WO2021018051A1 - Procédé de génération de livre de codes de demande de répétition automatique hybride et dispositif associé - Google Patents

Procédé de génération de livre de codes de demande de répétition automatique hybride et dispositif associé Download PDF

Info

Publication number
WO2021018051A1
WO2021018051A1 PCT/CN2020/104594 CN2020104594W WO2021018051A1 WO 2021018051 A1 WO2021018051 A1 WO 2021018051A1 CN 2020104594 W CN2020104594 W CN 2020104594W WO 2021018051 A1 WO2021018051 A1 WO 2021018051A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
pdsch
sps
pdsch reception
feedback
Prior art date
Application number
PCT/CN2020/104594
Other languages
English (en)
Inventor
Chiahao YU
Chienchun CHENG
Wanchen LIN
Yuhsin CHENG
Original Assignee
FG Innovation Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Company Limited filed Critical FG Innovation Company Limited
Priority to US17/630,005 priority Critical patent/US20220264614A1/en
Priority to CN202080052696.6A priority patent/CN114144985B/zh
Priority to KR1020227003022A priority patent/KR20220025036A/ko
Priority to EP20847579.8A priority patent/EP4005128B1/fr
Priority to JP2022505461A priority patent/JP2022541952A/ja
Publication of WO2021018051A1 publication Critical patent/WO2021018051A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present disclosure generally relates to wireless communications, and more particularly, to a method of performing hybrid automatic repeat request (HARQ) codebook generation and a related device.
  • HARQ hybrid automatic repeat request
  • Non-terrestrial networks refer to networks, or segments of networks, using an airborne or spaceborne vehicle for transmission, and was studied in 3GPP since Rel-16 timeline.
  • Spaceborne vehicles are referred to as satellites, including Low Earth Orbiting (LEO) satellites, Medium Earth Orbiting (MEO) satellites, Geostationary Earth Orbiting (GEO) satellites as well as Highly Elliptical Orbiting (HEO) satellites.
  • LEO Low Earth Orbiting
  • MEO Medium Earth Orbiting
  • GEO Geostationary Earth Orbiting
  • HEO Highly Elliptical Orbiting
  • evaluative works may focus on the service link (e.g., radio link between a satellite and a user equipment (UE) ) design, aiming for identifying potential impacts and required enhancements on a design baseline of the terrestrial network (TN) .
  • service link e.g., radio link between a satellite and a user equipment (UE)
  • Stop-and-Wait (SAW) HARQ procedure is introduced where a set of HARQ processes can be run in parallel.
  • SAW HARQ operation becomes challenging when round trip time (RTT) gets long since the required number of parallel HARQ processes increases linearly in order to keep physical resource occupation time higher from a UE perspective.
  • RTT round trip time
  • the cost of HARQ retransmission may be prohibitively high if RTT delay is long.
  • the UE operating in an access network of the GEO satellite may experience a one-way propagation time up to 270 ms.
  • the one-way propagation delay changes continuously between 2 ms and 7 ms.
  • the slow reaction time is expected to have performance impact on a retransmission based on a HARQ state feedback (e.g., an extra RTT delay is experienced) .
  • a mechanism to disable the HARQ operation (or called HARQ-less operation) is provided.
  • HARQ-less operation may be dynamically configured according to a transmission.
  • One HARQ state feedback opportunity in uplink (UL) may need to cover both HARQ-less transmission (s) and regular HARQ transmission (s) .
  • HARQ-less operation may exist for dynamic scheduling and SPS scheduling.
  • the number of Uplink Control Information (UCI) bits for PUCCH transmission affects PUCCH power control in certain circumstances. Since HARQ codebook may be multiplexed in the UCI, the HARQ codebook size may affect power control as well.
  • UCI Uplink Control Information
  • the present disclosure provides a method of performing HARQ codebook generation and a related device.
  • a method for a user equipment (UE) performing hybrid automatic repeat request (HARQ) codebook generation for downlink transmission (s) comprises receiving a dynamic scheduling configuration for HARQ feedback operation, from a base station, receiving, from the base station, a scheduling signaling for a first physical downlink shared channel (PDSCH) reception with a first HARQ state feedback for the first PDSCH reception being disabled, and generating a HARQ codebook excluding the first HARQ state for the first PDSCH reception, for the HARQ feedback operation.
  • PDSCH physical downlink shared channel
  • a method for a base station (BS) performing hybrid automatic repeat request (HARQ) codebook generation for downlink transmission (s) comprises transmitting a dynamic scheduling configuration for a HARQ feedback, to a user equipment (UE) , transmitting a signaling to disable the HARQ feedback on a physical downlink shared channel (PDSCH) transmission, to the UE, and not counting the PDSCH transmission in a downlink assignment index (DAI) of downlink control information (DCI) transmitted to the UE for the HARQ codebook generation.
  • DAI downlink assignment index
  • a user equipment for performing hybrid automatic repeat request (HARQ) codebook generation for downlink transmission (s)
  • the UE comprises a processor, for executing computer-executable instructions, and a non-transitory machine-readable medium, coupled to the processor, for storing the computer-executable instructions, wherein the computer-executable instructions instruct the processor to receiving a dynamic scheduling configuration for HARQ feedback operation, from a base station, receiving, from the base station, a scheduling signaling for a first physical downlink shared channel (PDSCH) reception with a first HARQ state feedback for the first PDSCH reception being disabled, and generating a HARQ codebook excluding the first HARQ state for the first PDSCH reception, for the HARQ feedback operation.
  • PDSCH physical downlink shared channel
  • a base station (BS) for performing hybrid automatic repeat request (HARQ) codebook generation for downlink transmission (s) comprises a processor, for executing computer-executable instructions, and a non-transitory machine-readable medium, coupled to the processor, for storing the computer-executable instructions, wherein the computer-executable instructions instruct the processor to transmit a dynamic scheduling configuration for a HARQ feedback, to a user equipment (UE) , transmitting a signaling to disable the HARQ feedback on a physical downlink shared channel (PDSCH) transmission, to the UE, and not counting the PDSCH transmission in a downlink assignment index (DAI) of downlink control information (DCI) transmitted to the UE for the HARQ codebook generation.
  • DAI downlink assignment index
  • FIG. 1 is a flowchart illustrating a HARQ codebook generation, in accordance with example implementations of the present disclosure.
  • FIG. 2 is a block diagram illustrating a node for wireless communication, in accordance with example implementations of the present disclosure.
  • any two or more of the following paragraphs, (sub) -bullets, points, actions, behaviors, terms, alternatives, examples, or claims described in the following disclosure may be combined logically, reasonably, and properly to form a specific method.
  • Any sentence, paragraph, (sub) -bullet, point, action, behaviors, terms, or claims described in the following disclosure may be implemented independently and separately to form a specific method.
  • Dependency e.g., “based on” , “more specifically” , “preferably” , “In one embodiment” , “In one implementation” , “In one alternative” etc., in the following disclosure refers to just one possible example that would not restrict the specific method.
  • any described network function (s) or algorithm (s) may be implemented by hardware, software, or a combination of software and hardware. Described functions may correspond to modules that are software, hardware, firmware, or any combination thereof.
  • the software implementation may comprise computer executable instructions stored on computer readable medium such as memory or other type of storage devices.
  • one or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the described network function (s) or algorithm (s) .
  • the microprocessors or general-purpose computers may be formed of applications specific integrated circuitry (ASIC) , programmable logic arrays, and/or using one or more digital signal processor (DSPs) .
  • ASIC applications specific integrated circuitry
  • DSPs digital signal processor
  • the computer readable medium includes but is not limited to random access memory (RAM) , read only memory (ROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , flash memory, compact disc (CD) read-only memory (CD ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory compact disc (CD) read-only memory (CD ROM)
  • CD ROM compact disc
  • magnetic cassettes magnetic tape
  • magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
  • a radio communication network architecture typically includes at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection with a network.
  • the UE communicates with the network (e.g., a core network (CN) , an evolved packet core (EPC) network, an Evolved Universal Terrestrial Radio Access Network (RAN) (E-UTRAN) , a Next-Generation (GN) Core (NGC) , 5G CN (5GC) , or an internet via a RAN established by the BS.
  • CN core network
  • EPC evolved packet core
  • RAN Evolved Universal Terrestrial Radio Access Network
  • NGC Next-Generation
  • 5GC 5G CN
  • a UE may include, but is not limited to, a mobile station, a mobile terminal or device, a user communication radio terminal.
  • a UE may be a portable radio equipment, that includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, or a personal digital assistant (PDA) with wireless communication capability.
  • PDA personal digital assistant
  • the UE is configured to receive and transmit signals over an air interface to one or more cells in a RAN.
  • a BS may include, but is not limited to, a node B (NB) as in the UMTS, an evolved node B (eNB) as in the LTE-A, a radio network controller (RNC) as in the UMTS, a BS controller (BSC) as in the Global System for Mobile communications (GSM) /GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , an Next Generation (NG) -eNB as in an Evolved Universal Terrestrial Radio Access (E-UTRA) BS in connection with the 5GC, a next-generation node B (gNB) as in the 5G-RAN, and any other apparatus capable of controlling radio communication and managing radio resources within a cell.
  • the BS may connect to serve the one or more UEs via a radio interface to the network.
  • a BS may be configured to provide communication services according to at least one of the following radio access technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , GSM (often referred to as 2G) , GERAN, General Packet Radio Service (GRPS) , UMTS (often referred to as 3G) according to basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, evolved LTE (eLTE) , New Radio (NR, often referred to as 5G) , and/or LTE-A Pro.
  • RATs radio access technologies
  • the BS is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN.
  • the BS supports the operations of the cells.
  • Each cell is operable to provide services to at least one UE within radio coverage of the cell. More specifically, each cell (often referred to as a serving cell) provides services to serve one or more UEs within the cell’s radio coverage, (e.g., each cell schedules the downlink (DL) and optionally UL resources to at least one UE within the cell’s radio coverage for DL and optionally UL packet transmissions) .
  • the BS can communicate with one or more UEs in the radio communication system via the plurality of cells.
  • a cell may allocate sidelink (SL) resources for supporting proximity service (ProSe) , LTE SL service, and LTE/NR V2X services.
  • Each cell may have overlapped coverage areas with other cells.
  • the HARQ operation may be disabled in either a semi-static manner or a dynamic manner.
  • the HARQ codebook may be a semi-static codebook or a dynamic codebook.
  • a radio resource control (RRC) signalling may be used where a UE is configured to perform HARQ-less operation.
  • RRC radio resource control
  • a transport block (TB) is to be transmitted for multiple times, retransmission decision does not based on a HARQ state feedback from intended receiver (s) , where the HARQ state feedback is usually determined based on the decoding results of the TB.
  • the HARQ-less operation may be configured according to a UE configuration, a serving-cell (e.g., Component Carrier, CC) configuration, a BandWidth Part (BWP) configuration, or a cell group configuration.
  • a serving-cell e.g., Component Carrier, CC
  • BWP BandWidth Part
  • Semi-static HARQ-less operation may be configured via semi-persistent scheduling (SPS) .
  • SPS transmission periodic physical resources are provided to the configured UE in a certain time duration.
  • SPS transmission may be activated via a physical layer signaling (e.g., DCI/physical downlink control channel (PDCCH) ) . If one SPS transmission is activated via the physical layer signaling, some transmission parameters may be transmitted together with the activation signaling, and the transmission parameters are applicable before releasing the SPS transmission.
  • HARQ-less operation may be configured via the RRC, or dynamically indicated in SPS activation phase. In the SPS transmission, a HARQ process number used for HARQ state feedback may not be fixed.
  • physical layer signaling e.g., DCI/PDCCH
  • DCI/PDCCH physical layer signaling
  • a UE is indicated to perform HARQ-less operation for PDSCH transmission (s) corresponding to the physical layer signaling.
  • certain HARQ process number may be reserved by, for example, RRC configuration, to indicate HARQ-less operation for the transmission.
  • a dedicated DCI field may be used to indicate HARQ-less operation of the transmission.
  • the dedicated DCI field may be used to indicate HARQ-less operation for a UE, for a serving cell of a UE, for a BWP of a serving cell of a UE or a configured grant (CG) configuration (s) , rather than the transmission.
  • CG configured grant
  • FIG. 1 illustrates a method 100 for a UE to perform a HARQ codebook generation.
  • the UE receives a dynamic scheduling configuration for HARQ feedback operation, from the BS.
  • the UE receives a scheduling signaling indicating a PDSCH reception with a HARQ state feedback being disabled, from the BS.
  • the UE generates a HARQ codebook excluding the HARQ state for the PDSCH reception.
  • the method 100 provides the HARQ codebook generation mechanism by which the UE does not include the HARQ state of the dynamic PDSCH reception whose HARQ state feedback is disabled in the HARQ codebook, but include the HARQ states of the other dynamic PDSCH receptions whose HARQ state feedbacks are not disabled in the HARQ codebook.
  • the scheduling signaling mentioned above is downlink control information (DCI) that indicates the HARQ state feedback for the PDSCH reception being disabled.
  • DCI downlink control information
  • the DCI includes a reserved HARQ process number for indicating the HARQ state feedback for the PDSCH reception being disabled.
  • the reserved HARQ process number may be indicated by the dynamic scheduling configuration.
  • the dynamic scheduling configuration mentioned above may further indicate the HARQ process number (s) available for the PDSCH reception (s) .
  • the UE may ignore a PDSCH-to-HARQ_feedback timing indicator in the DCI, where the PDSCH-to-HARQ_feedback indicates a time gap between the PDSCH reception where the HARQ state feedback is disabled and the corresponding feedback timing of the HARQ state for the PDSCH reception.
  • the UE may be configured with SPS PDSCH reception.
  • the UE receives a SPS configuration for a SPS PDSCH reception, from the BS, where the SPS configuration indicates that a HARQ state feedback for the SPS PDSCH reception is disabled.
  • the UE generates the HARQ codebook excluding the HARQ state of the SPS PDSCH reception.
  • the UE may include a HARQ state for a SPS activation signaling or a SPS release signaling corresponding to a SPS PDSCH reception in the HARQ codebook.
  • the UE may multiplex the HARQ codebook in a UCI on a PUCCH transmission, for transmitting the HARQ codebook to the BS.
  • the UE may determine a power control parameter for the PUCCH transmission according to at least one of a downlink assignment index (DAI) value of the DCI scheduling a PDSCH reception, an actual number of PDCCH receptions excluding a PDCCH reception which indicates a PDSCH reception with HARQ state feedback being disabled, a number of received TBs excluding a TB (s) associated with the HARQ-less operation.
  • DAI value above may not count the reception of PDCCH (s) corresponding to PDSCH (s) being indicated to follow HARQ-less operation.
  • the UE may multiplex the HARQ codebook in a UCI on a physical uplink shared channel (PUSCH) transmission, for transmitting the HARQ codebook to the BS.
  • the UE may receive only the PDSCH reception or the SPS PDSCH reception with corresponding HARQ state feedback being disabled, from the BS, and receive a DAI with a predetermined value, from the BS, wherein the DAI is received from a DCI scheduling the PUSCH transmission.
  • PUSCH physical uplink shared channel
  • the BS may transmit the dynamic scheduling configuration mentioned above to the UE, and transmit a signaling to disable the HARQ state feedback on a PDSCH reception (referred to as a HARQ-less PDSCH reception) , to the UE.
  • a HARQ-less PDSCH reception a signaling to disable the HARQ state feedback on a PDSCH reception
  • the BS may not count the HARQ-less PDSCH transmission in a DAI of the DCI transmitted to the UE.
  • Dynamic HARQ codebook generation and semi-static HARQ codebook generation are disclosed.
  • HARQ-less PDSCH reception when at least one PDSCH reception whose HARQ state feedback is disabled (hereafter called HARQ-less PDSCH reception) , “ACK” state is always reported for the HARQ-less PDSCH reception irrespective of the decoding results of the HARQ-less PDSCH reception.
  • a HARQ state of the HARQ-less PDSCH reception may or may not follow the principle defined in NR Rel-15/16, for example as in TS 38.213 V15.5.0 technical document.
  • the UE may report HARQ state for the HARQ-less SPS PDSCH reception according to decoding results of the HARQ-less SPS PDSCH reception, to generate the dynamic HARQ codebook. If the UE is not conformed to the principle of NR Rel-15/16 as in TS 38.213 V15.5.0 for NTN scenarios addressed here, the UE may report “ACK” state for the HARQ-less SPS PDSCH reception irrespective of the decoding results of the HARQ-less PDSCH reception.
  • all HARQ state of the HARQ-less PDSCH receptions are constrained to “ACK” state.
  • the generated dynamic HARQ codebook size is the same as those in NR Rel-15/16, irrespective of the HARQ-less operation or regular HARQ operation.
  • the UE may report HARQ state of a corresponding HARQ-less PDSCH reception to the BS according to the decoding results of the corresponding HARQ-less PDSCH reception.
  • the UE may report “ACK” state for a HARQ-less SPS PDSCH reception to the BS as long as the PDCCH associated with the SPS PDSCH activation or release passes a cyclic redundancy check (CRC) check.
  • CRC cyclic redundancy check
  • a HARQ state of a HARQ-less PDSCH reception is excluded from the dynamic HARQ codebook, irrespective of the decoding results of the HARQ-less PDSCH reception.
  • the HARQ state of the SPS HARQ-less PDSCH reception may or may not be included in the dynamic HARQ codebook.
  • a SPS PDSCH reception corresponding to a SPS configuration may be indicated as HARQ-less SPS PDSCH reception.
  • the UE excludes HARQ state of the SPS PDSCH reception from the dynamic HARQ codebook.
  • the UE may report HARQ state of the HARQ-less SPS PDSCH reception according to the decoding results of corresponding HARQ-less SPS PDSCH reception as detailed in NR Rel-15/16, for example, TS 38.213 V15.5.0 technical document. That is, a HARQ state of the HARQ-less SPS PDSCH reception is included in the dynamic HARQ codebook.
  • the HARQ state (e.g., “ACK” or “NACK” state) is determined based on if an activation or release PDCCH corresponding to a HARQ-less SPS PDSCH reception passes CRC check or not. If a CRC check is passed, “ACK” for the HARQ-less SPS PDSCH reception may be reported. If a CRC check fails, “NACK” may be reported.
  • the UE may exclude HARQ state of a HARQ-less SPS PDSCH reception from the dynamic HARQ codebook.
  • a downlink assignment index (DAI) field may not count a PDCCH reception that schedules a PDSCH reception or HARQ-less SPS PDSCH activation or release.
  • the DAI field may correspond to the DCI format 1_0 or 1_1, and is indicated as a counter DAI. In one example, the DAI field is indicated as counter DAI if there is only one serving cell configured to a UE. In other examples, the DAI field includes a counter DAI (for example, 2 MSB bits) and a total DAI (for example, 2 LSB bits) if there is more than one serving cells configured to a UE.
  • a counter DAI for example, 2 MSB bits
  • a total DAI for example, 2 LSB bits
  • the HARQ-less SPS PDSCH reception may be excluded from DAI field counting.
  • the DAI field counts an activation or release PDCCH reception corresponding to a HARQ-less SPS PDSCH.
  • the DAI field does not count an activation or release PDCCH reception corresponding to a HARQ-less SPS PDSCH.
  • the value of the DAI field in a corresponding DCI may be ignored by the UE.
  • the value of the DAI field in the corresponding DCI may be managed by the BS.
  • the UE may use the value of the DAI field for deriving a number of PDSCH receptions with regular HARQ operation.
  • the UE may multiplex the dynamic HARQ codebook in the UCI on PUSCH, and if only one PDSCH reception with HARQ-less operation is received by the UE, the UL DAI (e.g., V T-DAI UL ) field in the corresponding DCI format 0_1 may be indicated to a fixed value, for example, ‘4’ .
  • V T-DAI UL V T-DAI UL
  • a pre- determined threshold e.g. 11 bits
  • O ACK the number of HARQ information bits of the dynamic HARQ codebook to be included in the UCI
  • O SR the number of scheduling request (SR) bits to be included in the UCI
  • O CSI the number of CSI (channel state information) bits to be included in the UCI.
  • a number of HARQ information bits e.g., n HARQ-ACK , which is used for obtaining a transmission power for a PUCCH that carries the UCI, is determined based on a predefined rule.
  • the use of the number of the n HARQ-ACK for obtaining the transmission power of the PUCCH may follow those as described in NR Rel-15/16 (e.g., 3GPP TS 38.213 V15.5.0 technical document) .
  • the predefined rule differentiates itself between two cases: (1) all serving cells follow non-code block group based (non-CBG-based) HARQ operation; (2) a subset of serving cells is configured for CBG-based HARQ operation. Two cases are disclosed.
  • n HARQ-ACK may be determined based on Eq. 1. It is noted that Eq. 1 follows the formulation in NR Rel-15/16, for example, TS 38.213 V15.5.0, but with the definition of the parameters modified as detailed below.
  • M is the cardinality of a set of PDCCH monitoring occasions for a PDCCH with the DCI format 1_0 or DCI format 1_1 for scheduling PDSCH receptions or SPS PDSCH release across active DL BWPs of configured serving cells for which the UE transmits the dynamic HARQ codebook in a same PUCCH in slot n where all receptions are configured/indicated with regular HARQ operation.
  • the PDCCH monitoring occasions are in ascending order of start time of the search space sets associated with a PDCCH monitoring occasion. Based on the description above, in one implementation, if a transmission is indicated/configured as HARQ-less transmission, the corresponding transmitted TB (s) is not considered in Eq. 1.
  • the UE does not detect any valid DCI format 1_0 or DCI format 1_1 scheduling PDSCH reception or indicating SPS PDSCH release for any serving cell c in any of the M PDCCH monitoring occasions.
  • avalue of “maxNrofCodeWordsScheduledByDCI” provided from higher layers is ‘2’ for any serving cell c and “harq-ACK-SpatialBundlingPUCCH” is not provided; otherwise,
  • the UE may expect “harq-ACK-SpatialBundlingPUCCH” to be provided if the first method mentioned above is used. For example, when the UE is indicated to feedback “ACK” states for HARQ-less PDSCH receptions, the UE is configured with “harq-ACKSpatialbundlingPUCCH” .
  • N SPS, c is the number of SPS PDSCH receptions by the UE on serving cell c for which the UE transmits corresponding dynamic HARQ codebook in the same PUCCH as for dynamic HARQ codebook corresponding to PDSCH receptions within the M PDCCH monitoring occasions.
  • the UE does not include the SPS PDSCH receptions when counting N SPS, c . It is noted that a SPS PDSCH reception associated with a SPS PDSCH activation may or may not be counted in N SPS, c , dependent on implementations of the second method mentioned above.
  • the valid DCI may be any DCI, irrespective it indicates HARQ-less operation or regular HARQ operation for a PDSCH reception.
  • all received DCIs are valid DCIs.
  • the valid DCI may be a DCI that does not indicate HARQ-less PDSCH reception.
  • the received DCIs are valid only if it is associated with PDSCH receptions with regular HARQ operation. In other words, the received DCIs are invalid if its associated PDSCH transmissions are configured with (or, indicated as) HARQ-less operation.
  • a DCI associated with SPS PDSCH activation may or may not be valid DCI, dependent on implementations of the second method.
  • a DCI associated with SPS PDSCH release may or may not be valid DCI, dependent on implementations of the second method.
  • a UE is configured with the CBG-based transmission (e.g., via higher layer parameter PDSCH-CodeBlockGroupTransmission) , for serving cells, and is not provided CBG-based transmission for serving cells, where
  • n HARQ-ACK n HARQ-ACK, TB +n HARQ-ACK, CBG , where n HARQ-ACK, CBG is determined based on Eq. 2 Eq. 2and n HARQ-ACK, TB is determined based on Eq. 1.
  • Eq. 2 follows the formulation in NR Rel-15/16, for example, TS 38.213 V15.5.0, but with the definition of the parameters modified as detailed below. It is also noted that the same notation as from Eq. 1 has same definition here. Particularly, a monitoring occasion may be counted in Eq. 2 when it relates to regular HARQ operation. If a transmission is indicated/configured as HARQ-less transmission, the corresponding transmitted TB (s) is not considered in Eq. 1.
  • the UE does not detect any valid DCI format 1_1 scheduling CBG-based PDSCH reception for any serving cell c in any of the M PDCCH monitoring occasions.
  • the valid DCI may be any DCI, irrespective it indicates HARQ-less operation or regular HARQ operation for a PDSCH reception.
  • all received DCIs are valid DCIs.
  • the valid DCI may be a DCI that does not indicate HARQ-less PDSCH reception.
  • the received DCIs are valid only if it is associated with PDSCH receptions with regular HARQ operation. In other words, the received DCIs are invalid if its associated PDSCH transmissions are configured with HARQ-less operation.
  • a DCI associated with SPS PDSCH activation may or may not be valid DCI, dependent on implementations of the second method.
  • a DCI associated with SPS PDSCH release may or may not be valid DCI, dependent on implementations of the second method.
  • CBG-based HARQ operation may be only conditionally configured based on configuration for HARQ-less PDSCH receptions. For example, the UE expects only non-CBG-based HARQ operation if the first method is used. That is, when the UE is indicated to feedback “ACK” states for HARQ-less PDSCH receptions, the UE does not expect CBG-based HARQ operation to be configured.
  • the PDSCH reception may not need to have corresponding HARQ state bit in the semi-static HARQ codebook.
  • Method 1 semi-static HARQ codebook does not support per-transmission indication of HARQ-less operation.
  • a HARQ codebook is configured as semi-static HARQ codebook and the UE receives the HARQ-less PDSCH reception via a DCI or MAC CE, the UE may automatically change the semi-static HARQ codebook to the dynamic HARQ codebook.
  • a HARQ codebook is configured as semi-static HARQ codebook and UE receives the HARQ-less PDSCH reception via a DCI or MAC CE, the UE may determine the received HARQ-less PDSCH reception being a kind of error and ignore it (e.g., continuously apply the semi-static HARQ codebook) .
  • Method 2 “ACK” state is reported for a HARQ-less PDSCH reception. That is, a HARQ state (e.g., ACK/NACK) of the HARQ-less PDSCH reception does not depend on decoding results of the corresponding PDSCH reception. In this case, HARQ state bits for the HARQ-less PDSCH receptions are included in the semi-static HARQ codebook.
  • a HARQ state e.g., ACK/NACK
  • Method 3 a HARQ-less PDSCH reception is excluded from the semi-static HARQ codebook.
  • the semi-static HARQ codebook from which a HARQ state bit of the HARQ-less PDSCH reception may be excluded based on “PDSCH-to-HARQ_feedback timing indicator” field in a corresponding DCI.
  • FIG. 2 illustrates a node 200 for wireless communication according to the present disclosure.
  • the node 200 may include a transceiver 220, a processor 226, memory 228, one or more presentation components 234, and at least one antenna 236.
  • the node 200 may also include a Radio Frequency (RF) spectrum band module, a BS communications module, a network communications module, and a system communications management module, input/output (I/O) ports, I/O components, and a power supply (not shown) .
  • RF Radio Frequency
  • BS communications module a Radio Frequency (RF) spectrum band module
  • a network communications module a network communications module
  • system communications management module input/output (I/O) ports
  • I/O components I/O components
  • a power supply not shown
  • Each of these components may be in communication with each other, directly or indirectly, over one or more buses 240.
  • the node 200 may be a UE that performs various disclosed functions as illustrated in FIG. 1.
  • the transceiver 220 includes a transmitter 222 (with transmitting circuitry) and a receiver 224 (with receiving circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information.
  • the transceiver 220 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats.
  • the transceiver 220 may be configured to receive data and control channels.
  • the node 200 may include a variety of computer-readable media.
  • Computer-readable media may be any media that can be accessed by the node 200 and include both volatile and non-volatile media, removable and non-removable media.
  • Computer-readable media may include computer storage media and communication media.
  • Computer storage media includes both volatile and non-volatile, as well as removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes RAM, ROM, EEPROM, flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM) , digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • Computer storage media does not include a propagated data signal.
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • Communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF) , infrared and other wireless media. Combinations of any of the disclosed media should be included within the scope of computer-readable media.
  • wired media such as a wired network or direct-wired connection
  • wireless media such as acoustic, radio frequency (RF) , infrared and other wireless media.
  • the memory 228 may include computer-storage media in the form of volatile and/or non-volatile memory.
  • the memory 228 may be removable, non- removable, or a combination thereof.
  • Memory includes solid-state memory, hard drives, and optical-disc drives.
  • the memory 228 may store computer-readable, computer-executable instructions 232 (e.g., software codes) that are configured to cause the processor 226 (e.g., processing circuitry) to perform various disclosed functions.
  • the instructions 232 may be configured to cause the node 200 (e.g., when compiled and executed) to perform various disclosed functions.
  • the processor 226 may include an intelligent hardware device (e.g., a central processing unit (CPU) , a microcontroller, an Application Specific Integrated Circuit (ASIC) , etc. ) .
  • the processor 226 may include memory.
  • the processor 226 may process the data 230 and the instructions 232 received from the memory 228, and information received via the transceiver 220, the baseband communications module, and/or the network communications module.
  • the processor 226 may also process information to be sent to the transceiver 220 for transmission via the antenna 236, to the network communications module for transmission to a CN.
  • Presentation components 234 present data to a person or other device.
  • Presentation components 234 include a display device, speaker, printing component, and vibrating component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention concerne un procédé pour un équipement utilisateur (UE) effectuant une génération de livre de codes de demande de répétition automatique hybride (HARQ) pour une ou plusieurs transmissions en liaison descendante. Le procédé comprend les étapes consistant à : recevoir une configuration de planification dynamique pour une opération de rétroaction HARQ, à partir d'une station de base; recevoir, depuis la station de base, une signalisation de planification pour la réception d'un premier canal partagé de liaison descendante physique (PDSCH), une rétroaction de premier état HARQ pour la réception du premier PDSCH étant désactivée; et générer un livre de codes HARQ excluant le premier état HARQ pour la réception du premier PDSCH, pour l'opération de rétroaction HARQ.
PCT/CN2020/104594 2019-07-26 2020-07-24 Procédé de génération de livre de codes de demande de répétition automatique hybride et dispositif associé WO2021018051A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/630,005 US20220264614A1 (en) 2019-07-26 2020-07-24 Method of performing hybrid automatic repeat request codebook generation and related device
CN202080052696.6A CN114144985B (zh) 2019-07-26 2020-07-24 执行混合自动重复请求码本生成的方法及相关设备
KR1020227003022A KR20220025036A (ko) 2019-07-26 2020-07-24 하이브리드 자동 반복 요청 코드북 생성을 수행하는 방법 및 관련 디바이스
EP20847579.8A EP4005128B1 (fr) 2019-07-26 2020-07-24 Procédé de génération de livre de codes de demande de répétition automatique hybride et dispositif associé
JP2022505461A JP2022541952A (ja) 2019-07-26 2020-07-24 ハイブリッド自動再送要求のコードブック生成を実行する方法及び関連する装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962878755P 2019-07-26 2019-07-26
US62/878,755 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021018051A1 true WO2021018051A1 (fr) 2021-02-04

Family

ID=74230225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104594 WO2021018051A1 (fr) 2019-07-26 2020-07-24 Procédé de génération de livre de codes de demande de répétition automatique hybride et dispositif associé

Country Status (6)

Country Link
US (1) US20220264614A1 (fr)
EP (1) EP4005128B1 (fr)
JP (1) JP2022541952A (fr)
KR (1) KR20220025036A (fr)
CN (1) CN114144985B (fr)
WO (1) WO2021018051A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731506A (zh) * 2022-02-25 2022-07-08 北京小米移动软件有限公司 码本传输、接收确定方法和装置、通信装置和存储介质
WO2022213378A1 (fr) * 2021-04-09 2022-10-13 北京小米移动软件有限公司 Procédé de détermination de livre de codes harq, procédé de réception d'informations de rétroaction harq et appareil associé
WO2023013522A1 (fr) * 2021-08-05 2023-02-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Station de base, terminal et procédé de communication
WO2023042934A1 (fr) * 2021-09-16 2023-03-23 엘지전자 주식회사 Procédé de fonctionnement harq d'un terminal dans un système de communication sans fil, et appareil utilisant ledit procédé
WO2023056629A1 (fr) * 2021-10-09 2023-04-13 Nec Corporation Procédé, dispositif et support de stockage informatique de communication
WO2023115447A1 (fr) * 2021-12-23 2023-06-29 Lenovo (Beijing) Limited Désactivation de harq ido ntn
WO2023153869A1 (fr) * 2022-02-11 2023-08-17 엘지전자 주식회사 Procédé et dispositif de transmission ou de réception d'informations d'accusé de réception de demande de répétition automatique hybride dans un système de communication sans fil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116158160A (zh) * 2020-08-06 2023-05-23 Lg电子株式会社 用于在无线通信系统中发送和接收无线信号的方法和装置
US20220303065A1 (en) * 2021-03-19 2022-09-22 Samsung Electronics Co., Ltd. Wireless transmissions with hybrid automatic repeat request (harq) feedback disabled

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072892A1 (fr) * 2014-11-05 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Relaxation de synchronisation harq adaptative
US20170036630A1 (en) 2014-05-02 2017-02-09 Takata Protection Systems, Inc. Apparatus, system, and method for diagnosing initiators in airbag systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093556A1 (fr) * 2014-12-09 2016-06-16 엘지전자 주식회사 Procédé et équipement utilisateur pour une transmission de ack/nack harq pour des données en liaison descendante lors de l'utilisation de plus de cinq cellules en fonction d'une agrégation de porteuses
US10536960B2 (en) * 2017-01-08 2020-01-14 Lg Electronics Inc. Method and device for transmitting and receiving uplink signal between user equipment and base station in wireless communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170036630A1 (en) 2014-05-02 2017-02-09 Takata Protection Systems, Inc. Apparatus, system, and method for diagnosing initiators in airbag systems
WO2016072892A1 (fr) * 2014-11-05 2016-05-12 Telefonaktiebolaget L M Ericsson (Publ) Relaxation de synchronisation harq adaptative

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.213
HUAWEI, HISILICON: "Discussion on disabling HARQ in NTN", 3GPP DRAFT; R2-1907842 DISCUSSION ON DISABLING HARQ IN NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051731269 *
LG ELECTRONICS INC.: "Discussion on DRX operation associated with disabling HARQ", 3GPP DRAFT; R2-1907837 DISCUSSION ON DRX OPERATION ASSOCIATED WITH DISABLING HARQ, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051731264 *
MEDIATEK INC.: "Delay-tolerant re-transmission mechanisms in NR-NTN", 3GPP DRAFT; R1-1906466-MEDIATEK-DELAY-TOLERANT RE-TRANSMISSION MECHANISMS FOR NR-NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 2 May 2019 (2019-05-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051708501 *
MEDIATEK INC.: "Summary for more delay-tolerant re-transmission mechanisms in NR-NTN", 3GPP DRAFT; R1-1907757-MEDIATEK-SUMMARY DELAY-TOLERANT TRANSMISSION MECHANISMS IN NR-NTN-V04, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 16 May 2019 (2019-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740031 *
NOMOR RESEARCH GMBH, THALES, FRAUNHOFER, MEDIATEK, ERICSSON, PANASONIC, ETRI: "HARQ Options for NTN", 3GPP DRAFT; R2-1908247 HARQ OPTIONS FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 18 May 2019 (2019-05-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740400 *
See also references of EP4005128A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213378A1 (fr) * 2021-04-09 2022-10-13 北京小米移动软件有限公司 Procédé de détermination de livre de codes harq, procédé de réception d'informations de rétroaction harq et appareil associé
WO2023013522A1 (fr) * 2021-08-05 2023-02-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Station de base, terminal et procédé de communication
WO2023042934A1 (fr) * 2021-09-16 2023-03-23 엘지전자 주식회사 Procédé de fonctionnement harq d'un terminal dans un système de communication sans fil, et appareil utilisant ledit procédé
WO2023056629A1 (fr) * 2021-10-09 2023-04-13 Nec Corporation Procédé, dispositif et support de stockage informatique de communication
WO2023115447A1 (fr) * 2021-12-23 2023-06-29 Lenovo (Beijing) Limited Désactivation de harq ido ntn
WO2023153869A1 (fr) * 2022-02-11 2023-08-17 엘지전자 주식회사 Procédé et dispositif de transmission ou de réception d'informations d'accusé de réception de demande de répétition automatique hybride dans un système de communication sans fil
CN114731506A (zh) * 2022-02-25 2022-07-08 北京小米移动软件有限公司 码本传输、接收确定方法和装置、通信装置和存储介质

Also Published As

Publication number Publication date
US20220264614A1 (en) 2022-08-18
EP4005128A1 (fr) 2022-06-01
KR20220025036A (ko) 2022-03-03
EP4005128B1 (fr) 2024-04-03
EP4005128A4 (fr) 2023-05-24
CN114144985B (zh) 2024-05-10
JP2022541952A (ja) 2022-09-28
CN114144985A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021018051A1 (fr) Procédé de génération de livre de codes de demande de répétition automatique hybride et dispositif associé
US11539492B2 (en) Method of determining physical sidelink feedback channel resource for hybrid automatic repeat request feedback and related device
US11381292B2 (en) Method and apparatus for sidelink CSI acquisition
US11683142B2 (en) Method of deriving QCL assumption in multi-panel transmission and related device
WO2021213384A1 (fr) Équipement utilisateur et procédé de gestion de retour d'accusé de réception de demande de répétition automatique hybride
WO2021027917A1 (fr) Procédé de réalisation de rétroaction de demande de répétition automatique hybride pour transmission de planification semi-persistante, et dispositif associé
JP6408604B2 (ja) 単一発振器を有する半二重fdd wtru
EP3939368B1 (fr) Procédé et appareil de multiplexage d'uci
WO2021031995A1 (fr) Procédé et appareil de gestion de retour d'informations de harq
CN109196933B (zh) 无线电网络节点、无线设备以及其中执行的方法
EP3989469B1 (fr) Procédé de transmission de canal de commande de liaison montante physique et dispositif associé
US11871407B2 (en) Method of performing hybrid automatic repeat request process for deprioritized uplink grant and related device
WO2021057494A1 (fr) Procédé de rapport d'informations d'état de canal et dispositif associé
WO2022152243A1 (fr) Équipement d'utilisateur et procédé de multiplexage d'informations de contrôle de liaison montante
WO2024067833A1 (fr) Procédé, équipement utilisateur et station de base pour transmissions pusch cg

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505461

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227003022

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020847579

Country of ref document: EP

Effective date: 20220228