WO2021019808A1 - Coating material and light absorption body - Google Patents

Coating material and light absorption body Download PDF

Info

Publication number
WO2021019808A1
WO2021019808A1 PCT/JP2020/005192 JP2020005192W WO2021019808A1 WO 2021019808 A1 WO2021019808 A1 WO 2021019808A1 JP 2020005192 W JP2020005192 W JP 2020005192W WO 2021019808 A1 WO2021019808 A1 WO 2021019808A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth element
complex
group
visible light
Prior art date
Application number
PCT/JP2020/005192
Other languages
French (fr)
Japanese (ja)
Inventor
靖英 山口
康輝 馬渡
Original Assignee
日本イットリウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本イットリウム株式会社 filed Critical 日本イットリウム株式会社
Priority to JP2020524261A priority Critical patent/JP6942924B2/en
Publication of WO2021019808A1 publication Critical patent/WO2021019808A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a paint.
  • the present invention also relates to a light absorber.
  • rare earth element ions have the property of absorbing only a very narrow wavelength region. Therefore, strong absorption is observed in a narrow wavelength region in the absorption spectra of aqueous solutions and single crystals of rare earth elements and the reflection spectra of powders of rare earth elements.
  • fine particles made of a compound of a rare earth element are dispersed in a resin, the scattering becomes strong and the resin becomes excessively cloudy. As a result, there is a problem that it is difficult to fabricate a film that strongly absorbs a narrow wavelength region peculiar to rare earth atomic ions, that is, a filter.
  • the present invention provides a material that can solve various problems of the above-mentioned prior art.
  • the present invention provides a coating material in which a polymer complex of at least one rare earth element selected from praseodymium, neodymium, samarium, dysprosium, holmium, erbium, thulium and ytterbium is dissolved in an organic solvent. Is the solution.
  • the present invention also provides a light absorber obtained by using the above-mentioned coating material.
  • FIG. 1 is a transmission spectrum of visible light measured for the thin film obtained in Example 1.
  • FIG. 2 is a transmission spectrum of visible light measured for the thin film obtained in Comparative Example 1.
  • a complex having a rare earth element ion as a central metal ion is used.
  • this complex is also referred to as a "rare earth element complex”.
  • This rare earth element complex has an advantage that it has light absorption and can be dissolved in an organic solvent at room temperature.
  • This rare earth element complex has absorption especially in the wavelength region of visible light.
  • the preferred properties of this rare earth element complex are that the ligand does not contain a nitrogen element, that the ligand has a high molecular weight (for example, the ligand has a molecular weight of 200 or more), and that it is dissolved in an organic solvent.
  • a rare earth element complex having a total molecular weight of 600 or more of all the coordinating ligands is also referred to as a “polymer complex”.
  • Rare earth element ions in rare earth element complexes generally have a trivalent positive charge. Depending on the type of rare earth element, it may have a divalent or tetravalent positive charge. Rare earth element ions have an advantage in that they can absorb only specific light because a sharper light absorption spectrum is observed as compared with the iron group 3d transition metal ions.
  • the rare earth element that can be used in the present invention is at least one selected from praseodymium, neodymium, samarium, dysprosium, holmium, erbium, thulium and ytterbium
  • the rare earth element complex has a very narrow wavelength range of visible light. The characteristic of absorbing only the wavelength region becomes remarkable. Of these, praseodymium and neodymium, especially neodymium, are more preferable because they have strong absorption in the wavelength region of visible light.
  • neodymium In the case of neodymium, a specifically useful absorption wavelength is around 580 nm or around 740 nm. In the case of praseodymium, it is around 450 nm or around 580 nm. In the case of holmium, it is around 450 nm. In the case of erbium, it is around 520 nm. In particular, neodymium is more effective as an optical filter because it absorbs a large amount of visible light in the wavelength region and does not emit light in the visible light wavelength region.
  • one kind of rare earth element complex may be used alone, or two or more kinds may be used in combination.
  • two or more kinds of rare earth element complexes in combination it is possible to adjust the strength and viscosity of the coating film containing the complex.
  • the rare earth element complex has the property of dissolving in an organic solvent at room temperature.
  • “Dissolution” means that all or part of the solute becomes an ion after dissolution, the solute exists in a molecular form without dissociating into ions, or the molecule or ion exists in association with each other. including.
  • room temperature means 25 ° C.
  • the type of ligand of the rare earth element complex is not particularly limited as long as it is dissolved in an organic solvent at room temperature. It is preferable that the rare earth element complex is a polymer complex because the solubility in an organic solvent is improved. In particular, a polymer complex in which a ligand represented by the following formula (1) is coordinated is preferable because it has higher solubility in an organic solvent at room temperature.
  • ring A represents a benzene ring or a naphthalene ring
  • R represents an alkyl group having 1 or more and 24 or less carbon atoms or an alkoxy group having 1 or more and 22 or less carbon atoms
  • m represents a number of 0 or more and 3 or less.
  • m may be 0, but is preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, and even more preferably 1. Is.
  • the hydrogen atom at an arbitrary position in the benzene ring and the naphthalene ring which is the ring A may be substituted with another group.
  • groups include hydroxyl groups, amino groups, carboxyl groups, sulfoacid groups, nitro groups, aldehyde groups and halogens. One of these groups may be used alone, or two or more of these groups may be used.
  • the alkyl group represented by R may be a straight chain or a branched chain.
  • the number of carbon atoms of the alkyl group is 1 or more and 24 or less, preferably 4 or more and 16 or less, and further preferably 6 or more and 12 or less.
  • alkyl group examples include a linear alkyl group such as docosyl group, octadecyl group, hexadecyl group, tetradecyl group, dodecyl group, decyl group, octyl group, hexyl group, butyl group, and branched alkyl group. Examples thereof include 2-ethyl-hexyl group, 2-decyl-tetradecyl group, 2-butyl-octyl group, 2-hexyl-decyl group and 2-octyl-dodecyl group. As these alkyl groups, one type may be used alone or two or more types may be used depending on the number of m in the formula (1).
  • the alkoxy group represented by R may be a straight chain or a branched chain.
  • the alkoxy group represented by R is a branched chain from the viewpoint of further improving the solubility of the complex in the hydrophobic organic solvent used when producing the film containing the complex according to the present invention. It is preferable to have.
  • the number of carbon atoms of the alkoxy group is 1 or more and 22 or less, preferably 4 or more and 16 or less, and further preferably 6 or more and 12 or less.
  • alkoxy group examples include a linear alkoxy group such as docosyloxy group, octadecyloxy group, hexadecyloxy group, tetradecyloxy group, dodecyloxy group, decyloxy group, octyloxy group, hexyloxy group and butyloxy group. , 2-Ethyl-hexyloxy group, 2-decyl-tetradecyloxy group, 2-butyl-octyloxy group, 2-hexyl-decyloxy group, 2-octyl-dodecyloxy group, which are the alkoxy groups of the branched chain. Be done. As these alkoxy groups, one type may be used alone or two or more types may be used depending on the number of m in the formula (1).
  • Preferred examples of the ligand represented by the formula (1) are as shown in (2)-(6) below.
  • the use of these ligands is advantageous because it can form a strong coating containing the rare earth element complex.
  • the synthesis yield of the complex can be increased by using these ligands.
  • it can be more easily dissolved in an organic solvent at room temperature.
  • ligand represented by the formula (1) when m is 2 or more, two or more kinds of alkyl groups may be used, two or more kinds of alkoxy groups may be used, or one kind.
  • the above alkyl groups and one or more alkoxy groups may be used.
  • m is 1, when the ring A is a benzene ring, R is COO - - that they are positioned in the para position or meta position with respect to the base Is preferable.
  • R is preferably located at the 6-position with respect to the COO ⁇ ⁇ group.
  • m is 2
  • ring A is when a benzene ring
  • R is COO - or are located respectively in the meta and para to the group, - Alternatively, it is preferably located at two meta positions.
  • m is 3, when the ring A is a benzene ring, R is COO - - located in the para position and two meta positions with respect to the base It is preferable to have.
  • the number of ligands represented by the formula (1) coordinated with rare earth element ions can take various values depending on the valence of the rare earth element ions and the electron configuration (electron orbital).
  • the number of ligands that neutralizes the valence of the rare earth element ion is coordinated to the rare earth element ion, that is, when the ligand is coordinated so that the charge of the complex becomes zero, it becomes a volatile organic solvent described later. This is preferable because the complex is easily dissolved.
  • the three ligands represented by the formula (1) are coordinated with respect to the trivalent rare earth element ion, so that the complex is more easily dissolved in the volatile organic solvent described later. It is preferable because it becomes.
  • the rare earth element complex can be suitably produced by the method described below.
  • a solution of the ligand represented by the formula (1) is prepared.
  • This solution is called solution A.
  • a solvent in which the ligand represented by the formula (1) is soluble may be used.
  • This solvent is preferably water soluble.
  • examples of such a solvent include saturated aliphatic monovalent alcohols having 1 to 4 carbon atoms, ethers such as tetrahydrofuran and dioxane, and aprotic polar solvents such as acetonitrile, N, N-dimethylformamide, and dimethyl sulfoxide. Used.
  • Basic substances such as aqueous ammonia, sodium hydroxide, potassium hydroxide, and triethylamine may be added to this solution for the purpose of converting the carboxylic acid into a carboxylate anion, which is necessary for advancing complex synthesis. preferable.
  • solution B a solution containing rare earth element ions.
  • This solution is called solution B.
  • Liquid B can be prepared by dissolving a water-soluble rare earth element-containing compound in water.
  • the liquid A and the liquid B prepared in this way are mixed.
  • the desired rare earth element complex is formed and precipitated in the liquid.
  • a method of mixing both at the same time a method of adding the liquid B to the liquid A, and a method of adding the liquid A to the liquid B can be adopted.
  • the liquid A and the liquid B can be mixed at room temperature (25 ° C.) or under heating.
  • the rare earth element complex precipitated by mixing the liquid A and the liquid B is solid-liquid separated, recovered, washed with an organic solvent such as ethanol, and then dried.
  • the rare earth element complex thus obtained preferably has absorption in the wavelength region of visible light.
  • the rare earth element complex can be used as a raw material for the visible light absorber.
  • the wavelength region of visible light is generally 400 nm or more and 750 nm or less.
  • the rare earth element complex is visible light. It can be said that it has absorption in the wavelength region of.
  • the baseline needs to be measured with a rare earth element complex containing a rare earth element that does not have absorption in the visible light region, but it can be calculated from the difference between the transmittance and the absorption peak in the flat part without absorption. ..
  • the rare earth element complex preferably has one or two or more absorption peaks in the wavelength region of visible light in the measurement of the transmission spectrum.
  • the position of the peak top of the absorption peak changes depending on the type of rare earth element and the type of ligand.
  • the magnitude of the absorption peak obtained in the measurement of the transmission spectrum is 90% when the rare earth element complex is, for example, a neodymium-containing complex or a coating film containing the same, and the transmittance at a wavelength of 850 nm is preferably 80% or more. The above is more desirable.
  • the transmittance at a wavelength of 800 nm is preferably 60% or less, and more preferably 40% or less.
  • the rare earth element complex does not emit light in the wavelength region of visible light.
  • the fact that light emission does not occur in the wavelength region of visible light means that excitation corresponding to the energy level in the wavelength region of visible light does not occur due to irradiation with energy rays such as ultraviolet rays. Since the rare earth element complex has such a property, the rare earth element complex can be suitably used as a raw material for a visible light absorber. Rare earth elements may emit light depending on the excitation wavelength or may disappear as heat, so it is desirable to select a wavelength that absorbs strongly and does not emit light.
  • absorption at wavelengths of 580 nm and 740 nm in the case of neodymium, absorption at wavelengths of 440 nm and 590 nm have a high absorption coefficient and no light emission is observed in the visible light region. Is suitable.
  • the rare earth element complex can be used as a coating material by being dissolved in an organic solvent capable of dissolving the complex, preferably a volatile organic solvent.
  • a volatile organic solvent is a substance having a boiling point of less than 250 ° C. and being liquid at room temperature.
  • the organic solvent capable of dissolving the rare earth element complex include halogenated saturated aliphatic hydrocarbons such as dichloromethane, aromatic hydrocarbons such as toluene and xylene, and hydrocarbons having a carbonyl group such as methyl ethyl ketone and acetone.
  • a halogenated saturated aliphatic hydrocarbon such as dichloromethane.
  • the organic solvent is a volatile organic solvent, dissolving the rare earth complex in the volatile organic solvent facilitates the formation of a coating film of the rare earth complex using a coating material containing the rare earth complex.
  • the paint containing the rare earth element complex may contain other components if necessary.
  • a polymer compound that is soluble in the volatile organic solvent and has a film-forming ability an agent that improves the dispersibility of a rare earth element complex in the paint, and an agent that enhances the strength of the film formed from the paint.
  • examples include various additives to be obtained.
  • a light absorber can be obtained by using a paint containing a rare earth element complex. For example, by applying a coating material containing a rare earth element complex to the surface of a colorless and transparent material in the wavelength region of visible light such as glass, a visible light absorber composed of a coating film containing the rare earth element complex can be formed. .. Since this absorber has absorption in at least a part of the wavelength region of visible light and does not emit light in the wavelength region of visible light, this absorber should be used as an optical filter or a bandpass filter. Can be done.
  • the thickness of the coating film which is an absorber of visible light
  • the absorber made of a coating film formed of a coating film containing a rare earth element complex is strong, has high heat resistance and weather resistance, and absorbs a narrow wavelength region peculiar to rare earth element ions.
  • the rare earth element complex is in the form of a paint, the rare earth element complex can be easily applied to an arbitrary place, for example, a part having a complicated shape such as a black matrix of three primary colors, or a fine part such as an optical fiber. Therefore, unnecessary light can be easily removed at the site.
  • a visible light absorber composed of a coating film formed of a coating film containing a rare earth element complex its absorbance can be controlled by adjusting the thickness of the coating film. Since the visible light absorber composed of the thin film absorbs only light in the wavelength region peculiar to rare earth element ions, it can be used as an optical filter even when irradiated with high-density light such as laser light. Unlike conventionally used organic pigments, it has the advantage of being less prone to decomposition and deterioration. This advantage is also common to the visible light absorbers described below, which are made by kneading a rare earth element complex into a polymer material.
  • thermoplastic resins can be used as the polymer material.
  • the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene and ethylene- ⁇ -olefin copolymers, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, acrylic resins such as methyl polyacrylate and polymethyl methacrylate, and polystyrene.
  • vinyl resins such as polyvinyl chloride, and polycarbonate resins. One of these resins may be used alone, or two or more of these resins may be used in combination.
  • the shape of the visible light absorber formed by dispersing the rare earth element complex in the polymer material is not particularly limited.
  • a rectangular plate-shaped or disk-shaped visible light absorber can be used.
  • the thickness of the visible light absorber is preferably 0.005 mm or more and 5 mm or less, more preferably 0.1 mm or more and 1 mm or less, and 0.2 mm or more and 0.6 mm or less at the thickest portion. Is even more preferable.
  • the ratio of the rare earth element to the visible light absorber is preferably 1% by mass or more and 80% by mass or less, and 5% by mass. It is more preferably 80% by mass or less, and further preferably 10% by mass or more and 80% by mass or less. By setting the ratio of rare earth elements in this range, visible light can be sufficiently absorbed.
  • Example 1 As the ligand, the ligand represented by the above formula (2) was used. This ligand is called "42EHBA". 42EHBA of -COO - substances proton group bonded (. This material is referred to as "H42EHBA") and 7.51 g, to obtain a solution dissolved in ethanol 300 mL. 2 mL of aqueous ammonia (concentration 28%) was added to this solution to obtain solution A. Apart from this operation, to obtain a solution B by dissolving NdCl 3 ⁇ 6H 2 O of 3.59g to ion-exchanged water 100 mL. At room temperature, solution B was added dropwise while stirring solution A. Stirring was continued for 2 hours after the dropping was completed.
  • H42EHBA 42EHBA of -COO - substances proton group bonded
  • Nd (42EHBA) 3 complex 15 g was dissolved in 60 mL of dichloromethane at room temperature (25 ° C.) to obtain a coating material. This paint was applied to one surface of a glass plate having a thickness of 1 mm to form a coating film. This coating film was dried at room temperature to prepare a coating film containing an Nd (42EHBA) 3 complex. The thickness of the coating film measured from the SEM image of the cross section of the coating film was about 600 ⁇ m.
  • This thin film was placed on the sample measurement surface of a visible absorptiometer (U-3100 manufactured by Hitachi, Ltd.), and only a glass plate was placed on the reference light side, and the transmission spectrum of 900 nm to 300 nm was measured. The result is shown in FIG. As shown in the figure, strong absorption was observed at 580 nm, 750 nm, 800 nm and the like. Therefore, it was confirmed that this coating film can be used as an optical filter that absorbs only a narrow wavelength region. As described above, it was confirmed that the Nd (42EHBA) 3 complex was soluble in an organic solvent at room temperature, and that the coating film had a transmission region and an absorption region in the wavelength region of visible light.
  • Example 2 15 g of the Nd (42EHBA) 3 complex obtained in Example 1 was dissolved in 60 mL of dichloromethane, and 4 g of an acrylic resin (LR-167 manufactured by Mitsubishi Chemical Corporation) was further added to obtain a coating material. A coating film of this paint was formed in the same manner as in Example 1. The coating film was strong, and the coating film did not fall even when the glass plate was turned upside down. This coating film had substantially the same transmission spectrum as in Example 1.
  • neodymium oxide powder was dispersed in 10 mL of methyl ethyl ketone and ground with a paint shaker together with 0.3 mm ⁇ zirconia beads for 15 minutes.
  • the particle size of neodymium oxide after pulverization was measured with a dynamic scattering particle size distribution meter (ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd.) and found to be 0.3 ⁇ m.
  • 22 g of acrylic resin was added to the pulverized slurry and dispersed again with a paint shaker.
  • the dispersion was applied onto a polyethylene terephthalate film using a bar coater # 36 to form a coating film. This coating film was dried to obtain a coating film having a thickness of 15.5 ⁇ m. When this coating film was fired and the oxide weight was measured to measure the concentration of neodymium oxide in the coating film, it was about 13%.
  • the transmission spectrum of 900 nm to 300 nm was measured by the same method as in Example 1. The result is shown in FIG. As shown in the figure, no sharp absorption of visible light was observed.
  • a material that has light absorption and can be easily formed into a coating film at room temperature As described in detail above, according to the present invention, there is provided a material that has light absorption and can be easily formed into a coating film at room temperature.

Abstract

The coating material according to the present invention is obtained by dissolving, in an organic solvent, a complex of at least one rare-earth element selected from the group consisting of praseodymium, neodymium, samarium, dysprosium, holmium, erbium, thulium, and ytterbium. The rare-earth element is particularly preferably neodymium. The complex preferably has a ligand represented by formula (1). In formula (1), ring A represents a benzene ring or a naphthalene ring, R represents an alkyl group having 1-24 carbon atoms or an alkoxy group having 1-22 carbon atoms, and m represents a number of 0-3.

Description

塗料及び光吸収体Paint and light absorber
 本発明は塗料に関する。また本発明は光吸収体に関する。 The present invention relates to a paint. The present invention also relates to a light absorber.
 従来、可視光や赤外線を遮蔽する樹脂を作製するためには、その波長領域に吸収を持つ着色粒子を樹脂に分散させるか、又は染料を樹脂に含有させていた。そのような着色粒子や染料としては、例えばタングステン酸塩(M)微粒子や有機染料などが知られている。また、溶解したガラスに金属イオンを添加して着色ガラスを製造する手法も良く知られている。これら各種の手法は例えば以下の特許文献1ないし5に記載されている。 Conventionally, in order to produce a resin that shields visible light and infrared rays, colored particles having absorption in the wavelength region are dispersed in the resin, or a dye is contained in the resin. As such colored particles and dyes, for example, tungstate (M x W y Oz ) fine particles and organic dyes are known. Further, a method of producing colored glass by adding metal ions to molten glass is also well known. These various methods are described in, for example, Patent Documents 1 to 5 below.
US2018/017721A1US2018 / 017721A1 特開2017-179053号公報Japanese Unexamined Patent Publication No. 2017-179053 特開2016-014866号公報Japanese Unexamined Patent Publication No. 2016-014866 特開2019-001933号公報Japanese Unexamined Patent Publication No. 2019-001933 US2013/231468A1US2013 / 231468A1
 希土類元素イオンは非常に狭い波長領域のみを吸収する特性があることが知られている。したがって、希土類元素の水溶液及び単結晶の吸収スペクトルや、希土類元素の粉体の反射スペクトルでは、狭い波長領域において強い吸収が観察される。しかし、希土類元素の化合物からなる微粒子を樹脂に分散させた場合には、散乱が強くなり樹脂の白濁が過度になってしまう。その結果、希土類原子イオンに特有の狭い波長領域を強く吸収する膜、すなわちフィルタを作製することは困難であったという課題がある。溶融したガラスに希土類イオンを添加して着色ガラスを得ることはできるが、ガラスは焼成温度が高いことから、製膜することが難しく使用方法が制限されるという課題がある。また、有機染料を樹脂に分散させて可視光の吸収が可能な膜を作製することは可能であるが、有機染料は耐熱性及び耐候性が低いことに起因して、レーザ光などの強い光を照射すると脱色が生じやすく実用的でないという課題がある。 It is known that rare earth element ions have the property of absorbing only a very narrow wavelength region. Therefore, strong absorption is observed in a narrow wavelength region in the absorption spectra of aqueous solutions and single crystals of rare earth elements and the reflection spectra of powders of rare earth elements. However, when fine particles made of a compound of a rare earth element are dispersed in a resin, the scattering becomes strong and the resin becomes excessively cloudy. As a result, there is a problem that it is difficult to fabricate a film that strongly absorbs a narrow wavelength region peculiar to rare earth atomic ions, that is, a filter. Although it is possible to obtain colored glass by adding rare earth ions to the molten glass, there is a problem that it is difficult to form a film and the usage method is limited because the glass has a high firing temperature. Further, although it is possible to prepare a film capable of absorbing visible light by dispersing the organic dye in a resin, the organic dye has low heat resistance and weather resistance, so that strong light such as laser light can be produced. There is a problem that decolorization is likely to occur and it is not practical when irradiated with.
 本発明は、前述した従来技術が有する種々の課題を解消し得る材料を提供するものである。 The present invention provides a material that can solve various problems of the above-mentioned prior art.
 本発明は、プラセオジム、ネオジム、サマリウム、ディスプロシウム、ホルミウム、エルビウム、ツリウム及びイッテルビウムから選ばれる少なくとも一種の希土類元素の高分子錯体が有機溶媒に溶解してなる塗料を提供することによって前記の課題を解決したものである。 The present invention provides a coating material in which a polymer complex of at least one rare earth element selected from praseodymium, neodymium, samarium, dysprosium, holmium, erbium, thulium and ytterbium is dissolved in an organic solvent. Is the solution.
 また本発明は、前記の塗料を用いて得られる光吸収体を提供するものである。 The present invention also provides a light absorber obtained by using the above-mentioned coating material.
図1は、実施例1で得られた薄膜について測定された可視光の透過スペクトルである。FIG. 1 is a transmission spectrum of visible light measured for the thin film obtained in Example 1. 図2は、比較例1で得られた薄膜について測定された可視光の透過スペクトルである。FIG. 2 is a transmission spectrum of visible light measured for the thin film obtained in Comparative Example 1.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明においては、希土類元素イオンを中心金属イオンとする錯体を用いる。以下、この錯体のことを「希土類元素錯体」ともいう。この希土類元素錯体は光吸収性を有し、室温で有機溶媒に溶解し得るという利点を有する。この希土類元素錯体は特に可視光の波長領域に吸収を有する。この希土類元素錯体の好ましい性質としては、配位子が窒素元素を含まないこと、配位子の分子量が高いこと(例えば配位子の分子量が200以上)であること、及び有機溶媒に溶解した溶液状態から該有機溶媒が揮発した後に固体となることが挙げられる。なお、以下の説明において、配位しているすべての配位子の分子量の合計600以上である希土類元素錯体のことを「高分子錯体」ともいう。 Hereinafter, the present invention will be described based on its preferred embodiment. In the present invention, a complex having a rare earth element ion as a central metal ion is used. Hereinafter, this complex is also referred to as a "rare earth element complex". This rare earth element complex has an advantage that it has light absorption and can be dissolved in an organic solvent at room temperature. This rare earth element complex has absorption especially in the wavelength region of visible light. The preferred properties of this rare earth element complex are that the ligand does not contain a nitrogen element, that the ligand has a high molecular weight (for example, the ligand has a molecular weight of 200 or more), and that it is dissolved in an organic solvent. After the organic solvent volatilizes from the solution state, it becomes a solid. In the following description, a rare earth element complex having a total molecular weight of 600 or more of all the coordinating ligands is also referred to as a “polymer complex”.
 希土類元素錯体における希土類元素イオンは一般に三価の正電荷を有する。希土類元素の種類によっては、二価又は四価の正電荷を有することがある。希土類元素イオンは、鉄族の3d遷移金属イオンに比べて鋭い光吸収スペクトルが観察されるので、特定の光のみを吸収させ得る点に優位性がある。本発明で用い得る希土類元素が、プラセオジム、ネオジム、サマリウム、ディスプロシウム、ホルミウム、エルビウム、ツリウム及びイッテルビウムから選ばれる少なくとも一種であると、希土類元素錯体は、可視光の波長領域のうち非常に狭い波長領域のみを吸収する特性が顕著となる。中でもプラセオジム及びネオジム、とりわけネオジムは可視光の波長領域に強い吸収を有しているので更に好ましい。 Rare earth element ions in rare earth element complexes generally have a trivalent positive charge. Depending on the type of rare earth element, it may have a divalent or tetravalent positive charge. Rare earth element ions have an advantage in that they can absorb only specific light because a sharper light absorption spectrum is observed as compared with the iron group 3d transition metal ions. When the rare earth element that can be used in the present invention is at least one selected from praseodymium, neodymium, samarium, dysprosium, holmium, erbium, thulium and ytterbium, the rare earth element complex has a very narrow wavelength range of visible light. The characteristic of absorbing only the wavelength region becomes remarkable. Of these, praseodymium and neodymium, especially neodymium, are more preferable because they have strong absorption in the wavelength region of visible light.
 具体的に有用な吸収波長は、ネオジムの場合、580nm付近又は740nm付近である。プラセオジムの場合、450nm付近又は580nm付近である。ホルミウムの場合450nm付近である。エルビウムの場合520nm付近である。特にネオジムは可視光の波長領域での吸収が大きく且つ可視光の波長領域で発光を生じないため光学フィルタとしての効果一層高い。 In the case of neodymium, a specifically useful absorption wavelength is around 580 nm or around 740 nm. In the case of praseodymium, it is around 450 nm or around 580 nm. In the case of holmium, it is around 450 nm. In the case of erbium, it is around 520 nm. In particular, neodymium is more effective as an optical filter because it absorbs a large amount of visible light in the wavelength region and does not emit light in the visible light wavelength region.
 本発明においては、希土類元素錯体は一種を単独で用いてもよく、あるいは二種以上を組み合わせて用いてもよい。二種以上の希土類元素錯体を組み合わせて用いることで、該錯体を含む被膜の強度や粘度を調整することが可能となる。 In the present invention, one kind of rare earth element complex may be used alone, or two or more kinds may be used in combination. By using two or more kinds of rare earth element complexes in combination, it is possible to adjust the strength and viscosity of the coating film containing the complex.
 希土類元素錯体は、有機溶媒に室温で溶解する性質を有する。「溶解」とは、溶解後に溶質の全部又は一部がイオンとなる場合、溶質がイオンに解離せず分子状で存在している場合、あるいは分子やイオンが会合して存在している場合などを含む。また「室温」とは25℃のことである。 The rare earth element complex has the property of dissolving in an organic solvent at room temperature. "Dissolution" means that all or part of the solute becomes an ion after dissolution, the solute exists in a molecular form without dissociating into ions, or the molecule or ion exists in association with each other. including. Further, "room temperature" means 25 ° C.
 希土類元素錯体は、有機溶媒に室温で溶解する限りにおいて、配位子の種類に特に制限はない。希土類元素錯体が高分子錯体であると有機溶媒への溶解性が良好になるので好ましい。特に下記式(1)で表される配位子が配位した高分子錯体は、室温での有機溶媒への溶解性が一層高くなる点から好ましい。 The type of ligand of the rare earth element complex is not particularly limited as long as it is dissolved in an organic solvent at room temperature. It is preferable that the rare earth element complex is a polymer complex because the solubility in an organic solvent is improved. In particular, a polymer complex in which a ligand represented by the following formula (1) is coordinated is preferable because it has higher solubility in an organic solvent at room temperature.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、環Aは、ベンゼン環又はナフタレン環を表し、Rは炭素数1以上24以下であるアルキル基又は炭素数1以上22以下であるアルコキシ基を表し、mは0以上3以下の数を表す。 In the formula, ring A represents a benzene ring or a naphthalene ring, R represents an alkyl group having 1 or more and 24 or less carbon atoms or an alkoxy group having 1 or more and 22 or less carbon atoms, and m represents a number of 0 or more and 3 or less. Represent.
 式(1)で表される配位子において、mは0であってもよいが、好ましくは1以上3以下の数であり、更に好ましくは1以上2以下の数であり、一層好ましくは1である。 In the ligand represented by the formula (1), m may be 0, but is preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, and even more preferably 1. Is.
 式(1)で表される配位子において、環Aであるベンゼン環及びナフタレン環中の任意の位置における水素原子は、他の基で置換されていてもよい。そのような基としては例えば水酸基、アミノ基、カルボキシル基、スルホ酸基、ニトロ基、アルデヒド基及びハロゲンなどが挙げられる。これらの基は一種を単独で用いてもよく、あるいは二種以上を用いてもよい。 In the ligand represented by the formula (1), the hydrogen atom at an arbitrary position in the benzene ring and the naphthalene ring which is the ring A may be substituted with another group. Examples of such groups include hydroxyl groups, amino groups, carboxyl groups, sulfoacid groups, nitro groups, aldehyde groups and halogens. One of these groups may be used alone, or two or more of these groups may be used.
 式(1)で表される配位子において、Rで表されるアルキル基は、直鎖のものであってもよく、あるいは分岐鎖のものであってもよい。アルキル基の炭素数は上述のとおり1以上24以下であり、4以上16以下であることが好ましく、6以上12以下であることが更に好ましい。 In the ligand represented by the formula (1), the alkyl group represented by R may be a straight chain or a branched chain. As described above, the number of carbon atoms of the alkyl group is 1 or more and 24 or less, preferably 4 or more and 16 or less, and further preferably 6 or more and 12 or less.
 アルキル基の具体例としては、直鎖のアルキル基であるドコシル基、オクタデシル基、ヘキサデシル基、テトラデシル基、ドデシル基、デシル基、オクチル基、ヘキシル基、ブチル基や、分岐鎖のアルキル基である2-エチル-ヘキシル基、2-デシル-テトラデシル基、2-ブチル-オクチル基、2-ヘキシル-デシル基、2-オクチル-ドデシル基などが挙げられる。これらのアルキル基は、式(1)におけるmの数に応じて一種を単独で用いてもよく、あるいは二種以上を用いてもよい。 Specific examples of the alkyl group include a linear alkyl group such as docosyl group, octadecyl group, hexadecyl group, tetradecyl group, dodecyl group, decyl group, octyl group, hexyl group, butyl group, and branched alkyl group. Examples thereof include 2-ethyl-hexyl group, 2-decyl-tetradecyl group, 2-butyl-octyl group, 2-hexyl-decyl group and 2-octyl-dodecyl group. As these alkyl groups, one type may be used alone or two or more types may be used depending on the number of m in the formula (1).
 式(1)で表される配位子において、Rで表されるアルコキシ基は、直鎖のものであってもよく、あるいは分岐鎖のものであってもよい。特に、本発明に係る錯体を含有するフィルムを製造する際に使用する疎水性有機溶媒への該錯体の溶解性をより向上の点からは、Rで表されるアルコキシ基は分岐鎖のものであることが好ましい。アルコキシ基の炭素数は上述のとおり1以上22以下であり、4以上16以下であることが好ましく、6以上12以下であることが更に好ましい。 In the ligand represented by the formula (1), the alkoxy group represented by R may be a straight chain or a branched chain. In particular, the alkoxy group represented by R is a branched chain from the viewpoint of further improving the solubility of the complex in the hydrophobic organic solvent used when producing the film containing the complex according to the present invention. It is preferable to have. As described above, the number of carbon atoms of the alkoxy group is 1 or more and 22 or less, preferably 4 or more and 16 or less, and further preferably 6 or more and 12 or less.
 アルコキシ基の具体例としては、直鎖のアルコキシ基であるドコシルオキシ基、オクタデシルオキシ基、ヘキサデシルオキシ基、テトラデシルオキシ基、ドデシルオキシ基、デシルオキシ基、オクチルオキシ基、ヘキシルオキシ基、ブチルオキシ基や、分岐鎖のアルコキシ基である2-エチル-ヘキシルオキシ基、2-デシル-テトラデシルオキシ基、2-ブチル-オクチルオキシ基、2-ヘキシル-デシルオキシ基、2-オクチル-ドデシルオキシ基などが挙げられる。これらのアルコキシ基は、式(1)におけるmの数に応じて一種を単独で用いてもよく、あるいは二種以上を用いてもよい。 Specific examples of the alkoxy group include a linear alkoxy group such as docosyloxy group, octadecyloxy group, hexadecyloxy group, tetradecyloxy group, dodecyloxy group, decyloxy group, octyloxy group, hexyloxy group and butyloxy group. , 2-Ethyl-hexyloxy group, 2-decyl-tetradecyloxy group, 2-butyl-octyloxy group, 2-hexyl-decyloxy group, 2-octyl-dodecyloxy group, which are the alkoxy groups of the branched chain. Be done. As these alkoxy groups, one type may be used alone or two or more types may be used depending on the number of m in the formula (1).
 式(1)で表される配位子の好ましい例は以下の(2)-(6)に示すとおりである。これらの配位子を用いると、希土類元素錯体を含む強固な被膜を形成し得るので有利である。また、これらの配位子を用いることで、錯体の合成収率を高めることができるという利点もある。更に、室温で一層容易に有機溶媒に溶解し得るという利点もある。 Preferred examples of the ligand represented by the formula (1) are as shown in (2)-(6) below. The use of these ligands is advantageous because it can form a strong coating containing the rare earth element complex. In addition, there is an advantage that the synthesis yield of the complex can be increased by using these ligands. Further, there is an advantage that it can be more easily dissolved in an organic solvent at room temperature.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)で表される配位子においては、mが2以上である場合には、二種以上のアルキル基を用いてもよく、二種以上のアルコキシ基を用いてもよく、あるいは一種以上のアルキル基と一種以上のアルコキシ基を用いてもよい。 In the ligand represented by the formula (1), when m is 2 or more, two or more kinds of alkyl groups may be used, two or more kinds of alkoxy groups may be used, or one kind. The above alkyl groups and one or more alkoxy groups may be used.
 式(1)で表される配位子において、mが1であり、環Aがベンゼン環である場合には、RはCOO-基に対してパラ位又はメタ位に位置していることが好ましい。mが1であり、環Aがナフタレン環であり、COO-基が2位に位置している場合には、RはCOO-基に対して6位に位置していることが好ましい。 In the ligands of formula (1), m is 1, when the ring A is a benzene ring, R is COO - - that they are positioned in the para position or meta position with respect to the base Is preferable. When m is 1, ring A is a naphthalene ring, and the COO − group is located at the 2-position, R is preferably located at the 6-position with respect to the COO − group.
 式(1)で表される配位子において、mが2であり、環Aがベンゼン環である場合には、RはCOO-基に対してメタ及びパラ位にそれぞれ位置しているか、又は2つのメタ位に位置していることが好ましい。 In the ligands of formula (1), m is 2, ring A is when a benzene ring, R is COO - or are located respectively in the meta and para to the group, - Alternatively, it is preferably located at two meta positions.
 式(1)で表される配位子において、mが3であり、環Aがベンゼン環である場合には、RはCOO-基に対してパラ位及び2つのメタ位に位置していることが好ましい。 In the ligands of formula (1), m is 3, when the ring A is a benzene ring, R is COO - - located in the para position and two meta positions with respect to the base It is preferable to have.
 式(1)で表される配位子が希土類元素イオンに配位する数は、希土類元素イオンの価数や電子配置(電子軌道)に応じて種々の値をとり得る。希土類元素イオンの価数を中和する数の配位子が希土類元素イオンに配位すると、すなわち錯体の電荷がゼロになるように該配位子が配位すると、後述する揮発性有機溶媒に錯体が溶解しやすくなるので好ましい。典型的には、三価の希土類元素イオンに対して、式(1)で表される配位子が三つ配位していることが、後述する揮発性有機溶媒に錯体が一層溶解しやすくなるので好ましい。 The number of ligands represented by the formula (1) coordinated with rare earth element ions can take various values depending on the valence of the rare earth element ions and the electron configuration (electron orbital). When the number of ligands that neutralizes the valence of the rare earth element ion is coordinated to the rare earth element ion, that is, when the ligand is coordinated so that the charge of the complex becomes zero, it becomes a volatile organic solvent described later. This is preferable because the complex is easily dissolved. Typically, the three ligands represented by the formula (1) are coordinated with respect to the trivalent rare earth element ion, so that the complex is more easily dissolved in the volatile organic solvent described later. It is preferable because it becomes.
 希土類元素錯体は以下に述べる方法で好適に製造できる。まず式(1)で表される配位子の溶液を調製する。この溶液をA液と呼ぶ。溶媒としては、式(1)で表される配位子が可溶なものを用いればよい。この溶媒は水溶性であることが好ましい。そのような溶媒としては、例えば炭素数1以上4以下の飽和脂肪族一価アルコール、テトラヒドロフランやジオキサンなどのエーテル類、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒などが用いられる。この溶液には、錯体合成を進行させるために必要な、カルボン酸をカルボキシレートアニオンに変換することを目的としてアンモニア水、水酸化ナトリウム、水酸化カリウム、トリエチルアミンなどの塩基性物質を添加することが好ましい。 The rare earth element complex can be suitably produced by the method described below. First, a solution of the ligand represented by the formula (1) is prepared. This solution is called solution A. As the solvent, a solvent in which the ligand represented by the formula (1) is soluble may be used. This solvent is preferably water soluble. Examples of such a solvent include saturated aliphatic monovalent alcohols having 1 to 4 carbon atoms, ethers such as tetrahydrofuran and dioxane, and aprotic polar solvents such as acetonitrile, N, N-dimethylformamide, and dimethyl sulfoxide. Used. Basic substances such as aqueous ammonia, sodium hydroxide, potassium hydroxide, and triethylamine may be added to this solution for the purpose of converting the carboxylic acid into a carboxylate anion, which is necessary for advancing complex synthesis. preferable.
 A液の調製とは別に、希土類元素イオンを含む溶液を調製する。この溶液をB液と呼ぶ。B液は、水溶性の希土類元素含有化合物を水に溶解させることで調製できる。 Separately from the preparation of solution A, prepare a solution containing rare earth element ions. This solution is called solution B. Liquid B can be prepared by dissolving a water-soluble rare earth element-containing compound in water.
 このようにして調製したA液とB液とを混合する。これによって液中に目的とする希土類元素錯体が生成し、析出する。A液とB液との混合には、例えば両者を同時に混合する方法や、A液にB液を添加する方法や、B液にA液を添加する方法を採用することができる。また、A液とB液との混合は室温(25℃)下で行うこともでき、あるいは加熱下で行うこともできる。 The liquid A and the liquid B prepared in this way are mixed. As a result, the desired rare earth element complex is formed and precipitated in the liquid. For mixing the liquid A and the liquid B, for example, a method of mixing both at the same time, a method of adding the liquid B to the liquid A, and a method of adding the liquid A to the liquid B can be adopted. Further, the liquid A and the liquid B can be mixed at room temperature (25 ° C.) or under heating.
 A液とB液との混合によって析出した希土類元素錯体を、固液分離して回収し、エタノール等の有機溶媒で洗浄し、その後乾燥させることが好ましい。 It is preferable that the rare earth element complex precipitated by mixing the liquid A and the liquid B is solid-liquid separated, recovered, washed with an organic solvent such as ethanol, and then dried.
 このようにして得られた希土類元素錯体は可視光の波長領域に吸収を有することが好ましい。これによって希土類元素錯体を可視光吸収体の原料として用いることができる。可視光の波長領域は一般に400nm以上750nm以下である。この波長領域において測定された透過スペクトルにおいて、ベースラインと想定されるラインに対して透過率差が5%以上であるピークトップを有する吸収ピークが観察される場合、その希土類元素錯体は、可視光の波長領域に吸収を有するといえる。ベースラインは厳密には可視光領域に吸収を有しない希土類元素を添加した希土類元素錯体で測定する必要があるが、吸収のない平坦な部の透過率と吸収ピークとの差から算出すればよい。 The rare earth element complex thus obtained preferably has absorption in the wavelength region of visible light. As a result, the rare earth element complex can be used as a raw material for the visible light absorber. The wavelength region of visible light is generally 400 nm or more and 750 nm or less. In the transmission spectrum measured in this wavelength region, when an absorption peak having a peak top having a transmittance difference of 5% or more with respect to the line assumed to be the baseline is observed, the rare earth element complex is visible light. It can be said that it has absorption in the wavelength region of. Strictly speaking, the baseline needs to be measured with a rare earth element complex containing a rare earth element that does not have absorption in the visible light region, but it can be calculated from the difference between the transmittance and the absorption peak in the flat part without absorption. ..
 希土類元素錯体は、透過スペクトルの測定において可視光の波長領域に1つ又は2つ以上の吸収ピークを有することが好ましい。吸収ピークのピークトップの位置は、希土類元素の種類や配位子の種類に応じて変化する。 The rare earth element complex preferably has one or two or more absorption peaks in the wavelength region of visible light in the measurement of the transmission spectrum. The position of the peak top of the absorption peak changes depending on the type of rare earth element and the type of ligand.
 透過スペクトルの測定において得られる吸収ピークの大きさは、希土類元素錯体が例えばネオジム含有錯体又はそれを含む塗膜である場合、波長850nmでの透過率が80%以上であることが望ましく、90%以上であることが更に望ましい。一方、波長800nmでの透過率が60%以下であることが望ましく、40%以下であることが更に望ましい。 The magnitude of the absorption peak obtained in the measurement of the transmission spectrum is 90% when the rare earth element complex is, for example, a neodymium-containing complex or a coating film containing the same, and the transmittance at a wavelength of 850 nm is preferably 80% or more. The above is more desirable. On the other hand, the transmittance at a wavelength of 800 nm is preferably 60% or less, and more preferably 40% or less.
 希土類元素錯体は、可視光の波長領域で発光が生じないことも好ましい。可視光の波長領域で発光が生じないとは、紫外線などのエネルギー線の照射によって可視光の波長領域のエネルギー準位に相当する励起が起こらないことをいう。希土類元素錯体がこのような性質を有することで、希土類元素錯体を可視光吸収体の原料として好適に用いることができる。希土類元素は励起波長によって発光する場合と熱として消失する場合があるので、吸収が強く発光を有しない波長を選択することが望ましい。具体的にはネオジムの場合には波長580nmや740nmの吸収、プラセオジムの場合には波長440nmや590nmの吸収は、吸収係数が高い上に可視光領域に発光が観察されないので、可視光吸収体に適している。 It is also preferable that the rare earth element complex does not emit light in the wavelength region of visible light. The fact that light emission does not occur in the wavelength region of visible light means that excitation corresponding to the energy level in the wavelength region of visible light does not occur due to irradiation with energy rays such as ultraviolet rays. Since the rare earth element complex has such a property, the rare earth element complex can be suitably used as a raw material for a visible light absorber. Rare earth elements may emit light depending on the excitation wavelength or may disappear as heat, so it is desirable to select a wavelength that absorbs strongly and does not emit light. Specifically, in the case of neodymium, absorption at wavelengths of 580 nm and 740 nm, and in the case of placeodium, absorption at wavelengths of 440 nm and 590 nm have a high absorption coefficient and no light emission is observed in the visible light region. Is suitable.
 希土類元素錯体は、該錯体の溶解が可能な有機溶媒、好ましくは揮発性有機溶媒に溶解させて、塗料として用いることができる。本明細書において揮発性有機溶媒とは、沸点が250℃未満であり且つ室温で液状である物質のことである。希土類元素錯体を溶解可能な有機溶媒としては、例えばジクロロメタンなどのハロゲン化飽和脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、メチルエチルケトン及びアセトンなどのカルボニル基を有する炭化水素などが挙げられる。特に、希土類元素錯体の溶解性が高い観点から、ジクロロメタンなどのハロゲン化飽和脂肪族炭化水素を用いることが好ましい。有機溶媒が揮発性有機溶媒である場合には、該揮発性有機溶媒に希土類錯体を溶解させることで、該希土類錯体を含む塗料を用いた該希土類錯体の塗膜の形成が容易になる。 The rare earth element complex can be used as a coating material by being dissolved in an organic solvent capable of dissolving the complex, preferably a volatile organic solvent. As used herein, a volatile organic solvent is a substance having a boiling point of less than 250 ° C. and being liquid at room temperature. Examples of the organic solvent capable of dissolving the rare earth element complex include halogenated saturated aliphatic hydrocarbons such as dichloromethane, aromatic hydrocarbons such as toluene and xylene, and hydrocarbons having a carbonyl group such as methyl ethyl ketone and acetone. In particular, from the viewpoint of high solubility of the rare earth element complex, it is preferable to use a halogenated saturated aliphatic hydrocarbon such as dichloromethane. When the organic solvent is a volatile organic solvent, dissolving the rare earth complex in the volatile organic solvent facilitates the formation of a coating film of the rare earth complex using a coating material containing the rare earth complex.
 希土類元素錯体を含む塗料には、必要に応じ他の成分を含有させることもできる。例えば前記の揮発性有機溶媒に可溶であり且つ被膜形成能を有する高分子化合物、該塗料中での希土類元素錯体の分散性を向上させる剤、及び該塗料から形成される被膜の強度を高め得る各種の添加剤などが挙げられる。 The paint containing the rare earth element complex may contain other components if necessary. For example, a polymer compound that is soluble in the volatile organic solvent and has a film-forming ability, an agent that improves the dispersibility of a rare earth element complex in the paint, and an agent that enhances the strength of the film formed from the paint. Examples include various additives to be obtained.
 希土類元素錯体を含む塗料を用いて光吸収体を得ることができる。例えば希土類元素錯体を含む塗料をガラス等の可視光の波長領域において無色透明な材料の表面に塗布することで、該希土類元素錯体を含む塗膜からなる可視光の吸収体を形成することができる。この吸収体は可視光の波長領域の少なくとも一部に吸収を有するものであり、更に可視光の波長領域に発光を示さないものであるから、この吸収体を光学フィルタやバンドパスフィルタとして用いることができる。この場合、可視光の吸収体である塗膜の厚さを50μm以上1000μm以下に設定することが、光学フィルタとしての機能を十分に発揮し得る点から好ましい。希土類元素錯体を含む塗料から形成された塗膜からなる吸収体は、強固であり、耐熱性及び耐候性が高く、しかも希土類元素イオン特有の狭波長領域を吸収するものである。しかも希土類元素錯体は塗料の形態になっているので、該希土類元素錯体を任意の場所、例えば三原色のブラックマトリックスなど複雑な形状をした部位や、光ファイバなど微細な部位へ容易に施すことが可能であり、それによって当該部位において不要な光を容易に除去することができる。 A light absorber can be obtained by using a paint containing a rare earth element complex. For example, by applying a coating material containing a rare earth element complex to the surface of a colorless and transparent material in the wavelength region of visible light such as glass, a visible light absorber composed of a coating film containing the rare earth element complex can be formed. .. Since this absorber has absorption in at least a part of the wavelength region of visible light and does not emit light in the wavelength region of visible light, this absorber should be used as an optical filter or a bandpass filter. Can be done. In this case, it is preferable to set the thickness of the coating film, which is an absorber of visible light, to 50 μm or more and 1000 μm or less from the viewpoint that the function as an optical filter can be sufficiently exhibited. The absorber made of a coating film formed of a coating film containing a rare earth element complex is strong, has high heat resistance and weather resistance, and absorbs a narrow wavelength region peculiar to rare earth element ions. Moreover, since the rare earth element complex is in the form of a paint, the rare earth element complex can be easily applied to an arbitrary place, for example, a part having a complicated shape such as a black matrix of three primary colors, or a fine part such as an optical fiber. Therefore, unnecessary light can be easily removed at the site.
 希土類元素錯体を含む塗料から形成された塗膜からなる可視光の吸収体においては、その吸光度を該塗膜の厚みを調整することでコントロールできる。該薄膜からなる可視光の吸収体は、希土類元素イオンに固有の波長領域の光のみを吸収するので、例えばレーザ光などの高密度の光の照射を受けた場合であっても、光学フィルタに従来用いられてきた有機顔料と異なり、分解や劣化が生じにくいという利点がある。この利点は、以下に述べる、希土類元素錯体を高分子材料に練り込んでなる可視光吸収体についても共通する。 In a visible light absorber composed of a coating film formed of a coating film containing a rare earth element complex, its absorbance can be controlled by adjusting the thickness of the coating film. Since the visible light absorber composed of the thin film absorbs only light in the wavelength region peculiar to rare earth element ions, it can be used as an optical filter even when irradiated with high-density light such as laser light. Unlike conventionally used organic pigments, it has the advantage of being less prone to decomposition and deterioration. This advantage is also common to the visible light absorbers described below, which are made by kneading a rare earth element complex into a polymer material.
 希土類元素錯体を高分子材料中に分散させて光吸収体として使用することもできる。高分子材料が可視光の波長領域において無色透明である場合には、光吸収体を可視光吸収体として用いることができる。高分子材料としては各種の熱可塑性樹脂を用いることができる。熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン及びエチレン-α-オレフィン共重合体等のポリオレフィン樹脂、ポリエチレンテレフタレート及びポリブチレンテレフタレート等のポリエステル樹脂、ポリアクリル酸メチル及びポリメタクリル酸メチル等のアクリル樹脂、ポリスチレン及びポリ塩化ビニル等のビニル樹脂、並びにポリカーボネート樹脂が挙げられる。これらの樹脂は一種を単独で用いてもよく、あるいは二種以上を組み合わせて用いてもよい。 It is also possible to disperse a rare earth element complex in a polymer material and use it as a light absorber. When the polymer material is colorless and transparent in the wavelength region of visible light, the light absorber can be used as the visible light absorber. Various thermoplastic resins can be used as the polymer material. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene and ethylene-α-olefin copolymers, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, acrylic resins such as methyl polyacrylate and polymethyl methacrylate, and polystyrene. And vinyl resins such as polyvinyl chloride, and polycarbonate resins. One of these resins may be used alone, or two or more of these resins may be used in combination.
 希土類元素錯体を高分子材料中に分散させてなる可視光吸収体は、その形状に特に制限はない。例えば矩形の板状や円板状の可視光吸収体を用いることができる。この場合、可視光吸収体の厚みは、最も厚い部位において0.005mm以上5mm以下であることが好ましく、0.1mm以上1mm以下であることが更に好ましく、0.2mm以上0.6mm以下であることが一層好ましい。 The shape of the visible light absorber formed by dispersing the rare earth element complex in the polymer material is not particularly limited. For example, a rectangular plate-shaped or disk-shaped visible light absorber can be used. In this case, the thickness of the visible light absorber is preferably 0.005 mm or more and 5 mm or less, more preferably 0.1 mm or more and 1 mm or less, and 0.2 mm or more and 0.6 mm or less at the thickest portion. Is even more preferable.
 希土類元素錯体を高分子材料中に分散させてなる可視光吸収体においては、該可視光吸収体に占める希土類元素の割合が、1質量%以上80質量%以下であることが好ましく、5質量%以上80質量%以下であることが更に好ましく、10質量%以上80質量%以下であることが一層好ましい。希土類元素の割合をこの範囲に設定することで、可視光の吸収を十分に行うことができる。 In the visible light absorber in which the rare earth element complex is dispersed in the polymer material, the ratio of the rare earth element to the visible light absorber is preferably 1% by mass or more and 80% by mass or less, and 5% by mass. It is more preferably 80% by mass or less, and further preferably 10% by mass or more and 80% by mass or less. By setting the ratio of rare earth elements in this range, visible light can be sufficiently absorbed.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, "%" means "mass%".
  〔実施例1〕
 配位子として、上述した式(2)で表される配位子を用いた。この配位子を「42EHBA」と呼ぶ。42EHBAの-COO基にプロトンが結合した物質(この物質を「H42EHBA」と呼ぶ。)7.51gを、300mLのエタノールに溶解して溶液を得た。この溶液へ2mLのアンモニア水(濃度28%)を加えてA液を得た。この操作とは別に、3.59gのNdCl・6HOを100mLのイオン交換水へ溶解してB液を得た。室温下、A液を撹拌しながらB液を滴下した。滴下完了後も2時間にわたり撹拌を継続した。これによって液中に析出物が生成した。この析出物をろ過回収し、少量のエタノールで洗浄し、更に80℃で24時間減圧乾燥した。これによって6.4gの白色固体を得た。
[Example 1]
As the ligand, the ligand represented by the above formula (2) was used. This ligand is called "42EHBA". 42EHBA of -COO - substances proton group bonded (. This material is referred to as "H42EHBA") and 7.51 g, to obtain a solution dissolved in ethanol 300 mL. 2 mL of aqueous ammonia (concentration 28%) was added to this solution to obtain solution A. Apart from this operation, to obtain a solution B by dissolving NdCl 3 · 6H 2 O of 3.59g to ion-exchanged water 100 mL. At room temperature, solution B was added dropwise while stirring solution A. Stirring was continued for 2 hours after the dropping was completed. As a result, a precipitate was formed in the liquid. The precipitate was collected by filtration, washed with a small amount of ethanol, and further dried under reduced pressure at 80 ° C. for 24 hours. This gave 6.4 g of a white solid.
 得られた白色固体を、JMS-T100LP(日本電子株式会社製)によってESI-MS測定した。移動相にはCHCl/MeOHを用いた。その結果、m/z=642.17[Nd(42EHBA)、m/z=892.32[Nd(42EHBA)H]、924.35[Nd(42EHBA)H(CHOH)]が観察され、当該白色固体がNd(42EHBA)錯体であることが確認された。 The obtained white solid was measured by ESI-MS by JMS-T100LP (manufactured by JEOL Ltd.). CHCl 3 / MeOH was used as the mobile phase. As a result, m / z = 642.17 [Nd (42EHBA) 2] +, m / z = 892.32 [Nd (42EHBA) 3 H] +, 924.35 [Nd (42EHBA) 3 H (CH 3 OH )] + Was observed, and it was confirmed that the white solid was an Nd (42EHBA) 3 complex.
 得られたNd(42EHBA)錯体15gを60mLのジクロロメタンに室温(25℃)溶解し塗料を得た。この塗料を、厚さ1mmのガラス板の一面に塗布して塗膜を形成した。この塗膜を室温で乾燥させ、Nd(42EHBA)錯体を含む塗膜を作製した。塗膜断面のSEM像から測定した塗膜の厚さは約600μmであった。 15 g of the obtained Nd (42EHBA) 3 complex was dissolved in 60 mL of dichloromethane at room temperature (25 ° C.) to obtain a coating material. This paint was applied to one surface of a glass plate having a thickness of 1 mm to form a coating film. This coating film was dried at room temperature to prepare a coating film containing an Nd (42EHBA) 3 complex. The thickness of the coating film measured from the SEM image of the cross section of the coating film was about 600 μm.
 この薄膜を可視吸光光度計(株式会社日立製作所製のU-3100)の試料測定面に置き、参照光側にガラス板のみを置いて、900nm~300nmの透過スペクトルを測定した。その結果を図1に示す。同図に示すとおり580nm、750nm及び800nmなどに強い吸収が観察された。したがって、この塗膜は、狭い波長領域のみを吸収する光学フィルタとして使用可能であることが確認された。このように、Nd(42EHBA)錯体は室温で有機溶媒に可溶なものであり、且つその塗膜は可視光の波長領域中で透過領域と吸収領域を有することが確認された。 This thin film was placed on the sample measurement surface of a visible absorptiometer (U-3100 manufactured by Hitachi, Ltd.), and only a glass plate was placed on the reference light side, and the transmission spectrum of 900 nm to 300 nm was measured. The result is shown in FIG. As shown in the figure, strong absorption was observed at 580 nm, 750 nm, 800 nm and the like. Therefore, it was confirmed that this coating film can be used as an optical filter that absorbs only a narrow wavelength region. As described above, it was confirmed that the Nd (42EHBA) 3 complex was soluble in an organic solvent at room temperature, and that the coating film had a transmission region and an absorption region in the wavelength region of visible light.
  〔実施例2〕
 実施例1で得られたNd(42EHBA)錯体15gを60mLのジクロロメタンに溶解し、更にアクリル樹脂(三菱ケミカル社製LR-167)4gを添加して塗料を得た。この塗料を、実施例1と同様の方法で塗膜を形成した。塗膜は強固であり、ガラス板を上下反転させても該塗膜は落下しなかった。この塗膜は、実施例1とほぼ同じ透過スペクトルを有していた。
[Example 2]
15 g of the Nd (42EHBA) 3 complex obtained in Example 1 was dissolved in 60 mL of dichloromethane, and 4 g of an acrylic resin (LR-167 manufactured by Mitsubishi Chemical Corporation) was further added to obtain a coating material. A coating film of this paint was formed in the same manner as in Example 1. The coating film was strong, and the coating film did not fall even when the glass plate was turned upside down. This coating film had substantially the same transmission spectrum as in Example 1.
  〔比較例1〕
 7gの酸化ネオジム粉末を10mLのメチルエチルケトンに分散させ、0.3mmφのジルコニアビーズとともにペイントシェーカで15分間粉砕した。粉砕後の酸化ネオジムの粒径を動的散乱粒度分布計(大塚電子株式会社製のELSZ-2000)で測定したところ0.3μmであった。粉砕後のスラリーに22gのアクリル樹脂を添加して再びペイントシェーカで分散させた。分散液を、バーコータ#36を用いてポリエチレンテレフタレート製のフィルム上に塗布して塗膜を形成した。この塗膜を乾燥させて、厚さ15.5μmの塗膜を得た。この塗膜を焼成して酸化物重量を測定して塗膜中の酸化ネオジムの濃度を測定したところ約13%であった。
[Comparative Example 1]
7 g of neodymium oxide powder was dispersed in 10 mL of methyl ethyl ketone and ground with a paint shaker together with 0.3 mmφ zirconia beads for 15 minutes. The particle size of neodymium oxide after pulverization was measured with a dynamic scattering particle size distribution meter (ELSZ-2000 manufactured by Otsuka Electronics Co., Ltd.) and found to be 0.3 μm. 22 g of acrylic resin was added to the pulverized slurry and dispersed again with a paint shaker. The dispersion was applied onto a polyethylene terephthalate film using a bar coater # 36 to form a coating film. This coating film was dried to obtain a coating film having a thickness of 15.5 μm. When this coating film was fired and the oxide weight was measured to measure the concentration of neodymium oxide in the coating film, it was about 13%.
 この薄膜について実施例1と同様の方法で900nm~300nmの透過スペクトルを測定した。その結果を図2に示す。同図に示すとおり可視光の鋭い吸収は観察されなかった。 For this thin film, the transmission spectrum of 900 nm to 300 nm was measured by the same method as in Example 1. The result is shown in FIG. As shown in the figure, no sharp absorption of visible light was observed.
 以上、詳述したとおり、本発明によれば、光吸収性を有し、室温で容易に塗膜化し得る材料が提供される。 As described in detail above, according to the present invention, there is provided a material that has light absorption and can be easily formed into a coating film at room temperature.

Claims (6)

  1.  プラセオジム、ネオジム、サマリウム、ディスプロシウム、ホルミウム、エルビウム、ツリウム及びイッテルビウムから選ばれる少なくとも一種の希土類元素の錯体が有機溶媒に溶解してなる塗料。 A paint made by dissolving at least one rare earth element complex selected from praseodymium, neodymium, samarium, dysprosium, holmium, erbium, thulium and ytterbium in an organic solvent.
  2.  希土類元素がネオジムである請求項1に記載の塗料。 The paint according to claim 1, wherein the rare earth element is neodymium.
  3.  錯体が下記式(1)で表される配位子を有する請求項1又は2に記載の塗料。
    Figure JPOXMLDOC01-appb-C000001
     式中、環Aは、ベンゼン環又はナフタレン環を表し、Rは炭素数1以上24以下であるアルキル基又は炭素数1以上22以下であるアルコキシ基を表し、mは0以上3以下の数を表す。
    The coating material according to claim 1 or 2, wherein the complex has a ligand represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In the formula, ring A represents a benzene ring or a naphthalene ring, R represents an alkyl group having 1 or more and 24 or less carbon atoms or an alkoxy group having 1 or more and 22 or less carbon atoms, and m represents a number of 0 or more and 3 or less. Represent.
  4.  前記錯体が下記式(2)で表される配位子を有する請求項3に記載の塗料。
    Figure JPOXMLDOC01-appb-C000002
    The coating material according to claim 3, wherein the complex has a ligand represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
  5.  請求項1ないし4のいずれか1項に記載の塗料を用いて得られる光吸収体。 A light absorber obtained by using the paint according to any one of claims 1 to 4.
  6.  可視光の波長領域で発光が生じず、且つ可視光の波長領域の光を吸収する請求項5に記載の光吸収体。 The light absorber according to claim 5, which does not emit light in the wavelength region of visible light and absorbs light in the wavelength region of visible light.
PCT/JP2020/005192 2019-07-29 2020-02-10 Coating material and light absorption body WO2021019808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020524261A JP6942924B2 (en) 2019-07-29 2020-02-10 Light absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019139157 2019-07-29
JP2019-139157 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021019808A1 true WO2021019808A1 (en) 2021-02-04

Family

ID=74228565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005192 WO2021019808A1 (en) 2019-07-29 2020-02-10 Coating material and light absorption body

Country Status (2)

Country Link
JP (1) JP6942924B2 (en)
WO (1) WO2021019808A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151545A (en) * 1994-07-25 1996-06-11 Hitachi Maxell Ltd Fluorescent substance, fluorescent substance composition, latent image-forming member and optically reading device
JPH09249877A (en) * 1996-03-18 1997-09-22 Hitachi Maxell Ltd Infrared fluorescent substance
JP2000086952A (en) * 1998-09-11 2000-03-28 New Japan Chem Co Ltd Luminous ink composition
JP2003105218A (en) * 2001-09-28 2003-04-09 Mitsui Chemicals Inc Azaporphyrin-based dye and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151545A (en) * 1994-07-25 1996-06-11 Hitachi Maxell Ltd Fluorescent substance, fluorescent substance composition, latent image-forming member and optically reading device
JPH09249877A (en) * 1996-03-18 1997-09-22 Hitachi Maxell Ltd Infrared fluorescent substance
JP2000086952A (en) * 1998-09-11 2000-03-28 New Japan Chem Co Ltd Luminous ink composition
JP2003105218A (en) * 2001-09-28 2003-04-09 Mitsui Chemicals Inc Azaporphyrin-based dye and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, CONG ET AL.: "Erbium-ytterbium codoped waveguide amplifier fabricated with solution- processable complex", APPLIED PHYSICS LETTERS, vol. 94, 041119, 29 January 2009 (2009-01-29), pages 1 - 3, XP012118720, ISSN: 0003-6951 *

Also Published As

Publication number Publication date
JP6942924B2 (en) 2021-09-29
JPWO2021019808A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
CN104341000B (en) The preparation method and purposes of mixed nanometer group vib metal oxide particle or its dispersion
KR101494613B1 (en) Rare Earth Metal Complexes That Excite in the Long UV Wavelength Range
Bauer et al. Composites of perylene chromophores and layered double hydroxides: direct synthesis, characterization, and photo‐and chemical stability
AU2016213105B2 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
US10442948B2 (en) Near-infrared absorbing fine particle dispersion liquid and method for producing the same
Gorbunova et al. The crucial role of self-assembly in nonlinear optical properties of polymeric composites based on crown-substituted ruthenium phthalocyaninate
KR20110082452A (en) Quantum dot capped with ionic liquid and the production method thereof
US11292914B2 (en) Compositions and methods and uses relating thereto
Heiba et al. Effect of gamma radiation on structural and optical parameters of Sm 2 O 3: Mn/PVA nanocomposite film
DE102014015151A1 (en) PVD metallic effect pigment powder
Li et al. Zinc-methacrylate passivation enables an efficient and stable perovskite nanocrystal-polymer composite for LED applications
AU2016213103A1 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
WO2014084353A1 (en) Near-infrared absorption filter and image pickup element
Arroyo et al. Persistent luminescence of transparent ZnGa 2 O 4: Cr 3+ thin films from colloidal nanoparticles of tunable size
WO2021019808A1 (en) Coating material and light absorption body
US6527843B1 (en) Fine colored particles and ink jet ink
KR101741134B1 (en) Inorganic Compounds Having Photochromic and Near Infrared Ray Absorbing Properties, Manufacturing Method thereof, Inorganic Compounds Solution Comprising the Inorganic Compounds, and Coating Solution and Film with the Inorganic Compounds
CN113401940B (en) Oxygen vacancy-rich bismuth oxybromide ultrathin nanosheet photochromic material and preparation method and application thereof
US20230303608A1 (en) Dithiolene metal complexes
Liu et al. Multicomponent hybrids of surfactant-capped lanthanide polyoxometalates and ZIF-8 with tuneable luminescence
Moloney et al. Tuning the thermal stability of copper (II) hexacyanoferrate (II) nanoparticles
Xing et al. Controlling the photophysical properties of ionic transition-metal complexes through various counterions
Johnson et al. Effect of rare earth doped perovskite on the structural, linear/nonlinear optical properties of the fabricated PVA/CMC polymeric blends for optical limiting applications
CN113039159A (en) Infrared absorbing material microparticle dispersion and method for producing same
Cui Study and development of near-infrared reflective and absorptive materials for energy saving application

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524261

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846811

Country of ref document: EP

Kind code of ref document: A1