WO2021018225A1 - 混合钳位型五电平三相逆变器和逆变系统 - Google Patents

混合钳位型五电平三相逆变器和逆变系统 Download PDF

Info

Publication number
WO2021018225A1
WO2021018225A1 PCT/CN2020/105659 CN2020105659W WO2021018225A1 WO 2021018225 A1 WO2021018225 A1 WO 2021018225A1 CN 2020105659 W CN2020105659 W CN 2020105659W WO 2021018225 A1 WO2021018225 A1 WO 2021018225A1
Authority
WO
WIPO (PCT)
Prior art keywords
power electronic
electronic switching
switching device
phase
turned
Prior art date
Application number
PCT/CN2020/105659
Other languages
English (en)
French (fr)
Inventor
陈蓉
杨勇
黄敏
方刚
卢进军
Original Assignee
江苏固德威电源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏固德威电源科技股份有限公司 filed Critical 江苏固德威电源科技股份有限公司
Publication of WO2021018225A1 publication Critical patent/WO2021018225A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the invention belongs to the field of inverter technology, and specifically relates to a hybrid clamp type five-level three-phase inverter, which can be applied in renewable energy power generation systems (such as photovoltaic power generation, wind power generation, etc.).
  • multi-level inverters Compared with two-level inverters, multi-level inverters have the following advantages: (1) Reduce the voltage stress of a single device; (2) Reduce the harmonics of the inverter output voltage; (3) Reduce Common mode voltage; (4) Realize low switching and conduction losses, thereby improving the efficiency of the inverter. Therefore, multi-level inverters are widely used in renewable energy power generation systems.
  • the traditional ones mainly include diode clamp type, flying capacitor type and cascade type topology.
  • the diode-clamped multilevel converter needs to double the clamping diodes
  • the flying capacitor structure needs to double the clamping capacitance
  • the cascade structure needs a lot of isolation power supply.
  • the five-level Active Neutral-Point-Clamped (ANPC) topology makes up for the shortcomings of the diode-clamped topology and the capacitor-clamped topology, not only does not require a large number of clamping diodes and clamping capacitors, Moreover, the bus midpoint voltage can be controlled by an algorithm. It is a commercialized multi-level topology, but there are many shortcomings in the required switching devices. In order to further increase the output voltage of the multi-level inverter and reduce the components of the multi-level inverter, it is necessary to design a new hybrid clamp type five-level three-phase inverter structure.
  • the purpose of the present invention is to provide a hybrid clamp type five-level three-phase inverter that minimizes the number of power electronic devices, thereby further improving the efficiency of the inverter and reducing the cost of the inverter.
  • the driving signal of the x-phase first power electronic switching device S x1 and the x-phase second power electronic switching device The drive signal of is a complementary signal; the drive signal of the x-phase third power electronic switching device S x2 is the same as the x-phase fourth power electronic switching device
  • the driving signal of is a complementary signal;
  • the driving signal of the x-phase fifth power electronic switching device S x3 is the same as the x-phase sixth power electronic switching device
  • the driving signal of the x-phase seventh power electronic switching device S x4 is complementary to the driving signal of the x-phase eighth power electronic switching device
  • the driving signal of is complementary signal.
  • the x-phase fifth power electronic switching device S x3 includes two identical and series-connected power electronic switching tubes, and the x-phase sixth power electronic switching device It also includes two identical and series-connected power electronic switch tubes.
  • the driving signals of the two power electronic switching tubes included in the x-phase fifth power electronic switching device S x3 are the same, and the x-phase sixth power electronic switching device The driving signals of the two included power electronic switch tubes are the same.
  • the voltage of the upper bus capacitor C u is controlled to V dc /4
  • the voltage of the middle bus capacitor C m is controlled to V dc /2
  • the voltage of the lower bus capacitor C 1 is controlled to V dc /4.
  • the voltage of the x-phase flying capacitor C xf is controlled as V dc /4, where V dc is the DC bus voltage.
  • the hybrid clamp type five-level three-phase inverter has a total of 8 states from V 0 to V 7 ;
  • the state V 0 is: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , and the x-phase seventh power electronic switching device
  • the power electronic switching device S x4 is turned off, and the output voltage of the inverter unit is 0;
  • V 1 The state of V 1 is: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , and the x-phase fifth power electronic switching device S x3 are turned off, and the x-phase The seventh power electronic switching device S x4 is turned on, and the output voltage of the inverter unit is V dc /4;
  • the state V 2 is: the x-phase first power electronic switching device S x1 , the x-phase fifth power electronic switching device S x3 , and the x-phase seventh power electronic switching device S x4 are turned off, and the x-phase The third power electronic switching device S x2 is turned on, and the output voltage of the inverter unit is V dc /4;
  • the state V 3 is: the x-phase first power electronic switching device S x1 , the x-phase fifth power electronic switching device S x3 are turned off, the x-phase third power electronic switching device S x2 , the x-phase The seventh power electronic switching device S x4 is turned on, and the output voltage of the inverter unit is V dc /2;
  • the state V 4 is: the x-phase first power electronic switching device S x1 and the x-phase seventh power electronic switching device S x4 are turned off, the x-phase third power electronic switching device S x2 , the x-phase The seventh power electronic switching device S x3 is turned on, and the output voltage of the inverter unit is V dc /2;
  • the state V 5 is: the x-phase first power electronic switching device S x1 is turned off, the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , and the x-phase
  • the seventh power electronic switching device S x4 is turned on, and the output voltage of the inverter unit is 3V dc /4;
  • the state V 6 is: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , and the x-phase fifth power electronic switching device S x3 are turned on, and the x-phase The seventh power electronic switching device S x4 is turned off, and the output voltage of the inverter unit is 3V dc /4;
  • the state V 7 is: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , the x-phase seventh
  • the power electronic switching device S x4 is turned on, and the output voltage of the inverter unit is V dc .
  • the hybrid clamp type five-level three-phase inverter further includes a first power electronic switching device S x1 for outputting the x-phase and the second power electronic switching device for the x-phase
  • the x-phase seventh power electronic switching device S x4 , the x-phase eighth power electronic switching device The control chip of the drive signal.
  • the x-phase first power electronic switching device S x1 , the x-phase second power electronic switching device The x-phase third power electronic switching device S x2 , the x-phase fourth power electronic switching device
  • the x-phase seventh power electronic switching device S x4 , the x-phase eighth power electronic switching device Both use insulated gate bipolar transistors.
  • a hybrid clamp type five-level three-phase inverter which is connected to a DC bus.
  • the two ends of the DC bus are points P and Q, respectively.
  • the voltage dividing point O 1 and the voltage dividing point O 2 are characterized in that: the hybrid clamp type five-level three-phase inverter includes three inverter units with the same structure corresponding to three-phase lines;
  • Each of the inverter units includes eight power electronic switching devices and flying capacitors.
  • the eight power electronic switching devices are respectively a first power electronic switching device, a second power electronic switching device, and a third power electronic switching device.
  • the source of the fourth power electronic switching device is connected to the point N of the DC bus, and the drain of the fifth power electronic switching device is connected to the source of the first power electronic switching device ,
  • the driving signal of the first power electronic switching device and the driving signal of the second power electronic switching device are complementary signals, and the driving signal of the third power electronic switching device is the same as the driving signal of the fourth power electronic switching device.
  • the driving signal of the fifth power electronic switching device and the driving signal of the sixth power electronic switching device are complementary signals, and the driving signal of the seventh power electronic switching device is the same as the driving signal of the eighth power electronic switch.
  • the drive signal of the device is a complementary signal.
  • the fifth power electronic switching device includes two identical and series-connected power electronic switching tubes, and the sixth power electronic switching device also includes two identical and series-connected power electronic switching tubes;
  • the driving signals of the two power electronic switching tubes included are the same, and the driving signals of the two power electronic switching tubes included in the sixth power electronic switching device are the same.
  • the DC bus voltage is V dc
  • the voltage between point P on the DC bus and the voltage dividing point O 1 is controlled to V dc /4
  • the voltage between 2 is controlled to be V dc /2
  • the voltage between the voltage dividing point O 2 and the point N on the DC bus is controlled to V dc /4
  • the hybrid inverter unit has V 0 to V 7 has 8 states
  • the V 0 state is: the first power electronic switching device, the third power electronic switching device, the fifth power electronic switching device, and the seventh power electronic switching device are turned off, and the second power electronic switch The device, the fourth power electronic switching device, the sixth power electronic switching device, and the eighth power electronic switching device are turned on, and the output voltage of the inverter unit is 0;
  • the state V 1 is: the first power electronic switching device, the third power electronic switching device, the fifth power electronic switching device, and the eighth power electronic switching device are turned off, and the second power electronic switch The device, the fourth power electronic switching device, the sixth power electronic switching device, and the seventh power electronic switching device are turned on, and the inverter unit output voltage is V dc /4;
  • the V 2 state is: the first power electronic switching device, the fourth power electronic switching device, the fifth power electronic switching device, and the seventh power electronic switching device are turned off, and the second power electronic switch The device, the third power electronic switching device, the sixth power electronic switching device, and the eighth power electronic switching device are turned on, and the inverter unit output voltage is V dc /4;
  • V 3 state the first power electronic switching devices, said fourth power electronic switching devices, said fifth power electronic switching devices, said eighth power electronic switching device is turned off, the second power electronic switch The device, the third power electronic switching device, the sixth power electronic switching device, and the seventh power electronic switching device are turned on, and the inverter unit output voltage is V dc /2;
  • V 4 state the first power electronic switching devices, said fourth power electronic switching devices, the sixth power electronic switching devices, said seventh power electronic switching device is turned off, the second power electronic switch The device, the third power electronic switching device, the fifth power electronic switching device, and the eighth power electronic switching device are turned on, and the inverter unit output voltage is V dc /2;
  • V 5 state the first power electronic switching devices, said fourth power electronic switching devices, the sixth power electronic switching devices, said eighth power electronic switching device is turned off, the second power electronic switch The device, the third power electronic switching device, the fifth power electronic switching device, and the seventh power electronic switching device are turned on, and the inverter unit output voltage is 3V dc /4;
  • V 6 state the first power electronic switching devices, said third power electronic switching devices, said fifth power electronic switching devices, said eighth power electronic switching device is turned on, the second power electronic switch The device, the fourth power electronic switching device, the sixth power electronic switching device, and the seventh power electronic switching device are turned off, and the inverter unit output voltage is 3V dc /4;
  • V 7 state the first power electronic switching devices, said third power electronic switching devices, said fifth power electronic switching devices, said seventh power electronic switching device is turned on, the second power electronic switch The device, the fourth power electronic switching device, the sixth power electronic switching device, and the eighth power electronic switching device are turned off, and the output voltage of the inverter unit is V dc .
  • the hybrid clamp type five-level three-phase inverter further includes a control chip for outputting drive signals of each of the power electronic switching devices.
  • Each of the power electronic switching devices adopts insulated gate bipolar transistors.
  • the present invention also provides an inverter system based on the above-mentioned hybrid clamp type five-level three-phase inverter, that is, the inverter system includes a DC system, an AC system, and is arranged between the DC system and the AC system.
  • the inverter system includes a DC system, an AC system, and is arranged between the DC system and the AC system.
  • the present invention has the following advantages compared with the prior art: the present invention reduces the number of power electronic switching devices required by the conventional five-level inverter, thereby reducing the cost of the inverter and improving the inverter The efficiency of the converter has good application prospects in renewable energy power generation systems.
  • Figure 1 is a structural diagram of the hybrid clamp type five-level three-phase inverter of the present invention.
  • Figure 2 is a structural diagram of the A phase in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Fig. 3 is a circuit diagram of the A phase in the V 0 state in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Fig. 4 is a circuit diagram of the A phase in the V 1 state in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Fig. 5 is a circuit diagram of the A phase in the V 2 state in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Figure 6 is a circuit diagram in a V 3 A phase mixed state clamped five-level three-phase inverter invention.
  • Fig. 7 is a circuit diagram of the A phase in the V 4 state in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Figure 8 a circuit diagram of an A-phase state in which V 5.
  • Fig. 9 is a circuit diagram of the A phase in the V 6 state in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Fig. 10 is a circuit diagram of the A phase in the V 7 state in the hybrid clamp type five-level three-phase inverter of the present invention.
  • Embodiment 1 The inverter system includes a DC system, an AC system, and an inverter arranged between the DC system and the AC system.
  • the input and output terminals of the inverter are respectively connected to the DC system and the AC system.
  • the inverter adopts the following scheme:
  • a hybrid clamp type five-level three-phase inverter includes an upper bus capacitor C u , a middle bus capacitor C m , a lower bus capacitor C l and three inverters corresponding to three-phase lines. ⁇ unit.
  • Both ends of the lower bus capacitor C l are respectively connected to the drain of the x-phase third power electronic switching device S x2 and the x-phase fourth power electronic Switching device
  • the source of the x-phase fifth power electronic switching device S x3 is connected to the source of the x-phase first power electronic switching device S x1 , and the source of the x-phase fifth power electronic switching device S x3 is connected to The drain of the x-phase seventh power electronic switching device S x4 is connected, and the x-phase sixth power electronic switching device
  • the source of the x-phase third power electronic switching device S x2 is connected to the source of the x-phase sixth power electronic switching device Drain and x-phase eighth power electronic switching device
  • the source of the x-phase flying capacitor C xf is connected to the drain of the x-phase seventh power electronic switching device S x4 , and the x-phase eighth power electronic switching device
  • the source of the x-phase seventh power electronic switching device S x4 is connected to the
  • the inverter unit corresponding to A includes a phase a first power electronic switching device S a1 and a phase a second power electronic switching device a-phase third power electronic switching device S a2 , a-phase fourth power electronic switching device A-phase fifth power electronic switching device S a3 , a-phase sixth power electronic switching device a-phase seventh power electronic switching device S a4 , a-phase eighth power electronic switching device And a-phase flying capacitor C af .
  • the drain of the a-phase first power electronic switching device S a1 is connected to point P of the DC bus, and the source of the a-phase first power electronic switching device S a1 is connected to the a-phase second power electronic switching device
  • the drain of the a-phase third power electronic switching device Sa2 is connected to the source of the a-phase fourth power electronic switching device
  • the drain is connected, the a-phase fourth power electronic switching device
  • the source of is connected to the point N of the DC bus, and both ends of the upper bus capacitor Cu are respectively connected to the drain of the a-phase first power electronic switching device S a1 and the a-phase second power electronic switching device
  • the source of the middle bus capacitor C m is connected to the a-phase second power electronic switching device.
  • Drain source, a third phase of power electronic switching devices S a2 is connected, at both ends of the bus capacitor C l are the third drain power electronic switching devices S a2 and a-phase, a fourth phase power electronics Switching device
  • the source of the a-phase fifth power electronic switching device Sa3 is connected to the source of the a-phase first power electronic switching device Sa1 , and the source of the a-phase fifth power electronic switching device Sa3 is connected to The drain of the a-phase seventh power electronic switching device S a4 is connected, and the a-phase sixth power electronic switching device
  • the source of is connected to the source of the a-phase third power electronic switching device Sa2 , and the a-phase sixth power electronic switching device
  • the drain and a phase eighth power electronic switching device The source of the a-phase flying capacitor C af is connected to the drain of the x-phase seventh power electronic switching device Sa4 and the a-phase eighth power electronic switching device respectively.
  • the source of the a-phase seventh power electronic switching device Sa4 is connected to the a-phase eighth power electronic switching device
  • the drain of A is connected to form the output terminal of the inverter unit corresponding to A.
  • the inverter unit corresponding to B and the inverter unit corresponding to C have the same structure as the inverter unit corresponding to A.
  • Driving signal of power electronic switching device S x1 and power electronic switching device The drive signal of is a complementary signal; the drive signal of the power electronic switching device S x2 and the power electronic switching device
  • the driving signal of the power electronic switching device is complementary signal; the driving signal of the power electronic switching device S x3 and the power electronic switching device
  • the drive signal of is a complementary signal; the drive signal of the power electronic switching device S x4 and the power electronic switching device
  • the driving signal of is complementary signal.
  • the drive signal of the a-phase first power electronic switching device S a1 and the a-phase second power electronic switching device The driving signal of is a complementary signal, the driving signal of the a-phase third power electronic switching device Sa2 and the a-phase fourth power electronic switching device
  • the driving signal of is a complementary signal, the driving signal of the a-phase fifth power electronic switching device Sa3 and the a-phase sixth power electronic switching device
  • the driving signal of is a complementary signal, the driving signal of the a-phase seventh power electronic switching device Sa4 and the a-phase eighth power electronic switching device
  • the driving signal of is complementary signal.
  • the power electronic switching device S x3 includes two identical and series-connected power electronic switching tubes, and the power electronic switching device It also includes two identical and series-connected power electronic switch tubes.
  • the drive signals of the two power electronic switching tubes included in the power electronic switching device S x3 are the same, and the power electronic switching device The driving signals of the two power electronic switch tubes included are the same.
  • the other power electronic switching devices are all a power electronic switching tube.
  • the a-phase fifth power electronic switching device S a3 includes two power electronic switching tubes with the same driving signal and connected in series
  • the a-phase sixth power electronic switching device It also includes two power electronic switch tubes with the same drive signal and connected in series. Therefore, each inverter unit actually includes 10 power electronic switch tubes.
  • These power electronic switch tubes all use insulated gate bipolar transistors (Insulated Gate Bipolar Transistor, IGBT).
  • the voltage control of the upper bus capacitance C u is V dc /4
  • the voltage control of the middle bus capacitance C m is V dc /2
  • the voltage control of the lower bus capacitance C l is V dc /4
  • the x-phase flying capacitor C xf The voltage is controlled as V dc /4, for example, the voltage of the a-phase flying capacitor C af is controlled as V dc /4, where V dc is the DC bus voltage.
  • FIG. 2 to 10 take phase A as an example to illustrate the working state of the circuit.
  • the inverter unit corresponding to A includes power electronic switching device Sa1 and power electronic switching device Power electronic switching device Sa2 , power electronic switching device Power electronic switching device Sa3 , power electronic switching device Power electronic switching device S a4 , power electronic switching device And flying capacitance C af .
  • the hybrid clamp type five-level three-phase inverter has a total of 8 states from V 0 to V 7.
  • the state of its power electronic switching devices and the inverter output voltage are shown in Table 1 (take N point as the reference voltage), Among them, “1" represents the power electronic switch tube is turned on, and “0” represents the power electronic switch tube is turned off, as shown in Table 1. It can be seen from Table 1:
  • the output voltage of phase A of the hybrid clamp type five-level three-phase inverter is: 0, V dc /4, V dc /2, 3V dc /4 and V dc , and the output voltage is five Level.
  • the B-phase and C-phase of the hybrid clamp type five-level three-phase inverter are the same as the A phase and also output five-level. It can be seen from the output status of the A-phase bridge arm of the hybrid clamp type five-level three-phase inverter: the maximum voltage that each power electronic switch tube of the hybrid clamp type five-level three-phase inverter can withstand is V dc /4 .
  • Table 1 The relationship between the output voltage of the A-phase bridge arm inverter and the switching state of the inverter
  • the state V 0 is shown in Figure 3: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , the x-phase seventh power electronic switch
  • the device S x4 is turned off, and the output voltage of the inverter unit is 0.
  • the state V 1 is shown in Figure 4: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 is off, and the x-phase seventh power
  • the electronic switching device S x4 is turned on, and the output voltage of the inverter unit is V dc /4;
  • the state V 2 is shown in Figure 5: the x-phase first power electronic switching device S x1 , the x-phase fifth power electronic switching device S x3 , the x-phase seventh power electronic switching device S x4 are turned off, and the x-phase third power The electronic switching device S x2 is turned on, and the output voltage of the inverter unit is V dc /4;
  • the state V 4 is shown in Figure 7: the x-phase first power electronic switching device S x1 , the x-phase seventh power electronic switching device S x4 are off, the x-phase third power electronic switching device S x2 , and the x-phase fifth power
  • the electronic switching device S x3 is turned on, and the output voltage of the inverter unit is V dc /2;
  • the state V 5 is shown in Fig. 8: the x-phase first power electronic switching device S x1 is turned off, the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , and the x-phase seventh power
  • the electronic switching device S x4 is turned on, and the output voltage of the inverter unit is 3V dc /4;
  • the state V 6 is shown in Figure 9: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 are turned on, and the x-phase seventh power The electronic switching device S x4 is turned off, and the output voltage of the inverter unit is 3V dc /4;
  • State V 7 is shown in Figure 10: x-phase first power electronic switching device S x1 , x-phase third power electronic switching device S x2 , x-phase fifth power electronic switching device S x3 , x-phase seventh power electronic switch
  • the device S x4 is turned on, and the output voltage of the inverter unit is V dc .
  • the hybrid clamp type five-level three-phase inverter also includes a control chip, which is respectively connected with the x-phase first power electronic switching device S x1 and the x-phase second power Electronic switching device X-phase third power electronic switching device S x2 , x-phase fourth power electronic switching device X-phase fifth power electronic switching device S x3 , x-phase sixth power electronic switching device X-phase seventh power electronic switching device S x4 , x-phase eighth power electronic switching device Connection, used to output x-phase first power electronic switching device S x1
  • a hybrid clamp type five-level three-phase inverter connected with a DC bus includes three inverter units with the same structure corresponding to three-phase lines.
  • the drain of the x-phase first power electronic switching device S x1 is connected to the point P of the DC bus, and the source of the x-phase first power electronic switching device S x1 and the x-phase second power electronic switching device The drain is connected, the x-phase second power electronic switching device
  • the source of the x-phase third power electronic switching device S x2 is connected to the voltage dividing point O 1
  • the drain of the x-phase third power electronic switching device S x2 is connected to the voltage dividing point O 2
  • the source of the x-phase third power electronic switching device S x2 is connected to the x phase Fourth power electronic switching device
  • the drain is connected, the x-phase fourth power electronic switching device
  • the source of is connected to the point N of the DC bus
  • the drain of the x-phase fifth power electronic switching device S x3 is connected to the source of the x-phase first power electronic switching device S x1
  • the x-phase fifth power electronic switching device The source of S
  • the driving signal of the x-phase first power electronic switching device S x1 and the x-phase second power electronic switching device The driving signal of the x-phase third power electronic switching device S x2 is complementary to the driving signal of the x-phase fourth power electronic switching device
  • the driving signal of the x-phase fifth power electronic switching device S x3 is complementary to the driving signal of the x-phase sixth power electronic switching device
  • the driving signal of the x-phase seventh power electronic switching device S x4 is complementary to the driving signal of the x-phase eighth power electronic switching device
  • the driving signal of is complementary signal.
  • the x-phase fifth power electronic switch S x3 includes two identical and series-connected power electronic switching tubes, and the driving signals of the two power electronic switching tubes are the same.
  • X-phase sixth power electronic switching device It also includes two identical and series-connected power electronic switch tubes, and the drive signals of the two power electronic switch tubes are the same.
  • the hybrid inverter unit has V 0 V 7 to 8 states:
  • the state of V 0 is: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , and the x-phase seventh power electronic switching device S x4 are off , X-phase second power electronic switching device X-phase fourth power electronic switching device X-phase sixth power electronic switching device X-phase eighth power electronic switching device On, the output voltage of the inverter unit corresponding to x is 0;
  • V 1 The state of V 1 is: x-phase first power electronic switching device S x1 , x-phase third power electronic switching device S x2 , x-phase fifth power electronic switching device S x3 , x-phase eighth power electronic switching device Turn off, x-phase second power electronic switching device X-phase fourth power electronic switching device X-phase sixth power electronic switching device
  • the x-phase seventh power electronic switching device S x4 is turned on, and the output voltage of the inverter unit corresponding to x is V dc /4;
  • the state of V 2 is: x-phase first power electronic switching device S x1 , x-phase fourth power electronic switching device X-phase fifth power electronic switching device S x3 , x-phase seventh power electronic switching device S x4 turn off, x-phase second power electronic switching device x-phase third power electronic switching device S x2 , x-phase sixth power electronic switching device X-phase eighth power electronic switching device On, the output voltage of the inverter unit corresponding to x is V dc /4;
  • V 3 state is: x-phase first power electronic switching device S x1 , x-phase fourth power electronic switching device X-phase fifth power electronic switching device S x3 , x-phase eighth power electronic switching device Turn off, x-phase second power electronic switching device x-phase third power electronic switching device S x2 , x-phase sixth power electronic switching device
  • the x-phase seventh power electronic switching device S x4 is turned on, and the output voltage of the inverter unit relative to x is V dc /2;
  • the state of V 4 is: x-phase first power electronic switching device S x1 , x-phase fourth power electronic switching device X-phase sixth power electronic switching device X-phase seventh power electronic switching device S x4 is turned off, x-phase second power electronic switching device X-phase third power electronic switching device S x2 , x-phase fifth power electronic switching device S x3 , x-phase eighth power electronic switching device On, the output voltage of the inverter unit corresponding to x is V dc /2;
  • the state of V 5 is: x-phase first power electronic switching device S x1 , x-phase fourth power electronic switching device X-phase sixth power electronic switching device X-phase eighth power electronic switching device Turn off, x-phase second power electronic switching device
  • the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , and the x-phase seventh power electronic switching device S x4 are turned on, and the output voltage of the inverter unit corresponding to x is 3V dc /4;
  • V 6 state is: x-phase first power electronic switching device S x1 , x-phase third power electronic switching device S x2 , x-phase fifth power electronic switching device S x3 , x-phase eighth power electronic switching device On, x-phase second power electronic switching device X-phase fourth power electronic switching device X-phase sixth power electronic switching device
  • the x-phase seventh power electronic switching device S x4 is turned off, and the output voltage of the inverter unit corresponding to x is 3V dc /4;
  • the state of V 7 is: the x-phase first power electronic switching device S x1 , the x-phase third power electronic switching device S x2 , the x-phase fifth power electronic switching device S x3 , and the x-phase seventh power electronic switching device S x4 are turned on , X-phase second power electronic switching device X-phase fourth power electronic switching device X-phase sixth power electronic switching device X-phase eighth power electronic switching device is turned off
  • the output voltage of the inverter unit corresponding to x is V dc .
  • the hybrid clamp type five-level three-phase inverter also includes a control chip for outputting drive signals of each power electronic switching device.
  • the topology of the invention only needs 10 power electronic switches per phase bridge arm to realize the inverter output five-level output, and the maximum voltage that each power electronic switch tube can bear is V dc /4, which reduces the conventional five-level inverter
  • the required power electronic switch tube thereby reducing the cost of the inverter and improving the efficiency of the inverter, has a good application prospect in renewable energy power generation systems, such as 1500V medium voltage three-phase photovoltaic power generation systems in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种混合钳位型五电平三相逆变器,包括上母线电容、中母线电容、下母线电容和分别对应三相线路的三个逆变单元;每个逆变单元包括x相第一电力电子开关器件、x相第二电力电子开关器件、x相第三电力电子开关器件、x相第四电力电子开关器件、x相第五电力电子开关器件、x相第六电力电子开关器件、x相第七电力电子开关器件、x相第八电力电子开关器件和x相飞跨电容。本发明减少了常规五电平逆变器所需要的电力电子开关器件数量,从而降低了逆变器的成本、提高了逆变器的效率,在可再生能源发电系统中有很好的应用前景。

Description

混合钳位型五电平三相逆变器和逆变系统 技术领域
本发明属于逆变技术领域,具体涉及一种混合钳位型五电平三相逆变器,在可再生能源发电系统(如光伏发电,风力发电等)中可应用。
背景技术
多电平逆变器与二电平逆变器相比具有以下几个优势:(1)降低了单个器件的电压应力;(2)减少逆变器输出电压的谐波;(3)降低了共模电压;(4)实现低开关和导通损耗,从而提高逆变器的效率。因此,多电平逆变器在可再生能源发电系统中得到广泛的应用。
在多电平变换器结构中,传统的主要有二极管钳位型、飞跨电容型以及级联型拓扑结构。随着变换器输出电平数的增加,二极管钳位型多电平变换器需要钳位二极管成倍增加,飞跨电容结构需要的钳位电容成倍增加,而级联型结构需要众多的隔离电源。
为解决上述问题,大量的新型多电平拓扑结构被提出。五电平有源中点钳位型(Active Neutral-Point-Clamped,ANPC)拓扑弥补了二极管钳位型拓扑和电容钳位型拓扑的缺点,不仅不需要大量的钳位二极管和钳位电容,而且母线中点电压可以通过算法加以控制,是一种已商业化的多电平拓扑结构,但存在所需的开关器件多不足。为了进一步增加多电平逆变器输出电压的数量以及减少多电平逆变器的器件,有必要设计一种新的混合钳位型五电平三相逆变器结构。
发明内容
本发明的目的是提供一种尽量减少电力电子器件数量,从而进一步提高逆变器的效率、降低逆变器成本的混合钳位型五电平三相逆变器。
为达到上述目的,本发明采用的技术方案是:
一种混合钳位型五电平三相逆变器,包括上母线电容C u、中母线电容C m、下母线电容C l和分别对应三相线路的三个逆变单元;每个所述逆变单元包括x相第一电力电子开关器件S x1、x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000001
x相第三电力电子开关器件S x2、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000002
x相第五电力电子开关器件S x3、x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000003
x相第七电力电子开关器件S x4、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000004
和x相飞跨电容C xf,其中,x=a或b或c,对应三相线路;所述x相第一电力电子开关器件S x1的漏极与直流母线P点相连接,所述x相第一电力电子开关器件S x1的源极与所述x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000005
的漏极相连接,所述x相第三电力电子开关器件S x2的源极与所述x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000006
的漏极相连接,所述x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000007
的源极与直流母线N点相连接,所述上母线电容C u的两端分别与所述x相第一电力电子开关器件S x1的漏极、所述x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000008
的源极相连接,所述中母线电容C m的两端分别与所述x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000009
的源极、所述x相第三电力电子开关器件S x2的漏极相连接,所述下母线电容C l的两端分别与所述x相第三电力电子开关器件S x2的漏极、所述x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000010
的源极相连接,所述x相第五电力电子开关器件S x3的漏极与所述x相第一电力电子开关器件S x1的源极相连接,所述x相第五电力电子开关器件S x3的源极与所述x相第七电力电子开关器件S x4的漏极相连接,所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000011
的源极与所述x相第三电力电子开关器件S x2的源极相连接,所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000012
的漏极与所述x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000013
的源极相连接,所述x相飞跨电容C xf的两端分别与所述x相第七电力电子开关器件S x4的漏极、所述x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000014
的源极相连接,所述x相第七电力电子开关器件S x4的源极与所述x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000015
的漏极相连接并构成所述逆变单元的输出端。
所述x相第一电力电子开关器件S x1的驱动信号与所述x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000016
的驱动信号为互补信号;所述x相第三电力电子开关器件S x2的驱动信号与所述x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000017
的驱动信号为互补信号;所述x相第五电力电子开关器件S x3的驱动信号与所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000018
的驱动信号为互补信号;所述x相第七电力电子开关器件S x4的驱动信号与所述x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000019
的驱动信号为互补信号。
所述x相第五电力电子开关器件S x3包括两个相同且串联的电力电子开关管,所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000020
也包括两个相同且串联的电力电子开关管。
所述x相第五电力电子开关器件S x3所包括的两个所述电力电子开关管的驱动信号相同,所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000021
所包括的两个所述电力电子开关管的驱动信号相同。
所述上母线电容C u的电压控制为V dc/4,所述中母线电容C m的电压控制为V dc/2,所述下母线电容C l的电压控制为V dc/4,所述x相飞跨电容C xf的电压控制为V dc/4,其中V dc为直流母线电压。
所述混合钳位型五电平三相逆变器具有V 0至V 7共8种状态;
V 0状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4关断,所述逆变单元输出电压为0;
V 1状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3关断,所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc/4;
V 2状态为:所述x相第一电力电子开关器件S x1、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4关断,所述x相第三电力电子开关器件S x2导通,所述逆变单元输出电压为V dc/4;
V 3状态为:所述x相第一电力电子开关器件S x1、所述x相第五电力电子开关器件S x3关断,所述x相第三电力电子开关器件S x2、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc/2;
V 4状态为:所述x相第一电力电子开关器件S x1、所述x相第七电力电子开关器件S x4关断,所述x相第三电力电子开关器件S x2、所述x相第七电力电子开关器件S x3导通,所述逆变单元输出电压为V dc/2;
V 5状态为:所述x相第一电力电子开关器件S x1关断,所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为3V dc/4;
V 6状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3导通,所述x相第七电力电子开关器件S x4关断,所述逆变单元输出电压为3V dc/4;
V 7状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc
所述混合钳位型五电平三相逆变器还包括用于输出所述x相第一电力电子开关器件S x1、所述x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000022
所述x相第三电力电子开关器件S x2、所述x相 第四电力电子开关器件
Figure PCTCN2020105659-appb-000023
所述x相第五电力电子开关器件S x3、所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000024
所述x相第七电力电子开关器件S x4、所述x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000025
的驱动信号的控制芯片。
所述x相第一电力电子开关器件S x1、所述x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000026
所述x相第三电力电子开关器件S x2、所述x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000027
所述x相第五电力电子开关器件S x3、所述x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000028
所述x相第七电力电子开关器件S x4、所述x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000029
均采用绝缘栅双极型晶体管。
混合钳位型五电平三相逆变器的另一方案是:
一种混合钳位型五电平三相逆变器,与直流母线相连接,所述直流母线的两端分别为P点和Q点,所述直流母线的P点和Q点之间还具有分压点O 1和分压点O 2,其特征在于:所述混合钳位型五电平三相逆变器包括分别对应三相线路的三个结构相同的逆变单元;
每个所述逆变单元包括八个电力电子开关器件和飞跨电容,八个所述电力电子开关器件分别为第一电力电子开关器件、第二电力电子开关器件、第三电力电子开关器件、第四电力电子开关器件、第五电力电子开关器件、第六电力电子开关器件、第七电力电子开关器件和第八电力电子开关器件;所述第一电力电子开关器件的漏极与所述直流母线的P点相连接,所述第一电力电子开关器件的源极与所述第二电力电子开关器件的漏极相连接,所述第二电力电子开关器件的源极与所述分压点O 1相连接,所述第三电力电子开关器件的漏极与所述分压点O 2相连接,所述第三电力电子开关器件的源极与所述第四电力电子开关器件的漏极相连接,所述第四电力电子开关器件的源极与所述直流母线的N点相连接,所述第五电力电子开关器件的漏极与所述第一电力电子开关器件的源极相连接,所述第五电力电子开关器件的源极与所述第七电力电子开关器件的漏极相连接,所述第六电力电子开关器件的源极与所述第三电力电子开关器件的源极相连接,所述第六电力电子开关器件的漏极与所述第八电力电子开关器件的源极相连接,所述飞跨电容的两端分别与所述第七电力电子开关器件的漏极、所述第八电力电子开关器件的源极相连接,所述第七电力电子开关器件的源极与所述第八电力电子开关器件的漏极相连接并构成所述逆变单元的输出端;
所述第一电力电子开关器件的驱动信号与所述第二电力电子开关器件的驱动信号为互补信号,所述第三电力电子开关器件的驱动信号与所述第四电力电子开关器件的驱动信号为互补信号,所述第五电力电子开关器件的驱动信号与所述第六电力电子开关器件的驱动信号为互补信号,所述第七电力电子开关器件的驱动信号与所述第八电力电子开关器件的驱动信号为互补信号。
所述第五电力电子开关器件包括两个相同且串联的电力电子开关管,所述第六电力电子开关器件也包括两个相同且串联的电力电子开关管;所述第五电力电子开关器件所包括的两个所述电力电子开关管的驱动信号相同,所述第六电力电子开关器件所包括的两个所述电力电子开关管的驱动信号相同。
所述直流母线电压为V dc,所述直流母线上的P点与所述分压点O 1之间的电压控制为V dc/4,所述分压点O 1与所述分压点O 2之间的电压控制为V dc/2,所述分压点O 2与所述直流母线上的N点之间的电压控制为V dc/4,则所述混逆变单元具有V 0至V 7共8种状态;
V 0状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件关断,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件导通,所述逆变单元输出电压为0;
V 1状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件关断,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件导通,所述逆变单元输出电压为V dc/4;
V 2状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件导通,所述逆变单元输出电压为V dc/4;
V 3状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件导通,所述逆变单元输出电压为V dc/2;
V 4状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件导通,所述逆变单元输出电压为V dc/2;
V 5状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件导通,所述逆变单元输出电压为3V dc/4;
V 6状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件导通,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件关断,所述逆变单元输出电压为3V dc/4;
V 7状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件导通,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件关断,所述逆变单元输出电压为V dc
所述混合钳位型五电平三相逆变器还包括用于输出各个所述电力电子开关器件的驱动信号的控制芯片。
各个所述电力电子开关器件均采用绝缘栅双极型晶体管。
本发明还提供一种基于上述混合钳位型五电平三相逆变器的逆变系统,即该逆变系统包括直流系统、交流系统以及设置在所述直流系统和所述交流系统之间的上述混合钳位型五电平三相逆变器。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明减少了常规五电平逆变器所需要的电力电子开关器件数量,从而降低了逆变器的成本、提高了逆变器的效率,在可再生能源发电系统中有很好的应用前景。
附图说明
附图1为本发明的混合钳位型五电平三相逆变器的结构图。
附图2为本发明的混合钳位型五电平三相逆变器中A相结构图。
附图3为本发明的混合钳位型五电平三相逆变器中A相在V 0状态的电路图。
附图4为本发明的混合钳位型五电平三相逆变器中A相在V 1状态的电路图。
附图5为本发明的混合钳位型五电平三相逆变器中A相在V 2状态的电路图。
附图6为本发明的混合钳位型五电平三相逆变器中A相在V 3状态的电路图。
附图7为本发明的混合钳位型五电平三相逆变器中A相在V 4状态的电路图。
附图8为本发明的混合钳位型五电平三相逆变器中A相在V 5状态的电路图。
附图9为本发明的混合钳位型五电平三相逆变器中A相在V 6状态的电路图。
附图10为本发明的混合钳位型五电平三相逆变器中A相在V 7状态的电路图。
具体实施方式
下面结合附图所示的实施例对本发明作进一步描述。
实施例一:逆变系统包括直流系统、交流系统以及设置在直流系统和交流系统之间的逆变器。逆变器的输入、输出端分别与直流系统、交流系统相连接,当直流系统的输出端相当于直流母线的P点和Q点时,逆变器采用以下方案:
如附图1所示,一种混合钳位型五电平三相逆变器,包括上母线电容C u、中母线电容C m、下母线电容C l和分别对应三相线路的三个逆变单元。每个逆变单元包括x相第一电力电子开关器件S x1、x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000030
x相第三电力电子开关器件S x2、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000031
x相第五电力电子开关器件S x3、x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000032
x相第七电力电子开关器件S x4、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000033
和x相飞跨电容C xf,其中,x=a或b或c,对应三相线路;x相第一电力电子开关器件S x1的漏极与直流母线P点相连接,x相第一电力电子开关器件S x1的源极与x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000034
的漏极相连接,x相第三电力电子开关器件S x2的源极与x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000035
的漏极相连接,x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000036
的源极与直流母线N点相连接,上母线电容C u的两端分别与x相第一电力电子开关器件S x1的漏极、x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000037
的源极相连接,中母线电容C m的两端分别与x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000038
的源极、x相第三电力电子开关器件S x2的漏极相连接,下母线电容C l的两端分别与x相第三电力电子开关器件S x2的漏极、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000039
的源极相连接,x相第五电力电子开关器件S x3的漏极与x相第一电力电子开关器件S x1的源极相连接,x相第五电力电子开关器件S x3的源极与x相第七电力电子开关器件S x4的漏极相连接,x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000040
的源极与x相第三电力电子开关器件S x2的源极相连接,x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000041
的漏极与x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000042
的源极相连接,x相飞跨电容C xf的两端分别与x相第七电力电子开关器件S x4的漏极、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000043
的源极相连接,x相第七电力电子开关器件S x4的源极与x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000044
的漏极相连接并构成逆变单元的输出端。
以A相为例,即x=a,如附图1所示,A相对应的逆变单元包括a相第一电力电子开关器件S a1、a相第二电力电子开关器件
Figure PCTCN2020105659-appb-000045
a相第三电力电子开关器件S a2、a相第四电力电子开关器件
Figure PCTCN2020105659-appb-000046
a相第五电力电子开关器件S a3、a相第六电力电子开关器件
Figure PCTCN2020105659-appb-000047
a相第七电力电子开关器件S a4、a相第八电力电子开关器件
Figure PCTCN2020105659-appb-000048
和a相飞跨电容C af。a相第一电力电子开关器件S a1的漏极与直流母线P点相连接,a相第一电力电子开关器件S a1的源极与a相第二电力电子开关器件
Figure PCTCN2020105659-appb-000049
的漏极相连接,a相第三电力电子开关器件S a2的源极与a相第四电力电子开关器件
Figure PCTCN2020105659-appb-000050
的漏极相连接,a相第四电力电子开关器件
Figure PCTCN2020105659-appb-000051
的源极与直流母线N点相连接,上母线电容C u的两端分别与a相第一电力电子开关器件S a1的漏极、a相第二电力电子开关器件
Figure PCTCN2020105659-appb-000052
的源极相连接,中母线电容C m的两端分别与a相第二电力电子开关器件
Figure PCTCN2020105659-appb-000053
的源极、a相第三电力电子开关器件S a2的漏极相连接,下母线电容C l的两端分别与a相第三电力电子开关器件S a2的漏极、a相第四电力电子开关器件
Figure PCTCN2020105659-appb-000054
的源极相连接,a相第五电力电子开关器件S a3的漏极与a相第一电力电子开关器件S a1的源极相连接,a相第五电力电子开关器件S a3的源极与a相第七电力电子开关器件S a4的漏极相连接,a相第六电力电子开关器件
Figure PCTCN2020105659-appb-000055
的源极与a相第三电力电子开关器件S a2的源极相连接,a相第六电力电子开关器件
Figure PCTCN2020105659-appb-000056
的漏极与a相第八电力电子开关器件
Figure PCTCN2020105659-appb-000057
的源极相连接,a相飞跨电容C af的两端分 别与x相第七电力电子开关器件S a4的漏极、a相第八电力电子开关器件
Figure PCTCN2020105659-appb-000058
的源极相连接,a相第七电力电子开关器件S a4的源极与a相第八电力电子开关器件
Figure PCTCN2020105659-appb-000059
的漏极相连接并构成A相对应的逆变单元的输出端。B相对应的逆变单元、C相对应的逆变单元均与上述A相对应的逆变单元结构相同。
电力电子开关器件S x1的驱动信号与电力电子开关器件
Figure PCTCN2020105659-appb-000060
的驱动信号为互补信号;电力电子开关器件S x2的驱动信号与电力电子开关器件
Figure PCTCN2020105659-appb-000061
的驱动信号为互补信号;电力电子开关器件S x3的驱动信号与电力电子开关器件
Figure PCTCN2020105659-appb-000062
的驱动信号为互补信号;电力电子开关器件S x4的驱动信号与电力电子开关器件
Figure PCTCN2020105659-appb-000063
的驱动信号为互补信号。例如A相对应的逆变单元中,a相第一电力电子开关器件S a1的驱动信号和a相第二电力电子开关器件
Figure PCTCN2020105659-appb-000064
的驱动信号为互补信号,a相第三电力电子开关器件S a2的驱动信号和a相第四电力电子开关器件
Figure PCTCN2020105659-appb-000065
的驱动信号为互补信号,a相第五电力电子开关器件S a3的驱动信号和a相第六电力电子开关器件
Figure PCTCN2020105659-appb-000066
的驱动信号为互补信号,a相第七电力电子开关器件S a4的驱动信号和a相第八电力电子开关器件
Figure PCTCN2020105659-appb-000067
的驱动信号为互补信号。
上述逆变器结构中,电力电子开关器件S x3包括两个相同且串联的电力电子开关管,电力电子开关器件
Figure PCTCN2020105659-appb-000068
也包括两个相同且串联的电力电子开关管。电力电子开关器件S x3所包括的两个电力电子开关管的驱动信号相同,电力电子开关器件
Figure PCTCN2020105659-appb-000069
所包括的两个电力电子开关管的驱动信号相同。其余各电力电子开关器件均为一个电力电子开关管。例如A相对应的逆变单元中,a相第五电力电子开关器件S a3包括两个驱动信号相同且串联的电力电子开关管,a相第六电力电子开关器件
Figure PCTCN2020105659-appb-000070
也包括两个驱动信号相同且串联的电力电子开关管。因此,每个逆变单元中,实际包括10个电力电子开关管。这些电力电子开关管均采用绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)。
上母线电容C u的电压控制为V dc/4,中母线电容C m的电压控制为V dc/2,下母线电容C l的电压控制为V dc/4,x相飞跨电容C xf的电压控制为V dc/4,如a相飞跨电容C af的电压控制为V dc/4,其中V dc为直流母线电压。
附图2至附图10以A相为例说明该电路的工作状态。在A相对应的逆变单元中,包括电力电子开关器件S a1、电力电子开关器件
Figure PCTCN2020105659-appb-000071
电力电子开关器件S a2、电力电子开关器件
Figure PCTCN2020105659-appb-000072
电力电子开关器件S a3、电力电子开关器件
Figure PCTCN2020105659-appb-000073
电力电子开关器件S a4、电力电子开关器件
Figure PCTCN2020105659-appb-000074
和飞跨电容C af
混合钳位型五电平三相逆变器具有V 0至V 7共8种状态,其电力电子开关器件的状态与逆变器输出电压如表1所示(以N点为参考电压),其中“1”代表电力电子开关管导通,“0”代表电力电子开关管关断如表1所示。从表1可以看出:该混合钳位型五电平三相逆变器A相输出电压为:0,V dc/4,V dc/2,3V dc/4和V dc,输出电压为五电平。混合钳位型五电平三相逆变器的B相和C相与A相相同,也输出五电平。从混合钳位型五电平三相逆变器A相桥臂输出状态可以看出:混合钳位型五电平三相逆变器每个电力电子开关管承受的最大电压为V dc/4。
表1 A相桥臂逆变器输出电压与逆变器开关状态的关系
状态 S a1 S a2 S a3 S a4 输出电压V out
V 0 0 0 0 0 0
V 1 0 0 0 1 V dc/4
V 2 0 1 0 0 V dc/4
V 3 0 1 0 1 V dc/2
V 4 0 1 1 0 V dc/2
V 5 0 1 1 1 3V dc/4
V 6 1 1 1 0 3V dc/4
V 7 1 1 1 1 V dc
状态V 0如附图3所示:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4关断,逆变单元输出电压为0。
状态V 1如附图4所示:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3关断,x相第七电力电子开关器件S x4导通,逆变单元输出电压为V dc/4;
状态V 2如附图5所示:x相第一电力电子开关器件S x1、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4关断,x相第三电力电子开关器件S x2导通,逆变单元输出电压为V dc/4;
状态V 3如附图6所示:x相第一电力电子开关器件S x1、电x相第五力电子开关器件S x3关断,x相第三电力电子开关器件S x2、x相第七电力电子开关器件S x4导通,逆变单元输出电压为V dc/2;
状态V 4如附图7所示:x相第一电力电子开关器件S x1、x相第七电力电子开关器件S x4关断,x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3导通,逆变单元输出电压为V dc/2;
状态V 5如附图8所示:x相第一电力电子开关器件S x1关断,x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4导通,逆变单元输出电压为3V dc/4;
状态V 6如附图9所示:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3导通,x相第七电力电子开关器件S x4关断,逆变单元输出电压为3V dc/4;
状态V 7如附图10所示:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4导通,逆变单元输出电压为V dc
由于x相第一电力电子开关器件S x1、x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000075
x相第三电力电子开关器件S x2、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000076
x相第五电力电子开关器件S x3、x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000077
x相第七电力电子开关器件S x4、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000078
均需在对应驱动信号的驱动下工作,因此该混合钳位型五电平三相逆变器还包括控制芯片,控制芯片分别与x相第一电力电子开关器件S x1、x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000079
x相第三电力电子开关器件S x2、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000080
x相第五电力电子开关器件S x3、x相第 六电力电子开关器件
Figure PCTCN2020105659-appb-000081
x相第七电力电子开关器件S x4、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000082
连接,用于输出x相第一电力电子开关器件S x1、x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000083
x相第三电力电子开关器件S x2、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000084
x相第五电力电子开关器件S x3、x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000085
x相第七电力电子开关器件S x4、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000086
的驱动信号。
当逆变器所连接的直流系统以直流母线作为输出,且直流母线的两端分别为P点和Q点,直流母线的P点和Q点之间还具有分压点O 1和分压点O 2时(分压点O 1和分压点O 2可以利用串联在P点和Q点之间的三个电容——上母线电容C u、中母线电容C m、下母线电容C l形成,即上母线电容C u和中母线电容C m之间形成分压点O 1,中母线电容C m和下母线电容C l之间形成分压点O 2),逆变器的方案如下:
一种与直流母线相连接的混合钳位型五电平三相逆变器,包括分别对应三相线路的三个结构相同的逆变单元。
每个逆变单元(对应x相,其中x=a或b或c,对应三相线路)包括八个电力电子开关器件和x相飞跨电容C xf,八个电力电子开关器件均采用绝缘栅双极型晶体管,分别为第一电力电子开关器件(即x相第一电力电子开关器件S x1)、第二电力电子开关器件(即x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000087
)、第三电力电子开关器件(即x相第三电力电子开关器件S x2)、第四电力电子开关器件(即x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000088
)、第五电力电子开关器件(即x相第五电力电子开关器件S x3)、第六电力电子开关器件(即x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000089
)、第七电力电子开关器件(即x相第七电力电子开关器件S x4)和第八电力电子开关器件(即x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000090
);x相第一电力电子开关器件S x1的漏极与直流母线的P点相连接,x相第一电力电子开关器件S x1的源极与x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000091
的漏极相连接,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000092
的源极与分压点O 1相连接,x相第三电力电子开关器件S x2的漏极与分压点O 2相连接,x相第三电力电子开关器件S x2的源极与x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000093
的漏极相连接,x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000094
的源极与直流母线的N点相连接,x相第五电力电子开关器件S x3的漏极与x相第一电力电子开关器件S x1的源极相连接,x相第五电力电子开关器件S x3的源极与x相第七电力电子开关器件S x4的漏极相连接,x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000095
的源极与x相第三电力电子开关器件S x2的源极相连接,x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000096
的漏极与x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000097
的源极相连接,x相飞跨电容C xf的两端分别与x相第七电力电子开关器件S x4的漏极、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000098
的源极相连接,x相第七电力电子开关器件S x4的源极与x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000099
的漏极相连接并构成x相对应的逆变单元的输出端。
x相第一电力电子开关器件S x1的驱动信号与x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000100
的驱动信号为互补信号,x相第三电力电子开关器件S x2的驱动信号与x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000101
的驱动信号为互补信号,x相第五电力电子开关器件S x3的驱动信号与x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000102
的驱动信号为互补信号,x相第七电力电子开关器件S x4的驱动信号与x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000103
的驱动信号为互补信号。
其中,x相第五电力电子开关器S x3件包括两个相同且串联的电力电子开关管,这两个电力电子开关管的驱动信号相同。x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000104
也包括两个相同且串联的电力电子开关管,这两个电力电子开关管的驱动信号相同。
当直流母线电压为V dc,直流母线上的P点与分压点O 1之间的电压控制为V dc/4,分压点O 1与分压点O 2之间的电压控制为V dc/2,分压点O 2与直流母线上的N点之间的电压控制为V dc/4,x相飞跨电容C xf的电压控制为V dc/4时,混逆变单元具有V 0至V 7共8种状态:
V 0状态为:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4关断,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000105
x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000106
x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000107
x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000108
导通,x相对应的逆变单元输出电压为0;
V 1状态为:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000109
关断,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000110
x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000111
x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000112
x相第七电力电子开关器件S x4导通,x相对应的逆变单元输出电压为V dc/4;
V 2状态为:x相第一电力电子开关器件S x1、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000113
x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4关断,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000114
x相第三电力电子开关器件S x2、x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000115
x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000116
导通,x相对应的逆变单元输出电压为V dc/4;
V 3状态为:x相第一电力电子开关器件S x1、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000117
x相第五电力电子开关器件S x3、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000118
关断,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000119
x相第三电力电子开关器件S x2、x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000120
x相第七电力电子开关器件S x4导通,x相对的逆变单元输出电压为V dc/2;
V 4状态为:x相第一电力电子开关器件S x1、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000121
x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000122
x相第七电力电子开关器件S x4关断,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000123
x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000124
导通,x相对应的逆变单元输出电压为V dc/2;
V 5状态为:x相第一电力电子开关器件S x1、x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000125
x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000126
x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000127
关断,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000128
x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4导通,x相对应的逆变单元输出电压为3V dc/4;
V 6状态为:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第八电力电子开关器件
Figure PCTCN2020105659-appb-000129
导通,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000130
x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000131
x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000132
x相第七电力电子开关器件S x4关断,x相对应的逆变单元输出电压为3V dc/4;
V 7状态为:x相第一电力电子开关器件S x1、x相第三电力电子开关器件S x2、x相第五电力电子开关器件S x3、x相第七电力电子开关器件S x4导通,x相第二电力电子开关器件
Figure PCTCN2020105659-appb-000133
x相第四电力电子开关器件
Figure PCTCN2020105659-appb-000134
x相第六电力电子开关器件
Figure PCTCN2020105659-appb-000135
x相第八电力电子开关器件关断
Figure PCTCN2020105659-appb-000136
x相对应的逆变单元输出电压为V dc
该混合钳位型五电平三相逆变器还包括用于输出各个电力电子开关器件的驱动信号的控制芯片。
该发明拓扑结构每相桥臂只需要10个电力电子开关实现逆变器输出五电平输出,每个电力电子开关管承受的最大电压为V dc/4,减少了常规五电平逆变器所需要的电力电子开关 管,从而降低了逆变器的成本和提高逆变器的效率,在可再生能源发电系统中有很好的应用前景,如可以应用于1500V中压三相光伏发电系统中。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (16)

  1. 一种混合钳位型五电平三相逆变器,其特征在于:所述混合钳位型五电平三相逆变器包括上母线电容C u、中母线电容C m、下母线电容C l和分别对应三相线路的三个逆变单元;每个所述逆变单元包括x相第一电力电子开关器件S x1、x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100001
    x相第三电力电子开关器件S x2、x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100002
    x相第五电力电子开关器件S x3、x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100003
    x相第七电力电子开关器件S x4、x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100004
    和x相飞跨电容C xf,其中,x=a或b或c,对应三相线路;所述x相第一电力电子开关器件S x1的漏极与直流母线P点相连接,所述x相第一电力电子开关器件S x1的源极与所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100005
    的漏极相连接,所述x相第三电力电子开关器件S x2的源极与所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100006
    的漏极相连接,所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100007
    的源极与直流母线N点相连接,所述上母线电容C u的两端分别与所述x相第一电力电子开关器件S x1的漏极、所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100008
    的源极相连接,所述中母线电容C m的两端分别与所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100009
    的源极、所述x相第三电力电子开关器件S x2的漏极相连接,所述下母线电容C l的两端分别与所述x相第三电力电子开关器件S x2的漏极、所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100010
    的源极相连接,所述x相第五电力电子开关器件S x3的漏极与所述x相第一电力电子开关器件S x1的源极相连接,所述x相第五电力电子开关器件S x3的源极与所述x相第七电力电子开关器件S x4的漏极相连接,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100011
    的源极与所述x相第三电力电子开关器件S x2的源极相连接,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100012
    的漏极与所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100013
    的源极相连接,所述x相飞跨电容C xf的两端分别与所述x相第七电力电子开关器件S x4的漏极、所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100014
    的源极相连接,所述x相第七电力电子开关器件S x4的源极与所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100015
    的漏极相连接并构成所述逆变单元的输出端;
    所述x相第一电力电子开关器件S x1的驱动信号与所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100016
    的驱动信号为互补信号;所述x相第三电力电子开关器件S x2的驱动信号与所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100017
    的驱动信号为互补信号;所述x相第五电力电子开关器件S x3的驱动信号与所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100018
    的驱动信号为互补信号;所述x相第七电力电子开关器件S x4的驱动信号与所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100019
    的驱动信号为互补信号;
    所述x相第五电力电子开关器件S x3包括两个相同且串联的电力电子开关管,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100020
    也包括两个相同且串联的电力电子开关管;
    所述x相第五电力电子开关器件S x3所包括的两个所述电力电子开关管的驱动信号相同,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100021
    所包括的两个所述电力电子开关管的驱动信号相同;
    所述上母线电容C u的电压控制为V dc/4,所述中母线电容C m的电压控制为V dc/2,所述下母线电容C l的电压控制为V dc/4,所述飞跨电容C xf的电压控制为V dc/4,其中V dc为直流母线电压;
    所述混合钳位型五电平三相逆变器具有V 0至V 7共8种状态;
    V 0状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4关断,所述逆变单元输出电压为0;
    V 1状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3关断,所述x相第七电力电子开关器件S x4导通,所述逆变单 元输出电压为V dc/4;
    V 2状态为:所述x相第一电力电子开关器件S x1、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4关断,所述x相第三电力电子开关器件S x2导通,所述逆变单元输出电压为V dc/4;
    V 3状态为:所述x相第一电力电子开关器件S x1、所述x相第五电力电子开关器件S x3关断,所述x相第三电力电子开关器件S x2、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc/2;
    V 4状态为:所述x相第一电力电子开关器件S x1、所述x相第七电力电子开关器件S x4关断,所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3导通,所述逆变单元输出电压为V dc/2;
    V 5状态为:所述x相第一电力电子开关器件S x1关断,所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为3V dc/4;
    V 6状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3导通,所述x相第七电力电子开关器件S x4关断,所述逆变单元输出电压为3V dc/4;
    V 7状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc
  2. 根据权利要求1所述的混合钳位型五电平三相逆变器,其特征在于:所述混合钳位型五电平三相逆变器还包括用于输出所述x相第一电力电子开关器件S x1、所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100022
    所述x相第三电力电子开关器件S x2、所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100023
    所述x相第五电力电子开关器件S x3、所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100024
    所述x相第七电力电子开关器件S x4、所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100025
    的驱动信号的控制芯片。
  3. 一种混合钳位型五电平三相逆变器,其特征在于:所述混合钳位型五电平三相逆变器包括上母线电容C u、中母线电容C m、下母线电容C l和分别对应三相线路的三个逆变单元;每个所述逆变单元包括x相第一电力电子开关器件S x1、x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100026
    x相第三电力电子开关器件S x2、x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100027
    x相第五电力电子开关器件S x3、x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100028
    x相第七电力电子开关器件S x4、x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100029
    和x相飞跨电容C xf,其中,x=a或b或c,对应三相线路;所述x相第一电力电子开关器件S x1的漏极与直流母线P点相连接,所述x相第一电力电子开关器件S x1的源极与所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100030
    的漏极相连接,所述x相第三电力电子开关器件S x2的源极与所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100031
    的漏极相连接,所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100032
    的源极与直流母线N点相连接,所述上母线电容C u的两端分别与所述x相第一电力电子开关器件S x1的漏极、所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100033
    的源极相连接,所述中母线电容C m的两端分别与所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100034
    的源极、所述x相第三电力电子开关器件S x2的漏极相连接,所述下母线电容C l的两端分别与所述x相第三电力电子开关器件S x2的漏极、所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100035
    的源极相连接,所述x相第五电力电子开关器件S x3的漏极与所述x相第一电力电子开关器件S x1的源极相连接,所述x相第五电力电子开关器件S x3的源极与所述x相第七电力电子开关器件S x4的漏极相连接,所述x相第六电力电子开 关器件
    Figure PCTCN2020105659-appb-100036
    的源极与所述x相第三电力电子开关器件S x2的源极相连接,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100037
    的漏极与所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100038
    的源极相连接,所述x相飞跨电容C xf的两端分别与所述x相第七电力电子开关器件S x4的漏极、所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100039
    的源极相连接,所述x相第七电力电子开关器件S x4的源极与所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100040
    的漏极相连接并构成所述逆变单元的输出端。
  4. 根据权利要求3所述的混合钳位型五电平三相逆变器,其特征在于:所述x相第一电力电子开关器件S x1的驱动信号与所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100041
    的驱动信号为互补信号;所述x相第三电力电子开关器件S x2的驱动信号与所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100042
    的驱动信号为互补信号;所述x相第五电力电子开关器件S x3的驱动信号与所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100043
    的驱动信号为互补信号;所述x相第七电力电子开关器件S x4的驱动信号与所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100044
    的驱动信号为互补信号。
  5. 根据权利要求3所述的混合钳位型五电平三相逆变器,其特征在于:所述x相第五电力电子开关器件S x3包括两个相同且串联的电力电子开关管,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100045
    也包括两个相同且串联的电力电子开关管。
  6. 根据权利要求5所述的混合钳位型五电平三相逆变器,其特征在于:所述x相第五电力电子开关器件S x3所包括的两个所述电力电子开关管的驱动信号相同,所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100046
    所包括的两个所述电力电子开关管的驱动信号相同。
  7. 根据权利要求3所述的混合钳位型五电平三相逆变器,其特征在于:所述上母线电容C u的电压控制为V dc/4,所述中母线电容C m的电压控制为V dc/2,所述下母线电容C l的电压控制为V dc/4,所述x相飞跨电容C xf的电压控制为V dc/4,其中V dc为直流母线电压。
  8. 根据权利要求7所述的混合钳位型五电平三相逆变器,其特征在于:所述混合钳位型五电平三相逆变器具有V 0至V 7共8种状态;
    V 0状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4关断,所述逆变单元输出电压为0;
    V 1状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3关断,所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc/4;
    V 2状态为:所述x相第一电力电子开关器件S x1、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4关断,所述x相第三电力电子开关器件S x2导通,所述逆变单元输出电压为V dc/4;
    V 3状态为:所述x相第一电力电子开关器件S x1、所述x相第五电力电子开关器件S x3关断,所述x相第三电力电子开关器件S x2、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc/2;
    V 4状态为:所述x相第一电力电子开关器件S x1、所述x相第七电力电子开关器件S x4关断,所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3导通,所述逆变单元输出电压为V dc/2;
    V 5状态为:所述x相第一电力电子开关器件S x1关断,所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为3V dc/4;
    V 6状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3导通,所述x相第七电力电子开关器件S x4关断,所述逆变单元输出电压为3V dc/4;
    V 7状态为:所述x相第一电力电子开关器件S x1、所述x相第三电力电子开关器件S x2、所述x相第五电力电子开关器件S x3、所述x相第七电力电子开关器件S x4导通,所述逆变单元输出电压为V dc
  9. 根据权利要求3至8中任一项所述的混合钳位型五电平三相逆变器,其特征在于:所述混合钳位型五电平三相逆变器还包括用于输出所述x相第一电力电子开关器件S x1、所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100047
    所述x相第三电力电子开关器件S x2、所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100048
    所述x相第五电力电子开关器件S x3、所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100049
    所述x相第七电力电子开关器件S x4、所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100050
    的驱动信号的控制芯片。
  10. 根据权利要求3中任一项所述的混合钳位型五电平三相逆变器,其特征在于:所述x相第一电力电子开关器件S x1、所述x相第二电力电子开关器件
    Figure PCTCN2020105659-appb-100051
    所述x相第三电力电子开关器件S x2、所述x相第四电力电子开关器件
    Figure PCTCN2020105659-appb-100052
    所述x相第五电力电子开关器件S x3、所述x相第六电力电子开关器件
    Figure PCTCN2020105659-appb-100053
    所述x相第七电力电子开关器件S x4、所述x相第八电力电子开关器件
    Figure PCTCN2020105659-appb-100054
    均采用绝缘栅双极型晶体管。
  11. 一种混合钳位型五电平三相逆变器,与直流母线相连接,所述直流母线的两端分别为P点和Q点,所述直流母线的P点和Q点之间还具有分压点O 1和分压点O 2,其特征在于:所述混合钳位型五电平三相逆变器包括分别对应三相线路的三个结构相同的逆变单元;
    每个所述逆变单元包括八个电力电子开关器件和飞跨电容,八个所述电力电子开关器件分别为第一电力电子开关器件、第二电力电子开关器件、第三电力电子开关器件、第四电力电子开关器件、第五电力电子开关器件、第六电力电子开关器件、第七电力电子开关器件和第八电力电子开关器件;所述第一电力电子开关器件的漏极与所述直流母线的P点相连接,所述第一电力电子开关器件的源极与所述第二电力电子开关器件的漏极相连接,所述第二电力电子开关器件的源极与所述分压点O 1相连接,所述第三电力电子开关器件的漏极与所述分压点O 2相连接,所述第三电力电子开关器件的源极与所述第四电力电子开关器件的漏极相连接,所述第四电力电子开关器件的源极与所述直流母线的N点相连接,所述第五电力电子开关器件的漏极与所述第一电力电子开关器件的源极相连接,所述第五电力电子开关器件的源极与所述第七电力电子开关器件的漏极相连接,所述第六电力电子开关器件的源极与所述第三电力电子开关器件的源极相连接,所述第六电力电子开关器件的漏极与所述第八电力电子开关器件的源极相连接,所述飞跨电容的两端分别与所述第七电力电子开关器件的漏极、所述第八电力电子开关器件的源极相连接,所述第七电力电子开关器件的源极与所述第八电力电子开关器件的漏极相连接并构成所述逆变单元的输出端;
    所述第一电力电子开关器件的驱动信号与所述第二电力电子开关器件的驱动信号为互补信号,所述第三电力电子开关器件的驱动信号与所述第四电力电子开关器件的驱动信号为互补信号,所述第五电力电子开关器件的驱动信号与所述第六电力电子开关器件的驱动信号为互补信号,所述第七电力电子开关器件的驱动信号与所述第八电力电子开关器件的驱动信号为互补信号。
  12. 根据权利要求11所述的混合钳位型五电平三相逆变器,其特征在于:所述第五电力电子开关器件包括两个相同且串联的电力电子开关管,所述第六电力电子开关器件也包括两个相同且串联的电力电子开关管;所述第五电力电子开关器件所包括的两个所述电力电子开关管的驱动信号相同,所述第六电力电子开关器件所包括的两个所述电力电子开关管的驱动信号相同。
  13. 根据权利要求11或12所述的混合钳位型五电平三相逆变器,其特征在于:所述直流母线电压为V dc,所述直流母线上的P点与所述分压点O 1之间的电压控制为V dc/4,所述分压点O 1与所述分压点O 2之间的电压控制为V dc/2,所述分压点O 2与所述直流母线上的N点之间的电压控制为V dc/4,则所述混逆变单元具有V 0至V 7共8种状态;
    V 0状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件关断,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件导通,所述逆变单元输出电压为0;
    V 1状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件关断,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件导通,所述逆变单元输出电压为V dc/4;
    V 2状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件导通,所述逆变单元输出电压为V dc/4;
    V 3状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件导通,所述逆变单元输出电压为V dc/2;
    V 4状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件导通,所述逆变单元输出电压为V dc/2;
    V 5状态为:所述第一电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件关断,所述第二电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件导通,所述逆变单元输出电压为3V dc/4;
    V 6状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第八电力电子开关器件导通,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第七电力电子开关器件关断,所述逆变单元输出电压为3V dc/4;
    V 7状态为:所述第一电力电子开关器件、所述第三电力电子开关器件、所述第五电力电子开关器件、所述第七电力电子开关器件导通,所述第二电力电子开关器件、所述第四电力电子开关器件、所述第六电力电子开关器件、所述第八电力电子开关器件关断,所述逆变单元输出电压为V dc
  14. 根据权利要求11所述的混合钳位型五电平三相逆变器,其特征在于:所述混合钳位型五电平三相逆变器还包括用于输出各个所述电力电子开关器件的驱动信号的控制芯片。
  15. 根据权利要求11所述的混合钳位型五电平三相逆变器,其特征在于:各个所述电力电子开关器件均采用绝缘栅双极型晶体管。
  16. 一种逆变系统,包括直流系统、交流系统,其特征在于:所述逆变系统还包括如权利要求11至16中任一项所述的混合钳位型五电平三相逆变器。
PCT/CN2020/105659 2019-06-14 2020-07-30 混合钳位型五电平三相逆变器和逆变系统 WO2021018225A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910513942 2019-06-14
CN201910699763.2 2019-07-31
CN201910699763.2A CN110417291A (zh) 2019-06-14 2019-07-31 混合钳位型五电平三相逆变器

Publications (1)

Publication Number Publication Date
WO2021018225A1 true WO2021018225A1 (zh) 2021-02-04

Family

ID=68364465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105659 WO2021018225A1 (zh) 2019-06-14 2020-07-30 混合钳位型五电平三相逆变器和逆变系统

Country Status (2)

Country Link
CN (2) CN110417291A (zh)
WO (1) WO2021018225A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417291A (zh) * 2019-06-14 2019-11-05 江苏固德威电源科技股份有限公司 混合钳位型五电平三相逆变器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204190643U (zh) * 2014-08-22 2015-03-04 特变电工新疆新能源股份有限公司 逆变单元及逆变器
CN105703646A (zh) * 2014-08-22 2016-06-22 特变电工新疆新能源股份有限公司 逆变单元及其控制方法、逆变器
US20160352251A1 (en) * 2015-05-31 2016-12-01 Abb Technology Ag Active Neutral-Point-Clamped (ANPC) Converters and Operating Methods Thereof
CN110048630A (zh) * 2019-06-10 2019-07-23 中国矿业大学 一种五电平电力电子变换器及控制方法
CN110417291A (zh) * 2019-06-14 2019-11-05 江苏固德威电源科技股份有限公司 混合钳位型五电平三相逆变器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204190643U (zh) * 2014-08-22 2015-03-04 特变电工新疆新能源股份有限公司 逆变单元及逆变器
CN105703646A (zh) * 2014-08-22 2016-06-22 特变电工新疆新能源股份有限公司 逆变单元及其控制方法、逆变器
US20160352251A1 (en) * 2015-05-31 2016-12-01 Abb Technology Ag Active Neutral-Point-Clamped (ANPC) Converters and Operating Methods Thereof
CN110048630A (zh) * 2019-06-10 2019-07-23 中国矿业大学 一种五电平电力电子变换器及控制方法
CN110417291A (zh) * 2019-06-14 2019-11-05 江苏固德威电源科技股份有限公司 混合钳位型五电平三相逆变器

Also Published As

Publication number Publication date
CN210444193U (zh) 2020-05-01
CN110417291A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
US10389135B2 (en) Multilevel inverter device and method
EP2662968B1 (en) Three-level inverter
EP2611023A1 (en) Inverter device and solar grid-connected photovoltaic system using same
CN103715930B (zh) 一种提升柔性直流输电系统容量的方法
CN101494425A (zh) 三相混合多电平逆变电路
WO2018171782A1 (zh) T型有源钳位型五电平三相逆变器及并网逆变发电系统
TW201703418A (zh) 五電平變換裝置
CN107733272B (zh) 四电平三相并网逆变器及其调制方法和发电系统
CN108306534B (zh) 一种模块化多电平变换器及其子模块拓扑结构
CN204046460U (zh) 一种新型的模块化多电平换流器子模块拓扑
CN111628668A (zh) 一种采用不对称电压源的九电平逆变器
WO2021018225A1 (zh) 混合钳位型五电平三相逆变器和逆变系统
US20190312524A1 (en) Converter
WO2018171769A1 (zh) Z源网络有源中点钳位五电平光伏并网逆变系统
CN105391371A (zh) 基于六个功率开关管的两相三电平逆变驱动电路
CN111327220B (zh) 一种提高直流电压利用率的多电平逆变器及电能变换设备
CN108306535B (zh) 单相十一电平逆变器
CN107482892B (zh) 能量缓冲电路以及变流器
CN215871225U (zh) 一种五电平电压源型变换装置
CN106505899B (zh) 中点箝位三电平单极电流模块
CN208539800U (zh) 单相十一电平逆变器
CN208723806U (zh) 一种级联式多电平逆变器
CN110098755B (zh) 一种五电平混合π型变换器
CN106655852A (zh) 一种三电平逆变器
CN114257107A (zh) Npc型三电平逆变电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845896

Country of ref document: EP

Kind code of ref document: A1