WO2021017938A1 - 一种显示系统、vr模块以及可穿戴设备 - Google Patents

一种显示系统、vr模块以及可穿戴设备 Download PDF

Info

Publication number
WO2021017938A1
WO2021017938A1 PCT/CN2020/103162 CN2020103162W WO2021017938A1 WO 2021017938 A1 WO2021017938 A1 WO 2021017938A1 CN 2020103162 W CN2020103162 W CN 2020103162W WO 2021017938 A1 WO2021017938 A1 WO 2021017938A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
zoom lens
display system
display screen
zoom
Prior art date
Application number
PCT/CN2020/103162
Other languages
English (en)
French (fr)
Inventor
罗诚
靳云峰
林益邦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017938A1 publication Critical patent/WO2021017938A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0143Head-up displays characterised by optical features the two eyes not being equipped with identical nor symmetrical optical devices

Definitions

  • This application relates to the field of optics, in particular to a display system, a VR module and a wearable device.
  • VR equipment began to enter the consumer market in 2016. VR equipment displays two images through two display screens, and produces enlarged virtual images through lenses to simulate the immersion of the real world.
  • VR devices With the continuous development of VR technology, the audience of VR devices has become more and more extensive. In order to solve the problem of users' myopia, VR devices on the market will reserve space between the eyes and the headset lenses for external corrective glasses.
  • the user's corrective glasses and the lens of the VR device will overlap, which is likely to cause a sense of pressure to the user and reduce the user's comfort during the use of the VR device.
  • This application provides a display system, a VR module, and a wearable device.
  • a zoom lens is added between the display screen and the first lens.
  • the zoom lens can adjust the refraction of the light emitted by the display screen, so as to compensate for the lens refraction of the user.
  • the lack of light is not correct to avoid creating a sense of oppression to the user.
  • the embodiments of the present application provide a display system that can be applied to a device with VR function.
  • the display system includes a display screen, a zoom lens, and a first lens.
  • the display screen is used to display images or videos.
  • the light, the zoom lens is set between the first lens and the display screen, and is used for refractive adjustment of the light.
  • the light after the refractive adjustment is emitted through the first lens.
  • the first lens is a general concept. , Refers to the lens of the glasses near the user. Refraction can also be called refraction, which refers to the change in the direction of light passing through the zoom lens.
  • a zoom lens is added between the display screen of the display system and the first lens, and the zoom lens is used to adjust the light emitted by the display screen, so that the light entering the user's eyes is the light that has undergone refractive adjustment.
  • the zoom lens is added between the display screen and the first lens, although the picture distance perceived by the brain changes back and forth, due to the difference between the human eye and the display screen The distance is fixed, and the diopter of the first lens is also fixed, that is, when the brain observes objects at different distances, for the lens, the focal plane is unchanged, which will cause visual convergence adjustment conflicts.
  • the position of the focal plane in the front and rear directions can be adjusted by adjusting the refractive power of the zoom lens, so that the focal plane of the lens can be changed with the change of the brain's perception distance Move to solve the problem of visual convergence; in addition, since the zoom lens in this solution is set between the display screen and the first lens, when the display system is used in a device with VR function, the zoom lens is set in the VR Inside the device, thereby avoiding a sense of pressure to the user, and improving the comfort of using VR-enabled devices.
  • the display system further includes a second lens and a reflective polarizer, and a quarter wave plate is provided on the side of the display screen close to the first lens, wherein the quarter wave
  • the film is used to convert linearly polarized light into circularly polarized light, or convert circularly polarized light into linearly polarized light
  • the second lens is arranged between the first lens and the display screen, and the second lens has a transflective film , Used to transmit part of the incident light and reflect part of the incident light
  • the reflective polarizer is arranged between the first lens and the second lens, and the reflective polarizer is provided with a quarter wave on the side close to the second lens
  • the reflective polarizer allows one of S linearly polarized light or P linearly polarized light to pass through.
  • the second lens, reflective polarizer, first quarter-wave plate, semi-transmissive and semi-reflective film, and second quarter-wave plate are added to the display system.
  • polarizing light a folded optical path can be realized between the display screen and the first lens, and a longer optical path can be achieved at a shorter distance through the folded optical path, which effectively shortens the length of the display system, that is, shortens the length of the display system.
  • Packaging the length of the lens barrel of the display system, thereby shortening the length of the entire VR module, is conducive to the miniaturization of VR equipment.
  • the zoom lens is arranged between the first lens and the second lens, the zoom lens, the first lens and the second lens can be arranged coaxially, and the distance between the zoom lens and the first lens can be Greater than, equal to, or less than the distance between the zoom lens and the second lens.
  • the zoom lens is arranged between the first lens and the second lens, and a folded optical path can be formed between the first lens and the second lens, the light emitted by the display screen has undergone three refractive adjustments of the zoom lens After that, it is emitted through the first lens, and the effects of the three refractive adjustments can be accumulated, so that the thickness of the zoom lens can be reduced, thereby further reducing the length of the display system, which is conducive to the realization of miniaturization of the VR device.
  • the zoom lens is arranged between the second lens and the display screen, the zoom lens, the second lens and the display screen can be arranged coaxially, and the distance between the zoom lens and the second lens can be greater than, Equal to or less than the distance between the zoom lens and the display.
  • another implementation position of the zoom lens is provided, which expands the application scenarios of this solution.
  • the display system is applied to a VR module.
  • the VR module also includes a chip.
  • the chip is electrically connected to the zoom lens.
  • the refractive power and/or outer surface shape of the zoom lens are equal. It is adjustable, among which, when light is incident from one object to another material with different optical density, the propagation direction of the light will be deflected. This phenomenon is called refractive phenomenon, and it represents the magnitude of this phenomenon.
  • the unit is diopter.
  • the diopter and/or the shape of the outer surface of the zoom lens can be adjusted, so that whether it is nearsightedness, hyperopia, astigmatism or vision problems Users can use VR devices without additional eye correction, which expands the application scenarios of this solution.
  • the zoom lens appears as a spherical concave lens, a spherical convex lens, a cylindrical concave lens, a cylindrical convex lens, or a flat lens.
  • the zoom lens is a liquid zoom lens or a liquid crystal zoom lens.
  • a liquid zoom lens or a liquid crystal zoom lens is used to realize the function of a zoom lens, which improves the feasibility of the solution, and the liquid zoom lens or liquid crystal zoom lens occupies a small area, has a fast response speed, and is not susceptible to external forces. Damage is conducive to extending the service life.
  • the embodiments of the present application provide a VR module that can be applied to devices with VR functions.
  • the VR module includes two display systems.
  • the two display systems can be a left-eye display system and a right-eye display system.
  • the display system 10 includes a display screen, a zoom lens, and a first lens.
  • the display screen is used to emit light;
  • the zoom lens is arranged between the first lens and the display screen and is used for refractive adjustment of the light.
  • the light is emitted through the first lens, where the zoom lenses in the left-eye display system and the right-eye display system may have different refractive powers.
  • the display system further includes a second lens and a reflective polarizer, a quarter wave plate is arranged on the side of the display screen close to the first lens, and the second lens is arranged on the first lens Between the screen and the display, there is a transflective film on the second lens, the reflective polarizer is arranged between the first lens and the second lens, and a quarter wave plate is arranged on the side of the reflective polarizer close to the second lens. .
  • the zoom lens is disposed between the first lens and the second lens.
  • the zoom lens is disposed between the second lens and the display screen.
  • the display system is applied to a VR module.
  • the VR module also includes a chip.
  • the chip is electrically connected to the zoom lens. Under the control of the chip, the refractive power and/or outer surface shape of the zoom lens is adjustable.
  • the zoom lens appears as a spherical concave lens, a spherical convex lens, a cylindrical concave lens, or a cylindrical convex lens.
  • the zoom lens is a liquid zoom lens or a liquid crystal zoom lens.
  • the embodiments of the present application provide a wearable device, which can be applied in the field of VR technology.
  • the wearable device is equipped with a VR module, and the VR module includes two display systems.
  • the two display systems can be used separately. It is a left-eye display system and a right-eye display system.
  • the display system includes a display screen, a zoom lens and a first lens.
  • the display screen is used to emit light; the zoom lens is set between the first lens and the display screen to bend the light.
  • Light adjustment, the light that has undergone refractive adjustment is emitted through the first lens, where the diopters of the zoom lens in the left-eye display system and the right-eye display system may be different.
  • the wearable device is a helmet, a headband, glasses, or a hat.
  • the display system further includes a second lens and a reflective polarizer, a quarter wave plate is arranged on the side of the display screen close to the first lens, and the second lens is arranged on the first lens.
  • the reflective polarizer is arranged between the first lens and the second lens, and a quarter wave plate is arranged on the side of the reflective polarizer close to the second lens.
  • the zoom lens is disposed between the first lens and the second lens.
  • the zoom lens is disposed between the second lens and the display screen.
  • the display system is applied to a VR module.
  • the VR module also includes a chip, which is electrically connected to the zoom lens. Under the control of the chip, the refractive power and/or outer surface shape of the zoom lens is adjustable.
  • the zoom lens appears as a spherical concave lens, a spherical convex lens, a cylindrical concave lens, or a cylindrical convex lens.
  • the zoom lens is a liquid zoom lens or a liquid crystal zoom lens.
  • FIG. 1 is a schematic diagram of a structure of a VR module provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of two different states of a liquid zoom lens provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of two different states of the liquid crystal zoom lens provided by the embodiments of the application.
  • FIG. 4 is a schematic structural diagram of a display system provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another structure of a display system provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a circuit in which light forms a folded optical path in the display system provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of another structure of the display system provided by an embodiment of the application.
  • Display system, VR module and wearable device add a zoom lens between the display screen and the first lens, the zoom lens can adjust the light emitted by the display screen, so as to compensate the user's lens refractive error and avoid Causes a sense of oppression to users.
  • the display system provided by the embodiments of the present application can constitute a VR module, and the VR module can be applied to various devices with VR functions, such as helmets, headbands, glasses or hats with VR functions, etc., specifically here No more examples of other product forms.
  • FIG. 1 is a schematic structural diagram of a VR module provided by an embodiment of the application.
  • Each VR module may include two display systems 10 and a chip 20, and the two display systems 10 may be divided into a left eye
  • the display system and the right-eye display system, each display system 10 may include a display screen 101, a zoom lens 102, and a first lens 103.
  • the display screens 101 in the two display systems 10 can be signal-connected to the chip 20 in the VR module, and two images are displayed to the user under the drive of the chip 20, and the images displayed by the two display screens 101 can be changed from small to small.
  • a zoom lens 102 is arranged between the first lens and the display screen 101, and the zoom lens 102 can adjust the light emitted by the display screen 101 during the image display process to compensate for myopia, Insufficiency of refractive errors in the lens of hyperopic users and astigmatism users, where the images can specifically be expressed as static images or video frames in videos.
  • the zoom lenses 102 in the two display systems 10 can also be electrically connected with the chip 20 in the VR module, so that the VR module can adjust the diopter of the zoom lens 102 through the chip 20, and further, corresponds to the vision gap between the left and right eyes of the user.
  • the refractive power of the zoom lens 102 in the left-eye display system after diopter adjustment and the refractive power of various zoom lenses 102 of the right-eye display system may be different or the same.
  • FIG. 4 is a schematic structural diagram of a display system provided by an embodiment of the application.
  • the display system 10 may include a display screen 101, a zoom lens 102, and a first lens 103.
  • the display screen 101 is used to emit light.
  • the zoom lens 102 is disposed between the first lens 103 and the display screen 101 and is used for diopter adjustment of the light, and the light after the diopter adjustment is emitted through the first lens 103.
  • the display screen 101 may be a liquid crystal display screen, an organic light-emitting diode (OLED) display screen, or a display screen made of other materials, and the details are not limited here.
  • OLED organic light-emitting diode
  • the zoom lens 102 may be specifically represented as a liquid zoom lens, a liquid crystal zoom lens, a fluid zoom lens, or other types of flexible zoom lenses.
  • the zoom lens 102 may include one flexible zoom lens or at least two flexible zoom lenses, depending on the actual situation.
  • the product form is determined; the zoom lens 102 can also behave as a rigid zoom lens.
  • a microlens, microlens array, etc. are used to realize the zoom lens, and in another case, the position of the lens relative to the first lens 103 is changed. Realize zoom and so on.
  • Figure 2 shows the working principle of the liquid zoom lens.
  • Figure 2 includes two sub-schematics (a) and (b).
  • the sub-schematic diagram (a) of Figure 2 shows the liquid zoom lens.
  • the schematic diagram of the state when no deformation occurs, that is, the liquid zoom lens is in the state of a flat lens.
  • the sub-schematic diagram of Fig. 2 (b) is a schematic diagram showing the state of the liquid zoom lens when the lens is convex.
  • the liquid zoom lens has an elastic cavity composed of an elastic film, and the cavity is filled with a liquid medium with a refractive index.
  • Figure 3 shows the working principle of the liquid crystal zoom lens.
  • Figure 3 includes (a) and (b) two sub-schematic diagrams.
  • the sub-schematic diagram (a) of Figure 3 shows the liquid zoom lens
  • the schematic diagram of the state when no deformation occurs that is, the liquid zoom lens is in the state of a flat lens.
  • the sub-schematic diagram of Fig. 3(b) is a schematic diagram showing the state of the liquid zoom lens as a convex lens, in Fig. 3(a) and (b)
  • the liquid crystal zoom lens is a transparent liquid crystal cell filled with liquid crystal molecules, and the liquid crystal molecules are rotated by applying voltage to the upper and lower electrodes of the liquid crystal cell, thereby changing the shape of the liquid crystal molecules to adjust the refractive power of the liquid crystal zoom lens.
  • a liquid zoom lens or a liquid crystal zoom lens is used to realize the function of the zoom lens, which improves the feasibility of the solution.
  • the liquid zoom lens or the liquid crystal zoom lens occupies a small area, has a fast response speed, and is not susceptible to external forces. Damage is conducive to extending the service life.
  • the first lens 103 can also be called an eyepiece, which is a general concept that refers to a lens close to the user's eyes.
  • Each display system 10 has a set of first lenses 103, that is, there are two sets in each VR module
  • the first lens 103, each group of the first lens 103 includes one first lens 103, or at least two first lenses 103.
  • the first lens 103 is a convex lens, specifically it may be a biconvex type convex lens, or a crescent-shaped convex lens, etc.; in some implementations, the first lens 103 may also be a flat lens, etc.; more Specifically, the first lens 103 may be a transparent material such as a glass lens, a resin lens, a space lens, a nylon lens, etc.
  • the specific expression form and material of the first lens 103 can be determined in combination with the actual product form, which is not limited here.
  • FIGS. 4 and 5 are respectively two structural schematic diagrams of the display system 10 provided by the embodiment of the application.
  • the display system 10 may also include a second lens 104 and a reflective polarizer 105 ,
  • the display screen 101 is provided with a first quarter wave plate (QWP) 106 on the side close to the first lens 103
  • the second lens 104 is provided between the first lens 103 and the display screen 101
  • the second lens There is a transflective film 107 on the lens 104
  • the reflective polarizer 105 is arranged between the first lens 103 and the second lens 104
  • the second quarter wave is provided on the side of the reflective polarizer 105 close to the second lens 104. ⁇ 108.
  • the second lens 104 is similar to the first lens 103.
  • Each display system 10 has a group of second lenses 104, and each group of second lenses 104 includes one second lens 104, or at least two
  • the second lens 104 can refer to the description of the first lens 104, which will not be repeated here.
  • the radius of the second lens 104 can be equal to that of the first lens 103.
  • the radius can also be greater than the radius of the first lens 103, which is not specifically limited here; and there is at least one set of convex lenses in the first lens 103 and the second lens 104.
  • the first lens 103 is a flat lens
  • the second lens 104 It must be a convex lens
  • the first lens 103 must be a convex lens.
  • the second lens 104 is disposed between the first lens 103 and the display screen 101.
  • the second lens 104 can be coaxial with the first lens 103 and the display screen 101.
  • the distance between the second lens 104 and the display screen 101 can be smaller than that of the second lens 104
  • the distance between the second lens 104 and the display screen 101 can also be greater than the distance between the second lens 104 and the first lens 103, because the distance between the first lens 103 and the second lens 104 A folded light path can be formed, so the longer the distance between the second lens 104 and the first lens 103, the more beneficial it is to reduce the area of the entire display system, that is, it is beneficial to reduce the area of the VR module.
  • the reflective polarizer 105 has the function of reflecting or transmitting incident light.
  • the reflective polarizer allows one of S linear polarized light (that is, longitudinal linear polarized light) or P linear polarized light (that is, horizontal linear polarized light). When light passes, another linearly polarized light is reflected.
  • the reflective polarizer 105 in this embodiment can be a reflective polarizer that allows P linear polarized light to pass through, or it can be a reflective polarizer that allows S linear polarized light to pass through; the reflective polarizer 105 can be a reflective polarizer, It can also be a stack of at least two reflective polarizers that allow the same type of linearly polarized light to pass through.
  • the reflective polarizer 105 is disposed between the first lens 103 and the second lens 104. In one implementation, please refer to FIGS. 4 and 5.
  • the reflective polarizer 105 can be directly fixed on the first lens 103. Of course, the reflective There may also be a certain distance between the polarizer 105 and the first lens 103, which is not specifically limited here.
  • the first quarter-wave plate 106 and the second quarter-wave plate 108 are similar. They are both birefringent single crystal sheets with a certain thickness. They have the function of converting linearly polarized light into circularly polarized light. The function of converting polarized light into linearly polarized light. Both the first quarter wave plate 106 and the second quarter wave plate 108 can be embodied in the form of a thin film. Please refer to Figures 4 and 5.
  • the first quarter wave plate 106 can be attached to the display screen.
  • the side 101 is close to the first lens 103, and correspondingly, the second quarter wave plate 108 can be attached to the side of the reflective polarizer 105 close to the second lens 104.
  • the transflective film 107 has the function of reflecting and transmitting incident light, that is, when the incident light passes through the transflective film 107, part of the light penetrates and part of the light is reflected back.
  • the transflective film 107 can specifically express For 50/50 coating or other types of coating, etc.
  • the transflective film 107 can be attached to the side of the second lens 104 close to the display screen 101; in another implementation, the transflective film 107 107 may also be attached to the side of the second lens 104 close to the first lens 103, etc.
  • the specific implementation manner may be determined in combination with the actual product form, which is not limited here.
  • FIG. 6 shows a schematic diagram of the propagation direction of light in the display system.
  • FIG. 6 takes the zoom lens 102 disposed between the first lens 103 and the second lens 104 as an example. It should be noted that since Figure 6 is to show how the light is folded in the refractive circuit, it does not show the refractive effect of the zoom lens 102, the first lens 103, and the second lens 104 on the light, but it should be understood that In actual products, the zoom lens 102, the first lens 103, and the second lens 104 can all have a refractive effect on light. Specifically, the display screen 101 can emit linearly polarized light when displaying images.
  • the linearly polarized light emitted by the display screen 101 can be converted into circularly polarized light after passing through the first quarter wave plate 106. After the reflective film 107, the second lens 104 and the zoom lens 102, it is still circularly polarized light. After the circularly polarized light passes through the second quarter-wave plate 108, the circularly polarized light becomes S linearly polarized light.
  • the polarizer 105 is a reflective polarizer that allows P-polarized light to pass as an example. After the S linearly polarized light is reflected by the reflective polarizer 105, it passes through the zoom lens 102, the second lens 104 and the transflective film 107 again, and is transflected.
  • the semi-reflective film 107 reflects, at this time the circularly polarized light is reversed. When it passes through the zoom lens 102 and the second quarter wave plate 108 again, the circularly polarized light becomes P linearly polarized light, and the P linearly polarized light passes The reflective polarizer 105 continues to pass through the first lens 103, and then enters the human eye.
  • the second lens 104, the reflective polarizer 105, the first quarter-wave plate 106, the semi-transmissive and semi-reflective film 107, and the second quarter-wave plate 108 are added to the display system 10, thereby A folded optical path is realized between the display screen 101 and the first lens 103, and a longer optical path can be achieved at a shorter distance through the folded optical path, which effectively shortens the length of the display system, that is, shortens the display system used for packaging
  • the length of the lens barrel, thus shortening the length of the entire VR module, is conducive to the miniaturization of VR equipment.
  • the second lens 104, the reflective polarizer 105, the first quarter wave plate 106, the transflective film 107, and the second quarter wave plate 108 are optional, In the presence and absence of the aforementioned multiple elements, the position of the zoom lens 102 in the entire display system 10 may be different.
  • FIG. 7 is a schematic structural diagram of the display system 10 provided by an embodiment of the application.
  • the zoom lens 102 is directly arranged between the display screen 101 and the first lens 103.
  • the zoom lens 102, the display screen 101, and the first lens 103 can be It is coaxially arranged, so that the zoom lens 102 can adjust the diopter of the first light emitted by the display screen 101 and convert it into a second light, which is directly sent out through the first lens 103.
  • FIG. 7 is a schematic structural diagram of the display system 10 provided by an embodiment of the application.
  • the zoom lens 102 is directly arranged between the display screen 101 and the first lens 103.
  • the zoom lens 102, the display screen 101, and the first lens 103 can be It is coaxially arranged, so that the zoom lens 102 can adjust the diopter of the first light emitted by the display screen 101 and convert it into a second light, which is directly sent out through the first lens 103.
  • FIG. 1 is a schematic structural diagram of the display
  • the distance between the zoom lens 102 and the first lens 103 may be smaller than the distance between the zoom lens 102 and the display screen 101; the distance between the zoom lens 102 and the first lens 103 may also be Greater than the distance between the zoom lens 102 and the display screen 101; the distance between the zoom lens 102 and the first lens 103 can also be equal to the distance between the zoom lens 102 and the display screen 101; it should be determined according to the actual product form, here Not limited.
  • the zoom lens 102 is disposed between the first lens 103 and the second lens 104, and the zoom lens 102, the first lens 103 and the second lens 104 may be coaxially arranged.
  • the distance between the zoom lens 102 and the first lens 103 may be less than the distance between the zoom lens 102 and the second lens 104; the distance between the zoom lens 102 and the first lens 103 may also be greater than the distance between the zoom lens 102 and the second lens.
  • the distance between the two lenses 104; the distance between the zoom lens 102 and the first lens 103 may also be equal to the distance between the zoom lens 102 and the second lens 104, etc., which is not limited here.
  • the zoom lens 102 is arranged between the first lens 103 and the second lens 104, and a folded light path is formed between the first lens 103 and the second lens 104, the display screen
  • the light emitted by 101 is emitted through the first lens 103 after the three refractive adjustments of the zoom lens 102, and the effects of the three refractive adjustments can be accumulated, which can reduce the thickness of the zoom lens, thereby further reducing the display system
  • the length is conducive to miniaturization of VR equipment.
  • the zoom lens 102 is arranged between the second lens 104 and the display screen 101, and the zoom lens 102, the second lens 104 and the display screen 101 may be arranged coaxially. Specifically, the distance between the zoom lens 102 and the second lens 104 may be less than, greater than, or equal to the distance between the zoom lens 102 and the display screen 101, which is not limited here. In this embodiment, another implementation position of the zoom lens 102 is provided, which expands the application scenarios of the solution.
  • the display system 10 is applied to a VR module.
  • the VR module also includes a chip 20.
  • the chip 20 and the zoom lens 102 may be electrically connected, so that the diopter and/or surface shape of the zoom lens 102 can be adjusted under the control of the chip 20 .
  • the unit that represents the magnitude of this phenomenon is diopter (Diopter )
  • the diopter can also be called the power
  • the unit of the diopter is D.
  • the shorter the focal power of the lens the stronger the refractive power of the lens, and the greater the refractive power of the lens.
  • the power of the glasses can be converted to the refractive power. Specifically, the power of the glasses is equal to the refractive power multiplied by 100.
  • the refractive power can be distinguished between positive and negative.
  • the refractive power of the human eye is -3D, which means myopia is 300 degrees.
  • +3D myopia glasses Need to wear +3D myopia glasses. When people’s eyes have refractive errors, they can’t be accurately imaged in the retina. For example, the cause of myopia is that the refractive power of the eye is too strong, and the cause of hyperopia is that the refractive power of the eye is too weak. Compensate for the refractive correction problem of glasses by wearing vision correction glasses.
  • the zoom lens 102 compensates for the lack of ametropia of the user’s lens by simulating glasses, but because of the distance between the zoom lens 102 and the human eye, and the distance between the glasses and the human eye when the person wears the glasses Different, the refractive power of the zoom lens 102 and the refractive power of the glasses worn by the user may be different.
  • the chip 20 may receive the left eye and right eye glasses power and/or astigmatism input by the user, respectively, according to the user’s left eye power
  • the power and/or astigmatism of the glasses and the distance between the zoom lens 102 and the first lens 103 determine the surface shape and power of the zoom lens 102 in the left-eye display system, and determine the power of the zoom lens 102, that is, determine the power of the zoom lens 102
  • the diopter or focal length is similar to the processing method of the left-eye display system for the right-eye display system, and will not be repeated here.
  • the surface shape of the zoom lens 102 is changed, so that the zoom lens 102 can appear as a spherical concave lens, a spherical convex lens, a cylindrical concave lens, a cylindrical convex lens, a flat lens, or other types of lenses, etc.
  • the final form of the specific zoom lens 102 should be determined in combination with the type of the user's refractive error, which is not limited here.
  • the diopter and/or outer surface shape of the zoom lens 102 can be adjusted, so that whether it is nearsightedness, hyperopia, astigmatism or vision Users who have no problems can use VR devices without additional eye correction, which expands the application scenarios of this solution.
  • a zoom lens 102 is added between the display screen 101 and the first lens 103 of the display system 10, and the zoom lens 102 is used to perform refractive adjustment on the light emitted by the display screen, so that the light entering the user's eyes is The light has been adjusted by refraction to compensate for the user's lens ametropia; and before the zoom lens 102 is added between the display screen 101 and the first lens 103, although the image distance perceived by the brain changes back and forth , But because the distance between the human eye and the display screen 101 is fixed, and the diopter of the first lens 103 is also fixed, that is, when the brain observes objects at different distances, the focal plane is unchanged for the lens. It will cause visual convergence adjustment conflict.
  • the position of the focal plane in the front and rear directions can be adjusted by adjusting the diopter of the zoom lens 102, so that The focal plane of the lens can be moved with the change of the brain’s perception distance to solve the problem of visual convergence; in addition, since the zoom lens 102 in this solution is arranged between the display screen 101 and the first lens 103, when When the display system 10 is used in a device with a VR function, the zoom lens 102 is provided in the VR device, so as to avoid creating a sense of pressure on the user and improve the comfort of the device with the VR function.
  • the display system in this application can solve the phenomenon of visual convergence. It is assumed that the position of the default focus plane of the display system (that is, the virtual image Position) At a distance of 1.5 meters from the human eye, when the display system uses the binocular parallax of the left and right eye images to create a three-dimensional object with a brain perception distance of 0.5 meters, the adjustment distance of the human eye is 1.5 meters, but the perception distance is 0.5 meters. Visual convergence adjustment conflicts will occur.
  • the virtual image display plane can be narrowed from 1.5 meters to 0.5 meters, and the adjustment distance of the human eye is also 1.5 meters. This resolves the conflicts of visual convergence adjustment.
  • the examples here are only to prove the feasibility of the solution and are not used to limit the solution.
  • the embodiment of the application also provides a VR module.
  • the VR module includes two display systems 10.
  • the two display systems 10 may be a left-eye display system and a right-eye display system.
  • the display system 10 includes a display screen 101 and a zoom lens. 102 and the first lens 103, the display screen 101 is used for emitting light; the zoom lens 102 is arranged between the first lens 103 and the display screen 101, and is used for dioptric adjustment of the light, and is emitted through the first lens 103.
  • a zoom lens 102 is added between the display screen 101 and the first lens 103 of the left-eye display system and the right-eye display system of the VR module, and the zoom lens 102 is used to refraction the light emitted by the display screen 101 Adjustment, so that the light that enters the user’s eyes is the refraction adjusted light to compensate for the user’s lens ametropia; and before the zoom lens 102 is added between the display screen 101 and the first lens 103, although the brain The perceived distance of the picture changes back and forth, but because the distance between the human eye and the display screen 101 is fixed, and the diopter of the first lens 103 is also fixed, that is, when the brain observes objects at different distances, it is different from the lens.
  • the zoom lens 102 is added between the display screen 101 and the first lens 103, the focus can be adjusted by adjusting the diopter of the zoom lens 102.
  • the display system further includes a second lens 104 and a reflective polarizer 105.
  • the display screen 101 is provided with a quarter wave plate 106 on the side close to the first lens 103, and the second lens 104 is provided on the first lens.
  • the second lens 104 has a transflective film 107, the reflective polarizer 105 is arranged between the first lens 103 and the second lens 104, and the reflective polarizer 105 is close to the second lens 104
  • a quarter wave plate 108 is provided on one side.
  • the zoom lens 102 is disposed between the first lens 103 and the second lens 104.
  • the zoom lens 102 is disposed between the second lens 104 and the display screen 101.
  • the display system is applied to a VR module.
  • the VR module also includes a chip 20, which is electrically connected to the zoom lens 102. Under the control of the chip 20, the refractive power and/or outer surface shape of the zoom lens 102 It is adjustable.
  • the zoom lens 102 appears as a spherical concave lens, a spherical convex lens, a cylindrical concave lens, or a cylindrical convex lens.
  • the zoom lens 102 is a liquid zoom lens 102 or a liquid crystal zoom lens 102.
  • connection mode of each component of the display system 10 in the VR module provided by the embodiment of the present application, please refer to the connection mode between the components of the display system 10 in the embodiment shown in FIG. 2 to FIG. 7, which will not be repeated here. .
  • the embodiment of the present application also provides a wearable device, the wearable device is a wearable device with VR function, so that a VR module is configured in the wearable device, and the VR module includes two display systems 10, and two display systems.
  • the system 10 can be a left-eye display system and a right-eye display system, respectively.
  • the display system 10 includes a display screen 101, a zoom lens 102 and a first lens 103.
  • the display screen 101 is used to emit light; the zoom lens 102 is arranged on the first lens 103 and Between the display screens 101, the light is used for diopter adjustment, and is emitted through the first lens 103.
  • the wearable device may be a helmet, headband, glasses, hat, or other wearable device with VR function, etc., which is not limited here.
  • a zoom lens 102 is added between the display 101 and the first lens 103 of the left-eye display system and the right-eye display system of the VR module of the wearable device, and the light emitted by the zoom lens 102 to the display 101 Perform refractive adjustment, so that the light that enters the user's eyes is the refraction adjusted light to compensate for the user's lens ametropia; and before the zoom lens 102 is added between the display screen 101 and the first lens 103
  • the distance of the picture perceived by the brain changes back and forth, because the distance between the human eye and the display screen 101 is fixed, and the diopter of the first lens 103 is also fixed, that is, when the brain observes objects at different distances, For the lens, the focal plane is unchanged, which will cause visual convergence adjustment conflicts.
  • the zoom lens 102 after the zoom lens 102 is added between the display screen 101 and the first lens 103, the refractive power of the zoom lens 102 can be adjusted.
  • the zoom lens 102 in this solution is set between the display screen 101 and the first lens 103, since the zoom lens 102 is arranged in the wearable device, the user can be prevented from being stressed and the comfort of the wearable device can be improved.
  • the display system further includes a second lens 104 and a reflective polarizer 105.
  • the display screen 101 is provided with a quarter wave plate 106 on the side close to the first lens 103, and the second lens 104 is provided on the first lens.
  • the second lens 104 has a transflective film 107; the reflective polarizer 105 is arranged between the first lens 103 and the second lens 104, and the reflective polarizer 105 is close to the second lens 104
  • a quarter wave plate 108 is provided on one side.
  • the zoom lens 102 is disposed between the first lens 103 and the second lens 104.
  • the zoom lens 102 is disposed between the second lens 104 and the display screen 101.
  • the display system is applied to a VR module.
  • the VR module also includes a chip 20, which is electrically connected to the zoom lens 102. Under the control of the chip 20, the refractive power and/or outer surface shape of the zoom lens 102 It is adjustable.
  • the zoom lens 102 appears as a spherical concave lens, a spherical convex lens, a cylindrical concave lens, or a cylindrical convex lens.
  • the zoom lens 102 is a liquid zoom lens 102 or a liquid crystal zoom lens 102.
  • connection mode of each component of the display system 10 in the VR module of the wearable device please refer to the connection mode between the various components of the display system 10 in the embodiment shown in FIGS. 2 to 7. Let me repeat them one by one.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种显示系统(10)、虚拟显示VR模块以及可穿戴设备,可以应用于具有VR功能的设备中。在显示系统(10)的显示屏(101)和第一镜片(103)之间增设了变焦镜头(102),变焦镜头(102)用于对显示屏(101)发出的光线进行屈光调整,也即从第一镜片(103)中发射出去的光线为经过屈光调整后的光线,从而能够补偿用户的晶状体屈光不正的不足,且变焦镜头(102)是设置于显示屏(101)和第一镜片(103)之间的,避免给用户造成压迫感。

Description

一种显示系统、VR模块以及可穿戴设备
本申请要求于2019年07月31日提交中国专利局、申请号为201910704488.9、发明名称为“一种显示系统、VR模块以及可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学领域,尤其涉及一种显示系统、VR模块以及可穿戴设备。
背景技术
虚拟现实(Virtual Reality,VR)设备从2016年开始走向消费性市场,VR设备通过两个显示屏分别显示两幅图像,并透过镜片产生放大虚像来仿真真实世界的沉浸感。
随着VR技术的不断发展,VR设备的受众群体也越来越广泛,为了解决用户近视的问题,市面上的VR设备会在眼睛与头显镜片中间预留空间,来外挂矫正眼镜。
而随着VR设备越做越小,用户的矫正眼镜与VR设备的镜片会产生重叠,容易给用户造成压迫感,降低了用户在使用VR设备过程中的舒适度。
发明内容
本申请提供了一种显示系统、VR模块以及可穿戴设备,在显示屏和第一镜片之间增设变焦透镜,变焦透镜可以对显示屏发出的光线进行屈光调整,从而能够补偿用户的晶状体屈光不正的不足,避免给用户造成压迫感。
第一方面,本申请实施例提供了一种显示系统,可以应用于具有VR功能的设备中,显示系统包括显示屏、变焦透镜和第一镜片,显示屏用于在显示图像或视频时可以发出光线,变焦透镜设置于第一镜片与显示屏之间,用于对光线进行屈光调整,进行过屈光调整的光线穿过第一镜片发射出去,其中,第一镜片为一个泛指的概念,指的是靠近用户的眼镜的镜片,屈光也可以称为折光,指的是光线穿过变焦透镜时,前进方向发生了改变。本实现方式中,在显示系统的显示屏和第一镜片之间增设变焦透镜,并利用变焦透镜对显示屏发出的光线进行屈光调整,从而进入到用户眼中的光线为进行过屈光调整光线,以实现补偿用户的晶状体屈光不正的不足;且在显示屏与第一镜片之间未加入变焦透镜之前,虽然大脑感知到的画面距离是在前后变化的,但由于人眼和显示屏的距离是固定的,而第一镜片的屈光度也是固定的,也即当大脑观察不同距离的物体时,对于晶状体而言,聚焦平面是没有变化的,这就会产生视觉辐辏调节冲突,本方案中,在显示屏与第一镜片之间加入变焦透镜之后,可以通过调整变焦透镜的屈光度来调整焦平面在前后方向上的位置,从而可以使得晶状体的聚焦平面可以随着大脑的感知距离的变化而移动,以解决视觉辐辏的问题;此外,由于本方案中的变焦透镜是设置于显示屏和第一镜片之间的,当显示系统应用于具有VR功能的设备内时,变焦透镜是设置于VR设备内的,从而避免给用户造成压迫感,提高了具有VR功能的设备的使用舒适度。
在第一方面的一种可能实现方式中,显示系统中还包括第二镜片和反射偏振片,显示 屏靠近第一镜片一侧上设置有四分之一波片,其中,四分之一波片用于将线偏振光转换为圆偏振光的功能,或者将圆偏振光转换为线偏振光;第二镜片设置于第一镜片与显示屏之间,第二镜片上有半透半反射膜,用于透过入射光线的部分光线且反射入射光线的部分光线;反射偏振片设置于第一镜片与第二镜片之间,反射偏振片靠近第二镜片一侧上设置有四分之一波片,其中,反射偏振片允许S线偏振光或P线偏振光中的一种线偏振光通过。本实现方式中,在显示系统中加入了第二镜片、反射偏振片、第一四分之一波片、半透半反射膜和第二四分之一波片,当显示屏发出的为线偏振光时,可以在显示屏与第一镜片之间实现了折叠光路,透过折叠光路可以在较短的距离达到较长的光程,有效缩短了显示系统的长度,也即缩短了用于封装显示系统的镜筒长度,从而缩短了整个VR模块的长度,有利于VR设备的小型化。
在第一方面的一种可能实现方式中,变焦透镜设置于第一镜片与第二镜片之间,变焦透镜、第一镜片与第二镜片可以同轴设置,变焦透镜与第一镜片的距离可以大于、等于或者小于变焦透镜与第二镜片的距离。本实现方式中,由于变焦透镜设置于第一镜片与第二镜片之间,而第一镜片与第二镜片之间可以形成折叠光路,则显示屏发出的光线经过了变焦透镜的三次屈光调整之后,才会通过第一镜片发射出来,而三次屈光调整的效果可以累加,从而可以降低变焦透镜的厚度,从而进一步降低了显示系统的长度,有利于VR设备的小型化实现。
在第一方面的一种可能实现方式中,变焦透镜设置于第二镜片与显示屏之间,变焦透镜、第二镜片与显示屏可以同轴设置,变焦透镜与第二镜片的距离可以大于、等于或者小于变焦透镜与显示屏的距离。本实现方式中,提供了变焦透镜的又一种实现位置,扩展了本方案的应用场景。
在第一方面的一种可能实现方式中,显示系统应用于VR模块中,VR模块还包括芯片,芯片与变焦透镜电连接,在芯片的控制下,变焦透镜的屈光度和/或外表面形状均为可调整的,其中,光线由一种物体射入到另一种光密度不同的物质时,其光线的传播方向产生偏折,这种现象称为屈光现象,而表示这种现象大小的单位为屈光度。本实施例中,当显示系统应用于VR模块时,在芯片的控制下,变焦透镜的屈光度和/或外表面形状均可以调节,从而无论是近视眼、远视眼、散光或是视力没有问题的用户均可以在不额外佩戴矫正眼睛的情况下使用VR设备,扩展了本方案的应用场景。
在第一方面的一种可能实现方式中,变焦透镜呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜、圆柱面凸透镜或平面透镜。
在第一方面的一种可能实现方式中,变焦透镜为液体变焦透镜或液晶变焦透镜。本实现方式中,采用液体变焦透镜或液晶变焦透镜来实现变焦透镜的功能,提高了本方案的可实现性,且液体变焦透镜或液晶变焦透镜占用的面积较小,反应速度快,不易受到外力损伤,有利于延长使用寿命。
第二方面,本申请实施例提供了一种VR模块,可以应用于具有VR功能的设备中,VR模块中包括两个显示系统,两个显示系统可以分别为左眼显示系统和右眼显示系统,显示系统10包括显示屏、变焦透镜和第一镜片,显示屏用于发出光线;变焦透镜设置于第一镜片与显示屏之间,用于对光线进行屈光调整,进行过屈光调整的光线穿过第一镜片发射出 去,其中,左眼显示系统和右眼显示系统中的变焦透镜的屈光度可以不同。
在第二方面的一种可能实现方式中,显示系统还包括第二镜片和反射偏振片,显示屏靠近第一镜片一侧上设置有四分之一波片,第二镜片设置于第一镜片与显示屏之间,第二镜片上有半透半反射膜,反射偏振片设置于第一镜片与第二镜片之间,反射偏振片靠近第二镜片一侧上设置有四分之一波片。
在第二方面的一种可能实现方式中,变焦透镜设置于第一镜片与第二镜片之间。
在第二方面的一种可能实现方式中,变焦透镜设置于第二镜片与显示屏之间。
在第二方面的一种可能实现方式中,显示系统应用于VR模块中,VR模块还包括芯片,芯片与变焦透镜电连接,在芯片的控制下,变焦透镜的屈光度和/或外表面形状为可调整的。
在第二方面的一种可能实现方式中,变焦透镜呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜或圆柱面凸透镜。
在第二方面的一种可能实现方式中,变焦透镜为液体变焦透镜或液晶变焦透镜。
本申请第二方面的各种可能实现方式的具体实现方式及有益效果,可以参考第一方面,此处不再一一赘述。
第三方面,本申请实施例提供了一种可穿戴设备,可以应用于VR技术领域中,所述可穿戴设备中配置有VR模块,VR模块中包括两个显示系统,两个显示系统可以分别为左眼显示系统和右眼显示系统,显示系统包括显示屏、变焦透镜和第一镜片,显示屏用于发出光线;变焦透镜设置于第一镜片与显示屏之间,用于对光线进行屈光调整,进行过屈光调整的光线穿过第一镜片发射出去,其中,左眼显示系统和右眼显示系统中的变焦透镜的屈光度可以不同。
在第三方面的一种可能实现方式中,可穿戴设备为头盔、头箍、眼镜或帽子。
在第三方面的一种可能实现方式中,显示系统还包括第二镜片和反射偏振片,显示屏靠近第一镜片一侧上设置有四分之一波片,第二镜片设置于第一镜片与显示屏之间,第二镜片上有半透半反射膜,反射偏振片设置于第一镜片与第二镜片之间,反射偏振片靠近第二镜片一侧上设置有四分之一波片。
在第三方面的一种可能实现方式中,变焦透镜设置于第一镜片与第二镜片之间。
在第三方面的一种可能实现方式中,变焦透镜设置于第二镜片与显示屏之间。
在第三方面的一种可能实现方式中,显示系统应用于VR模块中,VR模块还包括芯片,芯片与变焦透镜电连接,在芯片的控制下,变焦透镜的屈光度和/或外表面形状为可调整的。
在第三方面的一种可能实现方式中,变焦透镜呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜或圆柱面凸透镜。
在第三方面的一种可能实现方式中,变焦透镜为液体变焦透镜或液晶变焦透镜。
本申请第三方面的各种可能实现方式的具体实现方式及有益效果,可以参考第一方面,此处不再一一赘述。
附图说明
图1为本申请实施例提供的VR模块的一种结构示意图;
图2为本申请实施例提供的液体变焦透镜的两种不同状态的状态示意图;
图3为本申请实施例提供的液晶变焦透镜的两种不同状态的状态示意图;
图4为本申请实施例提供的显示系统的一种结构示意图;
图5为本申请实施例提供的显示系统的另一种结构示意图;
图6为本申请实施例提供的显示系统中光线形成折叠光路的一种线路示意图;
图7为本申请实施例提供的显示系统的又一种结构示意图。
具体实施方式
显示系统、VR模块以及可穿戴设备,在显示屏和第一镜片之间增设变焦透镜,变焦透镜可以对显示屏发出的光线进行屈光调整,从而能够补偿用户的晶状体屈光不正的不足,避免给用户造成压迫感。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些产品或设备固有的其它单元。
下面将结合本申请实施例中的附图,对本申请进行进一步详细说明。
应当理解,本申请实施例提供的显示系统可以组成VR模块,而VR模块可以应用于各种具有VR功能的设备中,例如具有VR功能的头盔、头箍、眼镜或帽子等等,具体此处不再对其他产品形态一一进行举例。
请参阅图1,图1为本申请实施例提供的VR模块的一种结构示意图,每个VR模块中可以包括两个显示系统10以及芯片20,所述两个显示系统10可以分为左眼显示系统和右眼显示系统,每个显示系统10中均可以包括显示屏101、变焦透镜102和第一镜片103。具体的,两个显示系统10中的显示屏101均可以与VR模块中的芯片20信号连接,在芯片20的驱动下分别向用户显示两幅图像,两个显示屏101显示的图像可以由细小差别,以模仿人的双眼视;第一镜片与显示屏101之间设置有变焦透镜102,变焦透镜102可以对显示屏101在显示图像过程中发出的光线进行屈光调整,以补偿近视眼、远视眼以及散光用户的晶状体屈光不正的不足,其中,图像具体可以表现为静态图像或视频中的视频帧。更具体的,两个显示系统10中的变焦透镜102也可以与VR模块中的芯片20电连接,从而VR模块可以通过芯片20调整变焦透镜102的屈光度,进一步的,对应于用户左右眼视力差距,经过屈光度调整后的左眼显示系统中变焦透镜102的折光能力和右眼显示系统各种的变焦透镜102的折光能力可以不同,也可以相同。
本申请实施例中,由于两个显示系统10的结构类似,工作原理也类似,以下结合一个显示系统10的具体实现方式以及工作原理进行描述。请参阅图4,图4为本申请实施例提供的显示系统的一种结构示意图,显示系统10可以包括显示屏101、变焦透镜102和第一镜片103,其中,显示屏101用于发出光线,变焦透镜102设置于第一镜片103与显示屏101之间,用于对光线进行屈光调整,进行过屈光调整的光线穿过第一镜片103发射出去。
其中,显示屏101可以为液晶显示屏、有机发光二极管(organic light-emitting diode, OLED)显示屏或其他材质的显示屏等,具体此处也不做限定。
变焦透镜102可以具体表现为液体变焦透镜、液晶变焦透镜、流体变焦透镜或其他类型的柔性变焦透镜,变焦透镜102中可以包括一个柔性变焦透镜,也可以包括至少两个柔性变焦透镜,具体根据实际产品形态确定;变焦透镜102也可以表现为刚性变焦透镜,一种情况下,利用微透镜、微透镜阵列等实现变焦透镜,另一种情况下,通过移动透镜相对于第一镜片103的位置来实现变焦等等。
具体的,请参阅图2,图2示出的为液体变焦透镜的工作原理,图2包括(a)和(b)两个子示意图,其中,图2的(a)子示意图为展示液体变焦透镜未发生形变时的状态示意图,也即液体变焦透镜呈现为平面镜状态,图2的(b)子示意图为展示液体变焦透镜呈现为凸透镜时的状态示意图,在图2的(a)和(b)两个子示意图中,液体变焦透镜中有弹性薄膜构成的弹性腔体,腔体内填充有具有折射率的液体介质,通过对液体施加压力,改变液体在弹性薄膜内的分布可以改变弹性薄膜曲率来调整液体变焦透镜的屈光度。进一步的,可以为液体变焦透镜的两侧均为弹性薄膜,例如透明橡胶、透明硅胶或其他类型的透明弹性材质;也可以为一侧为弹性薄膜,另一侧为硬性材料,例如玻璃、树脂、水晶或其他类型的透明硬性材质等等;此处不做限定。请参阅图3,图3示出的为液晶变焦透镜的工作原理,对应的,图3包括(a)和(b)两个子示意图,其中,图3的(a)子示意图为展示液体变焦透镜未发生形变时的状态示意图,也即液体变焦透镜呈现为平面镜状态,图3的(b)子示意图为展示液体变焦透镜呈现为凸透镜时的状态示意图,在图3的(a)和(b)两个子示意图中,液晶变焦透镜是透明的液晶盒中填充有液晶分子,通过对液晶盒上下电极加电压使得液晶分子旋转,从而改变液晶分子的形状来调整液晶变焦透镜的屈光度。本实施例中,采用液体变焦透镜或液晶变焦透镜来实现变焦透镜的功能,提高了本方案的可实现性,且液体变焦透镜或液晶变焦透镜占用的面积较小,反应速度快,不易受到外力损伤,有利于延长使用寿命。
第一镜片103也可以称为目镜,是一个泛指的概念,指的是靠近用户的眼睛的镜片,每个显示系统10中有一组第一镜片103,也即每个VR模块中有两组第一镜片103,每组第一镜片103中包括一个第一镜片103,也可以包括至少两个第一镜片103。具体的,一般情况下,第一镜片103表现为凸透镜,具体可以为双凸型凸透镜,也可以为新月型凸透镜等;在部分实现方式中,第一镜片103也可以表现为平面镜等;更具体的,第一镜片103可以为玻璃镜片、树脂镜片、太空镜片、尼龙镜片等等透明材料,具体第一镜片103的表现形态和材质均可以结合实际产品形态确定,此处不做限定。
可选的,请参阅图4和图5,图4和图5分别为本申请实施例提供的显示系统10的两种结构示意图,显示系统10中还可以包括第二镜片104和反射偏振片105,显示屏101靠近第一镜片103一侧上设置有第一四分之一波片(quarter wavelength plate,QWP)106,第二镜片104设置于第一镜片103与显示屏101之间,第二镜片104上有半透半反射膜107,反射偏振片105设置于第一镜片103与第二镜片104之间,反射偏振片105靠近第二镜片104一侧上设置有第二四分之一波片108。
本申请实施例中,第二镜片104与第一镜片103类似,每个显示系统10中有一组第二镜片104,每组第二镜片104中包括一个第二镜片104,也可以包括至少两个第二镜片104, 第二镜片104的形状以及材质均可以参阅上述对第一镜片104中的描述,此处不再赘述,需要说明的是,第二镜片104的半径可以等于第一镜片103的半径,也可以大于第一镜片103的半径,具体此处不做限定;且第一镜片103和第二镜片104中至少存在一组凸透镜,当第一镜片103为平面镜的时候,第二镜片104必须为凸透镜;当第二镜片104为平面镜时,第一镜片103必须为凸透镜。
第二镜片104设置于第一镜片103与显示屏101之间,第二镜片104可以与第一镜片103以及显示屏101同轴,第二镜片104与显示屏101的距离可以小于第二镜片104与第一镜片103之间的距离,也可以为第二镜片104与显示屏101的距离大于第二镜片104与第一镜片103之间的距离,由于第一镜片103与第二镜片104之间可以形成折叠光路,所以第二镜片104与第一镜片103之间的距离越长,越有利于减小整个显示系统的面积,也即有利于减小VR模块的面积。
反射偏振片105对入射光具有反射或透过的功能,反射偏振片允许S线偏振光(也即纵向线偏振光)或P线偏振光(也即横向线偏振光)中的一种线偏振光通过,另一种线偏振光反射。具体的,本实施例中的反射偏振片105可以为允许P线偏振光通过的反射偏振片,也可以为允许S线偏振光通过的反射偏振片;反射偏振片105可以为一片反射偏振片,也可以为至少两片允许通过相同类型的线偏振光的反射偏振片叠加在一起的。
反射偏振片105设置于第一镜片103与第二镜片104之间,在一种实现方式中,请参阅图4和图5,反射偏振片105可以直接固定于第一镜片103上,当然,反射偏振片105也可以与第一镜片103之间存在一定的距离,具体此处不做限定。
第一四分之一波片106和第二四分之一波片108类似,均为有一定厚度的双折射单晶薄片,具有将线偏振光转换为圆偏振光的功能,也具有将圆偏振光转换为线偏振光的功能。第一四分之一波片106和第二四分之一波片108均可以具体表现为薄膜形态,请参阅图4和图5,第一四分之一波片106可以贴附于显示屏101靠近第一镜片103的这一侧,对应的,第二四分之一波片108可以贴附于反射偏振片105靠近第二镜片104的这一侧。
半透半反射膜107对入射光具有反射和透过的功能,也即入射光穿过半透半反射膜107时部分光穿透过来,部分光被反射回去,半透半反射膜107具体可以表现为50/50镀膜或其他类型的镀膜等。在一种实现方式中,请参阅图4和图5,半透半反射膜107可以贴附于第二镜片104靠近显示屏101的一侧;在另一种实现方式中,半透半反射膜107也可以贴附于第二镜片104靠近第一镜片103的一侧等,具体实现方式可以结合实际产品形态确定,此处不做限定。
本实施例中,请参阅图6,图6示出了光线在显示系统的传播方向的一种示意图,图6以变焦透镜102设置于第一镜片103与第二镜片104之间为例,需要说明的是,由于图6是为了显示折光电路中光线是如何实现折叠的,所以并未示出变焦透镜102、第一镜片103以及第二镜片104对光线产生的折光影响,但应当理解,在实际产品中变焦透镜102、第一镜片103以及第二镜片104均可以对光线产生折光影响。具体的,显示屏101在展示图像时,可以发出线偏振光线,显示屏101发出的线偏振光线通过第一四分之一波片106之后可以转换为圆偏振光线,圆偏振光线通过半透半反射膜107、第二镜片104以及变焦透镜102之后,依旧为圆偏振光线,圆偏振光线再通过第二四分之一波片108之后,由圆偏 振光线变成S线偏振光线,此处以反射偏振片105为允许P偏振光通过的反射偏振片为例,S线偏振光线被反射偏振片105反射后,再次通过变焦透镜102、第二镜片104以及半透半反射膜107后,被半透半反射膜107反射,此时圆偏振光线发生极性颠倒,当再次通过变焦透镜102以及第二四分之一波片108后由圆偏振光变成P线偏振光线,则P线偏振光线通过反射偏振片105,继续穿过第一镜片103,进而进入人眼。本实施例中,在显示系统10中加入了第二镜片104、反射偏振片105、第一四分之一波片106、半透半反射膜107和第二四分之一波片108,从而在显示屏101与第一镜片103之间实现了折叠光路,透过折叠光路可以在较短的距离达到较长的光程,有效缩短了显示系统的长度,也即缩短了用于封装显示系统的镜筒长度,从而缩短了整个VR模块的长度,有利于VR设备的小型化。
本申请实施例中,由于第二镜片104、反射偏振片105、第一四分之一波片106、半透半反射膜107以及第二四分之一波片108为可选的,而在前述多个元件存在和不存在这两种情况下,变焦透镜102在整个显示系统10的位置可以不同。
在一种情况下,若第二镜片104、反射偏振片105、第一四分之一波片106、半透半反射膜107以及第二四分之一波片108均不存在,请参阅图7,图7为本申请实施例提供的显示系统10的一种结构示意图,变焦透镜102直接设置于显示屏101与第一镜头103之间,变焦透镜102、显示屏101以及第一镜头103可以同轴设置,从而变焦透镜102可以对显示屏101发出的第一光线进行屈光度调整后,转换为第二光线,第二光线直接通过第一镜片103发送出去。具体的,可以如图7所示,变焦透镜102与第一镜头103之间的距离可以小于变焦透镜102与显示屏101之间的距离;变焦透镜102与第一镜头103之间的距离也可以大于变焦透镜102与显示屏101之间的距离;变焦透镜102与第一镜头103之间的距离还可以等于变焦透镜102与显示屏101之间的距离;具体应当结合实际产品形态确定,此处不做限定。
在另一种情况下,若第二镜片104、反射偏振片105、第一四分之一波片106、半透半反射膜107以及第二四分之一波片108均存在,具体的,在一种实现方式中,请先参阅图4,变焦透镜102设置于第一镜片103与第二镜片104之间,变焦透镜102、第一镜片103与第二镜片104可以同轴设置。具体的,变焦透镜102与第一镜片103之间的距离可以小于变焦透镜102与第二镜片104之间的距离;变焦透镜102与第一镜头103之间的距离也可以大于变焦透镜102与第二镜片104之间的距离;变焦透镜102与第一镜头103之间的距离还可以等于变焦透镜102与第二镜片104之间的距离等,此处不做限定。本实施例中,结合图6来看,由于变焦透镜102设置于第一镜片103与第二镜片104之间,而第一镜片103与第二镜片104之间又形成了折叠光路,则显示屏101发出的光线经过了变焦透镜102的三次屈光调整之后,才会通过第一镜片103发射出来,而三次屈光调整的效果可以累加,从而可以降低变焦透镜的厚度,从而进一步降低了显示系统的长度,有利于VR设备的小型化实现。
在另一种实现方式中,变焦透镜102设置于第二镜片104与显示屏101之间,变焦透镜102、第二镜片104与显示屏101可以同轴设置。具体的,变焦透镜102与第二镜片104之间的距离可以小于、大于或等于变焦透镜102与显示屏101之间的距离,此处均不做限定。本实施例中,提供了变焦透镜102的又一种实现位置,扩展了本方案的应用场景。
接下来,对本申请实施例中显示系统10中的变焦透镜102的具体工作原理进行介绍。显示系统10应用于VR模块中,VR模块中还包括芯片20,芯片20与变焦透镜102之间可以为电连接,从而在芯片20的控制下,能够调整变焦透镜102的屈光度和/或表面形状。
其中,光线由一种物质射入到另一种折射率不同的物质时,其光线的传播方向产生偏折,这种现象称为屈光现象,而表示这种现象大小的单位为屈光度(Diopter),屈光度也可以称为焦度,屈光度的单位为D。透镜的焦度越短,透镜的屈光能力越强,则透镜的屈光度越大。而眼镜的度数又可以与屈光度之间进行转换,具体的,眼镜的度数等于屈光度数乘100,当然,屈光度有正负的区分,举例来说,人眼的屈光度为-3D就是近视300度,需要佩戴+3D的近视眼镜。当人的眼睛出现屈光不正的问题时,会造成不能准确在视网膜成像,例如,近视的原因就是因为眼睛的折光能力太强,远视的原因就是因为眼睛的折光能力太弱,而这均需要通过佩戴视力矫正眼镜对眼镜的屈光补正问题进行补偿。
本申请实施例中,由于变焦透镜102是通过模拟眼镜的方式来补偿用户的晶状体屈光不正的不足,但由于变焦透镜102和人眼的距离,与人在佩戴眼镜时眼镜与人眼的距离不同,则变焦透镜102的屈光度和用户佩戴的眼镜的屈光度可以不同,具体的,芯片20可以在接收用户输入的左眼以及右眼的眼镜度数和/或散光度数之后,分别根据用户左眼的眼镜度数和/或散光度数以及变焦透镜102与第一镜头103之间的距离,确定左眼显示系统中的变焦透镜102的表面形状和度数,确定变焦透镜102的度数也即确定变焦透镜102的屈光度或者焦距,对于右眼显示系统的处理方式与左眼显示系统的处理方式类似,此处不再赘述。具体的,在芯片20的控制下,变焦透镜102的表面形状发成改变,从而变焦透镜102可以呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜、圆柱面凸透镜、平面透镜或其他类型的透镜等等,具体变焦透镜102最后呈现的形态应当结合用户屈光不正的类型来确定,此处不做限定。
本实施例中,当显示系统10应用于VR模块时,在芯片20的控制下,变焦透镜102的屈光度和/或外表面形状均可以调节,从而无论是近视眼、远视眼、散光或是视力没有问题的用户均可以在不额外佩戴矫正眼睛的情况下使用VR设备,扩展了本方案的应用场景。
本申请实施例中,在显示系统10的显示屏101和第一镜片103之间增设变焦透镜102,并利用变焦透镜102对显示屏发出的光线进行屈光调整,从而进入到用户眼中的光线为进行过屈光调整光线,以实现补偿用户的晶状体屈光不正的不足;且在显示屏101与第一镜片103之间未加入变焦透镜102之前,虽然大脑感知到的画面距离是在前后变化的,但由于人眼和显示屏101的距离是固定的,而第一镜片103的屈光度也是固定的,也即当大脑观察不同距离的物体时,对于晶状体而言,聚焦平面是没有变化的,这就会产生视觉辐辏调节冲突,本方案中,在显示屏101与第一镜片103之间加入变焦透镜102之后,可以通过调整变焦透镜102的屈光度来调整焦平面在前后方向上的位置,从而可以使得晶状体的聚焦平面可以随着大脑的感知距离的变化而移动,以解决视觉辐辏的问题;此外,由于本方案中的变焦透镜102是设置于显示屏101和第一镜片103之间的,当显示系统10应用于具有VR功能的设备内时,变焦透镜102是设置于VR设备内的,从而避免给用户造成压迫感,提高了具有VR功能的设备的使用舒适度。
为对本方案带来的有益效果有进一步的理解,以下结合实际数据进行举例,此处举例 为证明本申请中的显示系统可以解决视觉辐辏现象,假设显示系统的默认聚焦平面的位置(也即虚像位置)在距离人眼1.5米处,当显示系统利用左右眼图像的双目视差制作出大脑感知距离在0.5米的三维物体时,人眼的调节距离在1.5米,感知距离却在0.5米,就会发生视觉辐辏调节冲突,通过将变焦透镜的屈光度往正值调整,可以将虚像显示平面从1.5米拉近到0.5米,让人眼调节距离也在1.5米,解决视觉辐辏调节冲突,具体的,当虚像位置为距离人眼1.5米时,显示系统的屈光度为+2/3,而当虚像位置为距离人眼0.5米时,显示系统的屈光度需要为2,则2–2/3=4/3,也即变焦透镜要等效对人眼产生+4/3屈光度的调节,就可以将聚焦平面从1.5米处拉近到0.5米处,从而聚焦平面的位置与人脑的感知距离达成了一致,应当理解,此处举例仅为证明本方案的可实现性,不用于限定本方案。
本申请实施例还提供了一种VR模块,VR模块中包括两个显示系统10,两个显示系统10可以分别为左眼显示系统和右眼显示系统,显示系统10包括显示屏101、变焦透镜102和第一镜片103,显示屏101用于发出光线;变焦透镜102设置于第一镜片103与显示屏101之间,用于对光线进行屈光调整,并穿过第一镜片103发射出去。
本申请实施例中,在VR模块的左眼显示系统以及右眼显示系统的显示屏101和第一镜片103之间增设变焦透镜102,并利用变焦透镜102对显示屏101发出的光线进行屈光调整,从而进入到用户眼中的光线为进行过屈光调整光线,以实现补偿用户的晶状体屈光不正的不足;且在显示屏101与第一镜片103之间未加入变焦透镜102之前,虽然大脑感知到的画面距离是在前后变化的,但由于人眼和显示屏101的距离是固定的,而第一镜片103的屈光度也是固定的,也即当大脑观察不同距离的物体时,对于晶状体而言,聚焦平面是没有变化的,这就会产生视觉辐辏调节冲突,本方案中,在显示屏101与第一镜片103之间加入变焦透镜102之后,可以通过调整变焦透镜102的屈光度来调整焦平面在前后方向上的位置,从而可以使得晶状体的聚焦平面可以随着大脑的感知距离的变化而移动,以解决视觉辐辏的问题;此外,且由于本方案中的变焦透镜102是设置于显示屏101和第一镜片103之间的,当VR模块应用于具有VR功能的设备内时,变焦透镜102是设置于具有VR功能的设备内的,从而避免给用户造成压迫感,提高了具有VR功能的设备的使用舒适度。
在一种可能的设计中,显示系统还包括第二镜片104和反射偏振片105,显示屏101靠近第一镜片103一侧上设置有四分之一波片106,第二镜片104设置于第一镜片103与显示屏101之间,第二镜片104上有半透半反射膜107,反射偏振片105设置于第一镜片103与第二镜片104之间,反射偏振片105靠近第二镜片104一侧上设置有四分之一波片108。
在一种可能的设计中,变焦透镜102设置于第一镜片103与第二镜片104之间。
在一种可能的设计中,变焦透镜102设置于第二镜片104与显示屏101之间。
在一种可能的设计中,显示系统应用于VR模块中,VR模块还包括芯片20,芯片20与变焦透镜102电连接,在芯片20的控制下,变焦透镜102的屈光度和/或外表面形状为可调整的。
在一种可能的设计中,变焦透镜102呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜或圆柱面凸透镜。
在一种可能的设计中,变焦透镜102为液体变焦透镜102或液晶变焦透镜102。
本申请实施例提供的VR模块中每个显示系统10的各部件的连接方式参照图2至图7所示实施例中显示系统10的各部件之间的连接方式,此处不再一一赘述。
本申请实施例还提供了一种可穿戴设备,所述可穿戴设备为具有VR功能的可穿戴设备,从而可穿戴设备中配置有VR模块,VR模块中包括两个显示系统10,两个显示系统10可以分别为左眼显示系统和右眼显示系统,显示系统10包括显示屏101、变焦透镜102和第一镜片103,显示屏101用于发出光线;变焦透镜102设置于第一镜片103与显示屏101之间,用于对光线进行屈光调整,并穿过第一镜片103发射出去。具体的,所述可穿戴设备可以表现为具有VR功能的头盔、头箍、眼镜、帽子或其他可穿戴设备等等,此处不做限定。
本申请实施例中,可穿戴设备的VR模块的左眼显示系统以及右眼显示系统的显示屏101和第一镜片103之间增设变焦透镜102,并利用变焦透镜102对显示屏101发出的光线进行屈光调整,从而进入到用户眼中的光线为进行过屈光调整光线,以实现补偿用户的晶状体屈光不正的不足;且在显示屏101与第一镜片103之间未加入变焦透镜102之前,虽然大脑感知到的画面距离是在前后变化的,但由于人眼和显示屏101的距离是固定的,而第一镜片103的屈光度也是固定的,也即当大脑观察不同距离的物体时,对于晶状体而言,聚焦平面是没有变化的,这就会产生视觉辐辏调节冲突,本方案中,在显示屏101与第一镜片103之间加入变焦透镜102之后,可以通过调整变焦透镜102的屈光度来调整焦平面在前后方向上的位置,从而可以使得晶状体的聚焦平面可以随着大脑的感知距离的变化而移动,以解决视觉辐辏的问题;此外,且由于本方案中的变焦透镜102是设置于显示屏101和第一镜片103之间的,由于变焦透镜102是设置于可穿戴设备内的,从而避免给用户造成压迫感,提高了具有可穿戴设备的使用舒适度。
在一种可能的设计中,显示系统还包括第二镜片104和反射偏振片105,显示屏101靠近第一镜片103一侧上设置有四分之一波片106,第二镜片104设置于第一镜片103与显示屏101之间,第二镜片104上有半透半反射膜107;反射偏振片105设置于第一镜片103与第二镜片104之间,反射偏振片105靠近第二镜片104一侧上设置有四分之一波片108。
在一种可能的设计中,变焦透镜102设置于第一镜片103与第二镜片104之间。
在一种可能的设计中,变焦透镜102设置于第二镜片104与显示屏101之间。
在一种可能的设计中,显示系统应用于VR模块中,VR模块还包括芯片20,芯片20与变焦透镜102电连接,在芯片20的控制下,变焦透镜102的屈光度和/或外表面形状为可调整的。
在一种可能的设计中,变焦透镜102呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜或圆柱面凸透镜。
在一种可能的设计中,变焦透镜102为液体变焦透镜102或液晶变焦透镜102。
本申请实施例提供的可穿戴设备的VR模块中每个显示系统10的各部件的连接方式参照图2至图7所示实施例中显示系统10的各部件之间的连接方式,此处不再一一赘述。
以上对本申请所提供的显示系统、VR模块、可穿戴设备以及部件进行了详细介绍,本 文中应用了具体个例对本申请的具体实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种显示系统,其特征在于,所述显示系统包括显示屏、变焦透镜和第一镜片;
    所述显示屏用于发出光线;
    所述变焦透镜设置于所述第一镜片与所述显示屏之间,用于对光线进行屈光调整,进行过屈光调整的光线穿过所述第一镜片发射出去。
  2. 根据权利要求1所述的显示系统,其特征在于,所述显示系统还包括第二镜片和反射偏振片;
    所述显示屏靠近所述第一镜片一侧上设置有四分之一波片;
    所述第二镜片设置于所述第一镜片与所述显示屏之间,所述第二镜片上有半透半反射膜;
    所述反射偏振片设置于所述第一镜片与所述第二镜片之间,所述反射偏振片靠近所述第二镜片一侧上设置有四分之一波片。
  3. 根据权利要求2所述的显示系统,其特征在于,所述变焦透镜设置于所述第一镜片与所述第二镜片之间。
  4. 根据权利要求2所述的显示系统,其特征在于,所述变焦透镜设置于所述第二镜片与所述显示屏之间。
  5. 根据权利要求1至4任一项所述的显示系统,其特征在于,所述显示系统应用于VR模块中,VR模块还包括芯片,所述芯片与所述变焦透镜电连接,在所述芯片的控制下,所述变焦透镜的屈光度和/或外表面形状均为可调整的。
  6. 根据权利要求5所述的显示系统,其特征在于,所述变焦透镜呈现为球面凹透镜、球面凸透镜、圆柱面凹透镜、圆柱面凸透镜或平面透镜。
  7. 根据权利要求1至4任一项所述的显示系统,其特征在于,所述变焦透镜为液体变焦透镜或液晶变焦透镜。
  8. 一种虚拟现实VR模块,其特征在于,所述VR模块包括两个显示系统,每个显示系统为权利要求1至权利要求7任一项所述的显示系统。
  9. 一种可穿戴设备,其特征在于,所述可穿戴设备中配置有虚拟现实VR模块,所述VR模块为权利要求8所述的VR模块。
  10. 根据权利要求9所述的可穿戴设备,其特征在于,所述可穿戴设备为头盔、头箍、眼镜或帽子。
PCT/CN2020/103162 2019-07-31 2020-07-21 一种显示系统、vr模块以及可穿戴设备 WO2021017938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910704488.9A CN110543021A (zh) 2019-07-31 2019-07-31 一种显示系统、vr模块以及可穿戴设备
CN201910704488.9 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021017938A1 true WO2021017938A1 (zh) 2021-02-04

Family

ID=68710038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103162 WO2021017938A1 (zh) 2019-07-31 2020-07-21 一种显示系统、vr模块以及可穿戴设备

Country Status (2)

Country Link
CN (1) CN110543021A (zh)
WO (1) WO2021017938A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110543021A (zh) * 2019-07-31 2019-12-06 华为技术有限公司 一种显示系统、vr模块以及可穿戴设备
US11726328B2 (en) * 2020-01-17 2023-08-15 Meta Platforms Technologies, Llc Accommodation adjustable and magnification corrective optical system
CN111580278B (zh) * 2020-06-11 2022-06-17 京东方科技集团股份有限公司 一种ar或vr眼镜
CN111766706A (zh) * 2020-06-19 2020-10-13 江西微瑞光学有限公司 短距离、高透镜双折射容忍度的光学成像模组
CN111766705A (zh) * 2020-06-19 2020-10-13 江西微瑞光学有限公司 短距离、高透镜双折射容忍度的光学成像模组
CN114675417A (zh) * 2020-12-24 2022-06-28 华为技术有限公司 一种显示模组、虚像的位置调节方法及装置
CN113031278B (zh) * 2021-04-08 2023-08-25 恒玄科技(上海)股份有限公司 一种智能显示设备
CN113960798A (zh) * 2021-11-03 2022-01-21 上海鱼微阿科技有限公司 一种大口径光学组件
CN114706226B (zh) * 2022-04-29 2023-12-12 业成科技(成都)有限公司 虚拟现实显示系统及头戴式显示设备
CN115236857B (zh) * 2022-05-31 2023-11-07 歌尔光学科技有限公司 光学组件和ar设备
CN114942523A (zh) * 2022-07-26 2022-08-26 歌尔光学科技有限公司 光学模组以及头戴显示设备
CN115933186A (zh) * 2022-09-30 2023-04-07 华勤技术股份有限公司 一种vr设备
CN115826223B (zh) 2023-02-16 2023-05-02 深圳纳德光学有限公司 一种目镜光学组件、系统及设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160344A (ja) * 1994-12-05 1996-06-21 Olympus Optical Co Ltd 頭部装着式映像表示装置
US6177966B1 (en) * 1997-04-04 2001-01-23 Minolta Co., Ltd. Image display having control system for periodically effecting a change of position of virtual image
CN201251647Y (zh) * 2008-08-20 2009-06-03 比亚迪股份有限公司 一种头戴显示器
CN105929537A (zh) * 2016-04-08 2016-09-07 北京骁龙科技有限公司 一种头戴式显示器及其目镜系统
CN107065180A (zh) * 2017-01-17 2017-08-18 浙江唯见科技有限公司 一种紧凑式虚拟现实近眼显示系统及头戴显示设备
CN108227209A (zh) * 2017-09-30 2018-06-29 北京蚁视科技有限公司 一种近眼双通道光学系统
CN109946837A (zh) * 2018-08-31 2019-06-28 华为技术有限公司 一种光学成像系统
CN109963142A (zh) * 2017-12-25 2019-07-02 广东虚拟现实科技有限公司 视觉显示系统及方法,以及头戴显示装置
CN110543021A (zh) * 2019-07-31 2019-12-06 华为技术有限公司 一种显示系统、vr模块以及可穿戴设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160344A (ja) * 1994-12-05 1996-06-21 Olympus Optical Co Ltd 頭部装着式映像表示装置
US6177966B1 (en) * 1997-04-04 2001-01-23 Minolta Co., Ltd. Image display having control system for periodically effecting a change of position of virtual image
CN201251647Y (zh) * 2008-08-20 2009-06-03 比亚迪股份有限公司 一种头戴显示器
CN105929537A (zh) * 2016-04-08 2016-09-07 北京骁龙科技有限公司 一种头戴式显示器及其目镜系统
CN107065180A (zh) * 2017-01-17 2017-08-18 浙江唯见科技有限公司 一种紧凑式虚拟现实近眼显示系统及头戴显示设备
CN108227209A (zh) * 2017-09-30 2018-06-29 北京蚁视科技有限公司 一种近眼双通道光学系统
CN109963142A (zh) * 2017-12-25 2019-07-02 广东虚拟现实科技有限公司 视觉显示系统及方法,以及头戴显示装置
CN109946837A (zh) * 2018-08-31 2019-06-28 华为技术有限公司 一种光学成像系统
CN110543021A (zh) * 2019-07-31 2019-12-06 华为技术有限公司 一种显示系统、vr模块以及可穿戴设备

Also Published As

Publication number Publication date
CN110543021A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2021017938A1 (zh) 一种显示系统、vr模块以及可穿戴设备
US11693247B2 (en) Augmented reality display having multi-element adaptive lens for changing depth planes
JP7514968B2 (ja) 傾斜アレイベースのディスプレイ
US11733516B2 (en) Augmented reality display comprising eyepiece having a transparent emissive display
US11256092B2 (en) Binocular wide field of view (WFOV) wearable optical display system
US10600352B1 (en) Display device with a switchable window and see-through pancake lens assembly
CN211375190U (zh) 一种vr光学模组和显示设备
CN107111132A (zh) 通过超精细结构保护的紧凑型头戴式显示系统
US11287663B2 (en) Optical transmitting module and head mounted display device
CN214751111U (zh) 超短距目镜系统
CN109061884A (zh) 焦深可调的透视型近眼显示光学系统
CN113960798A (zh) 一种大口径光学组件
CN113341567A (zh) 一种双焦面光波导近眼显示光学系统
CN112014970B (zh) 增强现实显示组件及具有该组件的增强现实显示设备
CN112014971A (zh) 增强现实显示组件及具有该组件的增强现实显示设备
US12124040B2 (en) Augmented reality display comprising eyepiece having a transparent emissive display
CN115185081B (zh) 基于短焦折反投影系统的近眼显示设备及其角膜接触镜
CN218413066U (zh) 光学模组以及头戴显示设备
US12066738B2 (en) Gradient-index liquid crystal lens having lens segments with optical power gradient
CN220367483U (zh) 智能眼镜的镜片组件和智能眼镜
KR102717573B1 (ko) 도파관 조명기
KR20240152954A (ko) 도파관 조명기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847738

Country of ref document: EP

Kind code of ref document: A1