WO2021018187A1 - 投屏方法及设备 - Google Patents

投屏方法及设备 Download PDF

Info

Publication number
WO2021018187A1
WO2021018187A1 PCT/CN2020/105491 CN2020105491W WO2021018187A1 WO 2021018187 A1 WO2021018187 A1 WO 2021018187A1 CN 2020105491 W CN2020105491 W CN 2020105491W WO 2021018187 A1 WO2021018187 A1 WO 2021018187A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
control device
image frame
data packet
sent
Prior art date
Application number
PCT/CN2020/105491
Other languages
English (en)
French (fr)
Inventor
聂鹏程
汪碧海
杨泽渠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/597,236 priority Critical patent/US20220321634A1/en
Priority to EP20848274.5A priority patent/EP3982641A4/en
Publication of WO2021018187A1 publication Critical patent/WO2021018187A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/70Media network packetisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1813Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for computer conferences, e.g. chat rooms
    • H04L12/1827Network arrangements for conference optimisation or adaptation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1863Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
    • H04L12/1877Measures taken prior to transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/765Media network packet handling intermediate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4122Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43637Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wireless protocol, e.g. Bluetooth, RF or wireless LAN [IEEE 802.11]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • H04N21/440227Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display by decomposing into layers, e.g. base layer and one or more enhancement layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44227Monitoring of local network, e.g. connection or bandwidth variations; Detecting new devices in the local network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/631Multimode Transmission, e.g. transmitting basic layers and enhancement layers of the content over different transmission paths or transmitting with different error corrections, different keys or with different transmission protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/64Addressing
    • H04N21/6405Multicasting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64746Control signals issued by the network directed to the server or the client
    • H04N21/64761Control signals issued by the network directed to the server or the client directed to the server
    • H04N21/64769Control signals issued by the network directed to the server or the client directed to the server for rate control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64784Data processing by the network
    • H04N21/64792Controlling the complexity of the content stream, e.g. by dropping packets

Definitions

  • the embodiments of the present application relate to the field of video transmission, and in particular, to a screen projection method and device.
  • This application provides a screen projection method and device, which can improve video transmission quality to a certain extent.
  • the embodiments of the present application provide a screen projection method, which is applied to a main control device, and may include: when the image frame to be sent is an I frame, the main control device may send the bearer image based on the reliability transmission protocol Frame data packet; when the image frame to be sent is a P frame, and the P frame is a P frame that meets the first preset condition, the master device can send the data packet carrying the image frame based on the reliability transmission protocol, otherwise, when In the case that the P frame is a P frame that does not meet the first preset condition, the master control device may send the data packet carrying the image frame based on the unreliable transmission protocol.
  • the I frame and part of the P frame can be transmitted based on the reliability transmission protocol, thereby ensuring the reliability of the transmission of the I frame and part of the P frame, thereby avoiding the poor video transmission quality caused by the frame loss and causing the decoding end ( That is, the problem of poor picture quality of the decoded video of the display device) effectively improves the user experience.
  • the first preset condition includes: determining that the preset period is satisfied; or, the inter prediction parameter between the P frame and the previous image frame or the next image frame is greater than or equal to the first threshold.
  • the method for selecting P frames can be periodic or based on the importance of P frames.
  • the projection system to which the master control device belongs includes two or more projection groups, and each projection group includes a first display device and at least one second display device; wherein, the projection screen
  • the video transmission quality of the system is determined based on the average video transmission quality sent by the first display device in each group; the average video transmission quality is sent by the first display device based on each second display device in the projection group to which the first display device belongs The video transmission quality is determined.
  • the main control device can dynamically choose whether to use a reliable transmission protocol to transmit P frames based on the video transmission quality of the system, so as to improve the video transmission quality.
  • the number of hops between each projection group and the main control device is determined based on the average video transmission quality of each projection group.
  • the routing relationship between the screen projection groups and between the screen projection group and the main control device can be called the routing connection relationship, which can be dynamically updated based on the video transmission quality, thereby further optimizing the overall video of the system Transmission quality.
  • the number of hops between at least one second display device in each projection group and the first display device in the corresponding projection group is based on the video transmission quality of each second display device definite.
  • the routing relationship between the various display devices in the projection screen can be called a routing connection relationship, which can be dynamically updated based on the video transmission quality, thereby further optimizing the overall video transmission quality of the system.
  • the number of first display devices as the next hop node of the master control device is less than or equal to the third threshold; the number of second display devices as the next hop node of the first display device is less than Or equal to the fourth threshold.
  • sending a data packet carrying image frames based on the reliability transmission protocol is: sending a data packet to the first display device as the next hop node of the master control device, and the data packet carries the image frame and is based on reliability. Sex transfer protocol.
  • the embodiments of the present application provide a screen projection method, which is applied to a main control device, and may include: when the image frame to be sent is an I frame, the main control device may send the bearing image frame based on the reliability transmission protocol When the image frame to be sent is a P frame, and the video transmission quality of the projection system to which the main control device belongs meets the second preset condition, the main control device can send the bearer image frame based on the reliability transmission protocol Conversely, when the video transmission quality of the projection system to which the master control device belongs does not meet the second preset condition, the master control device can send data packets carrying image frames based on an unreliable transmission protocol.
  • a reliable transmission protocol can adopt a transmission mechanism including an acknowledgement response; an unreliable transmission protocol can adopt a multicast transmission mechanism.
  • the multicast transmission mechanism may also be referred to as a multicast transmission mechanism, for example, a broadcast communication method.
  • a multicast transmission mechanism for example, a broadcast communication method.
  • the reliability transmission mechanism is a dynamic routing protocol.
  • the projection system includes two or more projection groups, and each projection group includes a first display device and at least one second display device; wherein the video transmission quality of the projection system Determined based on the average video transmission quality sent by the first display device of each group; the average video transmission quality is determined by the first display device based on the video transmission quality sent by each second display device in the projection group to which the first display device belongs of.
  • the main control device can dynamically choose whether to use a reliable transmission protocol to transmit P frames based on the video transmission quality of the system, so as to improve the video transmission quality.
  • the number of hops between each projection group and the main control device is determined based on the average video transmission quality of each projection group.
  • the routing relationship between the screen projection groups and between the screen projection group and the main control device can be called the routing connection relationship, which can be dynamically updated based on the video transmission quality, thereby further optimizing the overall video of the system Transmission quality.
  • the number of hops between at least one second display device in each projection group and the first display device in the corresponding projection group is based on the video transmission quality of each second display device definite.
  • the routing relationship between the various display devices in the projection screen can be called a routing connection relationship, which can be dynamically updated based on the video transmission quality, thereby further optimizing the overall video transmission quality of the system.
  • the number of first display devices as the next hop node of the master control device is less than or equal to the third threshold; the number of second display devices as the next hop node of the first display device is less than Or equal to the fourth threshold.
  • sending a data packet carrying image frames based on the reliability transmission protocol is: sending a data packet to the first display device as the next hop node of the master control device, and the data packet carries the image frame and is based on reliability. Sex transfer protocol.
  • the master control device may send a data packet carrying the image frame based on an unreliable transmission protocol.
  • an embodiment of the present application provides a master control device, including: a memory and a processor, and the memory is coupled with the processor; wherein the memory includes program instructions, and when the program instructions are executed by the processor, the master control device executes the following Steps: When the image frame to be sent is an I frame, the data packet carrying the image frame is sent based on the reliability transmission protocol; when the image frame to be sent is a P frame, when the P frame is a P frame that meets the first preset condition, Then the data packet carrying the image frame is sent based on the reliable transmission protocol, and when the P frame is a P frame that does not meet the first preset condition, the data packet carrying the image frame is sent based on the unreliable transmission protocol.
  • the first preset condition includes: determining that the preset period is satisfied; or, the inter prediction parameter between the P frame and the previous image frame or the next image frame is greater than or equal to the first threshold.
  • an embodiment of the present application provides a master control device, including: a memory and a processor, and the memory is coupled with the processor; wherein the memory includes program instructions, and when the program instructions are executed by the processor, the master control device executes the following Steps:
  • the image frame to be sent is an I frame
  • the data packet carrying the image frame is sent based on the reliability transmission protocol
  • the image frame to be sent is a P frame
  • the video transmission quality of the projection system to which the main control device belongs meets the second According to the preset condition, the data packet carrying the image frame is sent based on the reliable transmission protocol.
  • the data packet carrying the image frame is sent based on the unreliable transmission protocol. data pack.
  • the reliable transmission protocol adopts a transmission mechanism including an acknowledgement response;
  • the unreliable transmission protocol adopts a multicast transmission mechanism.
  • the reliability transmission mechanism is a dynamic routing protocol.
  • the projection system includes two or more projection groups, and each projection group includes a first display device and at least one second display device; wherein the video of the projection system
  • the transmission quality is determined based on the average video transmission quality sent by the first display device in each group; the average video transmission quality is the video transmission sent by the first display device based on each second display device in the projection group to which the first display device belongs Definite quality.
  • the number of hops between each projection group and the main control device is determined based on the average video transmission quality of each projection group.
  • the number of hops between at least one second display device in each projection group and the first display device in the corresponding projection group is based on the video transmission quality of each second display device definite.
  • the number of the first display device as the next hop node of the master control device is less than or equal to the third threshold; the number of the second display device as the next hop node of the first display device The number is less than or equal to the fourth threshold.
  • the master control device executes the following steps: sending a data packet carrying image frames based on the reliability transmission protocol is: to the next hop node as the master control device The first display device sends the data packet.
  • the main control device executes the following steps: if the image frame is a B frame, send a data packet carrying the image frame based on an unreliable transmission protocol.
  • embodiments of the present application provide a computer-readable medium for storing a computer program, the computer program including instructions for executing the first aspect or any possible implementation of the first aspect.
  • the embodiments of the present application provide a computer-readable medium for storing a computer program, the computer program including instructions for executing the second aspect or any possible implementation of the second aspect.
  • embodiments of the present application provide a computer program, which includes instructions for executing the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide a computer program, which includes instructions for executing the second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application provides a chip, which includes a processing circuit and transceiver pins.
  • the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processor executes the method in the first aspect or any one of the possible implementations of the first aspect to control the receiving pin to receive signals, and Control the sending pin to send signals.
  • an embodiment of the present application provides a chip, which includes a processing circuit and transceiver pins.
  • the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processor executes the method in the second aspect or any one of the possible implementations of the second aspect to control the receiving pin to receive signals, and Control the sending pin to send signals.
  • an embodiment of the present application provides a screen projection system, which includes the main control device and at least one display device (including a first display device and a second display device) involved in the above-mentioned first aspect.
  • Fig. 1 is a schematic diagram showing an exemplary application scenario
  • Figure 2 is one of the schematic diagrams of a network topology connection provided by an embodiment of the present application.
  • FIG. 3 is one of the schematic flowcharts of a screen projection method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for obtaining video transmission quality according to an embodiment of the present application
  • FIG. 5 is one of schematic diagrams of a network topology connection provided by an embodiment of the present application.
  • FIG. 6 is one of the schematic flowcharts of a screen projection method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for selecting a high priority P according to an embodiment of the present application.
  • FIG. 8 is one of the schematic flowcharts of a screen projection method provided by an embodiment of the present application.
  • FIG. 9 is one of the schematic block diagrams of a main control device provided by an embodiment of the present application.
  • FIG. 10 is one of the schematic block diagrams of a main control device provided by an embodiment of the present application.
  • FIG. 11 is one of the schematic block diagrams of a main control device provided by an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object and the second target object are used to distinguish different target objects, rather than to describe the specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • multiple means two or more.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of this application.
  • the application scenario includes a master control device and a display device group, where the display device group includes two or more display devices.
  • the main control device may be a computer, a smart phone, a tablet, a smart watch, etc.
  • the display device may be a device with a display screen, such as a smart TV, a smart phone, a computer, or a tablet, which can be used for decoding.
  • the number of main control devices and display devices in the application scenario shown in FIG. 1 is only an example of adaptability, which is not limited in this application.
  • the main control device when the main control device is projecting with one or more display devices in the display device cluster, it can determine the transmission type of the data packet carrying the image frame based on the frame type of the image frame to be sent in the image sequence .
  • the transmission type of the data packet is a reliable transmission protocol.
  • the master control device can further determine whether the data packet carrying the P frame is required according to preset conditions. The transmission is based on the reliable transmission protocol.
  • P frames that need to be transmitted based on the reliability transmission protocol may be referred to as high priority P frames, and P frames that do not need to be transmitted based on the reliability transmission protocol may be referred to as non-high priority P frames Or low priority P frames.
  • the data packets of the I frame and the high priority P frame are transmitted based on the reliability transmission protocol.
  • the master control device can send data packets carrying I frames and/or high priority P frames to the next hop display device as the master control device, and the next hop display device forwards the data packets according to the routing path .
  • data packets of low-priority P-frames and/or B-frames may be transmitted based on an unreliable transmission protocol.
  • the master control device can broadcast data packets carrying low-priority P frames and/or B frames to each display device in the display device group.
  • the multiple display devices in the display device group can be grouped in advance, and each group elects to act as a group Long role display device (other devices are group members).
  • one display device can be selected as the coordinate origin (hereinafter referred to as the origin display device), and the origin display device can obtain The position parameters between other display devices in the display device group and the origin display device.
  • the position parameters include but are not limited to: direction and distance.
  • N projection groups can be constructed based on the location parameters and the specified algorithm.
  • the specified algorithm may be a K-means clustering algorithm (k-means clustering algorithm, K-mean for short).
  • N may be an integer greater than or equal to 1, which is not limited in this application.
  • the specific method of constructing the screen projection group can refer to the existing technology, which will not be repeated in this application.
  • the main control device goes online and publishes the main control device online event to the display device group.
  • the master control device can publish the online event by broadcasting.
  • each display device receives the broadcast signal of the main control device, and each display device may obtain the signal strength parameter based on the broadcast signal.
  • the method of acquiring the signal strength parameter can be referred to the prior art, which will not be repeated in this application.
  • each display device may send the signal strength parameter to the main control device, and the main control device may elect the role of the leader of each screen projection group based on the signal strength parameter.
  • the master control device can select the display device with the largest signal strength parameter in the projection group as the group leader, and other display devices in the group are the group members.
  • each display device may also broadcast the acquired signal strength parameter, and accordingly, each display device will receive the signal strength parameter broadcast by other display devices.
  • the display devices in each projection group can elect the role of group leader based on the received signal strength parameters.
  • the signal strength parameter of display device 1 is signal strength A
  • the signal strength parameter of display device 2 is signal strength B
  • the signal strength parameter of display device 3 is signal strength C, where signal strength A>signal strength B>signal strength C
  • display device 1, display device 2 and display device 3 belong to the same screen projection group.
  • display device 1, display device 2, and display device 3 broadcast their respective signal strength parameters.
  • the display device 1 receives the signal strength B sent by the display device 2 and the signal strength C sent by the display device 3. The display device 1 compares its signal strength A with the received signal strength parameter, and determines that the display device 1 is the device with the largest signal strength parameter. Then, the display device 1 can determine that it is the group leader.
  • the construction of the network routing topology can be based on a routing protocol to form a communication link between various routing nodes (ie, display devices).
  • the network topology shown in Figure 2 is only a schematic example. It should be noted that the connection relationship shown in FIG. 2 is only a schematic representation of the communication relationship between routing nodes.
  • the display device 11 and the display device 21 are the next hop nodes of the master device (or may be called routing nodes or node devices).
  • the display device 31 is the next hop node of one of the members (the display device 24) in the screen projection group 2.
  • the group leader in each projection group is used to receive data outside the group, including data sent by the master control device or data sent by other display devices in the group. Subsequently, the group leader then forwards the received data in the group according to the routing protocol.
  • the maximum number of connections between the master control device and each group leader is less than or equal to m.
  • the value of m can be set according to actual needs.
  • the number of display devices serving as the next hop node of the master control device is less than or equal to 2.
  • the number of display devices of the next hop node as the group leader is less than or equal to 2.
  • m is 2, that is, there are at most two next-hop nodes for the master control device and each group leader. This effectively reduces the concurrency of data packet forwarding by the main control device and/or the group leader, thereby alleviating the network pressure on the main control device and/or the group leader.
  • next hop node of the master control device can only be the group leader.
  • the group leader serving as the next hop node of the master control device may be a display device with poor signal strength among the group leaders, thereby reducing the number of connection hops (or forwarding hops) between the group leader and the master control device, To enhance the transmission quality of the team leader.
  • the master control device can initiate the screen projection process.
  • the master control device may determine the transmission mechanism corresponding to the image frame based on the type of the image frame.
  • the types of image frames may include: intra-frame coded image I frame, forward predictive coded image P frame.
  • the type of the image frame may also include a bidirectionally predictively encoded image B frame.
  • the I frame is the basic frame (first frame) of the group of pictures (GOP).
  • the P frame generally has There are multiple, and the P frame may be a frame adjacent to the I frame, or may be a coded frame separated by 1 to 2 frames after the I frame. Among them, the P frame needs to refer to the previous frame to be encoded. It shows the difference between the current frame and the previous frame (the previous frame may be an I frame or a P frame). And, the B frame is predicted by the preceding I or P frame and the following P frame, that is, the B frame records the difference between the current frame and the preceding and following frames. That is, to decode a B frame, not only the previous buffered picture must be obtained, but also the decoded picture, and the final picture is obtained by superimposing the front and rear pictures with the current frame data.
  • I frames can be transmitted based on a reliable transmission mechanism
  • B frames can be transmitted based on an unreliable transmission mechanism
  • some P frames (or high priority P frames) can be based on reliability
  • the transmission mechanism is used for transmission
  • other P frames (or non-high priority P frames or low priority P frames) can be transmitted based on the unreliable transmission mechanism.
  • the reliability transmission mechanism refers to a transmission mechanism that includes an acknowledgement response, that is, a data packet based on the reliability transmission mechanism requires the opposite end (that is, the receiving end) to receive the data packet , Feedback the confirmation response, so that the sender can confirm that the data packet is sent successfully, and resend the data packet after not receiving the confirmation response (or receiving a negative response), so as to ensure that the receiving end successfully receives the data packet.
  • the reliability transmission mechanism may be a transmission mechanism based on a dynamic routing protocol (or called a multi-hop dynamic routing protocol) (hereinafter referred to as a dynamic routing transmission mechanism).
  • the unreliable transmission mechanism may be a transmission mechanism based on multicast communication (or called multicast communication) (hereinafter referred to as multicast transmission mechanism), that is, sending data packets in a broadcast manner.
  • the selection of partial P frames can be divided into three ways.
  • One is to determine partial P frames (or high priority P frames) according to the network environment.
  • the other is to periodically select P frames as high-priority P frames.
  • the other is to select a high priority P frame according to the characteristics of the P frame.
  • scenario three refer to scenario three.
  • FIG. 3 is a schematic flowchart of a screen projection method provided by an embodiment of the application, in Fig. 3:
  • Step 101 Detect the type of image frame to be sent in the image sequence.
  • the master control device detects the image frame to be sent in the image sequence, that is, the type of the first image (or frame) in the image sequence.
  • the image sequence described in this application may be a GOP or a segment stream, etc., which is not limited in this application.
  • step 102 is entered.
  • step 103 is entered.
  • step 104 is entered.
  • Step 102 Based on the reliability transmission mechanism, send an image frame to the next hop display device.
  • the main control device may encapsulate the image frame to be sent based on the reliability transmission mechanism, and send a data packet carrying the image frame to the display device that is the next hop of the main control device.
  • the image frame carried in the data packet in this application refers to the image frame after encoding the original image. Accordingly, after the display device receives the image frame, the image frame can be decoded to obtain The corresponding coded image may be called coded data, etc., and the decoded image is displayed.
  • the master control device sends a dynamic routing data packet carrying the I frame (a data packet transmitted based on the dynamic routing protocol). In another example, for example, if the image frame is a high priority P frame, the master control device sends a dynamic routing data packet carrying the P frame.
  • the data packet is sent to the display device of the next hop based on the reliability transmission protocol.
  • the display device decodes the image frame and displays the decoded image frame.
  • the master control device sends data packets carrying data frames to the next hop display devices 21 and 11 based on the reliability transmission mechanism, and the display device 11 sends its next hop display devices 12 and 13 based on reliability.
  • the display device 13 sends the data packet carrying the data frame to its next-hop display device 41 based on the reliability transmission mechanism, and the display device 12 sends the data carrying the data frame based on the reliability transmission mechanism.
  • the packet is sent to the display devices 14 and 15, similar to the data packet is transmitted to the display devices in the projection groups 4 and 5 based on the reliability transmission mechanism.
  • the data packets are also sent to the display devices in the projection group 3 based on the reliability transmission mechanism.
  • the number of image frames that can be included in a data packet is determined by the carrying capacity of the data packet and the coded data size of the image frame. For example: In an example, if the volume of the I frame is greater than the carrying capacity of a dynamic routing data packet, the I frame can be split and carried in different data packets for transmission.
  • two consecutive high-priority P frames can be carried in the same dynamic routing as a P frame group Transmission in data packets.
  • the method of generating the data packet can refer to the prior art, which will not be repeated in this application.
  • Step 103 Based on the video transmission quality of the system, determine whether the P frame needs to ensure transmission reliability.
  • the master control device can obtain the video transmission quality of the system, and based on the obtained video transmission quality of the system, determine whether the P frame needs to ensure the reliability of its transmission, that is, whether the P frame needs to be transmitted based on reliability Mechanism transmission.
  • the master control device monitors that the current system video transmission quality is less than or equal to the threshold (the threshold can be set according to the actual situation), that is, the system video transmission quality does not reach the expected value, the master control device determines that P frames are required The transmission is performed based on the reliability transmission mechanism, and the P frame is determined to be a high priority P frame, and step 102 is entered.
  • the master control device determines that the P frame can be transmitted based on the unreliable transmission mechanism, and the P frame is non-high priority For P frame with high level (or called low priority), go to step 104.
  • Step 104 Send the image frame based on the unreliable transmission mechanism.
  • the master control device may encapsulate the image frame to be sent based on an unreliable transmission mechanism, and send a data packet carrying the image frame.
  • the master control device sends a multicast data packet (a data packet based on a multicast transmission mechanism) carrying the P frame.
  • a multicast data packet carrying the P frame.
  • the master control device sends a multicast data packet carrying the B frame.
  • the image frame may not be forwarded at the first level.
  • the master control device multicasts data packets. All display devices receive the multicast data packets of the master control device and decode the image frames. And display the decoded image frame.
  • multiple consecutive non-high priority P frames, or multiple consecutive B frames and non-high priority P frames may be carried in the same data packet as a frame group.
  • the number of image frames that can be included in a data packet is determined by the carrying capacity of the data packet and the coded data size of the image frame.
  • the method of generating the data packet can refer to the prior art, which will not be repeated in this application.
  • a high-priority P frame and a non-high-priority P frame can be carried in the same data packet as a frame group, and the data packet can be transmitted as a frame with high transmission reliability requirements.
  • Mechanism to send the data packet is sent based on the reliability transmission mechanism.
  • a similar I frame and a non-high priority P frame or B frame are carried in the same data packet, and the data packet can be sent based on the reliability transmission mechanism. For example, if the master control device determines that the image frame currently to be sent is a high priority P frame, and multiple consecutive frames adjacent to it include one B frame and one low priority P frame.
  • the high-priority P frame, one B frame and one low-priority P frame can be used as a frame group , Carried in the same data packet, thereby reducing the number of data packet interactions in the system, and correspondingly reducing the pressure on the network and resources.
  • the method for the master control device to determine whether a P frame is a high priority P frame based on the video transmission quality of the system is described in detail below.
  • the master control device needs to obtain the video transmission quality of the system.
  • the method for the master control device to monitor the quality of the network environment may be as shown in Figure 4.
  • Figure 4 the method for the master control device to monitor the quality of the network environment (or can be called video transmission quality, or network transmission quality) may be as shown in Figure 4.
  • Step 201 Each display device obtains a video transmission quality parameter.
  • the master control device can periodically start the network environment quality monitoring process, and the period length can be set according to actual needs.
  • the parameters used to indicate the video transmission quality include, but are not limited to: transmission delay Tr, and/or frame loss rate Dr.
  • the master control device may add a time stamp to any image frame carried in the data packet to be sent at the time of the cycle trigger. Subsequently, each display device can calculate the transmission delay Tr between itself and the master control device based on the time when the data packet is received and the time stamp. In another example, each display device may calculate its respective frame loss rate Dr based on the reception of data frames in the period.
  • the calculation of the delay and the frame loss rate in the foregoing example is only an illustrative example, and the calculation method of the transmission delay Tr and the frame loss rate Dr may also refer to the existing technology, and the details are not described in this application.
  • Step 202 Each display device sends the video transmission quality parameter to the leader of the projection group to which it belongs.
  • each display device may send the acquired video transmission quality parameters, such as Tr and/or Dr, to the display device acting as the leader of the video group.
  • Step 203 Each group leader counts the average video transmission quality parameters of the projection group he belongs to.
  • each group leader after each group leader receives the video transmission quality parameters sent by the members of the group (that is, the display device), they can calculate the average video transmission quality parameters of the projection group to which they belong, for example: average transmission delay Tr_Group and/or average frame loss rate Dr_Group.
  • the group leader can also determine the video transmission quality of each member based on the video transmission quality parameters, and dynamically adjust the network routing in the group (also called network routing topology, or wireless connection relationship, etc.). Specifically, the group leader can set the number of hops between the display device with the worst video transmission quality in the group and the group leader -1. Among them, if there is a display device that has not reported the video transmission quality parameter, it is determined that the device is the display device with the worst video transmission quality. Optionally, if the number of connections of the group leader is greater than m after the network routing is adjusted, the group leader may add the number of hops of the display device with the worst video transmission quality in the next hop to +1.
  • the video transmission quality parameter of the display device 43 in the projection group 4 exceeds the threshold, then the number of hops between the display device 43 and the group leader (display device 41) is -1.
  • the group leader adds the number of hops of the display device with the best video transmission quality (the display device 44 in the figure) among the display devices connected to it (connected here refers to a wireless communication connection).
  • Step 204 Each group leader sends the average video transmission quality parameter to the main control device.
  • the method for the group leader to send the average video transmission quality parameter may be broadcast or unicast, which is not limited in this application.
  • Step 205 The master control device obtains the video transmission quality parameter of the system.
  • the main control device receives the average video transmission quality parameters of each group (including the average transmission delay Tr_Group and/or the average frame loss rate Dr_Group) sent by the group leader of each projection group, and then the main control device
  • the video transmission quality parameters of the system can be calculated based on the received multiple average video transmission quality parameters, including but not limited to: system transmission delay Tr_total and/or system frame loss rate Dr_total.
  • the specific calculation method can refer to the existing technology, such as averaging, etc., which will not be repeated in this application.
  • the master control device can determine the average video transmission quality of each group based on the average video transmission quality parameters of each group, and adjust the network routing between the groups. Specifically, after the master control device obtains the average video transmission quality parameters (including Tr_Group and/or Dr_Group) of each group, it can dynamically adjust the network routing between them.
  • the adjustment rule can be : The master control device can set the hop count of the group with the worst video transmission quality in each group to -1 (specifically, the hop count of the group leader -1). Among them, if there is a group leader who has not reported the video transmission quality parameters, the group is determined to be the projection group with the worst video transmission quality.
  • the main control device and/or group leader can make the video transmission quality in its next hop the best Display the hop count of the device +1.
  • the video transmission quality parameter of projection group 3 exceeds the threshold, then the master control device determines that the video transmission quality of projection group 3 is good, and the master control device can set projection group 3 (that is, act as The hop count of the display device 31) of the group leader is -1, and the display device 31 is connected to the display device 23 in the projection group 2.
  • the master control device may determine whether the P frame to be sent is a high priority P frame based on the acquired video transmission quality of the system.
  • video transmission quality parameters such as delay or frame loss rate are greater than or equal to a threshold, it is determined that the current system video transmission quality is poor, and the master control device can transfer all P frames to be sent in the image sequence, Selected as a high priority P frame, that is, in step 102, the master control device transmits all P frames to be sent in the image sequence based on a reliable transmission mechanism (such as a dynamic routing protocol) to ensure that P frames
  • a reliable transmission mechanism such as a dynamic routing protocol
  • the master control device can periodically obtain the video transmission quality of the system.
  • the video transmission quality parameter of the system obtained next time is less than the threshold, it can determine the system
  • the video transmission quality reaches the expected value, and the P frames to be sent in the image sequence can be selected as non-high priority (or low priority) P frames and transmitted based on the multicast transmission mechanism, that is, except for I frames Other frames (B frame and P frame) are all transmitted based on the multicast transmission mechanism to reduce network pressure and system transmission delay.
  • the display device after the display device receives a data packet of an unreliable routing protocol, it may not forward the data packet.
  • the display device may also forward the data packet.
  • each display device can independently control the device’s bearer B frame and / Or P frame (can be low priority P frame) multicast data packets (data packets transmitted based on the multicast transmission mechanism), through the wireless connection relationship between the display devices (ie routing connection relationship) between devices
  • Data forwarding that is, after the display device receives the multicast data packet, it encapsulates the data (image frame) into a dynamic routing data packet (a data packet transmitted based on the dynamic routing transmission mechanism), and forwards it based on the dynamic routing protocol.
  • the display device 11 after the display device 11 receives the data packet carrying the P frame broadcast by the master device, it can re-encapsulate the data packet based on the dynamic routing protocol, and then re-encapsulate the re-encapsulated data packet carrying the P frame It is forwarded to the display device 12. It should be noted that the display device 12 will also receive the data packets broadcast by the master device, so as to make full use of the connection relationship between the display devices, and reduce the multicast communication by sharing the received image frames. The frame loss rate improves the video transmission quality to a certain extent.
  • FIG. 6 is a schematic flowchart of a screen projection method provided by an embodiment of the application, and in FIG. 6:
  • Step 301 Detect the type of image frame to be sent in the image sequence.
  • step 101 For specific details, refer to step 101, which will not be repeated here.
  • Step 302 based on the reliability transmission mechanism, send the image frame to the next hop display device.
  • step 102 For specific details, refer to step 102, which will not be repeated here.
  • Step 303 based on the selection period, determine whether the P frame needs to ensure transmission reliability.
  • the master control device may periodically select P frames in the image sequence as high priority P frames, that is, the master control device may select high priority P frames based on a preset interval.
  • the preset interval (or selection period) may be set in terms of the number of frames, or may be set in terms of time.
  • the selection period (ie, the preset interval) may be counted by the number of frames, for example, every 3 P frames, a high priority P frame is selected.
  • the selected period can also be counted by time.
  • the period is 3 ms, sampling is performed every 3 ms, and the P frame at the period trigger time or after the period trigger time is regarded as the high priority P frame.
  • the selection period can be set according to actual needs, and is not limited in this application.
  • step 302 it is determined that it is a high priority P frame, it is determined that the reliability of its transmission needs to be guaranteed, and step 302 is entered. Otherwise, for P frames with low priority, go to step 304.
  • the master control device selects 1 high priority P frame every 3 low priority P frames at a preset interval.
  • the high priority P frame is based on a dynamic routing transmission mechanism (ie, reliable Transmission mechanism) to improve transmission reliability and video quality, and low-priority P frames are transmitted based on the multicast transmission mechanism to reduce channel pressure.
  • Step 304 Send the image frame based on the unreliable transmission mechanism.
  • step 104 For specific details, refer to step 104, which will not be repeated here.
  • the master control device can dynamically adjust the routing between groups based on the average video transmission quality of each group. And/or, each group leader can dynamically adjust the routing in the group based on the video transmission quality of the members in the group.
  • each group leader can dynamically adjust the routing in the group based on the video transmission quality of the members in the group.
  • each display device can independently control the device in the future.
  • the multicast data packets data packets transmitted based on the multicast transmission mechanism
  • B frames and/or P frames which can be low priority P frames
  • Data forwarding between devices are transmitted through the wireless connection relationship between the display devices (ie routing connection relationship) ) Data forwarding between devices.
  • scenario one which will not be repeated here.
  • FIG. 8 is a schematic flowchart of a screen projection method provided by an embodiment of the application, and in FIG. 8:
  • Step 401 Detect the type of image frame to be sent in the image sequence.
  • step 101 For specific details, refer to step 101, which will not be repeated here.
  • Step 402 based on the reliability transmission mechanism, send the image frame to the next hop display device.
  • step 102 For specific details, refer to step 102, which will not be repeated here.
  • Step 403 Determine whether the P frame needs to ensure transmission reliability based on the characteristics of the P frame.
  • the master control device can determine whether the P frame is a high priority P frame based on the characteristics of the P frame.
  • the characteristics of the frame can be used to describe the importance of the encoded data of the frame, that is, the P frame and the previous frame (which can be an I frame, or a B frame or P frame) and/or the next frame (It can be an I frame, or a B frame or a P frame)
  • the inter prediction parameter between frames is greater than or equal to the threshold (can be set according to actual needs), then the P frame can be determined to be a high priority P frame, and then enter the step 402. Conversely, if the inter-frame prediction parameter is less than the threshold, the P frame is a low-priority P frame, and step 404 is entered.
  • Step 404 Send the image frame based on the unreliable transmission mechanism.
  • step 104 For specific details, refer to step 104, which will not be repeated here.
  • the master control device can dynamically adjust the routing between groups based on the average video transmission quality of each group. And/or, each group leader can dynamically adjust the routing in the group based on the video transmission quality of the members in the group.
  • each group leader can dynamically adjust the routing in the group based on the video transmission quality of the members in the group.
  • each display device can independently control the device in the future.
  • the multicast data packets data packets transmitted based on the multicast transmission mechanism
  • B frames and/or P frames which can be low priority P frames
  • Data forwarding between devices are transmitted through the wireless connection relationship between the display devices (ie routing connection relationship) ) Data forwarding between devices.
  • scenario one which will not be repeated here.
  • the multiple display devices in the display device group can be grouped in advance, and each group elects a display to act as the leader of the group.
  • Equipment other equipment is the team member.
  • grouping may not be performed.
  • all display devices are in a group, one display device is the group leader, and the other display devices are group members.
  • the master control device sends a data packet carrying the I frame to the group leader based on the reliability transmission protocol, and the group leader sends the data packet to the group members based on the reliability transmission protocol.
  • the master control device may further determine whether the data packet carrying the P frame needs to be transmitted based on a reliable transmission protocol according to a preset condition.
  • the image frame is a P frame that needs to be transmitted based on the reliability transmission protocol. It can be called a high priority P frame.
  • the master control device sends the data packet carrying the I frame to the group leader based on the reliability transmission protocol.
  • the protocol sends the data packet to the group members; the image frame is a P frame that does not need to be transmitted based on the reliable transmission protocol, and the master control device sends the data packet carrying the P frame based on the unreliable transmission protocol, such as multicast, all
  • the display device can receive the data packet through multicast.
  • the main control device includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the main control device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 9 shows a possible structural schematic diagram of the master control device 100 involved in the foregoing embodiment.
  • the main control device may include: a sending module 110.
  • the sending module 110 can be used for the step of "when the image frame to be sent is an I frame, send a data packet carrying the image frame based on the reliability transmission protocol", and the sending module 110 can also be used for "when the image frame to be sent is a P When the P frame is a P frame that meets the first preset condition, the data packet carrying the image frame is sent based on the reliability transmission protocol.
  • the sending module 110 can also be used to “when the P frame does not meet the first preset Set the conditional P frame, then send the data packet carrying the image frame based on the unreliable transmission protocol.
  • this module can be used to support the master control device to execute step 302, step 402, step 304, and step 404 in the foregoing method embodiment.
  • the sending module 110 can also be used for the steps of "when the image frame to be sent is an I frame, send a data packet carrying the image frame based on the reliability transmission protocol", and "when the image frame to be sent is a P frame, when the master
  • the step of sending the data packet carrying the image frame based on the reliability transmission protocol can also be used to "when the video transmission quality of the projection system to which the main control device belongs” If the second preset condition is not met, send the data packet carrying the image frame based on the unreliable transmission protocol" step.
  • this module can be used to support the master control device to execute step 102 and step 104 in the foregoing method embodiment.
  • FIG. 10 shows a schematic block diagram of a main control device 200 according to an embodiment of the present application.
  • the main control device may include: a processor 210 and a transceiver/transceiver pin 220.
  • a processor 210 may be used to execute the steps performed by the master control device in the methods of the foregoing embodiments, and control the receiving pin to receive signals, and the sending pin to send signals.
  • bus system 240 also includes a power bus, a control bus, and a status signal bus.
  • bus system 240 for the sake of clear description, various buses are marked as the bus system 240 in the figure.
  • the memory 230 may be used to store instructions in the foregoing method embodiments.
  • FIG. 11 shows a schematic block diagram of a main control device 300 according to an embodiment of the present application, and FIG. 11 shows a schematic structural diagram when the main control device is a mobile phone.
  • the mobile phone 300 may include a processor 310, an external memory interface 320, an internal memory 321, a universal serial bus (USB) interface 330, a charging management module 340, a power management module 341, a battery 342, and an antenna 1. , Antenna 2, mobile communication module 350, wireless communication module 360, audio module 370, speaker 370A, receiver 370B, microphone 370C, earphone interface 370D, sensor module 380, buttons 390, motor 391, indicator 392, camera 393, display 394, and subscriber identification module (subscriber identification module, SIM) card interface 395, etc.
  • SIM subscriber identification module
  • the sensor module 380 can include pressure sensor 380A, gyroscope sensor 380B, air pressure sensor 380C, magnetic sensor 380D, acceleration sensor 380E, distance sensor 380F, proximity light sensor 380G, fingerprint sensor 380H, temperature sensor 380J, touch sensor 380K, ambient light Sensor 380L, bone conduction sensor 380M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the mobile phone 300.
  • the mobile phone 300 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 310 may include one or more processing units.
  • the processor 310 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 310 to store instructions and data.
  • the memory in the processor 310 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 310. If the processor 310 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 310 is reduced, and the efficiency of the system is improved.
  • the processor 310 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (PCM) interface, and a universal asynchronous transmitter receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / Or Universal Serial Bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous transmitter receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a two-way synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 310 may include multiple sets of I2C buses.
  • the processor 310 may couple the touch sensor 380K, charger, flash, camera 393, etc., respectively through different I2C bus interfaces.
  • the processor 310 may couple the touch sensor 380K through an I2C interface, so that the processor 310 and the touch sensor 380K communicate through the I2C bus interface to realize the touch function of the mobile phone 300.
  • the I2S interface can be used for audio communication.
  • the processor 310 may include multiple sets of I2S buses.
  • the processor 310 may be coupled with the audio module 370 via an I2S bus to implement communication between the processor 310 and the audio module 370.
  • the audio module 370 may transmit audio signals to the wireless communication module 360 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 370 and the wireless communication module 360 may be coupled through a PCM bus interface.
  • the audio module 370 may also transmit audio signals to the wireless communication module 360 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 310 and the wireless communication module 360.
  • the processor 310 communicates with the Bluetooth module in the wireless communication module 360 through the UART interface to realize the Bluetooth function.
  • the audio module 370 may transmit audio signals to the wireless communication module 360 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 310 with the display screen 394, the camera 393 and other peripheral devices.
  • the MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 310 and the camera 393 communicate through a CSI interface to implement the shooting function of the mobile phone 300.
  • the processor 310 and the display screen 394 communicate through the DSI interface to realize the display function of the mobile phone 300.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 310 with the camera 393, the display screen 394, the wireless communication module 360, the audio module 370, the sensor module 380, and so on.
  • GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 330 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 330 can be used to connect a charger to charge the mobile phone 300, and can also be used to transfer data between the mobile phone 300 and peripheral devices. It can also be used to connect headphones and play audio through the headphones. This interface can also be used to connect to other mobile phones, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is merely a schematic description, and does not constitute a structural limitation of the mobile phone 300.
  • the mobile phone 300 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 340 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 340 may receive the charging input of the wired charger through the USB interface 330.
  • the charging management module 340 may receive the wireless charging input through the wireless charging coil of the mobile phone 300. While the charging management module 340 charges the battery 342, it can also supply power to the mobile phone through the power management module 341.
  • the power management module 341 is used to connect the battery 342, the charging management module 340 and the processor 310.
  • the power management module 341 receives input from the battery 342 and/or the charge management module 340, and supplies power to the processor 310, the internal memory 321, the display screen 394, the camera 393, and the wireless communication module 360.
  • the power management module 341 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 341 may also be provided in the processor 310.
  • the power management module 341 and the charging management module 340 may also be provided in the same device.
  • the wireless communication function of the mobile phone 300 can be implemented by the antenna 1, the antenna 2, the mobile communication module 350, the wireless communication module 360, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the mobile phone 300 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in conjunction with a tuning switch.
  • the mobile communication module 350 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied on the mobile phone 300.
  • the mobile communication module 350 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and so on.
  • the mobile communication module 350 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 350 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation by the antenna 1.
  • at least part of the functional modules of the mobile communication module 350 may be provided in the processor 310.
  • at least part of the functional modules of the mobile communication module 350 and at least part of the modules of the processor 310 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 370A, a receiver 370B, etc.), or displays an image or video through the display screen 394.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 310 and be provided in the same device as the mobile communication module 350 or other functional modules.
  • the wireless communication module 360 can provide applications on the mobile phone 300 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellite systems. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 360 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 360 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 310.
  • the wireless communication module 360 may also receive the signal to be sent from the processor 310, perform frequency modulation, amplify, and convert it into electromagnetic waves through the antenna 2 and
  • the antenna 1 of the mobile phone 300 is coupled with the mobile communication module 350, and the antenna 2 is coupled with the wireless communication module 360, so that the mobile phone 300 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the mobile phone 300 implements a display function through a GPU, a display screen 394, and an application processor.
  • the GPU is a microprocessor for image processing, connected to the display 394 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 310 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 394 is used to display images, videos, etc.
  • the display screen 394 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active-matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the mobile phone 300 may include one or N display screens 394, and N is a positive integer greater than one.
  • the mobile phone 300 can realize a shooting function through an ISP, a camera 393, a video codec, a GPU, a display screen 394, and an application processor.
  • the ISP is used to process the data fed back by the camera 393. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transfers the electrical signal to the ISP for processing and is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 393.
  • the camera 393 is used to capture still images or videos.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats.
  • the mobile phone 300 may include one or N cameras 393, and N is a positive integer greater than one.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the mobile phone 300 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the mobile phone 300 may support one or more video codecs. In this way, the mobile phone 300 can play or record videos in a variety of encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the mobile phone 300 can be realized, such as image recognition, face recognition, voice recognition, text understanding, etc.
  • the external memory interface 320 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the mobile phone 300.
  • the external memory card communicates with the processor 310 through the external memory interface 320 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 321 may be used to store computer executable program code, the executable program code including instructions.
  • the internal memory 321 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the mobile phone 300.
  • the internal memory 321 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • the processor 310 executes various functional applications and data processing of the mobile phone 300 by running instructions stored in the internal memory 321 and/or instructions stored in a memory provided in the processor.
  • the mobile phone 300 can implement audio functions through the audio module 370, the speaker 370A, the receiver 370B, the microphone 370C, the earphone interface 370D, and the application processor. For example, music playback, recording, etc.
  • the audio module 370 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 370 can also be used to encode and decode audio signals.
  • the audio module 370 may be provided in the processor 310, or part of the functional modules of the audio module 370 may be provided in the processor 310.
  • the speaker 370A also called a "speaker" is used to convert audio electrical signals into sound signals.
  • the mobile phone 300 can listen to music through the speaker 370A, or listen to a hands-free call.
  • the receiver 370B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the mobile phone 300 answers a call or a voice message, it can receive the voice by bringing the receiver 370B close to the human ear.
  • Microphone 370C also called “microphone”, “microphone”, is used to convert sound signals into electric signals.
  • the user can make a sound by approaching the microphone 370C through the mouth, and input the sound signal into the microphone 370C.
  • the mobile phone 300 can be provided with at least one microphone 370C.
  • the mobile phone 300 may be provided with two microphones 370C, which can realize noise reduction functions in addition to collecting sound signals.
  • the mobile phone 300 can also be equipped with three, four or more microphones 370C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 370D is used to connect wired earphones.
  • the earphone interface 370D may be a USB interface 330, or a 3.5mm open mobile terminal platform (OMTP) standard interface, and a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association
  • the pressure sensor 380A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • the pressure sensor 380A may be provided on the display screen 394.
  • the capacitive pressure sensor may include at least two parallel plates with conductive material. .
  • the gyroscope sensor 380B can be used to determine the movement posture of the mobile phone 300.
  • the air pressure sensor 380C is used to measure air pressure.
  • the magnetic sensor 380D includes a Hall sensor.
  • the acceleration sensor 380E can detect the acceleration of the mobile phone 300 in various directions (generally three axes).
  • Distance sensor 380F used to measure distance.
  • the proximity light sensor 380G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the ambient light sensor 380L is used to sense the brightness of the ambient light.
  • the fingerprint sensor 380H is used to collect fingerprints.
  • the temperature sensor 380J is used to detect temperature.
  • Touch sensor 380K also known as "touch device”.
  • the touch sensor 380K can be arranged on the display screen 394, and the touch screen is composed of the touch sensor 380K and the display screen 394, which is also called a “touch screen”.
  • the touch sensor 380K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 394.
  • the touch sensor 380K may also be arranged on the surface of the mobile phone 300, which is different from the position of the display screen 394.
  • the bone conduction sensor 380M can acquire vibration signals.
  • the button 390 includes a power button, a volume button and so on.
  • the button 390 may be a mechanical button. It can also be a touch button.
  • the mobile phone 300 can receive key input, and generate key signal input related to user settings and function control of the mobile phone 300.
  • the motor 391 can generate vibration prompts.
  • the motor 391 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • the indicator 392 can be an indicator light, which can be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 395 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 395 or pulled out from the SIM card interface 395 to achieve contact and separation with the mobile phone 300.
  • the mobile phone 300 can support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 395 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the mobile phone 300 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the mobile phone 300 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the mobile phone 300 and cannot be separated from the mobile phone 300.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the main control device.
  • the main control device may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the display device may also adopt the above-mentioned structural schematic diagram of FIG. 11.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program includes at least a piece of code that can be executed by a main control device to The control master device is used to implement the above method embodiments.
  • the embodiments of the present application also provide a computer program, which is used to implement the foregoing method embodiments when the computer program is executed by the master control device.
  • the program may be stored in whole or in part on a storage medium packaged with the processor, or may be stored in part or in a memory not packaged with the processor.
  • an embodiment of the present application further provides a processor, which is configured to implement the foregoing method embodiment.
  • the aforementioned processor may be a chip.
  • the steps of the method or algorithm described in combination with the disclosure of the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • RAM Random Access Memory
  • ROM read-only memory
  • EPROM Erasable Programmable ROM
  • EPROM Electrically Erasable Programmable Read-Only Memory
  • register hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in a network device.
  • the processor and the storage medium may also exist as discrete components in the network device.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Abstract

本申请实施例提供了一种投屏方法及设备,该方法包括:当待发送的图像帧是I帧,基于可靠性传输协议发送承载图像帧的数据包;当待发送的图像帧是P帧,当主控设备所属投屏系统的视频传输质量符合第二预设条件,则基于可靠性传输协议发送承载图像帧的数据包,当主控设备所属投屏系统的视频传输质量不符合第二预设条件,则基于非可靠性传输协议发送承载图像帧的数据包。从而有效提升视频传输质量。

Description

投屏方法及设备
本申请要求在2019年7月30日提交中国专利局、申请号为201910694322.3、发明名称为“投屏方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及视频传输领域,尤其涉及一种投屏方法及设备。
背景技术
智能设备的普及和通信技术的飞速发展,为移动终端和大屏之间的互动模式提供了更多的可能性。例如:在大型商务会议现场,现场可部署多个显示设备,以提升观众的与会体验。会议主讲人可将移动终端的内容投屏到会场内的任意显示设备,从而分享移动终端显示的内容。
但是,在移动终端向多个显示设备传输视频流的场景中,特别是在网络带宽资源受限的情况下,容易引发网络信道阻塞,进而导致视频流传输丢帧、延迟,造成视频画面质量差的问题。
发明内容
本申请提供一种投屏方法及设备,能够在一定程度上提升视频传输质量。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供了一种投屏方法,该方法应用于主控设备,可以包括:当待发送的图像帧是I帧,则主控设备可基于可靠性传输协议发送承载图像帧的数据包;当待发送的图像帧是P帧,并且P帧为符合第一预设条件的P帧,则主控设备可基于可靠性传输协议发送承载图像帧的数据包,反之,当P帧为不符合第一预设条件的P帧的情况下,则主控设备可基于非可靠性传输协议发送承载图像帧的数据包。
通过上述方式,实现了I帧及部分P帧可基于可靠性传输协议进行传输,从而保证I帧和部分P帧传输的可靠性,进而避免丢帧所导致的视频传输质量差,造成解码端(即显示设备)解码后的视频画面质量较差的问题,有效提升了用户体验。
在一种可能的实现方式中,第一预设条件包括:确定满足预设周期;或者,P帧与前一个图像帧或下一个图像帧之间的帧间预测参数大于或等于第一阈值。
通过上述方式,提出多种选择部分P帧的方式,即,P帧的选择方式可以是周期性的,也可以是基于P帧的重要性进行选择。
在一种可能的实现方式中,主控设备所属的投屏系统包括两个或两个以上投屏组,每个投屏组包括第一显示设备和至少一个第二显示设备;其中,投屏系统的视频传输质量为根据每组的第一显示设备发送的平均视频传输质量确定的;平均视频传输质量为第一显示设备基于第一显示设备所属投屏组内的每个第二显示设备发送的视频传输质量确 定的。
通过上述方式,实现了主控设备可基于系统的视频传输质量,动态的选择是否需要采用可靠性传输协议对P帧进行传输的方式,以提升视频传输质量。
在一种可能的实现方式中,每个投屏组与主控设备之间的跳数是基于每个投屏组的平均视频传输质量确定的。
通过上述方式,实现了各投屏组之间,以及投屏组与主控设备之间的路由关系或可称为路由连接关系,可基于视频传输质量进行动态更新,从而进一步优化系统整体的视频传输质量。
在一种可能的实现方式中,每个投屏组内的至少一个第二显示设备与所属投屏组内的第一显示设备之间的跳数是基于每个第二显示设备的视频传输质量确定的。
通过上述方式,实现了投屏内的各个显示设备间的路由关系或可称为路由连接关系,可基于视频传输质量进行动态更新,从而进一步优化系统整体的视频传输质量。
在一种可能的实现方式中,作为主控设备的下一跳节点的第一显示设备的数量小于或等于第三阈值;作为第一显示设备的下一跳节点的第二显示设备的数量小于或等于第四阈值。
通过上述方式,有效缓解了主控设备和/或显示设备可能成为瓶颈节点的问题。
在一种可能的实现方式中,基于可靠性传输协议发送承载图像帧的数据包为:向作为主控设备的下一跳节点的第一显示设备发送数据包,数据包承载图像帧且基于可靠性传输协议。
通过上述方式,有效降低了主控设备端的并发量,减轻了主控设备端的网络压力。
第二方面,本申请实施例提供了一种投屏方法,该方法应用于主控设备,可以包括:当待发送的图像帧是I帧,主控设备可基于可靠性传输协议发送承载图像帧的数据包;当待发送的图像帧是P帧,并且主控设备所属投屏系统的视频传输质量符合第二预设条件的情况下,则主控设备可基于可靠性传输协议发送承载图像帧的数据包;反之,当主控设备所属投屏系统的视频传输质量不符合第二预设条件,则主控设备可基于非可靠性传输协议发送承载图像帧的数据包。
通过上述方式,在系统的视频传输质量未达到预期的情况下,将图像序列中的所有P帧基于可靠性传输协议的数据包传输,以降低丢帧率,并提高视频传输质量。在一种可能的实现方式中,可靠性传输协议可以采用包含确认应答的传输机制;非可靠性传输协议可以采用组播传输机制。
可选地,组播传输机制也可以称为多播传输机制,例如:广播通信方式。通过上述方式,若I帧和部分P帧采用基于可靠性传输协议的数据包传输,则可靠性传输协议的确认应答方式,可保证承载I帧或部分P帧的数据包传输的成功率,进而降低丢帧率。
在一种可能的实现方式中,可靠性传输机制为动态路由协议。
在一种可能的实现方式中,投屏系统包括两个或两个以上投屏组,每个投屏组包括第一显示设备和至少一个第二显示设备;其中,投屏系统的视频传输质量为根据每组的第一显示设备发送的平均视频传输质量确定的;平均视频传输质量为第一显示设备基于 第一显示设备所属投屏组内的每个第二显示设备发送的视频传输质量确定的。
通过上述方式,实现了主控设备可基于系统的视频传输质量,动态的选择是否需要采用可靠性传输协议对P帧进行传输的方式,以提升视频传输质量。
在一种可能的实现方式中,每个投屏组与主控设备之间的跳数是基于每个投屏组的平均视频传输质量确定的。
通过上述方式,实现了各投屏组之间,以及投屏组与主控设备之间的路由关系或可称为路由连接关系,可基于视频传输质量进行动态更新,从而进一步优化系统整体的视频传输质量。
在一种可能的实现方式中,每个投屏组内的至少一个第二显示设备与所属投屏组内的第一显示设备之间的跳数是基于每个第二显示设备的视频传输质量确定的。
通过上述方式,实现了投屏内的各个显示设备间的路由关系或可称为路由连接关系,可基于视频传输质量进行动态更新,从而进一步优化系统整体的视频传输质量。
在一种可能的实现方式中,作为主控设备的下一跳节点的第一显示设备的数量小于或等于第三阈值;作为第一显示设备的下一跳节点的第二显示设备的数量小于或等于第四阈值。
通过上述方式,有效缓解了主控设备和/或显示设备可能成为瓶颈节点的问题。
在一种可能的实现方式中,基于可靠性传输协议发送承载图像帧的数据包为:向作为主控设备的下一跳节点的第一显示设备发送数据包,数据包承载图像帧且基于可靠性传输协议。
通过上述方式,有效降低了主控设备端的并发量,减轻了主控设备端的网络压力。
在一种可能的实现方式中,其中,若图像帧为B帧,则主控设备可基于非可靠性传输协议发送承载图像帧的数据包。
通过上述方式,主控设备可将B帧通过非可靠性传输协议发送,从而降低了图像序列的传输时延。第三方面,本申请实施例提供了一种主控设备,包括:存储器与处理器,存储器与处理器耦合;其中,存储器包括程序指令,程序指令被处理器运行时,使得主控设备执行如下步骤:当待发送的图像帧是I帧,基于可靠性传输协议发送承载图像帧的数据包;当待发送的图像帧是P帧,当该P帧为符合第一预设条件的P帧,则基于可靠性传输协议发送承载图像帧的数据包,当P帧为不符合第一预设条件的P帧,则基于不可靠性传输协议发送承载图像帧的数据包。
在一种可能的实现方式中,第一预设条件包括:确定满足预设周期;或者,P帧与前一个图像帧或下一个图像帧之间的帧间预测参数大于或等于第一阈值。
第四方面,本申请实施例提供了一种主控设备,包括:存储器与处理器,存储器与处理器耦合;其中,存储器包括程序指令,程序指令被处理器运行时,使得主控设备执行如下步骤:当待发送的图像帧是I帧,基于可靠性传输协议发送承载图像帧的数据包;当待发送的图像帧是P帧,当主控设备所属投屏系统的视频传输质量符合第二预设条件,则基于可靠性传输协议发送承载图像帧的数据包,当主控设备所属投屏系统的视频传输质量不符合第二预设条件,则基于非可靠性传输协议发送承载图像帧的数据包。
在一种可能的实现方式中,其中,可靠性传输协议采用包含确认应答的传输机制; 非可靠性传输协议采用组播传输机制。
在一种可能的实现方式中,其中,可靠性传输机制为动态路由协议。
在一种可能的实现方式中,其中,投屏系统包括两个或两个以上投屏组,每个投屏组包括第一显示设备和至少一个第二显示设备;其中,投屏系统的视频传输质量为根据每组的第一显示设备发送的平均视频传输质量确定的;平均视频传输质量为第一显示设备基于第一显示设备所属投屏组内的每个第二显示设备发送的视频传输质量确定的。
在一种可能的实现方式中,每个投屏组与主控设备之间的跳数是基于每个投屏组的平均视频传输质量确定的。
在一种可能的实现方式中,每个投屏组内的至少一个第二显示设备与所属投屏组内的第一显示设备之间的跳数是基于每个第二显示设备的视频传输质量确定的。
在一种可能的实现方式中,其中,作为主控设备的下一跳节点的第一显示设备的数量小于或等于第三阈值;作为第一显示设备的下一跳节点的第二显示设备的数量小于或等于第四阈值。
在一种可能的实现方式中,程序指令被处理器运行时,使得主控设备执行如下步骤:基于可靠性传输协议发送承载图像帧的数据包为:向作为主控设备的下一跳节点的第一显示设备发送数据包。
在一种可能的实现方式中,其中,程序指令被处理器运行时,使得主控设备执行如下步骤:若图像帧为B帧,则基于非可靠性传输协议发送承载图像帧的数据包。
第五方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第六方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第七方面,本申请实施例提供了一种计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,本申请实施例提供了一种计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第九方面,本申请实施例提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理电路通过内部连接通路互相通信,该处理器执行第一方面或第一方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第十方面,本申请实施例提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理电路通过内部连接通路互相通信,该处理器执行第二方面或第二方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第十一方面,本申请实施例提供一种投屏系统,该系统包括上述第一方面涉及的主控设备和至少一个显示设备(包括第一显示设备和第二显示设备)。
附图说明
图1是示例性示出的一种应用场景示意图;
图2是本申请实施例提供的一种网络拓扑连接示意图之一;
图3是本申请实施例提供的一种投屏方法的流程示意图之一;
图4是本申请实施例提供的一种视频传输质量获取方法的流程示意图;
图5是本申请实施例提供的一种网络拓扑连接示意图之一;
图6是本申请实施例提供的一种投屏方法的流程示意图之一;
图7是本申请实施例提供的一种选择高优先级P的方法示意图;
图8是本申请实施例提供的一种投屏方法的流程示意图之一;
图9是本申请实施例提供的一种主控设备的示意性框图之一;
图10是本申请实施例提供的一种主控设备的示意性框图之一;
图11是本申请实施例提供的一种主控设备的示意性框图之一。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的应用场景进行说明。参见图1,为本申请实施例提供的一种应用场景示意图。该应用场景中包括主控设备和显示设备群组,其中,显示设备群组中包括两个或两个以上显示设备。在本申请实施例具体实施的过程中,主控设备可以为电脑、智能手机、平板、智能手表等设备。显示设备可以为智能电视、智能手机、电脑、平板等具有显示屏,且可用于解码的设备。需要说明的是,图1所示应用场景的主控设备与显示设备的数量仅为适应性举例,本申请对此不做限定。
结合上述如图1所示的应用场景示意图,下面介绍本申请的具体实施方案:
在本申请中,主控设备在与显示设备集群中的一个或多个显示设备进行投屏时,可基于图像序列中待发送的图像帧的帧类型,确定承载图像帧的数据包的传输类型。可选地,若图像帧为I帧,则数据包的传输类型为可靠性传输协议,若图像帧为P帧,则主控设备可进一步根据预设条件,判定承载P帧的数据包是否需要基于可靠性传输协议进行传输。可选地,在本申请中,需要基于可靠性传输协议进行传输的P帧可称为高优先级P帧,不需要基于可靠性传输协议进行传输的P帧可称为非高优先级P帧或低优先级P帧。
在一个示例中,I帧与高优先级P帧的数据包基于可靠性传输协议进行传输。主控设备可将承载有I帧和/或高优先级P帧的数据包发送给作为主控设备的下一跳的显示设备,并由下一跳显示设备,按照路由路径对数据包进行转发。
另一个示例中,低优先级P帧和/或B帧的数据包可基于非可靠性传输协议进行传输。主控设备可将承载有低优先级P帧和/或B帧的数据包广播给显示设备群组中的各显示设备。
为使本领域人员更好的理解本申请的实施方案,下面以具体实施例进行详细阐述。
结合图1,可选地,在本申请中,主控设备向多个显示设备发起投屏之前,可预先将显示设备群组中的多个显示设备进行分组,并且每个组选举出充当组长角色的显示设备(其它设备即为组员)。
具体的,在本申请中,对于区域内的显示设备群组(包括两个或两个以上显示设备),可任意选取一个显示设备作为坐标原点(以下简称原点显示设备),原点显示设备可获取到显示设备群组中的其它显示设备与原点显示设备之间的位置参数,位置参数包括但不限于:方向和距离。随后,可基于位置参数以及指定算法,构建N个投屏组。可选地,指定算法可以为K均值聚类算法(k-means clustering algorithm,简称K-mean)。可选地,N可以为大于或等于1的整数,本申请不做限定。构建投屏组的具体方式可参照已有技术,本申请不再赘述。
随后,主控设备上线,并向显示设备群组发布主控设备上线事件。可选地,主控设备可以广播的方式发布上线事件。
可选地,各显示设备接收到主控设备的广播信号,并且,各显示设备可基于广播信号,获取信号强度参数。信号强度参数的获取方式可参照已有技术中,本申请不再赘述。
可选地,各显示设备可将信号强度参数发送给主控设备,主控设备可基于信号强度参数,选举出各投屏组的组长角色。具体的,主控设备可将投屏组内信号强度参数最大的显示设备选为组长角色,组内其它显示设备即为组员。
可选地,各显示设备还可以广播获取到的信号强度参数,相应的,每个显示设备都会接收到其它显示设备广播的信号强度参数。随后,各投屏组内的显示设备可基于接收到的信号强度参数,选举出组长角色。例如:显示设备1的信号强度参数为信号强度A、显示设备2的信号强度参数为信号强度B、显示设备3的信号强度参数为信号强度C,其中,信号强度A>信号强度B>信号强度C,并且,显示设备1、显示设备2和显示设备3属于同一个投屏组。接着,显示设备1、显示设备2和显示设备3广播各自的信号强 度参数。以显示设备1为例,显示设备1接收到显示设备2发送的信号强度B和显示设备3发送的信号强度C。显示设备1将自己的信号强度A与接收到的信号强度参数进行比较,确定显示设备1为信号强度参数最大的设备。则,显示设备1可确定自己为组长。
接着,构建网络路由拓扑。可选地,构建网络路由拓扑可基于路由协议,构成各个路由节点(即显示设备)之间的通信链路。如图2所示的网络拓扑结构仅为示意性举例。需要说明的是,图2中所示的连接关系,仅为示意性表示路由节点之间的通信关系。例如:显示设备11与显示设备21为主控设备的下一跳节点(或可称为路由节点或节点设备)。显示设备31为投屏组2中的其中一个成员(显示设备24)的下一跳节点。还需要说明的是,在基于动态路由协议的传输机制中,各投屏组内的组长用于接收组外的数据,包括主控设备发送的数据或其它组内的显示设备发送的数据。随后,组长再将接收到的数据,按照路由协议在组内进行转发。
可选地,在网络拓扑中,主控设备与各组长的最大连接数小于或等于m。m的值可根据实际需求进行设置。一个示例中,作为主控设备的下一跳节点的显示设备的数量小于或等于2。另一个示例中,作为组长的下一跳节点的显示设备的数量小于或等于2。举例说明,在如图2所示的网络拓扑中,m为2,即,主控设备与各组长的下一跳节点最多为2个。从而有效降低主控设备和/或组长数据包转发的并发量,进而缓解主控设备和/或组长端的网络压力。需要说明的是,主控设备的下一跳节点只能是组长。可选地,作为主控设备下一跳节点的组长可以是多个组长中信号强度较差的显示设备,从而通过减少组长与主控设备的连接跳数(或转发跳数),以增强组长的传输质量。
网络拓扑建立成功后,主控设备可发起投屏流程。具体的,在本申请中,主控设备可基于图像帧的类型,确定与图像帧对应的传输机制。图像帧的类型可包括:帧内编码图像I帧、前向预测编码图像P帧。可选地,图像帧的类型还可以包括双向预测编码图像B帧。其中,I帧是图像组(Group of Pictures,GOP)的基础帧(第一帧),在GOP中只有一个I帧,它是P帧和B帧的参考帧;P帧在一个GOP中一般有多个,P帧可以是与I帧相邻的帧,也可以是I帧后面相隔1~2帧的编码帧。其中,P帧需要参考前面的帧才能进行编码。表示的是当前帧画面与前一帧(前一帧可能是I帧也可能是P帧)的差别。以及,B帧是由前面的I或P帧和后面的P帧来进行预测的,也就是B帧记录的是本帧与前后帧的差别。即,若要解码B帧,不仅要取得之前的缓存画面,还要解码之后的画面,通过前后画面的与本帧数据的叠加取得最终的画面。
可选地,在本申请中,I帧可基于可靠性传输机制进行传输,B帧可基于非可靠性传输机制进行传输,部分P帧(或可称为高优先级P帧)可基于可靠性传输机制进行传输,其它P帧(或可称为非高优先级P帧,或低优先级P帧)可基于非可靠性传输机制传输。可选地,在本申请中,可靠性传输机制是指包含确认应答的传输机制,也就是说,基于可靠性传输机制的数据包,需要对端(也就是接收端)在接收到数据包后,反馈确认应答,以使发送端确定数据包发送成功,并在未接收到确认应答(或接收到否定应答)后,重新发送该数据包,从而能够保证接收端成功接收数据包。可选地,可靠性传输机制可以是基于动态路由协议(或称为多跳动态路由协议)的传输机制(以下简称动态路由传输机制)。可选地,非可靠性传输机制可以为基于组播通信(或称为多播通信)的传输机 制(以下简称组播传输机制),即利用广播方式发送数据包。
可选地,在本申请中,部分P帧的选择方式可以分为三种,一种为根据网络环境,确定部分P帧(或高优先级P帧),具体实施例可参照场景一。另一种为周期性的选取P帧作为高优先级P帧,具体实施例参照场景二。又一种为根据P帧的特性,选择高优先级P帧,具体实施例可参照场景三。
场景一
结合图1和图2,如图3所示为本申请实施例提供的一种投屏方法的流程示意图,在图3中:
步骤101,检测图像序列中待发送的图像帧的类型。
具体的,在本申请中,主控设备检测图像序列中待发送的图像帧,也就是说,位于图像序列中的第一幅图像(或帧)的类型。需要说明的是,本申请中所述的图像序列可以是GOP,也可以是段码流等,本申请不做限定。
可选地,若主控设备检测到待发送的图像帧为I帧,则进入步骤102。
可选地,若主控设备检测到待发送的图像帧为P帧,则进入步骤103。
可选地,若主控设备检测到待发送的图像帧为B帧,则进入步骤104。
步骤102,基于可靠性传输机制,向下一跳的显示设备发送图像帧。
可选地,主控设备可基于可靠性传输机制,对待发送的图像帧进行封装,并向作为主控设备的下一跳的显示设备发送承载所述图像帧的数据包。需要说明的是,本申请所述的承载于数据包中的图像帧,是指对原图像编码后的图像帧,相应的,显示设备接收到图像帧后,可对图像帧进行解码,以获取对应的编码图像或可称为编码数据等,并显示解码后的图像。
在一个示例中,若图像帧为I帧,则主控设备发送承载有I帧的动态路由数据包(基于动态路由协议传输的数据包)。在另一个示例中,例如,若图像帧为高优先级P帧,则主控设备发送承载有所述P帧的动态路由数据包。
当显示设备上连接有下一跳的显示设备时,收到基于可靠性传输协议传输的数据包时,基于可靠性传输协议向该下一跳的显示设备发送该数据包。并且,显示设备对图像帧进行解码,并显示解码后的图像帧。例如,如图2所示,主控设备向下一跳的显示设备21和11基于可靠性传输机制发送承载数据帧的数据包,显示设备11向其下一跳的显示设备12和13基于可靠性传输机制发送承载数据帧的数据包,显示设备13向其下一跳的显示设备41基于可靠性传输机制发送承载数据帧的数据包,显示设备12基于可靠性传输机制发送承载数据帧的数据包给显示设备14和15,类似该数据包基于可靠性传输机制传输给投屏组4和5中的显示设备。数据包也基于可靠性传输机制发送到投屏组3中的显示设备。
可选地,在本申请中,若连续的两个或两个以上图像帧,均判定需要基于可靠性传输协议进行传输。则,多个图像帧可承载于同一个数据包中。需要说明的是,数据包中可包含的图像帧的数量由数据包的承载能力与图像帧的编码数据大小决定。举例说明:一个示例中,若I帧的体量大于一个动态路由数据包可承载的能力,则可将I帧进行拆分, 并承载于不同的数据包进行传输。另一个示例中,若连续两个高优先级P帧的总体量小于一个动态路由数据包可承载的能力,则两个连续的高优先级的P帧可作为P帧组承载于同一个动态路由数据包中进行传输。数据包的生成方式可参照已有技术,本申请不再赘述。
步骤103,基于系统的视频传输质量,判断P帧是否需要保证传输可靠性。
可选地,主控设备可获取系统的视频传输质量,并基于获取到的系统的视频传输质量,确定P帧是否需要保证其传输的可靠性,也就是说,P帧是否需要基于可靠性传输机制传输。可选地,若主控设备监测到当前系统的视频传输质量小于或等于阈值(阈值可根据实际情况进行设置),即,系统的视频传输质量未达到期望值,则,主控设备判定P帧需要基于可靠性传输机制进行传输,并且,确定该P帧为高优先级P帧,并进入步骤102。反之,若主控设备当前系统的视频传输质量大于阈值,即,系统的视频传输质量达到期望值,则,主控设备判定P帧可基于非可靠性传输机制进行传输,该P帧为非高优先级(或称为低优先级)P帧,进入步骤104。
步骤104,基于非可靠性传输机制,发送图像帧。
可选地,主控设备可基于非可靠性传输机制,对待发送的图像帧进行封装,并发送承载所述图像帧的数据包。
在一个示例中,例如,若图像帧为非高优先级P帧,则主控设备发送承载有P帧的组播数据包(基于组播传输机制的数据包)。在另一个示例中,例如,若图像帧为B帧,则主控设备发送承载有B帧的组播数据包。基于非可靠性传输机制发送图像帧时,图像帧可以不用一级一级转发,例如主控设备组播数据包,所有显示设备接收主控设备组播的数据包,并对图像帧进行解码,并显示解码后的图像帧。
可选地,在本申请中,多个连续的非高优先级P帧,或者多个连续的B帧与非高优先级P帧,可以作为帧组承载于同一个数据包中。需要说明的是,数据包中可包含的图像帧的数量由数据包的承载能力与图像帧的编码数据大小决定。数据包的生成方式可参照已有技术,本申请不再赘述。
可选地,在本申请中,一个高优先级P帧和一个非高优先级P帧,可以作为帧组承载于同一数据包中,该数据包可以按照对传输可靠性要求高的帧的传输机制来发送,则这个数据包基于可靠性传输机制发送该数据包。类似的一个I帧和一个非高优先级P帧、或B帧承载于同一数据包中,该数据包可以基于可靠性传输机制发送该数据包。举例说明,若主控设备确定当前待发送的图像帧为高优先级P帧,并且与其相邻且连续多个帧包括1个B帧和1个低优先级P帧。若高优先级P帧及相邻且连续的多个帧的大小未超过数据包可承载的能力,则,高优先级P帧及1个B帧和1个低优先级P帧可作为帧组,承载在同一个数据包中,从而降低系统中的数据包交互数量,相应降低网络及资源的压力。
下面对主控设备基于系统的视频传输质量,判定P帧是否为高优先级P帧的方式进行详细阐述。
首先,主控设备需要获取系统的视频传输质量。具体的,结合图1和图2,主控设备监测网络环境质量(或可称为视频传输质量,或网络传输质量)的方法可如图4所示, 在图4中:
步骤201,各显示设备获取视频传输质量参数。
具体的,在本申请中,主控设备可周期性的启动网络环境质量监测流程,周期时长可根据实际需求进行设置。可选地,用于指示视频传输质量的参数(即所述视频传输质量参数)包括但不限于:传输时延Tr、和/或丢帧率Dr。
在一个示例中,主控设备可在周期触发时刻,将待发送的数据包中所携带的任一图像帧添加时间戳。随后,各显示设备可基于接收到该数据包的时间与所述时间戳,计算出自身与主控设备之间的传输时延Tr。在另一个示例中,各显示设备可基于周期内数据帧的接收情况,统计出各自的丢帧率Dr。上述示例中时延与丢帧率的计算仅为示意性举例,传输时延Tr和丢帧率Dr的计算方式还可参照已有技术,本申请不再赘述。
步骤202,各显示设备将视频传输质量参数发送给所属投屏组内的组长。
可选地,在本申请中,各显示设备可将获取到的视频传输质量参数,例如:Tr和/或Dr,发送给所述视频组内充当组长角色的显示设备。
步骤203,各组长统计所属投屏组的平均视频传输质量参数。
可选地,在本申请中,各组长接收到组内成员(即显示设备)发送的视频传输质量参数后,可计算出所属投屏组的平均视频传输质量参数,例如:平均传输时延Tr_Group和/或平均丢帧率Dr_Group。
可选地,组长还可以基于视频传输质量参数,确定各成员的视频传输质量,并动态调整组内的网络路由(或称网络路由拓扑,或无线连接关系等)。具体的,组长可将组内视频传输质量最差的显示设备与组长之间的跳数-1。其中,若存在未上报视频传输质量参数的显示设备,则确定该设备为视频传输质量最差的显示设备。可选地,若网络路由调整后,出现组长的连接数大于m的情况,则组长可将其下一跳中的视频传输质量最差最好的显示设备的跳数+1。举例说明,如图5所示,投屏组4内的显示设备43的视频传输质量参数超过阈值,则,显示设备43与组长(显示设备41)之间的跳数-1,调整后,显示设备43为组长的下一跳节点设备,而显示设备42与显示设备44同样是作为组长的下一跳节点,则组长的连接数大于预设阈值(m=2),因此,组长将与其连接(此处连接是指无线通信连接)的显示设备中的视频传输质量最好的显示设备(图中为显示设备44)的跳数+1。
步骤204,各组长将平均视频传输质量参数发送给主控设备。
可选地,组长发送平均视频传输质量参数的方式可以为广播或单播,本申请不做限定。
步骤205,主控设备获取系统的视频传输质量参数。
具体的,在本申请中,主控设备接收各投屏组组长发送的各组的平均视频传输质量参数(包括平均传输时延Tr_Group和/或平均丢帧率Dr_Group),接着,主控设备可基于接收到的多个平均视频传输质量参数,计算出系统的视频传输质量参数,包括但不限于:系统的传输时延Tr_total和/或系统的丢帧率Dr_total。具体计算方式可参照已有技术,例如求平均值等,本申请不再赘述。
可选地,主控设备可以基于各组的平均视频传输质量参数,确定各组的平均视频传 输质量,并调整组间的网络路由。具体的,主控设备获取到各组的平均视频传输质量参数(包括Tr_Group和/或Dr_Group)后,可动态调整间的网络路由,可选地,与组内动态调整路由相似,调整规则可以为:主控设备可将各组中视频传输质量最差的组的跳数-1(具体是指将组长的跳数-1)。其中,若存在未上报视频传输质量参数的组长,则确定该组为视频传输质量最差的投屏组。可选地,若网络路由调整后,出现主控设备或任一组长的连接数大于m的情况,则主控设备和/或组长可将其下一跳中的视频传输质量最好的显示设备的跳数+1。举例说明,仍参照如图5,投屏组3的视频传输质量参数超过阈值,则,主控设备确定投屏组3的视频传输质量较好,主控设备可将投屏组3(即充当组长的显示设备31)的跳数-1,显示设备31与投屏组2内的显示设备23连接。
继续参照图3,在本申请中,主控设备可基于获取到的系统的视频传输质量,判定是否待发送的P帧是否为高优先级P帧。可选地,在本申请中,若时延或丢帧率等视频传输质量参数大于或等于阈值,则确定当前系统视频传输质量差,主控设备可将图像序列中待发送的所有P帧,选定为高优先级P帧,也就是说,在步骤102中,主控设备将图像序列中待发送的所有P帧均基于可靠性传输机制(例如动态路由协议)进行传输,以保证P帧的传输可靠性,从而降低视频数据帧解码误差,并校正当前的解码误差。
可选地,在本申请中,如上文所述,主控设备可周期性的获取系统的视频传输质量,相应的,若下一次获取到的系统的视频传输质量参数小于阈值,则可确定系统的视频传输质量达到期望值,图像序列中待发送的P帧则可选定为非高优先级(或低优先级)P帧,并基于组播传输机制传输,也就是说,除I帧外的其他帧(B帧和P帧)均基于组播传输机制传输,以降低网络压力及系统的传输时延。
可选地,在本申请中,显示设备接收到非可靠性路由协议的数据包后,可以不再转发该数据包。可选地,在本申请中,显示设备接收到非可靠性路由协议的数据包后,也可以将数据包进行转发。例如,若系统的视频传输质量较差,即,系统的任一个视频传输质量参数(时延或丢帧率)大于或等于阈值,则,各显示设备可将来自主控设备的承载B帧和/或P帧(可以为低优先级P帧)的组播数据包(基于组播传输机制传输的数据包),通过各显示设备之间的无线连接关系(即路由连接关系)进行设备间的数据转发,即,显示设备接收到组播数据包后,将数据(图像帧)封装为动态路由数据包(基于动态路由传输机制传输的数据包),并基于动态路由协议进行转发。举例说明:仍参照图2,显示设备11接收到主控设备广播的承载P帧的数据包后,可基于动态路由协议,将数据包重新封装后,将重新封装后的承载P帧的数据包转发给显示设备12,需要说明的是,显示设备12同样会接收到主控设备广播的数据包,从而充分利用显示设备之间的连接关系,通过共享各自收到的图像帧,降低多播通信的丢帧率,一定程度上提升视频传输质量。
场景二
结合图1和图2,如图6所示为本申请实施例提供的一种投屏方法的流程示意图,在图6中:
步骤301,检测图像序列中待发送的图像帧的类型。
具体细节可参照步骤101,此处不赘述。
步骤302,基于可靠性传输机制,向下一跳的显示设备发送图像帧。
具体细节可参照步骤102,此处不赘述。
步骤303,基于选取周期,判定P帧是否需要保证传输可靠性。
可选地,在本申请中,主控设备可周期性的选取图像序列中的P帧作为高优先级P帧,也就是说,主控设备可以基于预设间隔,选取高优先级P帧,可选地,预设间隔(或是选取周期)可以是以帧的数量进行设定,还可以是以时间进行设定。
一个示例中,选取周期(即预设间隔)可以以帧的数量进行计数,例如,每隔3个P帧,选取一个高优先级P帧。
另一个示例中,选取周期还可以以时间进行计数,例如,周期为3ms,每隔3ms进行采样,周期触发时刻或周期触发时刻之后的P帧,作为高优先级P帧。选取周期可根据实际需求进行设置,本申请不做限定。
可选地,判定为高优先级的P帧,确定需要保证其传输的可靠性,进入步骤302。反之,低优先级的P帧,进入步骤304。举例说明,如图7所示,主控设备按照预设间隔,每间隔3个低优先级P帧,选取1高优先级P帧,其中,高优先级P帧基于动态路由传输机制(即可靠性传输机制)传输,以提升传输可靠性及视频质量,低优先级P帧基于组播传输机制传输,以降低信道压力。
步骤304,基于非可靠性传输机制,发送图像帧。
具体细节可参照步骤104,此处不赘述。
可选地,主控设备可基于各组的平均视频传输质量,动态调整组间路由。和/或,各组组长可基于组内成员的视频传输质量,动态调整组内路由。具体细节可参照步骤201至步骤205及附图4和附图5的相关描述,此处不赘述。
可选地,在本申请中,若系统的视频传输质量较差,即,系统的任一个视频传输质量参数(时延或丢帧率)大于或等于阈值,各显示设备可将来自主控设备的承载B帧和/或P帧(可以为低优先级P帧)的组播数据包(基于组播传输机制传输的数据包),通过各显示设备之间的无线连接关系(即路由连接关系)进行设备间的数据转发。具体细节可参照场景一,此处不赘述。
场景三
结合图1和图2,如图8所示为本申请实施例提供的一种投屏方法的流程示意图,在图8中:
步骤401,检测图像序列中待发送的图像帧的类型。
具体细节可参照步骤101,此处不赘述。
步骤402,基于可靠性传输机制,向下一跳的显示设备发送图像帧。
具体细节可参照步骤102,此处不赘述。
步骤403,基于P帧特性,判定P帧是否需要保证传输可靠性。
主控设备可基于P帧的特性,判定P帧是否为高优先级P帧。可选地,帧的特性可用于描述该帧的编码数据的重要性,也就是说,P帧与前一帧(可以为I帧,也可以为B 帧或P帧)和/或下一帧(可以为I帧,也可以为B帧或P帧)之间的帧间预测参数大于或等于阈值(可根据实际需求进行设置),则可确定该P帧为高优先级P帧,进入步骤402。反之,若帧间预测参数小于所述阈值,则P帧为低优先级P帧,进入步骤404。
步骤404,基于非可靠性传输机制,发送图像帧。
具体细节可参照步骤104,此处不赘述。
可选地,主控设备可基于各组的平均视频传输质量,动态调整组间路由。和/或,各组组长可基于组内成员的视频传输质量,动态调整组内路由。具体细节可参照步骤201至步骤205及附图4和附图5的相关描述,此处不赘述。
可选地,在本申请中,若系统的视频传输质量较差,即,系统的任一个视频传输质量参数(时延或丢帧率)大于或等于阈值,各显示设备可将来自主控设备的承载B帧和/或P帧(可以为低优先级P帧)的组播数据包(基于组播传输机制传输的数据包),通过各显示设备之间的无线连接关系(即路由连接关系)进行设备间的数据转发。具体细节可参照场景一,此处不赘述。
可以理解地,上述实施例中,主控设备向多个显示设备发起投屏之前,可预先将显示设备群组中的多个显示设备进行分组,并且每个组选举出充当组长角色的显示设备(其它设备即为组员)。当显示设备的个数不多时,可以不进行分组,例如所有显示设备为一个组,有一个显示设备为组长,其他显示设备为组员。当图像帧为I帧,主控设备基于可靠性传输协议向组长发送承载I帧的数据包,组长基于可靠性传输协议向组员发送该数据包。若图像帧为P帧,则主控设备可进一步根据预设条件,判定承载P帧的数据包是否需要基于可靠性传输协议进行传输。例如,图像帧是需要基于可靠性传输协议进行传输的P帧可称为高优先级P帧,主控设备基于可靠性传输协议向组长发送承载I帧的数据包,组长基于可靠性传输协议向组员发送该数据包;图像帧是不需要基于可靠性传输协议进行传输的P帧,则主控设备基于不可靠传输协议发送承载该P帧的数据包,例如组播的方式,所有显示设备可以通过组播的方式接收该数据包。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,主控设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对主控设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的主控设备100的一种可能的结构示意图,如图9所示,主控设备可以包括:发送模块110。其中,发送模块110可用于“当待发送的图像帧是I帧,基于可靠性传输协议发送承载图像帧的数据包”的步骤,发送模块110还可以用于“当待发送的图像帧是P帧,当P帧为符合第一预设条件的P帧,则基于可靠性传输协议发送承载图像帧的数据包”的步骤,发送模块110还可以用于“当P帧为不符合第一预设条件的P帧,则基于非可靠性传输协议发送承载图像帧的数据包”的步骤。例如,该模块可以用于支持主控设备执行上述方法实施例中的步骤302、步骤402、步骤304、步骤404。
发送模块110还可以用于“当待发送的图像帧是I帧,基于可靠性传输协议发送承载图像帧的数据包”的步骤,以及,“当待发送的图像帧是P帧,当主控设备所属投屏系统的视频传输质量符合第二预设条件,则基于可靠性传输协议发送承载图像帧的数据包”的步骤,还可以用于“当主控设备所属投屏系统的视频传输质量不符合第二预设条件,则基于非可靠性传输协议发送承载图像帧的数据包”的步骤。例如,该模块可以用于支持主控设备执行上述方法实施例中的步骤102、步骤104。
在另一个示例中,图10示出了本申请实施例的一种主控设备200的示意性框图,主控设备可以包括:处理器210和收发器/收发管脚220,可选地,还包括存储器230。该处理器210可用于执行前述的实施例的各方法中的主控设备所执行的步骤,并控制接收管脚接收信号,以及控制发送管脚发送信号。
主控设备200的各个组件通过总线240耦合在一起,其中总线系统240除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统240。
可选地,存储器230可以用于前述方法实施例中的存储指令。
应理解,根据本申请实施例的主控设备200中的各个元件的上述和其它管理操作和/或功能分别为了实现前述各个方法的相应步骤,为了简洁,在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在另一个示例中,图11示出了本申请实施例的一种主控设备300的示意性框图,图11示出了主控设备为手机时的结构示意图。
如图11,手机300可以包括处理器310,外部存储器接口320,内部存储器321,通用串行总线(universal serial bus,USB)接口330,充电管理模块340,电源管理模块341,电池342,天线1,天线2,移动通信模块350,无线通信模块360,音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,传感器模块380,按键390,马达391,指示器392,摄像头393,显示屏394,以及用户标识模块(subscriber identification module,SIM)卡接口395等。其中传感器模块380可以包括压力传感器380A,陀螺仪传感器380B,气压传感器380C,磁传感器380D,加速度传感器380E,距离传感器380F,接近光传感器380G,指纹传感器380H,温度传感器380J,触摸传感器380K,环境光传感器380L,骨传导传感器380M等。
可以理解的是,本发明实施例示意的结构并不构成对手机300的具体限定。在本申请另一些实施例中,手机300可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器310中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器310中的存储器为高速缓冲存储器。该存储器可以保存处理器310刚用过或循环使用的指令或数据。如果处理器310需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器310的等待时间,因而提高了系统的效率。
在一些实施例中,处理器310可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器310可以包含多组I2C总线。处理器310可以通过不同的I2C总线接口分别耦合触摸传感器380K,充电器,闪光灯,摄像头393等。例如:处理器310可以通过I2C接口耦合触摸传感器380K,使处理器310与触摸传感器380K通过I2C总线接口通信,实现手机300的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器310可以包含多组I2S总线。处理器310可以通过I2S总线与音频模块370耦合,实现处理器310与音频模块370之间的通信。在一些实施例中,音频模块370可以通过I2S接口向无线通信模块360传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块370与无线通信模块360可以通过PCM总线接口耦合。在一些实施例中,音频模块370也可以通过PCM接口向无线通信模块360传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器310与无线通信模块360。例如:处理器310通过UART接口与无线通信模块360中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块370可以通过UART接口向无线通信模块360传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器310与显示屏394,摄像头393等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器310和摄像头393通过CSI接口通信,实现手机300的拍摄功能。处理器310和显示屏394通过DSI接口通信,实现手机300的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器310与摄像头393,显示屏394,无线通信模块360,音频模块370,传感器模块380等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口330是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口330可以用于连接充电器为手机300充电,也可以用于手机300与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他手机,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对手机300的结构限定。在本申请另一些实施例中,手机300也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块340用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块340可以通过USB接口330接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块340可以通过手机300的无线充电线圈接收无线充电输入。充电管理模块340为电池342充电的同时,还可以通过电源管理模块341为手机供电。
电源管理模块341用于连接电池342,充电管理模块340与处理器310。电源管理模块341接收电池342和/或充电管理模块340的输入,为处理器310,内部存储器321,显示屏394,摄像头393,和无线通信模块360等供电。电源管理模块341还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块341也可以设置于处理器310中。在另一些实施例中,电源管理模块341和充电管理模块340也可以设置于同一个器件中。
手机300的无线通信功能可以通过天线1,天线2,移动通信模块350,无线通信模块360,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。手机300中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐 开关结合使用。
移动通信模块350可以提供应用在手机300上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块350可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块350可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块350还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块350的至少部分功能模块可以被设置于处理器310中。在一些实施例中,移动通信模块350的至少部分功能模块可以与处理器310的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器370A,受话器370B等)输出声音信号,或通过显示屏394显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器310,与移动通信模块350或其他功能模块设置在同一个器件中。
无线通信模块360可以提供应用在手机300上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块360可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块360经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器310。无线通信模块360还可以从处理器310接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,手机300的天线1和移动通信模块350耦合,天线2和无线通信模块360耦合,使得手机300可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
手机300通过GPU,显示屏394,以及应用处理器等实现显示功能。GPU为图 像处理的微处理器,连接显示屏394和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器310可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏394用于显示图像,视频等。显示屏394包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,手机300可以包括1个或N个显示屏394,N为大于1的正整数。
手机300可以通过ISP,摄像头393,视频编解码器,GPU,显示屏394以及应用处理器等实现拍摄功能。
ISP用于处理摄像头393反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头393中。
摄像头393用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,手机300可以包括1个或N个摄像头393,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当手机300在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。手机300可以支持一种或多种视频编解码器。这样,手机300可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现手机300的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口320可以用于连接外部存储卡,例如Micro SD卡,实现扩展手机300的存储能力。外部存储卡通过外部存储器接口320与处理器310通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器321可以用于存储计算机可执行程序代码,所述可执行程序代码包 括指令。内部存储器321可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储手机300使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器321可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器310通过运行存储在内部存储器321的指令,和/或存储在设置于处理器中的存储器的指令,执行手机300的各种功能应用以及数据处理。
手机300可以通过音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块370用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块370还可以用于对音频信号编码和解码。在一些实施例中,音频模块370可以设置于处理器310中,或将音频模块370的部分功能模块设置于处理器310中。
扬声器370A,也称“喇叭”,用于将音频电信号转换为声音信号。手机300可以通过扬声器370A收听音乐,或收听免提通话。
受话器370B,也称“听筒”,用于将音频电信号转换成声音信号。当手机300接听电话或语音信息时,可以通过将受话器370B靠近人耳接听语音。
麦克风370C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风370C发声,将声音信号输入到麦克风370C。手机300可以设置至少一个麦克风370C。在另一些实施例中,手机300可以设置两个麦克风370C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,手机300还可以设置三个,四个或更多麦克风370C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口370D用于连接有线耳机。耳机接口370D可以是USB接口330,也可以是3.5mm的开放移动手机平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器380A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器380A可以设置于显示屏394。压力传感器380A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。。
陀螺仪传感器380B可以用于确定手机300的运动姿态。
气压传感器380C用于测量气压。
磁传感器380D包括霍尔传感器。
加速度传感器380E可检测手机300在各个方向上(一般为三轴)加速度的大小。
距离传感器380F,用于测量距离。
接近光传感器380G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。
环境光传感器380L用于感知环境光亮度。
指纹传感器380H用于采集指纹。
温度传感器380J用于检测温度。
触摸传感器380K,也称“触控器件”。触摸传感器380K可以设置于显示屏394,由触摸传感器380K与显示屏394组成触摸屏,也称“触控屏”。触摸传感器380K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏394提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器380K也可以设置于手机300的表面,与显示屏394所处的位置不同。
骨传导传感器380M可以获取振动信号。
按键390包括开机键,音量键等。按键390可以是机械按键。也可以是触摸式按键。手机300可以接收按键输入,产生与手机300的用户设置以及功能控制有关的键信号输入。
马达391可以产生振动提示。马达391可以用于来电振动提示,也可以用于触摸振动反馈。
指示器392可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口395用于连接SIM卡。SIM卡可以通过插入SIM卡接口395,或从SIM卡接口395拔出,实现和手机300的接触和分离。手机300可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口395可以支持Nano SIM卡,Micro SIM卡,SIM卡等。手机300通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,手机300采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在手机300中,不能和手机300分离。
可以理解的是,本发明实施例示意的结构并不构成对主控设备的具体限定。在本申请另一些实施例中,主控设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
可以理解的是,显示设备也可以采用上述如图11的结构示意图。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由主控设备执行,以控制主控设备用以实现上述方法实施例。
基于相同的技术构思,本申请实施例还提供一种计算机程序,当该计算机程序被主控设备执行时,用以实现上述方法实施例。
所述程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
基于相同的技术构思,本申请实施例还提供一种处理器,该处理器用以实现上述方法实施例。上述处理器可以为芯片。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种投屏方法,其特征在于,应用于主控设备,包括:
    当待发送的图像帧是I帧,基于可靠性传输协议发送承载所述图像帧的数据包;
    当所述待发送的图像帧是P帧,当所述P帧为符合第一预设条件的P帧,则基于可靠性传输协议发送承载所述图像帧的数据包,当所述P帧为不符合所述第一预设条件的P帧,则基于非可靠性传输协议发送承载所述图像帧的数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预设条件包括:
    所述P帧为图像序列中的P帧中满足预设间隔的P帧;
    或者,
    所述P帧与前一个图像帧或下一个图像帧之间的帧间预测参数大于或等于第一阈值。
  3. 一种投屏方法,其特征在于,应用于主控设备,包括:
    当待发送的图像帧是I帧,基于可靠性传输协议发送承载所述图像帧的数据包;
    当所述待发送的图像帧是P帧,当所述主控设备所属投屏系统的视频传输质量符合第二预设条件,则基于可靠性传输协议发送承载所述图像帧的数据包,当所述主控设备所属投屏系统的视频传输质量不符合所述第二预设条件,则基于非可靠性传输协议发送承载所述图像帧的数据包。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,其中,
    所述可靠性传输协议采用包含确认应答的传输机制;
    所述非可靠性传输协议采用组播传输机制。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,其中,所述可靠性传输机制为动态路由协议。
  6. 根据权利要求3所述的方法,其特征在于,其中,所述投屏系统包括两个或两个以上投屏组,每个投屏组包括第一显示设备和至少一个第二显示设备;
    其中,所述投屏系统的视频传输质量为根据每组的所述第一显示设备发送的平均视频传输质量确定的;所述平均视频传输质量为所述第一显示设备基于所述第一显示设备所属投屏组内的每个所述第二显示设备发送的视频传输质量确定的。
  7. 根据权利要求6所述的方法,其特征在于,其中,每个所述投屏组与所述主控设备之间的跳数是基于每个投屏组的平均视频传输质量确定的。
  8. 根据权利要求6所述的方法,其特征在于,其中,每个所述投屏组内的至少一个所述第二显示设备与所属投屏组内的所述第一显示设备之间的跳数是基于每个所述第二 显示设备的视频传输质量确定的。
  9. 根据权利要求7或8所述的方法,其特征在于,其中,
    作为所述主控设备的下一跳节点的所述第一显示设备的数量小于或等于第三阈值;
    作为所述第一显示设备的下一跳节点的所述第二显示设备的数量小于或等于第四阈值。
  10. 根据权利要求6所述的方法,其特征在于,基于可靠性传输协议发送承载所述图像帧的数据包为:
    向作为所述主控设备的下一跳节点的所述第一显示设备发送所述数据包。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,其中,若所述图像帧为B帧,则基于非可靠性传输协议发送承载所述图像帧的数据包。
  12. 一种主控设备,其特征在于,包括:
    存储器与处理器,所述存储器与所述处理器耦合;
    其中,所述存储器包括程序指令,所述程序指令被所述处理器运行时,使得所述主控设备执行如下步骤:
    当待发送的图像帧是I帧,基于可靠性传输协议发送承载所述图像帧的数据包;
    当所述待发送的图像帧是P帧,当所述P帧为符合第一预设条件的P帧,则基于可靠性传输协议发送承载所述图像帧的数据包,当所述P帧为不符合所述第一预设条件的P帧,则基于不可靠性传输协议发送承载所述图像帧的数据包。
  13. 根据权利要求12所述的方法,其特征在于,所述第一预设条件包括:
    所述P帧为图像序列中的所有P帧中满足预设间隔的P帧;
    或者,
    所述P帧与前一个图像帧或下一个图像帧之间的帧间预测参数大于或等于第一阈值。
  14. 一种主控设备,其特征在于,包括:
    存储器与处理器,所述存储器与所述处理器耦合;
    其中,所述存储器包括程序指令,所述程序指令被所述处理器运行时,使得所述主控设备执行如下步骤:
    当待发送的图像帧是I帧,基于可靠性传输协议发送承载所述图像帧的数据包;
    当所述待发送的图像帧是P帧,当所述主控设备所属投屏系统的视频传输质量符合第二预设条件,则基于可靠性传输协议发送承载所述图像帧的数据包,当所述主控设备所属投屏系统的视频传输质量不符合所述第二预设条件,则基于非可靠性传输协议发送承载所述图像帧的数据包。
  15. 根据权利要求12至14任一项所述的主控设备,其特征在于,其中,
    所述可靠性传输协议采用包含确认应答的传输机制;
    所述非可靠性传输协议采用组播传输机制。
  16. 根据权利要求12至15任一项所述的主控设备,其特征在于,其中,所述可靠性传输机制为动态路由协议。
  17. 根据权利要求14的主控设备,其特征在于,其中,投屏系统包括两个或两个以上投屏组,每个投屏组包括第一显示设备和至少一个第二显示设备;
    其中,投屏系统的视频传输质量为根据每组的所述第一显示设备发送的平均视频传输质量确定的;平均视频传输质量为所述第一显示设备基于所述第一显示设备所属投屏组内的每个第二显示设备发送的视频传输质量确定的。
  18. 根据权利要求17的主控设备,其特征在于,其中,所述每个投屏组与所述主控设备之间的跳数是基于所述每个投屏组的平均视频传输质量确定的。
  19. 根据权利要求17的主控设备,其特征在于,其中,所述每个投屏组内的至少一个所述第二显示设备与所属投屏组内的第一显示设备之间的跳数是基于每个所述第二显示设备的视频传输质量确定的。
  20. 根据权利要求18或19所述的主控设备,其特征在于,其中,
    作为所述主控设备的下一跳节点的所述第一显示设备的数量小于或等于第三阈值;
    作为所述第一显示设备的下一跳节点的所述第二显示设备的数量小于或等于第四阈值。
  21. 根据权利要求6的主控设备,其特征在于,所述程序指令被所述处理器运行时,使得所述主控设备执行如下步骤:
    基于可靠性传输协议发送承载图像帧的数据包为:向作为所述主控设备的下一跳节点的所述第一显示设备发送数据包。
  22. 根据权利要求1至10任一项的主控设备,其特征在于,所述程序指令被所述处理器运行时,使得所述主控设备执行如下步骤:
    若图像帧为B帧,则基于非可靠性传输协议发送承载图像帧的数据包。
  23. 一种投屏系统,其特征在于,所述投屏系统包括主控设备与一个或多个显示设备;
    当待发送的图像帧是I帧,所述主控设备基于可靠性传输协议发送承载所述图像帧的数据包;
    当所述待发送的图像帧是P帧,当所述P帧为符合第一预设条件的P帧,则所述主控设备基于可靠性传输协议发送承载所述图像帧的数据包,当所述P帧为不符合所述第一预设条件的P帧,则所述主控设备基于非可靠性传输协议发送承载所述图像帧的数据包;
    至少一个显示设备接收所述主控设备发送的数据包,其中,若接收到的数据包是基于可靠性传输协议发送的且承载所述图像帧的数据包,则对所述图像帧进行解码,并将所述数据包转发给下一跳显示设备;若接收到的数据包是基于非可靠性协议发送的且承载所述图像帧的数据包,则对所述图像帧进行解码。
  24. 一种投屏系统,其特征在于,所述投屏系统包括主控设备与一个或多个显示设备;
    当待发送的图像帧是I帧,所述主控设备基于可靠性传输协议发送承载所述图像帧的数据包;
    当所述待发送的图像帧是P帧,当所述主控设备所属投屏系统的视频传输质量符合第二预设条件,则所述主控设备基于可靠性传输协议发送承载所述图像帧的数据包,当所述投屏系统的视频传输质量不符合所述第二预设条件,则所述主控设备基于非可靠性传输协议发送承载所述图像帧的数据包;
    至少一个显示设备接收主控设备发送的数据包,其中,若接收到的数据包是基于可靠性传输协议发送的且承载所述图像帧的数据包,则对所述图像帧进行解码,并将所述数据包转发给下一跳显示设备;若接收到的数据包是基于非可靠性协议发送的且承载所述图像帧的数据包,则对所述图像帧进行解码。
  25. 一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由主控设备执行,以控制所述主控设备执行权利要求1-11所述的方法。
PCT/CN2020/105491 2019-07-30 2020-07-29 投屏方法及设备 WO2021018187A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/597,236 US20220321634A1 (en) 2019-07-30 2020-07-29 Screen Projection Method and Device
EP20848274.5A EP3982641A4 (en) 2019-07-30 2020-07-29 METHOD AND DEVICE FOR PROJECTING ON SCREEN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910694322.3A CN110519632B (zh) 2019-07-30 2019-07-30 投屏方法及设备
CN201910694322.3 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021018187A1 true WO2021018187A1 (zh) 2021-02-04

Family

ID=68625057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105491 WO2021018187A1 (zh) 2019-07-30 2020-07-29 投屏方法及设备

Country Status (4)

Country Link
US (1) US20220321634A1 (zh)
EP (1) EP3982641A4 (zh)
CN (1) CN110519632B (zh)
WO (1) WO2021018187A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788646A (zh) * 2021-03-16 2021-05-11 北京字节跳动网络技术有限公司 网络质量监测方法、装置、设备和存储介质
CN114470750A (zh) * 2021-07-06 2022-05-13 荣耀终端有限公司 图像帧流的显示方法、电子设备和存储介质
CN114793291A (zh) * 2022-01-25 2022-07-26 深圳软牛科技有限公司 Ios多设备实时投屏方法、系统、计算机设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628847B (zh) * 2020-05-06 2022-04-08 上海幻电信息科技有限公司 数据传输方法及装置
CN111917661B (zh) * 2020-07-29 2023-05-02 抖音视界有限公司 数据传输方法、装置、电子设备和计算机可读存储介质
CN114071197B (zh) * 2020-07-30 2024-04-12 华为技术有限公司 投屏数据处理方法和装置
CN114500725B (zh) * 2020-11-13 2023-06-27 华为技术有限公司 目标内容传输方法、主设备、从设备和存储介质
CN114173183B (zh) * 2021-09-26 2023-01-24 荣耀终端有限公司 投屏方法和电子设备
CN114510191A (zh) * 2022-02-16 2022-05-17 北京字跳网络技术有限公司 一种投屏方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580773A (zh) * 2012-07-18 2014-02-12 中兴通讯股份有限公司 数据帧的传输方法及装置
KR20140115819A (ko) * 2013-03-22 2014-10-01 삼성테크윈 주식회사 선택적 영상 전송 시스템
CN106255230A (zh) * 2016-07-29 2016-12-21 广东美的厨房电器制造有限公司 数据传输方法及数据传输装置
CN106792263A (zh) * 2016-12-09 2017-05-31 东方网力科技股份有限公司 一种视频数据传输方法、装置及系统
WO2018039179A1 (en) * 2016-08-22 2018-03-01 Intel IP Corporation Enhanced key frame protection on cellular networks
CN107888992A (zh) * 2017-11-17 2018-04-06 北京松果电子有限公司 视频数据传输方法、接收方法、装置、存储介质及设备
CN109150876A (zh) * 2018-08-20 2019-01-04 深圳市昊源科技有限公司 一种视频无线传输的qos方法、装置及系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045581A2 (en) * 1999-01-29 2000-08-03 Data Race, Inc. Modem transfer mechanism which prioritized data transfers
WO2003052612A1 (en) * 2001-12-15 2003-06-26 Thomson Licensing S.A. System and method for delivering data streams of multiple data types at different priority levels
US20040016000A1 (en) * 2002-04-23 2004-01-22 Zhi-Li Zhang Video streaming having controlled quality assurance over best-effort networks
KR20060114080A (ko) * 2005-04-27 2006-11-06 삼성전자주식회사 멀티미디어 스트리밍 서비스 시스템 및 방법
CN101909196B (zh) * 2009-06-05 2013-04-17 华为技术有限公司 一种频道切换处理方法及系统以及相关设备
CN101997825B (zh) * 2009-08-28 2015-03-11 中国移动通信集团公司 Dsn网络认证信息请求、存储方法、sn-c节点及系统
CN102209230B (zh) * 2011-05-31 2013-04-03 浙江中烟工业有限责任公司 一种具有主会场控制模块的视频会议系统
US9054911B1 (en) * 2012-04-16 2015-06-09 Google Inc. Multicast group ingestion
US8806522B2 (en) * 2012-07-30 2014-08-12 Verizon Patent And Licensing Inc. Group based multicast streaming systems and methods
CN103338207B (zh) * 2013-07-10 2016-12-07 重庆邮电大学 无线自组织网络中实时视频多跳中继方法
CN103716584A (zh) * 2013-11-30 2014-04-09 南京大学 基于上下文感知的智能移动终端现场监测方法
US9558718B2 (en) * 2014-09-03 2017-01-31 Qualcomm Incorporated Streaming video data in the graphics domain
JP6590476B2 (ja) * 2014-10-28 2019-10-16 キヤノン株式会社 画像表示装置
CN107801088A (zh) * 2016-08-31 2018-03-13 南京极域信息科技有限公司 一种投屏接收分享系统及实现方法
US10306181B2 (en) * 2016-10-11 2019-05-28 Cisco Technology, Inc. Large scale media switching: reliable transport for long term reference frames
US10779194B2 (en) * 2017-03-27 2020-09-15 Qualcomm Incorporated Preferred path network scheduling in multi-modem setup
US20180287850A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Techniques for network multicasting with buffering
CN109618170B (zh) * 2018-12-04 2021-10-01 嘉兴国电通新能源科技有限公司 基于网络编码的d2d实时视频流传输方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580773A (zh) * 2012-07-18 2014-02-12 中兴通讯股份有限公司 数据帧的传输方法及装置
KR20140115819A (ko) * 2013-03-22 2014-10-01 삼성테크윈 주식회사 선택적 영상 전송 시스템
CN106255230A (zh) * 2016-07-29 2016-12-21 广东美的厨房电器制造有限公司 数据传输方法及数据传输装置
WO2018039179A1 (en) * 2016-08-22 2018-03-01 Intel IP Corporation Enhanced key frame protection on cellular networks
CN106792263A (zh) * 2016-12-09 2017-05-31 东方网力科技股份有限公司 一种视频数据传输方法、装置及系统
CN107888992A (zh) * 2017-11-17 2018-04-06 北京松果电子有限公司 视频数据传输方法、接收方法、装置、存储介质及设备
CN109150876A (zh) * 2018-08-20 2019-01-04 深圳市昊源科技有限公司 一种视频无线传输的qos方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982641A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788646A (zh) * 2021-03-16 2021-05-11 北京字节跳动网络技术有限公司 网络质量监测方法、装置、设备和存储介质
CN114470750A (zh) * 2021-07-06 2022-05-13 荣耀终端有限公司 图像帧流的显示方法、电子设备和存储介质
CN114470750B (zh) * 2021-07-06 2022-12-30 荣耀终端有限公司 图像帧流的显示方法、电子设备和存储介质
CN114793291A (zh) * 2022-01-25 2022-07-26 深圳软牛科技有限公司 Ios多设备实时投屏方法、系统、计算机设备及存储介质
CN114793291B (zh) * 2022-01-25 2023-11-07 深圳软牛科技有限公司 Ios多设备实时投屏方法、系统、计算机设备及存储介质

Also Published As

Publication number Publication date
US20220321634A1 (en) 2022-10-06
CN110519632A (zh) 2019-11-29
CN110519632B (zh) 2021-08-20
EP3982641A1 (en) 2022-04-13
EP3982641A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2021018187A1 (zh) 投屏方法及设备
CN110381345B (zh) 一种投屏显示方法及电子设备
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2020133183A1 (zh) 音频数据的同步方法及设备
WO2021043170A1 (zh) 一种蓝牙连接方法及相关装置
WO2021043219A1 (zh) 一种蓝牙回连方法及相关装置
WO2021017909A1 (zh) 一种通过nfc标签实现功能的方法、电子设备及系统
WO2020124371A1 (zh) 一种数据信道的建立方法及设备
WO2023011380A1 (zh) 一种北斗通信系统中多帧融合传输方法及相关装置
CN114868417A (zh) 一种通信方法、通信装置和系统
WO2020118532A1 (zh) 一种蓝牙通信方法及电子设备
US20220368754A1 (en) Bluetooth communication method and related apparatus
WO2022111712A1 (zh) 一种音频与视频同步的方法及设备
WO2023124186A1 (zh) 通信方法和通信装置
WO2023273763A1 (zh) 一种视频数据的传输方法及装置
US20230269437A1 (en) Screen sharing method and system and electronic device
WO2022000182A1 (zh) 数据传输方法和装置
CN114765831A (zh) 上行资源预申请的方法及相关设备
US20240129352A1 (en) Live broadcast method, apparatus, and system
CN113453274B (zh) 一种上行数据的分流方法及终端
WO2023061217A1 (zh) 一种数据传输方法及装置
EP4277283A1 (en) Livestreaming method, apparatus and system
EP4290360A1 (en) Screen projection method, electronic device, and system
US20240007558A1 (en) Call method and electronic device
CN115706958A (zh) 数据处理方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020848274

Country of ref document: EP

Effective date: 20220104

NENP Non-entry into the national phase

Ref country code: DE