WO2021020072A1 - Sensor element manufacturing method, sensor element, sensor element holder, and fluorescent sensor system - Google Patents

Sensor element manufacturing method, sensor element, sensor element holder, and fluorescent sensor system Download PDF

Info

Publication number
WO2021020072A1
WO2021020072A1 PCT/JP2020/027002 JP2020027002W WO2021020072A1 WO 2021020072 A1 WO2021020072 A1 WO 2021020072A1 JP 2020027002 W JP2020027002 W JP 2020027002W WO 2021020072 A1 WO2021020072 A1 WO 2021020072A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor element
fiber sheet
light
fluorescent
manufacturing
Prior art date
Application number
PCT/JP2020/027002
Other languages
French (fr)
Japanese (ja)
Inventor
周太郎 石川
優 祝迫
Original Assignee
エイブル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイブル株式会社 filed Critical エイブル株式会社
Priority to JP2021536887A priority Critical patent/JP7508122B2/en
Publication of WO2021020072A1 publication Critical patent/WO2021020072A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to a method for manufacturing a sensor element, a sensor element, a sensor element holder, and a fluorescent sensor system.
  • Patent Document 1 discloses a prior art relating to the fluorescent sensor.
  • a fluorescent sensor generally has a configuration in which a fluorescent layer containing a fluorescent substance is formed on a light-transmitting base material (smooth sheet-like or plate-like member). Considering that the fluorescent layer is irradiated with the excitation light while the fluorescent layer is in contact with the measurement target, it is efficient to irradiate the excitation light from the side opposite to the surface where the fluorescent layer is in contact with the measurement target. Therefore, a fluorescent layer is formed on a light-transmitting substrate. It is said that the fluorescent layer formed on the light-transmitting substrate should be uniformly formed with a predetermined thickness.
  • the excitation light is irradiated from the back surface side of the contact surface with the measurement target as described above, if the fluorescent layer is too thick, the contact surface with the measurement target cannot be sufficiently irradiated with the excitation light. Further, in order to obtain the required fluorescence, a fluorescence layer having a certain thickness is required. Therefore, the thickness of the fluorescent layer needs to be formed within a predetermined range (several ⁇ m to several tens of ⁇ m), and it is desired that the fluorescent layer is formed with a uniform thickness. As described above, it has been difficult to easily and inexpensively form a fluorescent layer having a thickness within a predetermined range (several ⁇ m to several tens of ⁇ m) and a uniform film thickness.
  • the present invention provides an unprecedented configuration as a configuration in which a fluorescent substance is supported on a light-transmitting base material in a fluorescent sensor, and manufactures a new sensor element by this configuration.
  • the purpose is to provide a method.
  • (Structure 1) A method for manufacturing a sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of a measurement object, and is a step of preparing a fiber sheet made of a light-transmitting fibrous material.
  • a method for manufacturing a sensor element comprising a step of applying a solution in which a fluorescent substance is dispersed to the fiber sheet and a step of immobilizing the fluorescent substance on the fiber sheet.
  • a sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of a measurement object, and is supported on a fiber sheet made of a light-transmitting fibrous material and the fiber sheet.
  • a sensor element having a fluorescent substance.
  • the fluorescent substance is a substance that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of oxygen, carbon dioxide, or hydrogen ions in the measurement object, according to the constitution 7 or 8.
  • a sensor element holder including the sensor element according to any one of configurations 7 to 9 and a light-transmitting base material to which the sensor element is attached.
  • a fluorescent substance is supported on a fiber sheet made of a light-transmitting fibrous material, so that the manufacturing can be performed easily and at low cost. Can be done.
  • Schematic diagram showing the sensor element holder of the embodiment according to the present invention A flowchart showing an outline of a manufacturing process of the sensor element holder of the first embodiment. The figure explaining a part of the manufacturing process of the sensor element holder of Embodiment 1.
  • Flow chart showing the outline of the manufacturing process of the sensor element holder of the second embodiment The figure explaining a part of the manufacturing process of the sensor element holder of Embodiment 2.
  • FIG. 1 is a schematic cross-sectional view showing a sensor element holder according to the first embodiment of the present invention.
  • the sensor element holder 1 is a sensor element 11 in which a fluorescent substance is supported on a fiber sheet made of a light-transmitting fibrous material, and is fixed to a sensor plate 15 by an adhesive material 14. It is provided with a covering portion 13 that covers the peripheral portion of the sensor element, and a membrane 16 that covers a surface (hereinafter referred to as “reaction surface”) that comes into contact with a measurement object of the sensor element.
  • a resin coat film 12 is formed on the surface of the sensor element 11 opposite to the reaction surface (hereinafter, referred to as “back surface side”). All of the resin coat film 12, the adhesive 14, and the sensor plate 15 are light-transmitting (at least transparent to excitation light and fluorescence).
  • the sensor element 11 in the present embodiment is a glass fiber sheet (thickness 0.2 mm), which is a woven fabric of glass fibers, on which a fluorescent substance is supported.
  • a glass fiber sheet applicable to the present invention for example, a glass fiber sheet having a thickness of 0.3 mm or less, preferably 0.25 mm or less can be used in consideration of light transmission and flexibility. Further, in consideration of the strength, those having a thickness of 0.01 mm or more, preferably 0.05 mm or more can be used. That is, in the present invention, the glass fiber sheet can be selected according to the purpose, and for example, it can be selected from those having a thickness of 0.05 mm or more and 0.25 mm or less.
  • the fluorescent substance may be a substance or the like that receives predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component (oxygen, carbon dioxide, hydrogen ion, etc.) in the object to be measured. ..
  • the sensor element 11 is "a sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of the measurement object".
  • the fluorescent substance include platinum polyferrin and HPTS.
  • the resin coat film 12 formed on the back surface side of the sensor element 11 is a light-transmitting coating film, which improves the strength of the sensor element 11.
  • the resin coat film 12 is preferably made of a kind of material according to a purpose such as cell culture. Further, the resin coat film 12 is preferably configured to be thinner than the thickness of the glass fiber sheet, but is not limited to this.
  • the sensor plate 15 is a light-transmitting base material that holds the sensor element 11, and the sensor plate 15 of the present embodiment is made of a polycarbonate plate material.
  • the sensor element holder 1 can be used by attaching a plate-shaped sensor plate 15 to a container or the like, and the sensor plate 15 itself can be used as a container (as the bottom surface or the side surface of the container). Is.
  • the covering portion 13 covers the peripheral edge portion of the sensor element 11 to prevent the sensor element 11 which is a fiber sheet from fraying from the peripheral edge portion.
  • it is composed of a washer made of polycarbonate (hereinafter referred to as "poly washer").
  • the poly washer is a frame-shaped member that fits into the peripheral edge of the sensor element 11, and as shown in FIG.
  • the back surface side has an outer flange portion 133 having an outer circumference larger than that of the sensor element. Further, it has a side surface portion 132 that connects the inner flange portion 131 and the outer flange portion 133.
  • FIG. 2 is a flowchart showing an outline of the manufacturing process of the sensor element holder 1.
  • a method of manufacturing the sensor element holder 1 will be described with reference to FIG.
  • a glass fiber sheet (a fiber sheet made of a light-transmitting fibrous material) is prepared and cut into a predetermined size (step 201).
  • the glass fiber sheet is heat-cleaned (step 202).
  • the treatment removes deposits from the glass fiber sheet by heating the glass fiber sheet.
  • the deposits include binders used in the production of glass fiber sheets.
  • the adhesion of the fluorescent layer layer containing the fluorescent substance
  • the light transmittance is improved and the accuracy of the sensor element is improved.
  • fluorescent solution a solution in which a fluorescent substance is dispersed
  • fluorescent solution a solution in which a fluorescent substance is dispersed
  • the glass fiber sheet is dropped and applied to the heat-cleaned glass fiber sheet. It is advisable to place the glass fiber sheet on the plate and drop a fluorescent solution to the extent that the glass fiber sheet is immersed. By adopting such a coating method, the fluorescent solution can be used extremely efficiently.
  • the excess fluorescent solution adhering to the glass fiber sheet is removed (step 204). Examples of the method for removing the excess fluorescent solution include a method of removing by blowing off with centrifugal force or air, a method of scraping with a squeegee, and a method of wiping with a waste cloth.
  • the glass fiber sheet can hold a necessary and sufficient amount of the fluorescent solution. For example, when the excess fluorescent solution is blown off, the centrifugal force, wind power, and processing time are adjusted, when scraping, the squeegee is selected, and when wiping off, the waste cloth is selected and the pressing time is controlled.
  • the process termination conditions can be set appropriately.
  • This step can be performed until the fluorescent solution held on the glass fiber sheet does not adhere to other members (for example, a waste cloth, a mounting table, or a holding member). After removing the excess fluorescent solution, the fluorescent layer is immobilized on the glass fiber sheet by sintering treatment (step 205).
  • the conditions for the sintering treatment can be appropriately set according to the type of the fluorescent solution and the glass fiber sheet, and the specific conditions can be obtained experimentally. It should be noted that this step can also be performed after the step of cutting out the sensor element from the sheet material S (after punching the glass fiber sheet into individual sensor elements), which will be described later.
  • the sensor element 11 (more accurately, a sheet material for cutting to form the sensor element 11) is formed.
  • the sensor element 11 is manufactured based on the fiber sheet.
  • the fiber sheet has a large surface area, and also has fine irregularities on the surface and voids. Further, it can be said that only concave or convex is hardly locally gathered, and the concave and convex have a shape in which they are dispersed on average.
  • the unevenness is determined by the thickness and density of the fibers constituting the fiber sheet, the composition method (woven fabric or non-woven fabric), etc., and the unevenness on the surface of the glass fiber sheet used in the present embodiment (high and low unevenness).
  • the difference can be evaluated to be about several ⁇ m to several tens of ⁇ m.
  • the fluorescent solution applied to the surface of such a fiber sheet and from which excess is removed is formed as a film corresponding to the above-mentioned uneven shape. That is, the film thickness fluctuates in the range of several ⁇ m to several tens of ⁇ m, and the fluctuation becomes a film that is dispersed on average, and the fluorescent layer formed by immobilizing the film thickness also has the same configuration. Become a layer. When viewed macroscopically, it can be considered that a plurality of fluorescent layers having a film thickness of several ⁇ m to several tens of ⁇ m are formed.
  • the sensor element 11 when focusing on 20 ⁇ m, a fluorescent body having a film thickness of 20 ⁇ m is dispersed and formed in the sensor element 11, and the entire dispersed fluorescent material can function as a “20 ⁇ m fluorescent layer”.
  • the sensor element 11 has a desired film thickness by the above-mentioned very easy and low-cost manufacturing method by having the structure in which the fluorescent substance is supported on the fiber sheet.
  • a fluorescent layer (which can be regarded as) can be formed on a light-transmitting substrate. Further, since the fiber sheet has fine irregularities and voids on the surface, it is also excellent in that the adhesion of the fluorescent layer is improved.
  • step 206 following the sintering process of step 205, one surface of the sensor element 11 is resin-coated, and the sheet material on which the resin-coated film is formed is cut to obtain the sensor element 11 having the resin-coated film 12. It is formed (step 207).
  • FIG. 3A is an explanatory diagram of the resin coating treatment.
  • the resin liquid R is applied on a release base material (for example, film F), and the sheet material S obtained in the steps 201 to 205 is placed on the resin liquid R.
  • the sheet material S on which the resin coat film is formed is peeled off from the film F.
  • the release base material it is preferable to select a material from which the cured resin liquid R can be easily peeled off.
  • the material of the release base material for example, silicon resin or fluororesin (PTFE, FEP, PFA, ETFE, etc.) can be used.
  • the release base material may also be in the form of a film or a substrate.
  • FIG. 3B is an explanatory diagram showing a step of cutting out the sensor element 11 from the sheet material S on which the resin coat film is formed.
  • the main material of the sheet material S is a 0.2 mm glass fiber sheet, which can be easily cut out by punching or the like.
  • the sensor element 11 After cutting out the sensor element 11, the sensor element 11 is adhered to the sensor plate 15 with an adhesive 14 (step 208), the polywasher to be the covering portion 13 is fitted over the membrane 16, and the polywasher is attached to the sensor plate 15. Weld to (step 209). As shown in FIG. 3C, the polywasher is welded to the sensor plate 15 by spot welding at several places and then circularly welding the outer circumference as a whole.
  • the membrane 16 covers the reaction surface of the sensor element 11 to prevent foreign matter (dust, etc.) from adhering to the reaction surface and suppress the influence of disturbance (functions as a "blackout curtain"), but it is not always the case. Not required.
  • the membrane 16 needs to permeate the object to be measured (for example, a culture solution), and it is preferable to appropriately select a membrane 16 having a structure (pore size, mesh size, etc.) that optimizes the permeation amount of the object to be measured.
  • the material of the membrane 16 is preferably compatible with high-pressure steam sterilization, EOG gas sterilization, and ⁇ -ray sterilization, and PVDF can be exemplified.
  • FIG. 4 is a block diagram showing an outline of the configuration of the fluorescent sensor system 100 using the sensor element holder 1.
  • the fluorescence sensor system 100 controls the light emission of the irradiation unit 2 that irradiates the excitation light from the back surface side of the sensor element holder 1, the light receiving unit 3 that receives the fluorescence generated by receiving the excitation light, and the irradiation unit 2.
  • the fluorescent sensor system 100 includes a unit 6 and an output unit 7 which is a display device for displaying the detection result or a transmission unit for transmitting the detection result to an external device.
  • a configuration suitable for the object to be measured is selected.
  • the fluorescence sensor system 100 measures the fluorescence disappearance time and calculates the concentration of the measurement target component from the value. It can be a system to do.
  • the fluorescence sensor system 100 measures the fluorescence property and values the value.
  • the irradiation unit 2 may be configured to irradiate a single wavelength excitation light, or may be configured to irradiate a plurality of excitation lights having different wavelengths.
  • the fluorescent sensor system 100 shown in FIG. 4 is exemplified as a system having a configuration for measuring the pH (hydrogen ion concentration) of a measurement object (for example, a culture solution).
  • the irradiation unit 2 has a light emitting element 21 that emits light of 405 nm and a light emitting element 22 that emits light of 460 nm, and the light receiving unit 3 is derived from a light receiving element having broad light receiving sensitivity (light receiving sensitivity of 405 nm and 460 nm).
  • the control / calculation unit 6 and the light emitting driver 4 alternately cause the light emitting element 21 and the light emitting element 22 to emit light, and the light receiving unit 3 receives the fluorescence obtained from the sensor element 11.
  • the fluorescent substance contained in the sensor element 11 receives fluorescence for 405 nm light and 460 nm light, respectively, because the fluorescence intensity ratio to 405 nm light and 460 nm light changes according to the hydrogen ion concentration.
  • the control / calculation unit 6 performs a process of calculating the pH value based on the pH value.
  • a fluorescent layer having a desired film thickness (which can be regarded as) is formed on a light-transmitting base material very easily and at low cost. be able to.
  • the resin coat film 12 is formed on the sensor element 11, the strength of the sensor element 11 is improved.
  • the fluorescent layer on the surface may be easily peeled off, but this is suppressed by improving the strength, and the durability of the sensor element is improved.
  • the peripheral edge portion of the sensor element 11 is covered with the covering portion 13, the sensor element 11 which is a fiber sheet is prevented from fraying from the peripheral edge portion, so that the durability as a sensor element is excellent.
  • the pH sensor has been described, but the present invention is not limited to this, and as described above, as a fluorescent substance, a substance that emits fluorescence corresponding to the concentration of oxygen, carbon dioxide, or the like. Etc. can be used to obtain sensors corresponding to each.
  • FIG. 5 is a flowchart showing an outline of the manufacturing process of the sensor element holder of the second embodiment
  • FIG. 6 is a diagram for explaining a part of the manufacturing process of the sensor element holder of the second embodiment
  • FIG. 7 is a diagram showing a part of the manufacturing process of the sensor element holder of the second embodiment. It is the schematic sectional drawing which shows the structure of the sensor element holding body of. For the same configuration as that of the first embodiment, the same reference numerals as those of the first embodiment are used, and the description here is omitted or simplified.
  • Steps 201 to 204 are the same as in the first embodiment. The same applies to the glass fiber sheet, fluorescent substance (solution), and the like used in these steps as in the first embodiment.
  • step 501 the sensor element 11'is cut out.
  • a glass fiber sheet coated with a fluorescent solution is punched into individual sensor element shapes (circular shape in this embodiment).
  • step 205 the cut-out sensor element 11'is sintered.
  • the sintering process itself is the same as in the first embodiment.
  • one surface of the sensor element 11' is coated with a resin, and the sensor element 11' is punched out together with the base material used for the resin coating (steps 502 and 503).
  • FIG. 6C is an explanatory diagram of the resin coating treatment.
  • the resin liquid R is applied on the base material BM, and the sensor element 11'obtained by the steps 201 to 205 is placed on the resin liquid R.
  • the base material BM may be any as long as it has light transmission to excitation light and fluorescence, and a polycarbonate plate is used here.
  • the sensor element 11' is punched out together with the base material BM to obtain a sensor element 11' having a resin coat film 12'and a base material 17 (FIG. 6 (d). )).
  • the sensor element 11 ′ When punching out the sensor element 11 ′ together with the base material BM, the sensor element 11 ′ is punched out in a circle having an outer diameter larger than that of the sensor element 11 ′.
  • FIG. 6D On the right side of FIG. 6D, a plan view and a cross-sectional view of the sensor element 11'obtained in the steps up to step 503 are shown.
  • the sensor element 11'of the present embodiment is formed with a resin coat film 12'on one surface and a side surface thereof, and further has a base material 17.
  • the resin coat film 12 ′ that also covers the side surface of the sensor element 11 ′ functions as a “covering portion that covers the peripheral edge portion of the sensor element”.
  • the sensor element holder 1'of the present embodiment can be obtained. Adhesion to the sensor plate 15 is performed by the double-sided tape 14'in this embodiment.
  • the double-sided tape 14' may have light transparency to excitation light and fluorescence.
  • FIG. 7 is a schematic cross-sectional view showing the structure of the sensor element holder 1'. Similar to the first embodiment, the element holder 1 ′ of the present embodiment exerts the same action and effect as the first embodiment by the sensor element 11 ′ having a structure in which the fluorescent substance is supported on the fiber sheet. Further, since the peripheral edge portion of the sensor element 11 is covered with the covering portion (resin coat film 12'), the sensor element 11 which is a fiber sheet is prevented from fraying from the peripheral edge portion, so that the sensor element 11 can be used as a sensor element. Has excellent durability.
  • the coating film formed on one surface of the sensor element 11'and the covering portion covering the peripheral edge of the sensor element 11' can be formed at the same time, so that the manufacturing cost can be reduced. Further, since the sensor element 11'is fixed to the base material 17, the strength of the sensor element is improved. When the sensor element is distorted or the like, the fluorescent layer on the surface may be easily peeled off, but this is suppressed by improving the strength, and the durability of the sensor element is improved.
  • the glass fiber sheet which is a woven fabric of glass fiber
  • the fibrous material may be any material having light transmittance to excitation light and fluorescence, and may be, for example, a resin fiber such as polycarbonate.
  • the method for forming the fiber sheet is not limited to the woven fabric, and may be a non-woven fabric or the like.
  • the sensor element is attached to the sensor plate (light-transmitting base material) as an example, but the sensor element is attached to the inner surface of the container for storing the liquid inside (the container is light-transmitting). It may be one that constitutes a base material).
  • the sensor element can be attached to the inner surface of the culture tank formed as a disposable plastic container (flexible bag or hard container).
  • the sensor element 11 and the sensor element 11' are very suitable because they can be manufactured at low cost and can be manufactured as an integral part of the disposable culture device.
  • a method of applying the fluorescent solution to the fiber sheet a method of dropping the fluorescent solution onto the fiber sheet placed on the plate is taken as an example, but the present invention is not limited to this, and the present invention is not limited to this.
  • the method of applying or applying the fluorescent solution of the above may be arbitrary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Provided is a method for manufacturing a sensor element that receives prescribed excitation light and emits fluorescence corresponding to the concentration of a desired component of an object to be measured, the method comprising: a step (S201) for preparing a fiber sheet constituted by a light-transmissive fibrous material; a step (S203) for imparting, to the fiber sheet, a solution in which a fluorescent substance is dispersed; and a step (S205) for fixing the fluorescent substance to the fiber sheet. Further provided is a sensor element that receives prescribed excitation light and emits fluorescence corresponding to the concentration of a desired component of an object to be measured, the sensor element comprising: a fiber sheet constituted by a light-transmissive fibrous material; and a fluorescent substance carried on the fiber sheet.

Description

センサ素子の製造方法、センサ素子、センサ素子保持体及び蛍光式センサシステムManufacturing method of sensor element, sensor element, sensor element holder and fluorescent sensor system
 本発明は、センサ素子の製造方法、センサ素子、センサ素子保持体及び蛍光式センサシステムに関する。 The present invention relates to a method for manufacturing a sensor element, a sensor element, a sensor element holder, and a fluorescent sensor system.
 物質に光を照射すると、光の吸収と発光が生じる。この発光現象の1つに蛍光があり、蛍光は物質の特性に応じて異なる。これを利用して目的物質の有無や濃度を検知する蛍光式センサが用いられている。
 当該蛍光式センサに関する従来技術が特許文献1によって開示されている。
When a substance is irradiated with light, it absorbs light and emits light. One of the luminescence phenomena is fluorescence, and the fluorescence differs depending on the characteristics of the substance. Fluorescent sensors that detect the presence or absence and concentration of the target substance using this are used.
Patent Document 1 discloses a prior art relating to the fluorescent sensor.
特開2019-20246号公報JP-A-2019-20246
 蛍光式のセンサは、一般的に蛍光物質が含まれている蛍光層が光透過性の基材(平滑なシート状又は板状の部材)上に形成された構成を有する。蛍光層を測定対象に接触させつつ蛍光層に励起光を照射することを考えると、蛍光層が測定対象と接触している面とは反対側から励起光を照射するのが効率的であり、そのために、光透過性の基材上に蛍光層を形成しているものである。
 光透過性の基材上に形成する蛍光層は、所定の厚さで均一に形成することが良いとされている。上記のごとく測定対象との接触面の裏面側から励起光を照射するものであるため、蛍光層が厚すぎると測定対象との接触面に十分な励起光を照射することができない。また、必要な蛍光を得るためには、ある程度の厚さの蛍光層が必要である。これらにより、蛍光層の厚さは、所定の範囲内の厚さ(数μ~数十μm)で形成する必要があり、均一な厚さで形成されることが望まれているものである。
 このように、所定の範囲内の厚さ(数μ~数十μm)で均一な膜厚の蛍光層を、容易且つ低コストで行うことは困難であった。
A fluorescent sensor generally has a configuration in which a fluorescent layer containing a fluorescent substance is formed on a light-transmitting base material (smooth sheet-like or plate-like member). Considering that the fluorescent layer is irradiated with the excitation light while the fluorescent layer is in contact with the measurement target, it is efficient to irradiate the excitation light from the side opposite to the surface where the fluorescent layer is in contact with the measurement target. Therefore, a fluorescent layer is formed on a light-transmitting substrate.
It is said that the fluorescent layer formed on the light-transmitting substrate should be uniformly formed with a predetermined thickness. Since the excitation light is irradiated from the back surface side of the contact surface with the measurement target as described above, if the fluorescent layer is too thick, the contact surface with the measurement target cannot be sufficiently irradiated with the excitation light. Further, in order to obtain the required fluorescence, a fluorescence layer having a certain thickness is required. Therefore, the thickness of the fluorescent layer needs to be formed within a predetermined range (several μm to several tens of μm), and it is desired that the fluorescent layer is formed with a uniform thickness.
As described above, it has been difficult to easily and inexpensively form a fluorescent layer having a thickness within a predetermined range (several μm to several tens of μm) and a uniform film thickness.
 本発明は、上記の点に鑑み、蛍光式のセンサにおいて、光透過性の基材に蛍光物質を担持させる構成として、従来にはない構成を提供し、また、これによる新たなセンサ素子の製造方法を提供することを目的とする。 In view of the above points, the present invention provides an unprecedented configuration as a configuration in which a fluorescent substance is supported on a light-transmitting base material in a fluorescent sensor, and manufactures a new sensor element by this configuration. The purpose is to provide a method.
(構成1)
 所定の励起光を受光して測定対象物の所望の成分の濃度に対応した蛍光を発するセンサ素子の製造方法であって、光透過性の繊維状材料によって構成された繊維シートを用意する工程と、前記繊維シートに、蛍光物質が分散した溶液を付与する工程と、前記蛍光物質を前記繊維シートに固定化する工程と、を含むセンサ素子の製造方法。
(Structure 1)
A method for manufacturing a sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of a measurement object, and is a step of preparing a fiber sheet made of a light-transmitting fibrous material. , A method for manufacturing a sensor element, comprising a step of applying a solution in which a fluorescent substance is dispersed to the fiber sheet and a step of immobilizing the fluorescent substance on the fiber sheet.
(構成2)
 前記蛍光物質を固定化する工程の前に、前記繊維シートから前記溶液の余剰分を除去する処理を行う、構成1に記載のセンサ素子の製造方法。
(Structure 2)
The method for manufacturing a sensor element according to configuration 1, wherein a process of removing a surplus of the solution from the fiber sheet is performed before the step of immobilizing the fluorescent substance.
(構成3)
 前記繊維シートに前記溶液を付与する工程の前に、前記繊維シートにヒートクリーニング処理を行う、構成1又は2に記載のセンサ素子の製造方法。
(Structure 3)
The method for manufacturing a sensor element according to configuration 1 or 2, wherein the fiber sheet is heat-cleaned before the step of applying the solution to the fiber sheet.
(構成4)
 前記蛍光物質を前記繊維シートに固定化した後に、前記繊維シートの一方の面に光透過性のコーティング膜を形成する工程をさらに含む、構成1から3の何れかに記載のセンサ素子の製造方法。
(Structure 4)
The method for manufacturing a sensor element according to any one of configurations 1 to 3, further comprising a step of forming a light-transmitting coating film on one surface of the fiber sheet after immobilizing the fluorescent substance on the fiber sheet. ..
(構成5)
 前記繊維シートは、前記繊維状材料の織物である、構成1から4の何れかに記載のセンサ素子の製造方法。
(Structure 5)
The method for manufacturing a sensor element according to any one of configurations 1 to 4, wherein the fiber sheet is a woven fabric of the fibrous material.
(構成6)
 前記繊維シートは、ガラス繊維シートである、構成1から5の何れかに記載のセンサ素子の製造方法。
(Structure 6)
The method for manufacturing a sensor element according to any one of configurations 1 to 5, wherein the fiber sheet is a glass fiber sheet.
(構成7)
 所定の励起光を受光して測定対象物の所望の成分の濃度に対応した蛍光を発するセンサ素子であって、光透過性の繊維状材料によって構成された繊維シートと、前記繊維シートに担持された蛍光物質と、を有するセンサ素子。
(Structure 7)
A sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of a measurement object, and is supported on a fiber sheet made of a light-transmitting fibrous material and the fiber sheet. A sensor element having a fluorescent substance.
(構成8)
 前記繊維シートにおける前記測定対象物と接触する面とは反対の面を覆う、光透過性のコーティング膜をさらに有する、構成7に記載のセンサ素子。
(Structure 8)
The sensor element according to configuration 7, further comprising a light-transmitting coating film covering a surface of the fiber sheet opposite to the surface in contact with the object to be measured.
(構成9)
 前記蛍光物質は、所定の励起光を受光して、前記測定対象物中の酸素、二酸化炭素、又は、水素イオンのいずれかの濃度に対応した蛍光を発光する物質である、構成7又は8に記載のセンサ素子。
(Structure 9)
The fluorescent substance is a substance that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of oxygen, carbon dioxide, or hydrogen ions in the measurement object, according to the constitution 7 or 8. The sensor element described.
(構成10)
 構成7から9のいずれかに記載のセンサ素子と、前記センサ素子が取り付けられる光透過性の基材と、を含むセンサ素子保持体。
(Structure 10)
A sensor element holder including the sensor element according to any one of configurations 7 to 9 and a light-transmitting base material to which the sensor element is attached.
(構成11)
 前記センサ素子の周縁部を覆う被覆部をさらに有する、構成10に記載のセンサ素子保持体。
(Structure 11)
The sensor element holder according to configuration 10, further comprising a covering portion that covers the peripheral edge portion of the sensor element.
(構成12)
 前記基材が、内部に液体を収納する容器を構成している、構成10又は11に記載のセンサ素子保持体。
(Structure 12)
The sensor element holder according to the configuration 10 or 11, wherein the base material constitutes a container for storing a liquid inside.
(構成13)
 構成10から12のいずれかに記載のセンサ素子保持体と、前記基材を通して、前記センサ素子に励起光を照射する照射部と、前記励起光を受けて発生した蛍光を、前記透明基板を通して受光する受光部と、を含む蛍光式センサシステム。
(Structure 13)
The sensor element holder according to any one of configurations 10 to 12, an irradiation unit that irradiates the sensor element with excitation light through the base material, and fluorescence generated by receiving the excitation light are received through the transparent substrate. A fluorescent sensor system that includes a light receiving unit.
 本発明のセンサ素子の製造方法によれば、光透過性の繊維状材料によって構成された繊維シートに蛍光物質が担持されるという従来にはない構成により、その製造を容易且つ低コストで行うことができる。 According to the method for manufacturing a sensor element of the present invention, a fluorescent substance is supported on a fiber sheet made of a light-transmitting fibrous material, so that the manufacturing can be performed easily and at low cost. Can be done.
本発明に係る実施形態のセンサ素子保持体を示す概略図Schematic diagram showing the sensor element holder of the embodiment according to the present invention. 実施形態1のセンサ素子保持体の製造工程の概略を示すフローチャートA flowchart showing an outline of a manufacturing process of the sensor element holder of the first embodiment. 実施形態1のセンサ素子保持体の製造工程の一部を説明する図The figure explaining a part of the manufacturing process of the sensor element holder of Embodiment 1. 実施形態1のセンサ素子を使用した蛍光式センサシステムの構成の概略を示すブロック図A block diagram showing an outline of the configuration of a fluorescent sensor system using the sensor element of the first embodiment. 実施形態2のセンサ素子保持体の製造工程の概略を示すフローチャートFlow chart showing the outline of the manufacturing process of the sensor element holder of the second embodiment 実施形態2のセンサ素子保持体の製造工程の一部を説明する図The figure explaining a part of the manufacturing process of the sensor element holder of Embodiment 2. 実施形態2のセンサ素子保持体を示す概略図Schematic diagram showing the sensor element holder of the second embodiment
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. The following embodiment is an embodiment of the present invention, and does not limit the present invention to the scope thereof.
<実施形態1>
 図1は、本発明に係る実施形態1のセンサ素子保持体を示す概略断面図である。
 センサ素子保持体1は、光透過性の繊維状材料によって構成された繊維シートに蛍光物質が担持されているセンサ素子11が、センサプレート15に接着材14によって固定されたものであり、センサ素子の周縁部を覆う被覆部13、センサ素子の測定対象物と接触する面(以下「反応面」という)を覆うメンブレン16を備えている。
 センサ素子11の、反応面の反対側(以下、「裏面側」という)の面には、レジンコート膜12が形成されている。レジンコート膜12、接着材14及びセンサプレート15の何れもが光透過性(少なくとも励起光及び蛍光に対する透過性を有するもの)である。
<Embodiment 1>
FIG. 1 is a schematic cross-sectional view showing a sensor element holder according to the first embodiment of the present invention.
The sensor element holder 1 is a sensor element 11 in which a fluorescent substance is supported on a fiber sheet made of a light-transmitting fibrous material, and is fixed to a sensor plate 15 by an adhesive material 14. It is provided with a covering portion 13 that covers the peripheral portion of the sensor element, and a membrane 16 that covers a surface (hereinafter referred to as “reaction surface”) that comes into contact with a measurement object of the sensor element.
A resin coat film 12 is formed on the surface of the sensor element 11 opposite to the reaction surface (hereinafter, referred to as “back surface side”). All of the resin coat film 12, the adhesive 14, and the sensor plate 15 are light-transmitting (at least transparent to excitation light and fluorescence).
 本実施形態におけるセンサ素子11は、ガラス繊維の織物であるガラス繊維シート(厚さ0.2mm)に、蛍光物質が担持されたものである。なお、本発明に適用可能なガラス繊維シートとしては、光の透過性や柔軟性などを考慮して、例えば0.3mm以下、好ましくは0.25mm以下のものを利用することができる。また、強度面を考慮して、0.01mm以上、好ましくは0.05mm以上のものを利用することができる。すなわち、本発明では、ガラス繊維シートを目的に応じて選択することが可能であるが、例えば、厚みが0.05mm以上0.25mm以下のものから選定することができる。0.1mm以上0.20mm以下の範囲であることがより好ましい。
 なお、蛍光物質は、所定の励起光を受光して、測定対象物中の所望の成分(酸素、二酸化炭素、又は、水素イオン等)の濃度に対応した蛍光を発光する物質等であればよい。これにより、センサ素子11は、「所定の励起光を受光して測定対象物の所望の成分の濃度に対応した蛍光を発するセンサ素子」である。蛍光物質としては、白金ポリフェリンやHPTSなどを例示することができる。 
 センサ素子11の裏面側に形成されるレジンコート膜12は、光透過性のコーティング膜であり、センサ素子11の強度を向上するものである。なお、レジンコート膜12は、細胞培養などの目的に応じた種類の材料で構成されていることが好ましい。また、レジンコート膜12は、ガラス繊維シートの厚みよりも薄くなるように構成することが好ましいがこれに限られるものではない。
The sensor element 11 in the present embodiment is a glass fiber sheet (thickness 0.2 mm), which is a woven fabric of glass fibers, on which a fluorescent substance is supported. As the glass fiber sheet applicable to the present invention, for example, a glass fiber sheet having a thickness of 0.3 mm or less, preferably 0.25 mm or less can be used in consideration of light transmission and flexibility. Further, in consideration of the strength, those having a thickness of 0.01 mm or more, preferably 0.05 mm or more can be used. That is, in the present invention, the glass fiber sheet can be selected according to the purpose, and for example, it can be selected from those having a thickness of 0.05 mm or more and 0.25 mm or less. It is more preferably in the range of 0.1 mm or more and 0.20 mm or less.
The fluorescent substance may be a substance or the like that receives predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component (oxygen, carbon dioxide, hydrogen ion, etc.) in the object to be measured. .. As a result, the sensor element 11 is "a sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of the measurement object". Examples of the fluorescent substance include platinum polyferrin and HPTS.
The resin coat film 12 formed on the back surface side of the sensor element 11 is a light-transmitting coating film, which improves the strength of the sensor element 11. The resin coat film 12 is preferably made of a kind of material according to a purpose such as cell culture. Further, the resin coat film 12 is preferably configured to be thinner than the thickness of the glass fiber sheet, but is not limited to this.
 センサプレート15は、センサ素子11を保持する光透過性の基材であり、本実施形態のセンサプレート15はポリカーボネートの板材で形成されたものである。なお、センサ素子保持体1は、板状のセンサプレート15を容器などに貼り付けて利用することも可能であり、センサプレート15そのものを容器として(容器の底面や側面として)利用することも可能である。
 被覆部13は、センサ素子11の周縁部を覆うことによって、繊維シートであるセンサ素子11が周縁部からほつれることを防止するものである。本実施形態では、ポリカーボネートで形成されたワッシャー(以下「ポリワッシャー」という)によって構成される。ポリワッシャーはセンサ素子11の周縁部に嵌る額縁状の部材であり、図1に示されるように、センサ素子11の反応面側ではセンサ素子より小さい内周を有する内側フランジ部131を有し、裏面側ではセンサ素子より大きい外周を有する外側フランジ部133を有する。また、内側フランジ部131と外側フランジ部133をつなぐ側面部132を有している。
The sensor plate 15 is a light-transmitting base material that holds the sensor element 11, and the sensor plate 15 of the present embodiment is made of a polycarbonate plate material. The sensor element holder 1 can be used by attaching a plate-shaped sensor plate 15 to a container or the like, and the sensor plate 15 itself can be used as a container (as the bottom surface or the side surface of the container). Is.
The covering portion 13 covers the peripheral edge portion of the sensor element 11 to prevent the sensor element 11 which is a fiber sheet from fraying from the peripheral edge portion. In the present embodiment, it is composed of a washer made of polycarbonate (hereinafter referred to as "poly washer"). The poly washer is a frame-shaped member that fits into the peripheral edge of the sensor element 11, and as shown in FIG. 1, has an inner flange portion 131 having an inner circumference smaller than that of the sensor element on the reaction surface side of the sensor element 11. The back surface side has an outer flange portion 133 having an outer circumference larger than that of the sensor element. Further, it has a side surface portion 132 that connects the inner flange portion 131 and the outer flange portion 133.
 図2は、センサ素子保持体1の製造工程の概略を示すフローチャートである。図2を参照しつつ、センサ素子保持体1の製造方法について説明する。
 先ず、ガラス繊維シート(光透過性の繊維状材料によって構成された繊維シート)を用意し、これを所定のサイズにカットする(ステップ201)。
 次に、このガラス繊維シートに対するヒートクリーニング処理を行う(ステップ202)。当該処理は、ガラス繊維シートを加熱することによって、ガラス繊維シートから付着物を除去するものである。付着物としてはゴミ等の異物の他、ガラス繊維シートの製造に使用されているバインダーがある。これらの付着物を除去することによって、ガラス繊維シートに対する蛍光層(蛍光物質が含まれている層)の密着性を向上するものである。これにより、蛍光層がはがれることが低減され、センサ素子としての耐久性が向上するものである。また、付着物を除去することによって、光透過性を向上し、センサ素子としての精度を向上するものである。
FIG. 2 is a flowchart showing an outline of the manufacturing process of the sensor element holder 1. A method of manufacturing the sensor element holder 1 will be described with reference to FIG.
First, a glass fiber sheet (a fiber sheet made of a light-transmitting fibrous material) is prepared and cut into a predetermined size (step 201).
Next, the glass fiber sheet is heat-cleaned (step 202). The treatment removes deposits from the glass fiber sheet by heating the glass fiber sheet. In addition to foreign substances such as dust, the deposits include binders used in the production of glass fiber sheets. By removing these deposits, the adhesion of the fluorescent layer (layer containing the fluorescent substance) to the glass fiber sheet is improved. As a result, the peeling of the fluorescent layer is reduced, and the durability of the sensor element is improved. Further, by removing the deposits, the light transmittance is improved and the accuracy of the sensor element is improved.
 次に、ヒートクリーニングしたガラス繊維シートに、蛍光物質が分散した溶液(以下「蛍光溶液」という)を滴下、塗布する(ステップ203)。ガラス繊維シートをプレート上に載置し、ガラス繊維シートを浸漬する程度の蛍光溶液を滴下するとよい。このような塗布方法とすることにより、蛍光溶液を極めて効率的に使用することができる。
 蛍光溶液の滴下後、ガラス繊維シートに付着した余剰な蛍光溶液を除去する(ステップ204)。余剰な蛍光溶液を除去する方法としては、遠心力や空気によって吹き飛ばして除去する方法や、スキージを利用してかき取る方法や、ウエスを利用して拭い取る方法などを例示することができる。なお、本工程では、適切なプロセスを設定することで、ガラス繊維シートに、必要十分な量の蛍光溶液を保持させることが可能になる。例えば、余剰な蛍光溶液を吹き飛ばす場合には、遠心力や風力及び処理時間の調整により、かき取る場合にはスキージの選定により、拭い取る方法ではウエスの選定や押し当てる時間を管理することにより、プロセスの終了条件を適切に設定することができる。本工程は、ガラス繊維シートに保持された蛍光溶液が、他の部材(例えばウエスや載置テーブル、保持部材)に付着しなくなるまで行うことができる。
 余剰蛍光溶液を除去したら、焼結処理によって蛍光層をガラス繊維シートに固定化させる(ステップ205)。焼結処理の条件(焼結温度や時間)は、蛍光溶液の種類やガラス繊維シートにあわせて適宜設定することができ、具体的な条件は実験的に求めることができる。なお、本工程は、後述する、シート材Sからセンサ素子を切り出す工程の後に(ガラス繊維シートを個別のセンサ素子状に打ち抜いた後に)行うことも可能である。
Next, a solution in which a fluorescent substance is dispersed (hereinafter referred to as “fluorescent solution”) is dropped and applied to the heat-cleaned glass fiber sheet (step 203). It is advisable to place the glass fiber sheet on the plate and drop a fluorescent solution to the extent that the glass fiber sheet is immersed. By adopting such a coating method, the fluorescent solution can be used extremely efficiently.
After dropping the fluorescent solution, the excess fluorescent solution adhering to the glass fiber sheet is removed (step 204). Examples of the method for removing the excess fluorescent solution include a method of removing by blowing off with centrifugal force or air, a method of scraping with a squeegee, and a method of wiping with a waste cloth. In this step, by setting an appropriate process, the glass fiber sheet can hold a necessary and sufficient amount of the fluorescent solution. For example, when the excess fluorescent solution is blown off, the centrifugal force, wind power, and processing time are adjusted, when scraping, the squeegee is selected, and when wiping off, the waste cloth is selected and the pressing time is controlled. The process termination conditions can be set appropriately. This step can be performed until the fluorescent solution held on the glass fiber sheet does not adhere to other members (for example, a waste cloth, a mounting table, or a holding member).
After removing the excess fluorescent solution, the fluorescent layer is immobilized on the glass fiber sheet by sintering treatment (step 205). The conditions for the sintering treatment (sintering temperature and time) can be appropriately set according to the type of the fluorescent solution and the glass fiber sheet, and the specific conditions can be obtained experimentally. It should be noted that this step can also be performed after the step of cutting out the sensor element from the sheet material S (after punching the glass fiber sheet into individual sensor elements), which will be described later.
 ここまでの処理によって、センサ素子11(正確には、カットしてセンサ素子11を形成するためのシート材)が形成される。
 センサ素子11は、繊維シートに基づいて制作されるものである。繊維シートはその表面積が大きく、また、表面に微細な凹凸を有し空隙なども有している。また、局所的に凹若しくは凸だけが集まることはほぼ無いといえ、凹と凸が平均的に分散した形状を有している。当該凹凸は、繊維シートを構成する繊維の太さやその密度、構成方法(織物や不織布)等によって定まるものであるが、本実施形態で使用しているガラス繊維シートの表面の凹凸(凹凸の高低差)は、概ね数μ~数十μm程度と評価できるものである。
 このような繊維シートの表面に塗布され、余剰を除去された蛍光溶液は、上記の凹凸形状に対応した膜として形成される。即ち、数μ~数十μm程度で膜厚が変動し、且つ、当該変動が平均的に分散している膜となり、これを固定化することで形成される蛍光層も、同様の構成を有する層となる。
 これをマクロ的にみると、数μ~数十μmの膜厚の複数の蛍光層が形成されているとみなすことができる。例えば、20μmに着目した場合、センサ素子11には、20μmの膜厚の蛍光体が分散して形成されており、これら分散している蛍光体全体で“20μmの蛍光層”として機能し得るものである。
 ここまでの説明で明らかなように、センサ素子11は、繊維シートに蛍光物質を担持させる構成とすることにより、上記のような非常に容易且つ低コストな製造方法によって、所望の膜厚を有する(とみなせる)蛍光層を、光透過性の基材に形成することができるものである。
 また、繊維シートは、表面に微細な凹凸や空隙なども有しているため、蛍光層の密着性が高くなるという面でも優れている。
By the processing up to this point, the sensor element 11 (more accurately, a sheet material for cutting to form the sensor element 11) is formed.
The sensor element 11 is manufactured based on the fiber sheet. The fiber sheet has a large surface area, and also has fine irregularities on the surface and voids. Further, it can be said that only concave or convex is hardly locally gathered, and the concave and convex have a shape in which they are dispersed on average. The unevenness is determined by the thickness and density of the fibers constituting the fiber sheet, the composition method (woven fabric or non-woven fabric), etc., and the unevenness on the surface of the glass fiber sheet used in the present embodiment (high and low unevenness). The difference) can be evaluated to be about several μm to several tens of μm.
The fluorescent solution applied to the surface of such a fiber sheet and from which excess is removed is formed as a film corresponding to the above-mentioned uneven shape. That is, the film thickness fluctuates in the range of several μm to several tens of μm, and the fluctuation becomes a film that is dispersed on average, and the fluorescent layer formed by immobilizing the film thickness also has the same configuration. Become a layer.
When viewed macroscopically, it can be considered that a plurality of fluorescent layers having a film thickness of several μm to several tens of μm are formed. For example, when focusing on 20 μm, a fluorescent body having a film thickness of 20 μm is dispersed and formed in the sensor element 11, and the entire dispersed fluorescent material can function as a “20 μm fluorescent layer”. Is.
As is clear from the description so far, the sensor element 11 has a desired film thickness by the above-mentioned very easy and low-cost manufacturing method by having the structure in which the fluorescent substance is supported on the fiber sheet. A fluorescent layer (which can be regarded as) can be formed on a light-transmitting substrate.
Further, since the fiber sheet has fine irregularities and voids on the surface, it is also excellent in that the adhesion of the fluorescent layer is improved.
 ステップ205の焼結処理に続くステップ206では、センサ素子11の一方の面にレジンコーティングを行い、レジンコート膜が形成されたシート材をカットすることで、レジンコート膜12を有するセンサ素子11が形成される(ステップ207)。 In step 206 following the sintering process of step 205, one surface of the sensor element 11 is resin-coated, and the sheet material on which the resin-coated film is formed is cut to obtain the sensor element 11 having the resin-coated film 12. It is formed (step 207).
 図3(a)は、レジンコーティング処理の説明図である。
 レジンコーティングは、剥離基材(例えばフィルムF)上にレジン液Rを塗布し、この上にステップ201~205の工程によって得られたシート材Sを載置する。次に、レジン液Rを硬化させる処理を行ってから、フィルムFからレジンコート膜が形成されたシート材Sを剥がす。剥離基材は、硬化したレジン液Rが剥離しやすい材料を選択することが好ましい。剥離基材の材料としては、例えばシリコン樹脂やフッ素樹脂(PTFEやFEP、PFA、ETFEなど)を利用することができる。剥離基材は、また、フィルム状のものであってもよく、基板状のものであってもよい。レジン液Rは、シート材Sに付着しやすく、かつ、剥離基材(フィルムF)から剥離しやすい性質のものを選定することが好ましい。なお、レジン液Rを硬化させる手段は、選定したレジン液Rに適したいずれかの方法(例えばUV照射による硬化や熱硬化、二液混合による硬化や、湿気による硬化など)を適用することができる。
 図3(b)は、レジンコート膜が形成されたシート材Sからセンサ素子11を切り出す工程を示す説明図である。本実施形態では、シート材Sの主材は0.2mmのガラス繊維シートであり、ポンチ打ち等によって簡単に切り出すことができる。
FIG. 3A is an explanatory diagram of the resin coating treatment.
In the resin coating, the resin liquid R is applied on a release base material (for example, film F), and the sheet material S obtained in the steps 201 to 205 is placed on the resin liquid R. Next, after performing a treatment for curing the resin liquid R, the sheet material S on which the resin coat film is formed is peeled off from the film F. As the release base material, it is preferable to select a material from which the cured resin liquid R can be easily peeled off. As the material of the release base material, for example, silicon resin or fluororesin (PTFE, FEP, PFA, ETFE, etc.) can be used. The release base material may also be in the form of a film or a substrate. It is preferable to select a resin liquid R having a property of easily adhering to the sheet material S and easily peeling from the peeling base material (film F). As a means for curing the resin liquid R, any method suitable for the selected resin liquid R (for example, curing by UV irradiation, thermosetting, curing by mixing two liquids, curing by humidity, etc.) can be applied. it can.
FIG. 3B is an explanatory diagram showing a step of cutting out the sensor element 11 from the sheet material S on which the resin coat film is formed. In the present embodiment, the main material of the sheet material S is a 0.2 mm glass fiber sheet, which can be easily cut out by punching or the like.
 センサ素子11の切り出し後、センサ素子11をセンサプレート15に接着材14で接着し(ステップ208)、メンブレン16をかぶせた上から被覆部13となるポリワッシャーを嵌めて、ポリワッシャーをセンサプレート15に溶着する(ステップ209)。
 ポリワッシャーのセンサプレート15への溶着は、図3(c)に示されるように、数ヶ所スポット溶着をした上で、外周を全体的に円溶着する。
 なお、メンブレン16は、センサ素子11の反応面を覆うことによって、反応面への異物(ゴミ等)の付着防止と、外乱の影響を抑止(“暗幕”として機能)するものであるが、必ずしも必須のものではない。メンブレン16は、測定対象物(例えば培養液)を透過させるものである必要があり、測定対象物の透過量を最適化する構成(ポアサイズやメッシュサイズ等)を有するものを適宜選択するとよい。メンブレン16の材料は、高圧蒸気滅菌、EOGガス滅菌、γ線滅菌に対応していることが望ましく、例えば、PVDFを例示することができる。
After cutting out the sensor element 11, the sensor element 11 is adhered to the sensor plate 15 with an adhesive 14 (step 208), the polywasher to be the covering portion 13 is fitted over the membrane 16, and the polywasher is attached to the sensor plate 15. Weld to (step 209).
As shown in FIG. 3C, the polywasher is welded to the sensor plate 15 by spot welding at several places and then circularly welding the outer circumference as a whole.
The membrane 16 covers the reaction surface of the sensor element 11 to prevent foreign matter (dust, etc.) from adhering to the reaction surface and suppress the influence of disturbance (functions as a "blackout curtain"), but it is not always the case. Not required. The membrane 16 needs to permeate the object to be measured (for example, a culture solution), and it is preferable to appropriately select a membrane 16 having a structure (pore size, mesh size, etc.) that optimizes the permeation amount of the object to be measured. The material of the membrane 16 is preferably compatible with high-pressure steam sterilization, EOG gas sterilization, and γ-ray sterilization, and PVDF can be exemplified.
 図4は、センサ素子保持体1を使用した蛍光式センサシステム100の構成の概略を示すブロック図である。
 蛍光式センサシステム100は、センサ素子保持体1の裏面側から励起光を照射する照射部2と、励起光を受けて発生した蛍光を受光する受光部3と、照射部2の発光制御を行う発光ドライバ4と、受光部3からの信号をA/D変換するA/D変換部5と、各部の制御及び測定対象物中の所望の成分の濃度の算出などの演算処理を行う制御・演算部6と、検知結果を表示する表示装置若しくは検知結果を外部装置へ送信する送信部である出力部7と、を備える。
 なお、蛍光式センサシステム100は、測定対象物に適した構成が選択される。センサ素子11が、測定対象成分の濃度に応じて蛍光の消失時間が変化するものである場合、蛍光式センサシステム100は、蛍光の消失時間を測定し、その値から測定対象成分の濃度を算出するシステムとすることができる。センサ素子11が、対象成分の濃度に応じて蛍光の性質(強度や光量、位相差、周波数など)が変化するものである場合、蛍光式センサシステム100は、蛍光の性質を測定し、その値から測定対象成分の濃度を演算するシステムとすることができる。例えば照射部2は、単波長の励起光を照射するように構成することも、波長の異なる複数の励起光を照射するように構成することも可能である。
FIG. 4 is a block diagram showing an outline of the configuration of the fluorescent sensor system 100 using the sensor element holder 1.
The fluorescence sensor system 100 controls the light emission of the irradiation unit 2 that irradiates the excitation light from the back surface side of the sensor element holder 1, the light receiving unit 3 that receives the fluorescence generated by receiving the excitation light, and the irradiation unit 2. The light emitting driver 4, the A / D conversion unit 5 that A / D converts the signal from the light receiving unit 3, and the control / calculation that performs arithmetic processing such as control of each unit and calculation of the concentration of a desired component in the measurement object. It includes a unit 6 and an output unit 7 which is a display device for displaying the detection result or a transmission unit for transmitting the detection result to an external device.
In the fluorescent sensor system 100, a configuration suitable for the object to be measured is selected. When the sensor element 11 changes the fluorescence disappearance time according to the concentration of the measurement target component, the fluorescence sensor system 100 measures the fluorescence disappearance time and calculates the concentration of the measurement target component from the value. It can be a system to do. When the sensor element 11 changes the fluorescence property (intensity, light intensity, phase difference, frequency, etc.) according to the concentration of the target component, the fluorescence sensor system 100 measures the fluorescence property and values the value. It is possible to make a system for calculating the concentration of the component to be measured from. For example, the irradiation unit 2 may be configured to irradiate a single wavelength excitation light, or may be configured to irradiate a plurality of excitation lights having different wavelengths.
 図4に示す蛍光式センサシステム100は、測定対象物(例えば培養液)のpH(水素イオン濃度)を計測する構成のシステムとして例示している。照射部2は、405nmの光を発する発光素子21と、460nmの光を発する発光素子22を有しており、受光部3はブロードな受光感度(405nm及び460nmの受光感度)を有する受光素子からなる。
 制御・演算部6及び発光ドライバ4によって、発光素子21と発光素子22を交互に発光させ、これによってセンサ素子11から得られる蛍光を、受光部3で受光する。センサ素子11が有する蛍光物質は、水素イオン濃度に応じて、405nmの光と460nmの光に対する蛍光の強度比が変化するため、405nmの光と460nmの光に対する蛍光をそれぞれ受光し、その比に基づいてpH値を算出する処理を、制御・演算部6で行うものである。
The fluorescent sensor system 100 shown in FIG. 4 is exemplified as a system having a configuration for measuring the pH (hydrogen ion concentration) of a measurement object (for example, a culture solution). The irradiation unit 2 has a light emitting element 21 that emits light of 405 nm and a light emitting element 22 that emits light of 460 nm, and the light receiving unit 3 is derived from a light receiving element having broad light receiving sensitivity (light receiving sensitivity of 405 nm and 460 nm). Become.
The control / calculation unit 6 and the light emitting driver 4 alternately cause the light emitting element 21 and the light emitting element 22 to emit light, and the light receiving unit 3 receives the fluorescence obtained from the sensor element 11. The fluorescent substance contained in the sensor element 11 receives fluorescence for 405 nm light and 460 nm light, respectively, because the fluorescence intensity ratio to 405 nm light and 460 nm light changes according to the hydrogen ion concentration. The control / calculation unit 6 performs a process of calculating the pH value based on the pH value.
 以上のごとく、本実施形態のセンサ素子11及びその製造方法によれば、非常に容易且つ低コストに、所望の膜厚を有する(とみなせる)蛍光層を、光透過性の基材に形成することができる。
 また、センサ素子11にレジンコート膜12を形成しているため、センサ素子11の強度が向上される。センサ素子11に歪み等が生じると表面の蛍光層が剥がれやすくなる場合があるが、強度の向上によりこれが抑止され、センサ素子としての耐久性が向上される。
 また、センサ素子11の周縁部が被覆部13によって覆われていることによって、繊維シートであるセンサ素子11が周縁部からほつれることが防止されるため、センサ素子としての耐久性に優れる。
As described above, according to the sensor element 11 of the present embodiment and the manufacturing method thereof, a fluorescent layer having a desired film thickness (which can be regarded as) is formed on a light-transmitting base material very easily and at low cost. be able to.
Further, since the resin coat film 12 is formed on the sensor element 11, the strength of the sensor element 11 is improved. When the sensor element 11 is distorted or the like, the fluorescent layer on the surface may be easily peeled off, but this is suppressed by improving the strength, and the durability of the sensor element is improved.
Further, since the peripheral edge portion of the sensor element 11 is covered with the covering portion 13, the sensor element 11 which is a fiber sheet is prevented from fraying from the peripheral edge portion, so that the durability as a sensor element is excellent.
 なお、本実施形態では、pHセンサとしての説明を行ったが、本発明をこれに限るものではなく、上述したごとく、蛍光物質として、酸素、二酸化炭素等の濃度に対応した蛍光を発光する物質等を用いれば、それぞれに対応したセンサとすることができる。 In the present embodiment, the pH sensor has been described, but the present invention is not limited to this, and as described above, as a fluorescent substance, a substance that emits fluorescence corresponding to the concentration of oxygen, carbon dioxide, or the like. Etc. can be used to obtain sensors corresponding to each.
<実施形態2>
 図5は実施形態2のセンサ素子保持体の製造工程の概略を示すフローチャートであり、図6は実施形態2のセンサ素子保持体の製造工程の一部を説明する図、図7は実施形態2のセンサ素子保持体の構造を示す概略断面図である。
 なお、実施形態1と同様の構成については実施形態1と同様の符号を使用し、ここでの説明を省略若しくは簡略化する。
<Embodiment 2>
FIG. 5 is a flowchart showing an outline of the manufacturing process of the sensor element holder of the second embodiment, FIG. 6 is a diagram for explaining a part of the manufacturing process of the sensor element holder of the second embodiment, and FIG. 7 is a diagram showing a part of the manufacturing process of the sensor element holder of the second embodiment. It is the schematic sectional drawing which shows the structure of the sensor element holding body of.
For the same configuration as that of the first embodiment, the same reference numerals as those of the first embodiment are used, and the description here is omitted or simplified.
 図5を参照しつつ、本実施形態のセンサ素子保持体1´の製造方法について説明する。
 ステップ201~204は、実施形態1と同様である。これらのステップにて使用されるガラス繊維シートや蛍光物質(溶液)等についても実施形態1と同様である。
A method of manufacturing the sensor element holder 1'of the present embodiment will be described with reference to FIG.
Steps 201 to 204 are the same as in the first embodiment. The same applies to the glass fiber sheet, fluorescent substance (solution), and the like used in these steps as in the first embodiment.
 続くステップ501では、センサ素子11´の切り出しを行う。蛍光溶液が塗布されたガラス繊維シートを、個別のセンサ素子状(本実施形態では円形状)に打ち抜くものである。続いて、当該切り出したセンサ素子11´に対する焼結処理を行う(ステップ205)。当該焼結処理自体は、実施形態1と同様である。
 次に、センサ素子11´の一方の面にレジンコーティングを行い、レジンコーティングに用いた基材ごとセンサ素子11´を打ち抜く(ステップ502、503)。
 図6(c)は、レジンコーティング処理の説明図である。
 本実施形態におけるレジンコーティングは、基材BM上にレジン液Rを塗布し、この上にステップ201~205の工程によって得られたセンサ素子11´を載置する。切り出したセンサ素子11´をレジン液Rに載置する際に、センサ素子11´の一方の面(底面)及び側面がレジン液Rに浸るようにし、センサ素子11´の他方の面(上面)はレジン液Rが付着しないようする。なお、基材BMは、励起光及び蛍光に対する光透過性を有するものであればよく、ここではポリカーボネートの板を用いている。
 次に、レジン液Rを硬化させる処理を行ってから、基材BMごとセンサ素子11´を打ち抜くことで、レジンコート膜12´及び基材17を有するセンサ素子11´を得る(図6(d))。基材BMごとセンサ素子11´を打ち抜く際には、センサ素子11´よりも大きな外径の円形にて打ち抜く。
 図6(d)の右側には、ステップ503までの工程で得られたセンサ素子11´の平面図及び断面図を示した。上記の工程により、本実施形態のセンサ素子11´には、その一方の面及び側面にレジンコート膜12´が形成され、さらに基材17を有する構成となる。センサ素子11´の側面も覆うレジンコート膜12´は、“センサ素子の周縁部を覆う被覆部”として機能する。
In the following step 501, the sensor element 11'is cut out. A glass fiber sheet coated with a fluorescent solution is punched into individual sensor element shapes (circular shape in this embodiment). Subsequently, the cut-out sensor element 11'is sintered (step 205). The sintering process itself is the same as in the first embodiment.
Next, one surface of the sensor element 11'is coated with a resin, and the sensor element 11' is punched out together with the base material used for the resin coating (steps 502 and 503).
FIG. 6C is an explanatory diagram of the resin coating treatment.
In the resin coating of the present embodiment, the resin liquid R is applied on the base material BM, and the sensor element 11'obtained by the steps 201 to 205 is placed on the resin liquid R. When the cut-out sensor element 11'is placed on the resin liquid R, one surface (bottom surface) and the side surface of the sensor element 11' are immersed in the resin liquid R, and the other surface (upper surface) of the sensor element 11'is immersed. Prevents the resin liquid R from adhering. The base material BM may be any as long as it has light transmission to excitation light and fluorescence, and a polycarbonate plate is used here.
Next, after performing a process of curing the resin liquid R, the sensor element 11'is punched out together with the base material BM to obtain a sensor element 11' having a resin coat film 12'and a base material 17 (FIG. 6 (d). )). When punching out the sensor element 11 ′ together with the base material BM, the sensor element 11 ′ is punched out in a circle having an outer diameter larger than that of the sensor element 11 ′.
On the right side of FIG. 6D, a plan view and a cross-sectional view of the sensor element 11'obtained in the steps up to step 503 are shown. By the above steps, the sensor element 11'of the present embodiment is formed with a resin coat film 12'on one surface and a side surface thereof, and further has a base material 17. The resin coat film 12 ′ that also covers the side surface of the sensor element 11 ′ functions as a “covering portion that covers the peripheral edge portion of the sensor element”.
 最後に、レジンコート膜12´及び基材17を有するセンサ素子11´を、センサプレート15に接着することで(ステップ208)、本実施形態のセンサ素子保持体1´が得られる。センサプレート15への接着は、本実施形態では両面テープ14´によって行われる。両面テープ14´は、励起光及び蛍光に対する光透過性を有するものであればよい。 Finally, by adhering the sensor element 11'having the resin coat film 12'and the base material 17 to the sensor plate 15 (step 208), the sensor element holder 1'of the present embodiment can be obtained. Adhesion to the sensor plate 15 is performed by the double-sided tape 14'in this embodiment. The double-sided tape 14'may have light transparency to excitation light and fluorescence.
 図7はセンサ素子保持体1´の構造を示す概略断面図である。
 本実施形態の素子保持体1´は、実施形態1と同様に、繊維シートに蛍光物質が担持された構成を有するセンサ素子11´により、実施形態1と同様の作用効果を奏する。
 また、センサ素子11の周縁部が被覆部(レジンコート膜12´)によって覆われていることによって、繊維シートであるセンサ素子11が周縁部からほつれることが防止されるため、センサ素子としての耐久性に優れる。上記説明した製造方法によって、センサ素子11´の一面に形成するコーティング膜と同時に、センサ素子11´の周縁部を覆う被覆部を同時に形成することができるため、製造コストを低減することができる。
 また、センサ素子11´が基材17に固定された構成となるため、センサ素子の強度が向上される。センサ素子に歪み等が生じると表面の蛍光層が剥がれやすくなる場合があるが、強度の向上によりこれが抑止され、センサ素子としての耐久性が向上される。
FIG. 7 is a schematic cross-sectional view showing the structure of the sensor element holder 1'.
Similar to the first embodiment, the element holder 1 ′ of the present embodiment exerts the same action and effect as the first embodiment by the sensor element 11 ′ having a structure in which the fluorescent substance is supported on the fiber sheet.
Further, since the peripheral edge portion of the sensor element 11 is covered with the covering portion (resin coat film 12'), the sensor element 11 which is a fiber sheet is prevented from fraying from the peripheral edge portion, so that the sensor element 11 can be used as a sensor element. Has excellent durability. According to the manufacturing method described above, the coating film formed on one surface of the sensor element 11'and the covering portion covering the peripheral edge of the sensor element 11' can be formed at the same time, so that the manufacturing cost can be reduced.
Further, since the sensor element 11'is fixed to the base material 17, the strength of the sensor element is improved. When the sensor element is distorted or the like, the fluorescent layer on the surface may be easily peeled off, but this is suppressed by improving the strength, and the durability of the sensor element is improved.
 各実施形態では、繊維シートとして、ガラス繊維の織物であるガラス繊維シートを例としたが、本発明をこれに限るものではない。繊維状材料としては、励起光及び蛍光に対する光透過性を有するものであればよく、例えばポリカーボネート等の樹脂繊維等であってもよい。また、繊維シートの構成方法としても、織物に限るものではなく、不織布等であってもよい。 In each embodiment, the glass fiber sheet, which is a woven fabric of glass fiber, is taken as an example of the fiber sheet, but the present invention is not limited to this. The fibrous material may be any material having light transmittance to excitation light and fluorescence, and may be, for example, a resin fiber such as polycarbonate. Further, the method for forming the fiber sheet is not limited to the woven fabric, and may be a non-woven fabric or the like.
 各実施形態では、センサプレート(光透過性の基材)に、センサ素子を取り付けるものを例としているが、内部に液体を収納する容器の内面にセンサ素子を取り付けるもの(容器が光透過性の基材を構成するもの)であってもよい。
 例えば、使い捨てのプラスチック容器(可撓性のバッグや硬質の容器)として形成される培養槽の内面にセンサ素子を取り付けたものとすることができる。センサ素子11やセンサ素子11´は安価に製造することができ、ディスポーザルな培養装置と一体的なものとして製造することができるため、非常に好適である。
In each embodiment, the sensor element is attached to the sensor plate (light-transmitting base material) as an example, but the sensor element is attached to the inner surface of the container for storing the liquid inside (the container is light-transmitting). It may be one that constitutes a base material).
For example, the sensor element can be attached to the inner surface of the culture tank formed as a disposable plastic container (flexible bag or hard container). The sensor element 11 and the sensor element 11'are very suitable because they can be manufactured at low cost and can be manufactured as an integral part of the disposable culture device.
 各実施形態では、繊維シートへの蛍光溶液の塗布方法として、プレート上に載置した繊維シートに蛍光溶液を滴下するものを例としているが、本発明をこれに限るものではなく、繊維シートへの蛍光溶液の付与若しくは塗布方法は任意のものであってよい。 In each embodiment, as a method of applying the fluorescent solution to the fiber sheet, a method of dropping the fluorescent solution onto the fiber sheet placed on the plate is taken as an example, but the present invention is not limited to this, and the present invention is not limited to this. The method of applying or applying the fluorescent solution of the above may be arbitrary.
 1...センサ素子保持体
  11...センサ素子
  12...レジンコート膜(光透過性のコーティング膜)
  13...被覆部
  14...接着材
  15...センサプレート(光透過性の基材)
 2...照射部
 3...受光部
 100...蛍光式センサシステム
1. 1. .. .. Sensor element holder 11. .. .. Sensor element 12. .. .. Resin coated film (light-transmitting coating film)
13. .. .. Cover 14. .. .. Adhesive 15. .. .. Sensor plate (light-transmitting base material)
2. 2. .. .. Irradiation part 3. .. .. Light receiving part 100. .. .. Fluorescent sensor system

Claims (13)

  1.  所定の励起光を受光して測定対象物の所望の成分の濃度に対応した蛍光を発するセンサ素子の製造方法であって、
     光透過性の繊維状材料によって構成された繊維シートを用意する工程と、
     前記繊維シートに、蛍光物質が分散した溶液を付与する工程と、
     前記蛍光物質を前記繊維シートに固定化する工程と、
     を含むセンサ素子の製造方法。
    A method for manufacturing a sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of a measurement object.
    The process of preparing a fiber sheet made of a light-transmitting fibrous material, and
    A step of applying a solution in which a fluorescent substance is dispersed to the fiber sheet, and
    The step of immobilizing the fluorescent substance on the fiber sheet and
    A method for manufacturing a sensor element including.
  2.  前記蛍光物質を固定化する工程の前に、前記繊維シートから前記溶液の余剰分を除去する処理を行う、請求項1に記載のセンサ素子の製造方法。 The method for manufacturing a sensor element according to claim 1, wherein a process of removing a surplus of the solution from the fiber sheet is performed before the step of immobilizing the fluorescent substance.
  3.  前記繊維シートに前記溶液を付与する工程の前に、前記繊維シートにヒートクリーニング処理を行う、請求項1又は2に記載のセンサ素子の製造方法。 The method for manufacturing a sensor element according to claim 1 or 2, wherein the fiber sheet is heat-cleaned before the step of applying the solution to the fiber sheet.
  4.  前記蛍光物質を前記繊維シートに固定化した後に、前記繊維シートの一方の面に光透過性のコーティング膜を形成する工程をさらに含む、請求項1から3の何れかに記載のセンサ素子の製造方法。 The manufacture of the sensor element according to any one of claims 1 to 3, further comprising a step of forming a light-transmitting coating film on one surface of the fiber sheet after immobilizing the fluorescent substance on the fiber sheet. Method.
  5.  前記繊維シートは、前記繊維状材料の織物である、請求項1から4の何れかに記載のセンサ素子の製造方法。 The method for manufacturing a sensor element according to any one of claims 1 to 4, wherein the fiber sheet is a woven fabric made of the fibrous material.
  6.  前記繊維シートは、ガラス繊維シートである、請求項1から5の何れかに記載のセンサ素子の製造方法。 The method for manufacturing a sensor element according to any one of claims 1 to 5, wherein the fiber sheet is a glass fiber sheet.
  7.  所定の励起光を受光して測定対象物の所望の成分の濃度に対応した蛍光を発するセンサ素子であって、
     光透過性の繊維状材料によって構成された繊維シートと、
     前記繊維シートに担持された蛍光物質と、
     を有するセンサ素子。
    A sensor element that receives a predetermined excitation light and emits fluorescence corresponding to the concentration of a desired component of a measurement object.
    A fiber sheet made of a light-transmitting fibrous material and
    The fluorescent substance supported on the fiber sheet and
    Sensor element with.
  8.  前記繊維シートにおける前記測定対象物と接触する面とは反対の面を覆う、光透過性のコーティング膜をさらに有する、請求項7に記載のセンサ素子。 The sensor element according to claim 7, further comprising a light-transmitting coating film that covers a surface of the fiber sheet opposite to the surface that comes into contact with the object to be measured.
  9.  前記蛍光物質は、所定の励起光を受光して、前記測定対象物中の酸素、二酸化炭素、又は、水素イオンのいずれかの濃度に対応した蛍光を発光する物質である、請求項7又は8に記載のセンサ素子。 The fluorescent substance is a substance that receives a predetermined excitation light and emits fluorescence corresponding to any concentration of oxygen, carbon dioxide, or hydrogen ion in the measurement object, claim 7 or 8. The sensor element according to.
  10.  請求項7から9のいずれかに記載のセンサ素子と、
     前記センサ素子が取り付けられる光透過性の基材と、
     を含むセンサ素子保持体。
    The sensor element according to any one of claims 7 to 9,
    A light-transmitting base material to which the sensor element is attached,
    Sensor element holder including.
  11.  前記センサ素子の周縁部を覆う被覆部をさらに有する、請求項10に記載のセンサ素子保持体。 The sensor element holder according to claim 10, further comprising a covering portion that covers the peripheral edge portion of the sensor element.
  12.  前記基材が、内部に液体を収納する容器を構成している、請求項10又は11に記載のセンサ素子保持体。 The sensor element holder according to claim 10 or 11, wherein the base material constitutes a container for storing a liquid inside.
  13.  請求項10から12のいずれかに記載のセンサ素子保持体と、
     前記基材を通して、前記センサ素子に励起光を照射する照射部と、
     前記励起光を受けて発生した蛍光を、前記基材を通して受光する受光部と、
     を含む蛍光式センサシステム。
    The sensor element holder according to any one of claims 10 to 12,
    An irradiation unit that irradiates the sensor element with excitation light through the base material,
    A light receiving portion that receives the fluorescence generated by receiving the excitation light through the base material, and
    Fluorescent sensor system including.
PCT/JP2020/027002 2019-07-29 2020-07-10 Sensor element manufacturing method, sensor element, sensor element holder, and fluorescent sensor system WO2021020072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021536887A JP7508122B2 (en) 2019-07-29 2020-07-10 Method for manufacturing sensor element, sensor element, sensor element holder, and fluorescent sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138554 2019-07-29
JP2019-138554 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020072A1 true WO2021020072A1 (en) 2021-02-04

Family

ID=74228576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027002 WO2021020072A1 (en) 2019-07-29 2020-07-10 Sensor element manufacturing method, sensor element, sensor element holder, and fluorescent sensor system

Country Status (2)

Country Link
JP (1) JP7508122B2 (en)
WO (1) WO2021020072A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260446A (en) * 1985-04-22 1985-12-23 Fuji Fiber Glass Kk Alkali resistant glass fiber
US4568518A (en) * 1982-12-06 1986-02-04 Avl Ag Sensor element for fluorescence-optical measurement
JP2002501193A (en) * 1998-01-21 2002-01-15 バイエル コーポレイション Optical sensor and operation method
US20050214951A1 (en) * 2002-01-23 2005-09-29 Boditech Inc Lateral flow quantitative assay method and strip and laser-induced fluoerescence detection device therefor
JP2008116240A (en) * 2006-11-01 2008-05-22 Mitsubishi Electric Corp Method and device for detecting mercapto group-containing substance
JP2012523549A (en) * 2009-04-09 2012-10-04 バイエル・クロップサイエンス・アクチェンゲゼルシャフト Apparatus and method for the verification and quantitative analysis of analytes, in particular mycotoxins
JP2015159066A (en) * 2014-02-25 2015-09-03 コニカミノルタ株式会社 Light diffusion sheet for organic electroluminescence, and organic electroluminescent panel
JP2019020246A (en) * 2017-07-14 2019-02-07 株式会社 堀場アドバンスドテクノ Fluorescence-type dissolved oxygen meter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568518A (en) * 1982-12-06 1986-02-04 Avl Ag Sensor element for fluorescence-optical measurement
JPS60260446A (en) * 1985-04-22 1985-12-23 Fuji Fiber Glass Kk Alkali resistant glass fiber
JP2002501193A (en) * 1998-01-21 2002-01-15 バイエル コーポレイション Optical sensor and operation method
US20050214951A1 (en) * 2002-01-23 2005-09-29 Boditech Inc Lateral flow quantitative assay method and strip and laser-induced fluoerescence detection device therefor
JP2008116240A (en) * 2006-11-01 2008-05-22 Mitsubishi Electric Corp Method and device for detecting mercapto group-containing substance
JP2012523549A (en) * 2009-04-09 2012-10-04 バイエル・クロップサイエンス・アクチェンゲゼルシャフト Apparatus and method for the verification and quantitative analysis of analytes, in particular mycotoxins
JP2015159066A (en) * 2014-02-25 2015-09-03 コニカミノルタ株式会社 Light diffusion sheet for organic electroluminescence, and organic electroluminescent panel
JP2019020246A (en) * 2017-07-14 2019-02-07 株式会社 堀場アドバンスドテクノ Fluorescence-type dissolved oxygen meter

Also Published As

Publication number Publication date
JP7508122B2 (en) 2024-07-01
JPWO2021020072A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
Park et al. Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood
KR101967934B1 (en) Waterproof air-permeable filter and uses thereof
US20160139049A1 (en) Optical sensor and measuring apparatus for quantitatively detecting an analyte in a sample
US20120261256A1 (en) Sample holders and analytical instrument for point-of-care qualification of clinical samples
US10983056B2 (en) Apparatus for detecting pH and dissolved oxygen
WO2004018623A2 (en) Substrates for isolating, reacting and microscopically analyzing materials
US11530992B2 (en) Gas detection element
JP2010532269A5 (en)
CA2820177A1 (en) Fluid analysis cartridge
JP3643863B2 (en) Liquid holder and manufacturing method thereof
JP2018205290A (en) Sample holder for x-ray fluorescence analyzer, sample holder creation tool, and sample manufacturing method for x-ray fluorescence analyzer
WO2021020072A1 (en) Sensor element manufacturing method, sensor element, sensor element holder, and fluorescent sensor system
US20210318249A1 (en) Optochemical sensor and method for measured value correction
JP2006237563A (en) Surface emitting device
FI90694C (en) Analytical instrument for biological fluid
DeLouise et al. Hydrogel‐Supported Optical‐Microcavity Sensors
JP4520468B2 (en) Coated test element
JP2010236868A (en) Fixing sheet for sample of biological origin and method of manufacturing the same
JP5237368B2 (en) Method for manufacturing analytical elements
JP3628209B2 (en) Pressure measuring method and pressure measuring film
JP2010531445A (en) Measuring apparatus and method for determining optical property values for detecting photolytic and electrochemical decomposition reactions
JP7337258B2 (en) Standard sample for calibrating water vapor transmission rate measurement equipment
JP6124051B2 (en) Cell culture sheet, method for producing the same, and cell culture container using the same
WO2010086977A1 (en) Micropipette, micropipette system, and method for using micropipette
JP4283512B2 (en) Test tool and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848039

Country of ref document: EP

Kind code of ref document: A1