WO2021019702A1 - Automated warehouse optimization system - Google Patents

Automated warehouse optimization system Download PDF

Info

Publication number
WO2021019702A1
WO2021019702A1 PCT/JP2019/029917 JP2019029917W WO2021019702A1 WO 2021019702 A1 WO2021019702 A1 WO 2021019702A1 JP 2019029917 W JP2019029917 W JP 2019029917W WO 2021019702 A1 WO2021019702 A1 WO 2021019702A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
distribution
processing
scenario
logistics
Prior art date
Application number
PCT/JP2019/029917
Other languages
French (fr)
Japanese (ja)
Inventor
基可 高木
尚久 山田
紀郎 横山
卓治 渡部
Original Assignee
トーヨーカネツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーヨーカネツ株式会社 filed Critical トーヨーカネツ株式会社
Priority to JP2019541493A priority Critical patent/JP6677858B1/en
Priority to PCT/JP2019/029917 priority patent/WO2021019702A1/en
Publication of WO2021019702A1 publication Critical patent/WO2021019702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • the present invention relates to, for example, an automated warehouse optimization system in a three-dimensional automated warehouse installed in a distribution center, a learned model for that purpose, a distribution processing scenario estimation system, a distribution processing scenario output system, and a distribution warehouse control system.
  • the warehouse management system (warehouse management system) is used in distribution centers, etc., which are responsible for consolidating products in a predetermined location in the warehouse for primary storage, leaving the storage location according to the order of the shipping destination, and delivering the products to the shipping destination.
  • warehouse Attention is being paid to three-dimensional automated warehouses that simultaneously perform a series of product sorting operations (warehousing / delivery operations, storage operations, etc.) based on the Management System (WMS) (Patent Documents 1 to 4).
  • Japanese Patent No. 6185619 Japanese Patent No. 6231168 International Publication No. WO2013 / 46379 Pamphlet Japanese Patent No. 5508259
  • a three-dimensional automated warehouse is equipped with a warehouse means for storing a case in which goods are stored and a picking station for picking a required quantity of goods from the case discharged from the warehouse means and sending them to a shipping line.
  • the warehousing means is composed of a large number of shelves for storing cases, transportation means for transporting cases and storing them on the shelves, and transport means for warehousing from the shelves. Further, downstream of the picking station, a packing line for packing the picked products by an automatic sealing device or the like may be provided.
  • past warehousing stored in a warehouse management system is performed in order to efficiently perform a series of warehousing operations such as product arrival ⁇ warehousing / storage ⁇ warehousing ⁇ picking ⁇ packing / shipping.
  • the present invention has been made in view of such a problem of the prior art, and in a three-dimensional automatic warehouse managed by a warehouse management system (WMS), a request of a warehouse user (user) (for example, information on the number of waiting items for delivery).
  • WMS warehouse management system
  • An automated warehouse optimization system that optimizes at least one of these information or information obtained by combining two or more pieces of information at a predetermined ratio, a trained model for that purpose, a distribution processing scenario estimation system, and distribution processing.
  • the purpose is to provide a scenario output system and a distribution warehouse control system.
  • the specific physical distribution order is processed by the physical distribution system.
  • Logistics processing scale To optimize information, make the computer function to output information that defines a physical distribution processing scenario that defines how all the devices that make up the physical distribution system should operate over time. This is a trained model for joining the input layer with the scenario as the input value from the past distribution processing scenarios specified for the distribution orders received in a certain period of time, and the input layer with a weighting coefficient.
  • the input layer is provided with one or more intermediate layers and an output layer joined to the intermediate layer with a weighting coefficient, an operation based on the weighting coefficient is performed on the input layer, and the specific distribution process is performed from the output layer.
  • the physical distribution order is processed by the physical distribution system for the physical distribution order received in a certain time.
  • a past logistics processing scenario that defines how all the devices that make up the logistics system should be operated over time in order to optimize specific logistics processing scale information associated with the above, and the past logistics.
  • Throughput information processing time information, power consumption information, delivery completion order number information, number of personnel required for processing, processing number information per unit time of special processing target goods including sale items, obtained as a result of operation by the processing scenario
  • Logistics processing scenario for optimizing a specific physical distribution processing scale information among the said physical distribution processing performance values by using as teacher data in light of the physical distribution processing scale information that is a combination of at least one or two or more of the above.
  • a model generation means for generating a trained model that defines the above, a distribution order processing reception means for accepting all distribution orders in a certain time, and all the distribution orders received by the distribution order processing reception means.
  • the past distribution processing scenario acquisition means for acquiring the past distribution processing scenario that defines the behavior of the device over time, the scale information specifying means for specifying the desired scale information from the distribution processing scale information, and the model.
  • the scale information is optimized from the past distribution processing scenario acquired by the past distribution processing scenario acquisition means and the scale information specified by the scale information specifying means. Therefore, it is provided with a processing means for outputting a distribution processing scenario that defines how all the devices constituting the distribution system should be operated over time.
  • the distribution processing scale information includes throughput information, processing time information, power consumption information, delivery completion order number information, personnel number information required for processing, and special processing target article including sale items per unit time. It may be obtained in light of at least one or a combination of two or more of the processing number information, and the distribution processing scenario may include delivery waiting number information, conveyor movement distance information, and inter-shelf movement waiting. Based on at least one of number information, inter-shelf distance information, stacker crane movement distance information, relocation occurrence number information, warehousing waiting number information, passage distance information, buffer section waiting number information, and allocatable number information. It may be created.
  • the physical distribution processing scenario output system in order to solve the above problems, it relates to machine learning as a scenario for processing physical distribution orders received in a certain time.
  • An estimation model that estimates which of the first or second distribution processing scenarios is more preferable for a specific distribution order by using the distribution processing scale information defined for each processing scenario of the processing scenario as teacher data.
  • a model generation means for generating a model by machine learning, an input means for inputting a specific distribution order, and a distribution order information specifying means for specifying the distribution order regulation information that defines the specific distribution order input by the input means.
  • the physical distribution specified by the physical distribution order information specifying means using the scale information specifying means for specifying the desired scale information from the physical distribution processing scale information and the estimation model generated by the model generating means.
  • a processing means for outputting which of the first and second distribution processing scenarios is more preferable is provided.
  • the first means for obtaining the first physical distribution processing scenario output by the physical distribution processing scenario estimation system related to machine learning as a scenario for processing the physical distribution order received in a certain time and the above-mentioned Based on a rule base, a scale information specifying means for specifying desired scale information from the physical distribution processing scale information and a second physical distribution processing scenario for optimizing the scale information specified by the scale information specifying means are used.
  • the input means for inputting a specific distribution order, and the distribution order input by the input means the first or second distribution processing scenario A determination means for determining which of the above is more preferable is provided.
  • distribution processing is performed based on the past distribution processing scenario defined for the distribution order received in a certain period of time.
  • a physical distribution processing scenario that outputs an optimum physical distribution processing scenario for a specific physical distribution order using a model generation means that generates a trained model for defining a scenario by machine learning and a trained model generated by the model generation means. It includes an output means and a control unit that controls and / or drives a distribution warehouse by using the optimum distribution processing scenario output by the distribution processing scenario output means.
  • the “logistics processing scenario” is information that defines how all material handling equipment related to the physical distribution system is operated over time, and includes a warehousing log and / or a warehousing log. More specifically, as a component of this distribution processing scenario or an input for forming the distribution processing scenario, the number of items waiting to be delivered, the information on the conveyor movement distance, the information on the number of items waiting to move between shelves, and the information on the distance between shelves. , Stacker crane movement distance information, relocation occurrence number information, warehousing waiting number information, passage distance information, buffer section waiting number information, allocationable number information, etc. are included.
  • the "logistics processing scale information" selects what is preferable when, for example, an AI is used to acquire a trained model, or when a scenario related to physical distribution processing is obtained using the acquired learned model. -Information related to the judgment criteria required to specify.
  • throughput means the processing quantity per unit time.
  • a single or a plurality of product items provided with the first identifier are stored, and a second identifier associated with the first identifier is provided.
  • a storage means a single or multiple shelves having one or more stages and for storing the storage means, a single or multiple passages arranged adjacent to the shelves, and the passages provided.
  • a warehouse means having a single or a plurality of transport means for transporting the storage means and storing them on the shelf and also warehousing from the shelf, and a required quantity from the storage means delivered from the warehouse means.
  • a picking means for picking the product item and putting it into a shipping medium provided with a third identifier associated with the first identifier is arranged, and the storage means for which the picking of the product item is completed is provided.
  • the warehouse means includes a picking station for returning to the warehouse means, and the warehouse means controls for associating the first identifier provided for the product item with the second identifier provided for the storage means, and the storage. Control for storing the means for storage on the shelves and control for issuing a warehousing command for unloading the means for warehousing from the warehousing means are performed, and at the picking station, the required quantity of the means is said to be warehousing.
  • An input completion command based on the control of a picking command for picking a product item and the association between the first identifier provided on the picked product item and the third identifier provided on the shipping medium.
  • the control and the control of the return command for returning the storage means for which the picking of the product item is completed to the warehouse means are performed.
  • the automated warehouse optimization system further includes a packing means for taking out the product item put into the shipping medium and packing it with a packing material.
  • the attribute data of the product item handled by the warehouse means and the picking station is obtained by the warehouse management system (WMS). Be managed.
  • WMS warehouse management system
  • the transport means simultaneously combines horizontal and / or vertical movement of the passage. It is a stacker crane type transport means that moves vertically.
  • the warehouse means includes an elevating means for vertically moving the storage means and the shelf. Further, a buffer means for transferring the storage means between the transport means and the elevating means is provided at the end of each stage of the above, and the buffer means includes the transport means and the elevating means. Control is performed to prevent mutual interference between the storage means passed between them.
  • the warehouse means stores a plurality of types of highly correlated product items in advance in the same manner. Control (co-occurrence article aggregation) for storing in the means is performed.
  • the automated warehouse optimization system comprises, in any one of the first to sixth aspects, the plurality of storage means for storing a single or a plurality of highly correlated product items. Control is performed for warehousing in the same shelf.
  • the automated warehouse optimization system has at least one of the control performed by the warehouse means and the control performed by the picking station in any one of the first to seventh aspects.
  • One or more is based on at least one optimization model, including an optimization model generated by artificial intelligence (AI) technology.
  • AI artificial intelligence
  • the automated warehouse optimization system artificially performs at least one of the control performed by the warehouse means and the control performed by the picking station.
  • the evaluation and verification of the control is performed in a simulated environment.
  • the automated warehouse optimization system comprises the optimization model generated by the artificial intelligence (AI) technique and the non-artificial intelligence (non-AI) technique in the eighth or ninth aspect.
  • the automated warehouse optimization system has the artificial intelligence (AI) technique in any of the eighth to tenth aspects prior to the step of generating an optimization model by the artificial intelligence (AI) technique.
  • AI artificial intelligence
  • at least one of the controls performed by the warehouse means and the controls performed by the picking station is based on an optimization model generated by non-artificial intelligence (non-AI) technology. Is done.
  • the determination is made by artificial intelligence (AI) technology or non-artificial intelligence (non-AI) technology.
  • AI artificial intelligence
  • non-AI non-artificial intelligence
  • a single unit product item provided with a first identifier is stored, and a second identifier associated with the first identifier is provided for storage.
  • An individualizing means a single or a plurality of shelves having one or a plurality of stages and storing the individualizing means for storage, a single or a plurality of passages arranged adjacent to the shelves, and the above.
  • a warehouse means provided in a passage and having one or a plurality of transport means for transporting the individualized means for storage and storing them on the shelf and also leaving the shelves, and the storage delivered from the warehouse means.
  • a picking means for picking a product item of the single unit from the individualization means and putting it into a shipping medium provided with a third identifier associated with the first identifier is arranged, and the single unit is arranged.
  • the warehouse means includes a picking station for sending the storage individualizing means for which picking of the product item has been completed to peripheral equipment, and the warehouse means has the first identifier provided for the product item of the single unit and the storage.
  • the picking station controls a picking command for picking a product item of the single unit from the storage individualizing means, and controls the picking command for picking the goods from the warehouse.
  • the control of the input completion command based on the association between the first identifier provided on the product item of one unit and the third identifier provided on the shipping medium, and the picking of the single unit product item are completed.
  • Control of the return command for sending the storage means to the peripheral equipment is performed.
  • At least one or more of the control performed by the warehouse means and the control performed by the picking station is artificial. It is based on at least one optimization model, including an optimization model generated by artificial intelligence (AI) technology.
  • AI artificial intelligence
  • the automated warehouse optimization system of the present invention it is possible to improve the delivery efficiency of goods in a three-dimensional automated warehouse managed by a warehouse management system (WMS).
  • WMS warehouse management system
  • FIG. 1 It is a conceptual diagram of an example of the three-dimensional automated warehouse which concerns on one Embodiment of this invention. It is a perspective view which shows a part of the storage warehouse part of the three-dimensional automated warehouse shown in FIG. It is a block diagram which shows the system configuration of WMS and WCS which manages a three-dimensional automated warehouse shown in FIG. It is a perspective view of an example of the storage case which is stored in the storage warehouse part of the three-dimensional automated warehouse shown in FIG. It is a tray table which shows the association information of the 1st identifier provided in the product item and the 2nd identifier provided in the storage case. It is a warehousing table showing information associating the first identifier provided for the product item with the arrival source.
  • FIG. 1 is a conceptual diagram of an example of a three-dimensional automated warehouse according to the present embodiment
  • FIG. 2 is a perspective view showing a part (one row of shelves) of a storage warehouse section of the three-dimensional automated warehouse shown in FIG.
  • the three-dimensional automated warehouse 1 includes a storage warehouse section (warehouse section) 100, a picking station 200, and a packing section 300.
  • the storage warehouse unit 100 includes a plurality of rows of shelves 10 in which a plurality of stages having storage spaces are arranged along the aisles, and a plurality of passages 20 arranged adjacent to each shelf 10 (the aisles 20 include shelves 10). (Including a mode in which the shelves are sandwiched between the shelves 10) and a transport unit 30 provided in each aisle 20 and moving along the aisle 20.
  • an elevating section 50 which is arranged at the end of each passage 20 and moves the storage case 40 in the vertical direction, and a transport section 30 which is arranged at the end of each stage of the shelf 10.
  • a buffer conveyor (buffer unit) 60 for delivering and receiving the storage case 40 to and from the elevating unit 50 is further provided.
  • the transport unit 30 is, for example, a stacker crane type transport device that simultaneously moves the passage 20 in the horizontal direction and / or the vertical direction, and is a storage case (storage unit) in which a plurality of product items 70 are stored.
  • the 40 is supported by a stretchable arm or the like to be stored in the shelf 10 or discharged from the shelf 10.
  • the attribute data (quantity, date, receipt / shipment destination, storage location, weight, etc.) of all the product items 70 to be sorted in the three-dimensional automatic warehouse 1 is the host computer (or server, cloud, etc.) that collectively manages the warehouse operations. It is managed by a WMS (warehouse management system) 400 equipped with the above and a WCS (warehouse control system) 500 incorporating a computer connected to the host computer of the WMS 400.
  • WMS warehouse management system
  • WCS warehouse control system
  • the WCS500 includes a CPU, main memory, and an external interface, and has a computer connected to the host computer of the WMS400 and a storage connected to the computer via the external interface.
  • Remote operation, communication line, etc. by wireless and / or wired to the material handling equipment (conveying unit 30, elevating unit 50, buffer conveyor 60, etc.), picking station 200, packing unit 300, etc. in the three-dimensional automatic warehouse 1 according to the instruction from Work instructions such as warehousing, transportation, warehousing, picking, and automatic boxing are issued through.
  • a single or a plurality of product items 70 provided with a first identifier 71 made of a barcode are stored inside the storage case 40, and the outer portion of the storage case 40 contains a plurality of product items 70.
  • a second identifier 41 consisting of a barcode that can be associated with the first identifier 71 of the product item 70 is provided.
  • the first identifier 71 is for identifying the product item 70, and is different for each product.
  • the second identifier 41 is for identifying the storage case 40, and is different for each storage case 40.
  • the first identifier 71 and the second identifier 41 may be identifiers other than barcodes, such as a two-dimensional code and RFID.
  • the distribution center equipped with the three-dimensional automated warehouse 1 is equipped with a truck berth where product items 70 from each manufacturer arrive.
  • a tray-making operation is performed to unpack each product item 70 from a packaging container such as a cardboard box and store it in the storage warehouse section 100.
  • the tray-making work is a process of associating the first identifier 71 attached to each product item 70 with the second identifier 41 attached to the storage case 40. This is the association described above.
  • the product item 70 is a stationery item, it is divided into one that is stored in the storage case 40 one by one like a stapler and one that is stored in a box unit like a pencil.
  • the second identifier 41 attached to the storage case 40 is read when the storage case 40 passes in front of the barcode reader provided in the tray-making work place.
  • a known technique such as irradiating an LED light source and receiving the reflected light with a photodiode is used.
  • the first identifier 71 attached to the product item 70 is read by a handy scanner or the like provided at the product loading location of the truck berth every time the product item 70 is put into the storage case 40. Then, the computer of WCS500 creates a tray table shown in FIG. 5 based on the read first identifier 71, its quantity, and the second identifier 41, and stores the tray table in the memory area for the tray table in the storage.
  • the names and numbers of the product items 70 stored in each storage case 40 are grasped by the WCS500.
  • the tray making work in addition to the case where the product item 70 is put into the empty storage case 40, if there is a product putting space in the storage case 40 in which the same product item 70 has already been put, the storage is performed. After the use case 40 is stored in the shelf 10, it may be transported to the tray-making work place.
  • the WCS500 has a second identifier 41, a type and quantity of product items 70, a number, a stage number, a warehousing time, etc. of the shelf 10 of the storage warehouse unit 100, which are required when performing automatic warehousing / delivery work in the storage warehouse unit 100.
  • This storage data table is stored in the storage data table memory area in the storage of the WCS500, and the information is updated as necessary at the time of delivery, picking work, packing completion, and the like.
  • These information (including log information) recorded in the stored data table can be used as basic data for machine learning by artificial intelligence (AI) described later.
  • AI artificial intelligence
  • the CPU of the computer of the WCS500 is based on the address information including the shelf number, the stage number, the passage number, the storage time, etc. of the stored storage case 40.
  • the stored data table is updated, and the updated stored data table is stored in the stored data table memory area in the storage.
  • the storage case 40 stored in the storage warehouse unit 100 is returned to the tray-making work place and an additional product item 70 is added, or when the product item in the storage case 40 delivered from the storage warehouse unit 100 is added.
  • the storage case 40 is returned to the storage warehouse unit 100 after a part of the 70 is picked at the picking station 200, the information in the traying table is also updated by the CPU of the computer of the WCS500.
  • the storage case 40 for which the tray-making work described above has been completed is transported to the storage warehouse section 100 by the storage conveyor 600 (see FIG. 2). Since one end of the warehousing conveyor 600 that connects the tray-making work place and the storage warehouse unit 100 is arranged above the picking station 200, in FIG. 1, in order to make the configuration of the picking station 200 easier to see, warehousing The illustration of the conveyor 600 is omitted.
  • the warehousing order includes a warehousing table associated with the name, quantity, warehousing time, etc. of the product item 70.
  • the CPU of the WCS500 grasps the name and quantity of the product item 70 to be stored in the storage warehouse unit 100 by the above storage order.
  • the CPU of the WCS500 compares the storage data table and the warehousing table based on a predetermined work instruction program stored in the hard disk drive, creates the optimum warehousing order information, and creates the material handling equipment (conveyor unit) of the storage warehouse unit 100. 30, buffer conveyor 60, elevating part 50, etc.) are given work instructions.
  • the warehousing order information is a route and an order for determining in which order and in which frontage each storage case 40 storage case 40 is stored.
  • the CPU of the WCS500 refers to the warehousing table and the traying table, confirms which storage case 40 each product item 70 is stored in, and then compares the storage information table and the traying table. Then, it is determined in which stage of which shelf 10 each storage case 40 is stored.
  • the address information of the storage case 40 that has already been stored is read from the storage data table, and the shelf 10 with a small number of storage cases 40 is read. Make sure to store in the stage. At that time, it is preferable to store the items in order from the shelf 10 stage closest to the storage conveyor 600.
  • Each storage case 40 for which a warehousing order has been issued in this way moves to the stage of the shelf 10 determined in order according to the operation of the material handling device and is warehousing. Then, the WCS500 updates the storage data table according to the storage data (address information of the storage case 40, storage time, etc.).
  • the number of storage cases 40 already stored in the shelf 10 has been focused on. Instead, attention may be paid to the occupancy rate of the storage case 40 with respect to the shelf 10 per unit time.
  • the automated warehouse optimization system of the present invention includes control in the tray-making process described above, control of material handling equipment (conveyor unit 30, buffer conveyor 60, elevating unit 50, etc.) in the storage warehouse unit 100, picking process and / or packing described later.
  • AI artificial intelligence
  • Adopt a method to use both properly as needed.
  • the rule-based program is stored in the storage of WCS500.
  • the artificial intelligence (AI) program is stored in a hard disk drive or the like of a server which may be installed in a place different from the WCS500, and is connected to the computer of the WCS500 via a communication unit.
  • the artificial intelligence (AI) program may be stored in the WCS500 storage independently of the rule-based program.
  • each of the rule base and artificial intelligence (AI) operates with a correct judgment as a material handling device in the storage warehouse unit 100, an operation device for operating various devices in the picking station 200 and the packing unit 300, and the operation. It is composed of a judgment device that makes a judgment as to whether or not to do so.
  • the determination device has predetermined priorities such as shortest time delivery, shortest distance delivery, minimum power, priority delivery information for preferentially issuing a specific product that may be predetermined, and the number of product orders to be delivered.
  • Optimal solution based on priority items selected from picking staffing, throughput (processing amount per unit time), sale (selling information and campaigns specific to days of the week, seasons, etc.), degree of response to requests, trends, etc. It is determined whether the output is a rule-based operating device or an artificial intelligence (AI) operating device.
  • AI artificial intelligence
  • iterative learning of data about a specific event finding and modeling features (regularity and relationships) from the results, and based on the optimum solution obtained from this model. It means all methods that use learning algorithms to make judgments and predictions, not only machine learning that analyzes data input to a computer based on algorithms such as supervised learning, unsupervised learning, and deep learning, but also machines. It is a concept that includes deep learning, which is an extension of learning.
  • Deep learning is a method of learning data using a neural network modeled on human nerve cells.
  • a neural network is a computer model of nerve cells in the human brain. It is an input layer (input), a hidden layer (also called an intermediate layer, which can be multi-layered), and an output layer (output). Consists of. That is, deep learning is defined as machine learning using a multi-layered neural network in which many hidden layers exist. There are many types such as convolutional neural networks, recurrent neural networks, and long / short-term storage unit neural networks.
  • AI artificial intelligence
  • K-means the Bayesian network method
  • Kalman filter method the support vector machine method
  • decision tree method the like.
  • FIG. 7 is a conceptual diagram showing an example of the optimization model generation method according to the present embodiment.
  • the shortest movement time (time saving model) of the material handling equipment is generated by the rule base created based on the above data, etc., and input is performed based on the above data, etc.
  • An example is shown in which a variable (explanatory variable) is extracted and the shortest travel time (time reduction model) of a material handling device is generated by artificial intelligence (AI) technology such as deep learning.
  • AI artificial intelligence
  • each control may be optimized individually, or the entire control may be optimized collectively. Further, as to which control is prioritized and optimized, a person may give a weight to each control according to the situation, or the system may give a weight automatically converted from a parameter describing the situation. ..
  • co-occurrence article aggregation for example, if you order a pencil, you will also order an eraser (if the rate is above a certain level, you will find pairing and specify the pairing rules).
  • SOM Co-occurrence's self-organizing map
  • SOM means, for example, to generate a cluster related to co-occurrence articles, and is described in detail in the following document, for example (Kohonen T. Self-organizing formation of topologically correct). feature maps. Biol. Cybern., 43, 1982, 59-69.).
  • the processing amount per unit time of the transport unit 30, the elevating unit 50, and the buffer conveyor 60 is regarded as a route search problem. It is conceivable to perform the calculation of the shortest path search by a simple combination logic method or the traveling salesman problem method using a Hopfield network or the like.
  • the importance of the parameters that describe the situation can be set by a human or the system, and the importance of the interdependent optimization parameters can be determined.
  • the parameter value 1 of interest optimizes the optimization control item A but not the optimization control item B
  • the parameter value 2 of interest optimizes the optimization control item A.
  • the importance of the optimization control item A is high, a method of completely ignoring the optimization of the optimization control item B and adopting the parameter value 1 or considering each parameter as an n-dimensional input and energy. It is conceivable to use a machine learning method that converges to the minimum point, or a supervised machine learning method that shows desirable results for humans.
  • the artificial intelligence (AI) and the rule base are the number of storage cases 40 stored in each shelf 10 and the storage for each shelf 10. Considering the occupancy rate of the case 40, reading the combination of the product items 70 that can be sold together from the past shipping history, and arranging the plurality of types of product items 70 that are considered to be sold together on the same shelf 10. At least one of them or a combination thereof may be considered.
  • a plurality of types of product items 70 which are generally handled in stores of the same industry, such as a product group for bookstores, a product group for pharmacies, and a product group for electric stores, are aggregated into the same or close shelves 10 as product groups in the same category. Deploy. This is because it is easy to aggregate for the same GTP destination (it can be said that it is an example of co-occurrence goods aggregation), or in consideration of the best-selling products for each season, the best-selling product items 70 are distributed on a plurality of shelves 10. The product items 70, which are often sold together with the distributed hot-selling product items 70, are placed on the same shelf 10. The work load can be leveled.
  • AI artificial intelligence
  • the warehousing order information derived by artificial intelligence (AI) can be adopted.
  • the number of sets different from the set predicted to sell together with artificial intelligence (AI) falls below 50%, it is possible to switch to adopt the warehousing order information derived by the rule base from the next day. ..
  • the prediction of the product set that can be sold together derived by artificial intelligence (AI) is continued, for example, the actual value per unit time such as one day. If 50% or more of the products sold as a set are the product set predicted by artificial intelligence (AI), the warehousing order information derived by artificial intelligence (AI) will be adopted from the next day. Switch to.
  • AI artificial intelligence
  • the artificial intelligence predicts the warehousing, and when there are few warehousing orders and warehousing orders, the position of the storage case 40 is set so that the number of processing of the warehousing order per unit time during busy hours increases.
  • the storage case 40 may be moved to a position where it can be easily delivered at the time of delivery.
  • a product group of the same category is used for each product handled in stores of the same industry, such as a product group for bookstores, a product group for pharmacies, and a product group for electric stores, and the products are grouped on the same or close shelves 10. Even if they are arranged, they may be arranged in a distributed manner during repeated warehousing and delivery. In that case, for example, a group of products dispersed at night when warehouse work is not performed may be aggregated on the same or close shelves 10.
  • the storage case 40 containing the product item 70 is taken out from the shelf 10 by the transport unit 30, and the buffer conveyor 60 and the elevating unit 50 are removed. It is transported to the picking station 200 via.
  • the WMS400 When the product item 70 is delivered from the storage warehouse unit 100, the WMS400 first issues a delivery order for the product item 70, which is transmitted to the picking station 200 via the computer of the WCS500.
  • the delivery order includes the delivery information associated with the product item 70, its quantity, the delivery time, and the delivery destination.
  • the CPU of the WCS500 compares the storage information and the delivery information according to the default work instruction program stored in the storage, creates the optimum delivery order information, and creates the material handling equipment (conveyor unit 30, buffer conveyor 60, elevating unit 50, etc.). ) Is operated.
  • the transport unit 30 is moved to. Then, the transport unit 30 that has arrived at the storage case 40, which is the target of delivery, grips the storage case 40 and transfers it to the buffer conveyor 60.
  • the artificial intelligence (AI) is issued (for the day / morning / one hour) so that the number of processing orders per unit time can be maximized, for example, based on the issue history for the past week. Create a program or shipping order information. And if the same shipping trend continues in the past week, artificial intelligence (AI) will either improve the number of processing orders per unit time or maintain a high number of processing orders per unit time.
  • the issue information generated by the rule base is adopted instead of the issue information generated by artificial intelligence (AI).
  • AI artificial intelligence
  • the WCS500 associates the address information consisting of the shelves 10 and the column numbers with the information of the storage case 40, and stores the storage case 40.
  • the fact that the case 40 has been delivered is recorded in the storage data table together with the date and time, and the storage data table is updated.
  • the picking unit 90 such as a worker or a robot displays a display screen displaying the product items 70 in the storage case 40 and their quantities.
  • the product item 70 is picked according to the instructions of the above and put into an empty shipping case (shipping medium) 80 (or a packing material such as corrugated cardboard) flowing through the shipping conveyor 91.
  • the picking unit 90 touches the picking completion button displayed on the display screen.
  • the WCS 500 transports the shipping case 80 toward the packing unit 300 according to the default work instruction program stored in the storage.
  • the outer surface of the shipping case 80 is provided with a third identifier associated with the first identifier 71 of the product item 70 to be put into the shipping case 80.
  • the third identifier includes information such as customer information and store information of the shipping destination, the name and name of the product item 70, and the date and time of delivery.
  • the ID may be attached to the outer surface of the case, but the ID may be printed on the delivery note and included in the package, or the ID may be printed on the label and attached.
  • the WCS 500 associates these information described in the third identifier of the shipping case 80 with the information of the first identifier 71 of the product item 70 put into the shipping case 80, and the shipping case 80 is packed.
  • the fact that the product has been transported to the unit 300 is recorded in the storage data table together with the date and time, and the storage data table is updated.
  • the storage cases 40 in which the product items 70 are picked at the picking station 200 are transported to the storage warehouse unit 100 again by the buffer conveyor 60 and the elevating unit 50. It is returned to the shelf 10 by the transport unit 30. In this case, the place where the storage case 40 is returned does not have to be the original place, and the vacant storage space of any shelf 10 is used (free location method).
  • the storage case 40 which has been emptied after the picking of the product item 70 is completed, is transported to the tray-making work place upstream of the storage warehouse unit 100, and is stored after the newly arrived product item 70 is stored. It is conveyed to the storage warehouse section 100 through the conveyor 600.
  • the picking station 200 controls the picking command for picking the required quantity of the product item 70 from the storage case 40 according to the instruction of the warehouse control system (WCS) 500, and the picked product item 70.
  • Control of the input completion command based on the association between the first identifier 71 provided and the third identifier provided in the shipping case 80, and the storage case 40 in which the picking of the product item 70 is completed is sent to the storage warehouse unit 100.
  • Control of the return command for returning, pairing control of picking units 90 having different skill levels, and the like are performed.
  • AI Artificial intelligence
  • the product item 70 is taken out from the shipping case 80 sent from the picking station 200, packed in a packing material such as a cardboard box, and then subjected to shipping and delivery processing.
  • a packing material such as a cardboard box
  • the shipping case 80 sent to the packing unit 300 includes shipping information read from the storage of the WCS 500, product items 70 and their quantities in the shipping case 80, customer information and store information of the shipping destination, and shipping. It is checked whether there is any discrepancy with the information such as the date and time, and then the product item 70 in the shipping case 80 is taken out and packed by an automatic sealing device or the like.
  • the WCS500 records the above-mentioned packing process information in the storage data table and updates the storage data table.
  • AI Artificial intelligence
  • the packing unit 300 automatically cuts the packing base paper such as cardboard according to the size of the product item 70.
  • the artificial intelligence (AI) determines whether to automatically cut the packing base paper according to the delivery order of the product item 70 or to automatically cut the packing base paper in units of the size of the packing base paper.
  • the automated warehouse optimization system of the present invention compares an optimization model generated by artificial intelligence (AI) with an optimization model generated by a rule base (a program created based on a rule thought by humans). However, it includes a method to use both properly as needed.
  • AI artificial intelligence
  • the shortest travel time may be derived by a meta-optimization method that compares and evaluates an optimization model derived from intelligence (AI) and an optimization model derived from a rule base).
  • meta-optimization may be performed by determining an evaluation function and adopting the parameters of each lower optimization method that gives the optimum solution.
  • artificial intelligence may be performed by supervised machine learning or the like in which a human teaches whether or not the result is optimal.
  • a control optimization model with artificial intelligence should the optimization model be generated with artificial intelligence (AI) or optimized with non-artificial intelligence (non-AI) technology such as rule base? It is determined whether the model should be generated, and if it is determined that the optimized model should be generated by non-artificial intelligence (non-AI), the control of the Matehan equipment performed by the storage warehouse unit 100, the picking station 200 and the packing At least one or more of the various controls performed by the unit 300 may be performed based on an optimization model generated by a non-artificial intelligence (non-AI) technique.
  • AI artificial intelligence
  • non-AI non-artificial intelligence
  • the determination of whether the optimization model should be generated by artificial intelligence (AI) or the optimization model by non-artificial intelligence (non-AI) is determined by artificial intelligence (AI) different from the above artificial intelligence (AI). ) Or non-artificial intelligence (non-AI).
  • the three-dimensional automated warehouse is provided by performing at least a part of the sorting work of the product item 70 performed in the three-dimensional automated warehouse according to the optimization model generated by artificial intelligence (AI). It is possible to improve the delivery efficiency of products at distribution centers and the like.
  • AI artificial intelligence
  • the automated warehouse optimization system according to the present invention, it is possible to obtain an overall optimal solution in physical distribution as well as a physical distribution center equipped with a three-dimensional automated warehouse. In addition, the rationalization of the entire product distribution can be promoted.
  • the storage warehouse unit 100 for storing the product item 70 in the shelf 10 and discharging the product item 70 from the shelf 10 by using the stacker crane type transport unit 30, the buffer conveyor 60, and the elevating unit 50 will be described.
  • the method of transporting the product item 70 in the storage warehouse unit 100 is not limited to this, and for example, the product item 70 can be stored in the shelf 10 using only the stacker crane type transport unit 30, or the shelf 10 You may leave the warehouse from.
  • the product item 70 may be loaded and unloaded using a transport means other than the stacker crane method.

Abstract

The present invention comprises: a model generation means that generates, through machine learning, a learned model for defining a logistics process scenario for optimizing specific pieces of logistics process scale information from among logistics process score values, there being used, as teaching data, a past logistics process scenario that chronologically defines how all devices constituting a logistics system should operate in order to optimize, for logistics orders received in a given period, specific logistics process scale information accompanying processing of the logistics orders by the logistics system, and there also being used, as the teaching data, referenced logistics process scale information obtained by combining at least one from among throughput information, process time information, power consumption information, delivered-order number information, information pertaining to the number of personnel required for a process, and process number information per unit time for a special article to be processed that includes a cell component, these pieces of information being obtained as a result of operation according to the past logistics process scenario; a logistics order process reception means that receives all logistics orders in the given period; a past logistics process scenario acquisition means that acquires the past logistics process scenario that defined chronological behavior pertaining to all of the devices with respect to the logistics orders received by the logistics order process reception means; a scale information specification means by which desired scale information is specified from among the logistics process scale information; and a processing means that, on the basis of the past logistics process scenario acquired by the past logistics process scenario acquisition means and scale information specified by the scale information specification means, outputs a logistics process scenario using the learned model generated by the model generation means, the logistics process scenario chronologically defining how all of the devices constituting the logistics system should operate in order to optimize the scale information.

Description

自動化倉庫最適化システムAutomated warehouse optimization system
 本発明は、例えば物流センター等に設置される立体自動倉庫における自動化倉庫最適化システム、より詳しくはそのための学習済みモデル、物流処理シナリオ推定システム、物流処理シナリオ出力システム、並びに物流倉庫制御システムに関する。 The present invention relates to, for example, an automated warehouse optimization system in a three-dimensional automated warehouse installed in a distribution center, a learned model for that purpose, a distribution processing scenario estimation system, a distribution processing scenario output system, and a distribution warehouse control system.
 近年、物流の分野においては、必要な時に必要な商品を手にしたいという要望が産業界だけでなく一般消費者の間でも強くなっているため、急速な物流合理化が推進されている。 In recent years, in the field of logistics, the desire to obtain the necessary products when needed has become stronger not only in industry but also among general consumers, so rapid rationalization of logistics is being promoted.
 この中でも、商品を倉庫内の所定の場所に集約して一次保管し、出荷先の注文に応じて保管場所から出庫して出荷先に配送する業務を担う物流センター等においては、倉庫管理システム(Warehouse
Management System:WMS)に基づいて商品の一連の仕分け作業(入出庫作業、保管作業等)を同時に並行して行う立体自動倉庫が注目されている(特許文献1~4)。
Among these, the warehouse management system (warehouse management system) is used in distribution centers, etc., which are responsible for consolidating products in a predetermined location in the warehouse for primary storage, leaving the storage location according to the order of the shipping destination, and delivering the products to the shipping destination. Warehouse
Attention is being paid to three-dimensional automated warehouses that simultaneously perform a series of product sorting operations (warehousing / delivery operations, storage operations, etc.) based on the Management System (WMS) (Patent Documents 1 to 4).
特許第6185619号公報Japanese Patent No. 6185619 特許第6231168号公報Japanese Patent No. 6231168 国際公開第WO2013/46379号パンフレットInternational Publication No. WO2013 / 46379 Pamphlet 特許第5508259号公報Japanese Patent No. 5508259
 一般に、立体自動倉庫は、商品が収納されたケースを保管する倉庫手段と、倉庫手段から出庫されたケースから必要な数量の商品をピッキングして出荷ラインに送るピッキングステーションとを備えている。 Generally, a three-dimensional automated warehouse is equipped with a warehouse means for storing a case in which goods are stored and a picking station for picking a required quantity of goods from the case discharged from the warehouse means and sending them to a shipping line.
 倉庫手段は、ケースを保管する多数の棚や、ケースを搬送して棚に保管すると共に棚から出庫する搬送手段等で構成されている。また、ピッキングステーションの下流には、ピッキングした商品を自動封函装置等で梱包する梱包ラインが設けられている場合もある。 The warehousing means is composed of a large number of shelves for storing cases, transportation means for transporting cases and storing them on the shelves, and transport means for warehousing from the shelves. Further, downstream of the picking station, a packing line for packing the picked products by an automatic sealing device or the like may be provided.
 従来、この種の立体自動倉庫では、商品の入荷→入庫・保管→出庫→ピッキング→梱包・出荷といった一連の倉庫業務を効率よく行うために、倉庫管理システム(WMS)に格納された過去の入出庫動作ログや商品アイテムの属性データ(数量、日付、入出荷先、保管場所、重量等)に基づいて入出庫の動きをシミュレートし、このシミュレーションモデルを用いて出庫効率の向上のための最適化モデルを生成する作業が行われている。 Conventionally, in this type of three-dimensional automated warehouse, past warehousing stored in a warehouse management system (WMS) is performed in order to efficiently perform a series of warehousing operations such as product arrival → warehousing / storage → warehousing → picking → packing / shipping. Simulates warehousing / delivery movements based on warehousing operation logs and attribute data (quantity, date, warehousing / shipping destination, storage location, weight, etc.) of product items, and uses this simulation model to optimize shipping efficiency. Work is being done to generate the conversion model.
 しかしながら、近年は、商品アイテムの属性データの多様化、複雑化等に伴い、倉庫管理システム(WMS)のロケーション管理が一層煩雑になっているために、出庫効率の向上のための最適化モデルを生成するのに要する計算量が過大になり、人間が考えたルールに基づいて作成したプログラム(ルールベース)で動くコンピュータを利用した最適化モデルの生成が困難になっている。 However, in recent years, with the diversification and complexity of attribute data of product items, location management of the warehouse management system (WMS) has become more complicated, so an optimization model for improving delivery efficiency has been adopted. The amount of calculation required to generate it becomes excessive, and it becomes difficult to generate an optimized model using a computer that runs on a program (rule base) created based on rules that humans have thought of.
 例えば、倉庫手段の棚に保管された商品を搬送手段で出庫する作業について見ると、棚までのアクセス経路や商品をピッキングする順序の最適化をルールベースに基づく最適化モデルに従って行う場合、必ずしも搬送手段の動作が最適であるとは限らなくなってきている。また、稼働中の立体自動倉庫でルールベースに基づく最適化モデルを改善しようとすると、装置の運用を停止したり、保管商品を棚から撤去するなどの大掛かりな作業が必要となる。 For example, looking at the work of delivering goods stored on the shelves of warehouse means by means of transportation, when optimizing the access route to the shelves and the order of picking goods according to the optimization model based on the rules, it is not always the case of transportation. The behavior of the means is not always optimal. In addition, in order to improve the optimization model based on the rule base in the three-dimensional automated warehouse in operation, large-scale work such as stopping the operation of the device and removing the stored products from the shelves is required.
 本発明は、このような従来技術の課題に鑑みてなされたものであり、倉庫管理システム(WMS)により管理される立体自動倉庫において、倉庫利用者(ユーザ)の要望(たとえば、出庫待機数情報、コンベア移動距離情報、棚間移動待機数情報、棚間距離情報、スタッカクレーン移動距離情報、配置替発生数情報、入庫待機数情報、通路距離情報、バッファ部待機数情報、引当可能数情報のうちの少なくともいずれか一つの情報もしくは二つ以上の情報を所定の割合で組み合わせて得られる情報)を最適化する自動化倉庫最適化システム、さらにそのための学習済みモデル、物流処理シナリオ推定システム、物流処理シナリオ出力システム、並びに物流倉庫制御システムを提供することを目的とする。 The present invention has been made in view of such a problem of the prior art, and in a three-dimensional automatic warehouse managed by a warehouse management system (WMS), a request of a warehouse user (user) (for example, information on the number of waiting items for delivery). , Conveyor movement distance information, inter-shelf movement waiting number information, inter-shelf distance information, stacker crane moving distance information, relocation occurrence number information, warehousing waiting number information, passage distance information, buffer section waiting number information, allocationable number information An automated warehouse optimization system that optimizes at least one of these information or information obtained by combining two or more pieces of information at a predetermined ratio, a trained model for that purpose, a distribution processing scenario estimation system, and distribution processing. The purpose is to provide a scenario output system and a distribution warehouse control system.
 上記の課題を解決するために、本発明の代表的な態様に係る学習済みモデルにおいては、一定時間において受け付けられた物流オーダーに対して、前記物流オーダーを物流システムによって処理することに伴う特定の物流処理尺度情報を最適化するために、前記物流システムを構成する全機器を経時的にどのように動作させるべきかを規定する物流処理シナリオを定義づける情報を出力するように、コンピュータを機能させるための学習済みモデルであって、一定時間において受け付けられた物流オーダーに対して規定された過去の物流処理シナリオから該シナリオを入力値とする入力層と、前記入力層に対して重み付け係数をもって接合された1以上の中間層と、前記中間層に対して重み付け係数をもって接合された出力層とを備え、前記入力層に対し、重み付け係数に基づく演算を行い、前記出力層から前記特定の物流処理尺度情報を最適化するための物流処理シナリオを定義づける情報を出力するよう、コンピュータを機能させる。 In order to solve the above-mentioned problems, in the trained model according to the typical aspect of the present invention, for the physical distribution order received in a certain time, the specific physical distribution order is processed by the physical distribution system. Logistics processing scale To optimize information, make the computer function to output information that defines a physical distribution processing scenario that defines how all the devices that make up the physical distribution system should operate over time. This is a trained model for joining the input layer with the scenario as the input value from the past distribution processing scenarios specified for the distribution orders received in a certain period of time, and the input layer with a weighting coefficient. The input layer is provided with one or more intermediate layers and an output layer joined to the intermediate layer with a weighting coefficient, an operation based on the weighting coefficient is performed on the input layer, and the specific distribution process is performed from the output layer. Make the computer function to output information that defines the logistics processing scenario for optimizing the scale information.
 また、同様に、上記の課題を解決するために、本発明の代表的な態様に係る物流処理シナリオ推定システムにおいては、一定時間において受け付けられた物流オーダーに対して前記物流オーダーを物流システムによって処理することに伴う特定の物流処理尺度情報を最適化するために、前記物流システムを構成する全機器を経時的にどのように動作させるべきかを規定した過去の物流処理シナリオと、前記過去の物流処理シナリオによって動作した結果得られる、スループット情報、処理時間情報、消費電力情報、出庫完了オーダー数情報、処理に要した人員数情報、セール品を含む特殊処理対象物品の単位時間当たりの処理数情報の少なくともいずれか一つあるいは二つ以上を組み合わせた物流処理尺度情報に照らしてとを教師データとして用い、前記物流処理成績値のうちの特定の物流処理尺度情報を最適化するための物流処理シナリオを規定する学習済モデルを機械学習により生成するモデル生成手段と、一定時間におけるすべての物流オーダーを受け付ける物流オーダー処理受付手段と、前記物流オーダー処理受付手段が受け付けた前記物流オーダーに対して前記全機器に係る経時的な挙動を規定した過去物流処理シナリオを取得する過去物流処理シナリオ取得手段と、前記物流処理尺度情報の中から所望される尺度情報が特定される尺度情報特定手段と、前記モデル生成手段により生成された学習済モデルを用いて、前記過去物流処理シナリオ取得手段が取得した前記過去物流処理シナリオと前記尺度情報特定手段によって特定された尺度情報とから、前記尺度情報を最適化するために前記物流システムを構成する全機器を経時的にどのように動作させるべきかを規定する物流処理シナリオを出力する処理手段とを備える。 Similarly, in order to solve the above-mentioned problems, in the physical distribution processing scenario estimation system according to the typical aspect of the present invention, the physical distribution order is processed by the physical distribution system for the physical distribution order received in a certain time. A past logistics processing scenario that defines how all the devices that make up the logistics system should be operated over time in order to optimize specific logistics processing scale information associated with the above, and the past logistics. Throughput information, processing time information, power consumption information, delivery completion order number information, number of personnel required for processing, processing number information per unit time of special processing target goods including sale items, obtained as a result of operation by the processing scenario Logistics processing scenario for optimizing a specific physical distribution processing scale information among the said physical distribution processing performance values by using as teacher data in light of the physical distribution processing scale information that is a combination of at least one or two or more of the above. A model generation means for generating a trained model that defines the above, a distribution order processing reception means for accepting all distribution orders in a certain time, and all the distribution orders received by the distribution order processing reception means. The past distribution processing scenario acquisition means for acquiring the past distribution processing scenario that defines the behavior of the device over time, the scale information specifying means for specifying the desired scale information from the distribution processing scale information, and the model. Using the trained model generated by the generation means, the scale information is optimized from the past distribution processing scenario acquired by the past distribution processing scenario acquisition means and the scale information specified by the scale information specifying means. Therefore, it is provided with a processing means for outputting a distribution processing scenario that defines how all the devices constituting the distribution system should be operated over time.
 上記の態様において、前記物流処理尺度情報は、スループット情報、処理時間情報、消費電力情報、出庫完了オーダー数情報、処理に要した人員数情報、セール品を含む特殊処理対象物品の単位時間当たりの処理数情報の少なくともいずれか一つあるいは二つ以上を組み合わせたものに照らして得られるものであってもよいし、前記物流処理シナリオは、出庫待機数情報、コンベア移動距離情報、棚間移動待機数情報、棚間距離情報、スタッカクレーン移動距離情報、配置替発生数情報、入庫待機数情報、通路距離情報、バッファ部待機数情報、引当可能数情報のうちの少なくともいずれか一つに基づいて作成されるものであってもよい。 In the above embodiment, the distribution processing scale information includes throughput information, processing time information, power consumption information, delivery completion order number information, personnel number information required for processing, and special processing target article including sale items per unit time. It may be obtained in light of at least one or a combination of two or more of the processing number information, and the distribution processing scenario may include delivery waiting number information, conveyor movement distance information, and inter-shelf movement waiting. Based on at least one of number information, inter-shelf distance information, stacker crane movement distance information, relocation occurrence number information, warehousing waiting number information, passage distance information, buffer section waiting number information, and allocatable number information. It may be created.
 またさらに、上記の課題を解決するために、本発明の代表的な態様に係る物流処理シナリオ出力システムにおいては、一定時間において受け付けられた物流オーダーを処理するためのシナリオとしての、機械学習に係る物流処理シナリオ推定システムによって出力された第1の物流処理シナリオと、予め決められたプログラムであるルールベースに基づいて第2の物流処理シナリオと、前記第1の物流処理シナリオ、前記第2の物流処理シナリオの処理シナリオのそれぞれについて規定される物流処理尺度情報とを教師データとして用い、特定の物流オーダーに対して前記第1もしくは第2の物流処理シナリオのいずれがより好ましいかを推定する推定モデルを機械学習により生成するモデル生成手段と、特定の物流オーダーが入力される入力手段と、前記入力手段によって入力された前記特定の物流オーダーを規定する物流オーダー規定情報を特定する物流オーダー情報特定手段と、前記物流処理尺度情報の中から所望される尺度情報が特定される尺度情報特定手段と、前記モデル生成手段により生成された推定モデルを用いて、前記物流オーダー情報特定手段が特定した前記物流オーダー規定情報から、前記尺度情報を最適化するためは前記第1もしくは第2の物流処理シナリオのいずれがより好ましいかを出力する処理手段とを備える。 Furthermore, in order to solve the above problems, in the physical distribution processing scenario output system according to a typical aspect of the present invention, it relates to machine learning as a scenario for processing physical distribution orders received in a certain time. The first physical distribution processing scenario output by the physical distribution processing scenario estimation system, the second physical distribution processing scenario based on the rule base which is a predetermined program, the first physical distribution processing scenario, and the second physical distribution. An estimation model that estimates which of the first or second distribution processing scenarios is more preferable for a specific distribution order by using the distribution processing scale information defined for each processing scenario of the processing scenario as teacher data. A model generation means for generating a model by machine learning, an input means for inputting a specific distribution order, and a distribution order information specifying means for specifying the distribution order regulation information that defines the specific distribution order input by the input means. The physical distribution specified by the physical distribution order information specifying means using the scale information specifying means for specifying the desired scale information from the physical distribution processing scale information and the estimation model generated by the model generating means. In order to optimize the scale information from the order regulation information, a processing means for outputting which of the first and second distribution processing scenarios is more preferable is provided.
 あるいは代替的に、一定時間において受け付けられた物流オーダーを処理するためのシナリオとしての、機械学習に係る物流処理シナリオ推定システムによって出力された第1の物流処理シナリオを得る第1の手段と、前記物流処理尺度情報の中から所望される尺度情報が特定される尺度情報特定手段と、前記尺度情報特定手段によって特定された尺度情報を最適化するための第2の物流処理シナリオをルールベースに基づいて得る第2の手段と、特定の物流オーダーが入力される入力手段と、前記入力手段によって入力された前記物流オーダーについて前記尺度情報を最適化するためは前記第1もしくは第2の物流処理シナリオのいずれがより好ましいかを判定する判定手段とを備える。 Alternatively, as an alternative, the first means for obtaining the first physical distribution processing scenario output by the physical distribution processing scenario estimation system related to machine learning as a scenario for processing the physical distribution order received in a certain time, and the above-mentioned Based on a rule base, a scale information specifying means for specifying desired scale information from the physical distribution processing scale information and a second physical distribution processing scenario for optimizing the scale information specified by the scale information specifying means are used. In order to optimize the scale information for the second means obtained, the input means for inputting a specific distribution order, and the distribution order input by the input means, the first or second distribution processing scenario A determination means for determining which of the above is more preferable is provided.
 また、上記の課題を解決するために、本発明の代表的な態様に係る物流倉庫制御システムにおいては、一定時間において受け付けられた物流オーダーに対して規定した過去の物流処理シナリオに基づいて物流処理シナリオを規定するための学習済モデルを機械学習により生成するモデル生成手段と、前記モデル生成手段により生成された学習済モデルを用いて、特定の物流オーダーに対する最適物流処理シナリオを出力する物流処理シナリオ出力手段と、前記物流処理シナリオ出力手段によって出力された前記最適物流処理シナリオを用いて、物流倉庫を制御及び/もしくは駆動する制御部とを備える。 Further, in order to solve the above problems, in the distribution warehouse control system according to the typical aspect of the present invention, distribution processing is performed based on the past distribution processing scenario defined for the distribution order received in a certain period of time. A physical distribution processing scenario that outputs an optimum physical distribution processing scenario for a specific physical distribution order using a model generation means that generates a trained model for defining a scenario by machine learning and a trained model generated by the model generation means. It includes an output means and a control unit that controls and / or drives a distribution warehouse by using the optimum distribution processing scenario output by the distribution processing scenario output means.
 上記において、「物流処理シナリオ」とは、物流システムに係る全マテハン機器を経時的にどう動かすかを規定する情報であって、入庫ログ及び/もしくは出庫ログを含む。より具体的には、この物流処理シナリオを構成するもの或いは物流処理シナリオを形成するための入力となるものとして、出庫待機数情報、コンベア移動距離情報、棚間移動待機数情報、棚間距離情報、スタッカクレーン移動距離情報、配置替発生数情報、入庫待機数情報、通路距離情報、バッファ部待機数情報、引当可能数情報、を含む。
また、「物流処理尺度情報」とは、たとえばAIを用いて学習済モデルを取得する際、或いは当該取得した学習済モデルを使って物流処理に係るシナリオを得る際に、何が好ましいかを選択・指定するために必要となる判断基準に係る情報をいう。
In the above, the “logistics processing scenario” is information that defines how all material handling equipment related to the physical distribution system is operated over time, and includes a warehousing log and / or a warehousing log. More specifically, as a component of this distribution processing scenario or an input for forming the distribution processing scenario, the number of items waiting to be delivered, the information on the conveyor movement distance, the information on the number of items waiting to move between shelves, and the information on the distance between shelves. , Stacker crane movement distance information, relocation occurrence number information, warehousing waiting number information, passage distance information, buffer section waiting number information, allocationable number information, etc. are included.
Further, the "logistics processing scale information" selects what is preferable when, for example, an AI is used to acquire a trained model, or when a scenario related to physical distribution processing is obtained using the acquired learned model. -Information related to the judgment criteria required to specify.
 また、「スループット」とは、単位時間当たりの処理数量をいう。 Also, "throughput" means the processing quantity per unit time.
 或いは、次のような態様をとることもできる。 Alternatively, the following aspects can be taken.
 すなわち、本発明の第1の態様に係る自動化倉庫最適化システムは、第1識別子が設けられた単数または複数の商品アイテムが収納され、前記第1識別子に関連付けられた第2識別子が設けられた保管用手段と、単数または複数の段を有し、前記保管用手段が保管される単数または複数の棚と、前記棚に隣接して配置された単数または複数の通路と、前記通路に設けられ、前記保管用手段を搬送して前記棚に保管すると共に前記棚から出庫する単数または複数の搬送手段と、を有する倉庫手段と、前記倉庫手段から出庫された前記保管用手段から必要な数量の前記商品アイテムをピッキングし、前記第1識別子に関連付けられた第3識別子が設けられた出荷用媒体に投入するピッキング手段が配置されると共に、前記商品アイテムのピッキングが完了した前記保管用手段を前記倉庫手段に戻すピッキングステーションと、を備え、前記倉庫手段では、前記商品アイテムに設けられた前記第1識別子と前記保管用手段に設けられた前記第2識別子とを関連付けるための制御と、前記保管用手段を前記棚に保管するための制御と、前記保管用手段を前記倉庫手段から出庫するための出庫命令の制御とが行われ、前記ピッキングステーションでは、前記保管用手段から必要な数量の前記商品アイテムをピッキングするためのピッキング命令の制御と、ピッキングされた前記商品アイテムに設けられた前記第1識別子と前記出荷用媒体に設けられた前記第3識別子との関連付けに基づいた投入完了命令の制御と、前記商品アイテムのピッキングが完了した前記保管用手段を前記倉庫手段に戻すためのリターン命令の制御とが行われる。 That is, in the automated warehouse optimization system according to the first aspect of the present invention, a single or a plurality of product items provided with the first identifier are stored, and a second identifier associated with the first identifier is provided. A storage means, a single or multiple shelves having one or more stages and for storing the storage means, a single or multiple passages arranged adjacent to the shelves, and the passages provided. , A warehouse means having a single or a plurality of transport means for transporting the storage means and storing them on the shelf and also warehousing from the shelf, and a required quantity from the storage means delivered from the warehouse means. A picking means for picking the product item and putting it into a shipping medium provided with a third identifier associated with the first identifier is arranged, and the storage means for which the picking of the product item is completed is provided. The warehouse means includes a picking station for returning to the warehouse means, and the warehouse means controls for associating the first identifier provided for the product item with the second identifier provided for the storage means, and the storage. Control for storing the means for storage on the shelves and control for issuing a warehousing command for unloading the means for warehousing from the warehousing means are performed, and at the picking station, the required quantity of the means is said to be warehousing. An input completion command based on the control of a picking command for picking a product item and the association between the first identifier provided on the picked product item and the third identifier provided on the shipping medium. The control and the control of the return command for returning the storage means for which the picking of the product item is completed to the warehouse means are performed.
 本発明の第2の態様に係る自動化倉庫最適化システムは、前記第1の態様において、前記出荷用媒体に投入された前記商品アイテムを取り出して梱包資材で梱包する梱包手段をさらに備えている。 In the first aspect, the automated warehouse optimization system according to the second aspect of the present invention further includes a packing means for taking out the product item put into the shipping medium and packing it with a packing material.
 本発明の第3の態様に係る自動化倉庫最適化システムは、前記第1または第2の態様において、前記倉庫手段及び前記ピッキングステーションで扱う前記商品アイテムの属性データは、倉庫管理システム(WMS)によって管理される。 In the automated warehouse optimization system according to the third aspect of the present invention, in the first or second aspect, the attribute data of the product item handled by the warehouse means and the picking station is obtained by the warehouse management system (WMS). Be managed.
 本発明の第4の態様に係る自動化倉庫最適化システムは、前記第1~第3のいずれかの態様において、前記搬送手段は、前記通路の水平方向及び/又は垂直方向への移動を同時に組み合わせて移動するスタッカークレーン方式の搬送手段である。 In the automated warehouse optimization system according to the fourth aspect of the present invention, in any one of the first to third aspects, the transport means simultaneously combines horizontal and / or vertical movement of the passage. It is a stacker crane type transport means that moves vertically.
 本発明の第5の態様に係る自動化倉庫最適化システムは、前記第1~第4のいずれかの態様において、前記倉庫手段は、前記保管用手段を垂直方向に移動する昇降手段と、前記棚の各段の終端に配置され、前記搬送手段と前記昇降手段との間で前記保管用手段の受け渡しを行うバッファ手段とをさらに有し、前記バッファ手段では、前記搬送手段と前記昇降手段との間で受け渡される前記保管用手段同士の相互干渉を防ぐための制御が行われる。 In the automated warehouse optimization system according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the warehouse means includes an elevating means for vertically moving the storage means and the shelf. Further, a buffer means for transferring the storage means between the transport means and the elevating means is provided at the end of each stage of the above, and the buffer means includes the transport means and the elevating means. Control is performed to prevent mutual interference between the storage means passed between them.
 本発明の第6の態様に係る自動化倉庫最適化システムは、前記第1~第5のいずれかの態様において、前記倉庫手段では、相関性が高い複数種類の前記商品アイテムを予め同一の前記保管用手段に収納するための制御(共起物品集約)が行われる。 In the automated warehouse optimization system according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the warehouse means stores a plurality of types of highly correlated product items in advance in the same manner. Control (co-occurrence article aggregation) for storing in the means is performed.
 本発明の第7の態様に係る自動化倉庫最適化システムは、前記第1~第6のいずれかの態様において、相関性が高い単数または複数の前記商品アイテムを収納する複数の前記保管用手段を同一の前記棚に入庫するための制御が行われる。 The automated warehouse optimization system according to the seventh aspect of the present invention comprises, in any one of the first to sixth aspects, the plurality of storage means for storing a single or a plurality of highly correlated product items. Control is performed for warehousing in the same shelf.
 本発明の第8の態様に係る自動化倉庫最適化システムは、前記第1~第7のいずれかの態様において、前記倉庫手段で行われる前記制御及び前記ピッキングステーションで行われる前記制御のうち、少なくとも一つ以上は、人工知能(AI)技術によって生成された最適化モデルを含む少なくとも一つ以上の最適化モデルに基づいて行われる。 The automated warehouse optimization system according to the eighth aspect of the present invention has at least one of the control performed by the warehouse means and the control performed by the picking station in any one of the first to seventh aspects. One or more is based on at least one optimization model, including an optimization model generated by artificial intelligence (AI) technology.
 本発明の第9の態様に係る自動化倉庫最適化システムは、前記第8の態様において、前記倉庫手段で行われる前記制御及び前記ピッキングステーションで行われる前記制御のうち、少なくとも一つ以上を前記人工知能(AI)技術によって生成された最適化モデルに基づいて行う場合、前記制御の評価及び検証は、疑似的な環境で行われる。 In the eighth aspect, the automated warehouse optimization system according to the ninth aspect of the present invention artificially performs at least one of the control performed by the warehouse means and the control performed by the picking station. When based on an optimization model generated by artificial intelligence (AI) technology, the evaluation and verification of the control is performed in a simulated environment.
 本発明の第10の態様に係る自動化倉庫最適化システムは、前記第8または第9の態様において、前記人工知能(AI)技術によって生成された最適化モデルと、非人工知能(非AI)技術によって生成された最適化モデルとを、前記人工知能(AI)技術と異なる第2の人工知能(AI)技術または前記非人工知能(非AI)技術と異なる第2の非人工知能(非AI)技術によって比較評価するステップを含む。 The automated warehouse optimization system according to the tenth aspect of the present invention comprises the optimization model generated by the artificial intelligence (AI) technique and the non-artificial intelligence (non-AI) technique in the eighth or ninth aspect. The optimization model generated by the second artificial intelligence (AI) technology different from the artificial intelligence (AI) technology or the second non-artificial intelligence (non-AI) different from the non-artificial intelligence (non-AI) technology. Includes steps to compare and evaluate by technology.
 本発明の第11の態様に係る自動化倉庫最適化システムは、前記第8~第10のいずれかの態様において、前記人工知能(AI)技術によって最適化モデルを生成するステップに先立ち、前記人工知能(AI)技術によって最適化モデルを生成すべきか、非人工知能(非AI)技術によって最適化モデルを生成すべきかを判定し、非人工知能(非AI)技術によって最適化モデルを生成すべきと判定された場合には、前記倉庫手段で行われる前記制御及び前記ピッキングステーションで行われる前記制御のうち、少なくとも一つ以上は、非人工知能(非AI)技術によって生成された最適化モデルに基づいて行われる。 The automated warehouse optimization system according to the eleventh aspect of the present invention has the artificial intelligence (AI) technique in any of the eighth to tenth aspects prior to the step of generating an optimization model by the artificial intelligence (AI) technique. Determine whether the (AI) technology should generate the optimization model or the non-artificial intelligence (non-AI) technology should generate the optimization model, and the non-artificial intelligence (non-AI) technology should generate the optimization model. If determined, at least one of the controls performed by the warehouse means and the controls performed by the picking station is based on an optimization model generated by non-artificial intelligence (non-AI) technology. Is done.
 本発明の第12の態様に係る自動化倉庫最適化システムは、前記第11の態様において、前記判定は、人工知能(AI)技術または非人工知能(非AI)技術によって行われる。 In the eleventh aspect of the automated warehouse optimization system according to the twelfth aspect of the present invention, the determination is made by artificial intelligence (AI) technology or non-artificial intelligence (non-AI) technology.
 本発明の第13の態様に係る自動化倉庫最適化システムは、第1識別子が設けられた単一ユニットの商品アイテムが収納され、前記第1識別子に関連付けられた第2識別子が設けられた保管用個片化手段と、単数または複数の段を有し、前記保管用個片化手段が保管される単数または複数の棚と、前記棚に隣接して配置された単数または複数の通路と、前記通路に設けられ、前記保管用個片化手段を搬送して前記棚に保管すると共に前記棚から出庫する単数または複数の搬送手段と、を有する倉庫手段と、前記倉庫手段から出庫された前記保管用個片化手段から前記単一ユニットの商品アイテムをピッキングし、前記第1識別子に関連付けられた第3識別子が設けられた出荷用媒体に投入するピッキング手段が配置されると共に、前記単一ユニットの商品アイテムのピッキングが完了した前記保管用個片化手段を周辺設備に送るピッキングステーションと、を備え、前記倉庫手段では、前記単一ユニットの商品アイテムに設けられた前記第1識別子と前記保管用個片化手段に設けられた前記第2識別子とを関連付けるための制御と、前記保管用個片化手段を前記棚に保管するための制御と、前記保管用個片化手段を前記倉庫手段から出庫するための出庫命令の制御とが行われ、前記ピッキングステーションでは、前記保管用個片化手段から前記単一ユニットの商品アイテムをピッキングするためのピッキング命令の制御と、ピッキングされた前記単一ユニットの商品アイテムに設けられた前記第1識別子と前記出荷用媒体に設けられた前記第3識別子との関連付けに基づいた投入完了命令の制御と、前記単一ユニット商品アイテムのピッキングが完了した前記保管用手段を前記周辺設備に送るためのリターン命令の制御とが行われる。 In the automated warehouse optimization system according to the thirteenth aspect of the present invention, a single unit product item provided with a first identifier is stored, and a second identifier associated with the first identifier is provided for storage. An individualizing means, a single or a plurality of shelves having one or a plurality of stages and storing the individualizing means for storage, a single or a plurality of passages arranged adjacent to the shelves, and the above. A warehouse means provided in a passage and having one or a plurality of transport means for transporting the individualized means for storage and storing them on the shelf and also leaving the shelves, and the storage delivered from the warehouse means. A picking means for picking a product item of the single unit from the individualization means and putting it into a shipping medium provided with a third identifier associated with the first identifier is arranged, and the single unit is arranged. The warehouse means includes a picking station for sending the storage individualizing means for which picking of the product item has been completed to peripheral equipment, and the warehouse means has the first identifier provided for the product item of the single unit and the storage. A control for associating the second identifier provided in the individualizing means for storage, a control for storing the individualizing means for storage on the shelf, and the warehouse means for storing the individualizing means for storage. The picking station controls a picking command for picking a product item of the single unit from the storage individualizing means, and controls the picking command for picking the goods from the warehouse. The control of the input completion command based on the association between the first identifier provided on the product item of one unit and the third identifier provided on the shipping medium, and the picking of the single unit product item are completed. Control of the return command for sending the storage means to the peripheral equipment is performed.
 本発明の第14の態様に係る自動化倉庫最適化システムは、前記第13の態様において、前記倉庫手段で行われる前記制御及び前記ピッキングステーションで行われる前記制御のうち、少なくとも一つ以上は、人工知能(AI)技術によって生成された最適化モデルを含む少なくとも一つ以上の最適化モデルに基づいて行われる。 In the thirteenth aspect of the automated warehouse optimization system according to the fourteenth aspect of the present invention, at least one or more of the control performed by the warehouse means and the control performed by the picking station is artificial. It is based on at least one optimization model, including an optimization model generated by artificial intelligence (AI) technology.
 本発明の自動化倉庫最適化システムによれば、倉庫管理システム(WMS)により管理される立体自動倉庫における商品の出庫効率を向上させることができる。 According to the automated warehouse optimization system of the present invention, it is possible to improve the delivery efficiency of goods in a three-dimensional automated warehouse managed by a warehouse management system (WMS).
本発明の一実施の形態に係る立体自動倉庫の一例の概念図である。It is a conceptual diagram of an example of the three-dimensional automated warehouse which concerns on one Embodiment of this invention. 図1に示す立体自動倉庫の保管倉庫部の一部を示す斜視図である。It is a perspective view which shows a part of the storage warehouse part of the three-dimensional automated warehouse shown in FIG. 図1に示す立体自動倉庫を管理するWMS及びWCSのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration of WMS and WCS which manages a three-dimensional automated warehouse shown in FIG. 図1に示す立体自動倉庫の保管倉庫部に入庫される保管用ケースの一例の斜視図である。It is a perspective view of an example of the storage case which is stored in the storage warehouse part of the three-dimensional automated warehouse shown in FIG. 商品アイテムに設けられた第1識別子と保管用ケースに設けられた第2識別子との関連付け情報を示すトレーテーブルである。It is a tray table which shows the association information of the 1st identifier provided in the product item and the 2nd identifier provided in the storage case. 商品アイテムに設けられた第1識別子と入荷元とを関連付けた情報を示す入庫テーブルである。It is a warehousing table showing information associating the first identifier provided for the product item with the arrival source. 商品アイテムに設けられた第1識別子と出庫先とを関連付けた情報を示す出庫テーブルである。It is a delivery table showing information associating the first identifier provided for the product item with the delivery destination. 商品アイテムの情報を記録した保管データテーブルである。It is a storage data table that records information on product items. 本発明の一実施の形態に係る最適化モデル生成ステップの一例の概念図である。It is a conceptual diagram of an example of the optimization model generation step which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る最適化モデル生成ステップの一例の概念図である。It is a conceptual diagram of an example of the optimization model generation step which concerns on one Embodiment of this invention. 図7に係る動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation which concerns on FIG. 図8に係る動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation which concerns on FIG.
 以下、図面を参照しながら本発明の一実施の形態に係る自動化倉庫最適化システムについて説明する。なお、以下では本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。 Hereinafter, the automated warehouse optimization system according to the embodiment of the present invention will be described with reference to the drawings. In the following, the range necessary for the explanation for achieving the object of the present invention will be schematically shown, and the range necessary for the explanation of the relevant part of the present invention will be mainly described. It shall be based on known technology.
 図1は、本実施の形態に係る立体自動倉庫の一例の概念図、図2は、図1に示す立体自動倉庫の保管倉庫部の一部(棚一列分)を示す斜視図、図3は、図1に示す立体自動倉庫を管理するWMS及びWCSのシステム構成を示すブロック図である。 FIG. 1 is a conceptual diagram of an example of a three-dimensional automated warehouse according to the present embodiment, FIG. 2 is a perspective view showing a part (one row of shelves) of a storage warehouse section of the three-dimensional automated warehouse shown in FIG. , Is a block diagram showing a system configuration of WMS and WCS that manages the three-dimensional automated warehouse shown in FIG.
 立体自動倉庫1は、保管倉庫部(倉庫部)100と、ピッキングステーション200と、梱包部300とを備えている。 The three-dimensional automated warehouse 1 includes a storage warehouse section (warehouse section) 100, a picking station 200, and a packing section 300.
 保管倉庫部100は、保管スペースを有する複数の段を通路に沿って配置した複数列の棚10と、各棚10に隣接して配置された複数の通路20(通路20には、棚10と棚10との間に挟まれて配置される態様を含む)と、各通路20に設けられ、通路20に沿って移動する搬送部30とを有している。 The storage warehouse unit 100 includes a plurality of rows of shelves 10 in which a plurality of stages having storage spaces are arranged along the aisles, and a plurality of passages 20 arranged adjacent to each shelf 10 (the aisles 20 include shelves 10). (Including a mode in which the shelves are sandwiched between the shelves 10) and a transport unit 30 provided in each aisle 20 and moving along the aisle 20.
 また、保管倉庫部100には、各通路20の端部に配置され、保管用ケース40を垂直方向に移動する昇降部50と、棚10の各段の端部に配置され、搬送部30と昇降部50との間で保管用ケース40の受け渡しを行うバッファコンベヤ(バッファ部)60とがさらに備わっている。 Further, in the storage warehouse section 100, an elevating section 50 which is arranged at the end of each passage 20 and moves the storage case 40 in the vertical direction, and a transport section 30 which is arranged at the end of each stage of the shelf 10. A buffer conveyor (buffer unit) 60 for delivering and receiving the storage case 40 to and from the elevating unit 50 is further provided.
 搬送部30は、通路20の水平方向及び/又は垂直方向への移動を同時に組み合わせて移動するたとえばスタッカークレーン方式の運搬装置であり、複数の商品アイテム70が収納された保管用ケース(保管部)40を伸縮自在なアーム等で支持して棚10に入庫したり、棚10から出庫したりする。 The transport unit 30 is, for example, a stacker crane type transport device that simultaneously moves the passage 20 in the horizontal direction and / or the vertical direction, and is a storage case (storage unit) in which a plurality of product items 70 are stored. The 40 is supported by a stretchable arm or the like to be stored in the shelf 10 or discharged from the shelf 10.
 立体自動倉庫1での仕分け対象となるすべての商品アイテム70の属性データ(数量、日付、入出荷先、保管場所、重量等)は、倉庫業務を一括管理するホストコンピュータ(またはサーバ、クラウド等)を備えたWMS(倉庫管理システム)400と、WMS400のホストコンピュータに接続されたコンピュータを内蔵するWCS(倉庫制御システム:Warehouse Control System)500によって管理されている。 The attribute data (quantity, date, receipt / shipment destination, storage location, weight, etc.) of all the product items 70 to be sorted in the three-dimensional automatic warehouse 1 is the host computer (or server, cloud, etc.) that collectively manages the warehouse operations. It is managed by a WMS (warehouse management system) 400 equipped with the above and a WCS (warehouse control system) 500 incorporating a computer connected to the host computer of the WMS 400.
 図3に示すように、WCS500は、CPU、メインメモリ、外部インタフェースを備え、WMS400のホストコンピュータに接続されたコンピュータと、外部インタフェースを介してこのコンピュータに接続されたストレージを有しており、WMS400からの指示によって立体自動倉庫1内のマテハン機器(搬送部30、昇降部50、バッファコンベヤ60等)やピッキングステーション200及び梱包部300等に対し、無線及び/もしくは有線による遠隔操作や通信回線等を通じて入庫、搬送、出庫、ピッキング、自動封函等の作業指示を出す。 As shown in FIG. 3, the WCS500 includes a CPU, main memory, and an external interface, and has a computer connected to the host computer of the WMS400 and a storage connected to the computer via the external interface. Remote operation, communication line, etc. by wireless and / or wired to the material handling equipment (conveying unit 30, elevating unit 50, buffer conveyor 60, etc.), picking station 200, packing unit 300, etc. in the three-dimensional automatic warehouse 1 according to the instruction from Work instructions such as warehousing, transportation, warehousing, picking, and automatic boxing are issued through.
 図4に示すように、保管用ケース40の内部には、バーコードからなる第1識別子71が設けられた単数または複数の商品アイテム70が収納されており、保管用ケース40の外側部には、商品アイテム70の第1識別子71に関連付けられることも可能なバーコードからなる第2識別子41が設けられている。 As shown in FIG. 4, a single or a plurality of product items 70 provided with a first identifier 71 made of a barcode are stored inside the storage case 40, and the outer portion of the storage case 40 contains a plurality of product items 70. , A second identifier 41 consisting of a barcode that can be associated with the first identifier 71 of the product item 70 is provided.
 第1識別子71は商品アイテム70を識別するためのものであり、商品ごとに異なっている。第2識別子41は保管用ケース40を識別するためのものであり、保管用ケース40ごとに異なっている。第1識別子71及び第2識別子41は、バーコード以外の識別子、例えば二次元コードやRFID等であってもよい。 The first identifier 71 is for identifying the product item 70, and is different for each product. The second identifier 41 is for identifying the storage case 40, and is different for each storage case 40. The first identifier 71 and the second identifier 41 may be identifiers other than barcodes, such as a two-dimensional code and RFID.
 図示は省略するが、立体自動倉庫1を備える物流センターには、各メーカーからの商品アイテム70が到着するトラックバースが備わっている。物流センターのトラックバースに各メーカーからの商品アイテム70が到着すると、各商品アイテム70をダンボール等の包装容器から開梱して保管倉庫部100へ入庫するためのトレー化作業が行われる。 Although not shown, the distribution center equipped with the three-dimensional automated warehouse 1 is equipped with a truck berth where product items 70 from each manufacturer arrive. When the product item 70 from each manufacturer arrives at the truck berth of the distribution center, a tray-making operation is performed to unpack each product item 70 from a packaging container such as a cardboard box and store it in the storage warehouse section 100.
 トレー化作業は、各商品アイテム70に付した第1識別子71と保管用ケース40に付した第2識別子41とを紐づけする工程である。これが上述した関連付けである。商品アイテム70が文具である場合には、ステップラのように1個ずつ保管用ケース40に収納するものと、鉛筆のように箱単位で収納するものとに分けられる。 The tray-making work is a process of associating the first identifier 71 attached to each product item 70 with the second identifier 41 attached to the storage case 40. This is the association described above. When the product item 70 is a stationery item, it is divided into one that is stored in the storage case 40 one by one like a stapler and one that is stored in a box unit like a pencil.
 保管用ケース40に付した第2識別子41は、トレー化作業場所に設けられたバーコードリーダの前を保管用ケース40が通過する際に読み取られる。第2識別子41の読み取りには、LED光源を照射し、その反射光をフォトダイオードで受光する等の公知技術が用いられる。 The second identifier 41 attached to the storage case 40 is read when the storage case 40 passes in front of the barcode reader provided in the tray-making work place. For reading the second identifier 41, a known technique such as irradiating an LED light source and receiving the reflected light with a photodiode is used.
 一方、商品アイテム70に付した第1識別子71は、商品アイテム70を保管用ケース40に入れる毎に、トラックバースの商品投入場所に設けられたハンディスキャナ等によって読み取られる。そして、WCS500のコンピュータは、読み取られた第1識別子71とその数量と第2識別子41とに基づき、図5に示すトレー化テーブルを作成しストレージ内のトレー化テーブル用メモリ領域に格納する。 On the other hand, the first identifier 71 attached to the product item 70 is read by a handy scanner or the like provided at the product loading location of the truck berth every time the product item 70 is put into the storage case 40. Then, the computer of WCS500 creates a tray table shown in FIG. 5 based on the read first identifier 71, its quantity, and the second identifier 41, and stores the tray table in the memory area for the tray table in the storage.
 これにより、各保管用ケース40に収納された商品アイテム70の名称とその数がWCS500にて把握される。なお、トレー化作業には、商品アイテム70を空の保管用ケース40に投入する場合の他、既に同じ商品アイテム70が投入された保管用ケース40内に商品投入スペースがある場合は、その保管用ケース40を棚10に入庫した後、トレー化作業場所まで搬送する場合がある。 As a result, the names and numbers of the product items 70 stored in each storage case 40 are grasped by the WCS500. In the tray making work, in addition to the case where the product item 70 is put into the empty storage case 40, if there is a product putting space in the storage case 40 in which the same product item 70 has already been put, the storage is performed. After the use case 40 is stored in the shelf 10, it may be transported to the tray-making work place.
 また、WCS500は、保管倉庫部100で自動入出庫作業を行う際に必要となる第2識別子41、商品アイテム70の種類と数量、保管倉庫部100の棚10の番号、段番号、入庫時間等の情報を記録した図6のような保管データテーブルを作成する。この保管データテーブルは、WCS500のストレージ内の保管データテーブル用メモリ領域に格納され、出庫時、ピッキング作業時、梱包完了時等に必要に応じてその情報が更新される。保管データテーブルに記録されたこれらの情報(ログ情報を含む)は、後述する人工知能(AI)による機械学習のための基礎データとして利用されることができる。 Further, the WCS500 has a second identifier 41, a type and quantity of product items 70, a number, a stage number, a warehousing time, etc. of the shelf 10 of the storage warehouse unit 100, which are required when performing automatic warehousing / delivery work in the storage warehouse unit 100. Create a storage data table as shown in FIG. 6 in which the information of the above is recorded. This storage data table is stored in the storage data table memory area in the storage of the WCS500, and the information is updated as necessary at the time of delivery, picking work, packing completion, and the like. These information (including log information) recorded in the stored data table can be used as basic data for machine learning by artificial intelligence (AI) described later.
 例えば、保管用ケース40が保管倉庫部100に入庫されると、WCS500のコンピュータのCPUは、入庫された保管用ケース40の棚番号、段番号、通路番号、入庫時間等を含むアドレス情報に基づいて保管データテーブルを更新し、更新した保管データテーブルをストレージ内の保管データテーブル用メモリ領域に格納する。 For example, when the storage case 40 is stored in the storage warehouse unit 100, the CPU of the computer of the WCS500 is based on the address information including the shelf number, the stage number, the passage number, the storage time, etc. of the stored storage case 40. The stored data table is updated, and the updated stored data table is stored in the stored data table memory area in the storage.
 また、保管倉庫部100に入庫された保管用ケース40がトレー化作業場所まで戻されて商品アイテム70が追加投入された場合や、保管倉庫部100から出庫された保管用ケース40内の商品アイテム70の一部がピッキングステーション200でピッキングされた後、当該保管用ケース40が保管倉庫部100に戻される場合には、トレー化テーブルの情報もWCS500のコンピュータのCPUによって更新される。 Further, when the storage case 40 stored in the storage warehouse unit 100 is returned to the tray-making work place and an additional product item 70 is added, or when the product item in the storage case 40 delivered from the storage warehouse unit 100 is added. When the storage case 40 is returned to the storage warehouse unit 100 after a part of the 70 is picked at the picking station 200, the information in the traying table is also updated by the CPU of the computer of the WCS500.
 上述したトレー化作業が完了した保管用ケース40は、入庫用コンベヤ600(図2参照)によって保管倉庫部100へ搬送される。なお、トレー化作業場所と保管倉庫部100とを接続する入庫用コンベヤ600の一端は、ピッキングステーション200の上部に配置されるので、図1では、ピッキングステーション200の構成を見易くするために、入庫用コンベヤ600の図示が省略されている。 The storage case 40 for which the tray-making work described above has been completed is transported to the storage warehouse section 100 by the storage conveyor 600 (see FIG. 2). Since one end of the warehousing conveyor 600 that connects the tray-making work place and the storage warehouse unit 100 is arranged above the picking station 200, in FIG. 1, in order to make the configuration of the picking station 200 easier to see, warehousing The illustration of the conveyor 600 is omitted.
 保管用ケース40を保管倉庫部100に入庫する際は、まず、WMS400のホストコンピュータで下された入庫命令がWCS500のコンピュータに伝達される。入庫命令には、商品アイテム70の名称、数量、入庫時刻等を対応付けた入庫テーブルが含まれる。 When the storage case 40 is stored in the storage warehouse unit 100, first, the storage command issued by the host computer of the WMS 400 is transmitted to the computer of the WCS 500. The warehousing order includes a warehousing table associated with the name, quantity, warehousing time, etc. of the product item 70.
 WCS500のCPUは、保管倉庫部100に入庫する商品アイテム70の名称と数量を上記入庫命令によって把握する。WCS500のCPUは、ハードディスクドライブに格納され予め決められた作業指示プログラムに基づいて保管データテーブルと入庫テーブルとを比較し、最適な入庫順情報を作成して保管倉庫部100のマテハン機器(搬送部30、バッファコンベヤ60、昇降部50等)に作業指示を出す。ここで、入庫順情報とは、各保管用ケース40保管用ケース40をどの順序でどの間口に格納するかを決める経路と順序のことである。 The CPU of the WCS500 grasps the name and quantity of the product item 70 to be stored in the storage warehouse unit 100 by the above storage order. The CPU of the WCS500 compares the storage data table and the warehousing table based on a predetermined work instruction program stored in the hard disk drive, creates the optimum warehousing order information, and creates the material handling equipment (conveyor unit) of the storage warehouse unit 100. 30, buffer conveyor 60, elevating part 50, etc.) are given work instructions. Here, the warehousing order information is a route and an order for determining in which order and in which frontage each storage case 40 storage case 40 is stored.
 このとき、WCS500のCPUは、入庫テーブルとトレー化テーブルとを参照し、各商品アイテム70がいずれの保管用ケース40に格納されているかを確認した後、保管情報テーブルとトレー化テーブルとを比較し、各保管用ケース40をどの棚10のどの段に保管するかを決定する。 At this time, the CPU of the WCS500 refers to the warehousing table and the traying table, confirms which storage case 40 each product item 70 is stored in, and then compares the storage information table and the traying table. Then, it is determined in which stage of which shelf 10 each storage case 40 is stored.
 保管用ケース40を入庫するアドレス(棚10の段)を決定する際は、たとえばすでに入庫されている保管用ケース40のアドレス情報を保管データテーブルから読み出し、保管用ケース40の数が少ない棚10の段に入庫させるようにする。その際、入庫用コンベヤ600に近い棚10の段から順に入庫させることが好ましい。 When determining the address for storing the storage case 40 (the stage of the shelf 10), for example, the address information of the storage case 40 that has already been stored is read from the storage data table, and the shelf 10 with a small number of storage cases 40 is read. Make sure to store in the stage. At that time, it is preferable to store the items in order from the shelf 10 stage closest to the storage conveyor 600.
 このようにして入庫命令が下された各保管用ケース40は、マテハン機器の動作に従い、順次決定された棚10の段に移動して入庫される。そして、WCS500は、この入庫データ(保管用ケース40のアドレス情報や入庫時刻等)に従って保管データテーブルを更新する。 Each storage case 40 for which a warehousing order has been issued in this way moves to the stage of the shelf 10 determined in order according to the operation of the material handling device and is warehousing. Then, the WCS500 updates the storage data table according to the storage data (address information of the storage case 40, storage time, etc.).
 なお、ここでは、保管用ケース40をどの棚10のどの段に保管するかを決定する判断基準として、たとえば、すでに棚10に入庫されている保管用ケース40の数に着目したが、これに代えて棚10に対する保管用ケース40の単位時間当たりの占有率に着目してもよい。 Here, as a criterion for determining which shelf 10 and which stage the storage case 40 is to be stored, for example, the number of storage cases 40 already stored in the shelf 10 has been focused on. Instead, attention may be paid to the occupancy rate of the storage case 40 with respect to the shelf 10 per unit time.
 本発明の自動化倉庫最適化システムは、上述したトレー化工程における制御、保管倉庫部100におけるマテハン機器(搬送部30、バッファコンベヤ60、昇降部50等)の制御、後述するピッキング工程及び/もしくは梱包工程における制御を最適化する手法として、人工知能(AI)によって生成された最適化モデルとルールベース(人間が考えたルールに基づいて作成したプログラム)によって生成された最適化モデルとを比較し、両者を必要に応じて使い分ける手法を採用する。 The automated warehouse optimization system of the present invention includes control in the tray-making process described above, control of material handling equipment (conveyor unit 30, buffer conveyor 60, elevating unit 50, etc.) in the storage warehouse unit 100, picking process and / or packing described later. As a method for optimizing the control in the process, the optimization model generated by artificial intelligence (AI) is compared with the optimization model generated by the rule base (a program created based on the rules thought by humans). Adopt a method to use both properly as needed.
 ルールベースのプログラムは、WCS500のストレージに格納されている。人工知能(AI)のプログラムは、WCS500とは別の場所に設置されてもよいサーバーのハードディスクドライブ等に格納され、通信部を介してWCS500のコンピュータと接続されている。人工知能(AI)のプログラムは、WCS500のストレージ内にルールベースのプログラムと別個独立的に格納してもよい。 The rule-based program is stored in the storage of WCS500. The artificial intelligence (AI) program is stored in a hard disk drive or the like of a server which may be installed in a place different from the WCS500, and is connected to the computer of the WCS500 via a communication unit. The artificial intelligence (AI) program may be stored in the WCS500 storage independently of the rule-based program.
 また、ルールベースと人工知能(AI)のそれぞれは、保管倉庫部100におけるマテハン機器や、ピッキングステーション200及び梱包部300における各種機器を動作させるための動作用デバイスと、当該動作が正しい判断で動作するのか判定を下す判定用デバイスとから構成されている。判定用デバイスは、予め決められた優先事項である最短時間出庫、最短距離出庫、最小電力、予め決められていてもよい特定の商品を優先的に出庫する優先出庫情報、出庫する商品オーダー数、ピッキングの人員配置、スループット(単位時間当たりの処理量)、セール(曜日、季節等に特有の売れ筋情報やキャンペーン)要望への対応度合い、の傾向などから選択された優先項目に基づいて最適解を出したのがルールベースの動作用デバイスであるか、人工知能(AI)の動作用デバイスであるかを判定する。 In addition, each of the rule base and artificial intelligence (AI) operates with a correct judgment as a material handling device in the storage warehouse unit 100, an operation device for operating various devices in the picking station 200 and the packing unit 300, and the operation. It is composed of a judgment device that makes a judgment as to whether or not to do so. The determination device has predetermined priorities such as shortest time delivery, shortest distance delivery, minimum power, priority delivery information for preferentially issuing a specific product that may be predetermined, and the number of product orders to be delivered. Optimal solution based on priority items selected from picking staffing, throughput (processing amount per unit time), sale (selling information and campaigns specific to days of the week, seasons, etc.), degree of response to requests, trends, etc. It is determined whether the output is a rule-based operating device or an artificial intelligence (AI) operating device.
 ここで、人工知能(AI)とは、特定の事象についてのデータを反復学習し、その結果から特徴(規則性や関係性)を見つけ出してモデル化し、このモデルから得られた最適解に基づいて判断や予測を行うための学習アルゴリズムを使用する手法の一切を意味し、コンピュータに入力したデータを教師あり学習、教師なし学習、強化学習等のアルゴリズムに基づいて分析する機械学習だけでなく、機械学習を発展させた深層学習(ディープラーニング)を含む概念である。 Here, artificial intelligence (AI) is based on iterative learning of data about a specific event, finding and modeling features (regularity and relationships) from the results, and based on the optimum solution obtained from this model. It means all methods that use learning algorithms to make judgments and predictions, not only machine learning that analyzes data input to a computer based on algorithms such as supervised learning, unsupervised learning, and deep learning, but also machines. It is a concept that includes deep learning, which is an extension of learning.
 深層学習は、人間の神経細胞をモデルにしたニューラルネットワークを用いてデータの学習を行う手法である。ニューラルネットワークとは、人間の脳内にある神経細胞をコンピュータ上にモデル化したもので、入力層(インプット)、隠れ層(中間層とも呼ばれ、多層にもできる)、出力層(アウトプット)で構成される。すなわち、深層学習とは、隠れ層が多数存在する多層構造のニューラルネットワークを用いた機械学習と定義される。畳み込みニューラルネットワーク、再帰型ニューラルネットワーク、長・短期記憶ユニットニューラルネットワーク等の多くの種類がある。 Deep learning is a method of learning data using a neural network modeled on human nerve cells. A neural network is a computer model of nerve cells in the human brain. It is an input layer (input), a hidden layer (also called an intermediate layer, which can be multi-layered), and an output layer (output). Consists of. That is, deep learning is defined as machine learning using a multi-layered neural network in which many hidden layers exist. There are many types such as convolutional neural networks, recurrent neural networks, and long / short-term storage unit neural networks.
 その他の人工知能(AI)の手法としては、例えばK平均法、ベイジアンネットワーク法、カルマンフィルター法、サポートベクターマシン法、決定木法等が挙げられるが、これらに限定されるものではない。 Other artificial intelligence (AI) methods include, but are not limited to, the K-means method, the Bayesian network method, the Kalman filter method, the support vector machine method, the decision tree method, and the like.
 図7は、本実施の形態に係る最適化モデル生成手法の一例を示す概念図である。 FIG. 7 is a conceptual diagram showing an example of the optimization model generation method according to the present embodiment.
 ここでは、WCS500のストレージに格納された過去の入出庫動作ログ、マテハン機器の動作ログ、商品アイテムの属性データ(数量、日付、入出荷先、保管場所、重量等)、保管データテーブルに記録されたデータ等に基づいて作成されたルールベースによってマテハン機器(搬送部30、バッファコンベヤ60、昇降部50等)の最短移動時間(時短化モデル)を生成すると共に、上記のデータ等に基づいて入力変数(説明変数)を抽出し、深層学習等の人工知能(AI)技術によって、マテハン機器の最短移動時間(時短化モデル)を生成する例を示している。 Here, it is recorded in the past warehousing / delivery operation log stored in the storage of WCS500, the operation log of the material handling device, the attribute data of the product item (quantity, date, receipt / shipment destination, storage location, weight, etc.), and the storage data table. The shortest movement time (time saving model) of the material handling equipment (conveying unit 30, buffer conveyor 60, elevating unit 50, etc.) is generated by the rule base created based on the above data, etc., and input is performed based on the above data, etc. An example is shown in which a variable (explanatory variable) is extracted and the shortest travel time (time reduction model) of a material handling device is generated by artificial intelligence (AI) technology such as deep learning.
 保管倉庫部100及びピッキングステーション200で行う上記の制御を人工知能(AI)によって最適化する場合、各制御を個別に最適化してもよく、制御全体を一括して最適化してもよい。また、どの制御を優先して最適化するかは、人が状況に応じて各制御に重み付けを付与してもよく、システムが状況を記述するパラメータから自動変換された重み付けを付与してもよい。 When the above control performed by the storage warehouse unit 100 and the picking station 200 is optimized by artificial intelligence (AI), each control may be optimized individually, or the entire control may be optimized collectively. Further, as to which control is prioritized and optimized, a person may give a weight to each control according to the situation, or the system may give a weight automatically converted from a parameter describing the situation. ..
 システムが各制御を個別に最適化する場合、共起物品集約(たとえば、鉛筆を注文すれば消しゴムも併せて注文される(率が一定以上である場合にペアリングを見出しペアリング規約を規定することを含む)ペアリング対象のものを一緒のトレーに入れること)であれば、例えば相互情報量あるいはコホーネンの自己組織化マップ(SOM)を使った教師なし機械学習で行うことが考えられる。なお、ここでは、SOMとは、たとえば共起物品に係るクラスタを生成することをいい、たとえば次の文献に詳述される(Kohonen T. Self-organizing formation of topologically correct
feature maps. Biol. Cybern., 43, 1982, 59-69.)。また、保管用ケース40を棚10に入庫すると共に棚10から出庫するための制御であれば、例えば搬送部30、昇降部50及びバッファコンベヤ60の単位時間当たり処理量をルート探索問題と捉え、最短経路探索の計算を単純な組み合わせロジックで行う手法あるいはホップフィールドネットワーク等を使った巡回セールスマン問題の手法で行うことが考えられる。
If the system optimizes each control individually, co-occurrence article aggregation (for example, if you order a pencil, you will also order an eraser (if the rate is above a certain level, you will find pairing and specify the pairing rules). In the case of (including the fact that the items to be paired are put in the same tray), for example, mutual information or unsupervised machine learning using Co-occurrence's self-organizing map (SOM) can be considered. Here, SOM means, for example, to generate a cluster related to co-occurrence articles, and is described in detail in the following document, for example (Kohonen T. Self-organizing formation of topologically correct).
feature maps. Biol. Cybern., 43, 1982, 59-69.). Further, in the case of control for storing the storage case 40 in the shelf 10 and leaving the shelf 10, for example, the processing amount per unit time of the transport unit 30, the elevating unit 50, and the buffer conveyor 60 is regarded as a route search problem. It is conceivable to perform the calculation of the shortest path search by a simple combination logic method or the traveling salesman problem method using a Hopfield network or the like.
 制御全体を最適化する場合は、制御のパラメータで構成されるn次元空間における最適点探索問題と捉え、これをn次元空間における曲線近似問題として扱ってn次元空間中の最小値を求める手法で行ってもよい。 When optimizing the entire control, it is regarded as an optimum point search problem in the n-dimensional space composed of control parameters, and this is treated as a curve approximation problem in the n-dimensional space to find the minimum value in the n-dimensional space. You may go.
 また、状況に応じた最適化手法については、状況を記述するパラメータの重要度を人間もしくはシステムが設定し、相互依存的な最適化パラメータの重要度を決定することができる。単純には、もし注目しているパラメータの値1が最適化制御項目Aを最適にするが最適化制御項目Bは最適にせず、しかし一方、注目パラメータの値2が最適化制御項目Aは最適にしないが最適化制御項目Bを最適にするというような、いずれの最適化制御項目を採用すべきかという問題が生じたとする。この場合、もし最適化制御項目Aの重要度が高ければ、最適化制御項目Bの最適化を完全に無視してパラメータの値1を採用する手法や、各パラメータをn次元入力と考えてエネルギー最小点に収束させる機械学習手法や、人間が望ましい結果を示す教師あり機械学習手法を用いることが考えられる。 In addition, regarding the optimization method according to the situation, the importance of the parameters that describe the situation can be set by a human or the system, and the importance of the interdependent optimization parameters can be determined. Simply, if the parameter value 1 of interest optimizes the optimization control item A but not the optimization control item B, while the parameter value 2 of interest optimizes the optimization control item A. However, it is assumed that there is a problem as to which optimization control item should be adopted, such as optimizing the optimization control item B. In this case, if the importance of the optimization control item A is high, a method of completely ignoring the optimization of the optimization control item B and adopting the parameter value 1 or considering each parameter as an n-dimensional input and energy. It is conceivable to use a machine learning method that converges to the minimum point, or a supervised machine learning method that shows desirable results for humans.
 保管倉庫部100におけるマテハン機器の最短移動時間(時短化モデル)を生成する場合、人工知能(AI)及びルールベースは、各棚10に入庫された保管用ケース40の数や棚10毎の保管用ケース40の占有率を考慮すること、一緒に売れる商品アイテム70の組み合わせを過去の出庫履歴から読み取ること、一緒に売れると思われる複数種類の商品アイテム70を同じ棚10に配置すること、のいずれか少なくとも一つあるいはこれらの組み合わせを考慮してもよい。 When generating the shortest travel time (time saving model) of the material handling equipment in the storage warehouse unit 100, the artificial intelligence (AI) and the rule base are the number of storage cases 40 stored in each shelf 10 and the storage for each shelf 10. Considering the occupancy rate of the case 40, reading the combination of the product items 70 that can be sold together from the past shipping history, and arranging the plurality of types of product items 70 that are considered to be sold together on the same shelf 10. At least one of them or a combination thereof may be considered.
 例えば、書店向け商品群、薬局向け商品群、電気屋向け商品群等、一般に、同一業種の店舗で扱われる複数種類の商品アイテム70を同一カテゴリーの商品群として同じまたは近い棚10に集約して配置する。同じGTPの仕向先向けに集約しやすいためである(共起物品集約の一例であるともいえる。)もしくは、季節毎の売れ筋商品を考慮し、売れ筋の商品アイテム70を複数の棚10に分散して配置すると共に、分散させた売れ筋商品アイテム70と一緒に売れることが多い商品アイテム70を同じ棚10に入れるようにする。作業負担の平準化を図ることができる。 For example, a plurality of types of product items 70, which are generally handled in stores of the same industry, such as a product group for bookstores, a product group for pharmacies, and a product group for electric stores, are aggregated into the same or close shelves 10 as product groups in the same category. Deploy. This is because it is easy to aggregate for the same GTP destination (it can be said that it is an example of co-occurrence goods aggregation), or in consideration of the best-selling products for each season, the best-selling product items 70 are distributed on a plurality of shelves 10. The product items 70, which are often sold together with the distributed hot-selling product items 70, are placed on the same shelf 10. The work load can be leveled.
 そして、例えば一日などの単位時間当たりの実際の出庫指令に基づき、セットで売られる商品アイテム70のうち、どの程度が一緒に売れているかを算出し、例えば50%以上が人工知能(AI)の予測した商品セットである場合には、人工知能(AI)が導き出した入庫順情報を採用することができる。他方、人工知能(AI)が一緒に売れると予測したセットと異なるセットが50%を下回るようになった場合には、翌日からルールベースが導き出した入庫順情報を採用するように切り替えることができる。 Then, based on the actual delivery command per unit time such as one day, it is calculated how much of the product items 70 sold as a set are sold together, for example, 50% or more is artificial intelligence (AI). In the case of the product set predicted by, the warehousing order information derived by artificial intelligence (AI) can be adopted. On the other hand, if the number of sets different from the set predicted to sell together with artificial intelligence (AI) falls below 50%, it is possible to switch to adopt the warehousing order information derived by the rule base from the next day. ..
 そして、ルールベースが導き出した入庫順情報を採用している間にも、人工知能(AI)が導き出した一緒に売れる商品セットの予測を継続しておき、例えば一日などの単位時間当たりの実際の出庫指令に基づき、セットで売られる商品のうち、50%以上が人工知能(AI)の予測した商品セットとなった場合には、翌日から人工知能(AI)が導き出した入庫順情報を採用するように切り替える。 Then, while adopting the warehousing order information derived by the rule base, the prediction of the product set that can be sold together derived by artificial intelligence (AI) is continued, for example, the actual value per unit time such as one day. If 50% or more of the products sold as a set are the product set predicted by artificial intelligence (AI), the warehousing order information derived by artificial intelligence (AI) will be adopted from the next day. Switch to.
 また、商品アイテム70を入庫した後に人工知能(AI)で出庫を予測し、入庫命令や出庫命令が少ないときに繁忙時の単位時間の出庫オーダの処理件数が増えるよう保管用ケース40の位置を求め、出庫時に出庫し易い位置に保管用ケース40を移動させておいてもよい。 In addition, after warehousing the product item 70, the artificial intelligence (AI) predicts the warehousing, and when there are few warehousing orders and warehousing orders, the position of the storage case 40 is set so that the number of processing of the warehousing order per unit time during busy hours increases. The storage case 40 may be moved to a position where it can be easily delivered at the time of delivery.
 例えば、入庫時には、書店向け商品群、薬局向け商品群、電気屋向け商品群等、同一業種の店舗で扱われる商品毎に同一カテゴリーの商品群とし、それを同じまたは近い棚10に集約して配置したとしても、入出庫を繰り返す間に分散して配置されることもある。その場合には、例えば倉庫作業が行われない夜間に分散した商品群を同じまたは近い棚10に集約してもよい。 For example, at the time of warehousing, a product group of the same category is used for each product handled in stores of the same industry, such as a product group for bookstores, a product group for pharmacies, and a product group for electric stores, and the products are grouped on the same or close shelves 10. Even if they are arranged, they may be arranged in a distributed manner during repeated warehousing and delivery. In that case, for example, a group of products dispersed at night when warehouse work is not performed may be aggregated on the same or close shelves 10.
 棚10に保管された商品アイテム70に対して顧客から注文があった場合、当該商品アイテム70が入った保管用ケース40は、搬送部30によって棚10から出庫され、バッファコンベヤ60及び昇降部50を介してピッキングステーション200に搬送される。 When a customer places an order for the product item 70 stored on the shelf 10, the storage case 40 containing the product item 70 is taken out from the shelf 10 by the transport unit 30, and the buffer conveyor 60 and the elevating unit 50 are removed. It is transported to the picking station 200 via.
 保管倉庫部100から商品アイテム70を出庫する際は、まずWMS400から商品アイテム70の出庫命令が下され、これがWCS500のコンピュータを介してピッキングステーション200に伝達される。出庫命令には、商品アイテム70とその数量、出庫時刻及び配送先を対応付けた出庫情報が含まれている。 When the product item 70 is delivered from the storage warehouse unit 100, the WMS400 first issues a delivery order for the product item 70, which is transmitted to the picking station 200 via the computer of the WCS500. The delivery order includes the delivery information associated with the product item 70, its quantity, the delivery time, and the delivery destination.
 WCS500のCPUは、ストレージに格納された既定の作業指示プログラムに従って保管情報と出庫情報とを比較し、最適な出庫順情報を作成してマテハン機器(搬送部30、バッファコンベヤ60、昇降部50等)を動作させる。 The CPU of the WCS500 compares the storage information and the delivery information according to the default work instruction program stored in the storage, creates the optimum delivery order information, and creates the material handling equipment (conveyor unit 30, buffer conveyor 60, elevating unit 50, etc.). ) Is operated.
 具体的には、WCS500のストレージに格納された既定の作業指示プログラムに従って出庫命令に対応する商品アイテム70が収納された保管用ケース40を選択し、当該保管用ケース40を棚10から出庫するために搬送部30を移動させる。そして、出庫の対象である保管用ケース40に到着した搬送部30は、保管用ケース40を把持してバッファコンベヤ60に移載する。 Specifically, in order to select the storage case 40 in which the product item 70 corresponding to the delivery instruction is stored according to the default work instruction program stored in the storage of the WCS500, and to take out the storage case 40 from the shelf 10. The transport unit 30 is moved to. Then, the transport unit 30 that has arrived at the storage case 40, which is the target of delivery, grips the storage case 40 and transfers it to the buffer conveyor 60.
 このとき、人工知能(AI)は、たとえば過去一週間分の出庫履歴に基づいて、例えば単位時間当たりの処理オーダー数が最大化できるような(当日分/午前中分/1時間分の)出庫プログラム或いは出庫順情報を作成する。そして、過去一週間に同じ出庫傾向が続いている場合、人工知能(AI)は、単位時間当たりの処理オーダー数を向上させるか、単位時間当たりの処理オーダ数が高い状況を維持する。 At this time, the artificial intelligence (AI) is issued (for the day / morning / one hour) so that the number of processing orders per unit time can be maximized, for example, based on the issue history for the past week. Create a program or shipping order information. And if the same shipping trend continues in the past week, artificial intelligence (AI) will either improve the number of processing orders per unit time or maintain a high number of processing orders per unit time.
 一方、当日、新たに臨時のセール(キャンペーン)期間が開始された場合等、人工知能(AI)が予めセールに関する学習をしていないときには、セール期間でない状態の出庫情報を出力するので、単位時間当たりのオーダー数が極端に悪化する場合もあり得る。その場合は、人工知能(AI)が生成した出庫情報に代えてルールべースが生成した出庫情報を採用する。 On the other hand, when the artificial intelligence (AI) has not learned about the sale in advance, such as when a new temporary sale (campaign) period is started on the day, the issue information in a state other than the sale period is output, so the unit time The number of orders per win may be extremely deteriorated. In that case, the issue information generated by the rule base is adopted instead of the issue information generated by artificial intelligence (AI).
 また、過去1週間続いたセール期間が終了した場合や、保管倉庫部100のマテハン機器のいずれかが故障した場合等、イレギュラーな状況が発生した場合は、人工知能(AI)が生成した出庫効率よりもルールベースが生成した出庫効率が上回るので、ルールべースの出庫情報を採用する。 In addition, if an irregular situation occurs, such as when the sale period that lasted for the past week has expired, or if any of the material handling equipment in the storage warehouse section 100 has failed, the delivery will be generated by artificial intelligence (AI). Since the issue efficiency generated by the rule base exceeds the efficiency, the rule-based issue information is adopted.
 出庫命令の対象となった保管用ケース40を保管倉庫部110から出庫すると、WCS500は、棚10及び段の番号等からなるアドレス情報と、当該保管用ケース40の情報とを対応付け、当該保管用ケース40が出庫されたことをその日時と共に保管データテーブルに記録し、当該保管データテーブルを更新する。 When the storage case 40, which is the target of the delivery order, is delivered from the storage warehouse unit 110, the WCS500 associates the address information consisting of the shelves 10 and the column numbers with the information of the storage case 40, and stores the storage case 40. The fact that the case 40 has been delivered is recorded in the storage data table together with the date and time, and the storage data table is updated.
 保管倉庫部110から出庫された保管用ケース40がピッキングステーション200に到着すると、作業者やロボット等のピッキング部90は、当該保管用ケース40内の商品アイテム70とその数量とを表示したディスプレイ画面の指示に従って商品アイテム70をピッキングし、出荷用コンベヤ91を流れる空の出荷用ケース(出荷用媒体)80(または段ボール等の梱包資材)に投入する。 When the storage case 40 delivered from the storage warehouse unit 110 arrives at the picking station 200, the picking unit 90 such as a worker or a robot displays a display screen displaying the product items 70 in the storage case 40 and their quantities. The product item 70 is picked according to the instructions of the above and put into an empty shipping case (shipping medium) 80 (or a packing material such as corrugated cardboard) flowing through the shipping conveyor 91.
 出荷用ケース80への商品アイテム70の投入が完了すると、ピッキング部90は、ディスプレイ画面に表示されたピッキング完了ボタンをタッチする。これにより、WCS500は、ストレージに格納された既定の作業指示プログラムに従い、出荷用ケース80を梱包部300に向かって搬送させる。 When the loading of the product item 70 into the shipping case 80 is completed, the picking unit 90 touches the picking completion button displayed on the display screen. As a result, the WCS 500 transports the shipping case 80 toward the packing unit 300 according to the default work instruction program stored in the storage.
 図示は省略するが、たとえば出荷用ケース80の外側面には、当該出荷用ケース80に投入される商品アイテム70の第1識別子71に関連付けられる第3識別子が設けられている。第3識別子には、出荷先の顧客情報や店舗情報、商品アイテム70の名称及び名称、出庫の日時等の情報が含まれている。この場合、ケースの外側面に貼付するだけでなく、代替的に、納品書にIDを印刷して同梱してもよいし、ラベルにIDを印刷して貼付してもよい。 Although not shown, for example, the outer surface of the shipping case 80 is provided with a third identifier associated with the first identifier 71 of the product item 70 to be put into the shipping case 80. The third identifier includes information such as customer information and store information of the shipping destination, the name and name of the product item 70, and the date and time of delivery. In this case, not only the ID may be attached to the outer surface of the case, but the ID may be printed on the delivery note and included in the package, or the ID may be printed on the label and attached.
 WCS500は、出荷用ケース80の第3識別子に記載されたこれらの情報と当該出荷用ケース80に投入された商品アイテム70の第1識別子71の情報とを対応付け、当該出荷用ケース80が梱包部300に搬送されたことをその日時と共に保管データテーブルに記録し、当該保管データテーブルを更新する。 The WCS 500 associates these information described in the third identifier of the shipping case 80 with the information of the first identifier 71 of the product item 70 put into the shipping case 80, and the shipping case 80 is packed. The fact that the product has been transported to the unit 300 is recorded in the storage data table together with the date and time, and the storage data table is updated.
 ピッキングステーション200において商品アイテム70がピッキングされた保管用ケース40のうち、内部に商品アイテム70が残っている保管用ケース40は、バッファコンベヤ60及び昇降部50によって再び保管倉庫部100に搬送され、搬送部30によって棚10に戻される。この場合、保管用ケース40が戻される場所は元の場所である必要はなく、任意の棚10の空いた保管スペースが利用される(フリーロケーション方式)。 Of the storage cases 40 in which the product items 70 are picked at the picking station 200, the storage cases 40 in which the product items 70 remain inside are transported to the storage warehouse unit 100 again by the buffer conveyor 60 and the elevating unit 50. It is returned to the shelf 10 by the transport unit 30. In this case, the place where the storage case 40 is returned does not have to be the original place, and the vacant storage space of any shelf 10 is used (free location method).
 一方、商品アイテム70のピッキングが完了して空になった保管用ケース40は、保管倉庫部100の上流のトレー化作業場所に搬送され、新たに入荷した商品アイテム70が収納された後、入庫用コンベヤ600を通じて保管倉庫部100に搬送される。 On the other hand, the storage case 40, which has been emptied after the picking of the product item 70 is completed, is transported to the tray-making work place upstream of the storage warehouse unit 100, and is stored after the newly arrived product item 70 is stored. It is conveyed to the storage warehouse section 100 through the conveyor 600.
 このように、ピッキングステーション200では、倉庫制御システム(WCS)500の指示に従い、保管用ケース40から必要な数量の商品アイテム70をピッキングするためのピッキング命令の制御や、ピッキングされた商品アイテム70に設けられた第1識別子71と出荷用ケース80に設けられた第3識別子との関連付けに基づいた投入完了命令の制御や、商品アイテム70のピッキングが完了した保管用ケース40を保管倉庫部100に戻すためのリターン命令の制御や、熟練度に差のあるピッキング部90同士のペアリング制御等が行われる。 In this way, the picking station 200 controls the picking command for picking the required quantity of the product item 70 from the storage case 40 according to the instruction of the warehouse control system (WCS) 500, and the picked product item 70. Control of the input completion command based on the association between the first identifier 71 provided and the third identifier provided in the shipping case 80, and the storage case 40 in which the picking of the product item 70 is completed is sent to the storage warehouse unit 100. Control of the return command for returning, pairing control of picking units 90 having different skill levels, and the like are performed.
 人工知能(AI)は、上記したピッキングステーション200での制御を最も効率よく進めるための最適解を導き出す。そして、この最適解がルールベースが導き出した最適解よりも優れている場合には、人工知能(AI)が導き出した最適解を採用するように切り替える。 Artificial intelligence (AI) derives the optimum solution for most efficient control at the picking station 200 described above. Then, when this optimum solution is superior to the optimum solution derived by the rule base, the optimum solution derived by artificial intelligence (AI) is adopted.
 梱包部300では、ピッキングステーション200から送られてきた出荷用ケース80から商品アイテム70が取り出され、ダンボール箱等の梱包資材で梱包された後、出荷及び配送処理に付される。 In the packing unit 300, the product item 70 is taken out from the shipping case 80 sent from the picking station 200, packed in a packing material such as a cardboard box, and then subjected to shipping and delivery processing.
 梱包部300に送られてきた出荷用ケース80は、WCS500のストレージから読み出された出荷情報と、当該出荷用ケース80内の商品アイテム70及びその数量、出荷先の顧客情報及び店舗情報、出荷日時等の情報との間に齟齬がないかチェックされ、その後、当該出荷用ケース80内の商品アイテム70が取り出されて自動封函装置等によって梱包される。 The shipping case 80 sent to the packing unit 300 includes shipping information read from the storage of the WCS 500, product items 70 and their quantities in the shipping case 80, customer information and store information of the shipping destination, and shipping. It is checked whether there is any discrepancy with the information such as the date and time, and then the product item 70 in the shipping case 80 is taken out and packed by an automatic sealing device or the like.
 WCS500は、上記した梱包工程の情報を保管データテーブルに記録し、当該保管データテーブルを更新する。 The WCS500 records the above-mentioned packing process information in the storage data table and updates the storage data table.
 人工知能(AI)は、上記した梱包部300での作業を最も効率よく進めるための最適解を導き出す。そして、この最適解がルールベースが導き出した最適解よりも優れている場合には、人工知能(AI)が導き出した最適解を採用するように切り替える。 Artificial intelligence (AI) derives the optimum solution for the most efficient work in the packing section 300 described above. Then, when this optimum solution is superior to the optimum solution derived by the rule base, the optimum solution derived by artificial intelligence (AI) is adopted.
 例えば、梱包部300では、商品アイテム70を自動封函装置等によって梱包する際、ダンボール等の梱包原紙を商品アイテム70のサイズに合わせて自動裁断する。その際、人工知能(AI)は、梱包原紙を商品アイテム70の出庫順に合わせて自動裁断するか、梱包原紙のサイズ単位で自動裁断するかを判定する。これにより、商品アイテム70を必要以上に大きいダンボールで梱包する無駄や、商品アイテム70のサイズよりも小さいダンボールに当該商品アイテム70を投入するエラーを防ぐことができる。 For example, when the product item 70 is packed by the automatic sealing device or the like, the packing unit 300 automatically cuts the packing base paper such as cardboard according to the size of the product item 70. At that time, the artificial intelligence (AI) determines whether to automatically cut the packing base paper according to the delivery order of the product item 70 or to automatically cut the packing base paper in units of the size of the packing base paper. As a result, it is possible to prevent waste of packing the product item 70 in a cardboard box larger than necessary and an error of inserting the product item 70 into a cardboard box smaller than the size of the product item 70.
 また、本発明の自動化倉庫最適化システムは、人工知能(AI)によって生成された最適化モデルとルールベース(人間が考えたルールに基づいて作成したプログラム)によって生成された最適化モデルとを比較し、両者を必要に応じて使い分ける手法を含んでいる。 In addition, the automated warehouse optimization system of the present invention compares an optimization model generated by artificial intelligence (AI) with an optimization model generated by a rule base (a program created based on a rule thought by humans). However, it includes a method to use both properly as needed.
 例えば、図8に示すように、保管倉庫部100に備わるマテハン機器の最短移動時間をルールベースで求めるか、人工知能(AI)で求めるかを判断する場合、保管倉庫部100で行う制御項目以外の項目(入庫効率、作業員配置、環境負荷、消費電力等)を入力変数とする深層学習2(あるいは、ルールベースのような非人工知能(非AI)技術)によって2つの最適化モデル(人工知能(AI)から導き出された最適化モデル及びルールベースから導き出された最適化モデル)を比較、評価するメタ最適化手法によって、最短移動時間を導き出してもよい。 For example, as shown in FIG. 8, when determining whether to obtain the shortest travel time of the Matehan device provided in the storage warehouse unit 100 on a rule basis or by artificial intelligence (AI), other than the control items performed by the storage warehouse unit 100. Two optimization models (artificial) by deep learning 2 (or non-artificial intelligence (non-AI) technology such as rule base) with the items (warehousing efficiency, worker allocation, environmental load, power consumption, etc.) as input variables The shortest travel time may be derived by a meta-optimization method that compares and evaluates an optimization model derived from intelligence (AI) and an optimization model derived from a rule base).
 このようなメタ最適化は、ルールベースについては、評価関数を決め、その最適解を与える下位の各最適化手法のパラメータを採用することで行ってもよい。また、人工知能(AI)については、結果が最適かどうかを人間が教える教師あり機械学習等で行ってもよい。 For the rule base, such meta-optimization may be performed by determining an evaluation function and adopting the parameters of each lower optimization method that gives the optimum solution. In addition, artificial intelligence (AI) may be performed by supervised machine learning or the like in which a human teaches whether or not the result is optimal.
 さらに、人工知能(AI)で制御の最適化モデルを生成するステップに先立ち、人工知能(AI)で最適化モデルを生成すべきか、ルールベースのような非人工知能(非AI)技術で最適化モデルを生成すべきかを判定し、非人工知能(非AI)で最適化モデルを生成すべきと判定された場合には、保管倉庫部100で行われるマテハン機器の制御や、ピッキングステーション200及び梱包部300で行われる各種制御のうち、少なくとも一つ以上は、非人工知能(非AI)技術によって生成された最適化モデルに基づいて行うようにしてもよい。その際、人工知能(AI)で最適化モデルを生成すべきか、非人工知能(非AI)で最適化モデルを生成すべきかの判定は、上記人工知能(AI)とは別の人工知能(AI)や非人工知能(非AI)で行ってもよい。 In addition, prior to the step of generating a control optimization model with artificial intelligence (AI), should the optimization model be generated with artificial intelligence (AI) or optimized with non-artificial intelligence (non-AI) technology such as rule base? It is determined whether the model should be generated, and if it is determined that the optimized model should be generated by non-artificial intelligence (non-AI), the control of the Matehan equipment performed by the storage warehouse unit 100, the picking station 200 and the packing At least one or more of the various controls performed by the unit 300 may be performed based on an optimization model generated by a non-artificial intelligence (non-AI) technique. At that time, the determination of whether the optimization model should be generated by artificial intelligence (AI) or the optimization model by non-artificial intelligence (non-AI) is determined by artificial intelligence (AI) different from the above artificial intelligence (AI). ) Or non-artificial intelligence (non-AI).
 以上のような本実施の形態によれば、立体自動倉庫で行われる商品アイテム70の仕分け作業の少なくとも一部を人工知能(AI)で生成した最適化モデルに従って行うことにより、立体自動倉庫を備えた物流センター等における商品の出庫効率を向上させることが可能となる。 According to the present embodiment as described above, the three-dimensional automated warehouse is provided by performing at least a part of the sorting work of the product item 70 performed in the three-dimensional automated warehouse according to the optimization model generated by artificial intelligence (AI). It is possible to improve the delivery efficiency of products at distribution centers and the like.
 従って、本発明に係る自動化倉庫最適化システムによれば、立体自動倉庫を備えた物流センターのみならず、物流における全体最適解を求めることができる。また、商品物流全体の合理化を推進することができる。 Therefore, according to the automated warehouse optimization system according to the present invention, it is possible to obtain an overall optimal solution in physical distribution as well as a physical distribution center equipped with a three-dimensional automated warehouse. In addition, the rationalization of the entire product distribution can be promoted.
 なお、前記実施の形態では、スタッカークレーン方式の搬送部30、バッファコンベヤ60及び昇降部50を使って商品アイテム70を棚10に入庫したり、棚10から出庫したりする保管倉庫部100について説明したが、保管倉庫部100での商品アイテム70の搬送方法はこれに限定されるものではなく、例えばスタッカークレーン方式の搬送部30のみを使って商品アイテム70を棚10に入庫したり、棚10から出庫したりしてもよい。また、スタッカークレーン方式以外の搬送手段を用いて商品アイテム70の入出庫を行ってもよい。 In the above-described embodiment, the storage warehouse unit 100 for storing the product item 70 in the shelf 10 and discharging the product item 70 from the shelf 10 by using the stacker crane type transport unit 30, the buffer conveyor 60, and the elevating unit 50 will be described. However, the method of transporting the product item 70 in the storage warehouse unit 100 is not limited to this, and for example, the product item 70 can be stored in the shelf 10 using only the stacker crane type transport unit 30, or the shelf 10 You may leave the warehouse from. In addition, the product item 70 may be loaded and unloaded using a transport means other than the stacker crane method.
  1:立体自動倉庫
 10:棚
 20:通路
 30:搬送部
 31:アーム
 40:保管用ケース(保管用部)
 41:第2識別子
 50:昇降部
 60:バッファコンベヤ(バッファ部)
 70:商品アイテム
 71:第1識別子
 80:出荷用ケース(出荷用媒体)
 90:ピッキング部
 91:出荷用コンベヤ
100:保管倉庫部(倉庫部)
200:ピッキングステーション
300:梱包部
400:倉庫管理システム(WMS)
500:倉庫制御システム(WCS)
600;入庫用コンベヤ
 
1: Three-dimensional automated warehouse 10: Shelf 20: Aisle 30: Transport section 31: Arm 40: Storage case (storage section)
41: Second identifier 50: Elevating part 60: Buffer conveyor (buffer part)
70: Product item 71: First identifier 80: Shipping case (shipping medium)
90: Picking section 91: Shipping conveyor 100: Storage warehouse section (warehouse section)
200: Picking station 300: Packing unit 400: Warehouse management system (WMS)
500: Warehouse control system (WCS)
600; Conveyor for warehousing

Claims (7)

  1.  一定時間において受け付けられた物流オーダーに対して、前記物流オーダーを物流システムによって処理することに伴う特定の物流処理尺度情報を最適化するために、前記物流システムを構成する全機器を経時的にどのように動作させるべきかを規定する物流処理シナリオを定義づける情報を出力するように、コンピュータを機能させるための学習済みモデルであって、
    一定時間において受け付けられた物流オーダーに対して規定された過去の物流処理シナリオから該シナリオを入力値とする入力層と、
    前記入力層に対して重み付け係数をもって接合された1以上の中間層と、
    前記中間層に対して重み付け係数をもって接合された出力層と
    を備え、
    前記入力層に対し、重み付け係数に基づく演算を行い、前記出力層から前記特定の物流処理尺度情報を最適化するための物流処理シナリオを定義づける情報を出力するよう、コンピュータを機能させるための学習済みモデル。
    In order to optimize the specific distribution processing scale information associated with processing the distribution order by the distribution system for the distribution order received in a certain period of time, all the devices constituting the distribution system are used over time. A trained model for making a computer work to output information that defines a logistics processing scenario that defines how it should work.
    An input layer that uses the scenario as an input value from the past distribution processing scenario specified for the distribution order received in a certain time, and
    With one or more intermediate layers joined to the input layer with a weighting coefficient,
    An output layer bonded to the intermediate layer with a weighting coefficient is provided.
    Learning to make a computer function so as to perform an operation based on a weighting coefficient on the input layer and output information defining a physical distribution processing scenario for optimizing the specific physical distribution processing scale information from the output layer. Finished model.
  2.  一定時間において受け付けられた物流オーダーに対して前記物流オーダーを物流システムによって処理することに伴う特定の物流処理尺度情報を最適化するために、前記物流システムを構成する全機器を経時的にどのように動作させるべきかを規定した過去の物流処理シナリオと、前記過去の物流処理シナリオによって動作した結果得られる、スループット情報、処理時間情報、消費電力情報、出庫完了オーダー数情報、処理に要した人員数情報、セール品を含む特殊処理対象物品の単位時間当たりの処理数情報の少なくともいずれか一つあるいは二つ以上を組み合わせた物流処理尺度情報に照らしてとを教師データとして用い、前記物流処理成績値のうちの特定の物流処理尺度情報を最適化するための物流処理シナリオを規定する学習済モデルを機械学習により生成するモデル生成手段と、
     一定時間におけるすべての物流オーダーを受け付ける物流オーダー処理受付手段と、
     前記物流オーダー処理受付手段が受け付けた前記物流オーダーに対して前記全機器に係る経時的な挙動を規定した過去物流処理シナリオを取得する過去物流処理シナリオ取得手段と、
     前記物流処理尺度情報の中から所望される尺度情報が特定される尺度情報特定手段と、
     前記モデル生成手段により生成された学習済モデルを用いて、前記過去物流処理シナリオ取得手段が取得した前記過去物流処理シナリオと前記尺度情報特定手段によって特定された尺度情報とから、前記尺度情報を最適化するために前記物流システムを構成する全機器を経時的にどのように動作させるべきかを規定する物流処理シナリオを出力する処理手段と
     を備える物流処理シナリオ推定システム。
    In order to optimize the specific distribution processing scale information associated with processing the distribution order by the distribution system for the distribution order received in a certain period of time, how all the devices constituting the distribution system are processed over time. The past logistics processing scenario that stipulates whether or not to operate, and the throughput information, processing time information, power consumption information, delivery completion order number information, and personnel required for processing, which are obtained as a result of operating by the past logistics processing scenario. The physical distribution processing results are based on the physical distribution processing scale information in which at least one or two or more of the numerical information and the processing number information per unit time of the specially processed article including the sale item are combined as the teacher data. A model generation means that uses machine learning to generate a trained model that defines a physical distribution processing scenario for optimizing specific physical distribution processing scale information among the values.
    Logistics order processing reception means that accepts all logistics orders in a certain time,
    A past distribution processing scenario acquisition means for acquiring a past distribution processing scenario that defines the temporal behavior of all the devices for the distribution order received by the distribution order processing receiving means, and a past distribution processing scenario acquisition means.
    Scale information specifying means for specifying desired scale information from the physical distribution processing scale information,
    Using the trained model generated by the model generation means, the scale information is optimized from the past distribution processing scenario acquired by the past distribution processing scenario acquisition means and the scale information specified by the scale information specifying means. A physical distribution processing scenario estimation system including a processing means for outputting a physical distribution processing scenario that defines how all the devices constituting the physical distribution system should be operated over time.
  3.  前記物流処理尺度情報は、スループット情報、処理時間情報、消費電力情報、出庫完了オーダー数情報、処理に要した人員数情報、セール品を含む特殊処理対象物品の単位時間当たりの処理数情報の少なくともいずれか一つあるいは二つ以上を組み合わせたものに照らして得られる、請求項2記載の物流処理シナリオ推定システム。 The distribution processing scale information includes at least throughput information, processing time information, power consumption information, delivery completion order number information, personnel number information required for processing, and processing number information per unit time of special processing target articles including sale items. The logistics processing scenario estimation system according to claim 2, which is obtained in light of one or a combination of two or more of them.
  4.  前記物流処理シナリオは、出庫待機数情報、コンベア移動距離情報、棚間移動待機数情報、棚間距離情報、スタッカクレーン移動距離情報、配置替発生数情報、入庫待機数情報、通路距離情報、バッファ部待機数情報、引当可能数情報のうちの少なくともいずれか一つに基づいて作成される、請求項2もしくは3記載の物流処理シナリオ推定システム。 The logistics processing scenario includes delivery waiting number information, conveyor movement distance information, inter-shelf movement waiting number information, shelf-to-shelf distance information, stacker crane moving distance information, rearrangement occurrence number information, warehousing waiting number information, passage distance information, and buffer. The physical distribution processing scenario estimation system according to claim 2 or 3, which is created based on at least one of the number of waiting parts information and the available number of allocation information.
  5.  一定時間において受け付けられた物流オーダーを処理するためのシナリオとしての、機械学習に係る物流処理シナリオ推定システムによって出力された第1の物流処理シナリオと、予め決められたプログラムであるルールベースに基づいて第2の物流処理シナリオと、前記第1の物流処理シナリオ、前記第2の物流処理シナリオの処理シナリオのそれぞれについて規定される物流処理尺度情報とを教師データとして用い、特定の物流オーダーに対して前記第1もしくは第2の物流処理シナリオのいずれがより好ましいかを推定する推定モデルを機械学習により生成するモデル生成手段と、
     特定の物流オーダーが入力される入力手段と、
     前記入力手段によって入力された前記特定の物流オーダーを規定する物流オーダー規定情報を特定する物流オーダー情報特定手段と、
     前記物流処理尺度情報の中から所望される尺度情報が特定される尺度情報特定手段と、
     前記モデル生成手段により生成された推定モデルを用いて、前記物流オーダー情報特定手段が特定した前記物流オーダー規定情報から、前記尺度情報を最適化するためは前記第1もしくは第2の物流処理シナリオのいずれがより好ましいかを出力する処理手段と
     を備える物流処理シナリオ出力システム。
    Based on the first logistics processing scenario output by the logistics processing scenario estimation system related to machine learning as a scenario for processing the logistics orders received in a certain time, and the rule base which is a predetermined program. The second physical distribution processing scenario, the physical distribution processing scale information defined for each of the first physical distribution processing scenario and the processing scenario of the second physical distribution processing scenario are used as teacher data for a specific physical distribution order. A model generation means for generating an estimation model for estimating which of the first or second distribution processing scenarios is more preferable by machine learning, and
    An input method for entering a specific distribution order,
    A physical distribution order information specifying means that specifies the physical distribution order regulation information that defines the specific physical distribution order input by the input means, and
    Scale information specifying means for specifying desired scale information from the physical distribution processing scale information,
    In order to optimize the scale information from the distribution order regulation information specified by the distribution order information specifying means using the estimation model generated by the model generation means, the first or second distribution processing scenario A physical distribution processing scenario output system including a processing means for outputting which is more preferable.
  6.  一定時間において受け付けられた物流オーダーを処理するためのシナリオとしての、機械学習に係る物流処理シナリオ推定システムによって出力された第1の物流処理シナリオを得る第1の手段と、
     前記物流処理尺度情報の中から所望される尺度情報が特定される尺度情報特定手段と、
     前記尺度情報特定手段によって特定された尺度情報を最適化するための第2の物流処理シナリオをルールベースに基づいて得る第2の手段と、
     特定の物流オーダーが入力される入力手段と、
    前記入力手段によって入力された前記物流オーダーについて前記尺度情報を最適化するためは前記第1もしくは第2の物流処理シナリオのいずれがより好ましいかを判定する判定手段と
    を備える物流処理シナリオ出力システム。
    As a scenario for processing a physical distribution order received in a certain time, a first means for obtaining a first physical distribution processing scenario output by a physical distribution processing scenario estimation system related to machine learning, and
    Scale information specifying means for specifying desired scale information from the physical distribution processing scale information,
    A second means for obtaining a second distribution processing scenario for optimizing the scale information specified by the scale information specifying means based on a rule base, and
    An input method for entering a specific distribution order,
    A physical distribution processing scenario output system including a determination means for determining which of the first or second physical distribution processing scenarios is more preferable for optimizing the scale information for the physical distribution order input by the input means.
  7.  一定時間において受け付けられた物流オーダーに対して規定した過去の物流処理シナリオに基づいて物流処理シナリオを規定するための学習済モデルを機械学習により生成するモデル生成手段と、
     前記モデル生成手段により生成された学習済モデルを用いて、特定の物流オーダーに対する最適物流処理シナリオを出力する物流処理シナリオ出力手段と、
     前記物流処理シナリオ出力手段によって出力された前記最適物流処理シナリオを用いて、物流倉庫を制御及び/もしくは駆動する制御部と
     を備える物流倉庫制御システム。
     
    A model generation means for generating a learned model by machine learning for defining a distribution processing scenario based on a past distribution processing scenario specified for a distribution order received in a certain period of time.
    Using the learned model generated by the model generation means, a distribution processing scenario output means for outputting an optimum distribution processing scenario for a specific distribution order, and a distribution processing scenario output means.
    A distribution warehouse control system including a control unit that controls and / or drives a distribution warehouse using the optimum distribution processing scenario output by the distribution processing scenario output means.
PCT/JP2019/029917 2019-07-30 2019-07-30 Automated warehouse optimization system WO2021019702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019541493A JP6677858B1 (en) 2019-07-30 2019-07-30 Automated warehouse optimization system
PCT/JP2019/029917 WO2021019702A1 (en) 2019-07-30 2019-07-30 Automated warehouse optimization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029917 WO2021019702A1 (en) 2019-07-30 2019-07-30 Automated warehouse optimization system

Publications (1)

Publication Number Publication Date
WO2021019702A1 true WO2021019702A1 (en) 2021-02-04

Family

ID=70057961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029917 WO2021019702A1 (en) 2019-07-30 2019-07-30 Automated warehouse optimization system

Country Status (2)

Country Link
JP (1) JP6677858B1 (en)
WO (1) WO2021019702A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678409A (en) * 2020-12-24 2021-04-20 深圳市海柔创新科技有限公司 Goods processing method, device, equipment, system, storage medium and program product
CN117196439A (en) * 2023-09-21 2023-12-08 上海展通国际物流有限公司 Warehouse goods sorting method and system for logistics transportation
CN117654903A (en) * 2024-01-31 2024-03-08 北京城建集团有限责任公司 Building material receiving and transmitting system, device and method based on two-dimension code identification

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312163B1 (en) * 2020-12-24 2021-10-14 쿠팡 주식회사 Method for providing information related to item and electronic apparatus using the same
JP7466152B2 (en) 2021-05-20 2024-04-12 国立研究開発法人産業技術総合研究所 Logistics Warehouse
KR102514514B1 (en) * 2021-08-24 2023-03-29 주식회사 와트 Dynamic Divided Goods Loading System
JP2023085973A (en) * 2021-12-09 2023-06-21 株式会社日立製作所 Physical distribution warehouse control system and physical distribution warehouse control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319519A (en) * 1992-05-14 1993-12-03 Seiko Epson Corp Control method for automatic rack having limit of takeout time
JP2000010617A (en) * 1998-06-24 2000-01-14 Honda Motor Co Ltd Method for deciding optimum transfer route of article
JP2017518940A (en) * 2014-06-03 2017-07-13 オカド・イノベーション・リミテッド Method, system and apparatus for controlling movement of a transport device
JP2018202550A (en) * 2017-06-05 2018-12-27 株式会社日立製作所 Machine learning device, machine learning method, and machine learning program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319519A (en) * 1992-05-14 1993-12-03 Seiko Epson Corp Control method for automatic rack having limit of takeout time
JP2000010617A (en) * 1998-06-24 2000-01-14 Honda Motor Co Ltd Method for deciding optimum transfer route of article
JP2017518940A (en) * 2014-06-03 2017-07-13 オカド・イノベーション・リミテッド Method, system and apparatus for controlling movement of a transport device
JP2018202550A (en) * 2017-06-05 2018-12-27 株式会社日立製作所 Machine learning device, machine learning method, and machine learning program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112678409A (en) * 2020-12-24 2021-04-20 深圳市海柔创新科技有限公司 Goods processing method, device, equipment, system, storage medium and program product
CN117196439A (en) * 2023-09-21 2023-12-08 上海展通国际物流有限公司 Warehouse goods sorting method and system for logistics transportation
CN117196439B (en) * 2023-09-21 2024-03-12 上海展通国际物流有限公司 Warehouse goods sorting method and system for logistics transportation
CN117654903A (en) * 2024-01-31 2024-03-08 北京城建集团有限责任公司 Building material receiving and transmitting system, device and method based on two-dimension code identification
CN117654903B (en) * 2024-01-31 2024-04-02 北京城建集团有限责任公司 Building material receiving and transmitting system, device and method based on two-dimension code identification

Also Published As

Publication number Publication date
JP6677858B1 (en) 2020-04-08
JPWO2021019702A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
WO2021019702A1 (en) Automated warehouse optimization system
JP6829756B2 (en) Methods for managing throughput performance of automated storage and retrieval systems, as well as automated storage and retrieval systems
KR102440421B1 (en) Order processing method and device, server, and storage medium
US20220343269A1 (en) Inventory management system and method
JP6405007B2 (en) System and method for process management in a material handling facility
US20180025460A1 (en) Warehouse Management System, Warehouse, and Warehouse Management Method
TWI810488B (en) Computer-implemented system and computer-implemented method for intelligent generation of purchase orders
CN114901569B (en) Pallet building system with flexible sequencing
JP2021516803A (en) Systems and methods for computer-run artificial intelligence batch picking optimization and communication
WO2023146942A1 (en) Systems and methods for optimizing space utilization of containers at retail storage facilities
CN113034084B (en) Dynamic configuration method and terminal for unitized intelligent warehouse
Matthews SKU assignment in a multiple picking line order picking system.
TW202407600A (en) Computer-implemented system method for intelligent distribution of products
CN112348425A (en) Method and device for delivering articles out of warehouse and non-volatile computer readable storage medium
TWI644841B (en) Automated storage and retrieval system and control system thereof
JP7486132B2 (en) WAREHOUSE OPERATION EXECUTION DEVICE, WAREHOUSE OPERATION EXECUTION METHOD, AND COMPUTER PROGRAM FOR WAREHOUSE OPERATION EXECUTION
US11479412B2 (en) Order sortation systems
Farhadi Sartangi et al. A Mixed Integer Linear Formulation and a Grouping League Championship Algorithm for a Multiperiod-Multitrip Order Picking System with Product Replenishment to Minimize Total Tardiness
Hofmann Order picking optimisation on a unidirectional cyclical picking line
JP2023169535A (en) Warehouse operation execution apparatus, warehouse operation execution method, and computer program for executing warehouse operation
Dokras Prime Pantry Optimization: a cost analysis and deep-dive in process improvement
Ananth Joint Order Batching and Picker Routing Problem
Jiang Oversized Package Placement Optimization in Warehouses
CN110458498B (en) Method and apparatus for optimized shipping strategy considering endpoint requirements
Dubey A Decision-making Framework for Distribution Center Automation in the Retail Industry

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541493

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939170

Country of ref document: EP

Kind code of ref document: A1