WO2021018246A1 - 一种快速制造有机肥料的方法 - Google Patents

一种快速制造有机肥料的方法 Download PDF

Info

Publication number
WO2021018246A1
WO2021018246A1 PCT/CN2020/105832 CN2020105832W WO2021018246A1 WO 2021018246 A1 WO2021018246 A1 WO 2021018246A1 CN 2020105832 W CN2020105832 W CN 2020105832W WO 2021018246 A1 WO2021018246 A1 WO 2021018246A1
Authority
WO
WIPO (PCT)
Prior art keywords
meal
organic fertilizer
manure
microwave
tunnel
Prior art date
Application number
PCT/CN2020/105832
Other languages
English (en)
French (fr)
Inventor
吴俊龙
Original Assignee
安能聚绿能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安能聚绿能股份有限公司 filed Critical 安能聚绿能股份有限公司
Publication of WO2021018246A1 publication Critical patent/WO2021018246A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D5/00Fertilisers containing magnesium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/30Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using irradiation, e.g. solar or nuclear radiation; using electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/60Heating or cooling during the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the invention relates to a method for rapidly manufacturing organic fertilizer, in particular to a method for manufacturing organic fertilizer by rapidly processing biological waste by microwave.
  • organic fertilizers to replace chemical fertilizers in agricultural transformation has gradually received attention.
  • most organic fertilizers come from raw materials such as poultry manure, twigs, rice husks, and kitchen waste.
  • microorganisms to decompose and ferment organic matter to form organic fertilizers.
  • the above-mentioned microbial decomposition and fermentation require as long as 2-4 months, and a large area of workshop is required for decomposition and fermentation.
  • incompletely decomposed organic fertilizers may cause harm to crops (such as burning seedlings, spreading plant pathogenic bacteria, insect eggs, and weed seeds), harm to the environment (such as releasing carbon dioxide and toxic gases, producing foul smell), Impact on public health (eg spreading viruses and/or bacteria, breeding mosquitoes and flies).
  • crops such as burning seedlings, spreading plant pathogenic bacteria, insect eggs, and weed seeds
  • harm to the environment such as releasing carbon dioxide and toxic gases, producing foul smell
  • Impact on public health eg spreading viruses and/or bacteria, breeding mosquitoes and flies.
  • the purpose of the present invention is to provide a method for quickly manufacturing organic fertilizers, which can quickly manufacture high-quality organic fertilizers with higher efficiency, less space requirement on the site, less odor, and no pollution, and the manufactured organic fertilizer products
  • the sterilization is complete, the biological safety is high, and the defects of the prior art can be overcome.
  • the present invention discloses a method for rapidly manufacturing organic fertilizer, which is characterized by comprising the following steps:
  • a tunnel-type microwave reactor including a tunnel-type microwave reaction chamber and a conveyor belt.
  • the tunnel-type microwave reaction chamber has an inlet and an outlet, and the conveyor belt penetrates the inlet and the conveyor.
  • a microwave absorbing material is added and mixed and stirred to form a mixture.
  • the biological waste accounts for 90-99.5% (w/w) of the mixture, and the microwave absorbing material accounts for 0.5-10% (w/w) of the mixture.
  • the biological waste is microwave-absorbing without adding a microwave absorbing material.
  • the microwave absorbing material includes, but is not limited to, silicon carbide, rubber, coke, graphite, carbon powder, iron oxide, ferroferric oxide, zinc oxide, molybdenum sulfide, zirconium dioxide, titanium Barium acid, magnesium carbonate, or a combination thereof.
  • the microwave absorbing material is granular, and its particle size is not greater than 1 mm.
  • the particle size of the particulate microwave absorbing material is 0.01mm, 0.05mm, 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm. mm, or 1mm.
  • the biological waste includes, but is not limited to, crustacean shell powder, shellfish shell powder, animal residue powder, poultry manure, plant residue powder, and kitchen waste.
  • the crustacean shell powder includes, but is not limited to, crab shell powder and shrimp shell powder.
  • the shellfish shell powder includes, but is not limited to, oyster shell powder, clam shell powder, and clam shell powder.
  • the animal residue powder includes, but is not limited to, steamed bone meal, dried blood (blood meal), bone meal, fish meal, and feather meal.
  • the livestock manure includes, but is not limited to, chicken manure, duck manure, goose manure, pig manure, cow manure, sheep manure, horse manure, and biogas residue.
  • the plant residue powder includes, but is not limited to, rice straw, rice husk, coarse bran, rice bran, wheat stalk, sorghum stalk, soybean stalk, soybean pod, peanut stalk, peanut hull, and corn stalk.
  • the frequency of the microwave is 915MHz and/or 2450MHz, and the power is 10-500KW.
  • the power of the microwave is 10KW, 20KW, 30KW, 40KW, 50KW, 60KW, 70KW, 80KW, 90KW, 100KW, 110KW, 120KW, 130KW, 140KW, 150KW, 160KW, 170KW, 180KW, 190KW, 200KW, 210KW, 220KW, 230KW, 240KW, 250KW, 260KW, 270KW, 280KW, 290KW, 300KW, 310KW, 320KW, 330KW, 340KW, 350KW, 360KW, 370KW, 380KW, 390KW, 400KW, 410KW, 420KW, 430KW, 440KW, 450KW, 460KW, 470KW, 480KW, 490KW, or 500KW.
  • the length of the tunnel microwave reaction chamber is 5-150 meters. In some specific embodiments, the length of the tunnel microwave reaction chamber is 5 meters, 10 meters, 15 meters, 20 meters, 25 meters, 30 meters, 35 meters, 40 meters, 45 meters, 50 meters, 55 meters, 60 meters, 65 meters, 70 meters, 75 meters, 80 meters, 85 meters, 90 meters, 95 meters, 100 meters, 105 meters Feet, 110 meters, 115 meters, 120 meters, 125 meters, 130 meters, 135 meters, 140 meters, 145 meters, or 150 meters.
  • the method of the present invention can not only quickly produce high-quality organic fertilizers, but also has the advantages of small space requirements, less odor, no pollution, and organic fertilizer products made of The advantages of complete bacteria (please refer to Examples 4 and 5) and high output value.
  • the organic fertilizer prepared by the method of the present invention has low bacteria content and high biological safety.
  • the organic fertilizer prepared by the method of the present invention not only does not inhibit seed germination, but also helps seed germination and plant growth, indicating that the method of the present invention can quickly make the organic fertilizer completely decomposed.
  • an element means one element or more than one element.
  • biogas residue refers to the residue left over from livestock manure and urine produced by the livestock industry after biogas power generation.
  • Figures 1A to 1B are diagrams showing the appearance comparison of fertilizers made by different methods in Example 1.
  • Figure 1A is the appearance of the biogas residue compost made by the traditional method
  • Figure 1B is the appearance of the biogas residue organic fertilizer made by the method of the present invention.
  • Figures 2A to 2F the results of determining the maturity of organic fertilizer by the filter paper diffusion mapping method in Example 2;
  • Figure 2A untreated chicken manure;
  • Figure 2B chicken manure organic fertilizer made by the method of the present invention
  • Figure 2C untreated pig manure;
  • Figure 2D pig manure organic fertilizer made by the method of the present invention;
  • Figure 2E untreated biogas residue;
  • Figure 2F biogas residue organic fertilizer made by the method of the present invention .
  • Figure 3 is a comparison diagram of the results obtained by the Solvita maturity detection method in Example 3.
  • Figures 4A to 4B are the results of detecting the total number of colonies in the sample in Example 4;
  • Figure 4A untreated biogas residue;
  • Figure 4B biogas residue organic fertilizer prepared by the method of the present invention.
  • Figure 5 It is the result of detecting the bacterial content of the sample by the liquid culture method in Example 4.
  • Fig. 6A to Fig. 6B are the results of analyzing the quality of samples by the mold test in Example 5; Fig. 6A: untreated biogas residue; and Fig. 6B: biogas residue organic fertilizer prepared by the method of the present invention.
  • Figures 7A to 7D are the results of analyzing the quality of the samples in the seed germination test in Example 6;
  • Figures 7A and 7C pure water control group;
  • Figures 7B and 7D organic biogas residue prepared by the method of the present invention fertilizer.
  • Figures 8A to 8D the results of analyzing the quality of the samples in the pot experiment in Example 7;
  • Figure 8A, Figure 8C general soil control group;
  • Figure 8B biogas residue organic fertilizer made by the method of the present invention;
  • Figure 8D Organic fertilizer for pig manure prepared by the method of the present invention.
  • the biological waste can optionally be single or multiple types of mixed chicken manure, duck manure, goose manure, pig manure, cow manure, sheep manure, horse manure and other fresh poultry manure or marsh. Slag, and the water content of the biological waste is about 50%-90% (w/w).
  • the microwave absorbing material can be selected from single or multiple types of mixed silicon carbide, rubber, coke, graphite, carbon powder, iron oxide, ferroferric oxide, zinc oxide, molybdenum sulfide, zirconium dioxide, barium titanate, Magnesium carbonate, and the particle size of the microwave absorbing material is not greater than 1 mm.
  • the tunnel-type microwave reactor includes a tunnel-type microwave reaction chamber and a conveyor belt.
  • the tunnel-type microwave reaction chamber has an inlet and an outlet.
  • the conveyor belt penetrates the inlet and the conveyor.
  • a tunnel-type microwave reaction chamber and the discharge port. Place the biological waste on the conveyor belt and send it into the tunnel-type microwave reaction chamber through the feed port, and heat it with a microwave with a band of 2450MHz and a power of 50KW to maintain the temperature in the tunnel-type microwave reaction chamber.
  • the biological waste passes through the tunnel-type microwave reaction chamber, and the time from the biological waste entering the feed port to leaving the discharge port is about 5-60 minutes. Finally, the microwave-treated biological waste is collected to quickly obtain an organic fertilizer.
  • the organic fertilizer quickly prepared by the above method was analyzed for composition and compared with traditional compost. The results are shown in Table 1.
  • the method of the present invention is compared with the fermentation method used in traditional composting, and the results are shown in Table 2.
  • the method of the present invention can not only quickly produce high-quality organic fertilizers, but also has small space requirements on the site, less odor, no pollution, and production.
  • the finished organic fertilizer product has the advantages of complete sterilization (please refer to Examples 4 and 5) and high output value.
  • the organic fertilizer prepared in Example 1 (using chicken manure, pig manure, and biogas residue as raw materials) was used as the experimental group samples, and untreated chicken manure, pig manure, and biogas residue were used as control samples.
  • the steps of filter paper diffusion mapping method are as follows;
  • step C Weigh 10g of the fertilizer sample dried in step A into a 250ml jar, add 100ml of 1% NaOH, and shake at room temperature for 5 hours for extraction;
  • step D Take 40 ml of the fertilizer sample solution extracted in step C into a plastic centrifuge tube, and centrifuge at 4000xg for 10 minutes;
  • step E Centrifuge the sample solution completed in step D, take 150 ⁇ l of supernatant and drop it into the filter paper containing silver nitrate prepared in step B, and observe the color layer analysis chart of the filter paper for 2 hours.
  • the filter paper diffusion mapping method uses alkali to extract the substances in the compost sample (such as: humus, etc.) that will show different patterns and sizes on the silver nitrate filter paper for judgment. If the sample is decomposed compost, the diffusion circle on the filter paper is large (more small molecules), the outer circle is irregular, and the center color is dark; if the sample is uncomposted compost, the diffusion circle on the filter paper is small (more large molecules), The outer ring is more regular and the center color is lighter.
  • the organic fertilizer prepared in Example 1 (using chicken manure, pig manure, and biogas residue as raw materials) was used as the experimental group samples, and untreated chicken manure, pig manure, and biogas residue were used as control samples.
  • the steps of Solvita maturity testing method are as follows:
  • step B Take 50g each of the samples adjusted in step A and put them into the test bottle respectively, put the fertilizer in the filling line, cover but not lock the upper cover, and leave it for 1 hour to allow the air in the bottle to balance;
  • step C Insert the carbon dioxide detection piece and the ammonia detection piece into the fertilizer sample of step B, tighten the upper cover, and act for 4 hours;
  • step D Take out the test piece after the effect of step C is completed, compare the color with the color card and judge the result and score with the color selection software; the higher the score of the carbon dioxide test piece (1-8 points), the lower the carbon dioxide output, and the ammonia detection The higher the tablet score (1-5 points), the lower the ammonia content.
  • the Solvita maturity detection method uses different respiration efficiency (carbon dioxide production) and ammonia production rate of different maturity composts to determine whether the compost is mature; if the compost is completely decomposed and decomposed, the microbial population is stable, the carbon dioxide output is low, and ammonia The yield is also low; on the contrary, if the compost is not completely decomposed and decomposed, there will be active respiration, that is, the production of carbon dioxide is high, and/or the content of ammonia is high.
  • the biogas residue organic fertilizer prepared in Example 1 was used as the experimental group sample, and the untreated biogas residue was used as the control sample.
  • Microbial culture was carried out by coating method (direct observation of colonies to detect the total number of colonies) and liquid culture method (detecting turbidity) to analyze the bacterial content of the sample. The detection steps are as follows.
  • A. Coating method Take 200 ⁇ l of the organic fertilizer sample made by the method of the present invention on the LB solid medium, shake the culture plate with about 10 glass beads with a diameter of 3mm to evenly spread the bacterial solution, and then put it in 37 Cultivate in an incubator at °C for 16-18 hours, and observe the total number of single colonies on the culture plate. The results are shown in Figure 4A and Figure 4B.
  • Liquid culture method Take 200 ⁇ l of the organic fertilizer sample prepared by the method of the present invention into the LB liquid medium, place it on the test tube rack at an angle, and incubate it in an incubator at 37°C at 200rpm for 16-18 hours.
  • the spectrophotometer (spectrophotometer) sets the absorption wavelength to 600nm and the background wavelength to 0nm, and measures the optical density (OD) of the liquid medium. The higher the absorbance (OD600nm), the higher the number of bacteria in the sample (including dead The more bacteria and live bacteria). The result is shown in Figure 5.
  • the total colony count of the biogas residue organic fertilizer (FIG. 4B) prepared by the method of Example 1 in the experimental group was significantly reduced.
  • the turbidity of the biogas residue organic fertilizer prepared by the method in Example 1 of the experimental group decreased significantly. Both the total colony count and the results of the turbidity detection method show that the method of the present invention has a good sterilization effect, and the organic fertilizer prepared by the method of the present invention has low bacteria content and high biological safety.
  • the biogas residue organic fertilizer prepared in Example 1 was used as the experimental group sample, and the untreated biogas residue was used as the control sample.
  • the steps of the mold test are as follows: adjust the humidity of each sample to 70%, weigh 10g of the samples into a clean petri dish, incubate at room temperature, and observe the mold on the 7th day.
  • the biogas residue organic fertilizer prepared in Example 1 was used as the sample of the experimental group, and pure water was used as the sample of the control group. Carry out a seed germination test to detect whether the fertilizer sample will inhibit seed germination; the test steps are as follows:
  • step D Take 5ml of the fertilizer sample solution extracted in step A and evenly add it to a petri dish, add 5ml of pure water to the other petri dish as a control group, then put the seeds in the petri dish evenly, cover the lid, and observe in the room 3 Day, then count the number of sprouts.
  • the biogas residue organic fertilizer and pig manure organic fertilizer prepared in Example 1 were used as the experimental group samples, and the general soil was used as the control sample. Carry out a pot experiment to simulate the general planting situation to detect whether the fertilizer sample will inhibit crop growth; the test steps are as follows:
  • step C Put the mixed fertilizer sample in step A into a 3-inch pot, then put the Chinese cabbage seeds in the pot evenly, and add 20ml of reverse osmosis water;

Abstract

本发明公开了一种将禽畜粪便及/或沼渣等生物废弃物快速制造成为有机肥料的方法。

Description

一种快速制造有机肥料的方法 技术领域
本发明涉及一种快速制造有机肥料的方法,特别是一种利用微波快速处理生物废弃物以制造有机肥料的方法。
背景技术
全球近十几年来对畜牧产品的需求日益增长,畜牧业的蓬勃发展带来的重大问题之一是大量的禽畜粪便废弃物(生物废弃物的一种)。禽畜粪便废弃物处理不当会导致环境污染、地下水体与河川优养化、气候暖化、土壤退化等严重问题。
农业转型使用有机肥料取代化学肥料已逐渐受到重视,目前有机肥料大多来自禽畜粪便、残枝、稻壳、厨余等原料,通过利用微生物使有机质分解、发酵,以形成有机肥料。然而,上述微生物分解、发酵所需时间长达2-4个月,且需要大面积的厂房进行分解、发酵作用。此外,未完全腐熟的有机肥料可能造成对农作物的危害(如:烧苗、散布植物病原菌、虫卵、以及杂草种子)、对环境的危害(如:释放二氧化碳及有毒气体、产生恶臭)、对公共卫生的影响(如:散布病毒及/或细菌、孳生蚊蝇)。
有鉴于上述传统有机肥料制造方法不仅费时且可能具有未完全腐熟的风险,亟需改良有机肥料的制造方法。
发明内容
本发明的目的在于提供一种快速制造有机肥料的方法,其可快速制造高品质有机肥料,效率更高,且对场地空间需求小,不易产生恶臭,不会造成污染,制成的有机肥料产品灭菌完全,生物安全性高,能克服现有技术的缺陷。
为实现上述目的,本发明公开了一种快速制造有机肥料的方法,其特征在于包含下列步骤:
提供一隧道式微波反应器,包含一隧道式微波反应室以及一输送带,所述隧道式微波反应室具有一进料口以及一出料口,所述输送带贯穿所述进料口、所述隧道式微波反应室,以及所述出料口;
将一生物废弃物置于所述输送带上,通过所述进料口送进所述隧道式微波反应室中以一微波加热,所述隧道式微波反应室内的温度维持在70-95℃,所述生物废弃物自进入所述进料口到离开所述出料口的时间为5-60分钟;以及
收集微波处理过的该生物废弃物以获得一有机肥料。
于某些具体实施例中,所述生物废弃物在置于所述输送带之前,先添加一微波吸收物 质,并混合搅拌成一混合物。于某些具体实施例中,所述生物废弃物占所述混合物的90-99.5%(w/w),所述微波吸收物质占所述混合物的0.5-10%(w/w)。于某些具体实施例中,所述生物废弃物未添加一微波吸收物质进行微波。
于某些具体实施例中,所述微波吸收物质包括,但不限于,碳化硅、橡胶、焦炭、石墨、碳粉、氧化铁、四氧化三铁、氧化锌、硫化钼、二氧化锆、钛酸钡、碳酸镁,或其组合。
于某些具体实施例中,所述微波吸收物质为颗粒状,且其粒径不大于1mm。于某些具体实施例中,所述颗粒状微波吸收物质的粒径为0.01mm、0.05mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm,或1mm。
于某些具体实施例中,所述生物废弃物包括,但不限于甲壳类动物外壳粉末、贝类外壳粉末、动物残渣粉末、禽畜粪便、植物残渣粉末、厨余。于某些具体实施例中,所述甲壳类动物外壳粉末包括,但不限于,蟹壳粉、虾壳粉。于某些具体实施例中,所述贝类外壳粉末包括,但不限于,蚵壳粉、蚌壳粉、蛤蜊壳粉。于某些具体实施例中,所述动物残渣粉末包括,但不限于,蒸制骨粉、干血(血粉)、骨粉、鱼粉、羽毛粉。于某些具体实施例中,所述禽畜粪便包括,但不限于,鸡粪、鸭粪、鹅粪、猪粪、牛粪、羊粪、马粪、沼渣。于某些具体实施例中,所述植物残渣粉末包括,但不限于,稻秆、稻壳、粗糠、米糠、小麦杆、高粱杆、大豆杆、大豆荚、花生杆、花生壳、玉米杆、油菜杆、蔗渣、大豆粕、油菜籽粕、落花生粕、胡麻粕、向日葵粕、芝麻粕、葱麻耔粕、椰子粕、金针菇废弃介质、木薯粉、糖蜜。
于某些具体实施例中,所述微波的频率为915MHz及/或2450MHz,且功率为10-500KW。于某些具体实施例中,所述微波的功率为10KW、20KW、30KW、40KW、50KW、60KW、70KW、80KW、90KW、100KW、110KW、120KW、130KW、140KW、150KW、160KW、170KW、180KW、190KW、200KW、210KW、220KW、230KW、240KW、250KW、260KW、270KW、280KW、290KW、300KW、310KW、320KW、330KW、340KW、350KW、360KW、370KW、380KW、390KW、400KW、410KW、420KW、430KW、440KW、450KW、460KW、470KW、480KW、490KW,或500KW。
于某些具体实施例中,所述隧道式微波反应室的长度为5-150公尺。于某些具体实施例中,所述隧道式微波反应室的长度为5公尺、10公尺、15公尺、20公尺、25公尺、30公尺、35公尺、40公尺、45公尺、50公尺、55公尺、60公尺、65公尺、70公尺、75公尺、80公尺、85公尺、90公尺、95公尺、100公尺、105公尺、110公尺、115公尺、120公尺、125公尺、130公尺、135公尺、140公尺、145公尺,或150公尺。
通过上述内容可知,本发明能实现如下技术效果:
1、相较于传统堆肥使用的发酵法,本发明的方法不但可快速制造高品质有机肥料, 且具有对场地空间需求小、不易产生恶臭、不会造成污染、且制成的有机肥料产品灭菌完全(请参阅实施例四、五)、产值高等优点。
2、实现快速地完全腐熟,杀菌效果佳,抑制霉菌的效果佳,以本发明的方法制成的有机肥料含菌量低,生物安全性高。
3、以本发明的方法制成的有机肥料不但不会抑制种子发芽,且有助于种子发芽及植株生长,表示本发明的方法可以快速使有机肥料完全腐熟。
除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域中的技术人员所通常理解相同的含义。
如本文所用,冠词「一」、「一个」以及「任何」是指一个或多于一个(即至少一个)的物品的文法物品。例如,「一个元件」意指一个元件或多于一个元件。
本文所使用的「约」、「大约」或「近乎」一词实质上代表所述之数值或范围位于20%以内,较佳为于10%以内,以及更佳者为于5%以内。于本文所提供之数字化的量为近似值,意旨若术语「约」、「大约」或「近乎」没有被使用时亦可被推得。
如本文所用,术语「沼渣」是指畜牧业产生的禽畜粪便与尿液经过沼气发电利用后剩余的残渣。
附图说明
图1A至图1B:为在实施例一中以不同方法制成的肥料的外观比较图。图1A为以传统方法制成的沼渣堆肥的外观;图1B为以本发明方法所制成的沼渣有机肥料的外观。
图2A至图2F:为在实施例二中以滤纸扩散显图测定法判定有机肥料腐熟的结果;图2A:未处理的鸡粪;图2B:以本发明方法所制成的鸡粪有机肥料;图2C:未处理的猪粪;图2D:以本发明方法所制成的猪粪有机肥料;图2E:未处理的沼渣;图2F:以本发明方法所制成的沼渣有机肥料。
图3:为在实施例三中以Solvita腐熟度检测法所得到的结果比较图。
图4A至图4B:为在实施例四中检测样品总菌落数的结果;图4A:未处理的沼渣;图4B:以本发明方法所制成的沼渣有机肥料。
图5:为在实施例四中以液态培养法检测样品含菌量的结果。
图6A至图6B:为在实施例五中以发霉试验分析样品品质的结果;图6A:未处理的沼渣;图6B:以本发明方法所制成的沼渣有机肥料。
图7A至图7D:为在实施例六中以种子发芽试验分析样品品质的结果;图7A、图7C:纯水对照组;图7B、图7D:以本发明方法所制成的沼渣有机肥料。
图8A至图8D:为在实施例七中以盆栽试验分析样品品质的结果;图8A、图8C:一般土壤对照组;图8B:以本发明方法所制成的沼渣有机肥料;图8D:以本发明方法所制成的猪粪有机肥料。
具体实施方式
本发明以下面的实施例予以示范阐明,但本发明不受下述实施例所限制。
实施例一 快速制造有机肥料
将98公斤的生物废弃物与2公斤的微波吸收物质放至一混合器搅拌均匀成一混合物。在本实施例中,所述生物废弃物可选择性的为单一或多种类混合的鸡粪、鸭粪、鹅粪、猪粪、牛粪、羊粪、马粪等新鲜禽畜粪便或者是沼渣,且所述生物废弃物的含水量约为50%-90%(w/w)。所述微波吸收物质可选择性的为单一或多种类混合的碳化硅、橡胶、焦炭、石墨、碳粉、氧化铁、四氧化三铁、氧化锌、硫化钼、二氧化锆、钛酸钡、碳酸镁,且所述微波吸收物质的颗粒粒径不大于1mm。
将所述生物废弃物放至一隧道式微波反应器中。所述隧道式微波反应器包含一隧道式微波反应室以及一输送带,所述隧道式微波反应室具有一进料口以及一出料口,所述输送带贯穿所述进料口、所述隧道式微波反应室,以及所述出料口。将所述生物废弃物置于所述输送带上,通过所述进料口送进所述隧道式微波反应室中,以波段2450MHz、功率50KW微波加热,使所述隧道式微波反应室内的温度维持在70-95℃。使所述生物废弃物通过所述隧道式微波反应室,所述生物废弃物自进入所述进料口到离开所述出料口的时间为约5-60分钟。最后,收集微波处理过的生物废弃物以快速获得一有机肥料。
将以上述方法快速制成的有机肥料进行成分分析,并与传统堆肥进行比较,结果如表1所示。此外,将本发明之方法与传统堆肥使用的发酵法进行比较,结果如表2所示。
表1本发明方法制成的有机肥料与传统堆肥的比较
Figure PCTCN2020105832-appb-000001
*参照有机农业全球资讯网(http://info.organic.org.tw),杂项堆肥(品目编号5-11)的标准。
#未达标准。
表2本发明之方法与传统堆肥使用的发酵法的比较
项目 传统堆肥使用的发酵法 本发明之方法
处理时间 2-4个月 30-60分钟
空间需求
制肥流程 无连续性 连续性
恶臭污染 发酵过程会产生腐臭 不产生恶臭
灭菌程度 不完全 完全
堆肥品质 不易控制 可控制
处理温度 60-70℃ <95℃
产值
如表1所示,使用本发明方法,无论是以鸡粪或沼渣为原料所制成的肥料,皆符合相关规定的标准。反观以传统方法制成的沼渣堆肥,其含水量过高且含钾量不足,未达标准。另外,如图1A、图1B所示,以传统方法制成的沼渣堆肥颜色浅(图1A),而以本发明方法所制成的有机肥料(以沼渣为原料)的颜色较深(图1B),显示本发明方法所制成的有机肥料的腐熟程度较高且品质较佳。
此外,如表2所示,相较于传统堆肥使用的发酵法,本发明之方法不但可快速制造高品质有机肥料,且具有对场地空间需求小、不易产生恶臭、不会造成污染、且制成的有机肥料产品灭菌完全(请参阅实施例四、五)、产值高等优点。
实施例二 有机肥料的腐熟判定-滤纸扩散显图测定法
以实施例一制成的有机肥料(分别以鸡粪、猪粪,以及沼渣为原料)为实验组样品,且分别以未处理的鸡粪、猪粪、沼渣为对照组样品。滤纸扩散显图测定法的步骤如下;
A、将各样品放入烘箱,温度设定60℃,烘干后放置1天待用;
B、取Sartorius 392 125mm型号之滤纸,放至玻璃皿中,接着于通风橱内以0.5%(w/v)硝酸银(AgNO3)溶液浸润,并放置于烘箱避光风干;
C、将步骤A烘干后的肥料样品,秤取10g装入250ml广口瓶中,并加入100ml的1%NaOH,于室温振荡5小时进行萃取;
D、将步骤C萃取后的肥料样品溶液取40ml至塑胶离心管中,以4000xg离心10分钟;
E、将步骤D离心完成之样品溶液,取150μl的上清液滴至步骤B已准备好含硝酸银滤纸中,照光2小时观察滤纸色层分析图。
滤纸扩散显图测定法系利用碱萃取堆肥样品内的物质(如:腐植质等)会在硝酸银滤纸上呈现不同图样、大小来做为判断。若样品为腐熟堆肥,滤纸上的扩散圈大(小分子多)、外圈呈不规则状、中心颜色较深;若样品为未腐熟堆肥,则滤纸上的扩散圈小(大分子多)、外圈较规则、中心颜色较浅。
本实施例的结果如图2A至2F所示,从图中观察可发现,对照组未处理的鸡粪(图2A)、猪粪(图2C)、沼渣(图2E)的滤纸中心圈颜色较浅、扩散圈小,明显为未腐熟的堆肥;而实验组以实施例一方法制成的鸡粪有机肥料(图2B)、猪粪有机肥料(图2D)、沼渣有机肥料(图2F)的滤纸中心圈颜色深、扩散圈大、外圈不规则,明显为腐熟的堆肥。因此,由滤纸扩散显图测定法可知,以本发明方法制成的有机肥料可以使禽畜粪便及沼渣快速地完全腐熟。
实施例三 有机肥料的腐熟判定-Solvita腐熟度检测法
以实施例一制成的有机肥料(分别以鸡粪、猪粪,以及沼渣为原料)为实验组样品,且分别以未处理的鸡粪、猪粪、沼渣为对照组样品。Solvita腐熟度检测法的步骤如下:
A.将各样品的湿度调整至70%,静置隔夜;
B.取步骤A调整后的样品各50g,分别放至检测瓶中,使肥料于填充线内,盖上但不锁紧上盖,放置1小时让瓶内空气平衡;
C.分别将二氧化碳检测片、氨检测片插入步骤B的肥料样品中,栓紧上盖,作用4小时;
D.将步骤C作用完成后的检测片取出,以色卡进行比色并以颜色选择软体判断结果并评分;二氧化碳检测片评分(1-8分)越高表示二氧化碳产量越低,且氨检测片评分(1-5分)越高表示氨的含量越低。
Solvita腐熟度检测法是利用不同腐熟度的堆肥会有不同的呼吸效率(二氧化碳产量)与氨产生速率来判断堆肥是否腐熟;若堆肥完全腐熟、分解,则微生物群稳定、二氧化碳的产量低、氨的产量也低;反之,若堆肥未完全腐熟、分解,则会有活跃的呼吸作用,亦即二氧化碳的产量高,及/或氨的含量高。
本实施例的结果如表3及图3所示,实验组以实施例一方法制成的鸡粪有机肥料、猪粪有机肥料、沼渣有机肥料的二氧化碳以及氨的含量低(评分高代表含量低),表示这些有机肥料腐熟、分解完全。
表3 Solvita腐熟度检测法之检测结果
Figure PCTCN2020105832-appb-000002
实施例四 有机肥料的含菌量分析-总菌落数及浊度检测法
以实施例一制成的沼渣有机肥料为实验组样品,并以未处理的沼渣为对照组样品。分别以涂布法(直接观察菌落以检测总菌落数)与液态培养法(检测浊度)二种方法进行微生物培养,以分析样品的含菌量,其检测步骤分别如下。
A、涂布法:取200μl本发明方法所制成的有机肥料样品至LB固态培养基上,以约10颗直径3mm的玻璃珠摇晃所述培养盘以将菌液涂匀,之后放入37℃培养箱内培养16-18小时,并观察培养盘上的单一菌落的总菌落数。结果如图4A、图4B所示。
B、液态培养法:取200μl本发明方法所制成的有机肥料样品至LB液态培养基中,倾斜置放在试管架上,以200rpm的转速于37℃培养箱内培养16-18小时,以分光光度计(spectrophotometer)设定吸收波长为600nm、背景波长为0nm,测量所述液体培养基的吸光值(Optical Density,OD),吸光值(OD600nm)越高表示样品中的细菌数(包含死菌与活菌)越多。结果如图5所示。
如图4A、图4B所示,相较于对照组未处理的沼渣(图4A),实验组以实施例一方法制成的沼渣有机肥料(图4B)的总菌落数明显减少。此外,如图5所示,经液态培养后,相较于对照组未处理的沼渣,实验组以实施例一方法制成的沼渣有机肥料的菌液浊度显着下降。不论是总菌落数或浊度检测法的结果都显示,本发明之方法杀菌效果佳,以本发明之方法制成的有机肥料含菌量低,生物安全性高。
实施例五 有机肥料的品质分析-发霉试验
以实施例一制成的沼渣有机肥料为实验组样品,并以未处理的沼渣为对照组样品。发霉试验的步骤如下:将各样品的湿度调整至70%,分别秤取10g样品装入干净培养皿中,于室温下培养,并于第7天观察发霉情形。
结果如图6A、图6B所示,箭头所指为发霉的部份;对照组未处理的沼渣发霉情况严重(图6A),实验组以实施例一方法制成的沼渣有机肥料可明显看到并没有发霉情况,表示本发明之方法抑制霉菌的效果佳。
实施例六 有机肥料的品质分析-种子发芽试验
以实施例一制成的沼渣有机肥料为实验组样品,并以纯水为对照组样品。进行种子发芽试验以检测肥料样品是否会抑制种子发芽;试验步骤如下:
A、秤取5g实验组样品装入广口瓶中,并加入100ml温水至所述广口瓶中,盖上上盖,将温度保持在80℃浸泡萃取1小时;
B、取2张滤纸,分别放至2个干净的培养皿中;
C、挑选50颗外观完整的小白菜种子,剔除裂开等外观不完整者;
D、取5ml步骤A萃取后的肥料样品溶液均匀加入一培养皿中,另一培养皿则加入 5ml纯水作为对照组,接着将种子平均放入培养皿中,盖上盖子,于室内观察3天,再统计发芽数量。
结果如图7A至7D所示,对照组纯水的发芽率为84%(图7A),而实验组以实施例一方法制成的沼渣有机肥料的萃取液的发芽率为94%(图7B);相较于对照组,实验组的发芽率明显提高。此外,实验组的幼苗高度(图7D)较对照组的幼苗高度(图7C)高,显示实验组的幼苗发育状况较佳。由本实施例可知,以本发明之方法制成的有机肥料不但不会抑制种子发芽,且有助于种子发芽及生长,表示本发明之方法可以快速使有机肥料完全腐熟。
实施例七 有机肥料的品质分析-盆栽试验
以实施例一制成的沼渣有机肥料与猪粪有机肥料为实验组样品,并以一般土壤为对照组样品。进行盆栽试验,模拟一般栽种情况,以检测肥料样品是否会抑制作物生长;试验步骤如下:
A、将土壤与本发明方法所制成的肥料样品以体积比3:1的比例混合均匀后,加入15ml的逆渗透水,使土壤保持湿润;
B、挑选25颗外观完整的小白菜种子,剔除裂开等外观不完整者;
C、将步骤A混合后的肥料样品,装入3吋盆栽中,接着将小白菜种子平均放入盆栽中,并加入20ml的逆渗透水;
D、以每天加入5ml的逆渗透水持续观察25天以上,统计发芽数量及观察本叶生长情形。
结果如图8A至8D所示,对照组一般土壤的发芽率为32-44%,而实验组以实施例一方法制成的沼渣有机肥料以及猪粪有机肥料的发芽率皆为84%;相较于对照组,实验组的发芽率明显提高。此外,相较于对照组的幼苗生长情况(图8A、图8C),不论是沼渣有机肥料实验组(图8B)或猪粪有机肥料实验组(图8D)的植株幼苗生长情况皆优于对照组(图8A、图8C),实验组植株长出的本叶数目较多,叶片面积也较大(图8B、图8D)。由本实施例可知,以本发明之方法制成的有机肥料不但不会抑制种子发芽,且有助于种子发芽及植株生长,表示本发明之方法可以快速使有机肥料完全腐熟。
上述之实施例揭露,仅是本发明部分较佳的实施例选择,然其并非用以限定本发明,任何熟悉此一技术领域具有通常知识者,在了解本发明前述的技术特征及实施例,并在不脱离本发明之精神和范围内所做的均等变化或润饰,仍属本发明涵盖之范围,而本发明之专利保护范围须视本说明书所附之请求项所界定者为准。

Claims (8)

  1. 一种快速制造有机肥料的方法,其特征在于包含下列步骤:
    提供一隧道式微波反应器,包含一隧道式微波反应室以及一输送带,所述隧道式微波反应室具有一进料口以及一出料口,所述输送带贯穿所述进料口、所述隧道式微波反应室,以及所述出料口;
    将一生物废弃物置于所述输送带上,通过所述进料口送进所述隧道式微波反应室中以一微波加热,所述隧道式微波反应室内的温度维持在70-95℃,所述生物废弃物自进入所述进料口到离开所述出料口的时间为5-60分钟;以及
    收集微波处理过的所述生物废弃物以获得一有机肥料。
  2. 如权利要求1所述的快速制造有机肥料的方法,其特征在于所述生物废弃物在置于所述输送带之前,先与一微波吸收物质混合搅拌成一混合物。
  3. 如权利要求2所述的快速制造有机肥料的方法,其特征在于所述生物废弃物占所述混合物的90-99.5%(w/w),所述微波吸收物质占所述混合物的0.5-10%(w/w)。
  4. 如权利要求2所述的快速制造有机肥料的方法,其特征在于所述微波吸收物质选自由下列所组成之群组:碳化硅、橡胶、焦炭、石墨、碳粉、氧化铁、四氧化三铁、氧化锌、硫化钼、二氧化锆、钛酸钡、碳酸镁,或其组合。
  5. 如权利要求2所述的快速制造有机肥料的的方法,其特征在于所述微波吸收物质为颗粒状,且其粒径不大于1mm。
  6. 如权利要求1所述的快速制造有机肥料的方法,其特征在于所述生物废弃物选自蟹壳粉、虾壳粉、蚵壳粉、蚌壳粉、蛤蜊壳粉、蒸制骨粉、血粉、骨粉、鱼粉、羽毛粉、鸡粪、鸭粪、鹅粪、猪粪、牛粪、羊粪、马粪、沼渣、稻秆、稻壳、粗糠、米糠、小麦杆、高粱杆、大豆杆、大豆荚、花生杆、花生壳、玉米杆、油菜杆、蔗渣、大豆粕、油菜籽粕、落花生粕、胡麻粕、向日葵粕、芝麻粕、葱麻耔粕、椰子粕、金针菇废弃介质、木薯粉、糖蜜、厨余,以及其组合物。
  7. 如权利要求1所述的快速制造有机肥料的方法,其特征在于所述微波的频率为915MHz或2450MHz,且功率为10-500KW。
  8. 如权利要求1所述的快速制造有机肥料的方法,其特征在于所述隧道式微波反应室的长度为5-150公尺。
PCT/CN2020/105832 2019-08-01 2020-07-30 一种快速制造有机肥料的方法 WO2021018246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910705339.4 2019-08-01
CN201910705339.4A CN112390680A (zh) 2019-08-01 2019-08-01 一种快速制造有机肥料的方法

Publications (1)

Publication Number Publication Date
WO2021018246A1 true WO2021018246A1 (zh) 2021-02-04

Family

ID=74228612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105832 WO2021018246A1 (zh) 2019-08-01 2020-07-30 一种快速制造有机肥料的方法

Country Status (2)

Country Link
CN (1) CN112390680A (zh)
WO (1) WO2021018246A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056970A2 (en) * 2006-11-10 2008-05-15 Yuan Chin Liew Apparatus for treating organic waste
CN101700954A (zh) * 2009-12-11 2010-05-05 哈尔滨工业大学 一种制取燃料气体的污泥预处理方法
CN103357644A (zh) * 2012-03-31 2013-10-23 上海餐余垃圾处理技术有限公司 一种城市菜场废弃物精细化资源回收利用方法
CN103461081A (zh) * 2013-08-23 2013-12-25 金洋新能源科技开发(大连)有限公司 植物栽培基质及其制作方法
CN203869455U (zh) * 2014-04-14 2014-10-08 吉林三龙环保科技有限公司 一体化污泥生物有机肥和生物固体燃料造粒微波干化装置
CN104119171A (zh) * 2014-08-12 2014-10-29 许盛英 石墨尾矿压缩营养土的生产方法
CN104130072A (zh) * 2014-08-12 2014-11-05 许盛英 活性炭残渣压缩营养土的生产方法
CN104529664A (zh) * 2015-01-27 2015-04-22 张金林 蔬菜栽培基质及其制作方法
CN104858202A (zh) * 2015-04-07 2015-08-26 伟通工业设备(江苏)有限公司 一种连续式微波裂解生物质能的制备方法
CN104892156A (zh) * 2015-05-29 2015-09-09 成都新柯力化工科技有限公司 一种酸性土壤专用生态肥及其制备方法
CN205897771U (zh) * 2016-08-09 2017-01-18 兰州明泽农产品加工农民专业合作社 一种隧道式微波干燥机
CN109329695A (zh) * 2018-08-21 2019-02-15 广东嘉士利食品集团有限公司 一种隧道式微波灭菌装置及利用微波对淀粉类原料进行灭菌的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195501B (zh) * 2015-11-03 2017-06-13 青岛市固体废弃物处置有限责任公司 一种生活垃圾的微波处理方法
TWM572370U (zh) * 2018-06-26 2019-01-01 美林能源科技股份有限公司 有機廢棄物發酵裝置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056970A2 (en) * 2006-11-10 2008-05-15 Yuan Chin Liew Apparatus for treating organic waste
CN101700954A (zh) * 2009-12-11 2010-05-05 哈尔滨工业大学 一种制取燃料气体的污泥预处理方法
CN103357644A (zh) * 2012-03-31 2013-10-23 上海餐余垃圾处理技术有限公司 一种城市菜场废弃物精细化资源回收利用方法
CN103461081A (zh) * 2013-08-23 2013-12-25 金洋新能源科技开发(大连)有限公司 植物栽培基质及其制作方法
CN203869455U (zh) * 2014-04-14 2014-10-08 吉林三龙环保科技有限公司 一体化污泥生物有机肥和生物固体燃料造粒微波干化装置
CN104119171A (zh) * 2014-08-12 2014-10-29 许盛英 石墨尾矿压缩营养土的生产方法
CN104130072A (zh) * 2014-08-12 2014-11-05 许盛英 活性炭残渣压缩营养土的生产方法
CN104529664A (zh) * 2015-01-27 2015-04-22 张金林 蔬菜栽培基质及其制作方法
CN104858202A (zh) * 2015-04-07 2015-08-26 伟通工业设备(江苏)有限公司 一种连续式微波裂解生物质能的制备方法
CN104892156A (zh) * 2015-05-29 2015-09-09 成都新柯力化工科技有限公司 一种酸性土壤专用生态肥及其制备方法
CN205897771U (zh) * 2016-08-09 2017-01-18 兰州明泽农产品加工农民专业合作社 一种隧道式微波干燥机
CN109329695A (zh) * 2018-08-21 2019-02-15 广东嘉士利食品集团有限公司 一种隧道式微波灭菌装置及利用微波对淀粉类原料进行灭菌的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU, DAFANG ET AL: "Influence of Microwave Heating on Fertilizer Efficiency and Hygienic Index of Sludge", CHINA WATER & WASTEWATER, vol. 17, no. 5, 31 December 2001 (2001-12-31), pages 20 - 23, XP055776342, ISSN: 1000-4602 *

Also Published As

Publication number Publication date
CN112390680A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN103504151B (zh) 一种利用有机废弃物制备昆虫饲料的方法及昆虫饲料
RU2654220C1 (ru) Способ переработки органических отходов личинками мух Hermetia illucens с получением белка животного происхождения и биогумуса
CN107082661A (zh) 一种生物有机肥及其制备方法
CN110352913B (zh) 一种有机废弃物生物处理生态循环资源化综合利用方法及应用
CN108157072A (zh) 一种生态农业循环系统
CN105746896A (zh) 一种生态环保种植养殖生物链循环方法
CN104478570A (zh) 一种微生物有机肥及其制备方法
CN104186424B (zh) 利用丝光绿蝇幼虫生物处理不适用鲜烟叶同时获得有机肥和生物蛋白的方法
CN104529609A (zh) 一种蔬菜专用复合有机肥及其制备方法
CN102783459B (zh) 清香型白酒丢糟家蝇幼虫生态转化的方法
CN106116715A (zh) 一种固体废弃物转化为有机肥的方法
CN106146076A (zh) 一种发酵禽畜粪粪水制造生物有机肥的方法
CN104186426B (zh) 利用棕尾别麻蝇幼虫生物处理不适用鲜烟叶同时获得有机肥和生物蛋白的方法
WO2021018246A1 (zh) 一种快速制造有机肥料的方法
TWI726374B (zh) 一種快速製造有機肥料的方法
CN106718042A (zh) 一种利用竹鼠粪便栽培杏鲍菇的方法
CN104145879B (zh) 利用黑水虻幼虫生物处理不适用鲜烟叶的方法
CN108142375B (zh) 有机垃圾发酵剩余物生态处理和转化利用的方法
CN104186909A (zh) 利用大头金蝇幼虫生物处理不适用鲜烟叶同时获得有机肥和生物蛋白的方法
RU2721705C1 (ru) Способ микробиологической переработки органических отходов
CN108503399A (zh) 一种高效去除畜禽粪便中抗生素的处理方法
CN104291889A (zh) 一种烟草专用有机肥的生产方法及烟草专用有机肥
CN104186425B (zh) 利用耐烟碱家蝇幼虫生物处理不适用鲜烟叶同时获得有机肥和生物蛋白的方法
CN114009599A (zh) 一种促进广地龙快速生长的人工养殖饲料
CN109965151A (zh) 一种猪粪源的鱼饲料及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845667

Country of ref document: EP

Kind code of ref document: A1