WO2021019663A1 - Endoscope light source device and endoscope device - Google Patents

Endoscope light source device and endoscope device Download PDF

Info

Publication number
WO2021019663A1
WO2021019663A1 PCT/JP2019/029754 JP2019029754W WO2021019663A1 WO 2021019663 A1 WO2021019663 A1 WO 2021019663A1 JP 2019029754 W JP2019029754 W JP 2019029754W WO 2021019663 A1 WO2021019663 A1 WO 2021019663A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
region
blue
red
Prior art date
Application number
PCT/JP2019/029754
Other languages
French (fr)
Japanese (ja)
Inventor
麦穂 大道寺
雄亮 矢部
伊藤 毅
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2019/029754 priority Critical patent/WO2021019663A1/en
Publication of WO2021019663A1 publication Critical patent/WO2021019663A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a light source device for an endoscope, an endoscope device, and the like.
  • Patent Document 1 includes a light source device including two laser diodes that generate light in the blue region, two laser diodes that generate light in the red region, and an LED (Light Emitting Diode) that generates light in the green region. Is disclosed.
  • Patent Document 1 In an endoscope device, in order to capture an image having excellent visibility of blood vessels and color reproducibility of a subject such as a mucous membrane, there is a problem of generating illumination light suitable for the image.
  • Patent Document 1 described above only narrow band light by a laser diode is used in the blue region and the red region. Therefore, in the method of Patent Document 1, it is difficult to obtain the color reproducibility of the mucous membrane in the blue region and the red region as compared with the case of using wideband light.
  • One aspect of the present invention includes a light source unit having four or more light sources that emit four or more lights having different peak wavelengths from each other, and a light source control unit that can independently adjust the amount of light emitted by each of the four or more light sources.
  • the four or more lights include three lights having peak wavelengths in each of the blue region, the green region, and the red region constituting the visible light region, and the four or more light sources are in the blood vessel-enhanced wavelength region.
  • a narrow band light source that generates narrow band light having a peak wavelength and a wide band light source that generates wide band light having a peak wavelength in a wavelength region other than the blood vessel emphasized wavelength region are included, and the blood vessel emphasized wavelength region is a hemoglobin. It is related to a light source device for an endoscope, which is a wavelength region having a half-value width centered on the peak wavelength of the light absorption spectrum.
  • Another aspect of the present invention relates to an endoscopic device including the above-mentioned light source device for an endoscope.
  • Configuration example of a light source device for an endoscope and an endoscope device An example of the first spectrum of 5-band illumination light.
  • a second spectrum example of 5-band illumination light An example of the third spectrum of 5-band illumination light.
  • An example of the fourth spectrum of 5-band illumination light An example of the fifth spectrum of 5-band illumination light.
  • An example of the sixth spectrum of 5-band illumination light Example of the 7th spectrum of 5-band illumination light.
  • 9 (A) to 9 (D) are other spectral examples of the 5-band illumination light.
  • 10 (A) to 10 (C) are other spectral examples of the 5-band illumination light.
  • 11 (A) to 11 (D) are other spectral examples of the 5-band illumination light.
  • An example of the first spectrum of 6-band illumination light An example of the first spectrum of 6-band illumination light.
  • An example of the second spectrum of 6-band illumination light An example of the third spectrum of 6-band illumination light.
  • 15 (A) to 15 (D) are other spectral examples of the 6-band illumination light.
  • 16 (A) to 16 (C) are examples of other spectra of 6-band illumination light.
  • 17 (A) to 17 (D) are other spectral examples of the 6-band illumination light.
  • 18 (A) to 18 (D) are other spectral examples of the 6-band illumination light.
  • FIG. 1 is a configuration example of an endoscope light source device 105 and an endoscope device 10 including the light source device 105 for an endoscope.
  • the endoscope device 10 includes a light source device 105 for an endoscope, a scope 200, a processing unit 310, a display unit 400, and an operation unit 500.
  • the endoscope device is a device that makes it possible to observe the inside of the observation target by inserting a scope inside the observation target.
  • the endoscope device 10 for example, a flexible mirror used for a gastrointestinal tract or the like can be assumed, but the endoscope device 10 is not limited to this, and the endoscope device 10 may be a rigid mirror used for a laparoscope or the like.
  • the endoscope light source device 105 is a device that generates and controls illumination light, and includes a light source unit 100 and a control unit 314.
  • the light source unit 100 is a device that generates illumination light.
  • the light source unit 100 is also called a light source device.
  • the light source unit 100 generates white illumination light by generating light in a plurality of bands using a plurality of light sources.
  • the light source unit 100 generates white light in the WLI (White Light Imaging) mode.
  • the light source unit 100 may be configured to generate special light in the special light mode.
  • the emission timing of the illumination light may be either a simultaneous type in which a plurality of light sources are simultaneously emitted, or a surface sequential type in which a plurality of light sources are sequentially emitted. The details of the light source unit 100 will be described later.
  • the control unit 314 includes a light source control unit 312 that controls the light source unit 100.
  • the light source control unit 312 controls the light emission timing of a plurality of light sources included in the light source unit 100 and the amount of light of each light source. Further, the light source control unit 312 generates white light or special light in the light source unit 100 according to the WLI mode or the special light mode set via the operation unit 500.
  • the control unit 314 may further have a function of controlling each unit of the endoscope device 10. For example, the control unit 314 may control the imaging timing of the imaging unit 250 in synchronization with the light emission timing of the light source. Further, the control unit 314 may instruct the processing unit 310 of the content of image processing according to the WLI mode or the special light mode set via the operation unit 500. Of the functions of the control unit 314, functions other than the light source control unit 312 may be included in the processing unit 310.
  • the scope 200 is inserted into the body and images the subject.
  • the subject in this embodiment is in the body cavity of a living body, for example, the mucous membrane of the digestive tract.
  • the scope 200 includes a light guide 210, an illumination lens 220, and an image pickup unit 250.
  • the scope 200 has a connector (not shown), which is attached to and detached from the endoscope light source device 105 and the processing unit 310.
  • the light guide 210 guides the illumination light from the light source unit 100 to the tip of the scope 200.
  • the illumination lens 220 irradiates the subject with the illumination light ILM guided by the light guide 210.
  • the imaging unit 250 includes an objective lens, an image sensor, and an A / D conversion circuit.
  • the reflected scattered light RSL from the subject is incident on the objective lens, and the objective lens forms an image of the subject.
  • the image sensor outputs an imaging signal by capturing the subject image.
  • the A / D conversion circuit A / D-converts the analog imaging signal from the image sensor into a digital imaging signal.
  • the A / D conversion circuit may be built in the image sensor.
  • the image sensor may be either a color image sensor provided with a color filter for each pixel or a monochrome image sensor.
  • the color image sensor is, for example, a Bayer type image sensor having a Bayer array color filter, or a complementary color image sensor having a complementary color filter.
  • the processing unit 310 performs image processing. Further, as described above, the processing unit 310 may control each unit of the endoscope device.
  • the processing unit 310 is also called a processing circuit or a processor.
  • the processing unit 310 receives an imaging signal from the imaging unit 250, performs image processing on the imaging signal to generate a display image, and outputs the display image to the display unit 400.
  • the R channel, G channel, and B channel of the imaging signal are referred to as a red imaging signal, a green imaging signal, and a blue imaging signal, respectively.
  • the processing unit 310 In the WLI mode, the processing unit 310 generates a display image by inputting a red image pickup signal, a green image pickup signal, and a blue image pickup signal to the R channel, the G channel, and the B channel of the display image, respectively.
  • the processing unit 310 may generate a special light image in the special light mode. Further, as will be described later in FIG. 19 and the like, when light of a plurality of bands is sequentially emitted in the same color region, the imaging signals corresponding to the plurality of bands are combined, and the combined imaging signal is used as the corresponding channel of the display image. You may enter it.
  • the display unit 400 is a device that displays the display image from the processing unit 310.
  • the display unit 400 is, for example, a liquid crystal display device or the like.
  • the operation unit 500 is a device that receives an operation on the endoscope device 10 from the user.
  • the operation unit 500 is a button, a dial, a pointing device, a touch panel, a foot switch, or the like.
  • the light source unit 100 includes a light source driving unit 110, light sources LSA to LSF, and an optical combine unit 120. Although the case where the light source unit 100 includes six light sources will be described here as an example, the light source unit 100 may include four or more light sources.
  • the light source control unit 312 outputs a control signal indicating the light emission timing and the amount of light of each light source to the light source drive unit 110.
  • the light source driving unit 110 outputs a driving signal DRS to the light sources LSA to LSF based on the control signal.
  • the light source drive unit 110 outputs a drive current as a drive signal DRS, and controls the amount of light emitted from the light source by the amount of the drive current.
  • the light source control unit 312 can independently adjust the amount of light emitted from each light source. That is, the light source control unit 312 can arbitrarily adjust the light amount ratio of the light emitted by the light sources LSA to LSF.
  • the light sources LSA to LSF emit light having different spectra. Specifically, the light sources LSA to LSF emit light having different peak wavelengths from each other.
  • the light source unit 100 is a hybrid light source that combines a narrow band light source and a wide band light source. That is, each of the light sources LSA to LSF is a narrow band light source that emits narrow band light or a wide band light source that emits wide band light, and the light sources LSA to LSF are at least one narrow band light source and at least one wide band light source. including.
  • Narrow band light is light whose half width is narrower than a predetermined bandwidth.
  • broadband light is light whose full width at half maximum is wider than a predetermined bandwidth.
  • the predetermined bandwidth is, for example, 20 nm.
  • the narrowband light source is, for example, a laser diode.
  • the broadband light source is, for example, an LED (Light Emitting Diode).
  • the broadband light source is a combination of an LED and a phosphor excited by the LED.
  • the broadband light source is a combination of a laser diode and a phosphor excited by the laser diode.
  • the optical combining unit 120 combines the optical LSL emitted by the light sources LSA to LSF, and causes the combined optical CBL to be incident on the light guide 210.
  • the optical combiner 120 is composed of, for example, a dichroic mirror and a lens.
  • the optical merging unit 120 may be an optical fiber that emits light incident from a plurality of incident ends to one emitting end.
  • the light source unit 100 has four or more light sources that emit four or more lights having different peak wavelengths from each other.
  • the light source control unit 312 can independently adjust the amount of light emitted by each of the four or more light sources.
  • the four or more lights include three lights having peak wavelengths in each of the blue region, the green region, and the red region constituting the visible light region.
  • the four or more light sources include a narrow band light source that generates narrow band light having a peak wavelength in the blood vessel emphasized wavelength region, and a wide band light source that generates wide band light having a peak wavelength in a wavelength region other than the blood vessel emphasized wavelength region. ..
  • the blood vessel-enhanced wavelength region is a wavelength region having a half-value width centered on the peak wavelength in a predetermined color region of the light absorption spectrum of hemoglobin.
  • the predetermined color region may be any of a blue region, a green region, and a red region.
  • the peak wavelength may be a wavelength of a local peak having an absorption coefficient larger than that of the surroundings, and is not limited to the wavelength of the peak having the maximum absorption coefficient in a predetermined color region.
  • a hybrid light source that combines a narrow band light source and a wide band light source can be realized. Since three lights having peak wavelengths are emitted in each of the blue region, the green region, and the red region, a hybrid light source for white light can be realized. Further, since the light source control unit 312 can independently adjust the amount of light emitted by each of the four or more light sources, the illumination light can be adjusted to the color balance of white light. For example, the light intensity ratio of the red region, the green region, and the blue region has a balance target value, and the light source control unit 312 independently adjusts the light intensity of the narrow band light and the wide band light so as to approach the target value. For example, as shown in FIG.
  • the amount of wideband light may be determined by adjusting the degree of blood vessel enhancement with the amount of narrow band light and subtracting the amount of narrow band light determined thereby from the target value of the amount of light in the blue region.
  • narrow band light having a peak wavelength in the blood vessel emphasis wavelength region is emitted, narrow band light having a large light absorption of hemoglobin is emitted.
  • the broadband light having a peak wavelength is emitted in a wavelength region other than the blood vessel emphasized wavelength region, the broadband light is emitted in a region where the light absorption of hemoglobin is relatively small. From the viewpoint of color reproducibility, it is advantageous to obtain wideband information. Therefore, the color reproducibility in the displayed image can be improved by using the wideband light as compared with the case where only the narrowband light is used. From the above, according to the present embodiment, it is possible to realize an illumination light having both blood vessel visibility and color reproducibility.
  • the missing wavelength region between the wavelength region of the narrow band light and the wavelength region of the broadband light included in the same color region of the peak wavelength is narrower than the width of the wavelength region of the broadband light.
  • the width of the wavelength region is a width that is a predetermined ratio of the amount of light to the maximum value of the amount of light in the spectrum of light.
  • the width of the wavelength region is the half width of the spectrum.
  • the peak wavelength of wideband light and the peak wavelength of narrowband light are included in the same blue region.
  • the missing wavelength region is a wavelength region in which both narrow-band light and wide-band light have zero light intensity.
  • the width of this missing wavelength region is narrower than the width of the wavelength region of the broadband light in the blue region.
  • the width of the missing wavelength region is narrower than the width of the broadband light in this way, it is possible to reduce the wavelength region in which the amount of light becomes zero in the color region. In the wavelength region where light exists, subject information at that wavelength can be obtained, so that the color reproducibility is improved by reducing the wavelength region where the amount of light is zero.
  • the light source unit 100 may include the light sources LSA to LSE in FIG. 1.
  • the illumination light may be 4 bands or 6 bands or more.
  • the illumination light may be composed of four types: blue narrow band light, blue wide band light, green wide band light, and red wide band light.
  • An example of the 6-band illumination light will be described later in FIG.
  • FIG. 2 shows an example of the first spectrum of 5-band illumination light.
  • HBC is a light absorption spectrum of hemoglobin.
  • the vertical axis indicating the absorption coefficient is a logarithmic axis.
  • the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, first red wide band light LRBa, and second red wide band light LRBb, respectively.
  • the blue narrow band light LBNa has a peak wavelength in the blood vessel emphasized wavelength region HWA in the blue region BA.
  • the blue region BA is a blue region when the visible light wavelength region is divided into regions of three primary colors, and is, for example, 380 nm to 500 nm. The regions of the three primary colors may have overlapping portions with each other.
  • the light absorption spectrum HBC of hemoglobin has a peak PKA.
  • the peak PKA is the position where the absorption coefficient is maximum in the light absorption spectrum HBC of hemoglobin, and its wavelength is 415 nm.
  • the blood vessel-enhanced wavelength region HWA is a wavelength region having a half-value width centered on the wavelength of the peak PKA. The full width at half maximum is the width of the wavelength region which is 1/2 the absorption coefficient of the peak PKA, and is about 30 nm.
  • the green broadband light LGB has a peak wavelength in the green region GA.
  • the green region GA is a green region when the visible light wavelength region is divided into three primary color regions, and is, for example, 480 nm to 600 nm.
  • the wavelength region of the green broadband light LGB does not have to correspond to the green region GA, and may belong to the green region GA.
  • the first red broadband light LRBa and the second red wideband light LRBb have a peak wavelength in the red region RA.
  • the red region RA is a red region when the visible light wavelength region is divided into regions of three primary colors, and is, for example, 580 nm to 780 nm.
  • the first red broadband light LRBa has a peak wavelength in the first mucosal color reproduction wavelength region CRB.
  • the first mucosal color reproduction wavelength region CRB is a wavelength region of the red region RA adjacent to the green region GA. More specifically, the first mucosal color reproduction wavelength region CRB is the minimum value in the light absorption spectrum HBC of hemoglobin in the red region RA and the first peak PKC counted on the shorter wavelength side than the minimum value. This is a wavelength region in which the light absorption spectrum HBC changes sharply. The minimum value of the light absorption spectrum HBC exists in the vicinity of the wavelength of 700 nm. The wavelength of the peak PKC is 580 nm.
  • the first mucosal color reproduction wavelength region CRB is a region in which the light absorption spectrum HBC changes sharply in the range of 580 nm to 700 nm, for example, 580 nm to 610 nm.
  • the steepness means that the slope of the light absorption spectrum HBC is relatively large in the range of 580 nm to 700 nm.
  • the second red broadband light LRBb has a peak wavelength in the second mucosal color reproduction wavelength region ASB.
  • the second mucosal color reproduction wavelength region ASB is a wavelength region on the longer wavelength side than the first mucous membrane color reproduction wavelength region CRB and has a smaller light absorption of hemoglobin than the first mucosal color reproduction wavelength region CRB.
  • the second mucosal color reproduction wavelength region ASB is, for example, a predetermined wavelength region including the minimum value of the light absorption spectrum HBC, and is, for example, 630 nm to 780 nm.
  • the blue broadband light LBBb has a peak wavelength in the blue region BA.
  • the blue broadband light LBBb has a peak wavelength in the third mucosal color reproduction wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel emphasis wavelength region HWA.
  • the third mucosal color reproduction wavelength region is a wavelength region in which the absorption coefficient is 1/2 or less of the peak PKA in the light absorption spectrum HBC, and is a wavelength region obtained by excluding the blood vessel-enhanced wavelength region HWA from the blue region BA. Is.
  • the blue narrow band light LBNa can improve the blood vessel visibility
  • the wide band light LBBb, LGB, LRBa, and LRBb can improve the color reproducibility.
  • the color reproducibility of red can be further improved by generating the first red broadband light LRBa in the wavelength region where the light absorption spectrum HBC of hemoglobin changes sharply.
  • FIG. 3 shows an example of the second spectrum of the 5-band illumination light.
  • the same reference numerals will be given to the elements already described, and the description of the elements will be omitted as appropriate.
  • the second blue narrow band light LBNb is provided in place of the blue wide band light LBBb of FIG.
  • the light sources LSA to LSE emit the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green broadband light LGB, the first red wide band light LRBa, and the second red wide band light LRBb, respectively.
  • the second blue narrow band light LBNb has a peak wavelength in the third mucosal color reproduction wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel emphasis wavelength region HWA.
  • FIG. 4 shows an example of the third spectrum of the 5-band illumination light.
  • the red narrow band light LRNb is provided in place of the second red wide band light LRBb of FIG.
  • the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, red wide band light LRBa, and red narrow band light LRNb, respectively.
  • the red narrow band light LRNb has a peak wavelength in the second mucosal color reproduction wavelength region ASB, which absorbs less hemoglobin than the first mucosal color reproduction wavelength region CRB.
  • FIG. 5 shows an example of the fourth spectrum of 5-band illumination light.
  • the second blue narrow band light LBNb is provided in place of the blue wide band light LBBb of FIG. 2
  • the red narrow band light LRNb is provided in place of the second red wide band light LRBb of FIG.
  • the light sources LSA to LSE emit the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the red wide band light LRBa, and the red narrow band light LRNb, respectively.
  • FIG. 6 shows an example of the fifth spectrum of the 5-band illumination light.
  • the red narrow band light LRNa is provided in place of the first red wide band light LRBa in FIG.
  • the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, red narrow band light LRNa, and red wide band light LRBb, respectively.
  • the red narrow-band light LRNa has a peak wavelength in the first mucosal color reproduction wavelength region CRB in which the light absorption spectrum HBC of hemoglobin changes sharply.
  • FIG. 7 shows an example of the sixth spectrum of the 5-band illumination light.
  • the second blue narrow band light LBNb is provided in place of the blue wide band light LBBb in FIG. 2
  • the red narrow band light LRNa is provided in place of the first red wide band light LRBa in FIG.
  • the light sources LSA to LSE emit the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green broadband light LGB, the red narrow band light LRNa, and the red wide band light LRBb, respectively.
  • the four or more lights emitted by the light source unit 100 have a blue narrow band light LBNa having a peak wavelength in the blood vessel-enhanced wavelength region HWA in the blue region BA and a peak wavelength in the green region GA.
  • Green broadband light LGB and red broadband light having a peak wavelength in the red region RA.
  • the red broadband light here is LRBa or LRBb in FIGS. 2 and 3, LRBa in FIGS. 4 and 5, and LRBb in FIGS. 6 and 7.
  • the peak PKA having the maximum value in the light absorption spectrum HBC of hemoglobin is included in the blood vessel emphasized wavelength region HWA.
  • the blue narrow-band light LBNa in the blood vessel-enhanced wavelength region HWA it becomes possible to image the blood vessels of a living body with high contrast, and the blood vessel visibility can be improved.
  • the green broadband light LGB and the red broadband light LRBa or LRBb
  • the color reproducibility in the green region and the red region can be improved.
  • the 4 or more lights emitted by the light source unit 100 include the first red broadband light LRBa having a peak wavelength in the first mucosal color reproduction wavelength region CRB.
  • the light absorption spectrum HBC of hemoglobin changes sharply in the first mucosal color reproduction wavelength region CRB. Therefore, it is considered that the illumination light in the first mucosal color reproduction wavelength region CRB affects the color reproducibility in a living body containing hemoglobin.
  • the subject According to the spectral examples of FIGS. 2 to 5, by using the first red broadband light LRBa having a peak wavelength in the first mucosal color reproduction wavelength region CRB, the subject has a wide range of the first mucous membrane color reproduction wavelength region CRB. Since the color information can be obtained, the color reproducibility in the red region can be improved.
  • the absorption of hemoglobin is smaller than that in the blue region or the green region, but some absorption occurs. Therefore, in a region where the hemoglobin concentration is high such that blue light or green light is mostly absorbed, the absorption of the first red broadband light LRBa changes according to the shade of hemoglobin and can contribute to color reproducibility.
  • the light of 4 or more emitted by the light source unit 100 includes the second red broadband light LRBb having a peak wavelength in the second mucosal color reproduction wavelength region ASB. ..
  • the second mucosal color reproduction wavelength region ASB is a wavelength region in which the light absorption of hemoglobin is small in the red region RA
  • the second red broadband light LRBb is hardly absorbed by hemoglobin in the living body. Therefore, since the reflected scattered light from the living body containing hemoglobin contains a relatively large amount of the reflected scattered light of the second red broadband light LRBb, the color reproducibility is improved by using the second red broadband light LRBb. it can.
  • the four or more lights emitted by the light source unit 100 include blue broadband light LBBb having a peak wavelength in the third mucosal color reproduction wavelength region.
  • the light absorption of hemoglobin in the third mucosal color reproduction wavelength region is smaller than that in the blood vessel-enhanced wavelength region HWA, the blood vessel information is relatively less than that in the blood vessel-enhanced wavelength region HWA. Therefore, by providing the blue broadband light LBBb in the third mucosal color reproduction wavelength region, the color reproducibility in the blue region BA can be improved.
  • the light source unit 100 includes a blue narrow band light source that emits blue narrow band light LBNa, a blue wide band light source that emits blue wide band light LBBb, and a green wide band light LGB. It includes a green broadband light source that emits light and a red broadband light source that emits a first red broadband light LRBa or a second red broadband light LRBb.
  • the blue narrow band light source can improve the blood vessel visibility, and the three wide band light sources can improve the color reproducibility. Further, by providing a wide band light source corresponding to each of the blue region BA, the green region GA, and the red region RA, it is possible to cover a wide spectrum in the visible light region and improve the color reproducibility in the white light image.
  • the light source unit 100 includes a blue narrow band light source that emits blue narrow band light LBNa, a blue wide band light source that emits blue wide band light LBBb, and a green wide band light source that emits green wide band light LGB.
  • a first red broadband light source that emits a first red broadband light LRBa
  • a second red broadband light source that emits a second red broadband light LRBb.
  • the blue narrow band light source can improve the visibility of blood vessels, and the four wide band light sources can improve the color reproducibility in the white light image. Further, by providing the first red broadband light source corresponding to the first mucosal color reproduction wavelength region CRB in which the light absorption spectrum HBC of hemoglobin changes sharply, the color reproducibility can be further improved particularly in the red region.
  • the narrow band light is light whose half width of the spectrum is smaller than the half width centered on the peak wavelength of the light absorption spectrum of hemoglobin.
  • Broadband light is light whose full width at half maximum of the spectrum is larger than the full width at half maximum centered on the peak wavelength of the light absorption spectrum of hemoglobin.
  • narrow-band light is light having a spectrum half width smaller than 20 nm.
  • Broadband light is light whose spectrum half width is larger than 20 nm.
  • narrow-band light can be generated only in the wavelength region where the absorption of hemoglobin is large, and a high-contrast blood vessel image can be obtained.
  • the broadband light has a wavelength range wider than the half-value width of the peak of the hemoglobin absorption spectrum, it is possible to cover a wide spectrum range in the light absorption spectrum HBC of hemoglobin and improve the color reproducibility.
  • the narrow band light source is a laser diode.
  • the broadband light source is an LED or a phosphor that generates fluorescence by the light of the LED.
  • the laser diode can generate narrow band light with a very narrow half width. That is, by using a laser diode as a narrow band light source, narrow band light having a half width smaller than 20 nm can be generated. LEDs or phosphors can generate wideband light with a wider half width than laser diodes. That is, by using an LED or a phosphor that generates fluorescence by the light of the LED as the wideband light source, it is possible to generate wideband light having a half width larger than 20 nm.
  • FIG. 8 shows an example of the seventh spectrum.
  • the green narrow band light LGNb is provided in place of the green wide band light LGB of FIG.
  • the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green narrow band light LGNb, first red wide band light LRBa, and second red wide band light LRBb, respectively.
  • the green narrow band light LGNb has a peak wavelength in the blood vessel emphasis wavelength region HWB in the green region GA.
  • the light absorption spectrum HBC of hemoglobin has a peak PKB.
  • the peak PKB is the first peak in the green region GA counting from the short wavelength side, and its wavelength is 540 nm.
  • the blood vessel-enhanced wavelength region HWB is a wavelength region having a half-value width centered on the wavelength of the peak PKB.
  • the green narrow band light LGNb may have a peak wavelength in the blood vessel emphasis wavelength region HWC in the green region GA.
  • the peak PKC is the second peak counting from the short wavelength side in the light absorption spectrum HBC of hemoglobin in the green region GA, and its wavelength is 580 nm.
  • the blood vessel-enhanced wavelength region HWC is a wavelength region having a half-value width centered on the wavelength of the peak PKC.
  • the green narrow band light LGNb in the blood vessel emphasized wavelength region HWB in the green region GA it is possible to image the blood vessels of the living body with high contrast, and the blood vessel visibility can be improved. Further, by providing narrow-band light LBNa and LGNb in the blood vessel-enhanced wavelength regions HWA and HWB of the two color regions BA and GA having different wavelengths, it becomes possible to image blood vessels having different depths from the biological surface with high contrast. , An image containing more blood vessel information can be captured.
  • FIGS. 9A to 11 (D) show other spectral examples of the 5-band illumination light.
  • the reference numerals indicating the wavelength regions such as the blue region BA are omitted in FIGS. 9A to 11D, the definitions of the respective wavelength regions are as described above.
  • the hybrid light source is a combination of narrow band light and wide band light
  • both blood vessel visibility and color reproducibility in a white light image can be achieved.
  • the effects of each narrow band light and each wide band light are as described in the above spectrum.
  • the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green narrow band light LGNb, the first red broadband light LRBa, and the second red broadband light LRBb.
  • the blue broadband light LBBa has a peak wavelength in the blood vessel-enhanced wavelength region HWA in the blue region BA.
  • the illumination light includes a blue broadband light LBBa, a blue narrow band light LBNb, a green narrow band light LGNb, a first red wide band light LRBa, and a second red wide band light LRBb.
  • the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green narrow band light LGNb, the red wide band light LRBa, and the red narrow band light LRNb.
  • the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green narrow band light LGNb, the red narrow band light LRNa, and the red wide band light LRBb.
  • the illumination light includes the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green narrow band light LGNb, the first red wide band light LRBa, and the second red wide band light LRBb. Including.
  • the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green narrow band light LGNb, red narrow band light LRNa, and red wide band light LRBb.
  • the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green narrow band light LGNb, red wide band light LRBa, and red narrow band light LRNb.
  • the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, first red narrow band light LRNa, and second red narrow band light LRNb.
  • the illumination light includes blue broadband light LBBa, blue narrow band light LBNb, green narrow band light LGNb, red narrow band light LRNa, and red wide band light LRBb.
  • the illumination light includes blue broadband light LBBa, blue narrow band light LBNb, green narrow band light LGNb, red wide band light LRBa, and red narrow band light LRNb.
  • the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green broadband light LGB, the first red narrow band light LRNa, and the second red narrow band light LRNb. ..
  • the light source unit 100 includes the light sources LSA to LSF in FIG. 1.
  • the same reference numerals will be given to the elements already described, and the description of the elements will be omitted as appropriate.
  • FIG. 12 shows an example of the first spectrum of 6-band illumination light.
  • green narrow band light LGNb is further added to the spectrum example of FIG. That is, the light sources LSA to LSF emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, first red wide band light LRBa, and second red wide band light LRBb, respectively.
  • the light source unit 100 includes a blue narrow band light source, a blue wide band light source, a green wide band light source, a first red wide band light source, and a second red wide band light source, and further includes a green narrow band light source.
  • the green narrow band light source emits green narrow band light LGNb having a peak wavelength in the blood vessel emphasized wavelength region HWB in the green region GA.
  • the green narrow band light LGNb and the green broadband light LGB are provided in the green region GA, both blood vessel visibility and color reproducibility can be achieved in the green region GA. Further, by providing narrow-band light LBNa and LGNb in the blood vessel-enhanced wavelength regions HWA and HWB of the two color regions BA and GA having different wavelengths, it becomes possible to image blood vessels having different depths from the biological surface with high contrast. , An image containing more blood vessel information can be captured.
  • FIG. 13 shows an example of the second spectrum of 6-band illumination light.
  • the first green narrow band light LGNa is provided in place of the green broadband light LGB in the spectrum example of FIG.
  • the light sources LSA to LSF are blue narrow band light LBNa, blue wide band light LBBb, first green narrow band light LGNa, second green narrow band light LGNb, first red wide band light LRBa, and second red wide band, respectively.
  • Light LRBb is emitted.
  • the first green narrow band light LGNa has a peak wavelength in the fourth mucosal color reproduction wavelength region in which the light absorption of hemoglobin is smaller than that of the blood vessel emphasized wavelength region HWB in the green region GA.
  • the fourth mucosal color reproduction wavelength region is a wavelength region in which the absorption coefficient is 1/2 or less of the peak PKB in the light absorption spectrum HBC, and the blood vessel-enhanced wavelength regions HWB and HWC are excluded from the green region GA. It is a wavelength region.
  • FIG. 14 shows an example of the third spectrum of the 6-band illumination light.
  • the red narrow band light LRNb is provided in place of the second red wide band light LRBb in the spectrum example of FIG.
  • the light sources LSA to LSF emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, red wide band light LRBa, and red narrow band light LRNb, respectively.
  • the blood vessel visibility can be improved by using the blue narrow band light LBNa and the green narrow band light LGNb, which absorb a large amount of hemoglobin.
  • the color reproducibility can be improved by using the red broadband light LRBa in the wavelength region in which the light absorption spectrum HBC of hemoglobin changes sharply.
  • FIGS. 15 (A) to 18 (D) show other spectral examples of the 6-band illumination light.
  • reference numerals indicating wavelength regions such as the blue region BA are omitted, but the definitions of each wavelength region are as described above.
  • the hybrid light source is a combination of narrow band light and wide band light
  • both blood vessel visibility and color reproducibility in a white light image can be achieved.
  • the effects of each narrow band light and each wide band light are as described in the above spectrum.
  • the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the first red wide band light LRBa, and the second. Includes red broadband light LRBb.
  • the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, red narrow band light LRNa, and red wide band light LRBb.
  • the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red wide band light LRBa.
  • Second red broadband light LRBb is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red wide band light LRBa.
  • the illumination light is blue wideband light LBBa, blue narrowband light LBNb, first green narrowband light LGNa, second green narrowband light LGNb, first red wideband light LRBa, second. Includes red broadband light LRBb.
  • the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, the red broadband light LRBa, and red. Includes narrow band light LRNb.
  • the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, the red narrow band light LRNa, Includes red broadband light LRBb.
  • the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red wide band.
  • optical LRBa and second red broadband optical LRBb are included in the spectrum example of FIG. 16C.
  • the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the red narrow band light LRNa, and the red wide band light.
  • LRBb the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the red narrow band light LRNa, and the red wide band light.
  • the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the red wide band light LRBa, and the red narrow band light.
  • LRNb the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the red wide band light LRBa, and the red narrow band light.
  • the illumination light is blue narrow band light LBNa, blue wide band light LBBb, first green narrow band light LGNa, second green narrow band light LGNb, red narrow band light LRNa, red wide band light. Includes LRBb.
  • the illumination light is blue narrow band light LBNa, blue wide band light LBBb, first green narrow band light LGNa, second green narrow band light LGNb, red wide band light LRBa, red narrow band light.
  • LRNb blue narrow band light
  • the illumination light is blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, first red narrow band light LRNa, and second red narrow band light. Includes LRNb.
  • the illumination light is blue broadband light LBBa, blue narrow band light LBNb, first green narrow band light LGNa, second green narrow band light LGNb, red narrow band light LRNa, red wide band light. Includes LRBb.
  • the illumination light is blue wideband light LBBa, blue narrowband light LBNb, first green narrowband light LGNa, second green narrowband light LGNb, red wideband light LRBa, red narrowband light.
  • LRNb blue wideband light LBBa, blue narrowband light LBNb, first green narrowband light LGNa, second green narrowband light LGNb, red wideband light LRBa, red narrowband light.
  • the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red narrow band light.
  • LRNa second red narrowband light LRNb.
  • the light source control unit 312 emits the first red light from the light source unit 100 during the first imaging period IMT1 and emits the second red light from the light source unit 100 during the second imaging period IMT2 different from the first imaging period IMT1.
  • the first red light is the first red broadband light LRBa
  • the second red light is the second red broadband light LRBb.
  • the second imaging period IMT2 is, for example, the next imaging period of the first imaging period IMT1. By repeating the imaging period IMT1 and IMT2, a moving image is captured.
  • the processing unit 310 combines the first imaging signal imaged by the imaging unit 250 during the first imaging period IMT1 and the second imaging signal imaged by the imaging unit 250 during the second imaging period IMT2 to display an image. Generates an image signal for the red channel of.
  • the first and second imaging signals here correspond to the signals of the R channel of the captured image.
  • the processing unit 310 adds the red image obtained by the first imaging signal and the red image obtained by the second imaging signal at a predetermined ratio.
  • the first red broadband light LRBa and the second red broadband light LRBb are emitted in a time-divided manner to correspond to an image corresponding to the first red broadband light LRBa and a second red broadband light LRBb. You can get the image. Then, by synthesizing these images, it is possible to perform image processing for improving the color reproducibility at the time of synthesizing the images, so that the color reproducibility can be improved.
  • the light source control unit 312 emits the first blue light from the light source unit 100 during the first imaging period IMT1 and emits the second blue light from the light source unit 100 during the second imaging period IMT2.
  • the first blue light is blue narrow band light LBNa
  • the second blue light is blue broadband light LBBb.
  • the processing unit 310 combines the first imaging signal imaged by the imaging unit 250 during the first imaging period IMT1 and the second imaging signal imaged by the imaging unit 250 during the second imaging period IMT2 to display an image. Generates an image signal for the blue channel of.
  • the first and second imaging signals here correspond to the signals of the B channel of the captured image.
  • the processing unit 310 adds the blue image obtained by the first imaging signal and the blue image obtained by the second imaging signal at a predetermined ratio.
  • the blue narrow band light LBNa and the blue wide band light LBBb are emitted in a timely manner, so that an image corresponding to the blue narrow band light LBNa and an image corresponding to the blue wide band light LBBb can be acquired. Then, by synthesizing these images, it is possible to perform image processing for improving blood vessel visibility, color reproducibility, or both at the time of synthesizing, so that blood vessel visibility or color reproducibility can be performed. , Or both can be improved.
  • the processing unit 310 performs at least one of contrast enhancement image processing, edge enhancement image processing, and blood vessel structure image processing on the first imaging signal corresponding to the blue narrow band light LBNa. Then, the processing unit 310 generates an image signal of the B channel of the display image by synthesizing the first image pickup signal after the image processing and the second image pickup signal corresponding to the blue broadband light LBBb.
  • the first and second imaging signals here correspond to the signals of the B channel of the captured image.
  • the four or more lights emitted by the light source unit 100 include the first blue light, the second blue light, the green light, and the red light.
  • the light source control unit 312 emits the first blue light from the light source unit 100 during the first imaging period IMT1 and emits the second blue light from the light source unit 100 during the second imaging period IMT2.
  • the first blue light is blue narrow band light LBNa
  • the second blue light is blue broadband light LBBb
  • green light is green broadband light LGB
  • red light is first red wide band light LRBa or first. 2 Red broadband light LRBb.
  • the light source control unit 312 emits green light from the light source unit 100 during the first imaging period IMT1 and emits red light from the light source unit 100 during the first imaging period IMT1 or the second imaging period IMT2.
  • the imaging period in which green light and red light are emitted is not limited to this, and may be arbitrary.
  • the processing unit 310 performs a first gain process on the first imaging signal imaged by the imaging unit 250 during the first imaging period IMT1 and the second imaging signal imaged by the imaging unit 250 during the second imaging period IMT2. Then, the image signal of the blue channel of the display image is generated by synthesizing the first imaging signal and the second imaging signal after the first gain processing.
  • the first and second imaging signals here correspond to the signals of the B channel of the captured image.
  • the first gain process is a process of multiplying the first imaging signal by the first gain and multiplying the second imaging signal by the second gain.
  • the first gain process is a process of multiplying the first image pickup signal or the second image pickup signal by a predetermined gain.
  • the processing unit 310 generates an image signal of the green channel of the display image based on the third image pickup signal imaged by the image pickup unit 250 during the image pickup period IMT1 in which the green light is emitted from the light source unit 100.
  • the third imaging signal corresponds to the G channel of the imaging signal.
  • the processing unit 310 generates an image signal of the red channel of the display image based on the fourth image pickup signal imaged by the image pickup unit 250 during the image pickup period (IMT1 or IMT2) when the red light is emitted from the light source unit 100.
  • the fourth imaging signal corresponds to the R channel of the imaging signal.
  • the processing unit 310 performs the second gain processing on the blue channel image signal, the green channel image signal, and the red channel image signal of the display image, and the blue channel image signal after the second gain processing. And the image signal of the green channel and the image signal of the blue channel are combined to generate a display image.
  • the second gain process is a process of multiplying the blue channel image signal by the third gain, multiplying the green channel image signal by the fourth gain, and multiplying the red channel image signal by the fifth gain.
  • the endoscope device of the present embodiment may be configured as follows. That is, the endoscope device of the present embodiment includes a memory for storing information and a processor that operates based on the information stored in the memory. The information is, for example, a program and various data.
  • the processor includes hardware. The processor executes a process performed by the processing unit 310, a process performed by the light source control unit 312, or a process performed by the processing unit 310 and the light source control unit 312.
  • a processor includes hardware, which hardware can include at least one of a circuit that processes a digital signal and a circuit that processes an analog signal.
  • a processor can be composed of one or more circuit devices mounted on a circuit board or one or more circuit elements.
  • One or more circuit devices are, for example, ICs and the like.
  • One or more circuit elements are, for example, resistors, capacitors, and the like.
  • the processor may be, for example, a CPU (Central Processing Unit).
  • the processor is not limited to the CPU, and various processors such as GPU (Graphics Processing Unit) or DSP (Digital Signal Processor) can be used.
  • the processor may be an integrated circuit device such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). Further, the processor may include an amplifier circuit, a filter circuit, and the like for processing an analog signal.
  • the memory may be a semiconductor memory such as SRAM or DRAM, may be a register, may be a magnetic storage device such as a hard disk device, or may be an optical storage device such as an optical disk device. You may.
  • the memory stores instructions that can be read by a computer, and when the instructions are executed by the processor, the functions of the processing unit 310 or the light source control unit 312 are realized as processing.
  • the instruction here may be an instruction of an instruction set constituting a program, or an instruction instructing an operation to a hardware circuit of a processor.
  • the present invention is not limited to the respective embodiments and the modified examples as they are, and at the embodiment, the gist of the invention is not deviated.
  • the components can be transformed and embodied with.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the above-described embodiments and modifications. For example, some components may be deleted from all the components described in each embodiment or modification. Further, the components described in different embodiments and modifications may be combined as appropriate. In this way, various modifications and applications are possible within a range that does not deviate from the gist of the invention.
  • a term described at least once in the specification or drawing together with a different term having a broader meaning or a synonym may be replaced with the different term at any part of the specification or drawing.
  • Endoscope device 100 light source unit, 105 light source device for endoscope, 110 light source drive unit, 120 optical confluence unit, 200 scope, 210 light guide, 220 illumination lens, 250 image pickup unit, 310 processing unit, 312 light source control Unit, 314 control unit, 400 display unit, 500 operation unit, ASB second mucosal color reproduction wavelength region, CRB first mucosal color reproduction wavelength region, GA green region, HBC hemoglobin light absorption spectrum, HWA to HWC vascular emphasis wavelength region , ILM illumination light, IMT1 first imaging period, IMT2 second imaging period, LBBa first blue broadband light, LBBb second blue broadband light, LBNa first blue narrow band light, LBNb second blue narrow band light, LGB green broadband Light, LGNa 1st green narrow band light, LGNb 2nd green narrow band light, LRBa 1st red wide band light, LRBb 2nd red wide band light, LRNa 1st red narrow band light, LRNb 2nd red narrow band light, LSA ⁇ LSF

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

An endoscope light source device (105) includes a light source unit (100) having four or more light sources for emitting four or more lights having mutually different peak wavelengths, and a light source control unit (312) whereby the quantity of light emitted by each of the four or more light sources can be adjusted independently. The four or more light sources include three lights having peak wavelengths respectively in the blue region, the green region, and the red region constituting the visible-light region. The four or more light sources include a narrow-band light source for generating narrow-band light having a peak wavelength in a blood-vessel-emphasizing wavelength region, and a wide-band light source for generating wide-band light having a peak wavelength in a wavelength region other than the blood-vessel-emphasizing wavelength region. The full width at half maximum of the blood-vessel-emphasizing wavelength region is centered at the peak wavelength in a predetermined color region of the absorption spectrum of hemoglobin.

Description

内視鏡用光源装置及び内視鏡装置Light source device for endoscopes and endoscope device
 本発明は、内視鏡用光源装置及び内視鏡装置等に関する。 The present invention relates to a light source device for an endoscope, an endoscope device, and the like.
 内視鏡装置において、互いに異なる帯域の光を発生する複数の光源を組み合わせることで、疑似的な白色照明光を構成する手法が知られている。特許文献1には、青色領域の光を発生する2つのレーザーダイオードと、赤色領域の光を発生する2つのレーザーダイオードと、緑色領域の光を発生するLED(Light Emitting Diode)とを含む光源装置が開示されている。 In an endoscope device, a method of constructing a pseudo white illumination light by combining a plurality of light sources that generate light in different bands is known. Patent Document 1 includes a light source device including two laser diodes that generate light in the blue region, two laser diodes that generate light in the red region, and an LED (Light Emitting Diode) that generates light in the green region. Is disclosed.
国際公開第2018/008185号International Publication No. 2018/008185
 内視鏡装置において、血管の視認性と粘膜等の被写体の色再現性が共に優れた画像を撮影するために、それに適した照明光を発生するという課題がある。上述の特許文献1では、青色領域と赤色領域において、レーザーダイオードによる狭帯域光のみを用いている。このため、特許文献1の手法では、広帯域光を用いた場合に比べると、青色領域と赤色領域において粘膜の色再現性が得られにくい。 In an endoscope device, in order to capture an image having excellent visibility of blood vessels and color reproducibility of a subject such as a mucous membrane, there is a problem of generating illumination light suitable for the image. In Patent Document 1 described above, only narrow band light by a laser diode is used in the blue region and the red region. Therefore, in the method of Patent Document 1, it is difficult to obtain the color reproducibility of the mucous membrane in the blue region and the red region as compared with the case of using wideband light.
 本発明の一態様は、互いにピーク波長の異なる4以上の光を出射する4以上の光源を有する光源部と、前記4以上の光源の各々が出射する光量を独立に調整可能な光源制御部と、を含み、前記4以上の光は、可視光領域を構成する青色領域と緑色領域と赤色領域の各々にピーク波長を有する3つの光を含み、前記4以上の光源は、血管強調波長領域にピーク波長を有する狭帯域光を発生する狭帯域光源と、前記血管強調波長領域以外の波長領域にピーク波長を有する広帯域光を発生する広帯域光源と、を含み、前記血管強調波長領域は、ヘモグロビンの光吸収スペクトルのピーク波長を中心とした半値幅の波長領域である内視鏡用光源装置に関係する。 One aspect of the present invention includes a light source unit having four or more light sources that emit four or more lights having different peak wavelengths from each other, and a light source control unit that can independently adjust the amount of light emitted by each of the four or more light sources. The four or more lights include three lights having peak wavelengths in each of the blue region, the green region, and the red region constituting the visible light region, and the four or more light sources are in the blood vessel-enhanced wavelength region. A narrow band light source that generates narrow band light having a peak wavelength and a wide band light source that generates wide band light having a peak wavelength in a wavelength region other than the blood vessel emphasized wavelength region are included, and the blood vessel emphasized wavelength region is a hemoglobin. It is related to a light source device for an endoscope, which is a wavelength region having a half-value width centered on the peak wavelength of the light absorption spectrum.
 また本発明の他の態様は、上記の内視鏡用光源装置を含む内視鏡装置に関係する。 Further, another aspect of the present invention relates to an endoscopic device including the above-mentioned light source device for an endoscope.
内視鏡用光源装置と内視鏡装置の構成例。Configuration example of a light source device for an endoscope and an endoscope device. 5バンド照明光の第1スペクトル例。An example of the first spectrum of 5-band illumination light. 5バンド照明光の第2スペクトル例。A second spectrum example of 5-band illumination light. 5バンド照明光の第3スペクトル例。An example of the third spectrum of 5-band illumination light. 5バンド照明光の第4スペクトル例。An example of the fourth spectrum of 5-band illumination light. 5バンド照明光の第5スペクトル例。An example of the fifth spectrum of 5-band illumination light. 5バンド照明光の第6スペクトル例。An example of the sixth spectrum of 5-band illumination light. 5バンド照明光の第7スペクトル例。Example of the 7th spectrum of 5-band illumination light. 図9(A)~図9(D)は、5バンド照明光の他のスペクトル例。9 (A) to 9 (D) are other spectral examples of the 5-band illumination light. 図10(A)~図10(C)は、5バンド照明光の他のスペクトル例。10 (A) to 10 (C) are other spectral examples of the 5-band illumination light. 図11(A)~図11(D)は、5バンド照明光の他のスペクトル例。11 (A) to 11 (D) are other spectral examples of the 5-band illumination light. 6バンド照明光の第1スペクトル例。An example of the first spectrum of 6-band illumination light. 6バンド照明光の第2スペクトル例。An example of the second spectrum of 6-band illumination light. 6バンド照明光の第3スペクトル例。An example of the third spectrum of 6-band illumination light. 図15(A)~図15(D)は、6バンド照明光の他のスペクトル例。15 (A) to 15 (D) are other spectral examples of the 6-band illumination light. 図16(A)~図16(C)は、6バンド照明光の他のスペクトル例。16 (A) to 16 (C) are examples of other spectra of 6-band illumination light. 図17(A)~図17(D)は、6バンド照明光の他のスペクトル例。17 (A) to 17 (D) are other spectral examples of the 6-band illumination light. 図18(A)~図18(D)は、6バンド照明光の他のスペクトル例。18 (A) to 18 (D) are other spectral examples of the 6-band illumination light. 面順次方式における発光タイミング、及びその撮像画像に対する画像処理について説明する図。The figure explaining the light emission timing in the surface sequential system, and the image processing for the captured image.
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。 Hereinafter, this embodiment will be described. The present embodiment described below does not unreasonably limit the content of the present invention described in the claims. Moreover, not all of the configurations described in the present embodiment are essential constituent requirements of the present invention.
 1.内視鏡用光源装置、内視鏡装置
 図1は、内視鏡用光源装置105と、それを含む内視鏡装置10の構成例である。内視鏡装置10は、内視鏡用光源装置105とスコープ200と処理部310と表示部400と操作部500とを含む。内視鏡装置は、観察対象の内部にスコープを挿入することで、観察対象の内部を観察可能にする装置である。内視鏡装置10としては、例えば消化管等に用いられる軟性鏡を想定できるが、これに限定されず、内視鏡装置10は、腹腔鏡等に用いられる硬性鏡であってもよい。
1. 1. Endoscope Light Source Device, Endoscope Device FIG. 1 is a configuration example of an endoscope light source device 105 and an endoscope device 10 including the light source device 105 for an endoscope. The endoscope device 10 includes a light source device 105 for an endoscope, a scope 200, a processing unit 310, a display unit 400, and an operation unit 500. The endoscope device is a device that makes it possible to observe the inside of the observation target by inserting a scope inside the observation target. As the endoscope device 10, for example, a flexible mirror used for a gastrointestinal tract or the like can be assumed, but the endoscope device 10 is not limited to this, and the endoscope device 10 may be a rigid mirror used for a laparoscope or the like.
 内視鏡用光源装置105は、照明光を発生及び制御する装置であり、光源部100と制御部314とを含む。 The endoscope light source device 105 is a device that generates and controls illumination light, and includes a light source unit 100 and a control unit 314.
 光源部100は、照明光を発生する装置である。光源部100を光源装置とも呼ぶ。光源部100は、複数の光源を用いて複数の帯域の光を発生することで、白色照明光を発生する。光源部100はWLI(White Light Imaging)モードにおいて白色光を発生する。なお、更に特殊光モードにおいて光源部100が特殊光を発生するように構成されてもよい。照明光の発光タイミングは、複数の光源を同時に発光させる同時式、又は複数の光源を順次に発光させる面順次式のいずれであってもよい。光源部100の詳細は後述する。 The light source unit 100 is a device that generates illumination light. The light source unit 100 is also called a light source device. The light source unit 100 generates white illumination light by generating light in a plurality of bands using a plurality of light sources. The light source unit 100 generates white light in the WLI (White Light Imaging) mode. Further, the light source unit 100 may be configured to generate special light in the special light mode. The emission timing of the illumination light may be either a simultaneous type in which a plurality of light sources are simultaneously emitted, or a surface sequential type in which a plurality of light sources are sequentially emitted. The details of the light source unit 100 will be described later.
 制御部314は、光源部100を制御する光源制御部312を含む。光源制御部312は、光源部100に含まれる複数の光源の発光タイミングと、各光源の光量とを制御する。また光源制御部312は、操作部500を介して設定されたWLIモード又は特殊光モードに応じて、白色光又は特殊光を光源部100に発生させる。なお制御部314は、内視鏡装置10の各部を制御する機能を更に有していてもよい。例えば、制御部314は、光源の発光タイミングに同期して撮像部250の撮像タイミングを制御してもよい。また制御部314は、操作部500を介して設定されたWLIモード又は特殊光モードに応じた画像処理の内容を、処理部310に指示してもよい。なお、制御部314の機能のうち光源制御部312以外の機能は、処理部310に含まれてもよい。 The control unit 314 includes a light source control unit 312 that controls the light source unit 100. The light source control unit 312 controls the light emission timing of a plurality of light sources included in the light source unit 100 and the amount of light of each light source. Further, the light source control unit 312 generates white light or special light in the light source unit 100 according to the WLI mode or the special light mode set via the operation unit 500. The control unit 314 may further have a function of controlling each unit of the endoscope device 10. For example, the control unit 314 may control the imaging timing of the imaging unit 250 in synchronization with the light emission timing of the light source. Further, the control unit 314 may instruct the processing unit 310 of the content of image processing according to the WLI mode or the special light mode set via the operation unit 500. Of the functions of the control unit 314, functions other than the light source control unit 312 may be included in the processing unit 310.
 スコープ200は、体内へ挿入されると共に被写体を撮像する。本実施形態における被写体は生体の体腔内であり、例えば消化管の粘膜等である。スコープ200は、ライトガイド210と照明レンズ220と撮像部250とを含む。スコープ200は不図示のコネクタを有し、そのコネクタにより内視鏡用光源装置105及び処理部310に対して着脱される。 The scope 200 is inserted into the body and images the subject. The subject in this embodiment is in the body cavity of a living body, for example, the mucous membrane of the digestive tract. The scope 200 includes a light guide 210, an illumination lens 220, and an image pickup unit 250. The scope 200 has a connector (not shown), which is attached to and detached from the endoscope light source device 105 and the processing unit 310.
 ライトガイド210は、光源部100からの照明光を、スコープ200の先端まで導光する。照明レンズ220は、ライトガイド210により導光された照明光ILMを被写体へ照射する。 The light guide 210 guides the illumination light from the light source unit 100 to the tip of the scope 200. The illumination lens 220 irradiates the subject with the illumination light ILM guided by the light guide 210.
 撮像部250は、対物レンズとイメージセンサとA/D変換回路とを含む。被写体からの反射散乱光RSLが対物レンズへ入射し、対物レンズが被写体像を結像する。イメージセンサは、その被写体像を撮像することで撮像信号を出力する。A/D変換回路は、イメージセンサからのアナログ撮像信号をデジタル撮像信号にA/D変換する。A/D変換回路はイメージセンサに内蔵されてもよい。イメージセンサは、各画素にカラーフィルタが設けられたカラーイメージセンサ、又はモノクロイメージセンサのいずれであってもよい。カラーイメージセンサは、例えばベイヤ配列のカラーフィルタを有するベイヤ型イメージセンサ、或いは補色フィルタを有する補色イメージセンサである。 The imaging unit 250 includes an objective lens, an image sensor, and an A / D conversion circuit. The reflected scattered light RSL from the subject is incident on the objective lens, and the objective lens forms an image of the subject. The image sensor outputs an imaging signal by capturing the subject image. The A / D conversion circuit A / D-converts the analog imaging signal from the image sensor into a digital imaging signal. The A / D conversion circuit may be built in the image sensor. The image sensor may be either a color image sensor provided with a color filter for each pixel or a monochrome image sensor. The color image sensor is, for example, a Bayer type image sensor having a Bayer array color filter, or a complementary color image sensor having a complementary color filter.
 処理部310は、画像処理を行う。また上述したように、処理部310が内視鏡装置の各部を制御してもよい。処理部310を処理回路又はプロセッサとも呼ぶ。処理部310は、撮像部250から撮像信号を受信し、その撮像信号に対して画像処理を行うことで表示画像を生成し、その表示画像を表示部400へ出力する。以下では、撮像信号のRチャンネル、Gチャンネル、Bチャンネルを、それぞれ赤色撮像信号、緑色撮像信号、青色撮像信号と呼ぶ。処理部310は、WLIモードにおいて、赤色撮像信号、緑色撮像信号、青色撮像信号をそれぞれ表示画像のRチャンネル、Gチャンネル、Bチャンネルに入力することで、表示画像を生成する。なお処理部310は、特殊光モードにおいて特殊光画像を生成してもよい。また図19等で後述するように、同一色領域で複数帯域の光を順次発光させた場合、その複数帯域に対応した撮像信号を合成し、その合成後の撮像信号を表示画像の対応チャンネルに入力してもよい。 The processing unit 310 performs image processing. Further, as described above, the processing unit 310 may control each unit of the endoscope device. The processing unit 310 is also called a processing circuit or a processor. The processing unit 310 receives an imaging signal from the imaging unit 250, performs image processing on the imaging signal to generate a display image, and outputs the display image to the display unit 400. Hereinafter, the R channel, G channel, and B channel of the imaging signal are referred to as a red imaging signal, a green imaging signal, and a blue imaging signal, respectively. In the WLI mode, the processing unit 310 generates a display image by inputting a red image pickup signal, a green image pickup signal, and a blue image pickup signal to the R channel, the G channel, and the B channel of the display image, respectively. The processing unit 310 may generate a special light image in the special light mode. Further, as will be described later in FIG. 19 and the like, when light of a plurality of bands is sequentially emitted in the same color region, the imaging signals corresponding to the plurality of bands are combined, and the combined imaging signal is used as the corresponding channel of the display image. You may enter it.
 表示部400は、処理部310からの表示画像を表示する装置である。表示部400は、例えば液晶表示装置等である。操作部500は、ユーザから内視鏡装置10に対する操作を受け付ける装置である。例えば、操作部500は、ボタン、ダイヤル、ポインティングデバイス、タッチパネル、又はフットスイッチ等である。 The display unit 400 is a device that displays the display image from the processing unit 310. The display unit 400 is, for example, a liquid crystal display device or the like. The operation unit 500 is a device that receives an operation on the endoscope device 10 from the user. For example, the operation unit 500 is a button, a dial, a pointing device, a touch panel, a foot switch, or the like.
 次に、光源部100の詳細構成例を説明する。光源部100は、光源駆動部110と光源LSA~LSFと光合波部120とを含む。なお、ここでは光源部100が6つの光源を含む場合を例に説明するが、光源部100は4以上の光源を含んでいればよい。 Next, a detailed configuration example of the light source unit 100 will be described. The light source unit 100 includes a light source driving unit 110, light sources LSA to LSF, and an optical combine unit 120. Although the case where the light source unit 100 includes six light sources will be described here as an example, the light source unit 100 may include four or more light sources.
 光源制御部312は、各光源の発光タイミング及び光量を指示する制御信号を光源駆動部110へ出力する。光源駆動部110は、その制御信号に基づいて光源LSA~LSFに駆動信号DRSを出力する。光源駆動部110は、例えば駆動電流を駆動信号DRSとして出力し、その駆動電流の電流量により光源の発光量を制御する。光源制御部312は、各光源の発光量を独立に調整可能である。即ち、光源制御部312は、光源LSA~LSFが出射する光の光量比を、任意に調整可能である。 The light source control unit 312 outputs a control signal indicating the light emission timing and the amount of light of each light source to the light source drive unit 110. The light source driving unit 110 outputs a driving signal DRS to the light sources LSA to LSF based on the control signal. For example, the light source drive unit 110 outputs a drive current as a drive signal DRS, and controls the amount of light emitted from the light source by the amount of the drive current. The light source control unit 312 can independently adjust the amount of light emitted from each light source. That is, the light source control unit 312 can arbitrarily adjust the light amount ratio of the light emitted by the light sources LSA to LSF.
 光源LSA~LSFは、互いにスペクトルが異なる光を出射する。具体的には光源LSA~LSFは、互いにピーク波長が異なる光を出射する。光源部100は狭帯域光源と広帯域光源を組み合わせたハイブリッド光源である。即ち、光源LSA~LSFの各々は、狭帯域光を出射する狭帯域光源、又は広帯域光を出射する広帯域光源であり、且つ光源LSA~LSFは少なくとも1つの狭帯域光源と少なくとも1つの広帯域光源とを含む。狭帯域光とは、その半値幅が所定帯域幅よりも狭い光である。一方、広帯域光とは、その半値幅が所定帯域幅よりも広い光である。所定帯域幅は例えば20nmである。狭帯域光源は例えばレーザーダイオードである。広帯域光源は、例えばLED(Light Emitting Diode)である。或いは、広帯域光源は、LEDと、そのLEDにより励起される蛍光体とを組み合わせたものである。或いは、広帯域光源は、レーザーダイオードと、そのレーザーダイオードにより励起される蛍光体とを組み合わせたものである。 The light sources LSA to LSF emit light having different spectra. Specifically, the light sources LSA to LSF emit light having different peak wavelengths from each other. The light source unit 100 is a hybrid light source that combines a narrow band light source and a wide band light source. That is, each of the light sources LSA to LSF is a narrow band light source that emits narrow band light or a wide band light source that emits wide band light, and the light sources LSA to LSF are at least one narrow band light source and at least one wide band light source. including. Narrow band light is light whose half width is narrower than a predetermined bandwidth. On the other hand, broadband light is light whose full width at half maximum is wider than a predetermined bandwidth. The predetermined bandwidth is, for example, 20 nm. The narrowband light source is, for example, a laser diode. The broadband light source is, for example, an LED (Light Emitting Diode). Alternatively, the broadband light source is a combination of an LED and a phosphor excited by the LED. Alternatively, the broadband light source is a combination of a laser diode and a phosphor excited by the laser diode.
 光合波部120は、光源LSA~LSFが射出する光LSLを合波し、その合波された光CBLをライトガイド210へ入射させる。光合波部120は、例えばダイクロイックミラーとレンズにより構成される。或いは光合波部120は、複数の入射端から入射された光を1つの出射端に出射する光ファイバであってもよい。 The optical combining unit 120 combines the optical LSL emitted by the light sources LSA to LSF, and causes the combined optical CBL to be incident on the light guide 210. The optical combiner 120 is composed of, for example, a dichroic mirror and a lens. Alternatively, the optical merging unit 120 may be an optical fiber that emits light incident from a plurality of incident ends to one emitting end.
 2.照明光スペクトル
 光源部100は、互いにピーク波長の異なる4以上の光を出射する4以上の光源を有する。光源制御部312は、4以上の光源の各々が出射する光量を独立に調整可能である。このとき、4以上の光は、可視光領域を構成する青色領域と緑色領域と赤色領域の各々にピーク波長を有する3つの光を含む。4以上の光源は、血管強調波長領域にピーク波長を有する狭帯域光を発生する狭帯域光源と、血管強調波長領域以外の波長領域にピーク波長を有する広帯域光を発生する広帯域光源と、を含む。即ち、4以上の光のうち、少なくとも1つが狭帯域光であり、別の少なくとも1つが広帯域光であればよい。血管強調波長領域は、ヘモグロビンの光吸収スペクトルの所定色領域におけるピーク波長を中心とした半値幅の波長領域である。なお、所定色領域は、青色領域、緑色領域、又は赤色領域のいずれであってもよい。また、ピーク波長は、周囲よりも吸収係数が大きい局所的なピークの波長であればよく、所定色領域内において吸収係数が最大となるピークの波長に限らない。
2. 2. Illumination light spectrum The light source unit 100 has four or more light sources that emit four or more lights having different peak wavelengths from each other. The light source control unit 312 can independently adjust the amount of light emitted by each of the four or more light sources. At this time, the four or more lights include three lights having peak wavelengths in each of the blue region, the green region, and the red region constituting the visible light region. The four or more light sources include a narrow band light source that generates narrow band light having a peak wavelength in the blood vessel emphasized wavelength region, and a wide band light source that generates wide band light having a peak wavelength in a wavelength region other than the blood vessel emphasized wavelength region. .. That is, at least one of the four or more lights may be narrow band light, and at least one of the other may be wide band light. The blood vessel-enhanced wavelength region is a wavelength region having a half-value width centered on the peak wavelength in a predetermined color region of the light absorption spectrum of hemoglobin. The predetermined color region may be any of a blue region, a green region, and a red region. Further, the peak wavelength may be a wavelength of a local peak having an absorption coefficient larger than that of the surroundings, and is not limited to the wavelength of the peak having the maximum absorption coefficient in a predetermined color region.
 このようにすれば、狭帯域光源と広帯域光源を組み合わせたハイブリッド光源を実現できる。青色領域と緑色領域と赤色領域の各々にピーク波長を有する3つの光が出射されるので、白色光用のハイブリッド光源を実現できる。また、光源制御部312が、4以上の光源の各々が出射する光量を独立に調整可能であるため、照明光を白色光の色バランスに調整可能である。例えば、赤色領域と緑色領域と青色領域の光量比にバランスの目標値があり、光源制御部312は、その目標値に近づけるように狭帯域光及び広帯域光の光量を独立に調整する。例えば、後述する図2のように、青色領域に狭帯域光と広帯域光があるとする。この場合、血管強調の度合いを狭帯域光の光量で調整し、それにより決まる狭帯域光の光量を、青色領域の光量目標値から差し引くことで、広帯域光の光量を決めてもよい。 In this way, a hybrid light source that combines a narrow band light source and a wide band light source can be realized. Since three lights having peak wavelengths are emitted in each of the blue region, the green region, and the red region, a hybrid light source for white light can be realized. Further, since the light source control unit 312 can independently adjust the amount of light emitted by each of the four or more light sources, the illumination light can be adjusted to the color balance of white light. For example, the light intensity ratio of the red region, the green region, and the blue region has a balance target value, and the light source control unit 312 independently adjusts the light intensity of the narrow band light and the wide band light so as to approach the target value. For example, as shown in FIG. 2 described later, it is assumed that there are narrow band light and wide band light in the blue region. In this case, the amount of wideband light may be determined by adjusting the degree of blood vessel enhancement with the amount of narrow band light and subtracting the amount of narrow band light determined thereby from the target value of the amount of light in the blue region.
 また、血管強調波長領域にピーク波長を有する狭帯域光が出射されるので、ヘモグロビンの光吸収が大きい狭帯域光が出射される。これにより、血管強調波長領域の広帯域光を用いた場合に比べて、粘膜等における血管を高コントラストに撮像することが可能となり、表示画像における血管視認性を向上できる。また、血管強調波長領域以外の波長領域にピーク波長を有する広帯域光が出射されるので、ヘモグロビンの光吸収が比較的小さい領域において広帯域光が出射される。色再現性の点からは、広帯域の情報が得られる方が有利であるため、狭帯域光のみを用いた場合に比べて、広帯域光を用いることで表示画像における色再現性を向上できる。以上から、本実施形態によれば血管視認性と色再現性を両立する照明光を実現できる。 Further, since narrow band light having a peak wavelength in the blood vessel emphasis wavelength region is emitted, narrow band light having a large light absorption of hemoglobin is emitted. This makes it possible to image blood vessels in the mucous membrane or the like with high contrast as compared with the case of using wideband light in the blood vessel emphasized wavelength region, and it is possible to improve the visibility of blood vessels in the displayed image. Further, since the broadband light having a peak wavelength is emitted in a wavelength region other than the blood vessel emphasized wavelength region, the broadband light is emitted in a region where the light absorption of hemoglobin is relatively small. From the viewpoint of color reproducibility, it is advantageous to obtain wideband information. Therefore, the color reproducibility in the displayed image can be improved by using the wideband light as compared with the case where only the narrowband light is used. From the above, according to the present embodiment, it is possible to realize an illumination light having both blood vessel visibility and color reproducibility.
 また本実施形態では、ピーク波長が同じ色領域に含まれる狭帯域光の波長領域と広帯域光の波長領域との間の欠落波長領域は、広帯域光の波長領域の幅よりも狭い。なお、波長領域の幅は、光のスペクトルにおいて光量最大値に対して所定割合の光量となる幅である。例えば、波長領域の幅は、スペクトルの半値幅である。 Further, in the present embodiment, the missing wavelength region between the wavelength region of the narrow band light and the wavelength region of the broadband light included in the same color region of the peak wavelength is narrower than the width of the wavelength region of the broadband light. The width of the wavelength region is a width that is a predetermined ratio of the amount of light to the maximum value of the amount of light in the spectrum of light. For example, the width of the wavelength region is the half width of the spectrum.
 例えば、後述する図2のように、青色領域に狭帯域光と広帯域光があるとする。この場合、広帯域光のピーク波長と狭帯域光のピーク波長とは、同じ青色領域に含まれる。欠落波長領域は、狭帯域光と広帯域光のいずれも光量ゼロとなっている波長領域である。図2の例では、青色領域の狭帯域光と広帯域光の間に欠落波長領域がある。この欠落波長領域の幅は、青色領域の広帯域光が有する波長領域の幅よりも狭い。 For example, as shown in FIG. 2 described later, it is assumed that there is narrow band light and wide band light in the blue region. In this case, the peak wavelength of wideband light and the peak wavelength of narrowband light are included in the same blue region. The missing wavelength region is a wavelength region in which both narrow-band light and wide-band light have zero light intensity. In the example of FIG. 2, there is a missing wavelength region between the narrow band light and the wide band light in the blue region. The width of this missing wavelength region is narrower than the width of the wavelength region of the broadband light in the blue region.
 このように欠落波長領域の幅が広帯域光の幅よりも狭いことで、色領域内において光量ゼロとなる波長領域を少なくできる。光が存在する波長領域では、その波長における被写体情報が得られるので、光量ゼロとなる波長領域が少ないことで色再現性が向上する。 Since the width of the missing wavelength region is narrower than the width of the broadband light in this way, it is possible to reduce the wavelength region in which the amount of light becomes zero in the color region. In the wavelength region where light exists, subject information at that wavelength can be obtained, so that the color reproducibility is improved by reducing the wavelength region where the amount of light is zero.
 以下、光源部100が出射する照明光のスペクトルについて詳細に説明する。まず、図2~図11(D)を用いて5バンド照明光のスペクトル例を説明する。照明光が5バンドの場合、図1において光源部100が光源LSA~LSEを含んでいればよい。なお照明光は4バンド又は6バンド以上であってもよい。例えば、照明光は、青色狭帯域光、青色広帯域光、緑色広帯域光、及び赤色広帯域光の4つで構成されてもよい。6バンド照明光の例については図12以降で説明する。 Hereinafter, the spectrum of the illumination light emitted by the light source unit 100 will be described in detail. First, a spectrum example of the 5-band illumination light will be described with reference to FIGS. 2 to 11 (D). When the illumination light has 5 bands, the light source unit 100 may include the light sources LSA to LSE in FIG. 1. The illumination light may be 4 bands or 6 bands or more. For example, the illumination light may be composed of four types: blue narrow band light, blue wide band light, green wide band light, and red wide band light. An example of the 6-band illumination light will be described later in FIG.
 図2に5バンド照明光の第1スペクトル例を示す。HBCは、ヘモグロビンの光吸収スペクトルである。なお、吸収係数を示す縦軸は対数軸である。 FIG. 2 shows an example of the first spectrum of 5-band illumination light. HBC is a light absorption spectrum of hemoglobin. The vertical axis indicating the absorption coefficient is a logarithmic axis.
 第1スペクトル例では、光源LSA~LSEは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを出射する。 In the first spectrum example, the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, first red wide band light LRBa, and second red wide band light LRBb, respectively.
 青色狭帯域光LBNaは、青色領域BAにおける血管強調波長領域HWAにピーク波長を有する。青色領域BAは、可視光波長領域を3原色の領域に分けたときの青色領域であり、例えば380nm~500nmである。なお3原色の領域は互いに重複部分があってもよい。青色領域BAにおいて、ヘモグロビンの光吸収スペクトルHBCはピークPKAを有する。ピークPKAは、ヘモグロビンの光吸収スペクトルHBCにおいて吸収係数が最大となる位置であり、その波長は415nmである。血管強調波長領域HWAは、ピークPKAの波長を中心とした半値幅の波長領域である。半値幅とは、ピークPKAの吸収係数に対して1/2の吸収係数になる波長領域の幅であり、約30nmである。 The blue narrow band light LBNa has a peak wavelength in the blood vessel emphasized wavelength region HWA in the blue region BA. The blue region BA is a blue region when the visible light wavelength region is divided into regions of three primary colors, and is, for example, 380 nm to 500 nm. The regions of the three primary colors may have overlapping portions with each other. In the blue region BA, the light absorption spectrum HBC of hemoglobin has a peak PKA. The peak PKA is the position where the absorption coefficient is maximum in the light absorption spectrum HBC of hemoglobin, and its wavelength is 415 nm. The blood vessel-enhanced wavelength region HWA is a wavelength region having a half-value width centered on the wavelength of the peak PKA. The full width at half maximum is the width of the wavelength region which is 1/2 the absorption coefficient of the peak PKA, and is about 30 nm.
 緑色広帯域光LGBは、緑色領域GAにピーク波長を有する。緑色領域GAは、可視光波長領域を3原色の領域に分けたときの緑色領域であり、例えば480nm~600nmである。緑色広帯域光LGBの波長領域は、緑色領域GAに一致する必要はなく、緑色領域GAに属していればよい。 The green broadband light LGB has a peak wavelength in the green region GA. The green region GA is a green region when the visible light wavelength region is divided into three primary color regions, and is, for example, 480 nm to 600 nm. The wavelength region of the green broadband light LGB does not have to correspond to the green region GA, and may belong to the green region GA.
 第1赤色広帯域光LRBaと第2赤色広帯域光LRBbは、赤色領域RAにピーク波長を有する。赤色領域RAは、可視光波長領域を3原色の領域に分けたときの赤色領域であり、例えば580nm~780nmである。 The first red broadband light LRBa and the second red wideband light LRBb have a peak wavelength in the red region RA. The red region RA is a red region when the visible light wavelength region is divided into regions of three primary colors, and is, for example, 580 nm to 780 nm.
 第1赤色広帯域光LRBaは、第1粘膜色再現波長領域CRBにピーク波長を有する。第1粘膜色再現波長領域CRBは、赤色領域RAのうち緑色領域GAに隣接した波長領域である。より具体的には、第1粘膜色再現波長領域CRBは、赤色領域RAにおけるヘモグロビンの光吸収スペクトルHBCにおいて、最小値と、その最小値より短波長側に数えて1つ目のピークPKCとの間のうち、光吸収スペクトルHBCが急峻に変化する波長領域である。光吸収スペクトルHBCの最小値は、波長700nm付近に存在する。またピークPKCの波長は580nmである。即ち、第1粘膜色再現波長領域CRBは、580nm~700nmにおいて光吸収スペクトルHBCが急峻に変化する領域であり、例えば580nm~610nmである。急峻とは、580nm~700nmにおいて相対的に光吸収スペクトルHBCの傾きが大きいということである。 The first red broadband light LRBa has a peak wavelength in the first mucosal color reproduction wavelength region CRB. The first mucosal color reproduction wavelength region CRB is a wavelength region of the red region RA adjacent to the green region GA. More specifically, the first mucosal color reproduction wavelength region CRB is the minimum value in the light absorption spectrum HBC of hemoglobin in the red region RA and the first peak PKC counted on the shorter wavelength side than the minimum value. This is a wavelength region in which the light absorption spectrum HBC changes sharply. The minimum value of the light absorption spectrum HBC exists in the vicinity of the wavelength of 700 nm. The wavelength of the peak PKC is 580 nm. That is, the first mucosal color reproduction wavelength region CRB is a region in which the light absorption spectrum HBC changes sharply in the range of 580 nm to 700 nm, for example, 580 nm to 610 nm. The steepness means that the slope of the light absorption spectrum HBC is relatively large in the range of 580 nm to 700 nm.
 第2赤色広帯域光LRBbは、第2粘膜色再現波長領域ASBにピーク波長を有する。第2粘膜色再現波長領域ASBは、第1粘膜色再現波長領域CRBより長波長側であり、第1粘膜色再現波長領域CRBよりヘモグロビンの光吸収が小さい波長領域である。第2粘膜色再現波長領域ASBは、例えば光吸収スペクトルHBCの最小値を含む所定波長領域であり、例えば630nm~780nmである。 The second red broadband light LRBb has a peak wavelength in the second mucosal color reproduction wavelength region ASB. The second mucosal color reproduction wavelength region ASB is a wavelength region on the longer wavelength side than the first mucous membrane color reproduction wavelength region CRB and has a smaller light absorption of hemoglobin than the first mucosal color reproduction wavelength region CRB. The second mucosal color reproduction wavelength region ASB is, for example, a predetermined wavelength region including the minimum value of the light absorption spectrum HBC, and is, for example, 630 nm to 780 nm.
 青色広帯域光LBBbは、青色領域BAにピーク波長を有する。具体的には、青色広帯域光LBBbは、血管強調波長領域HWAよりヘモグロビンの光吸収が小さい第3粘膜色再現波長領域にピーク波長を有する。具体的には、第3粘膜色再現波長領域は、光吸収スペクトルHBCにおいて吸収係数がピークPKAの1/2以下となる波長領域であり、青色領域BAから血管強調波長領域HWAを除いた波長領域である。 The blue broadband light LBBb has a peak wavelength in the blue region BA. Specifically, the blue broadband light LBBb has a peak wavelength in the third mucosal color reproduction wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel emphasis wavelength region HWA. Specifically, the third mucosal color reproduction wavelength region is a wavelength region in which the absorption coefficient is 1/2 or less of the peak PKA in the light absorption spectrum HBC, and is a wavelength region obtained by excluding the blood vessel-enhanced wavelength region HWA from the blue region BA. Is.
 図2の第1スペクトル例によれば、青色狭帯域光LBNaにより血管視認性を向上すると共に、広帯域光LBBb、LGB、LRBa、LRBbにより色再現性を向上できる。また後述するように、ヘモグロビンの光吸収スペクトルHBCが急峻に変化する波長領域に第1赤色広帯域光LRBaを発生させることで、赤色の色再現性を更に向上できる。 According to the first spectrum example of FIG. 2, the blue narrow band light LBNa can improve the blood vessel visibility, and the wide band light LBBb, LGB, LRBa, and LRBb can improve the color reproducibility. Further, as will be described later, the color reproducibility of red can be further improved by generating the first red broadband light LRBa in the wavelength region where the light absorption spectrum HBC of hemoglobin changes sharply.
 図3に5バンド照明光の第2スペクトル例を示す。なお以下では、既に説明した要素には同一の符号を付し、その要素についての説明を適宜に省略する。 FIG. 3 shows an example of the second spectrum of the 5-band illumination light. In the following, the same reference numerals will be given to the elements already described, and the description of the elements will be omitted as appropriate.
 第2スペクトル例では、図2の青色広帯域光LBBbに代えて第2青色狭帯域光LBNbが設けられる。具体的には、光源LSA~LSEは、それぞれ第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色広帯域光LGB、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを出射する。第2青色狭帯域光LBNbは、血管強調波長領域HWAよりヘモグロビンの光吸収が小さい第3粘膜色再現波長領域にピーク波長を有する。 In the second spectrum example, the second blue narrow band light LBNb is provided in place of the blue wide band light LBBb of FIG. Specifically, the light sources LSA to LSE emit the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green broadband light LGB, the first red wide band light LRBa, and the second red wide band light LRBb, respectively. The second blue narrow band light LBNb has a peak wavelength in the third mucosal color reproduction wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel emphasis wavelength region HWA.
 図4に5バンド照明光の第3スペクトル例を示す。第3スペクトル例では、図2の第2赤色広帯域光LRBbに代えて赤色狭帯域光LRNbが設けられる。具体的には、光源LSA~LSEは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、赤色広帯域光LRBa、赤色狭帯域光LRNbを出射する。赤色狭帯域光LRNbは、第1粘膜色再現波長領域CRBよりヘモグロビンの光吸収が小さい第2粘膜色再現波長領域ASBにピーク波長を有する。 FIG. 4 shows an example of the third spectrum of the 5-band illumination light. In the third spectrum example, the red narrow band light LRNb is provided in place of the second red wide band light LRBb of FIG. Specifically, the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, red wide band light LRBa, and red narrow band light LRNb, respectively. The red narrow band light LRNb has a peak wavelength in the second mucosal color reproduction wavelength region ASB, which absorbs less hemoglobin than the first mucosal color reproduction wavelength region CRB.
 図5に5バンド照明光の第4スペクトル例を示す。第4スペクトル例では、図2の青色広帯域光LBBbに代えて第2青色狭帯域光LBNbが設けられ、図2の第2赤色広帯域光LRBbに代えて赤色狭帯域光LRNbが設けられる。具体的には、光源LSA~LSEは、それぞれ第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色広帯域光LGB、赤色広帯域光LRBa、赤色狭帯域光LRNbを出射する。 FIG. 5 shows an example of the fourth spectrum of 5-band illumination light. In the fourth spectrum example, the second blue narrow band light LBNb is provided in place of the blue wide band light LBBb of FIG. 2, and the red narrow band light LRNb is provided in place of the second red wide band light LRBb of FIG. Specifically, the light sources LSA to LSE emit the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the red wide band light LRBa, and the red narrow band light LRNb, respectively.
 図6に5バンド照明光の第5スペクトル例を示す。第5スペクトル例では、図2の第1赤色広帯域光LRBaに代えて赤色狭帯域光LRNaが設けられる。具体的には、光源LSA~LSEは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、赤色狭帯域光LRNa、赤色広帯域光LRBbを出射する。赤色狭帯域光LRNaは、ヘモグロビンの光吸収スペクトルHBCが急峻に変化する第1粘膜色再現波長領域CRBにピーク波長を有する。 FIG. 6 shows an example of the fifth spectrum of the 5-band illumination light. In the fifth spectrum example, the red narrow band light LRNa is provided in place of the first red wide band light LRBa in FIG. Specifically, the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, red narrow band light LRNa, and red wide band light LRBb, respectively. The red narrow-band light LRNa has a peak wavelength in the first mucosal color reproduction wavelength region CRB in which the light absorption spectrum HBC of hemoglobin changes sharply.
 図7に5バンド照明光の第6スペクトル例を示す。第6スペクトル例では、図2の青色広帯域光LBBbに代えて第2青色狭帯域光LBNbが設けられ、図2の第1赤色広帯域光LRBaに代えて赤色狭帯域光LRNaが設けられる。具体的には、光源LSA~LSEは、それぞれ第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色広帯域光LGB、赤色狭帯域光LRNa、赤色広帯域光LRBbを出射する。 FIG. 7 shows an example of the sixth spectrum of the 5-band illumination light. In the sixth spectrum example, the second blue narrow band light LBNb is provided in place of the blue wide band light LBBb in FIG. 2, and the red narrow band light LRNa is provided in place of the first red wide band light LRBa in FIG. Specifically, the light sources LSA to LSE emit the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green broadband light LGB, the red narrow band light LRNa, and the red wide band light LRBb, respectively.
 図2~図7のスペクトル例では、光源部100が出射する4以上の光は、青色領域BAにおける血管強調波長領域HWAにピーク波長を有する青色狭帯域光LBNaと、緑色領域GAにピーク波長を有する緑色広帯域光LGBと、赤色領域RAにピーク波長を有する赤色広帯域光と、を含む。ここでの赤色広帯域光は、図2及び図3においてLRBa又はLRBbであり、図4及び図5においてLRBaであり、図6及び図7においてLRBbである。 In the spectrum examples of FIGS. 2 to 7, the four or more lights emitted by the light source unit 100 have a blue narrow band light LBNa having a peak wavelength in the blood vessel-enhanced wavelength region HWA in the blue region BA and a peak wavelength in the green region GA. Includes green broadband light LGB and red broadband light having a peak wavelength in the red region RA. The red broadband light here is LRBa or LRBb in FIGS. 2 and 3, LRBa in FIGS. 4 and 5, and LRBb in FIGS. 6 and 7.
 ヘモグロビンの光吸収スペクトルHBCにおいて最大値となるピークPKAは、血管強調波長領域HWAに含まれる。この血管強調波長領域HWAに青色狭帯域光LBNaを設けることで、生体の血管を高コントラストに撮像することが可能となり、血管視認性を向上できる。また、緑色広帯域光LGBと赤色広帯域光(LRBa又はLRBb)を設けることで、緑色領域及び赤色領域における色再現性を向上できる。 The peak PKA having the maximum value in the light absorption spectrum HBC of hemoglobin is included in the blood vessel emphasized wavelength region HWA. By providing the blue narrow-band light LBNa in the blood vessel-enhanced wavelength region HWA, it becomes possible to image the blood vessels of a living body with high contrast, and the blood vessel visibility can be improved. Further, by providing the green broadband light LGB and the red broadband light (LRBa or LRBb), the color reproducibility in the green region and the red region can be improved.
 図2~図5のスペクトル例では、光源部100が出射する4以上の光は、第1粘膜色再現波長領域CRBにピーク波長を有する第1赤色広帯域光LRBaを含む。 In the spectral examples of FIGS. 2 to 5, the 4 or more lights emitted by the light source unit 100 include the first red broadband light LRBa having a peak wavelength in the first mucosal color reproduction wavelength region CRB.
 上述したように、第1粘膜色再現波長領域CRBにおいてヘモグロビンの光吸収スペクトルHBCが急峻に変化する。このため、ヘモグロビンを含有する生体において、第1粘膜色再現波長領域CRBの照明光が色再現性に影響すると考えられる。図2~図5のスペクトル例によれば、第1粘膜色再現波長領域CRBにピーク波長を有する第1赤色広帯域光LRBaを用いることで、第1粘膜色再現波長領域CRBの広い範囲で被写体の色情報が得られるので、赤色領域における色再現性を向上できる。例えば、第1粘膜色再現波長領域CRBは青色領域又は緑色領域に比べてヘモグロビンの吸光が小さいが、ある程度の吸光は生じる。このため、青色光又は緑色光がほとんど吸収されるようなヘモグロビン濃度の高い領域において、第1赤色広帯域光LRBaの吸光はヘモグロビンの濃淡に応じて変化し、色再現性に寄与できる。 As described above, the light absorption spectrum HBC of hemoglobin changes sharply in the first mucosal color reproduction wavelength region CRB. Therefore, it is considered that the illumination light in the first mucosal color reproduction wavelength region CRB affects the color reproducibility in a living body containing hemoglobin. According to the spectral examples of FIGS. 2 to 5, by using the first red broadband light LRBa having a peak wavelength in the first mucosal color reproduction wavelength region CRB, the subject has a wide range of the first mucous membrane color reproduction wavelength region CRB. Since the color information can be obtained, the color reproducibility in the red region can be improved. For example, in the first mucosal color reproduction wavelength region CRB, the absorption of hemoglobin is smaller than that in the blue region or the green region, but some absorption occurs. Therefore, in a region where the hemoglobin concentration is high such that blue light or green light is mostly absorbed, the absorption of the first red broadband light LRBa changes according to the shade of hemoglobin and can contribute to color reproducibility.
 また図2、図3、図6及び図7のスペクトル例では、光源部100が出射する4以上の光は、第2粘膜色再現波長領域ASBにピーク波長を有する第2赤色広帯域光LRBbを含む。 Further, in the spectral examples of FIGS. 2, 3, 6 and 7, the light of 4 or more emitted by the light source unit 100 includes the second red broadband light LRBb having a peak wavelength in the second mucosal color reproduction wavelength region ASB. ..
 上述したように、第2粘膜色再現波長領域ASBは、赤色領域RAにおいてヘモグロビンの光吸収が小さい波長領域であるため、第2赤色広帯域光LRBbは生体内のヘモグロビンにほとんど吸収されない。このため、ヘモグロビンを含有する生体からの反射散乱光には、第2赤色広帯域光LRBbの反射散乱光が相対的に多く含まれるので、第2赤色広帯域光LRBbを用いることで色再現性を向上できる。 As described above, since the second mucosal color reproduction wavelength region ASB is a wavelength region in which the light absorption of hemoglobin is small in the red region RA, the second red broadband light LRBb is hardly absorbed by hemoglobin in the living body. Therefore, since the reflected scattered light from the living body containing hemoglobin contains a relatively large amount of the reflected scattered light of the second red broadband light LRBb, the color reproducibility is improved by using the second red broadband light LRBb. it can.
 また図2、図4、図6のスペクトル例では、光源部100が出射する4以上の光は、第3粘膜色再現波長領域にピーク波長を有する青色広帯域光LBBbを含む。 Further, in the spectrum examples of FIGS. 2, 4, and 6, the four or more lights emitted by the light source unit 100 include blue broadband light LBBb having a peak wavelength in the third mucosal color reproduction wavelength region.
 第3粘膜色再現波長領域は、血管強調波長領域HWAよりヘモグロビンの光吸収が小さいため、血管強調波長領域HWAに比べて相対的に血管情報が少ない。このため、第3粘膜色再現波長領域に青色広帯域光LBBbを設けることで、青色領域BAにおける色再現性を向上できる。 Since the light absorption of hemoglobin in the third mucosal color reproduction wavelength region is smaller than that in the blood vessel-enhanced wavelength region HWA, the blood vessel information is relatively less than that in the blood vessel-enhanced wavelength region HWA. Therefore, by providing the blue broadband light LBBb in the third mucosal color reproduction wavelength region, the color reproducibility in the blue region BA can be improved.
 また図2、図4、図6のスペクトル例では、光源部100は、青色狭帯域光LBNaを出射する青色狭帯域光源と、青色広帯域光LBBbを出射する青色広帯域光源と、緑色広帯域光LGBを出射する緑色広帯域光源と、第1赤色広帯域光LRBa又は第2赤色広帯域光LRBbを出射する赤色広帯域光源とを含む。 Further, in the spectrum examples of FIGS. 2, 4 and 6, the light source unit 100 includes a blue narrow band light source that emits blue narrow band light LBNa, a blue wide band light source that emits blue wide band light LBBb, and a green wide band light LGB. It includes a green broadband light source that emits light and a red broadband light source that emits a first red broadband light LRBa or a second red broadband light LRBb.
 このようにすれば、青色狭帯域光源により血管視認性を向上すると共に、3つの広帯域光源により色再現性を向上できる。また青色領域BA、緑色領域GA及び赤色領域RAの各々に対応した広帯域光源を設けたことで、可視光領域におけるスペクトルを広くカバーすることが可能となり、白色光画像における色再現性を向上できる。 In this way, the blue narrow band light source can improve the blood vessel visibility, and the three wide band light sources can improve the color reproducibility. Further, by providing a wide band light source corresponding to each of the blue region BA, the green region GA, and the red region RA, it is possible to cover a wide spectrum in the visible light region and improve the color reproducibility in the white light image.
 また図2のスペクトル例では、光源部100は、青色狭帯域光LBNaを出射する青色狭帯域光源と、青色広帯域光LBBbを出射する青色広帯域光源と、緑色広帯域光LGBを出射する緑色広帯域光源と、第1赤色広帯域光LRBaを出射する第1赤色広帯域光源と、第2赤色広帯域光LRBbを出射する第2赤色広帯域光源とを含む。 Further, in the spectrum example of FIG. 2, the light source unit 100 includes a blue narrow band light source that emits blue narrow band light LBNa, a blue wide band light source that emits blue wide band light LBBb, and a green wide band light source that emits green wide band light LGB. , A first red broadband light source that emits a first red broadband light LRBa, and a second red broadband light source that emits a second red broadband light LRBb.
 このようにすれば、青色狭帯域光源により血管視認性を向上すると共に、4つの広帯域光源により白色光画像における色再現性を向上できる。またヘモグロビンの光吸収スペクトルHBCが急峻に変化する第1粘膜色再現波長領域CRBに対応した第1赤色広帯域光源を設けたことで、特に赤色領域において色再現性を更に向上できる。 In this way, the blue narrow band light source can improve the visibility of blood vessels, and the four wide band light sources can improve the color reproducibility in the white light image. Further, by providing the first red broadband light source corresponding to the first mucosal color reproduction wavelength region CRB in which the light absorption spectrum HBC of hemoglobin changes sharply, the color reproducibility can be further improved particularly in the red region.
 また本実施形態において、狭帯域光は、スペクトルの半値幅がヘモグロビンの光吸収スペクトルのピーク波長を中心とした半値幅より小さい光である。広帯域光は、スペクトルの半値幅がヘモグロビンの光吸収スペクトルのピーク波長を中心とした半値幅より大きい光である。具体的には、狭帯域光は、スペクトルの半値幅が20nmより小さい光である。広帯域光は、スペクトルの半値幅が20nmより大きい光である。 Further, in the present embodiment, the narrow band light is light whose half width of the spectrum is smaller than the half width centered on the peak wavelength of the light absorption spectrum of hemoglobin. Broadband light is light whose full width at half maximum of the spectrum is larger than the full width at half maximum centered on the peak wavelength of the light absorption spectrum of hemoglobin. Specifically, narrow-band light is light having a spectrum half width smaller than 20 nm. Broadband light is light whose spectrum half width is larger than 20 nm.
 このようにすれば、ヘモグロビンの吸光が大きい波長領域にのみ狭帯域光を発生することが可能となり、高コントラストな血管像を得ることができる。また、広帯域光はヘモグロビン吸収スペクトルのピークの半値幅より広い波長範囲を有するので、ヘモグロビンの光吸収スペクトルHBCにおいて広いスペクトル範囲をカバーでき、色再現性を向上できる。 In this way, narrow-band light can be generated only in the wavelength region where the absorption of hemoglobin is large, and a high-contrast blood vessel image can be obtained. Further, since the broadband light has a wavelength range wider than the half-value width of the peak of the hemoglobin absorption spectrum, it is possible to cover a wide spectrum range in the light absorption spectrum HBC of hemoglobin and improve the color reproducibility.
 また本実施形態において、狭帯域光源は、レーザーダイオードである。広帯域光源は、LED、又はLEDの光により蛍光を発生する蛍光体である。 Further, in the present embodiment, the narrow band light source is a laser diode. The broadband light source is an LED or a phosphor that generates fluorescence by the light of the LED.
 レーザーダイオードは半値幅が非常に狭い狭帯域光を発生できる。即ち、狭帯域光源としてレーザーダイオードを用いることで、半値幅が20nmより小さい狭帯域光を発生できる。LED又は蛍光体は、レーザーダイオードに比べて広い半値幅の広帯域光を発生できる。即ち、広帯域光源として、LED、又はLEDの光により蛍光を発生する蛍光体を用いることで、半値幅が20nmより大きい広帯域光を発生できる。 The laser diode can generate narrow band light with a very narrow half width. That is, by using a laser diode as a narrow band light source, narrow band light having a half width smaller than 20 nm can be generated. LEDs or phosphors can generate wideband light with a wider half width than laser diodes. That is, by using an LED or a phosphor that generates fluorescence by the light of the LED as the wideband light source, it is possible to generate wideband light having a half width larger than 20 nm.
 図8に第7スペクトル例を示す。第7スペクトル例では、図2の緑色広帯域光LGBに代えて緑色狭帯域光LGNbが設けられる。具体的には、光源LSA~LSEは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを出射する。 FIG. 8 shows an example of the seventh spectrum. In the seventh spectrum example, the green narrow band light LGNb is provided in place of the green wide band light LGB of FIG. Specifically, the light sources LSA to LSE emit blue narrow band light LBNa, blue wide band light LBBb, green narrow band light LGNb, first red wide band light LRBa, and second red wide band light LRBb, respectively.
 緑色狭帯域光LGNbは、緑色領域GAにおける血管強調波長領域HWBにピーク波長を有する。緑色領域GAにおいて、ヘモグロビンの光吸収スペクトルHBCはピークPKBを有する。ピークPKBは、緑色領域GAにおいて短波長側から数えて1つ目のピークであり、その波長は540nmである。血管強調波長領域HWBは、ピークPKBの波長を中心とした半値幅の波長領域である。 The green narrow band light LGNb has a peak wavelength in the blood vessel emphasis wavelength region HWB in the green region GA. In the green region GA, the light absorption spectrum HBC of hemoglobin has a peak PKB. The peak PKB is the first peak in the green region GA counting from the short wavelength side, and its wavelength is 540 nm. The blood vessel-enhanced wavelength region HWB is a wavelength region having a half-value width centered on the wavelength of the peak PKB.
 なお、緑色狭帯域光LGNbは、緑色領域GAにおける血管強調波長領域HWCにピーク波長を有してもよい。ピークPKCは、緑色領域GAにおけるヘモグロビンの光吸収スペクトルHBCにおいて、短波長側から数えて2つ目のピークであり、その波長は580nmである。血管強調波長領域HWCは、ピークPKCの波長を中心とした半値幅の波長領域である。 Note that the green narrow band light LGNb may have a peak wavelength in the blood vessel emphasis wavelength region HWC in the green region GA. The peak PKC is the second peak counting from the short wavelength side in the light absorption spectrum HBC of hemoglobin in the green region GA, and its wavelength is 580 nm. The blood vessel-enhanced wavelength region HWC is a wavelength region having a half-value width centered on the wavelength of the peak PKC.
 図8のスペクトル例によれば、緑色領域GAにおける血管強調波長領域HWBに緑色狭帯域光LGNbを設けることで、生体の血管を高コントラストに撮像することが可能となり、血管視認性を向上できる。また波長が異なる2つの色領域BA、GAの血管強調波長領域HWA、HWBに狭帯域光LBNa、LGNbを設けることで、生体表面からの深さが異なる血管を高コントラストに撮像することが可能となり、更に多くの血管情報を含む画像を撮像できる。 According to the spectrum example of FIG. 8, by providing the green narrow band light LGNb in the blood vessel emphasized wavelength region HWB in the green region GA, it is possible to image the blood vessels of the living body with high contrast, and the blood vessel visibility can be improved. Further, by providing narrow-band light LBNa and LGNb in the blood vessel-enhanced wavelength regions HWA and HWB of the two color regions BA and GA having different wavelengths, it becomes possible to image blood vessels having different depths from the biological surface with high contrast. , An image containing more blood vessel information can be captured.
 図9(A)~図11(D)に、5バンド照明光の他のスペクトル例を示す。図9(A)~図11(D)では青色領域BA等の波長領域を示す符号を省略するが、各波長領域の定義は上述した通りである。 9 (A) to 11 (D) show other spectral examples of the 5-band illumination light. Although the reference numerals indicating the wavelength regions such as the blue region BA are omitted in FIGS. 9A to 11D, the definitions of the respective wavelength regions are as described above.
 図9(A)~図11(D)のスペクトル例においても、狭帯域光と広帯域光が組み合わせられたハイブリッド光源となっているため、白色光画像における血管視認性と色再現性を両立できる。なお、各狭帯域光及び各広帯域光の作用効果は、上述のスペクトルで説明した通りである。 Also in the spectrum examples of FIGS. 9A to 11D, since the hybrid light source is a combination of narrow band light and wide band light, both blood vessel visibility and color reproducibility in a white light image can be achieved. The effects of each narrow band light and each wide band light are as described in the above spectrum.
 図9(A)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。青色広帯域光LBBaは、青色領域BAにおける血管強調波長領域HWAにピーク波長を有する。 In the spectrum example of FIG. 9A, the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green narrow band light LGNb, the first red broadband light LRBa, and the second red broadband light LRBb. The blue broadband light LBBa has a peak wavelength in the blood vessel-enhanced wavelength region HWA in the blue region BA.
 図9(B)のスペクトル例では、照明光は、青色広帯域光LBBa、青色狭帯域光LBNb、緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 9B, the illumination light includes a blue broadband light LBBa, a blue narrow band light LBNb, a green narrow band light LGNb, a first red wide band light LRBa, and a second red wide band light LRBb.
 図9(C)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 9C, the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green narrow band light LGNb, the red wide band light LRBa, and the red narrow band light LRNb.
 図9(D)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 9D, the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green narrow band light LGNb, the red narrow band light LRNa, and the red wide band light LRBb.
 図10(A)のスペクトル例では、照明光は、第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 10A, the illumination light includes the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green narrow band light LGNb, the first red wide band light LRBa, and the second red wide band light LRBb. Including.
 図10(B)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 10B, the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green narrow band light LGNb, red narrow band light LRNa, and red wide band light LRBb.
 図10(C)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 10C, the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green narrow band light LGNb, red wide band light LRBa, and red narrow band light LRNb.
 図11(A)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、第1赤色狭帯域光LRNa、第2赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 11A, the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, first red narrow band light LRNa, and second red narrow band light LRNb.
 図11(B)のスペクトル例では、照明光は、青色広帯域光LBBa、青色狭帯域光LBNb、緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 11B, the illumination light includes blue broadband light LBBa, blue narrow band light LBNb, green narrow band light LGNb, red narrow band light LRNa, and red wide band light LRBb.
 図11(C)のスペクトル例では、照明光は、青色広帯域光LBBa、青色狭帯域光LBNb、緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 11C, the illumination light includes blue broadband light LBBa, blue narrow band light LBNb, green narrow band light LGNb, red wide band light LRBa, and red narrow band light LRNb.
 図11(D)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、緑色広帯域光LGB、第1赤色狭帯域光LRNa、第2赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 11 (D), the illumination light includes the first blue broadband light LBBa, the second blue broadband light LBBb, the green broadband light LGB, the first red narrow band light LRNa, and the second red narrow band light LRNb. ..
 次に、図12~図18(D)を用いて6バンド照明光のスペクトル例を説明する。照明光が6バンドの場合、図1において光源部100が光源LSA~LSFを含む。なお以下では、既に説明した要素には同一の符号を付し、その要素についての説明を適宜に省略する。 Next, an example of the spectrum of the 6-band illumination light will be described with reference to FIGS. 12 to 18 (D). When the illumination light has 6 bands, the light source unit 100 includes the light sources LSA to LSF in FIG. 1. In the following, the same reference numerals will be given to the elements already described, and the description of the elements will be omitted as appropriate.
 図12に6バンド照明光の第1スペクトル例を示す。第1スペクトル例では、図2のスペクトル例に対して緑色狭帯域光LGNbが更に加わる。即ち、光源LSA~LSFは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを出射する。 FIG. 12 shows an example of the first spectrum of 6-band illumination light. In the first spectrum example, green narrow band light LGNb is further added to the spectrum example of FIG. That is, the light sources LSA to LSF emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, first red wide band light LRBa, and second red wide band light LRBb, respectively.
 図12のスペクトル例では、光源部100は、青色狭帯域光源、青色広帯域光源、緑色広帯域光源、第1赤色広帯域光源及び第2赤色広帯域光源を含み、更に緑色狭帯域光源を含む。緑色狭帯域光源は、緑色領域GAにおける血管強調波長領域HWBにピーク波長を有する緑色狭帯域光LGNbを出射する。 In the spectrum example of FIG. 12, the light source unit 100 includes a blue narrow band light source, a blue wide band light source, a green wide band light source, a first red wide band light source, and a second red wide band light source, and further includes a green narrow band light source. The green narrow band light source emits green narrow band light LGNb having a peak wavelength in the blood vessel emphasized wavelength region HWB in the green region GA.
 このようにすれば、緑色領域GAに緑色狭帯域光LGNbと緑色広帯域光LGBが設けられるので、緑色領域GAにおいて血管視認性と色再現性を両立できる。また波長が異なる2つの色領域BA、GAの血管強調波長領域HWA、HWBに狭帯域光LBNa、LGNbを設けることで、生体表面からの深さが異なる血管を高コントラストに撮像することが可能となり、更に多くの血管情報を含む画像を撮像できる。 By doing so, since the green narrow band light LGNb and the green broadband light LGB are provided in the green region GA, both blood vessel visibility and color reproducibility can be achieved in the green region GA. Further, by providing narrow-band light LBNa and LGNb in the blood vessel-enhanced wavelength regions HWA and HWB of the two color regions BA and GA having different wavelengths, it becomes possible to image blood vessels having different depths from the biological surface with high contrast. , An image containing more blood vessel information can be captured.
 図13に6バンド照明光の第2スペクトル例を示す。第2スペクトル例では、図12のスペクトル例の緑色広帯域光LGBに代えて第1緑色狭帯域光LGNaが設けられる。具体的には、光源LSA~LSFは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを出射する。 FIG. 13 shows an example of the second spectrum of 6-band illumination light. In the second spectrum example, the first green narrow band light LGNa is provided in place of the green broadband light LGB in the spectrum example of FIG. Specifically, the light sources LSA to LSF are blue narrow band light LBNa, blue wide band light LBBb, first green narrow band light LGNa, second green narrow band light LGNb, first red wide band light LRBa, and second red wide band, respectively. Light LRBb is emitted.
 第1緑色狭帯域光LGNaは、緑色領域GAにおける血管強調波長領域HWBよりヘモグロビンの光吸収が小さい第4粘膜色再現波長領域にピーク波長を有する。具体的には、第4粘膜色再現波長領域は、光吸収スペクトルHBCにおいて吸収係数がピークPKBの1/2以下となる波長領域であり、緑色領域GAから血管強調波長領域HWB、HWCを除いた波長領域である。 The first green narrow band light LGNa has a peak wavelength in the fourth mucosal color reproduction wavelength region in which the light absorption of hemoglobin is smaller than that of the blood vessel emphasized wavelength region HWB in the green region GA. Specifically, the fourth mucosal color reproduction wavelength region is a wavelength region in which the absorption coefficient is 1/2 or less of the peak PKB in the light absorption spectrum HBC, and the blood vessel-enhanced wavelength regions HWB and HWC are excluded from the green region GA. It is a wavelength region.
 図14に6バンド照明光の第3スペクトル例を示す。第3スペクトル例では、図12のスペクトル例の第2赤色広帯域光LRBbに代えて赤色狭帯域光LRNbが設けられる。具体的には、光源LSA~LSFは、それぞれ青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを出射する。 FIG. 14 shows an example of the third spectrum of the 6-band illumination light. In the third spectrum example, the red narrow band light LRNb is provided in place of the second red wide band light LRBb in the spectrum example of FIG. Specifically, the light sources LSA to LSF emit blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, red wide band light LRBa, and red narrow band light LRNb, respectively.
 図12~図14のスペクトル例によれば、ヘモグロビンの光吸収が大きい青色狭帯域光LBNa及び緑色狭帯域光LGNbを用いることで、血管視認性を向上できる。また、ヘモグロビンの光吸収スペクトルHBCが急峻に変化する波長領域の赤色広帯域光LRBaを用いることで、色再現性を向上できる。 According to the spectral examples of FIGS. 12 to 14, the blood vessel visibility can be improved by using the blue narrow band light LBNa and the green narrow band light LGNb, which absorb a large amount of hemoglobin. Further, the color reproducibility can be improved by using the red broadband light LRBa in the wavelength region in which the light absorption spectrum HBC of hemoglobin changes sharply.
 図15(A)~図18(D)に、6バンド照明光の他のスペクトル例を示す。図15(A)~図18(D)では青色領域BA等の波長領域を示す符号を省略するが、各波長領域の定義は上述した通りである。 15 (A) to 18 (D) show other spectral examples of the 6-band illumination light. In FIGS. 15 (A) to 18 (D), reference numerals indicating wavelength regions such as the blue region BA are omitted, but the definitions of each wavelength region are as described above.
 図15(A)~図18(D)のスペクトル例においても、狭帯域光と広帯域光が組み合わせられたハイブリッド光源となっているため、白色光画像における血管視認性と色再現性を両立できる。なお、各狭帯域光及び各広帯域光の作用効果は、上述のスペクトルで説明した通りである。 Also in the spectrum examples of FIGS. 15A to 18D, since the hybrid light source is a combination of narrow band light and wide band light, both blood vessel visibility and color reproducibility in a white light image can be achieved. The effects of each narrow band light and each wide band light are as described in the above spectrum.
 図15(A)のスペクトル例では、照明光は、第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色広帯域光LGB、緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 15A, the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the first red wide band light LRBa, and the second. Includes red broadband light LRBb.
 図15(B)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 15B, the illumination light includes blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, red narrow band light LRNa, and red wide band light LRBb.
 図15(C)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 15C, the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red wide band light LRBa. , Second red broadband light LRBb.
 図15(D)のスペクトル例では、照明光は、青色広帯域光LBBa、青色狭帯域光LBNb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 15 (D), the illumination light is blue wideband light LBBa, blue narrowband light LBNb, first green narrowband light LGNa, second green narrowband light LGNb, first red wideband light LRBa, second. Includes red broadband light LRBb.
 図16(A)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 16 (A), the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, the red broadband light LRBa, and red. Includes narrow band light LRNb.
 図16(B)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 16B, the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, the red narrow band light LRNa, Includes red broadband light LRBb.
 図16(C)のスペクトル例では、照明光は、第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、第1赤色広帯域光LRBa、第2赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 16C, the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red wide band. Includes optical LRBa and second red broadband optical LRBb.
 図17(A)のスペクトル例では、照明光は、第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色広帯域光LGB、緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 17 (A), the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the red narrow band light LRNa, and the red wide band light. Includes LRBb.
 図17(B)のスペクトル例では、照明光は、第1青色狭帯域光LBNa、第2青色狭帯域光LBNb、緑色広帯域光LGB、緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 17B, the illumination light is the first blue narrow band light LBNa, the second blue narrow band light LBNb, the green wide band light LGB, the green narrow band light LGNb, the red wide band light LRBa, and the red narrow band light. Includes LRNb.
 図17(C)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 17C, the illumination light is blue narrow band light LBNa, blue wide band light LBBb, first green narrow band light LGNa, second green narrow band light LGNb, red narrow band light LRNa, red wide band light. Includes LRBb.
 図17(D)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 17D, the illumination light is blue narrow band light LBNa, blue wide band light LBBb, first green narrow band light LGNa, second green narrow band light LGNb, red wide band light LRBa, red narrow band light. Includes LRNb.
 図18(A)のスペクトル例では、照明光は、青色狭帯域光LBNa、青色広帯域光LBBb、緑色広帯域光LGB、緑色狭帯域光LGNb、第1赤色狭帯域光LRNa、第2赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 18A, the illumination light is blue narrow band light LBNa, blue wide band light LBBb, green wide band light LGB, green narrow band light LGNb, first red narrow band light LRNa, and second red narrow band light. Includes LRNb.
 図18(B)のスペクトル例では、照明光は、青色広帯域光LBBa、青色狭帯域光LBNb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、赤色狭帯域光LRNa、赤色広帯域光LRBbを含む。 In the spectrum example of FIG. 18B, the illumination light is blue broadband light LBBa, blue narrow band light LBNb, first green narrow band light LGNa, second green narrow band light LGNb, red narrow band light LRNa, red wide band light. Includes LRBb.
 図18(C)のスペクトル例では、照明光は、青色広帯域光LBBa、青色狭帯域光LBNb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、赤色広帯域光LRBa、赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 18C, the illumination light is blue wideband light LBBa, blue narrowband light LBNb, first green narrowband light LGNa, second green narrowband light LGNb, red wideband light LRBa, red narrowband light. Includes LRNb.
 図18(D)のスペクトル例では、照明光は、第1青色広帯域光LBBa、第2青色広帯域光LBBb、第1緑色狭帯域光LGNa、第2緑色狭帯域光LGNb、第1赤色狭帯域光LRNa、第2赤色狭帯域光LRNbを含む。 In the spectrum example of FIG. 18D, the illumination light is the first blue broadband light LBBa, the second blue broadband light LBBb, the first green narrow band light LGNa, the second green narrow band light LGNb, and the first red narrow band light. Includes LRNa, second red narrowband light LRNb.
 3.発光タイミング、画像処理
 図19を用いて、面順次方式における発光タイミング、及びその撮像画像に対する画像処理について説明する。なお以下ではカラーイメージセンサを用いる場合を例に説明するが、これに限定されない。即ちモノクロイメージセンサを用いる場合には、各帯域の光を順次に発光させればよい。また以下では図2のスペクトル例を用いて説明するが、図3~図18(D)で説明したスペクトル例のいずれに対しても同様な手法を適用できる。
3. 3. Light emission timing and image processing With reference to FIG. 19, the light emission timing in the surface sequential method and image processing for the captured image will be described. In the following, a case where a color image sensor is used will be described as an example, but the present invention is not limited to this. That is, when a monochrome image sensor is used, the light in each band may be emitted in sequence. Further, although the spectrum example of FIG. 2 will be described below, the same method can be applied to any of the spectrum examples described in FIGS. 3 to 18 (D).
 光源制御部312は、第1撮像期間IMT1に第1赤色光を光源部100から出射させ、第1撮像期間IMT1とは異なる第2撮像期間IMT2に第2赤色光を光源部100から出射させる。図19では、第1赤色光は第1赤色広帯域光LRBaであり、第2赤色光は第2赤色広帯域光LRBbである。第2撮像期間IMT2は、例えば第1撮像期間IMT1の次の撮像期間である。撮像期間IMT1、IMT2を繰り返すことで、動画像が撮影される。 The light source control unit 312 emits the first red light from the light source unit 100 during the first imaging period IMT1 and emits the second red light from the light source unit 100 during the second imaging period IMT2 different from the first imaging period IMT1. In FIG. 19, the first red light is the first red broadband light LRBa, and the second red light is the second red broadband light LRBb. The second imaging period IMT2 is, for example, the next imaging period of the first imaging period IMT1. By repeating the imaging period IMT1 and IMT2, a moving image is captured.
 処理部310は、第1撮像期間IMT1に撮像部250により撮像された第1撮像信号と、第2撮像期間IMT2に撮像部250により撮像された第2撮像信号とを合成することで、表示画像の赤色チャンネルの画像信号を生成する。ここでの第1、第2撮像信号は、撮像画像のRチャンネルの信号に相当する。例えば、処理部310は、第1撮像信号による赤色画像と、第2撮像信号による赤色画像とを、所定比で加算する。 The processing unit 310 combines the first imaging signal imaged by the imaging unit 250 during the first imaging period IMT1 and the second imaging signal imaged by the imaging unit 250 during the second imaging period IMT2 to display an image. Generates an image signal for the red channel of. The first and second imaging signals here correspond to the signals of the R channel of the captured image. For example, the processing unit 310 adds the red image obtained by the first imaging signal and the red image obtained by the second imaging signal at a predetermined ratio.
 本実施形態によれば、第1赤色広帯域光LRBaと第2赤色広帯域光LRBbが時分割に出射されることで、第1赤色広帯域光LRBaに対応した画像と、第2赤色広帯域光LRBbに対応した画像とを取得できる。そして、これらの画像を合成することで、その合成の際に色再現性を向上する画像処理を行うことが可能となるので、色再現性を向上できる。 According to the present embodiment, the first red broadband light LRBa and the second red broadband light LRBb are emitted in a time-divided manner to correspond to an image corresponding to the first red broadband light LRBa and a second red broadband light LRBb. You can get the image. Then, by synthesizing these images, it is possible to perform image processing for improving the color reproducibility at the time of synthesizing the images, so that the color reproducibility can be improved.
 また本実施形態では、光源制御部312は、第1撮像期間IMT1に第1青色光を光源部100から出射させ、第2撮像期間IMT2に第2青色光を光源部100から出射させる。図19では、第1青色光は青色狭帯域光LBNaであり、第2青色光は青色広帯域光LBBbである。 Further, in the present embodiment, the light source control unit 312 emits the first blue light from the light source unit 100 during the first imaging period IMT1 and emits the second blue light from the light source unit 100 during the second imaging period IMT2. In FIG. 19, the first blue light is blue narrow band light LBNa, and the second blue light is blue broadband light LBBb.
 処理部310は、第1撮像期間IMT1に撮像部250により撮像された第1撮像信号と、第2撮像期間IMT2に撮像部250により撮像された第2撮像信号とを合成することで、表示画像の青色チャンネルの画像信号を生成する。ここでの第1、第2撮像信号は、撮像画像のBチャンネルの信号に相当する。例えば、処理部310は、第1撮像信号による青色画像と、第2撮像信号による青色画像とを、所定比で加算する。 The processing unit 310 combines the first imaging signal imaged by the imaging unit 250 during the first imaging period IMT1 and the second imaging signal imaged by the imaging unit 250 during the second imaging period IMT2 to display an image. Generates an image signal for the blue channel of. The first and second imaging signals here correspond to the signals of the B channel of the captured image. For example, the processing unit 310 adds the blue image obtained by the first imaging signal and the blue image obtained by the second imaging signal at a predetermined ratio.
 このようにすれば、青色狭帯域光LBNaと青色広帯域光LBBbが時分割に出射されることで、青色狭帯域光LBNaに対応した画像と、青色広帯域光LBBbに対応した画像とを取得できる。そして、これらの画像を合成することで、その合成の際に血管視認性、又は色再現性、又はその両方を向上する画像処理を行うことが可能となるので、血管視認性、又は色再現性、又はその両方を向上できる。 By doing so, the blue narrow band light LBNa and the blue wide band light LBBb are emitted in a timely manner, so that an image corresponding to the blue narrow band light LBNa and an image corresponding to the blue wide band light LBBb can be acquired. Then, by synthesizing these images, it is possible to perform image processing for improving blood vessel visibility, color reproducibility, or both at the time of synthesizing, so that blood vessel visibility or color reproducibility can be performed. , Or both can be improved.
 また本実施形態では、処理部310は、青色狭帯域光LBNaに対応する第1撮像信号に対して、コントラスト強調画像処理、エッジ強調画像処理、及び血管構造画像処理のうち少なくとも1つを行う。そして、処理部310は、画像処理後の第1撮像信号と、青色広帯域光LBBbに対応する第2撮像信号とを合成することで、表示画像のBチャンネルの画像信号を生成する。ここでの第1、第2撮像信号は、撮像画像のBチャンネルの信号に相当する。 Further, in the present embodiment, the processing unit 310 performs at least one of contrast enhancement image processing, edge enhancement image processing, and blood vessel structure image processing on the first imaging signal corresponding to the blue narrow band light LBNa. Then, the processing unit 310 generates an image signal of the B channel of the display image by synthesizing the first image pickup signal after the image processing and the second image pickup signal corresponding to the blue broadband light LBBb. The first and second imaging signals here correspond to the signals of the B channel of the captured image.
 このようにすれば、青色狭帯域光LBNaに対応する第1撮像信号に対して、血管を強調する画像処理が行われる。これにより、血管視認性を更に向上できる。 In this way, image processing for emphasizing blood vessels is performed on the first imaging signal corresponding to the blue narrow band light LBNa. Thereby, the visibility of blood vessels can be further improved.
 また本実施形態では、光源部100が出射する4以上の光は、第1青色光と第2青色光と緑色光と赤色光とを含む。光源制御部312は、第1撮像期間IMT1に第1青色光を光源部100から出射させ、第2撮像期間IMT2に第2青色光を光源部100から出射させる。図19では、第1青色光は青色狭帯域光LBNaであり、第2青色光は青色広帯域光LBBbであり、緑色光は緑色広帯域光LGBであり、赤色光は第1赤色広帯域光LRBa又は第2赤色広帯域光LRBbである。なお、図19では、光源制御部312は、第1撮像期間IMT1に緑色光を光源部100から出射させ、第1撮像期間IMT1又は第2撮像期間IMT2に赤色光を光源部100から出射させる。但し、緑色光と赤色光が出射される撮像期間はこれに限定されず、任意であってよい。 Further, in the present embodiment, the four or more lights emitted by the light source unit 100 include the first blue light, the second blue light, the green light, and the red light. The light source control unit 312 emits the first blue light from the light source unit 100 during the first imaging period IMT1 and emits the second blue light from the light source unit 100 during the second imaging period IMT2. In FIG. 19, the first blue light is blue narrow band light LBNa, the second blue light is blue broadband light LBBb, green light is green broadband light LGB, and red light is first red wide band light LRBa or first. 2 Red broadband light LRBb. In FIG. 19, the light source control unit 312 emits green light from the light source unit 100 during the first imaging period IMT1 and emits red light from the light source unit 100 during the first imaging period IMT1 or the second imaging period IMT2. However, the imaging period in which green light and red light are emitted is not limited to this, and may be arbitrary.
 処理部310は、第1撮像期間IMT1に撮像部250により撮像された第1撮像信号と、第2撮像期間IMT2に撮像部250により撮像された第2撮像信号とに対して第1ゲイン処理を行い、第1ゲイン処理後の第1撮像信号と第2撮像信号とを合成することで、表示画像の青色チャンネルの画像信号を生成する。ここでの第1、第2撮像信号は、撮像画像のBチャンネルの信号に相当する。例えば、第1ゲイン処理は、第1撮像信号に第1ゲインを乗じ、第2撮像信号に第2ゲインを乗じる処理である。或いは、第1ゲイン処理は、第1撮像信号又は第2撮像信号に所定ゲインを乗じる処理である。 The processing unit 310 performs a first gain process on the first imaging signal imaged by the imaging unit 250 during the first imaging period IMT1 and the second imaging signal imaged by the imaging unit 250 during the second imaging period IMT2. Then, the image signal of the blue channel of the display image is generated by synthesizing the first imaging signal and the second imaging signal after the first gain processing. The first and second imaging signals here correspond to the signals of the B channel of the captured image. For example, the first gain process is a process of multiplying the first imaging signal by the first gain and multiplying the second imaging signal by the second gain. Alternatively, the first gain process is a process of multiplying the first image pickup signal or the second image pickup signal by a predetermined gain.
 また処理部310は、緑色光が光源部100から出射された撮像期間IMT1に撮像部250により撮像された第3撮像信号に基づいて表示画像の緑色チャンネルの画像信号を生成する。第3撮像信号は、撮像信号のGチャンネルに相当する。 Further, the processing unit 310 generates an image signal of the green channel of the display image based on the third image pickup signal imaged by the image pickup unit 250 during the image pickup period IMT1 in which the green light is emitted from the light source unit 100. The third imaging signal corresponds to the G channel of the imaging signal.
 また処理部310は、赤色光が光源部100から出射された撮像期間(IMT1又はIMT2)に撮像部250により撮像された第4撮像信号に基づいて表示画像の赤色チャンネルの画像信号を生成する。第4撮像信号は、撮像信号のRチャンネルに相当する。 Further, the processing unit 310 generates an image signal of the red channel of the display image based on the fourth image pickup signal imaged by the image pickup unit 250 during the image pickup period (IMT1 or IMT2) when the red light is emitted from the light source unit 100. The fourth imaging signal corresponds to the R channel of the imaging signal.
 そして処理部310は、表示画像の青色チャンネルの画像信号と、緑色チャンネルの画像信号と、赤色チャンネルの画像信号とに対して第2ゲイン処理を行い、第2ゲイン処理後の青色チャンネルの画像信号と、緑色チャンネルの画像信号と、青色チャンネルの画像信号とを合成することで、表示画像を生成する。例えば、第2ゲイン処理は、青色チャンネルの画像信号に第3ゲインを乗じ、緑色チャンネルの画像信号に第4ゲインを乗じ、赤色チャンネルの画像信号に第5ゲインを乗じる処理である。 Then, the processing unit 310 performs the second gain processing on the blue channel image signal, the green channel image signal, and the red channel image signal of the display image, and the blue channel image signal after the second gain processing. And the image signal of the green channel and the image signal of the blue channel are combined to generate a display image. For example, the second gain process is a process of multiplying the blue channel image signal by the third gain, multiplying the green channel image signal by the fourth gain, and multiplying the red channel image signal by the fifth gain.
 このようにすれば、青色領域及び赤色領域の各々において色再現性を調整する合成処理を行うと共に、RGB合成の際に更に色バランスを調整することが可能となる。これにより、各色領域における色再現性と、白色光画像における色バランスを向上でき、色再現性を高めることができる。 By doing so, it is possible to perform a compositing process for adjusting the color reproducibility in each of the blue region and the red region, and further adjust the color balance at the time of RGB compositing. As a result, the color reproducibility in each color region and the color balance in the white light image can be improved, and the color reproducibility can be improved.
 なお、本実施形態の内視鏡装置は以下のように構成されてもよい。即ち、本実施形態の内視鏡装置は、情報を記憶するメモリと、メモリに記憶された情報に基づいて動作するプロセッサと、を含む。情報は、例えばプログラムと各種のデータ等である。プロセッサは、ハードウェアを含む。プロセッサは、処理部310が行う処理、又は光源制御部312が行う処理、又は処理部310及び光源制御部312が行う処理を実行する。 The endoscope device of the present embodiment may be configured as follows. That is, the endoscope device of the present embodiment includes a memory for storing information and a processor that operates based on the information stored in the memory. The information is, for example, a program and various data. The processor includes hardware. The processor executes a process performed by the processing unit 310, a process performed by the light source control unit 312, or a process performed by the processing unit 310 and the light source control unit 312.
 プロセッサは、例えば各部の機能が個別のハードウェアで実現されてもよいし、或いは各部の機能が一体のハードウェアで実現されてもよい。例えば、プロセッサはハードウェアを含み、そのハードウェアは、デジタル信号を処理する回路及びアナログ信号を処理する回路の少なくとも一方を含むことができる。例えば、プロセッサは、回路基板に実装された1又は複数の回路装置や、1又は複数の回路素子で構成することができる。1又は複数の回路装置は例えばIC等である。1又は複数の回路素子は例えば抵抗、キャパシター等である。プロセッサは、例えばCPU(Central Processing Unit)であってもよい。ただし、プロセッサはCPUに限定されるものではなく、GPU(Graphics Processing Unit)、或いはDSP(Digital Signal Processor)等、各種のプロセッサを用いることが可能である。またプロセッサはASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の集積回路装置でもよい。またプロセッサは、アナログ信号を処理するアンプ回路やフィルタ回路等を含んでもよい。メモリは、SRAM、DRAMなどの半導体メモリであってもよいし、レジスターであってもよいし、ハードディスク装置等の磁気記憶装置であってもよいし、光学ディスク装置等の光学式記憶装置であってもよい。例えば、メモリはコンピュータにより読み取り可能な命令を格納しており、当該命令がプロセッサにより実行されることで、処理部310又は光源制御部312の機能が処理として実現されることになる。ここでの命令は、プログラムを構成する命令セットの命令でもよいし、プロセッサのハードウェア回路に対して動作を指示する命令であってもよい。 In the processor, for example, the functions of each part may be realized by individual hardware, or the functions of each part may be realized by integrated hardware. For example, a processor includes hardware, which hardware can include at least one of a circuit that processes a digital signal and a circuit that processes an analog signal. For example, a processor can be composed of one or more circuit devices mounted on a circuit board or one or more circuit elements. One or more circuit devices are, for example, ICs and the like. One or more circuit elements are, for example, resistors, capacitors, and the like. The processor may be, for example, a CPU (Central Processing Unit). However, the processor is not limited to the CPU, and various processors such as GPU (Graphics Processing Unit) or DSP (Digital Signal Processor) can be used. Further, the processor may be an integrated circuit device such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). Further, the processor may include an amplifier circuit, a filter circuit, and the like for processing an analog signal. The memory may be a semiconductor memory such as SRAM or DRAM, may be a register, may be a magnetic storage device such as a hard disk device, or may be an optical storage device such as an optical disk device. You may. For example, the memory stores instructions that can be read by a computer, and when the instructions are executed by the processor, the functions of the processing unit 310 or the light source control unit 312 are realized as processing. The instruction here may be an instruction of an instruction set constituting a program, or an instruction instructing an operation to a hardware circuit of a processor.
 以上、本発明を適用した実施形態およびその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。 Although the embodiments to which the present invention is applied and the modified examples thereof have been described above, the present invention is not limited to the respective embodiments and the modified examples as they are, and at the embodiment, the gist of the invention is not deviated. The components can be transformed and embodied with. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the above-described embodiments and modifications. For example, some components may be deleted from all the components described in each embodiment or modification. Further, the components described in different embodiments and modifications may be combined as appropriate. In this way, various modifications and applications are possible within a range that does not deviate from the gist of the invention. In addition, a term described at least once in the specification or drawing together with a different term having a broader meaning or a synonym may be replaced with the different term at any part of the specification or drawing.
10 内視鏡装置、100 光源部、105 内視鏡用光源装置、110 光源駆動部、120 光合波部、200 スコープ、210 ライトガイド、220 照明レンズ、250 撮像部、310 処理部、312 光源制御部、314 制御部、400 表示部、500 操作部、ASB 第2粘膜色再現波長領域、CRB 第1粘膜色再現波長領域、GA 緑色領域、HBC ヘモグロビンの光吸収スペクトル、HWA~HWC 血管強調波長領域、ILM 照明光、IMT1 第1撮像期間、IMT2 第2撮像期間、LBBa 第1青色広帯域光、LBBb 第2青色広帯域光、LBNa 第1青色狭帯域光、LBNb 第2青色狭帯域光、LGB 緑色広帯域光、LGNa 第1緑色狭帯域光、LGNb 第2緑色狭帯域光、LRBa 第1赤色広帯域光、LRBb 第2赤色広帯域光、LRNa 第1赤色狭帯域光、LRNb 第2赤色狭帯域光、LSA~LSF 光源、PKA~PKC ピーク、RA 赤色領域 10 Endoscope device, 100 light source unit, 105 light source device for endoscope, 110 light source drive unit, 120 optical confluence unit, 200 scope, 210 light guide, 220 illumination lens, 250 image pickup unit, 310 processing unit, 312 light source control Unit, 314 control unit, 400 display unit, 500 operation unit, ASB second mucosal color reproduction wavelength region, CRB first mucosal color reproduction wavelength region, GA green region, HBC hemoglobin light absorption spectrum, HWA to HWC vascular emphasis wavelength region , ILM illumination light, IMT1 first imaging period, IMT2 second imaging period, LBBa first blue broadband light, LBBb second blue broadband light, LBNa first blue narrow band light, LBNb second blue narrow band light, LGB green broadband Light, LGNa 1st green narrow band light, LGNb 2nd green narrow band light, LRBa 1st red wide band light, LRBb 2nd red wide band light, LRNa 1st red narrow band light, LRNb 2nd red narrow band light, LSA ~ LSF light source, PKA-PKC peak, RA red region

Claims (18)

  1.  互いにピーク波長の異なる4以上の光を出射する4以上の光源を有する光源部と、
     前記4以上の光源の各々が出射する光量を独立に調整可能な光源制御部と、
     を含み、
     前記4以上の光は、可視光領域を構成する青色領域と緑色領域と赤色領域の各々にピーク波長を有する3つの光を含み、
     前記4以上の光源は、血管強調波長領域にピーク波長を有する狭帯域光を発生する狭帯域光源と、前記血管強調波長領域以外の波長領域にピーク波長を有する広帯域光を発生する広帯域光源と、を含み、
     前記血管強調波長領域は、ヘモグロビンの光吸収スペクトルの所定色領域におけるピーク波長を中心とした半値幅の波長領域であることを特徴とする内視鏡用光源装置。
    A light source unit having four or more light sources that emit four or more lights having different peak wavelengths from each other.
    A light source control unit that can independently adjust the amount of light emitted by each of the four or more light sources.
    Including
    The four or more lights include three lights having peak wavelengths in each of the blue region, the green region, and the red region constituting the visible light region.
    The four or more light sources include a narrow-band light source that generates narrow-band light having a peak wavelength in the blood vessel-enhanced wavelength region, and a wide-band light source that generates wide-band light having a peak wavelength in a wavelength region other than the blood vessel-enhanced wavelength region. Including
    A light source device for an endoscope, wherein the blood vessel-enhanced wavelength region is a wavelength region having a half-value width centered on a peak wavelength in a predetermined color region of a light absorption spectrum of hemoglobin.
  2.  請求項1において、
     ピーク波長が同じ色領域に含まれる前記狭帯域光の波長領域と前記広帯域光の波長領域との間の欠落波長領域は、前記広帯域光の波長領域の幅よりも狭いことを特徴とする内視鏡用光源装置。
    In claim 1,
    The missing wavelength region between the wavelength region of the narrow band light and the wavelength region of the broadband light, which includes the peak wavelength in the same color region, is narrower than the width of the wavelength region of the broadband light. Light source device for mirrors.
  3.  請求項1又は2において、
     前記4以上の光は、前記青色領域における前記血管強調波長領域にピーク波長を有する青色狭帯域光と、前記緑色領域にピーク波長を有する緑色広帯域光と、前記赤色領域にピーク波長を有する赤色広帯域光と、を含むことを特徴とする内視鏡用光源装置。
    In claim 1 or 2,
    The four or more lights are blue narrow-band light having a peak wavelength in the blood vessel-enhanced wavelength region in the blue region, green broadband light having a peak wavelength in the green region, and red broadband light having a peak wavelength in the red region. A light source device for an endoscope, which comprises light.
  4.  請求項1乃至3のいずれかにおいて、
     前記4以上の光は、第1粘膜色再現波長領域にピーク波長を有する第1赤色広帯域光を含み、
     前記第1粘膜色再現波長領域は、前記赤色領域における前記ヘモグロビンの光吸収スペクトルにおいて、最小値と、前記最小値より短波長側に数えて1つ目のピークとの間のうち、前記光吸収スペクトルが急峻に変化する波長領域であることを特徴とする内視鏡用光源装置。
    In any one of claims 1 to 3,
    The 4 or more lights include a first red broadband light having a peak wavelength in the first mucosal color reproduction wavelength region.
    The first mucosal color reproduction wavelength region is the light absorption between the minimum value and the first peak counted on the wavelength side shorter than the minimum value in the light absorption spectrum of the hemoglobin in the red region. A light source device for an endoscope, characterized in that the spectrum is in a wavelength region in which the spectrum changes sharply.
  5.  請求項4において、
     前記4以上の光は、第2粘膜色再現波長領域にピーク波長を有する第2赤色広帯域光を含み、
     前記第2粘膜色再現波長領域は、前記第1粘膜色再現波長領域より長波長側であり、前記第1粘膜色再現波長領域よりヘモグロビンの光吸収が小さい波長領域であることを特徴とする内視鏡用光源装置。
    In claim 4,
    The 4 or more lights include a second red broadband light having a peak wavelength in the second mucosal color reproduction wavelength region.
    The second mucous membrane color reproduction wavelength region is on the longer wavelength side than the first mucous membrane color reproduction wavelength region, and is characterized in that the light absorption of hemoglobin is smaller than that of the first mucous membrane color reproduction wavelength region. Light source device for endoscopes.
  6.  請求項1乃至5のいずれかにおいて、
     前記4以上の光は、第3粘膜色再現波長領域にピーク波長を有する青色広帯域光を含み、
     前記第3粘膜色再現波長領域は、前記青色領域における前記血管強調波長領域よりヘモグロビンの光吸収が小さい波長領域であることを特徴とする内視鏡用光源装置。
    In any of claims 1 to 5,
    The 4 or more lights include blue broadband light having a peak wavelength in the third mucosal color reproduction wavelength region.
    The third mucosal color reproduction wavelength region is a wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel-enhanced wavelength region in the blue region, which is a light source device for an endoscope.
  7.  請求項1乃至5のいずれかにおいて、
     前記4以上の光は、前記緑色領域における前記血管強調波長領域にピーク波長を有する緑色狭帯域光を含むことを特徴とする内視鏡用光源装置。
    In any of claims 1 to 5,
    The light source device for an endoscope, wherein the four or more lights include green narrow-band light having a peak wavelength in the blood vessel-enhanced wavelength region in the green region.
  8.  請求項1又は2において、
     前記4以上の光源は、青色狭帯域光源と青色広帯域光源と緑色広帯域光源と赤色広帯域光源とを含み、
     前記緑色広帯域光源は、前記緑色領域にピーク波長を有する緑色広帯域光を出射し、
     前記青色狭帯域光源は、前記青色領域における前記血管強調波長領域にピーク波長を有する青色狭帯域光を出射し、
     前記赤色広帯域光源は、第1粘膜色再現波長領域にピーク波長を有する第1赤色広帯域光、又は第2粘膜色再現波長領域にピーク波長を有する第2赤色広帯域光を出射し、
     前記第1粘膜色再現波長領域は、前記赤色領域における前記ヘモグロビンの光吸収スペクトルにおいて、最小値と、前記最小値より短波長側に数えて1つ目のピークとの間のうち、前記光吸収スペクトルが急峻に変化する波長領域であり、
     前記第2粘膜色再現波長領域は、前記第1粘膜色再現波長領域より長波長側であり、前記第1粘膜色再現波長領域よりヘモグロビンの光吸収が小さい波長領域であり、
     前記青色広帯域光源は、第3粘膜色再現波長領域にピーク波長を有する青色広帯域光を出射し、
     前記第3粘膜色再現波長領域は、前記青色領域における前記血管強調波長領域よりヘモグロビンの光吸収が小さい波長領域であることを特徴とする内視鏡用光源装置。
    In claim 1 or 2,
    The four or more light sources include a blue narrow band light source, a blue wide band light source, a green wide band light source, and a red wide band light source.
    The green broadband light source emits green broadband light having a peak wavelength in the green region.
    The blue narrow band light source emits blue narrow band light having a peak wavelength in the blood vessel emphasized wavelength region in the blue region.
    The red broadband light source emits a first red broadband light having a peak wavelength in the first mucosal color reproduction wavelength region or a second red broadband light having a peak wavelength in the second mucosal color reproduction wavelength region.
    The first mucosal color reproduction wavelength region is the light absorption between the minimum value and the first peak counted on the shorter wavelength side than the minimum value in the light absorption spectrum of the hemoglobin in the red region. It is a wavelength region where the spectrum changes sharply.
    The second mucosal color reproduction wavelength region is a wavelength region on the longer wavelength side than the first mucosal color reproduction wavelength region, and the light absorption of hemoglobin is smaller than that of the first mucosal color reproduction wavelength region.
    The blue broadband light source emits blue broadband light having a peak wavelength in the third mucosal color reproduction wavelength region.
    The third mucosal color reproduction wavelength region is a wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel-enhanced wavelength region in the blue region, which is a light source device for an endoscope.
  9.  請求項1又は2において、
     前記4以上の光源は、青色狭帯域光源と青色広帯域光源と緑色広帯域光源と第1赤色広帯域光源と第2赤色広帯域光源とを含み、
     前記緑色広帯域光源は、前記緑色領域にピーク波長を有する緑色広帯域光を出射し、
     前記青色狭帯域光源は、前記青色領域における前記血管強調波長領域にピーク波長を有する青色狭帯域光を出射し、
     前記第1赤色広帯域光源は、第1粘膜色再現波長領域にピーク波長を有する第1赤色広帯域光を出射し、
     前記第1粘膜色再現波長領域は、前記赤色領域における前記ヘモグロビンの光吸収スペクトルにおいて、最小値と、前記最小値より短波長側に数えて1つ目のピークとの間のうち、前記光吸収スペクトルが急峻に変化する波長領域であり、
     前記第2赤色広帯域光源は、第2粘膜色再現波長領域にピーク波長を有する第2赤色広帯域光を出射し、
     前記第2粘膜色再現波長領域は、前記第1粘膜色再現波長領域より長波長側であり、前記第1粘膜色再現波長領域よりヘモグロビンの光吸収が小さい波長領域であり、
     前記青色広帯域光源は、第3粘膜色再現波長領域にピーク波長を有する青色広帯域光を出射し、
     前記第3粘膜色再現波長領域は、前記青色領域における前記血管強調波長領域よりヘモグロビンの光吸収が小さい波長領域であることを特徴とする内視鏡用光源装置。
    In claim 1 or 2,
    The four or more light sources include a blue narrow band light source, a blue wide band light source, a green wide band light source, a first red wide band light source, and a second red wide band light source.
    The green broadband light source emits green broadband light having a peak wavelength in the green region.
    The blue narrow band light source emits blue narrow band light having a peak wavelength in the blood vessel emphasized wavelength region in the blue region.
    The first red broadband light source emits first red broadband light having a peak wavelength in the first mucosal color reproduction wavelength region.
    The first mucosal color reproduction wavelength region is the light absorption between the minimum value and the first peak counted on the shorter wavelength side than the minimum value in the light absorption spectrum of the hemoglobin in the red region. It is a wavelength region where the spectrum changes sharply.
    The second red broadband light source emits second red broadband light having a peak wavelength in the second mucosal color reproduction wavelength region.
    The second mucosal color reproduction wavelength region is a wavelength region on the longer wavelength side than the first mucosal color reproduction wavelength region, and the light absorption of hemoglobin is smaller than that of the first mucosal color reproduction wavelength region.
    The blue broadband light source emits blue broadband light having a peak wavelength in the third mucosal color reproduction wavelength region.
    The third mucosal color reproduction wavelength region is a wavelength region in which the light absorption of hemoglobin is smaller than that in the blood vessel-enhanced wavelength region in the blue region, which is a light source device for an endoscope.
  10.  請求項9において、
     前記4以上の光源は、緑色狭帯域光源を更に含み、
     前記緑色狭帯域光源は、前記緑色領域における前記血管強調波長領域にピーク波長を有する緑色狭帯域光を出射することを特徴とする内視鏡用光源装置。
    In claim 9.
    The four or more light sources further include a green narrow band light source.
    The green narrow band light source is a light source device for an endoscope, which emits green narrow band light having a peak wavelength in the blood vessel emphasized wavelength region in the green region.
  11.  請求項1又は2において、
     前記狭帯域光は、スペクトルの半値幅がヘモグロビンの光吸収スペクトルのピーク波長を中心とした半値幅より小さい光であり、
     前記広帯域光は、スペクトルの半値幅がヘモグロビンの光吸収スペクトルのピーク波長を中心とした半値幅より大きい光であることを特徴とする内視鏡用光源装置。
    In claim 1 or 2,
    The narrow-band light is light whose half-value width of the spectrum is smaller than the half-value width centered on the peak wavelength of the light absorption spectrum of hemoglobin.
    The wideband light is a light source device for an endoscope, wherein the half-value width of the spectrum is larger than the half-value width centered on the peak wavelength of the light absorption spectrum of hemoglobin.
  12.  請求項1又は2において、
     前記狭帯域光は、スペクトルの半値幅が20nmより小さい光であり、
     前記広帯域光は、スペクトルの半値幅が20nmより大きい光であることを特徴とする内視鏡用光源装置。
    In claim 1 or 2,
    The narrow band light is light having a spectrum half width smaller than 20 nm.
    The wideband light is a light source device for an endoscope, characterized in that the half width of the spectrum is larger than 20 nm.
  13.  請求項1又は2において、
     前記狭帯域光源は、レーザーダイオードであり、
     前記広帯域光源は、LED、又はLEDの光により蛍光を発生する蛍光体、又はレーザーダイオードの光により蛍光を発生する蛍光体であることを特徴とする内視鏡用光源装置。
    In claim 1 or 2,
    The narrow band light source is a laser diode.
    A light source device for an endoscope, wherein the broadband light source is an LED, a phosphor that generates fluorescence by the light of the LED, or a phosphor that generates fluorescence by the light of a laser diode.
  14.  請求項1乃至13のいずれかに記載の内視鏡用光源装置を含むことを特徴とする内視鏡装置。 An endoscope device including the light source device for an endoscope according to any one of claims 1 to 13.
  15.  請求項1に記載の内視鏡用光源装置と、
     前記光源部により照明された被写体を撮像し、撮像信号を出力する撮像部と、
     前記撮像信号に基づいて表示画像を生成する処理部と、
     を含み、
     前記4以上の光は、前記赤色領域にピーク波長を有する第1赤色光及び第2赤色光を含み、
     前記光源制御部は、第1撮像期間に前記第1赤色光を前記光源部から出射させ、前記第1撮像期間とは異なる第2撮像期間に前記第2赤色光を前記光源部から出射させ、
     前記処理部は、前記第1撮像期間に前記撮像部により撮像された第1撮像信号と、前記第2撮像期間に前記撮像部により撮像された第2撮像信号とを合成することで、前記表示画像の赤色チャンネルの画像信号を生成することを特徴とする内視鏡装置。
    The light source device for an endoscope according to claim 1,
    An imaging unit that images a subject illuminated by the light source unit and outputs an imaging signal.
    A processing unit that generates a display image based on the image pickup signal, and
    Including
    The four or more lights include a first red light and a second red light having a peak wavelength in the red region.
    The light source control unit emits the first red light from the light source unit during the first imaging period, and emits the second red light from the light source unit during a second imaging period different from the first imaging period.
    The processing unit synthesizes the first imaging signal imaged by the imaging unit during the first imaging period and the second imaging signal imaged by the imaging unit during the second imaging period to display the display. An endoscope device characterized by generating an image signal of a red channel of an image.
  16.  請求項1に記載の内視鏡用光源装置と、
     前記光源部により照明された被写体を撮像し、撮像信号を出力する撮像部と、
     前記撮像信号に基づいて表示画像を生成する処理部と、
     を含み、
     前記4以上の光は、前記青色領域にピーク波長を有する第1青色光及び第2青色光を含み、
     前記光源制御部は、第1撮像期間に前記第1青色光を前記光源部から出射させ、前記第1撮像期間とは異なる第2撮像期間に前記第2青色光を前記光源部から出射させ、
     前記処理部は、前記第1撮像期間に前記撮像部により撮像された第1撮像信号と、前記第2撮像期間に前記撮像部により撮像された第2撮像信号とを合成することで、前記表示画像の青色チャンネルの画像信号を生成することを特徴とする内視鏡装置。
    The light source device for an endoscope according to claim 1,
    An imaging unit that images a subject illuminated by the light source unit and outputs an imaging signal.
    A processing unit that generates a display image based on the image pickup signal, and
    Including
    The four or more lights include a first blue light and a second blue light having a peak wavelength in the blue region.
    The light source control unit emits the first blue light from the light source unit during the first imaging period, and emits the second blue light from the light source unit during a second imaging period different from the first imaging period.
    The processing unit synthesizes the first imaging signal imaged by the imaging unit during the first imaging period and the second imaging signal imaged by the imaging unit during the second imaging period to display the display. An endoscope device characterized by generating an image signal of a blue channel of an image.
  17.  請求項16において、
     前記第1青色光は、前記青色領域における前記血管強調波長領域にピーク波長を有する青色狭帯域光であり、
     前記処理部は、
     前記青色狭帯域光に対応する前記第1撮像信号に対して、コントラスト強調画像処理、エッジ強調画像処理、及び血管構造画像処理のうち少なくとも1つを行うことを特徴とする内視鏡装置。
    In claim 16,
    The first blue light is blue narrow-band light having a peak wavelength in the blood vessel-enhanced wavelength region in the blue region.
    The processing unit
    An endoscope device characterized in that at least one of contrast-enhanced image processing, edge-enhanced image processing, and blood vessel structure image processing is performed on the first imaging signal corresponding to the blue narrow-band light.
  18.  請求項1乃至13のいずれかに記載の内視鏡用光源装置と、
     前記光源部により照明された被写体を撮像し、撮像信号を出力する撮像部と、
     前記撮像信号に基づいて表示画像を生成する処理部と、
     を含み、
     前記4以上の光は、前記青色領域にピーク波長を有する第1青色光及び第2青色光と、前記緑色領域にピーク波長を有する緑色光と、前記赤色領域にピーク波長を有する赤色光とを含み、
     前記光源制御部は、第1撮像期間に前記第1青色光を前記光源部から出射させ、前記第1撮像期間とは異なる第2撮像期間に前記第2青色光を前記光源部から出射させ、
     前記処理部は、
     前記第1撮像期間に前記撮像部により撮像された第1撮像信号と、前記第2撮像期間に前記撮像部により撮像された第2撮像信号とに対して第1ゲイン処理を行い、前記第1ゲイン処理後の前記第1撮像信号と前記第2撮像信号とを合成することで、青色チャンネルの画像信号を生成し、
     前記緑色光が前記光源部から出射された撮像期間に前記撮像部により撮像された第3撮像信号に基づいて緑色チャンネルの画像信号を生成し、
     前記赤色光が前記光源部から出射された撮像期間に前記撮像部により撮像された第4撮像信号に基づいて赤色チャンネルの画像信号を生成し、
     前記青色チャンネルの画像信号と、前記緑色チャンネルの画像信号と、前記赤色チャンネルの画像信号とに対して第2ゲイン処理を行い、前記第2ゲイン処理後の前記青色チャンネルの画像信号と、前記緑色チャンネルの画像信号と、前記赤色チャンネルの画像信号とを合成することで、前記表示画像を生成することを特徴とする内視鏡装置。
    The light source device for an endoscope according to any one of claims 1 to 13.
    An imaging unit that images a subject illuminated by the light source unit and outputs an imaging signal.
    A processing unit that generates a display image based on the image pickup signal, and
    Including
    The four or more lights include first blue light and second blue light having a peak wavelength in the blue region, green light having a peak wavelength in the green region, and red light having a peak wavelength in the red region. Including
    The light source control unit emits the first blue light from the light source unit during the first imaging period, and emits the second blue light from the light source unit during a second imaging period different from the first imaging period.
    The processing unit
    The first gain processing is performed on the first imaging signal imaged by the imaging unit during the first imaging period and the second imaging signal imaged by the imaging unit during the second imaging period, and the first gain processing is performed. By synthesizing the first imaging signal and the second imaging signal after the gain processing, an image signal of a blue channel is generated.
    An image signal of a green channel is generated based on a third imaging signal imaged by the imaging unit during the imaging period when the green light is emitted from the light source unit.
    An image signal of the red channel is generated based on the fourth imaging signal imaged by the imaging unit during the imaging period when the red light is emitted from the light source unit.
    The image signal of the blue channel, the image signal of the green channel, and the image signal of the red channel are subjected to the second gain processing, and the image signal of the blue channel and the green color after the second gain processing are performed. An endoscopic device characterized in that the display image is generated by synthesizing the image signal of the channel and the image signal of the red channel.
PCT/JP2019/029754 2019-07-30 2019-07-30 Endoscope light source device and endoscope device WO2021019663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029754 WO2021019663A1 (en) 2019-07-30 2019-07-30 Endoscope light source device and endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029754 WO2021019663A1 (en) 2019-07-30 2019-07-30 Endoscope light source device and endoscope device

Publications (1)

Publication Number Publication Date
WO2021019663A1 true WO2021019663A1 (en) 2021-02-04

Family

ID=74229387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029754 WO2021019663A1 (en) 2019-07-30 2019-07-30 Endoscope light source device and endoscope device

Country Status (1)

Country Link
WO (1) WO2021019663A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202589A (en) * 2006-01-30 2007-08-16 National Cancer Center-Japan Electronic endoscope apparatus
WO2017104046A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Endoscope device
JP2018027232A (en) * 2016-08-18 2018-02-22 富士フイルム株式会社 Endoscope system and method of operating endoscope system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202589A (en) * 2006-01-30 2007-08-16 National Cancer Center-Japan Electronic endoscope apparatus
WO2017104046A1 (en) * 2015-12-17 2017-06-22 オリンパス株式会社 Endoscope device
JP2018027232A (en) * 2016-08-18 2018-02-22 富士フイルム株式会社 Endoscope system and method of operating endoscope system

Similar Documents

Publication Publication Date Title
JP5457247B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP5331904B2 (en) Endoscope system and method for operating endoscope system
JP5808031B2 (en) Endoscope system
EP2979618B1 (en) Image processing device for operating endoscope system
EP2468187B1 (en) Endoscope system and processor apparatus thereof, and method for generating images
US9918613B2 (en) Endoscope system and operating method thereof
US9801573B2 (en) Endoscope system, processor device, and method for operating endoscope system
US10045719B2 (en) Endoscope system, processor device thereof, and method for displaying oxygen saturation level
US20140340497A1 (en) Processor device, endoscope system, and operation method of endoscope system
EP2979617A1 (en) Image processing device, and method for operating endoscope system
CN110087528B (en) Endoscope system and image display device
JP5729881B2 (en) ENDOSCOPE SYSTEM, ENDOSCOPE SYSTEM PROCESSOR DEVICE, AND ENDOSCOPE IMAGE PROCESSING METHOD
JP2015066132A (en) Endoscope system and operation method thereof
US10827914B2 (en) Endoscope system and characteristic amount calculation method
JP5747362B2 (en) Endoscope device
JP7019039B2 (en) Endoscope device, operation method and program of the endoscope device
JP2011098089A (en) Electronic endoscope system, processor device for electronic endoscope, and signal separating method
WO2021019663A1 (en) Endoscope light source device and endoscope device
JPWO2020035929A1 (en) Endoscope device, operation method of endoscope device and image processing program
JP6580778B2 (en) Endoscopic image signal processing apparatus and program
JP7123135B2 (en) Endoscope device, operating method and program for endoscope device
WO2021152704A1 (en) Endoscope device, operating method for endoscope device, and image processing program
WO2016203983A1 (en) Endoscopic device
WO2023119795A1 (en) Endoscope system and method for operating same
US11774772B2 (en) Medical image processing device, medical observation system, and image processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP