WO2021019656A1 - Monitoring device and monitoring system - Google Patents

Monitoring device and monitoring system Download PDF

Info

Publication number
WO2021019656A1
WO2021019656A1 PCT/JP2019/029702 JP2019029702W WO2021019656A1 WO 2021019656 A1 WO2021019656 A1 WO 2021019656A1 JP 2019029702 W JP2019029702 W JP 2019029702W WO 2021019656 A1 WO2021019656 A1 WO 2021019656A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
work
detection signal
monitoring system
power
Prior art date
Application number
PCT/JP2019/029702
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 吉川
Original Assignee
株式会社パトライト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パトライト filed Critical 株式会社パトライト
Priority to PCT/JP2019/029702 priority Critical patent/WO2021019656A1/en
Priority to JP2020513652A priority patent/JPWO2021019656A1/en
Publication of WO2021019656A1 publication Critical patent/WO2021019656A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to a monitoring device and a monitoring system.
  • Patent Document 1 discloses a power tool management system composed of a power tool and a management device for managing the usage record of the power tool.
  • the power tool is a soft impact driver and includes a spindle to which a box that engages nuts is attached, a motor that rotates the spindle, and a main switch for starting the motor.
  • Power tools also include infrared LEDs and photodiodes for sending and receiving data to and from the management device.
  • the power tool updates the operating time of the motor, the number of operations of the main switch, etc., which are the actual usage records, and sends the power tool to the management device.
  • the management device determines the necessity of maintenance of the power tool based on the received usage record. If maintenance of the power tool is required, it will be indicated on the display of the management device.
  • the inventor examined a configuration for grasping the working state of a worker who uses a tool through the tool. If the working condition of the worker can be grasped, the work efficiency can be improved by detecting the bottleneck at the work site at an early stage and taking countermeasures.
  • the power tool management system described in Patent Document 1 although it is possible to determine whether or not maintenance of the power tool is necessary from the usage record of the power tool, it is not possible to grasp the working state of the worker who uses the power tool.
  • the power tool management system described in Patent Document 1 is premised on using a tool having a communication function, this power tool management system can be used for a work site that has already used a tool not having a communication function. It is difficult to introduce a new one in terms of cost and the like.
  • one embodiment of the present invention provides a monitoring device and a monitoring system that can grasp the working state of a worker who uses a tool.
  • the present invention provides a monitoring device including an input means and a storage means.
  • a detection signal of a sensor that detects a power supply state in the power supply cable that supplies power to the tool is input to the input means.
  • the storage means stores the detection signal input to the input means in chronological order as an index of a working state of an operator who uses the tool.
  • a detection signal indicating that power is being supplied in the power supply cable that supplies power to the tool is output from the sensor and input to the input means.
  • the detection signal input to the input means is stored in the storage means of the monitoring device in chronological order as an index of the working state of the operator who uses the tool. Therefore, the user can grasp the working state of the operator who uses the tool based on the detection signal stored in the storage means.
  • the monitoring device includes a determination means for determining a working state of an operator who uses the tool based on the detection signal stored in the storage means.
  • the monitoring device not only stores the detection signal of the sensor regarding the power supply state to the tool, but also determines the working state of the operator who uses the tool based on the detection signal. .. Therefore, the user can grasp the working state of the worker who uses the tool based on the judgment result by the monitoring device.
  • the present invention provides a monitoring system including a sensor, a storage means, a judgment means, and a display means.
  • the sensor detects the power supply state in the power supply cable that supplies power to the tool.
  • the storage means stores the detection signal detected by the sensor in chronological order as an index of the working state of the operator who uses the tool.
  • the determination means determines the working state of the operator who uses the tool based on the detection signal stored in the storage means.
  • the display means displays information corresponding to the determination result of the determination means.
  • a detection signal indicating that power is being supplied in the power supply cable that supplies power to the tool is output from the sensor.
  • the detection signal of the sensor is stored in chronological order as an index of the working state of the worker who uses the tool, and the working state of the worker who uses the tool is judged based on the detection signal. Then, the information corresponding to the judgment result is displayed on the display means. Therefore, the user can grasp the working state of the worker who uses the tool based on the information displayed on the display means.
  • the senor has a mounting portion that is mounted on the power supply cable.
  • the monitoring system can determine the working state of the operator based on the detection signal of the sensor. Is performed, and the information corresponding to the determination result is displayed on the display means. Therefore, the user can grasp the working state of the worker who uses the tool based on the information displayed on the display means.
  • the power is electric power or air
  • the sensor detects the electric power or air supply state in the power supply cable.
  • the monitoring system determines the working state of the operator based on the detection signal of the sensor about the state of power or air supplied to the tool in the power supply cable. Is performed, and the information corresponding to the determination result is displayed on the display means. Therefore, the user can grasp the working state of the worker who uses the tool based on the information displayed on the display means.
  • the determination means determines that the work of using the tool has not been performed. To do.
  • the sensor does not output a detection signal indicating that power is being supplied to the tool from the power supply cable, it is determined that the work using this tool has not been performed, and this determination is made.
  • the information corresponding to the result is displayed on the display means. Therefore, the user who sees the information can grasp that the work by the worker who uses this tool is not performed.
  • the plurality of the tools are used in a fixed order in a series of operations.
  • the monitoring system includes a plurality of the sensors corresponding to the plurality of tools, respectively.
  • the determination means determines that one cycle of the series of operations has been completed.
  • the monitoring system stores the detection signals of multiple sensors corresponding to each of these tools in that order. Therefore, it is determined that one cycle of the series of operations has been completed, and the information corresponding to the determination result is displayed on the display means. Therefore, the user who sees the information can grasp that a series of operations by the operator using these tools has been completed for one cycle.
  • the determination means determines that there is a problem in the work.
  • the monitoring system will send detection signals from multiple sensors corresponding to each of these tools. Since the items are stored in the different order, it is determined that there is a problem in the work, and the information corresponding to the determination result is displayed on the display means. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools.
  • the monitoring system further includes a calculation means for calculating the work time from the start to the end of the series of operations based on the detection signal.
  • the storage means stores a reference time for the working time. When the difference between the working time and the reference time is larger than a predetermined threshold value, the determining means determines that there is a problem in the work.
  • the working time of a series of operations in which a plurality of tools are used is calculated based on the detection signals of a plurality of sensors corresponding to each of these tools.
  • the monitoring system determines that there is a problem in the work, and the information corresponding to the determination result is displayed on the display means. .. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools.
  • the plurality of tools are deployed at each of the plurality of work process positions.
  • the determination means determines the work state of the worker at each of the plurality of work process positions.
  • the work state of the worker at each of the plurality of work process positions is determined, and the information corresponding to the determination result is displayed on the display means. Therefore, the user who sees the information can collectively grasp the working state of the worker who uses the tool at each work process position.
  • the display means includes at least one of a monitoring monitor and a signal indicator light.
  • At least one of the monitoring monitor and the signal indicator light displays information corresponding to the judgment result of the working state of the worker on the display means. Therefore, the user who sees the information can grasp the working state of the worker who uses the tool.
  • FIG. 1 is a conceptual diagram showing a configuration of a monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of an electrical configuration of the monitoring system.
  • FIG. 3 is a time chart showing the information stored in the monitoring device constituting the monitoring system in chronological order.
  • FIG. 4 is a diagram showing an example of the display contents of the display devices constituting the monitoring system.
  • FIG. 1 is a conceptual diagram showing a configuration of a monitoring system 1 according to an embodiment of the present invention.
  • the monitoring system 1 is provided, for example, at the production site of a factory.
  • the production site is provided with a plurality of work process positions such as a first work process position, a second work process position, a third work process position, and an Nth work process position.
  • a plurality of work process positions such as a first work process position, a second work process position, a third work process position, and an Nth work process position.
  • only one worker performs work at one work process position, but a plurality of workers are assigned to one work process position, and these workers share the work. May be good.
  • Inside or outside the production site there is a control room where the manager who manages the production site waits.
  • a plurality of (three in this embodiment) tool T that is, the first tool T1, the second tool T2, and the third tool T3, are arranged at each of the plurality of work process positions.
  • Each tool T is a power tool powered by electric power or an air tool powered by compressed air, and specifically, a known impact driver, grinder, or the like. At each work process position, a plurality of different types of tools T may be used, or even if a plurality of tools T of the same type but different in usage conditions such as bolt tightening torque and pitch are used. Good.
  • Each tool T is provided with a handle A and a tip portion B protruding from the handle A.
  • a power supply cable C connected to a power source (not shown) is connected to each tool T, and each tool T operates by being supplied with power from the corresponding power supply cable C.
  • the power supply cable C When the power is electric power, the power supply cable C is a covered electric wire.
  • the power supply cable C is an air hose.
  • the tip portion B rotates or reciprocates.
  • the plurality of tools T at each work process position are suspended by, for example, an elastic cord or the like above the worker in charge of the work process position.
  • an elastic cord or the like When the operator grabs the handle A, pulls down the tool T, and then pushes the switch D of the tool T, the tool T operates. When the operator stops the operation of the switch D, the tool T stops. When the operator releases the tool T, the tool T is raised to the original standby position by the urging force of the elastic cord.
  • the same work is performed at each work process position.
  • the work-in-process (not shown) becomes the work-in-process P1 when the worker receives work such as attachment, processing, and inspection of the part using the first tool T1.
  • the work-in-process P1 becomes the work-in-process P2 by receiving the work by the worker using the second tool T2.
  • the work-in-process product P2 becomes a finished product P3 and is shipped after receiving work by a worker using the third tool T3.
  • the first tool T1, the second tool T2, and the third tool T3 are arranged in a fixed order (first tool T1, second tool T2, third tool) in one cycle of a series of work.
  • One finished product P3 is completed by being used in the order of T3).
  • the first tool T1 is a tool T that is used only once at the beginning of one cycle.
  • the monitoring system 1 includes a first sensor S1, a second sensor S2, and a third sensor S3 (hereinafter, collectively referred to as "sensors”) corresponding to the first tool T1, the second tool T2, and the third tool T3 at each work process position. S ”) and a transmission device 2 installed at each work process position to transmit the detection signal of each sensor S to the control room.
  • the monitoring system 1 further includes a monitoring device 3 that processes the detection signal from the transmitting device 2, and a display device 4 that is installed in the management room and displays information corresponding to the processing result of the monitoring device 3.
  • the monitoring device 3 may be installed in the management room or may be installed in another place.
  • the sensor S is a sensor that detects the power supply state in the power supply cable C that supplies power to the corresponding tool T.
  • the sensor S has a mounting portion SA mounted on the power supply cable C.
  • An example of the mounting portion SA is a washing clip-shaped clip that sandwiches the power supply cable C.
  • An example of the sensor S when the power is electric power detects the strength of the magnetic field generated around the power supply cable C by electromagnetic induction when a current is flowing as the electric power supply state in the power supply cable C. ..
  • the sensor S can detect the power supply state of the power supply cable C in a non-contact state with the electric wire of the power supply cable C.
  • the sensor S may be an ammeter or a voltmeter directly connected to the electric wire of the power supply cable C.
  • the sensor S when the power is air is a flow meter, and detects the flow rate of the air flowing through the power supply cable C as the air supply state in the power supply cable C.
  • the flow meter an electromagnetic flow meter that detects the flow rate of air from the electromotive force generated by electromagnetic induction when air flows through the power supply cable C can be used. In the following, the description will be made on the assumption that the power is electric power.
  • the transmission device 2 has at least a base 5 fixed in place at the work process position and a wireless communication unit 6 arranged on the base 5.
  • the wireless communication unit 6 may be built in the base 5.
  • each sensor S and the transmission device 2 are connected via a wired or wireless communication line 7. Therefore, the detection signal of each sensor S is input to the transmission device 2.
  • the wireless communication unit 6 is communicably connected to the management computer 13 via a wired or wireless network 8.
  • the transmission device 2 can transmit the detection signal input from each sensor S to the monitoring device 3 by wirelessly communicating with the monitoring device 3 by the wireless communication unit 6.
  • the transmission device 2 in this embodiment is a signal indicator light, and may have a display unit 9 arranged between the base 5 and the wireless communication unit 6.
  • the display unit 9 is composed of a plurality of (four in this embodiment) display units 10 stacked on the base 5.
  • Each display unit 10 includes a light source 11 and a tubular glove 12 that covers the periphery of the light source 11.
  • the light source 11 in this embodiment is a light emitting diode, and selectively emits a plurality of colors. That is, the light source 11 is a full-color light source or a multi-color light source capable of emitting a plurality of colors.
  • the glove 12 in this embodiment is colorless and transparent or white translucent, and emits the light emitted by the light source 11 to the outside in the same color.
  • the emission color of the light source 11 on the display unit 10 is the display color of the display unit 10.
  • the display unit 10 variably displays information according to the emission color and lighting pattern of the light source 11.
  • the monitoring device 3 includes at least an input unit (not shown) such as a setting switch.
  • the monitoring device 3 may be a personal computer including an input unit (not shown) configured by a keyboard or the like instead of a setting switch, and a display unit (not shown) such as a monitor.
  • the display device 4 is an example of display means, and includes at least one of a monitoring monitor 15 and a signal indicator light 16.
  • a known display can be adopted as the monitoring monitor 15.
  • the signal indicator 16 is configured in the same manner as the transmission device 2, and specifically, a base 17 fixed at an appropriate position in the control room and a plurality of (four in this embodiment) display stacked on the base 17. It has a display unit 19 composed of a unit 18. Similar to the display unit 10 of the transmission device 2, each display unit 18 has a light source 20 that selectively emits a plurality of colors, and a colorless transparent or white translucent tubular glove 21 that covers the periphery of the light source 20. Have.
  • the monitoring device 3 and each display device 4 are connected to each other via a wired or wireless communication line 22.
  • FIG. 2 is a block diagram showing an example of an electrical configuration of the monitoring system 1.
  • the transmission device 2 includes an input unit 25 into which a detection signal from each sensor S is input, a control unit 26 composed of a CPU (central processing unit), and the above-mentioned wireless communication unit 6 and display unit 9.
  • the input unit 25 is an interface unit connected to the communication line 7 connected to each sensor S.
  • the control unit 26 controls the wireless communication unit 6 and the display unit 9.
  • the wireless communication unit 6 is an interface unit connected to the network 8.
  • the monitoring device 3 is a communication connected to a control unit 30 which is composed of a CPU and functions as a determination means and a calculation means, an input unit 31 which is an interface unit connected to the network 8, a monitoring monitor 15, and a signal indicator lamp 16. It includes an output unit 32 which is an interface unit connected to the wire 22.
  • the input unit 31 functions as an input means in which the detection signal of each sensor S is input via the transmission device 2.
  • the monitoring device 3 includes a timer 33 for measuring time and a storage unit 34 as a storage means for storing various information.
  • the control unit 30 executes the process while referring to the time counting time of the timer 33 as needed.
  • the storage unit 34 also stores a program for processing executed by the control unit 30.
  • the monitoring monitor 15 has a control unit 40 configured by a CPU, an input unit 41 for receiving information output by the output unit 32 of the monitoring device 3, and a display screen, and is controlled by the control unit 40. Including 42 and.
  • the input unit 41 is an interface unit connected to the communication line 22.
  • the signal indicator 16 includes a control unit 45 configured by a CPU, an input unit 46 for receiving information output by an output unit 32 of the monitoring device 3, and the display unit 19 described above.
  • the input unit 46 is an interface unit connected to the communication line 22.
  • the processing executed in the monitoring system 1 according to the work of the worker at each work process position will be described focusing on the first work process position.
  • the power of the magnitude required to operate the tool T is continuously supplied from the power supply cable C to the tool T as the operating power.
  • power may not be supplied from the power supply cable C to the tool T, for example, some power may be used as standby power from the power supply cable C to the tool T. Power may be supplied to.
  • first operating power When the first sensor S1 detects that the operating power (hereinafter, may be referred to as “first operating power”) is supplied from the power supply cable C to the first tool T1, the first sensor S1 is the first in the power supply cable C. The first detection signal indicating that the operating power is being supplied is output.
  • second operating power When the second sensor S2 detects that the operating power (hereinafter, may be referred to as “second operating power”) is supplied from the power supply cable C to the second tool T2, the second sensor S2 is connected to the power supply cable C. A second detection signal indicating that the operating power is being supplied is output.
  • the third sensor S3 detects that the operating power (hereinafter, may be referred to as “third operating power”) is supplied from the power supply cable C to the third tool T3, the third sensor S3 is connected to the power supply cable C.
  • a third detection signal indicating that the operating power is being supplied is output.
  • the first detection signal, the second detection signal, and the third detection signal (hereinafter, collectively referred to as “detection signal”) are input to the input unit 25 of the transmission device 2 through the communication line 7, and then the transmission device. It is input in real time to the input unit 31 of the monitoring device 3 via the network 8 by the wireless communication unit 6 of 2.
  • FIG. 3 is a diagram showing information stored in the storage unit 34 of the monitoring device 3 in chronological order as a time chart.
  • the control unit 30 of the monitoring device 3 stores the detection signals of each sensor S for each work process position input to the input unit 31 in the storage unit 34 in chronological order. Specifically, in the monitoring device 34, a first flag corresponding to the first detection signal, a second flag corresponding to the second detection signal, and a third flag corresponding to the third detection signal are set. , The transition of the input of each detection signal to the input unit 31 is stored in real time as the timed change of the corresponding flag. In FIG. 3, the timekeeping change of the flag corresponding to each of the first detection signal, the second detection signal, and the third detection signal of the first work process position is shown.
  • the control unit 30 sets the first flag from 0 to 1 when the first detection signal is input to the input unit 31, and resets the first flag from 1 to 0 when the input of the first detection signal is lost. While the operator is operating the switch D of the first tool T1, the first sensor S1 continues to output the first detection signal and the first detection signal continues to be input to the input unit 31, so that the first flag is set. It remains at 1.
  • the control unit 30 sets the second flag from 0 to 1 when the second detection signal is input to the input unit 31, and resets the second flag from 1 to 0 when the input of the second detection signal is lost.
  • each detection signal input to the input unit 31 is an index of the working state of the worker who uses the first tool T1, the second tool T2, and the third tool T3.
  • the control unit 30 of the monitoring device 3 determines the working state of the operator who uses the tool T based on the detection signal stored in the storage unit 34, that is, the first flag to the third flag. Specifically, when the first detection signal corresponding to the first tool T1 is not output from the first sensor S1, that is, when the first flag is 0, the control unit 30 uses the first tool T1. Is not done. On the other hand, when the first flag is 1, the control unit 30 determines that the work using the first tool T1 is being performed. The same applies to the second tool T2 and the third tool T3. That is, when the second detection signal is not output from the second sensor S2, the control unit 30 determines that the work of using the second tool T2 has not been performed.
  • the control unit 30 determines that the work using the second tool T2 is being performed.
  • the control unit 30 determines that the work using the third tool T3 has not been performed.
  • the control unit 30 determines that the work using the third tool T3 is being performed.
  • the first detection signal and the second detection signal are used in this order in one cycle of a series of operations by the operator at each work process position.
  • the third detection signal is input to the input unit 31 of the monitoring device 3 in this order (hereinafter, referred to as “predetermined order”) and stored in the storage unit 34.
  • predetermined order the third detection signal
  • the first flag first changes from 0 to 1, and after a while, returns to 0.
  • the second flag changes from 0 to 1, and after a while, returns to 0.
  • the third flag goes from 0 to 1 and returns to 0 after a while.
  • a color representing the working state (hereinafter referred to as "state color") is assigned to the working state using the tool T.
  • state color A color representing the working state (hereinafter referred to as "state color") is assigned to the working state using the tool T.
  • the relationship between each working state and the corresponding state color is stored in the storage unit 34.
  • the state color for the work state using only the first tool T1 is blue
  • the state color for the work state using only the second tool T2 after the first tool T1.
  • Is green, and the state color for the working state using only the third tool T3 next to the second tool T2 is also green. Therefore, when one cycle of the series of work is completed and the work of the second cycle is started, the state color changes in the order of blue, green, and green and returns to blue.
  • the control unit 30 of the monitoring device 3 determines that there is a problem in a series of operations. For example, when the tool T is used in the order of the first tool T1, the third tool T3, and the second tool T2 as in the second cycle work of FIG. 3, the finished product P3 (see FIG. 1) is used. It may not be completed in the correct procedure. Further, even when the first tool T1 and the second tool T2 are used at the same time as in the work of the third cycle of FIG. 3, there is a possibility that the finished product P3 is not completed in the correct procedure.
  • the state color for the work state using a tool T different from the tool T to be used in a predetermined order is yellow, and the state for the work state using a plurality of tools T at the same time.
  • the color is red.
  • the control unit 30 of the monitoring device 3 determines the work state of the worker at each of the other work process positions in the same procedure as the work state of the worker at the first work process position.
  • the control unit 30 provides information (hereinafter, referred to as “work state information”) corresponding to the determination result of the work state of the worker at each work process position from the output unit 32 to the monitoring monitor 15 and signals via the communication line 22. Output to the indicator light 16.
  • work state information is time series information of state colors at each work process position.
  • the work state information is input to the input unit 41 on the monitoring monitor 15, and is displayed on the display unit 42 in real time or at an arbitrary timing desired by the administrator, as shown in FIG. In FIG.
  • the work state information is displayed in association with each work process position on the display unit 42, but is displayed in association with each worker (for example, the name or identification information of the worker) working at the work process position. You may. Since a plurality of work status information is collectively displayed on the display unit 42, the manager who sees the display unit 42 can compare the work status information between the plurality of work process positions or between the plurality of workers. it can.
  • the number of assembled finished products P3 at each work process position within a predetermined period may be displayed on the display unit 42 together with the work status information.
  • the monitoring system 1 may include a known input device (not shown) in which the number of assembly of each work process position is manually input or automatically input by an operator. Information on the number of assemblies at each work process position input to the input device is transmitted to the monitoring monitor 15. Assuming that the reference value of the number of assembled pieces is, for example, 350 pieces, in the display example of FIG. 4, in the first work process position, a plurality of tools T are correctly used in the work of each cycle in a predetermined order. Since the finished product P3 is assembled and the number of assembled products is large, the work at the first work process position is excellent.
  • the tools T are used in the wrong order, so that there is a concern about the quality of the finished product P3.
  • the third work process position although the number of assembled parts exceeds the standard value, since a plurality of tools T that should be used separately are used at the same time, there is a concern about the quality of the finished product P3.
  • the Nth work process position although the plurality of tools T are correctly used in a predetermined order, the number of assembled tools is less than the reference value because the tools T are not used for a long time. Therefore, it is necessary to take measures to improve work efficiency.
  • the total usage time of each tool T at each work process position is the total of the times when the corresponding flag was 1, and is calculated by the control unit 30 of the monitoring device 3.
  • the total usage time of each tool T at each work process position may be displayed together with the work state information and the number of assembled parts.
  • the work process position where the number of assemblies is less than the reference value for example, if the total usage time of the first tool T1 is significantly longer than the total usage time of the other tool T, the worker in charge of this work process position is the first. 1 There is a possibility that you are not accustomed to handling the tool T1.
  • the time from when the first flag changes from 0 to 1 to when the first flag changes from 0 to 1 is the work time from the start to the end of a series of work (see FIG. 3). ).
  • the control unit 30 of the monitoring device 3 measures the timing at which each detection signal is input, the timing at which each detection signal is no longer input, and the like with the timer 33, and calculates the working time for each cycle based on the measurement result.
  • a reference time for the work time is set in advance and stored in the storage unit 34 of the monitoring device 3 based on the history of the work time so far (for example, the work time at the excellent work process position). ..
  • the control unit 30 determines that there is a problem in the work. To do. For example, if the working time falls within the range of 90% or more and 110% or less of the reference time (in this case, 10% of the error becomes the threshold value), the work for this working time is judged to be normal. To. On the other hand, when the work time is less than 90% of the standard time, there is a concern about quality problems such as forgetting to attach parts. There is room for improvement in work efficiency when the work time exceeds 110% of the standard time.
  • the control unit 30 of the monitoring device 3 determines that there is a problem in the work, and transmits an alarm command for issuing an alarm to the signal indicator light 16.
  • the alarm command includes a first alarm command corresponding to the problem that the working time is too short, and a second alarm command corresponding to the problem that the working time is too long.
  • the display unit 18 normally emits light in green, whereas when the first alarm command is input to the input unit 46, the display unit 18 emits light in yellow, for example, and the second alarm command is emitted. Is input to the input unit 46, the display unit 18 emits light, for example, in red.
  • the signal indicator light 16 when the work state information when the plurality of tools T are used at the same time and the work state information when the tools T are used in an order different from the predetermined order are input to the input unit 46, the signal indicator light 16 Then, these work state information is notified by changing the lighting pattern which is a display attribute different from the emission color (for example, from continuous lighting to blinking). The manager who sees the display of the display unit 18 rushes to the work process position where there is a problem, if necessary.
  • the notification by the signal indicator light 16 may be executed by issuing a buzzer instead of the display by the display unit 18, or may be executed by a combination of the display unit 18 and the buzzer.
  • a detection signal indicating that power is being supplied in the power supply cable C that supplies power to the tool T is output from the sensor S to be input. It is input to 31.
  • the input detection signal is stored in the storage unit 34 of the monitoring device 3 in chronological order as an index of the working state of the operator who uses the tool T. Therefore, a user such as an administrator can grasp the working state of the worker who uses the tool T based on the detection signal stored in the storage unit 34 by accessing the monitoring device 3. That is, it is possible to visualize the working state in which the tool T is used from the usage state of the tool T.
  • the control unit 30 bases the detection signal on the working state of the operator who uses the tool T. Also make a judgment. Therefore, the user can grasp the working state of the worker who uses the tool T based on the determination result by the control unit 30.
  • Information corresponding to the determination result by the control unit 30 is displayed on the display device 4 including at least one of the monitoring monitor 15 and the signal indicator lamp 16 (see FIG. 4). Therefore, the user can grasp the working state of the worker who uses the tool T based on the information displayed on the display device 4.
  • the sensor S does not output a detection signal indicating that power is being supplied from the power supply cable C to the tool T, it is determined that the work using this tool T has not been performed.
  • Information corresponding to the determination result is displayed on the display device 4. Therefore, the user who sees the information can grasp that the work by the worker who uses this tool T is not performed.
  • the monitoring system 1 displays the detection signals of the plurality of sensors S corresponding to the tools T in a predetermined order. Since it is stored, it is determined that one cycle of the series of operations has been completed, and the information corresponding to the determination result is displayed on the display device 4. Therefore, the user who sees the information can grasp that a series of operations by the operator using these tools T has been completed for one cycle.
  • the monitoring system 1 stores the detection signals of the plurality of sensors S corresponding to the tools T in the different order. Is determined to be a problem, and information corresponding to the determination result is displayed on the display device 4. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools T.
  • the working time of a series of operations in which a plurality of tools T are used is calculated based on the detection signals of a plurality of sensors S corresponding to each of these tools T.
  • the monitoring system 1 determines that there is a problem in the work, and the information corresponding to the determination result is transmitted to the signal indicator light 16. Is displayed. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools T.
  • the monitoring system 1 the working state of the worker at each of the plurality of work process positions is determined, and the information corresponding to the determination result is displayed on the monitoring monitor 15. Therefore, the user who sees the information can collectively grasp the working state of the worker who uses the tool T at each work process position.
  • the sensor S has a mounting portion SA mounted on the power supply cable C. Therefore, even if the existing tool T is used, if the mounting portion SA of the sensor S is retrofitted to the power supply cable C that supplies power to the tool T, the monitoring system 1 is based on the detection signal of the sensor S. The work state of the worker is determined, and the information corresponding to the determination result is displayed on the display device 4. Therefore, the user can grasp the working state of the worker who uses the tool T based on the information displayed on the display device 4.
  • the operator's work is performed based on the detection signal of the sensor S regarding the supply state of electric power or air to the tool T in the power supply cable C.
  • the state is determined, and the information corresponding to the determination result is displayed on the display device 4. Therefore, the user can grasp the working state of the worker who uses the tool T based on the information displayed on the display device 4.
  • the configuration for determining the working state of the operator based on the detection signal of the sensor S is not the control unit 30 of the monitoring device 3 as described above, but the control unit 40 of the monitoring monitor 15 and the control of the signal indicator light 16. It may be part 45.
  • Monitoring system 3 ... Monitoring device 4 ... Display device 15 ... Monitoring monitor 16 ... Signal indicator 30 ... Control unit 31 . Input unit 34 ... Storage unit C ... Power supply cable S ... Sensor SA ... Mounting unit T ... Tool

Abstract

A monitoring device 3 includes an input unit 31 and a storage unit 34. Detection signals from a sensor S, which detects the power-supplying state of a power-supplying cable C that supplies power to a tool T, are input to the input unit 31. The detection signals input to the input unit 31 are stored in chronological order in the storage unit 34 as an indicator of the work state of a worker using the tool T.

Description

監視装置および監視システムMonitoring device and monitoring system
 この発明は、監視装置および監視システムに関する。 The present invention relates to a monitoring device and a monitoring system.
 特許文献1は、電動工具と、電動工具の使用実績を管理する管理装置とで構成された電動工具管理システムを開示している。電動工具は、ソフトインパクトドライバであり、ナット類に係合するボックスが取り付けられるスピンドルと、スピンドルを回転させるモータと、モータを起動するためのメインスイッチとを含む。電動工具は、管理装置とデータの送受信を行うための赤外線LEDおよびフォトダイオードも含む。電動工具が使用されると、電動工具は、その使用実績であるモータの稼働時間やメインスイッチの操作回数等を更新して、管理装置に送信する。管理装置は、受信した使用実績に基づいて電動工具のメンテナンスの要否を判断する。電動工具のメンテナンスが必要な場合には、その旨が管理装置のディスプレイに表示される。 Patent Document 1 discloses a power tool management system composed of a power tool and a management device for managing the usage record of the power tool. The power tool is a soft impact driver and includes a spindle to which a box that engages nuts is attached, a motor that rotates the spindle, and a main switch for starting the motor. Power tools also include infrared LEDs and photodiodes for sending and receiving data to and from the management device. When the power tool is used, the power tool updates the operating time of the motor, the number of operations of the main switch, etc., which are the actual usage records, and sends the power tool to the management device. The management device determines the necessity of maintenance of the power tool based on the received usage record. If maintenance of the power tool is required, it will be indicated on the display of the management device.
特開2002-18744号公報JP-A-2002-18744
 本件発明者は、工具を使用する作業者の作業状態を、当該工具を通じて把握する構成について検討した。作業者の作業状態を把握できれば、作業現場におけるボトルネックを早期に発見して対策を講じることによって作業効率の向上を図ることができる。しかし、特許文献1に記載の電動工具管理システムでは、電動工具の使用実績から電動工具のメンテナンスの要否を判断できるが、電動工具を使用する作業者の作業状態を把握することはできない。また、特許文献1に記載の電動工具管理システムでは、通信機能を備えた工具を使用することが前提なので、通信機能を備えない工具を既に使用している作業現場にとって、この電動工具管理システムを新たに導入することは、コスト等の点から困難である。 The inventor examined a configuration for grasping the working state of a worker who uses a tool through the tool. If the working condition of the worker can be grasped, the work efficiency can be improved by detecting the bottleneck at the work site at an early stage and taking countermeasures. However, in the power tool management system described in Patent Document 1, although it is possible to determine whether or not maintenance of the power tool is necessary from the usage record of the power tool, it is not possible to grasp the working state of the worker who uses the power tool. Further, since the power tool management system described in Patent Document 1 is premised on using a tool having a communication function, this power tool management system can be used for a work site that has already used a tool not having a communication function. It is difficult to introduce a new one in terms of cost and the like.
 そこで、この発明の一実施形態は、工具を使用する作業者の作業状態を把握できる監視装置および監視システムを提供する。 Therefore, one embodiment of the present invention provides a monitoring device and a monitoring system that can grasp the working state of a worker who uses a tool.
 この発明は、入力手段と、記憶手段とを含む監視装置を提供する。前記入力手段には、工具に動力を供給する動力供給ケーブルにおける動力供給状態を検出するセンサの検出信号が入力される。前記記憶手段は、前記入力手段に入力される前記検出信号を、前記工具を使用する作業者の作業状態の指標として時系列に沿って記憶する。 The present invention provides a monitoring device including an input means and a storage means. A detection signal of a sensor that detects a power supply state in the power supply cable that supplies power to the tool is input to the input means. The storage means stores the detection signal input to the input means in chronological order as an index of a working state of an operator who uses the tool.
 この構成により、作業者が工具を使用すると、工具に動力を供給する動力供給ケーブルにおいて動力供給中であることをあらわす検出信号がセンサから出力されて入力手段に入力される。入力手段に入力された検出信号は、工具を使用する作業者の作業状態の指標として時系列に沿って監視装置の記憶手段に記憶される。そのため、使用者は、記憶手段に記憶された検出信号に基づいて、工具を使用する作業者の作業状態を把握できる。 With this configuration, when the operator uses the tool, a detection signal indicating that power is being supplied in the power supply cable that supplies power to the tool is output from the sensor and input to the input means. The detection signal input to the input means is stored in the storage means of the monitoring device in chronological order as an index of the working state of the operator who uses the tool. Therefore, the user can grasp the working state of the operator who uses the tool based on the detection signal stored in the storage means.
 この発明の一実施形態では、前記監視装置は、前記記憶手段に記憶された前記検出信号に基づいて、前記工具を使用する作業者の作業状態を判断する判断手段を含む。 In one embodiment of the present invention, the monitoring device includes a determination means for determining a working state of an operator who uses the tool based on the detection signal stored in the storage means.
 この構成により、監視装置では、工具への動力供給状態についてのセンサの検出信号が記憶されるだけでなく、当該検出信号に基づいて、この工具を使用する作業者の作業状態の判断も行われる。そのため、使用者は、監視装置による判断結果に基づいて、工具を使用する作業者の作業状態を把握できる。 With this configuration, the monitoring device not only stores the detection signal of the sensor regarding the power supply state to the tool, but also determines the working state of the operator who uses the tool based on the detection signal. .. Therefore, the user can grasp the working state of the worker who uses the tool based on the judgment result by the monitoring device.
 この発明は、センサと、記憶手段と、判断手段と、表示手段とを含む、監視システムを提供する。前記センサは、工具に動力を供給する動力供給ケーブルにおける動力供給状態を検出する。前記記憶手段は、前記センサが検出した前記検出信号を、前記工具を使用する作業者の作業状態の指標として時系列に沿って記憶する。前記判断手段は、前記記憶手段に記憶された前記検出信号に基づいて、前記工具を使用する作業者の作業状態を判断する。前記表示手段は、前記判断手段の判断結果に対応する情報を表示する。 The present invention provides a monitoring system including a sensor, a storage means, a judgment means, and a display means. The sensor detects the power supply state in the power supply cable that supplies power to the tool. The storage means stores the detection signal detected by the sensor in chronological order as an index of the working state of the operator who uses the tool. The determination means determines the working state of the operator who uses the tool based on the detection signal stored in the storage means. The display means displays information corresponding to the determination result of the determination means.
 この構成により、作業者が工具を使用すると、工具に動力を供給する動力供給ケーブルにおいて動力供給中であることをあらわす検出信号がセンサから出力される。監視システムでは、センサの検出信号が、工具を使用する作業者の作業状態の指標として時系列に沿って記憶され、当該検出信号に基づいて、工具を使用する作業者の作業状態の判断が行われて、その判断結果に対応する情報が表示手段に表示される。そのため、使用者は、表示手段に表示された当該情報に基づいて、工具を使用する作業者の作業状態を把握できる。 With this configuration, when the operator uses the tool, a detection signal indicating that power is being supplied in the power supply cable that supplies power to the tool is output from the sensor. In the monitoring system, the detection signal of the sensor is stored in chronological order as an index of the working state of the worker who uses the tool, and the working state of the worker who uses the tool is judged based on the detection signal. Then, the information corresponding to the judgment result is displayed on the display means. Therefore, the user can grasp the working state of the worker who uses the tool based on the information displayed on the display means.
 この発明の一実施形態では、前記センサは、前記動力供給ケーブルに装着される装着部を有する。 In one embodiment of the present invention, the sensor has a mounting portion that is mounted on the power supply cable.
 この構成により、既存の工具であっても、この工具に動力を供給する動力供給ケーブルにセンサの装着部を装着すれば、監視システムでは、センサの検出信号に基づいて作業者の作業状態の判断が行われて、その判断結果に対応する情報が表示手段に表示される。そのため、使用者は、表示手段に表示された当該情報に基づいて、工具を使用する作業者の作業状態を把握できる。 With this configuration, even if it is an existing tool, if the mounting part of the sensor is attached to the power supply cable that supplies power to this tool, the monitoring system can determine the working state of the operator based on the detection signal of the sensor. Is performed, and the information corresponding to the determination result is displayed on the display means. Therefore, the user can grasp the working state of the worker who uses the tool based on the information displayed on the display means.
 この発明の一実施形態では、前記動力は、電力またはエアであり、前記センサは、前記動力供給ケーブルにおける電力またはエアの供給状態を検出する。 In one embodiment of the present invention, the power is electric power or air, and the sensor detects the electric power or air supply state in the power supply cable.
 この構成により、動力が電力またはエアである工具の場合には、監視システムでは、動力供給ケーブルにおける工具への電力またはエアの供給状態についてのセンサの検出信号に基づいて作業者の作業状態の判断が行われて、その判断結果に対応する情報が表示手段に表示される。そのため、使用者は、表示手段に表示された当該情報に基づいて、工具を使用する作業者の作業状態を把握できる。 With this configuration, in the case of a tool whose power is power or air, the monitoring system determines the working state of the operator based on the detection signal of the sensor about the state of power or air supplied to the tool in the power supply cable. Is performed, and the information corresponding to the determination result is displayed on the display means. Therefore, the user can grasp the working state of the worker who uses the tool based on the information displayed on the display means.
 この発明の一実施形態では、前記センサが前記動力供給ケーブルにおいて動力供給中であることをあらわす検出信号を出力しない場合に、前記判断手段は、前記工具を使用する作業が行われていないと判断する。 In one embodiment of the present invention, when the sensor does not output a detection signal indicating that power is being supplied in the power supply cable, the determination means determines that the work of using the tool has not been performed. To do.
 この構成により、監視システムでは、動力供給ケーブルから工具に動力供給中であることをあらわす検出信号がセンサから出力されない場合には、この工具を使用する作業が行われていないと判断され、この判断結果に対応する情報が表示手段に表示される。そのため、当該情報を見た使用者は、この工具を使用する作業者による作業が行われていないことを把握できる。 With this configuration, in the monitoring system, if the sensor does not output a detection signal indicating that power is being supplied to the tool from the power supply cable, it is determined that the work using this tool has not been performed, and this determination is made. The information corresponding to the result is displayed on the display means. Therefore, the user who sees the information can grasp that the work by the worker who uses this tool is not performed.
 この発明の一実施形態では、複数の前記工具が、一連の作業において決まった順番で使用される。前記監視システムは、前記複数の工具にそれぞれ対応する複数の前記センサを含む。前記記憶手段が前記複数のセンサの検出信号を前記順番で記憶した場合に、前記判断手段は、前記一連の作業が1サイクル完了したと判断する。 In one embodiment of the present invention, the plurality of the tools are used in a fixed order in a series of operations. The monitoring system includes a plurality of the sensors corresponding to the plurality of tools, respectively. When the storage means stores the detection signals of the plurality of sensors in the order, the determination means determines that one cycle of the series of operations has been completed.
 この構成により、一連の作業において決まった順番で使用されるべき複数の工具が当該順番で使用されると、監視システムでは、これらの工具にそれぞれ対応する複数のセンサの検出信号が当該順番で記憶されるので、これに応じて、一連の作業が1サイクル完了したと判断されて、その判断結果に対応する情報が表示手段に表示される。そのため、当該情報を見た使用者は、これらの工具を使用する作業者による一連の作業が1サイクル完了したことを把握できる。 With this configuration, when multiple tools that should be used in a fixed order in a series of operations are used in that order, the monitoring system stores the detection signals of multiple sensors corresponding to each of these tools in that order. Therefore, it is determined that one cycle of the series of operations has been completed, and the information corresponding to the determination result is displayed on the display means. Therefore, the user who sees the information can grasp that a series of operations by the operator using these tools has been completed for one cycle.
 この発明の一実施形態では、前記記憶手段が前記検出信号を前記順番とは異なる順番で記憶した場合に、前記判断手段は、作業に問題があると判断する。 In one embodiment of the present invention, when the storage means stores the detection signals in an order different from the order, the determination means determines that there is a problem in the work.
 この構成により、一連の作業において決まった順番で使用されるべき複数の工具が当該順番とは異なる順番で使用されると、監視システムでは、これらの工具にそれぞれ対応する複数のセンサの検出信号が当該異なる順番で記憶されるので、作業に問題があると判断されて、その判断結果に対応する情報が表示手段に表示される。そのため、当該情報を見た使用者は、これらの工具を使用する作業者による作業に問題があることを把握できる。 With this configuration, when multiple tools that should be used in a fixed order in a series of operations are used in a different order, the monitoring system will send detection signals from multiple sensors corresponding to each of these tools. Since the items are stored in the different order, it is determined that there is a problem in the work, and the information corresponding to the determination result is displayed on the display means. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools.
 この発明の一実施形態では、前記監視システムは、前記一連の作業の開始から終了までの作業時間を前記検出信号に基づいて算出する算出手段をさらに含む。前記記憶手段は、前記作業時間についての基準時間を記憶する。前記作業時間と前記基準時間との差が所定の閾値よりも大きい場合には、前記判断手段は、作業に問題があると判断する。 In one embodiment of the present invention, the monitoring system further includes a calculation means for calculating the work time from the start to the end of the series of operations based on the detection signal. The storage means stores a reference time for the working time. When the difference between the working time and the reference time is larger than a predetermined threshold value, the determining means determines that there is a problem in the work.
 この構成により、監視システムでは、複数の工具が使用される一連の作業の作業時間が、これらの工具にそれぞれ対応する複数のセンサの検出信号に基づいて算出される。算出された作業時間と基準時間との差が所定の閾値よりも大きい場合には、監視システムでは、作業に問題があると判断されて、その判断結果に対応する情報が表示手段に表示される。そのため、当該情報を見た使用者は、これらの工具を使用する作業者による作業に問題があることを把握できる。 With this configuration, in the monitoring system, the working time of a series of operations in which a plurality of tools are used is calculated based on the detection signals of a plurality of sensors corresponding to each of these tools. When the difference between the calculated work time and the reference time is larger than a predetermined threshold value, the monitoring system determines that there is a problem in the work, and the information corresponding to the determination result is displayed on the display means. .. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools.
 この発明の一実施形態では、前記複数の工具は、複数の作業工程位置のそれぞれに配備される。前記判断手段は、前記複数の作業工程位置のそれぞれにおける作業者の作業状態を判断する。 In one embodiment of the present invention, the plurality of tools are deployed at each of the plurality of work process positions. The determination means determines the work state of the worker at each of the plurality of work process positions.
 この構成により、監視システムでは、複数の作業工程位置のそれぞれにおける作業者の作業状態が判断されて、その判断結果に対応する情報が表示手段に表示される。そのため、当該情報を見た使用者は、各作業工程位置において工具を使用する作業者の作業状態をまとめて把握できる。 With this configuration, in the monitoring system, the work state of the worker at each of the plurality of work process positions is determined, and the information corresponding to the determination result is displayed on the display means. Therefore, the user who sees the information can collectively grasp the working state of the worker who uses the tool at each work process position.
 この発明の一実施形態では、前記表示手段は、監視モニタおよび信号表示灯の少なくともいずれかを含む。 In one embodiment of the present invention, the display means includes at least one of a monitoring monitor and a signal indicator light.
 この構成により、監視モニタおよび信号表示灯の少なくともいずれかには、作業者の作業状態の判断結果に対応する情報が表示手段に表示される。そのため、当該情報を見た使用者は、工具を使用する作業者の作業状態を把握できる。 With this configuration, at least one of the monitoring monitor and the signal indicator light displays information corresponding to the judgment result of the working state of the worker on the display means. Therefore, the user who sees the information can grasp the working state of the worker who uses the tool.
図1は、この発明の一実施形態に係る監視システムの構成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of a monitoring system according to an embodiment of the present invention. 図2は、監視システムの電気的構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of an electrical configuration of the monitoring system. 図3は、監視システムを構成する監視装置に時系列に沿って記憶される情報をタイムチャート化して示した図である。FIG. 3 is a time chart showing the information stored in the monitoring device constituting the monitoring system in chronological order. 図4は、監視システムを構成する表示装置の表示内容の一例を示す図である。FIG. 4 is a diagram showing an example of the display contents of the display devices constituting the monitoring system.
 図1は、この発明の一実施形態に係る監視システム1の構成を示す概念図である。監視システム1は、例えば工場の生産現場に設けられている。生産現場には、第1作業工程位置、第2作業工程位置、第3作業工程位置…第N作業工程位置という複数の作業工程位置が設けられている。この実施形態では、1つの作業工程位置で作業を行う作業者は一人だけであるが、1つの作業工程位置に複数の作業者が配置されて、これらの作業者が作業を分担して行ってもよい。生産現場の中または外には、生産現場を管理する管理者が待機する管理室が設けられている。複数の作業工程位置のそれぞれには、第1工具T1、第2工具T2および第3工具T3という複数(この実施形態では3つ)の工具Tが配備されている。 FIG. 1 is a conceptual diagram showing a configuration of a monitoring system 1 according to an embodiment of the present invention. The monitoring system 1 is provided, for example, at the production site of a factory. The production site is provided with a plurality of work process positions such as a first work process position, a second work process position, a third work process position, and an Nth work process position. In this embodiment, only one worker performs work at one work process position, but a plurality of workers are assigned to one work process position, and these workers share the work. May be good. Inside or outside the production site, there is a control room where the manager who manages the production site waits. A plurality of (three in this embodiment) tool T, that is, the first tool T1, the second tool T2, and the third tool T3, are arranged at each of the plurality of work process positions.
 それぞれの工具Tは、電力を動力とする電動工具、または圧縮空気を動力とするエア工具であり、具体的には、公知のインパクドライバやグラインダ等である。各作業工程位置では、種類の異なる複数の工具Tが使用されてもよいし、種類が同じであるものの、例えばボルトの締め付けトルクやピッチ等の使用条件が異なる複数の工具Tが使用されてもよい。各工具Tには、取っ手Aと、取っ手Aから突出した先端部Bとが設けられている。各工具Tには、動力源(図示せず)につながった動力供給ケーブルCが接続されていて、各工具Tは、対応する動力供給ケーブルCから動力が供給されることによって作動する。動力が電力である場合の動力供給ケーブルCは、被覆電線である。動力がエアである場合の動力供給ケーブルCは、エアホースである。工具Tが作動すると、先端部Bが回転したり往復移動したりする。 Each tool T is a power tool powered by electric power or an air tool powered by compressed air, and specifically, a known impact driver, grinder, or the like. At each work process position, a plurality of different types of tools T may be used, or even if a plurality of tools T of the same type but different in usage conditions such as bolt tightening torque and pitch are used. Good. Each tool T is provided with a handle A and a tip portion B protruding from the handle A. A power supply cable C connected to a power source (not shown) is connected to each tool T, and each tool T operates by being supplied with power from the corresponding power supply cable C. When the power is electric power, the power supply cable C is a covered electric wire. When the power is air, the power supply cable C is an air hose. When the tool T operates, the tip portion B rotates or reciprocates.
 各作業工程位置における複数の工具Tは、例えば、作業工程位置を担当する作業者の頭上に弾性コード等によって吊り下げられている。作業者は、取っ手Aを掴んで工具Tを引き下ろしてから工具TのスイッチDを押し操作すると、この工具Tが作動する。作業者がスイッチDの操作を中止すると、工具Tが停止する。作業者が工具Tから手を離すと、工具Tは、弾性コードの付勢力によって元の待機位置まで上昇する。 The plurality of tools T at each work process position are suspended by, for example, an elastic cord or the like above the worker in charge of the work process position. When the operator grabs the handle A, pulls down the tool T, and then pushes the switch D of the tool T, the tool T operates. When the operator stops the operation of the switch D, the tool T stops. When the operator releases the tool T, the tool T is raised to the original standby position by the urging force of the elastic cord.
 この実施形態では、各作業工程位置において同じ作業が行われる。具体的には、各作業工程位置では、仕掛品(図示せず)が、作業員による第1工具T1を使用した部品の取り付け、加工、検査等の作業を受けることによって仕掛品P1になる。仕掛品P1は、作業員による第2工具T2を使用した作業を受けることによって仕掛品P2になる。仕掛品P2は、作業員による第3工具T3を使用した作業を受けることによって完成品P3となり、出荷される。このように、各作業工程位置では、第1工具T1、第2工具T2および第3工具T3が、一連の作業の1サイクルにおいて決まった順番(第1工具T1、第2工具T2、第3工具T3の順番)で使用されることによって1つの完成品P3が完成する。第1工具T1は、1サイクルの最初に1回だけ使用される工具Tである。 In this embodiment, the same work is performed at each work process position. Specifically, at each work process position, the work-in-process (not shown) becomes the work-in-process P1 when the worker receives work such as attachment, processing, and inspection of the part using the first tool T1. The work-in-process P1 becomes the work-in-process P2 by receiving the work by the worker using the second tool T2. The work-in-process product P2 becomes a finished product P3 and is shipped after receiving work by a worker using the third tool T3. As described above, at each work process position, the first tool T1, the second tool T2, and the third tool T3 are arranged in a fixed order (first tool T1, second tool T2, third tool) in one cycle of a series of work. One finished product P3 is completed by being used in the order of T3). The first tool T1 is a tool T that is used only once at the beginning of one cycle.
 監視システム1は、各作業工程位置において第1工具T1、第2工具T2および第3工具T3にそれぞれ対応する第1センサS1、第2センサS2および第3センサS3(以下、総称するときには「センサS」という。)と、各作業工程位置に設置されて各センサSの検出信号を管理室へ送信する送信装置2とを含む。監視システム1は、送信装置2からの検出信号を処理する監視装置3と、管理室に設置されて監視装置3の処理結果に対応する情報を表示する表示装置4とをさらに含む。監視装置3は、管理室に設置されてもよいし、別の場所に設置されてもよい。 The monitoring system 1 includes a first sensor S1, a second sensor S2, and a third sensor S3 (hereinafter, collectively referred to as "sensors") corresponding to the first tool T1, the second tool T2, and the third tool T3 at each work process position. S ”) and a transmission device 2 installed at each work process position to transmit the detection signal of each sensor S to the control room. The monitoring system 1 further includes a monitoring device 3 that processes the detection signal from the transmitting device 2, and a display device 4 that is installed in the management room and displays information corresponding to the processing result of the monitoring device 3. The monitoring device 3 may be installed in the management room or may be installed in another place.
 センサSは、対応する工具Tに動力を供給する動力供給ケーブルCにおける動力供給状態を検出するセンサである。センサSは、動力供給ケーブルCに装着される装着部SAを有する。装着部SAの一例は、動力供給ケーブルCを挟む洗濯挟み形状のクリップである。動力が電力である場合のセンサSの一例は、電流が流れているときに電磁誘導によって動力供給ケーブルCの周辺に発生する磁界の強さを、動力供給ケーブルCにおける電力の供給状態として検出する。この場合のセンサSは、動力供給ケーブルCの電線に非接触の状態で、動力供給ケーブルCにおける電力の供給状態を検出することができる。センサSは、動力供給ケーブルCの電線に直接つながった電流計や電圧計であってもよい。動力がエアである場合のセンサSは、流量計であり、動力供給ケーブルCを流れるエアの流量を、動力供給ケーブルCにおけるエアの供給状態として検出する。流量計として、エアが動力供給ケーブルCを流れるときに電磁誘導によって発生する起電力からエアの流量を検出する電磁式流量計を用いることができる。以下では、動力が電力である場合を想定して説明を行う。 The sensor S is a sensor that detects the power supply state in the power supply cable C that supplies power to the corresponding tool T. The sensor S has a mounting portion SA mounted on the power supply cable C. An example of the mounting portion SA is a washing clip-shaped clip that sandwiches the power supply cable C. An example of the sensor S when the power is electric power detects the strength of the magnetic field generated around the power supply cable C by electromagnetic induction when a current is flowing as the electric power supply state in the power supply cable C. .. In this case, the sensor S can detect the power supply state of the power supply cable C in a non-contact state with the electric wire of the power supply cable C. The sensor S may be an ammeter or a voltmeter directly connected to the electric wire of the power supply cable C. The sensor S when the power is air is a flow meter, and detects the flow rate of the air flowing through the power supply cable C as the air supply state in the power supply cable C. As the flow meter, an electromagnetic flow meter that detects the flow rate of air from the electromotive force generated by electromagnetic induction when air flows through the power supply cable C can be used. In the following, the description will be made on the assumption that the power is electric power.
 送信装置2は、作業工程位置における適所に固定されるベース5と、ベース5上に配置された無線通信ユニット6とを少なくとも有する。無線通信ユニット6は、ベース5に内蔵されてもよい。各作業工程位置において、各センサSと送信装置2とは、有線または無線の通信線7を介して接続されている。そのため、各センサSの検出信号が送信装置2に入力される。無線通信ユニット6は、有線または無線のネットワーク8を介して管理コンピュータ13に通信可能に接続されている。送信装置2は、無線通信ユニット6によって監視装置3と無線通信することにより、各センサSから入力された検出信号を監視装置3に送信することができる。 The transmission device 2 has at least a base 5 fixed in place at the work process position and a wireless communication unit 6 arranged on the base 5. The wireless communication unit 6 may be built in the base 5. At each work process position, each sensor S and the transmission device 2 are connected via a wired or wireless communication line 7. Therefore, the detection signal of each sensor S is input to the transmission device 2. The wireless communication unit 6 is communicably connected to the management computer 13 via a wired or wireless network 8. The transmission device 2 can transmit the detection signal input from each sensor S to the monitoring device 3 by wirelessly communicating with the monitoring device 3 by the wireless communication unit 6.
 この実施形態における送信装置2は、信号表示灯であり、ベース5と無線通信ユニット6との間に配置された表示ユニット9を有してもよい。表示ユニット9は、ベース5上に積層された複数(この実施形態では4つ)の表示部10によって構成されている。各表示部10は、光源11と、光源11の周囲を覆う筒状のグローブ12とを含む。この実施形態における光源11は、発光ダイオードであって、複数色を選択的に発光する。すなわち、光源11は、複数色の発光が可能なフルカラー光源またはマルチカラー光源である。この実施形態におけるグローブ12は、無色透明または白色透光性であり、光源11が発した光をそのままの色で外部に放出させる。表示部10における光源11の発光色は、この表示部10の表示色となる。表示部10は、光源11の発光色や点灯パターンによって情報を可変表示する。 The transmission device 2 in this embodiment is a signal indicator light, and may have a display unit 9 arranged between the base 5 and the wireless communication unit 6. The display unit 9 is composed of a plurality of (four in this embodiment) display units 10 stacked on the base 5. Each display unit 10 includes a light source 11 and a tubular glove 12 that covers the periphery of the light source 11. The light source 11 in this embodiment is a light emitting diode, and selectively emits a plurality of colors. That is, the light source 11 is a full-color light source or a multi-color light source capable of emitting a plurality of colors. The glove 12 in this embodiment is colorless and transparent or white translucent, and emits the light emitted by the light source 11 to the outside in the same color. The emission color of the light source 11 on the display unit 10 is the display color of the display unit 10. The display unit 10 variably displays information according to the emission color and lighting pattern of the light source 11.
 監視装置3は、設定スイッチ等の入力部(図示せず)を少なくとも備えている。監視装置3は、設定スイッチでなくキーボード等によって構成された入力部(図示せず)と、モニタ等の表示部(図示せず)とを備えたパーソナルコンピュータであってもよい。 The monitoring device 3 includes at least an input unit (not shown) such as a setting switch. The monitoring device 3 may be a personal computer including an input unit (not shown) configured by a keyboard or the like instead of a setting switch, and a display unit (not shown) such as a monitor.
 表示装置4は、表示手段の一例であり、監視モニタ15および信号表示灯16の少なくともいずれかを含む。監視モニタ15として、公知のディスプレイを採用できる。信号表示灯16は、送信装置2と同様に構成され、具体的には、管理室における適所に固定されるベース17と、ベース17上に積層された複数(この実施形態では4つ)の表示部18によって構成された表示ユニット19とを有する。送信装置2の表示部10と同様に、各表示部18は、複数色を選択的に発光する光源20と、光源20の周囲を覆う無色透明または白色透光性の筒状のグローブ21とを有する。監視装置3と各表示装置4とは、有線または無線の通信線22を介して接続されている。 The display device 4 is an example of display means, and includes at least one of a monitoring monitor 15 and a signal indicator light 16. A known display can be adopted as the monitoring monitor 15. The signal indicator 16 is configured in the same manner as the transmission device 2, and specifically, a base 17 fixed at an appropriate position in the control room and a plurality of (four in this embodiment) display stacked on the base 17. It has a display unit 19 composed of a unit 18. Similar to the display unit 10 of the transmission device 2, each display unit 18 has a light source 20 that selectively emits a plurality of colors, and a colorless transparent or white translucent tubular glove 21 that covers the periphery of the light source 20. Have. The monitoring device 3 and each display device 4 are connected to each other via a wired or wireless communication line 22.
 図2は、監視システム1の電気的構成例を示すブロック図である。送信装置2は、各センサSからの検出信号が入力される入力部25と、CPU(中央処理ユニット)によって構成された制御部26と、前述した無線通信ユニット6および表示ユニット9とを含む。入力部25は、各センサSにつながった通信線7に接続されるインタフェース部である。制御部26は、無線通信ユニット6および表示ユニット9を制御する。無線通信ユニット6は、ネットワーク8に接続されるインタフェース部である。 FIG. 2 is a block diagram showing an example of an electrical configuration of the monitoring system 1. The transmission device 2 includes an input unit 25 into which a detection signal from each sensor S is input, a control unit 26 composed of a CPU (central processing unit), and the above-mentioned wireless communication unit 6 and display unit 9. The input unit 25 is an interface unit connected to the communication line 7 connected to each sensor S. The control unit 26 controls the wireless communication unit 6 and the display unit 9. The wireless communication unit 6 is an interface unit connected to the network 8.
 監視装置3は、CPUによって構成されて判断手段および算出手段として機能する制御部30と、ネットワーク8に接続されるインタフェース部である入力部31と、監視モニタ15および信号表示灯16につながった通信線22に接続されるインタフェース部である出力部32とを含む。入力部31は、各センサSの検出信号が送信装置2を経由して入力される入力手段として機能する。監視装置3は、時間を計測するタイマ33と、様々な情報を記憶する記憶手段としての記憶部34とを含む。制御部30は、必要に応じてタイマ33の計時時間を参照しながら処理を実行する。記憶部34には、制御部30が実行する処理についてのプログラムも格納されている。 The monitoring device 3 is a communication connected to a control unit 30 which is composed of a CPU and functions as a determination means and a calculation means, an input unit 31 which is an interface unit connected to the network 8, a monitoring monitor 15, and a signal indicator lamp 16. It includes an output unit 32 which is an interface unit connected to the wire 22. The input unit 31 functions as an input means in which the detection signal of each sensor S is input via the transmission device 2. The monitoring device 3 includes a timer 33 for measuring time and a storage unit 34 as a storage means for storing various information. The control unit 30 executes the process while referring to the time counting time of the timer 33 as needed. The storage unit 34 also stores a program for processing executed by the control unit 30.
 監視モニタ15は、CPUによって構成された制御部40と、監視装置3の出力部32によって出力された情報を受信する入力部41と、表示画面を有し、制御部40に制御される表示部42とを含む。入力部41は、通信線22に接続されるインタフェース部である。 The monitoring monitor 15 has a control unit 40 configured by a CPU, an input unit 41 for receiving information output by the output unit 32 of the monitoring device 3, and a display screen, and is controlled by the control unit 40. Including 42 and. The input unit 41 is an interface unit connected to the communication line 22.
 信号表示灯16は、CPUによって構成された制御部45と、監視装置3の出力部32によって出力された情報を受信する入力部46と、前述した表示ユニット19とを含む。入力部46は、通信線22に接続されるインタフェース部である。 The signal indicator 16 includes a control unit 45 configured by a CPU, an input unit 46 for receiving information output by an output unit 32 of the monitoring device 3, and the display unit 19 described above. The input unit 46 is an interface unit connected to the communication line 22.
 次に、各作業工程位置における作業者の作業に応じて監視システム1において実行される処理について、第1作業工程位置に着目して説明する。作業者が工具TのスイッチDを操作している間は、この工具Tを作動させるために必要な大きさの動力が、作動動力として、動力供給ケーブルCから工具Tに供給され続ける。作業者が工具TのスイッチDを操作してないときには、動力供給ケーブルCから工具Tに動力が供給されなくてもよいし、例えば若干の動力が、待機動力として、動力供給ケーブルCから工具Tに動力が供給されてもよい。 Next, the processing executed in the monitoring system 1 according to the work of the worker at each work process position will be described focusing on the first work process position. While the operator is operating the switch D of the tool T, the power of the magnitude required to operate the tool T is continuously supplied from the power supply cable C to the tool T as the operating power. When the operator is not operating the switch D of the tool T, power may not be supplied from the power supply cable C to the tool T, for example, some power may be used as standby power from the power supply cable C to the tool T. Power may be supplied to.
 第1センサS1は、動力供給ケーブルCから第1工具T1に作動動力(以下、「第1作動動力」ということがある。)が供給されていることを検出すると、動力供給ケーブルCにおいて第1作動動力が供給中であることをあらわす第1検出信号を出力する。第2センサS2は、動力供給ケーブルCから第2工具T2に作動動力(以下、「第2作動動力」ということがある。)が供給されていることを検出すると、動力供給ケーブルCにおいて第2作動動力が供給中であることをあらわす第2検出信号を出力する。第3センサS3は、動力供給ケーブルCから第3工具T3に作動動力(以下、「第3作動動力」ということがある。)が供給されていることを検出すると、動力供給ケーブルCにおいて第3作動動力が供給中であることをあらわす第3検出信号を出力する。第1検出信号、第2検出信号および第3検出信号(以下、総称するときには「検出信号」という。)は、通信線7を通って送信装置2の入力部25に入力された後に、送信装置2の無線通信ユニット6によって、ネットワーク8経由で監視装置3の入力部31にリアルタイムで入力される。 When the first sensor S1 detects that the operating power (hereinafter, may be referred to as "first operating power") is supplied from the power supply cable C to the first tool T1, the first sensor S1 is the first in the power supply cable C. The first detection signal indicating that the operating power is being supplied is output. When the second sensor S2 detects that the operating power (hereinafter, may be referred to as “second operating power”) is supplied from the power supply cable C to the second tool T2, the second sensor S2 is connected to the power supply cable C. A second detection signal indicating that the operating power is being supplied is output. When the third sensor S3 detects that the operating power (hereinafter, may be referred to as “third operating power”) is supplied from the power supply cable C to the third tool T3, the third sensor S3 is connected to the power supply cable C. A third detection signal indicating that the operating power is being supplied is output. The first detection signal, the second detection signal, and the third detection signal (hereinafter, collectively referred to as "detection signal") are input to the input unit 25 of the transmission device 2 through the communication line 7, and then the transmission device. It is input in real time to the input unit 31 of the monitoring device 3 via the network 8 by the wireless communication unit 6 of 2.
 図3は、監視装置3の記憶部34に時系列に沿って記憶される情報をタイムチャート化して示した図である。監視装置3の制御部30は、入力部31に入力される作業工程位置毎の各センサSの検出信号を時系列に沿って記憶部34に記憶する。具体的には、監視装置34では、第1検出信号に対応する第1フラグと、第2検出信号に対応する第2フラグと、第3検出信号に対応する第3フラグとが設定されていて、入力部31への各検出信号の入力の推移は、対応するフラグの計時変化としてリアルタイムで記憶される。図3では、第1作業工程位置の第1検出信号、第2検出信号および第3検出信号のそれぞれに対応するフラグの計時変化が示されている。 FIG. 3 is a diagram showing information stored in the storage unit 34 of the monitoring device 3 in chronological order as a time chart. The control unit 30 of the monitoring device 3 stores the detection signals of each sensor S for each work process position input to the input unit 31 in the storage unit 34 in chronological order. Specifically, in the monitoring device 34, a first flag corresponding to the first detection signal, a second flag corresponding to the second detection signal, and a third flag corresponding to the third detection signal are set. , The transition of the input of each detection signal to the input unit 31 is stored in real time as the timed change of the corresponding flag. In FIG. 3, the timekeeping change of the flag corresponding to each of the first detection signal, the second detection signal, and the third detection signal of the first work process position is shown.
 制御部30は、入力部31に第1検出信号が入力されると第1フラグを0から1に成立させ、第1検出信号の入力がなくなると第1フラグを1から0にリセットする。作業者が第1工具T1のスイッチDを操作している間は、第1センサS1が第1検出信号を出力し続けて第1検出信号が入力部31に入力され続けるので、第1フラグが1のままで維持される。制御部30は、入力部31に第2検出信号が入力されると第2フラグを0から1に成立させ、第2検出信号の入力がなくなると第2フラグを1から0にリセットする。作業者が第2工具T2のスイッチDを操作している間は、第2センサS2が第2検出信号を出力し続けて第2検出信号が入力部31に入力され続けるので、第2フラグが1のままで維持される。制御部30は、入力部31に第3検出信号が入力されると第3フラグを0から1に成立させ、第3検出信号の入力がなくなると第3フラグを1から0にリセットする。作業者が第3工具T3のスイッチDを操作している間は、第3センサS3が第3検出信号を出力し続けて第3検出信号が入力部31に入力され続けるので、第3フラグが1のままで維持される。このように、入力部31に入力される各検出信号は、第1工具T1、第2工具T2および第3工具T3を使用する作業者の作業状態の指標である。 The control unit 30 sets the first flag from 0 to 1 when the first detection signal is input to the input unit 31, and resets the first flag from 1 to 0 when the input of the first detection signal is lost. While the operator is operating the switch D of the first tool T1, the first sensor S1 continues to output the first detection signal and the first detection signal continues to be input to the input unit 31, so that the first flag is set. It remains at 1. The control unit 30 sets the second flag from 0 to 1 when the second detection signal is input to the input unit 31, and resets the second flag from 1 to 0 when the input of the second detection signal is lost. While the operator is operating the switch D of the second tool T2, the second sensor S2 continues to output the second detection signal and the second detection signal continues to be input to the input unit 31, so that the second flag is set. It remains at 1. The control unit 30 sets the third flag from 0 to 1 when the third detection signal is input to the input unit 31, and resets the third flag from 1 to 0 when the input of the third detection signal is lost. While the operator is operating the switch D of the third tool T3, the third sensor S3 continues to output the third detection signal and the third detection signal continues to be input to the input unit 31, so that the third flag is set. It remains at 1. As described above, each detection signal input to the input unit 31 is an index of the working state of the worker who uses the first tool T1, the second tool T2, and the third tool T3.
 監視装置3の制御部30は、記憶部34に記憶された検出信号、つまり第1フラグ~第3フラグに基づいて、工具Tを使用する作業者の作業状態を判断する。具体的には、第1工具T1に対応する第1検出信号が第1センサS1から出力されない場合、つまり第1フラグが0である場合に、制御部30は、第1工具T1を使用する作業が行われていないと判断する。一方、第1フラグが1である場合に、制御部30は、第1工具T1を使用する作業が行われていると判断する。第2工具T2および第3工具T3についても同様である。つまり、第2検出信号が第2センサS2から出力されない場合に、制御部30は、第2工具T2を使用する作業が行われていないと判断する。一方、第2フラグが1である場合に、制御部30は、第2工具T2を使用する作業が行われていると判断する。第3検出信号が第3センサS3から出力されない場合に、制御部30は、第3工具T3を使用する作業が行われていないと判断する。一方、第3フラグが1である場合に、制御部30は、第3工具T3を使用する作業が行われていると判断する。 The control unit 30 of the monitoring device 3 determines the working state of the operator who uses the tool T based on the detection signal stored in the storage unit 34, that is, the first flag to the third flag. Specifically, when the first detection signal corresponding to the first tool T1 is not output from the first sensor S1, that is, when the first flag is 0, the control unit 30 uses the first tool T1. Is not done. On the other hand, when the first flag is 1, the control unit 30 determines that the work using the first tool T1 is being performed. The same applies to the second tool T2 and the third tool T3. That is, when the second detection signal is not output from the second sensor S2, the control unit 30 determines that the work of using the second tool T2 has not been performed. On the other hand, when the second flag is 1, the control unit 30 determines that the work using the second tool T2 is being performed. When the third detection signal is not output from the third sensor S3, the control unit 30 determines that the work using the third tool T3 has not been performed. On the other hand, when the third flag is 1, the control unit 30 determines that the work using the third tool T3 is being performed.
 各作業工程位置での作業者による一連の作業の1サイクルにおいて、第1工具T1、第2工具T2および第3工具T3が、この順番で使用されれば、第1検出信号、第2検出信号および第3検出信号が、この順番(以下、「所定順番」という。)で監視装置3の入力部31に入力されて記憶部34に記憶される。この様子をフラグの変化によってあらわらすと、まず、第1フラグが0から1になり、しばらくしてから0に戻る。次に、第2フラグが0から1になり、しばらくしてから0に戻る。最後に、第3フラグが0から1になり、しばらくしてから0に戻る。第1検出信号、第2検出信号および第3検出信号が、所定順番で記憶部34に記憶された場合に、監視装置3の制御部30は、一連の作業が1サイクル完了したと判断する。 If the first tool T1, the second tool T2, and the third tool T3 are used in this order in one cycle of a series of operations by the operator at each work process position, the first detection signal and the second detection signal are used. The third detection signal is input to the input unit 31 of the monitoring device 3 in this order (hereinafter, referred to as “predetermined order”) and stored in the storage unit 34. When this situation is expressed by the change of the flag, the first flag first changes from 0 to 1, and after a while, returns to 0. Next, the second flag changes from 0 to 1, and after a while, returns to 0. Finally, the third flag goes from 0 to 1 and returns to 0 after a while. When the first detection signal, the second detection signal, and the third detection signal are stored in the storage unit 34 in a predetermined order, the control unit 30 of the monitoring device 3 determines that a series of operations has been completed for one cycle.
 工具Tを使用した作業状態には、その作業状態をあらわす色(以下、「状態色」という。)が割り当てられている。個々の作業状態と、対応する状態色との関係は、記憶部34に記憶されている。一例として、1サイクル中の作業において、第1工具T1だけを使用した作業状態についての状態色は青であり、第1工具T1の次に第2工具T2だけを使用した作業状態についての状態色は緑であり、第2工具T2の次に第3工具T3だけを使用した作業状態についての状態色も緑である。そのため、一連の作業が1サイクル完了して2サイクル目の作業が始まったときには、状態色が青、緑、緑の順に変化して青に戻っている。 A color representing the working state (hereinafter referred to as "state color") is assigned to the working state using the tool T. The relationship between each working state and the corresponding state color is stored in the storage unit 34. As an example, in the work during one cycle, the state color for the work state using only the first tool T1 is blue, and the state color for the work state using only the second tool T2 after the first tool T1. Is green, and the state color for the working state using only the third tool T3 next to the second tool T2 is also green. Therefore, when one cycle of the series of work is completed and the work of the second cycle is started, the state color changes in the order of blue, green, and green and returns to blue.
 検出信号が所定順番とは異なる順番で記憶部34に記憶された場合に、監視装置3の制御部30は、一連の作業に問題がある判断する。例えば、図3の2サイクル目の作業のように、工具Tが第1工具T1、第3工具T3、第2工具T2の順番で使用された場合には、完成品P3(図1参照)が正しい手順で完成していないおそれがある。また、図3の3サイクル目の作業のように、第1工具T1および第2工具T2が同時に使用された場合にも、完成品P3が正しい手順で完成していないおそれがある。一例として、1サイクル中の作業において、所定順番で使用すべき工具Tとは異なる工具Tを使用した作業状態についての状態色は黄色であり、複数の工具Tを同時に使用した作業状態についての状態色は赤である。 When the detection signals are stored in the storage unit 34 in an order different from the predetermined order, the control unit 30 of the monitoring device 3 determines that there is a problem in a series of operations. For example, when the tool T is used in the order of the first tool T1, the third tool T3, and the second tool T2 as in the second cycle work of FIG. 3, the finished product P3 (see FIG. 1) is used. It may not be completed in the correct procedure. Further, even when the first tool T1 and the second tool T2 are used at the same time as in the work of the third cycle of FIG. 3, there is a possibility that the finished product P3 is not completed in the correct procedure. As an example, in the work during one cycle, the state color for the work state using a tool T different from the tool T to be used in a predetermined order is yellow, and the state for the work state using a plurality of tools T at the same time. The color is red.
 監視装置3の制御部30は、他の各作業工程位置おける作業者の作業状態も、第1作業工程位置おける作業者の作業状態と同様の手順で判断する。制御部30は、各作業工程位置おける作業者の作業状態についての判断結果に対応する情報(以下、「作業状態情報」という。)を、出力部32から通信線22経由で監視モニタ15や信号表示灯16に出力する。作業状態情報の一例は、各作業工程位置おける状態色の時系列情報である。作業状態情報は、監視モニタ15では、入力部41に入力されて、図4に示すように、リアルタイムで、または管理者が所望する任意のタイミングに表示部42に表示される。図4では、表示部42において、作業状態情報が、各作業工程位置に関連付けて表示されるが、作業工程位置で作業する各作業者(例えば作業者の名前や識別情報)に関連付けて表示されてもよい。表示部42には、複数の作業状態情報がまとめて表示されるので、表示部42を見る管理者は、複数の作業工程位置間、または複数の作業者間での作業状態情報を見比べることができる。 The control unit 30 of the monitoring device 3 determines the work state of the worker at each of the other work process positions in the same procedure as the work state of the worker at the first work process position. The control unit 30 provides information (hereinafter, referred to as “work state information”) corresponding to the determination result of the work state of the worker at each work process position from the output unit 32 to the monitoring monitor 15 and signals via the communication line 22. Output to the indicator light 16. An example of work state information is time series information of state colors at each work process position. The work state information is input to the input unit 41 on the monitoring monitor 15, and is displayed on the display unit 42 in real time or at an arbitrary timing desired by the administrator, as shown in FIG. In FIG. 4, the work state information is displayed in association with each work process position on the display unit 42, but is displayed in association with each worker (for example, the name or identification information of the worker) working at the work process position. You may. Since a plurality of work status information is collectively displayed on the display unit 42, the manager who sees the display unit 42 can compare the work status information between the plurality of work process positions or between the plurality of workers. it can.
 表示部42には、所定期間内における各作業工程位置での完成品P3の組立数が、作業状態情報と併せて表示されてもよい。その場合、監視システム1は、各作業工程位置の組立数が作業者によって手動入力されたり自動入力されたりする公知の入力装置(図示せず)を含んでもよい。入力装置に入力された各作業工程位置の組立数の情報が、監視モニタ15に送信される。組立数の基準値が例えば350個であるとした場合、図4の表示例では、第1作業工程位置では、各サイクルの作業において複数の工具Tが所定順番に沿って正しく使用されることで完成品P3が組み立てられ、その組立数も多いので、第1作業工程位置の作業は優秀である。一方、第2作業工程位置では、組立数が基準値を上回っているものの、間違った順番で工具Tが使用されているので、完成品P3の品質に懸念がある。第3作業工程位置では、組立数が基準値を上回っているものの、本来は別々に使用されるべき複数の工具Tが同時に使用されているので、完成品P3の品質に懸念がある。第N作業工程位置では、複数の工具Tが所定順に沿って正しく使用されているものの、工具Tが使用されていない時間が長いので、組立数が基準値を下回っている。そのため、作業効率向上のための対策を講じる必要がある。 The number of assembled finished products P3 at each work process position within a predetermined period may be displayed on the display unit 42 together with the work status information. In that case, the monitoring system 1 may include a known input device (not shown) in which the number of assembly of each work process position is manually input or automatically input by an operator. Information on the number of assemblies at each work process position input to the input device is transmitted to the monitoring monitor 15. Assuming that the reference value of the number of assembled pieces is, for example, 350 pieces, in the display example of FIG. 4, in the first work process position, a plurality of tools T are correctly used in the work of each cycle in a predetermined order. Since the finished product P3 is assembled and the number of assembled products is large, the work at the first work process position is excellent. On the other hand, at the second work process position, although the number of assembled parts exceeds the standard value, the tools T are used in the wrong order, so that there is a concern about the quality of the finished product P3. At the third work process position, although the number of assembled parts exceeds the standard value, since a plurality of tools T that should be used separately are used at the same time, there is a concern about the quality of the finished product P3. At the Nth work process position, although the plurality of tools T are correctly used in a predetermined order, the number of assembled tools is less than the reference value because the tools T are not used for a long time. Therefore, it is necessary to take measures to improve work efficiency.
 各作業工程位置における各工具Tの総使用時間は、対応するフラグが1であった時間の合計であり、監視装置3の制御部30によって算出される。表示部42には、各作業工程位置における各工具Tの総使用時間が、作業状態情報および組立数と併せて表示されてもよい。組立数が基準値を下回っている作業工程位置について、例えば第1工具T1の総使用時間が、他の工具Tの総使用時間よりも著しく長ければ、この作業工程位置を担当する作業者が第1工具T1の扱いに慣れていないおそれがある。 The total usage time of each tool T at each work process position is the total of the times when the corresponding flag was 1, and is calculated by the control unit 30 of the monitoring device 3. On the display unit 42, the total usage time of each tool T at each work process position may be displayed together with the work state information and the number of assembled parts. Regarding the work process position where the number of assemblies is less than the reference value, for example, if the total usage time of the first tool T1 is significantly longer than the total usage time of the other tool T, the worker in charge of this work process position is the first. 1 There is a possibility that you are not accustomed to handling the tool T1.
 各サイクルの作業において、第1フラグが0から1になってから次に第1フラグが0から1になるまでの時間は、一連の作業の開始から終了までの作業時間である(図3参照)。監視装置3の制御部30は、各検出信号が入力されたタイミングや、各検出信号が入力されなくなったタイミング等をタイマ33によって測定して、その測定結果に基づいてサイクル毎の作業時間を算出する。今までの作業時間(例えば、優秀とされる作業工程位置での作業時間)の履歴等に基づいて、作業時間についての基準時間が予め設定されて監視装置3の記憶部34に記憶されている。算出した作業時間と基準時間との差が所定の閾値よりも大きい場合、つまり作業時間が基準時間よりも長すぎたり短すぎたりする場合には、制御部30は、作業に問題があると判断する。例えば、作業時間が、基準時間の90%以上かつ110%以下の範囲(この場合には誤差の10%が閾値になる。)に収まる場合には、この作業時間についての作業は正常と判断される。一方、作業時間が基準時間の90%を下回る作業は、部品の付け忘れ等の品質上の問題が懸念される。作業時間が基準時間の110%を上回る作業は、作業効率向上の余地がある。 In the work of each cycle, the time from when the first flag changes from 0 to 1 to when the first flag changes from 0 to 1 is the work time from the start to the end of a series of work (see FIG. 3). ). The control unit 30 of the monitoring device 3 measures the timing at which each detection signal is input, the timing at which each detection signal is no longer input, and the like with the timer 33, and calculates the working time for each cycle based on the measurement result. To do. A reference time for the work time is set in advance and stored in the storage unit 34 of the monitoring device 3 based on the history of the work time so far (for example, the work time at the excellent work process position). .. If the difference between the calculated working time and the reference time is larger than a predetermined threshold value, that is, if the working time is too long or too short than the reference time, the control unit 30 determines that there is a problem in the work. To do. For example, if the working time falls within the range of 90% or more and 110% or less of the reference time (in this case, 10% of the error becomes the threshold value), the work for this working time is judged to be normal. To. On the other hand, when the work time is less than 90% of the standard time, there is a concern about quality problems such as forgetting to attach parts. There is room for improvement in work efficiency when the work time exceeds 110% of the standard time.
 監視装置3の制御部30は、作業時間と基準時間との比較の結果、作業に問題があると判断すると、信号表示灯16に対して、警報を指令する警報命令を送信する。警報命令は、作業時間が短すぎる問題に対応する第1警報命令と、作業時間が長すぎる問題に対応する第2警報命令とを含む。信号表示灯16では、表示部18が通常では緑色で発光しているのに対して、第1警報命令が入力部46に入力されると表示部18が例えば黄色で発光し、第2警報命令が入力部46に入力されると表示部18が例えば赤色で発光する。そして、複数の工具Tが同時に使用された場合の作業状態情報や、所定順番とは異なる順番で工具Tが使用された場合の作業状態情報が入力部46に入力されると、信号表示灯16では、発光色とは違う表示属性である点灯パターンを変更(例えば、連続点灯から点滅等)することによって、これらの作業状態情報が報知される。このような表示部18の表示を見た管理者は、必要に応じて、問題があるとされる作業工程位置に駆け付ける。信号表示灯16での報知は、表示部18による表示でなく、ブザーの発報によって実行されてもよいし、表示部18とブザーとの組み合わせによって実行されてもよい。 As a result of comparing the working time with the reference time, the control unit 30 of the monitoring device 3 determines that there is a problem in the work, and transmits an alarm command for issuing an alarm to the signal indicator light 16. The alarm command includes a first alarm command corresponding to the problem that the working time is too short, and a second alarm command corresponding to the problem that the working time is too long. In the signal indicator light 16, the display unit 18 normally emits light in green, whereas when the first alarm command is input to the input unit 46, the display unit 18 emits light in yellow, for example, and the second alarm command is emitted. Is input to the input unit 46, the display unit 18 emits light, for example, in red. Then, when the work state information when the plurality of tools T are used at the same time and the work state information when the tools T are used in an order different from the predetermined order are input to the input unit 46, the signal indicator light 16 Then, these work state information is notified by changing the lighting pattern which is a display attribute different from the emission color (for example, from continuous lighting to blinking). The manager who sees the display of the display unit 18 rushes to the work process position where there is a problem, if necessary. The notification by the signal indicator light 16 may be executed by issuing a buzzer instead of the display by the display unit 18, or may be executed by a combination of the display unit 18 and the buzzer.
 このようにこの実施形態によれば、作業者が工具Tを使用すると、工具Tに動力を供給する動力供給ケーブルCにおいて動力供給中であることをあらわす検出信号がセンサSから出力されて入力部31に入力される。入力された検出信号は、工具Tを使用する作業者の作業状態の指標として時系列に沿って監視装置3の記憶部34に記憶される。そのため、管理者等の使用者は、監視装置3にアクセスすることにより、記憶部34に記憶された検出信号に基づいて、工具Tを使用する作業者の作業状態を把握できる。つまり、工具Tの使用状態から、この工具Tを使用する作業状態の可視化を実現できる。 As described above, according to this embodiment, when the operator uses the tool T, a detection signal indicating that power is being supplied in the power supply cable C that supplies power to the tool T is output from the sensor S to be input. It is input to 31. The input detection signal is stored in the storage unit 34 of the monitoring device 3 in chronological order as an index of the working state of the operator who uses the tool T. Therefore, a user such as an administrator can grasp the working state of the worker who uses the tool T based on the detection signal stored in the storage unit 34 by accessing the monitoring device 3. That is, it is possible to visualize the working state in which the tool T is used from the usage state of the tool T.
 監視装置3では、工具Tへの動力供給状態についてのセンサSの検出信号が記憶されるだけでなく、制御部30が、当該検出信号に基づいて、この工具Tを使用する作業者の作業状態の判断も行う。そのため、使用者は、制御部30による判断結果に基づいて、工具Tを使用する作業者の作業状態を把握できる。制御部30による判断結果に対応する情報は、監視モニタ15および信号表示灯16の少なくともいずれかを含む表示装置4に表示される(図4参照)。そのため、使用者は、表示装置4に表示された当該情報に基づいて、工具Tを使用する作業者の作業状態を把握できる。 In the monitoring device 3, not only the detection signal of the sensor S regarding the power supply state to the tool T is stored, but also the control unit 30 bases the detection signal on the working state of the operator who uses the tool T. Also make a judgment. Therefore, the user can grasp the working state of the worker who uses the tool T based on the determination result by the control unit 30. Information corresponding to the determination result by the control unit 30 is displayed on the display device 4 including at least one of the monitoring monitor 15 and the signal indicator lamp 16 (see FIG. 4). Therefore, the user can grasp the working state of the worker who uses the tool T based on the information displayed on the display device 4.
 監視システム1では、動力供給ケーブルCから工具Tに動力供給中であることをあらわす検出信号がセンサSから出力されない場合には、この工具Tを使用する作業が行われていないと判断され、この判断結果に対応する情報が表示装置4に表示される。そのため、当該情報を見た使用者は、この工具Tを使用する作業者による作業が行われていないことを把握できる。 In the monitoring system 1, if the sensor S does not output a detection signal indicating that power is being supplied from the power supply cable C to the tool T, it is determined that the work using this tool T has not been performed. Information corresponding to the determination result is displayed on the display device 4. Therefore, the user who sees the information can grasp that the work by the worker who uses this tool T is not performed.
 一連の作業において決まった所定順番で使用されるべき複数の工具Tが所定順番で使用されると、監視システム1では、これらの工具Tにそれぞれ対応する複数のセンサSの検出信号が所定順番で記憶されるので、これに応じて、一連の作業が1サイクル完了したと判断されて、その判断結果に対応する情報が表示装置4に表示される。そのため、当該情報を見た使用者は、これらの工具Tを使用する作業者による一連の作業が1サイクル完了したことを把握できる。 When a plurality of tools T to be used in a predetermined order in a series of operations are used in a predetermined order, the monitoring system 1 displays the detection signals of the plurality of sensors S corresponding to the tools T in a predetermined order. Since it is stored, it is determined that one cycle of the series of operations has been completed, and the information corresponding to the determination result is displayed on the display device 4. Therefore, the user who sees the information can grasp that a series of operations by the operator using these tools T has been completed for one cycle.
 一方、複数の工具Tが所定順番とは異なる順番で使用されると、監視システム1では、これらの工具Tにそれぞれ対応する複数のセンサSの検出信号が当該異なる順番で記憶されるので、作業に問題があると判断されて、その判断結果に対応する情報が表示装置4に表示される。そのため、当該情報を見た使用者は、これらの工具Tを使用する作業者による作業に問題があることを把握できる。 On the other hand, when the plurality of tools T are used in an order different from the predetermined order, the monitoring system 1 stores the detection signals of the plurality of sensors S corresponding to the tools T in the different order. Is determined to be a problem, and information corresponding to the determination result is displayed on the display device 4. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools T.
 また、監視システム1では、複数の工具Tが使用される一連の作業の作業時間が、これらの工具Tにそれぞれ対応する複数のセンサSの検出信号に基づいて算出される。算出された作業時間と基準時間との差が所定の閾値よりも大きい場合には、監視システム1では、作業に問題があると判断されて、その判断結果に対応する情報が信号表示灯16に表示される。そのため、当該情報を見た使用者は、これらの工具Tを使用する作業者による作業に問題があることを把握できる。 Further, in the monitoring system 1, the working time of a series of operations in which a plurality of tools T are used is calculated based on the detection signals of a plurality of sensors S corresponding to each of these tools T. When the difference between the calculated working time and the reference time is larger than a predetermined threshold value, the monitoring system 1 determines that there is a problem in the work, and the information corresponding to the determination result is transmitted to the signal indicator light 16. Is displayed. Therefore, the user who sees the information can understand that there is a problem in the work by the operator who uses these tools T.
 そして、監視システム1では、複数の作業工程位置のそれぞれにおける作業者の作業状態が判断されて、その判断結果に対応する情報が監視モニタ15に表示される。そのため、当該情報を見た使用者は、各作業工程位置において工具Tを使用する作業者の作業状態をまとめて把握できる。 Then, in the monitoring system 1, the working state of the worker at each of the plurality of work process positions is determined, and the information corresponding to the determination result is displayed on the monitoring monitor 15. Therefore, the user who sees the information can collectively grasp the working state of the worker who uses the tool T at each work process position.
 センサSは、動力供給ケーブルCに装着される装着部SAを有する。そのため、既存の工具Tであっても、この工具Tに動力を供給する動力供給ケーブルCにセンサSの装着部SAを後付で装着すれば、監視システム1では、センサSの検出信号に基づいて作業者の作業状態の判断が行われて、その判断結果に対応する情報が表示装置4に表示される。そのため、使用者は、表示装置4に表示された当該情報に基づいて、工具Tを使用する作業者の作業状態を把握できる。 The sensor S has a mounting portion SA mounted on the power supply cable C. Therefore, even if the existing tool T is used, if the mounting portion SA of the sensor S is retrofitted to the power supply cable C that supplies power to the tool T, the monitoring system 1 is based on the detection signal of the sensor S. The work state of the worker is determined, and the information corresponding to the determination result is displayed on the display device 4. Therefore, the user can grasp the working state of the worker who uses the tool T based on the information displayed on the display device 4.
 特に、動力が電力またはエアである工具Tの場合には、監視システム1では、動力供給ケーブルCにおける工具Tへの電力またはエアの供給状態についてのセンサSの検出信号に基づいて作業者の作業状態の判断が行われて、その判断結果に対応する情報が表示装置4に表示される。そのため、使用者は、表示装置4に表示された当該情報に基づいて、工具Tを使用する作業者の作業状態を把握できる。 In particular, in the case of the tool T whose power is electric power or air, in the monitoring system 1, the operator's work is performed based on the detection signal of the sensor S regarding the supply state of electric power or air to the tool T in the power supply cable C. The state is determined, and the information corresponding to the determination result is displayed on the display device 4. Therefore, the user can grasp the working state of the worker who uses the tool T based on the information displayed on the display device 4.
 以上、この発明の実施形態について説明してきたが、この発明は、さらに他の形態で実施することもできる。 Although the embodiments of the present invention have been described above, the present invention can also be implemented in other embodiments.
 例えば、前述した実施形態では、複数の作業工程位置が示されたが、作業工程位置は1つだけであってもよい。 For example, in the above-described embodiment, a plurality of work process positions are shown, but there may be only one work process position.
 また、センサSの検出信号に基づいて作業者の作業状態を判断する構成は、前述したように監視装置3の制御部30でなく、監視モニタ15の制御部40や、信号表示灯16の制御部45であってもよい。 Further, the configuration for determining the working state of the operator based on the detection signal of the sensor S is not the control unit 30 of the monitoring device 3 as described above, but the control unit 40 of the monitoring monitor 15 and the control of the signal indicator light 16. It may be part 45.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used for clarifying the technical contents of the present invention, and the present invention is construed as being limited to these specific examples. Should not, the scope of the invention is limited only by the appended claims.
 1…監視システム
 3…監視装置
 4…表示装置
 15…監視モニタ
 16…信号表示灯
 30…制御部
 31…入力部
 34…記憶部
 C…動力供給ケーブル
 S…センサ
 SA…装着部
 T…工具
1 ... Monitoring system 3 ... Monitoring device 4 ... Display device 15 ... Monitoring monitor 16 ... Signal indicator 30 ... Control unit 31 ... Input unit 34 ... Storage unit C ... Power supply cable S ... Sensor SA ... Mounting unit T ... Tool

Claims (11)

  1.  工具に動力を供給する動力供給ケーブルにおける動力供給状態を検出するセンサの検出信号が入力される入力手段と、
     前記入力手段に入力される前記検出信号を、前記工具を使用する作業者の作業状態の指標として時系列に沿って記憶する記憶手段と、を含む、監視装置。
    An input means for inputting a detection signal of a sensor that detects the power supply state of the power supply cable that supplies power to the tool, and
    A monitoring device including a storage means that stores the detection signal input to the input means in chronological order as an index of a working state of an operator who uses the tool.
  2.  前記記憶手段に記憶された前記検出信号に基づいて、前記工具を使用する作業者の作業状態を判断する判断手段を含む、請求項1に記載の監視装置。 The monitoring device according to claim 1, further comprising a determination means for determining a working state of an operator who uses the tool based on the detection signal stored in the storage means.
  3.  工具に動力を供給する動力供給ケーブルにおける動力供給状態を検出するセンサと、
     前記センサが検出した前記検出信号を、前記工具を使用する作業者の作業状態の指標として時系列に沿って記憶する記憶手段と、
     前記記憶手段に記憶された前記検出信号に基づいて、前記工具を使用する作業者の作業状態を判断する判断手段と、
     前記判断手段の判断結果に対応する情報を表示する表示手段と、を含む、監視システム。
    A sensor that detects the power supply status of the power supply cable that supplies power to the tool,
    A storage means that stores the detection signal detected by the sensor in chronological order as an index of the working state of the worker who uses the tool.
    A determination means for determining the working state of the operator who uses the tool based on the detection signal stored in the storage means, and a determination means.
    A monitoring system including a display means for displaying information corresponding to a judgment result of the judgment means.
  4.  前記センサは、前記動力供給ケーブルに装着される装着部を有する、請求項3に記載の監視システム。 The monitoring system according to claim 3, wherein the sensor has a mounting portion mounted on the power supply cable.
  5.  前記動力は、電力またはエアであり、
     前記センサは、前記動力供給ケーブルにおける電力またはエアの供給状態を検出する、請求項3または4に記載の監視システム。
    The power is electric power or air,
    The monitoring system according to claim 3 or 4, wherein the sensor detects a power or air supply state in the power supply cable.
  6.  前記センサが前記動力供給ケーブルにおいて動力供給中であることをあらわす検出信号を出力しない場合に、前記判断手段は、前記工具を使用する作業が行われていないと判断する、請求項3~5のいずれか一項に記載の監視システム。 According to claims 3 to 5, when the sensor does not output a detection signal indicating that power is being supplied in the power supply cable, the determination means determines that the work using the tool has not been performed. The monitoring system described in any one section.
  7.  複数の前記工具が、一連の作業において決まった順番で使用され、
     前記監視システムは、前記複数の工具にそれぞれ対応する複数の前記センサを含み、
     前記記憶手段が前記複数のセンサの検出信号を前記順番で記憶した場合に、前記判断手段は、前記一連の作業が1サイクル完了したと判断する、請求項3~6のいずれか一項に記載の監視システム。
    A plurality of the above tools are used in a fixed order in a series of operations.
    The monitoring system includes a plurality of the sensors corresponding to the plurality of tools, respectively.
    The invention according to any one of claims 3 to 6, wherein when the storage means stores the detection signals of the plurality of sensors in the order, the determination means determines that one cycle of the series of operations has been completed. Monitoring system.
  8.  前記記憶手段が前記検出信号を前記順番とは異なる順番で記憶した場合に、前記判断手段は、作業に問題があると判断する、請求項7に記載の監視システム。 The monitoring system according to claim 7, wherein when the storage means stores the detection signals in an order different from the order, the determination means determines that there is a problem in the work.
  9.  前記一連の作業の開始から終了までの作業時間を前記検出信号に基づいて算出する算出手段をさらに含み、
     前記記憶手段は、前記作業時間についての基準時間を記憶し、
     前記作業時間と前記基準時間との差が所定の閾値よりも大きい場合には、前記判断手段は、作業に問題があると判断する、請求項7または8に記載の監視システム。
    Further including a calculation means for calculating the work time from the start to the end of the series of work based on the detection signal.
    The storage means stores a reference time for the working time and
    The monitoring system according to claim 7 or 8, wherein when the difference between the working time and the reference time is larger than a predetermined threshold value, the determining means determines that there is a problem in the work.
  10.  前記複数の工具は、複数の作業工程位置のそれぞれに配備され、
     前記判断手段は、前記複数の作業工程位置のそれぞれにおける作業者の作業状態を判断する、請求項7~9のいずれか一項に記載の監視システム。
    The plurality of tools are deployed at each of the plurality of work process positions.
    The monitoring system according to any one of claims 7 to 9, wherein the determination means determines the work state of the worker at each of the plurality of work process positions.
  11.  前記表示手段は、監視モニタおよび信号表示灯の少なくともいずれかを含む、請求項3~10のいずれか一項に記載の監視システム。 The monitoring system according to any one of claims 3 to 10, wherein the display means includes at least one of a monitoring monitor and a signal indicator light.
PCT/JP2019/029702 2019-07-29 2019-07-29 Monitoring device and monitoring system WO2021019656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/029702 WO2021019656A1 (en) 2019-07-29 2019-07-29 Monitoring device and monitoring system
JP2020513652A JPWO2021019656A1 (en) 2019-07-29 2019-07-29 Monitoring device and monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029702 WO2021019656A1 (en) 2019-07-29 2019-07-29 Monitoring device and monitoring system

Publications (1)

Publication Number Publication Date
WO2021019656A1 true WO2021019656A1 (en) 2021-02-04

Family

ID=74229376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029702 WO2021019656A1 (en) 2019-07-29 2019-07-29 Monitoring device and monitoring system

Country Status (2)

Country Link
JP (1) JPWO2021019656A1 (en)
WO (1) WO2021019656A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040061A1 (en) * 2007-03-17 2009-02-12 Golunski Witold Apparatus and system for monitoring tool use
JP2018108633A (en) * 2016-12-28 2018-07-12 パナソニックIpマネジメント株式会社 Tool system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040061A1 (en) * 2007-03-17 2009-02-12 Golunski Witold Apparatus and system for monitoring tool use
JP2018108633A (en) * 2016-12-28 2018-07-12 パナソニックIpマネジメント株式会社 Tool system

Also Published As

Publication number Publication date
JPWO2021019656A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US10528898B2 (en) Production management system, production management apparatus and production management method for manufacturing line
US9808918B2 (en) Tool apparatus system and method of use
CA2768665C (en) Information system for industrial vehicles
US8281871B2 (en) Tool apparatus system and method of use
JP5264678B2 (en) Warning light device with at least two warning lamps
EP3805632A1 (en) Remote light control, configuration, and monitoring
US20050151660A1 (en) System, method, and apparatus for remotely monitoring the status of a machine
US20060132321A1 (en) Universal equipment process monitor
WO2005067416B1 (en) System, method, and apparatus for remotely monitoring the status of a machine
WO2021019656A1 (en) Monitoring device and monitoring system
WO2006136503A1 (en) Control and diagnostic unit for pneumatic tool
WO2018078773A1 (en) Signal indicator lamp system and signal indicator lamp therefor
KR101636172B1 (en) Cabinet internal wiring monitoring apparatus, monitoring system and cabinet internal wiring monitoring method
EP3516340B1 (en) Illuminated dial with integrated status indication
KR20100124156A (en) System for wireless monitering of engine
CN104281133A (en) Upper computer alarm system
KR100759989B1 (en) Automatic Self Checking Apparatus for Emergency Light
WO2018141016A1 (en) Improvements to monitoring and control of remote lighting sites
CN107168268A (en) A kind of intelligent industrial management system
JP7100816B2 (en) Monitoring system, monitoring device and sensor unit
CN110232812B (en) Power supply and management and control system of fire emergency lamp
JP2018186371A (en) State display device, state display system, and radio transmission device
US11487261B2 (en) Automation device
US20230228020A1 (en) Textile production monitoring system with a barcode reader
TWM591897U (en) Intelligent indicator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939281

Country of ref document: EP

Kind code of ref document: A1