に描かれており感度が高いことがわかる。 FIG. 23 is a diagram showing measurement example 3 of sample 2. The image shown in FIG. 23 is an image obtained by the measurement performed following the measurement result of FIG. Specifically, the image of FIG. 23A shows a surface shape image by the contact mode AFM. The image of FIG. 23B shows a contact resonance frequency image. The image of FIG. 23 (c) is an amplitude effective value image obtained by the configuration example 5. With reference to FIG. 23 (c), since the amplitude effective value is small in the raised region, it is inferred that the Q value is low and the viscosity is high in this region. Compared with the time average amplitude image shown in FIG. 21, it can be seen that the amplitude effective value image is drawn more clearly and has high sensitivity.
 上記の信号検出装置10Eは、主な機能構成として、図17に示す構成例3の機能構成(生成部202C、振幅検出部204C、変調成分検出部212C、調整部214C)と、振幅実効値検出部とを含む。振幅実効値検出部は、例えば、ロックインアンプ20Eに対応する。振幅実効値検出部は、発振器43から出力される参照信号の参照周波数が所定周波数(例えば、周波数f)で変調されている場合に、ノイズ振幅における、所定周波数の2倍の周波数成分(例えば、周波数2f成分の振幅実効値R2m)を検出する。算出部206C(コンピュータ110)は、当該2倍の周波数成分に基づいてカンチレバー11のQ値を算出する。信号検出装置10Eおよびコンピュータ110によると、カンチレバー11と試料2との接触時における共振周波数fおよびQ値をリアルタイムで算出できる。 The signal detection device 10E has, as main functional configurations, the functional configurations (generation unit 202C, amplitude detection unit 204C, modulation component detection unit 212C, adjustment unit 214C) of configuration example 3 shown in FIG. 17, and amplitude effective value detection. Including the part. The amplitude effective value detection unit corresponds to, for example, the lock-in amplifier 20E. Amplitude effective value detection unit, the reference frequency of the reference signal outputted from the oscillator 43 is a predetermined frequency (e.g., frequency f m) if it is modulated by, the noise amplitude, double frequency component of a predetermined frequency (e.g. detects the amplitude effective value R 2m) of the frequency 2f m component. The calculation unit 206C (computer 110) calculates the Q value of the cantilever 11 based on the double frequency component. According to the signal detection unit 10E and the computer 110 can calculate the resonant frequency f c and Q values at the time of contact between the cantilever 11 and the sample 2 in real time.
 (構成例6)
 信号検出装置10の構成例6は、構成例3においてQ値を得るための第3の方式を採用したものである。構成例6では、カンチレバー11の変位信号に基づいて検出された中心周波数の周囲のノイズ振幅に基づいてQ値が算出される。
(Configuration Example 6)
The configuration example 6 of the signal detection device 10 adopts the third method for obtaining the Q value in the configuration example 3. In Configuration Example 6, the Q value is calculated based on the noise amplitude around the center frequency detected based on the displacement signal of the cantilever 11.
 図24は、信号検出装置10の構成例6を示す図である。図24を参照して、構成例6に対応する信号検出装置10Fは、構成例3に対応する信号検出装置10C(図16参照)に、発振器75およびロックインアンプ20Fを追加したものである。信号検出装置10Fでは、中心周波数fctrが共振周波数fと一致するように制御されている(図13参照)。ロックインアンプ20Fは、変位信号に含まれる中心周波数fctr(すなわち、共振周波数f)の周囲のノイズ振幅を検出する。 FIG. 24 is a diagram showing a configuration example 6 of the signal detection device 10. With reference to FIG. 24, the signal detection device 10F corresponding to the configuration example 6 is a signal detection device 10C (see FIG. 16) corresponding to the configuration example 3 with an oscillator 75 and a lock-in amplifier 20F added. In the signal detection device 10F, the center frequency f ctr is controlled so as to coincide with the resonance frequency f c (see FIG. 13). Lock-in amplifier 20F, the center frequency f ctr included in the displacement signal (i.e., the resonance frequency f c) detecting the noise amplitude of the surrounding.
 発振器75は、発振器43と同一の発振器で構成される。具体的には、発振器75および発振器43における最大の周波数偏移は同一である。また、発振器75には、PI制御器55から出力される周波数fdcが入力される。そのため、発振器75および発振器43の中心周波数fctrは同一となる。ただし、発振器75には、発振器43のように変調信号は入力されないため、発振器75の出力信号は周波数変調されない。発振器75の出力信号は、ロックインアンプ20Fの参照信号として利用される。 The oscillator 75 is composed of the same oscillator as the oscillator 43. Specifically, the maximum frequency shifts in the oscillator 75 and the oscillator 43 are the same. Further, the frequency fdc output from the PI controller 55 is input to the oscillator 75. Therefore, the center frequencies fctr of the oscillator 75 and the oscillator 43 are the same. However, unlike the oscillator 43, the modulation signal is not input to the oscillator 75, so that the output signal of the oscillator 75 is not frequency-modulated. The output signal of the oscillator 75 is used as a reference signal of the lock-in amplifier 20F.
 ロックインアンプ20Fは、例えば、2位相ロックインアンプであり、実質的にロックインアンプ20と同一である。ロックインアンプ20Fには、カンチレバー11の変位信号、および発振器75から出力される参照信号が入力される。ロックインアンプ20Fは、変位信号と参照信号とを乗算し、LPFにより高周波成分を除去し、ベクトル演算を実行して信号Rを出力する。信号Rは、中心周波数fctr(すなわち、共振周波数f)を中心とする積分周波数範囲(すなわち、fctr±fLPF)におけるノイズ振幅に相当する。すなわち、信号Rは、熱振動スペクトルのピーク振幅に相当する。 The lock-in amplifier 20F is, for example, a two-phase lock-in amplifier, and is substantially the same as the lock-in amplifier 20. The displacement signal of the cantilever 11 and the reference signal output from the oscillator 75 are input to the lock-in amplifier 20F. The lock-in amplifier 20F multiplies the displacement signal and the reference signal, removes the high frequency component by the LPF, executes the vector operation, and outputs the signal R p . The signal R p corresponds to the noise amplitude in the integrated frequency range (ie, f ctr ± f LPF ) centered on the center frequency f ctr (ie, resonance frequency f c ). That is, the signal R p corresponds to the peak amplitude of the thermal vibration spectrum.
 構成例4と同様に、走査点P1から走査点P2に移動した場合を想定する。走査点P1において、Q値が100のときの共振周波数fにおける信号R(すなわち、ピーク振幅に対応する信号R)をRp0とする。走査点P2において、Q値が90に変化したとすると、共振周波数fにおける信号Rは(90/100)1/2p0であり約0.95Rp0となる。そのため、Q値が10%減少したときのピーク振幅の変化率は約5%と推定される。 As in the configuration example 4, it is assumed that the scanning point P1 is moved to the scanning point P2. In the scanning point P1, Q value is the signal R (i.e., signal R p corresponding to the peak amplitude) at the resonance frequency f c of the case 100 a and R p0. In scanning point P2, the Q value is to have changed to 90, the signal R p at the resonance frequency f c is about 0.95 R p0 is (90/100) 1/2 R p0. Therefore, the rate of change in peak amplitude when the Q value decreases by 10% is estimated to be about 5%.
 構成例6では、ピーク振幅に基づいてQ値が算出される。例えば、走査開始点における信号RをRpsとし、走査開始点におけるQ値をQとする。コンピュータ110は、RpsがΔR変化した場合、Q値をQ+ΔQとして算出する。なお、RpsがΔR変化した場合のQ値の変化分であるΔQは、実測等により予めメモリに記憶されている。これにより、リアルタイムでQ値を算出できる。 In Configuration Example 6, the Q value is calculated based on the peak amplitude. For example, let the signal R p at the scanning start point be R ps, and let the Q value at the scanning start point be Q s . The computer 110 calculates the Q value as Q s + ΔQ when R ps changes by ΔR p . It should be noted that ΔQ, which is the amount of change in the Q value when R ps changes by ΔR p , is stored in the memory in advance by actual measurement or the like. As a result, the Q value can be calculated in real time.
 上記の信号検出装置10Fは、主な機能構成として、図17に示す構成例3の機能構成(生成部202C、振幅検出部204C、変調成分検出部212C、調整部214C)と、信号生成部と、ピーク振幅検出部とを含む。信号生成部は、例えば、発振器75に対応する。ピーク振幅検出部は、例えば、ロックインアンプ20Fに対応する。信号生成部は、調整部214Cにより調整された中心周波数fctrを参照周波数とする参照信号を生成する。ピーク振幅検出部は、カンチレバー11の変位信号と信号生成部により生成された参照信号とに基づいて、当該参照信号の参照周波数を含む所定範囲内(例えば、fctr±fLPF)におけるノイズ振幅(例えば、信号R)を検出する。算出部206C(例えば、コンピュータ110)は、当該ノイズ振幅に基づいてカンチレバー11のQ値を算出する。信号検出装置10Fおよびコンピュータ110によると、共振周波数fおよびQ値をリアルタイムで算出できる。 The above-mentioned signal detection device 10F has, as main functional configurations, a functional configuration (generation unit 202C, amplitude detection unit 204C, modulation component detection unit 212C, adjustment unit 214C) of configuration example 3 shown in FIG. 17, and a signal generation unit. , Includes a peak amplitude detector. The signal generator corresponds to, for example, the oscillator 75. The peak amplitude detection unit corresponds to, for example, the lock-in amplifier 20F. The signal generation unit generates a reference signal having the center frequency fctr adjusted by the adjustment unit 214C as a reference frequency. Based on the displacement signal of the cantilever 11 and the reference signal generated by the signal generation unit, the peak amplitude detection unit has a noise amplitude (for example, fctr ± f LPF ) within a predetermined range including the reference frequency of the reference signal. For example, the signal R p ) is detected. The calculation unit 206C (for example, the computer 110) calculates the Q value of the cantilever 11 based on the noise amplitude. According to the signal detection unit 10F and the computer 110 can calculate the resonant frequency f c and Q values in real time.
 <利点>
 本実施の形態によると、カンチレバー11を加振することなく、カンチレバー11のノイズ振幅に基づいてリアルタイムで共振周波数およびQ値を算出できる。そのため、既存のAFMに圧電素子等の特別な高周波励振機構を付加する必要がなく、通常の試料表面観察と同時に試料表面の粘弾性および試料表面下構造を可視化することができる。また、試料の計測時間を大幅に低減することができる。
<Advantage>
According to this embodiment, the resonance frequency and the Q value can be calculated in real time based on the noise amplitude of the cantilever 11 without vibrating the cantilever 11. Therefore, it is not necessary to add a special high-frequency excitation mechanism such as a piezoelectric element to the existing AFM, and the viscoelasticity of the sample surface and the structure under the sample surface can be visualized at the same time as normal sample surface observation. In addition, the measurement time of the sample can be significantly reduced.
 <その他の実施の形態>
 (1)上述した実施の形態では、AFMのカンチレバーのノイズ振幅を利用して、カンチレバーの共振周波数やQ値を算出する構成について説明したが、当該構成に限られない。例えば、カンチレバーに限られず、あらゆる振動体(機械共振器)は熱振動している。そのため、外部から振動を励起することが困難な振動体(例えば、MEMS(Micro Electro Mechanical Systems)センサ等)のノイズ振幅に基づいて、当該振動体の共振周波数やQ値を算出することもできる。例えば、振動体の変位を検出する変位検出装置と、信号検出装置10と、コンピュータ110とを用意することで、当該振動体のノイズ振幅に基づいて、共振周波数やQ値をリアルタイムで算出することができる。
<Other embodiments>
(1) In the above-described embodiment, the configuration for calculating the resonance frequency and the Q value of the cantilever by using the noise amplitude of the cantilever of the AFM has been described, but the configuration is not limited to this. For example, not only cantilever but all vibrating bodies (mechanical resonators) are thermally vibrated. Therefore, the resonance frequency and Q value of the vibrating body can be calculated based on the noise amplitude of the vibrating body (for example, a MEMS (Micro Electro Mechanical Systems) sensor or the like) in which it is difficult to excite the vibration from the outside. For example, by preparing a displacement detection device for detecting the displacement of the vibrating body, a signal detecting device 10, and a computer 110, the resonance frequency and the Q value can be calculated in real time based on the noise amplitude of the vibrating body. Can be done.
 (2)上述した実施の形態では、2位相ロックインアンプで構成されるロックインアンプ20を用いて、ある周波数範囲の変位ノイズ密度の二乗平均平方根(RMS)値としてノイズ振幅(R信号)を検出する構成について説明したが、当該構成に限られない。例えば、ロックインアンプ20の代わりにスペクトラムアナライザを用いて、ある周波数範囲のR信号を検出する構成であってもよい。 (2) In the above-described embodiment, the lock-in amplifier 20 composed of the two-phase lock-in amplifier is used, and the noise amplitude (R signal) is set as the root mean square (RMS) value of the displacement noise density in a certain frequency range. The configuration to be detected has been described, but the configuration is not limited to this configuration. For example, a spectrum analyzer may be used instead of the lock-in amplifier 20 to detect an R signal in a certain frequency range.
 (3)上述した実施の形態では、AFMのカンチレバーを試料に接触させたときのノイズ振幅を利用して、カンチレバーの共振周波数やQ値を算出する構成について説明したが、当該構成に限られない。具体的には、試料にカンチレバーが接触していなくても、カンチレバーの探針に相互作用力が働いた場合(例えば、水中に載置された試料にカンチレバーが近接した場合)にはカンチレバーの共振周波数が変化する。そのため、カンチレバーを試料に接触させずに検出したノイズ振幅を利用して、カンチレバーの共振周波数やQ値を算出する構成であってもよい。なお、この場合、変位検出器15は、変位信号として、カンチレバー11の先端の変位の時間変化(速度)を示す信号を検出してもよい。 (3) In the above-described embodiment, the configuration for calculating the resonance frequency and the Q value of the cantilever by using the noise amplitude when the cantilever of the AFM is brought into contact with the sample has been described, but the configuration is not limited to this. .. Specifically, even if the cantilever is not in contact with the sample, the cantilever resonates when an interaction force acts on the probe of the cantilever (for example, when the cantilever is close to the sample placed in water). The frequency changes. Therefore, the resonance frequency and the Q value of the cantilever may be calculated by using the noise amplitude detected without bringing the cantilever into contact with the sample. In this case, the displacement detector 15 may detect as a displacement signal a signal indicating a time change (velocity) of the displacement of the tip of the cantilever 11.
 (4)上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。また、上述した実施の形態において、その他の実施の形態で説明した構成を適宜採用して実施する場合であってもよい。 (4) The configuration exemplified as the above-described embodiment is an example of the configuration of the present invention, can be combined with another known technique, and a part thereof is not deviated from the gist of the present invention. It is also possible to change the configuration by omitting it. Further, in the above-described embodiment, the configuration described in the other embodiments may be appropriately adopted and implemented.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 2 試料、5 走査機構、6 Zスキャナ、7 XYスキャナ、8 テーブル、10,10A~10F 信号検出装置、11 カンチレバー、12 探針、14 レーザ光源、15 変位検出器、20,20D~20F,50 ロックインアンプ、21,21A,51,65 乗算器、24 位相シフタ、25,41,43,75 発振器、27 ベクトル演算回路、31,32 加減算器、33,57 加算器、34,55 PI制御器、110 コンピュータ、120 フィードバック回路、132 Zドライバ、134 XYドライバ、202A,202B,202C 生成部、204A,204B,204C 振幅検出部、206A,206B,206C 算出部、208A,208B,208C 像生成部、210B 設定部、212C 変調成分検出部、214C 調整部。 2 sample, 5 scanning mechanism, 6 Z scanner, 7 XY scanner, 8 table, 10, 10A to 10F signal detector, 11 cantilever, 12 probe, 14 laser light source, 15 displacement detector, 20, 20D to 20F, 50 Lock-in amplifier, 21,21A, 51,65 multiplier, 24 phase shifter, 25,41,43,75 oscillator, 27 vector arithmetic circuit, 31,32 adder / subtractor, 33,57 adder, 34,55 PI controller , 110 computer, 120 feedback circuit, 132 Z driver, 134 XY driver, 202A, 202B, 202C generator, 204A, 204B, 204C amplitude detector, 206A, 206B, 206C calculation unit, 208A, 208B, 208C image generator, 210B setting unit, 212C modulation component detection unit, 214C adjustment unit.

Claims (8)

  1.  振動体の共振周波数の近傍に設定された参照周波数を有する参照信号を生成する生成部と、
     前記振動体の変位信号と前記生成部により生成された参照信号とに基づいて、前記参照周波数を含む所定範囲内における前記振動体の熱振動振幅を検出する振幅検出部と、
     検出された前記熱振動振幅に基づいて、前記振動体の共振周波数を算出する算出部とを備える、計測装置。
    A generator that generates a reference signal having a reference frequency set near the resonance frequency of the vibrating body,
    An amplitude detection unit that detects the thermal vibration amplitude of the vibrating body within a predetermined range including the reference frequency based on the displacement signal of the vibrating body and the reference signal generated by the generating unit.
    A measuring device including a calculation unit that calculates a resonance frequency of the vibrating body based on the detected thermal vibration amplitude.
  2.  前記生成部は、前記共振周波数の近傍に設定された第1参照周波数を有する第1参照信号と、前記共振周波数の近傍に設定された第2参照周波数を有する第2参照信号とを生成し、
     前記振幅検出部は、前記振動体の変位信号と前記第1参照信号とに基づいて、前記第1参照周波数を含む前記所定範囲内における前記振動体の第1熱振動振幅を検出し、前記振動体の変位信号と前記第2参照信号とに基づいて、前記第2参照周波数を含む前記所定範囲内における前記振動体の第2熱振動振幅を検出し、
     前記第1参照周波数および前記第2参照周波数の差分を固定した状態で、前記第1熱振動振幅と前記第2熱振動振幅とが一致するように前記第1参照周波数および前記第2参照周波数を設定する設定部をさらに備え、
     前記算出部は、設定された前記第1参照信号の周波数および前記第2参照信号の周波数に基づいて、前記振動体の共振周波数を算出する、請求項1に記載の計測装置。
    The generation unit generates a first reference signal having a first reference frequency set in the vicinity of the resonance frequency and a second reference signal having a second reference frequency set in the vicinity of the resonance frequency.
    The amplitude detection unit detects the first thermal vibration amplitude of the vibrating body within the predetermined range including the first reference frequency based on the displacement signal of the vibrating body and the first reference signal, and detects the vibration. Based on the body displacement signal and the second reference signal, the second thermal vibration amplitude of the vibrating body within the predetermined range including the second reference frequency is detected.
    With the difference between the first reference frequency and the second reference frequency fixed, the first reference frequency and the second reference frequency are set so that the first thermal vibration amplitude and the second thermal vibration amplitude match. It also has a setting unit to set
    The measuring device according to claim 1, wherein the calculation unit calculates the resonance frequency of the vibrating body based on the set frequency of the first reference signal and the frequency of the second reference signal.
  3.  前記生成部は、前記振動体の共振周波数の近傍において、前記参照信号の参照周波数を所定周波数で変調し、
     前記参照信号の参照周波数が前記所定周波数で変調されている場合に、前記熱振動振幅の変調成分を検出する変調検出部と、
     前記熱振動振幅の変調成分がゼロとなるように、変調されている前記参照信号の中心周波数を調整する調整部とをさらに備え、
     前記算出部は、当該調整された中心周波数を前記振動体の共振周波数として算出する、請求項1に記載の計測装置。
    The generator modulates the reference frequency of the reference signal with a predetermined frequency in the vicinity of the resonance frequency of the vibrating body.
    A modulation detection unit that detects a modulation component of the thermal vibration amplitude when the reference frequency of the reference signal is modulated at the predetermined frequency.
    Further provided with an adjusting unit for adjusting the center frequency of the reference signal being modulated so that the modulation component of the thermal vibration amplitude becomes zero.
    The measuring device according to claim 1, wherein the calculation unit calculates the adjusted center frequency as a resonance frequency of the vibrating body.
  4.  前記参照信号の参照周波数が前記所定周波数で変調されている場合に、前記熱振動振幅の時間平均振幅を検出する第1検出部をさらに備え、
     前記算出部は、前記時間平均振幅に基づいて、前記振動体のQ値を算出する、請求項3に記載の計測装置。
    Further, a first detection unit for detecting the time average amplitude of the thermal vibration amplitude when the reference frequency of the reference signal is modulated at the predetermined frequency is provided.
    The measuring device according to claim 3, wherein the calculation unit calculates a Q value of the vibrating body based on the time average amplitude.
  5.  前記参照信号の参照周波数が前記所定周波数で変調されている場合に、前記熱振動振幅における、前記所定周波数の2倍の周波数成分を検出する第2検出部をさらに備え、
     前記算出部は、前記熱振動振幅における前記2倍の周波数成分に基づいて、前記振動体のQ値を算出する、請求項3に記載の計測装置。
    Further, a second detection unit for detecting a frequency component twice the predetermined frequency in the thermal vibration amplitude when the reference frequency of the reference signal is modulated at the predetermined frequency is provided.
    The measuring device according to claim 3, wherein the calculation unit calculates the Q value of the vibrating body based on the frequency component twice the thermal vibration amplitude.
  6.  前記調整部により調整された中心周波数を参照周波数とする他の参照信号を生成する信号生成部と、
     前記振動体の変位信号と前記信号生成部により生成された他の参照信号とに基づいて、前記他の参照信号の参照周波数を含む前記所定範囲内における前記熱振動振幅を検出する第3検出部とをさらに備え、
     前記算出部は、前記他の参照信号の参照周波数を含む前記所定範囲内における前記熱振動振幅に基づいて、前記振動体のQ値を算出する、請求項3に記載の計測装置。
    A signal generation unit that generates another reference signal whose reference frequency is the center frequency adjusted by the adjustment unit, and
    A third detection unit that detects the thermal vibration amplitude within the predetermined range including the reference frequency of the other reference signal based on the displacement signal of the vibrating body and another reference signal generated by the signal generation unit. And with more
    The measuring device according to claim 3, wherein the calculation unit calculates a Q value of the vibrating body based on the thermal vibration amplitude within the predetermined range including the reference frequency of the other reference signal.
  7.  請求項1~6のいずれか1項に記載の計測装置を備え、
     前記振動体はカンチレバーであり、
     前記カンチレバーの先端に設けられた探針を試料と相対的に走査させることによって、前記計測装置で算出された前記カンチレバーの共振周波数に関する像を生成する像生成部をさらに備える、原子間力顕微鏡。
    The measuring device according to any one of claims 1 to 6 is provided.
    The vibrating body is a cantilever,
    An atomic force microscope further comprising an image generation unit that generates an image relating to the resonance frequency of the cantilever calculated by the measuring device by scanning a probe provided at the tip of the cantilever relative to a sample.
  8.  振動体の共振周波数の近傍に設定された参照周波数を有する参照信号を生成するステップと、
     前記振動体の変位信号と前記生成された参照信号とに基づいて、前記参照周波数を含む所定範囲内における前記振動体の熱振動振幅を検出するステップと、
     検出された前記熱振動振幅に基づいて、前記振動体の共振周波数を算出するステップとを含む、計測方法。
    A step of generating a reference signal having a reference frequency set near the resonance frequency of the vibrating body, and
    A step of detecting the thermal vibration amplitude of the vibrating body within a predetermined range including the reference frequency based on the displacement signal of the vibrating body and the generated reference signal.
    A measurement method including a step of calculating a resonance frequency of the vibrating body based on the detected thermal vibration amplitude.
PCT/JP2020/027391 2019-07-30 2020-07-14 Measuring device, atomic force microscope, and measurement method WO2021020111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021536907A JPWO2021020111A1 (en) 2019-07-30 2020-07-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-139696 2019-07-30
JP2019139696 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020111A1 true WO2021020111A1 (en) 2021-02-04

Family

ID=74228291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027391 WO2021020111A1 (en) 2019-07-30 2020-07-14 Measuring device, atomic force microscope, and measurement method

Country Status (2)

Country Link
JP (1) JPWO2021020111A1 (en)
WO (1) WO2021020111A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073068A1 (en) * 2005-01-06 2006-07-13 National University Corporation Hokkaido University Surface position measuring method and surface position measuring device
JP2018165690A (en) * 2017-03-28 2018-10-25 株式会社日立ハイテクサイエンス Scanning type probe microscope and scanning method for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073068A1 (en) * 2005-01-06 2006-07-13 National University Corporation Hokkaido University Surface position measuring method and surface position measuring device
JP2018165690A (en) * 2017-03-28 2018-10-25 株式会社日立ハイテクサイエンス Scanning type probe microscope and scanning method for the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI YAO; KEI KOBAYASHI; KUNIKO KIMURA; SHUNTA NOSAKA; HIROFUMI YAMADA: "Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 10 September 2016 (2016-09-10), 201 Olin Library Cornell University Ithaca, NY 14853, XP080725651, DOI: 10.1038/srep42718 *
LEE HAW-LONG; FANG TE-HUA; CHANG WIN-JIN: "Effect of thermal vibrations on the resonant frequency of cantilever for scanning thermal microscopy nanomachining", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 105, no. 1, 8 January 2009 (2009-01-08), US, pages 013520 - 013520-3, XP012119407, ISSN: 0021-8979, DOI: 10.1063/1.3031761 *

Also Published As

Publication number Publication date
JPWO2021020111A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP4873460B2 (en) Probe position controller
US6073485A (en) Scanning microscope for image topography and surface potential
US7843627B2 (en) Coherent demodulation with reduced latency adapted for use in scanning probe microscopes
US8387159B2 (en) Scanning type probe microscope
EP0890820A1 (en) Scanning probe microscope
US6845655B2 (en) Heterodyne feedback system for scanning force microscopy and the like
JP4496350B2 (en) Atomic force microscope
US8680467B2 (en) High frequency deflection measurement of IR absorption with a modulated IR source
WO2019079822A1 (en) Closed-loop frequency tracking and excitation for photo-induced force microscopy and related techniques
JP2008232984A (en) Phase feedback afm and control method therefor
RU2456622C1 (en) Dynamic mode atomic force microscopy device
WO2021020111A1 (en) Measuring device, atomic force microscope, and measurement method
US10054611B2 (en) Method of controlling frequency modulated-atomic force microscope
JP2000346784A (en) Viscoelasticity distribution measurement method
US6587212B1 (en) Method and apparatus for studying vibrational modes of an electro-acoustic device
US6305226B1 (en) Method and apparatus for imaging acoustic fields in high-frequency acoustic resonators
US11656244B2 (en) Compensating control signal for raster scan of a scanning probe microscope
Chao et al. Scanning homodyne interferometer for characterization of piezoelectric films and microelectromechanical systems devices
WO2008029561A1 (en) Scan type probe microscope and active damping drive control device
JP3935350B2 (en) Distance control method and scanning probe microscope using the same
JP5311405B2 (en) Vibration body frequency detection apparatus, atomic force microscope, vibration body frequency detection method and program
JP2003185555A (en) Frequency detecting method and scanning probe microscope using the same
JP3484429B2 (en) Force microscope
RU2428700C2 (en) Control unit for scanning probe microscopes
WO2014162858A1 (en) Scanning probe microscope and scanning probe microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847001

Country of ref document: EP

Kind code of ref document: A1