WO2021017516A1 - 信号处理装置和信号处理方法 - Google Patents

信号处理装置和信号处理方法 Download PDF

Info

Publication number
WO2021017516A1
WO2021017516A1 PCT/CN2020/082966 CN2020082966W WO2021017516A1 WO 2021017516 A1 WO2021017516 A1 WO 2021017516A1 CN 2020082966 W CN2020082966 W CN 2020082966W WO 2021017516 A1 WO2021017516 A1 WO 2021017516A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
processing device
wavelength
signal processing
Prior art date
Application number
PCT/CN2020/082966
Other languages
English (en)
French (fr)
Inventor
锁靖
宋小鹿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017516A1 publication Critical patent/WO2021017516A1/zh
Priority to US17/584,725 priority Critical patent/US11700064B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F7/00Optical analogue/digital converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping

Definitions

  • This application relates to the field of signal processing, and more specifically, to signal processing devices and signal processing methods.
  • ADC analog-to-digital converter
  • Optical ADC refers to the conversion of analog signals to digital signals through the three processes of sampling, quantization, and encoding in the optical domain.
  • the technology for sampling and encoding in the optical domain is relatively mature. Therefore, the technical difficulty and focus of realizing optical ADC are mainly focused on all-optical quantization technology.
  • the intensity information of the sampled optical pulse is converted into the change in the optical pulse spectrum through the nonlinear effect, and the wavelength processing device is used to process the change in the spectrum, thereby realizing light quantization .
  • the present application provides a signal processing device and a signal processing method, which can realize light quantization according to the intensity of the sampled optical pulse signal, so as to realize the conversion from analog signal to digital signal more efficiently.
  • the present application provides a signal processing device, which includes: a sampling unit, a beam combiner, and an optical resonant cavity.
  • the sampling unit is connected to the beam combiner, and the beam combiner is connected to the optical resonant cavity; the sampling unit is configured to: use an optical pulse signal to sample an analog signal and output a sampled optical pulse signal;
  • the beam combiner is used to combine the sampled optical pulse signal and the multi-wavelength optical signal into a first optical signal;
  • the optical resonator is used to resonate according to the first optical signal, and output the first optical signal in the first optical signal.
  • the second optical signal, the wavelength of the second optical signal is equal to the resonance wavelength of the optical resonant cavity.
  • the amplitude of the analog signal is reflected on the intensity of the sampled pulsed optical signal through the sampling unit; then the multi-wavelength optical signal and the sampled optical pulse signal are combined into the first optical signal through a beam combiner and transmitted to Optical cavity.
  • the optical resonant cavity can filter out the second optical signal whose wavelength is equal to the resonant wavelength of the optical resonant cavity in the first optical signal under the action of the frequency shift of the resonant spectral line caused by the intensity of the first optical signal, thereby realizing the intensity-to-wavelength mapping. That is to realize the mapping from the amplitude of the analog signal to the wavelength.
  • the mapping from wavelength to digital signal can be realized, that is, the conversion from analog signal to digital signal can be realized.
  • the optical resonant cavity realizes the intensity-to-frequency mapping according to the intensity of the first optical signal, which can reduce the size of the signal processing device compared with the realization of the optical signal intensity-to-frequency mapping through a nonlinear optical fiber.
  • the requirement for the intensity of the optical pulse signal is relatively small.
  • the multi-wavelength optical signal and the sampled optical pulse signal are combined by the beam combiner to provide the first optical signal to the optical resonator.
  • the beam combiner Compared with the non-linear optical fiber providing the optical resonator with the multi-wavelength optical signal, it can save the fiber occupied Large space, thereby reducing the size of the signal processing device.
  • the optical signal processing device further includes a multi-wavelength optical signal source, the multi-wavelength optical signal source is connected to the beam combiner, and the multi-wavelength optical signal The source is used to output the multi-wavelength optical signal.
  • the multi-wavelength optical signal source includes multiple lasers.
  • the multiple lasers jointly output the multi-wavelength optical signal; or, the multi-wavelength optical signal source includes a broad-spectrum light source and a cutting filter, and the cutting filter is used to control the spectrum of the optical signal output by the broad-spectrum light source Cutting, and outputting the multi-wavelength optical signal, and the spectral components of the multi-wavelength optical signal include multiple spectral components obtained by the cutting; or, the multi-wavelength optical signal source includes a supercontinuum light source and a cutting filter The cutting filter is used to cut the spectrum of the optical signal output by the supercontinuum light source, and output the multi-wavelength optical signal, and the spectrum component of the multi-wavelength optical signal includes the multiple spectrums obtained by the cutting Component; or, the multi-wavelength optical signal source includes a multi-band fiber laser, and the multi-wavelength fiber laser is used to output the multi-wavelength optical signal; or the multi-wavelength optical
  • the signal processing device may further include a filter, and the filter is connected to the optical resonant cavity.
  • the filter is used to filter out optical signals other than the second optical signal from the optical signals received from the optical resonant cavity to output the second optical signal.
  • Filtering the second optical signal through the filter can filter out optical signals of other wavelengths and noise signals, etc., so that when the second optical signal is used for encoding, the encoded digital signal can be more accurate.
  • the signal processing device further includes a wave division multiplexer, and the wave division multiplexer is connected to the filter;
  • the multiplexer is used to separate optical carriers of different wavelengths in the optical signal received from the filter, and output the separated optical carriers of different wavelengths from different output ports, and the optical carrier includes the second optical carrier. signal.
  • serial number information of the output port through which the wavelength division multiplexer outputs the second optical signal can be used as a digital optical signal corresponding to the analog signal.
  • the signal processing device further includes an optical switch unit, the optical switch unit is connected to the filter; the optical switch unit is used for: When the first clock signal is received, the second optical signal is output, wherein the clock frequency of the first clock signal is the same as the clock frequency of the optical pulse signal.
  • the output clock frequency of the second optical signal is controlled by the optical switch unit, and the output clock frequency of the second optical signal is the same as the clock frequency of the optical pulse signal, which helps to realize that the second optical signal is only sampled by the sampling unit.
  • the two optical signals are encoded, thereby helping to avoid encoding useless signals.
  • the signal processing device further includes an optical switch unit, and the optical switch unit and the optical resonant cavity Connected; the optical switch unit is used to output the second optical signal when receiving the first clock signal, wherein the clock frequency of the first clock signal is the same as the clock frequency of the optical pulse signal.
  • the output clock frequency of the second optical signal is controlled by the optical switch unit, and the output clock frequency of the second optical signal is the same as the clock frequency of the optical pulse signal, which helps to realize that the operation is performed only when the sampling unit is sampling. Encoding, thereby helping to avoid encoding useless signals.
  • the signal processing device further includes a wavelength division multiplexer, and the wavelength division multiplexer is connected to the optical switch unit The wavelength division multiplexer is used to: output the second optical signal from a port corresponding to the wavelength of the second optical signal.
  • serial number information of the output port through which the wavelength division multiplexer outputs the second optical signal can be used as a digital optical signal corresponding to the analog signal.
  • the signal processing device further includes a wave division multiplexer, and the wave division multiplexing The device is connected to the optical resonant cavity.
  • the wavelength division multiplexer is used to separate optical carriers of different wavelengths in the optical signal received from the optical switching unit, and output the separated optical carriers of different wavelengths from different output ports, and the optical carriers include The second optical signal.
  • serial number information of the output port through which the wavelength division multiplexer outputs the second optical signal can be used as a digital optical signal corresponding to the analog signal.
  • the signal processing device further includes an optical crossover structure, and the optical crossover structure includes N output ports, so The optical crossover structure is connected to the wavelength division multiplexer; the optical crossover structure is used to output the second optical signal from M output ports among the N output ports, so as to realize the analog signal to A binary digital optical signal encoding with a precision of N bits, where N is a positive integer.
  • the signal processing device further includes a photoelectric conversion unit, and the photoelectric conversion unit is connected to the optical cross structure; the photoelectric conversion unit is used for : Convert the received optical signal to electrical signal.
  • the photoelectric conversion unit is specifically configured to: upon receiving a second clock signal, convert the second optical signal into an electrical signal,
  • the clock frequency of the second clock signal is the same as the clock frequency of the optical pulse signal.
  • the signal processing device further includes an optical switch unit, and the optical switch unit and the wave decomposition complex The optical switch unit is used to output the second optical signal when the first clock signal is received, wherein the clock frequency of the first clock signal is the same as the clock frequency of the optical pulse signal .
  • the signal processing device further includes an optical crossover structure, the optical crossover structure includes N output ports, and the optical crossover structure is The optical switch unit is connected; the two-dimensional optical cross structure is used to: output the second optical signal from M output ports among the N output ports, so as to realize the analog signal to a binary system with a precision of N bits Encoding of digital optical signals.
  • the signal processing device further includes a photoelectric conversion unit, and the photoelectric conversion unit is connected to the optical cross structure; the photoelectric conversion unit Used to: convert the received optical signal into an electrical signal.
  • the photoelectric conversion unit is specifically configured to: upon receiving a second clock signal, convert the second optical signal into an electrical signal ,
  • the clock frequency of the second clock signal is the same as the clock frequency of the optical pulse signal.
  • the sampling unit includes a pulsed laser and an electro-optic modulator; wherein, the pulsed laser is used to output the optical pulse Signal; The electro-optical modulator is used to sample the analog signal using the optical pulse signal to obtain the sampled optical pulse signal.
  • one or more components in the signal processing device are integrated on a silicon-based chip.
  • this application provides a signal processing method.
  • the signal processing method includes: sampling an analog signal using an optical pulse signal to obtain a sampled optical pulse signal; synthesizing the sampled optical pulse signal and a multi-wavelength optical signal into a first optical signal; and comparing the intensity of the first optical signal
  • the resonant spectrum line of the optical resonant cavity is adjusted to obtain a second optical signal in the first optical signal, and the wavelength of the second optical signal is the same as the resonant wavelength of the optical resonant cavity.
  • the amplitude of the analog signal is reflected in the intensity of the sampled pulse light; then the multi-wavelength optical signal and the sampled optical pulse signal are combined into the first optical signal; the resonance caused by the intensity of the first optical signal Under the action of the spectral line frequency shift, the second optical signal whose wavelength is equal to the resonant wavelength of the optical resonant cavity in the first optical signal is screened out, so as to realize the intensity to wavelength mapping, that is, the amplitude to wavelength mapping of the analog signal.
  • the mapping from wavelength to digital signal can be realized, that is, the conversion from analog signal to digital signal can be realized.
  • the signal processing method further includes: encoding the second optical signal to obtain a digital signal.
  • the sampling clock frequency is the same as the encoding clock frequency.
  • the encoding clock frequency is the same as the sampling clock frequency, which helps to realize encoding only when sampling, thereby helping to avoid encoding useless signals.
  • the signal processing method further includes: The second optical signal is filtered.
  • Filtering the second optical signal through the filter can filter out optical signals of other wavelengths and noise signals, etc., so that when the second optical signal is used for encoding, the encoded digital signal can be more accurate.
  • the present application provides an optical analog-to-digital converter, which includes the signal processing device described in the first aspect or any one of the possible implementation manners of the first aspect.
  • FIG. 1 is a schematic flowchart of a signal processing method according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of signal conversion of an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a signal processing device according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a signal processing method 100 according to an embodiment of the present application.
  • the method 100 at least includes S110, S120, and S130.
  • the analog signal is loaded on the optical pulse signal for sampling, and a sampled optical pulse signal with a certain intensity envelope is obtained.
  • the intensity envelope of the sampled optical pulse signal corresponds to the envelope of the analog signal.
  • the intensity here can be understood as power, that is, the power of sampled optical pulse signals of different intensities is different.
  • the analog signal is loaded on the optical pulse signal, and the sampled optical pulse signals with intensities of 3, 1, and 5 are sequentially obtained.
  • the sampled optical pulse signal and the multi-wavelength optical signal are combined into a beam of light, and the combined light is called the first optical signal.
  • the intensity of the sampled pulsed light is greater than the intensity of the multi-wavelength optical signal, and the wavelength of the sampled pulsed light is a single wavelength.
  • a multi-wavelength optical signal has multiple wavelength components.
  • the intensity of the synthesized first optical signal is approximately equal to the intensity of the sampled pulsed light, and the first optical signal is also There are wavelength components of ⁇ 0, ⁇ 1, ⁇ 3, and ⁇ 5.
  • the intensity of the first optical signal is approximately equal to the intensity of the sampled pulsed light, and the frequency components of the first optical signal include f0, f1, f3, and f5.
  • the multi-wavelength optical signal may include optical signals with a frequency of f1, a frequency of f3, and a frequency of f5.
  • the optical signal of the first optical signal with a wavelength equal to the resonant wavelength of the optical resonant cavity is filtered out (the optical signal is the second optical signal)
  • intensity-to-wavelength mapping that is, to achieve the mapping of analog signal amplitude to wavelength, thereby completing the quantization of the optical signal.
  • the mapping from wavelength to digital signal can be realized, that is, the conversion from analog signal to digital signal can be realized.
  • the "intensity-wavelength" mapping can also be referred to as the "intensity-frequency" mapping.
  • the first optical signal synthesized in S120 includes a sampled pulsed optical signal with an intensity of 3, an optical signal with a frequency of f1, a frequency of f3, and a frequency of f5, it is assumed that the optical signal with an intensity of 3 performs resonance.
  • the frequency corresponding to the resonance wavelength of is f3, and the second optical signal is an optical signal of frequency f3.
  • the first optical signal synthesized in S120 includes a sampled pulsed optical signal with an intensity of 1, an optical signal with a frequency of f1, a frequency of f3, and a frequency of f5, it is assumed that the frequency corresponding to the resonance wavelength when the optical signal of intensity 1 is resonated Is f1, then the second optical signal is an optical signal of frequency f1.
  • the first optical signal synthesized in S120 includes a sampled pulsed optical signal with an intensity of 5, an optical signal with a frequency of f1, a frequency of f3 and a frequency of f5, it is assumed that the frequency corresponding to the resonant wavelength when the optical signal of intensity 5 is resonated If it is f5, the second optical signal is an optical signal of frequency f5.
  • the multi-wavelength optical signal and the sampled optical pulse signal are combined together to provide the optical resonator with an optical signal with a wavelength equal to the resonant wavelength, so as to realize the "intensity to frequency" mapping.
  • the spectrum of the sampled optical pulse signal is broadened mainly through a nonlinear optical fiber, so that the expanded spectrum includes a frequency corresponding to the intensity of the sampled optical pulse signal, so as to achieve "intensity to frequency" mapping.
  • the signal processing method of the embodiment of the present application can reduce the size of the device for executing the signal processing method and reduce the requirements for the optical pulse signal.
  • it may further include: S150, encoding the second optical signal to obtain a digital signal.
  • the second optical signals of different frequencies are encoded to obtain different digital signals.
  • the second optical signal with frequency f3 is encoded to obtain binary digital signal 011
  • the second optical signal with frequency f1 is encoded to obtain binary digital signal 001
  • the second optical signal with frequency f5 is encoded to obtain binary digital signal.
  • Signal 101 the second optical signal with frequency f3 is encoded to obtain binary digital signal 011
  • the second optical signal with frequency f1 is encoded to obtain binary digital signal 001
  • the second optical signal with frequency f5 is encoded to obtain binary digital signal.
  • the second optical signal with frequency f1 is encoded to obtain binary digital signal 001
  • the second optical signal with frequency f5 is encoded to obtain binary digital signal.
  • the clock frequency for encoding the second optical signal in S150 may be the same as the time-frequency frequency when the optical pulse signal samples the analog signal in S110. That is, when the optical pulse signal samples the analog signal, the second optical signal is encoded. In this way, it is possible to avoid encoding unnecessary optical signals.
  • Filtering the second optical signal can filter out optical signals of other wavelengths and noise signals, etc., so that when the second optical signal is used for encoding, the encoded digital signal can be more accurate.
  • connection described in the various embodiments of the present application may be a direct connection or a connection through other components.
  • the signal processing device 300 includes a sampling unit 330, a beam combiner 320, and an optical resonant cavity 340.
  • the sampling unit 330 is connected to the beam combiner 320, and the beam combiner 320 is connected to the optical resonant cavity 340. Specifically, the output port of the sampling unit 330 is connected to the input port of the beam combiner 320, and the output port of the beam combiner 320 is connected to the input port of the optical resonant cavity 340.
  • the sampling unit 330 is configured to perform the operation in S110, that is, receive an analog signal, use an optical pulse signal to sample the analog signal, and output a sampled optical pulse signal.
  • the sampling unit 330 may also be called a sampler or a sampling module.
  • the sampling unit 330 may be a single device or a combination of multiple devices.
  • the beam combiner 320 is configured to perform the operation in S120, that is, receive the multi-wavelength optical signal and the sampled pulsed optical signal output by the sampling unit 330, and combine the sampled optical pulse signal and the multi-wavelength optical signal into a first optical signal.
  • the optical resonant cavity 340 is used to perform the operation in S130, that is, receive the first optical signal output by the beam combiner 320, resonate according to the first optical signal, and output the second optical signal in the first optical signal.
  • the wavelength of the second optical signal is equal to the resonance wavelength of the optical resonant cavity 340.
  • the optical resonant cavity 340 in the embodiment of the present application may be a microring resonant cavity, a microdisk resonant cavity, a grating Fabry-perot (FP) resonant cavity, or the like.
  • the optical resonant cavity 340 of the embodiment of the present application is not limited to these types of resonant cavities. As long as it can resonate according to the intensity of the optical signal, the resonant cavity that outputs the optical signal of the corresponding frequency can be included in the optical resonant cavity of the embodiment of the present application. protected range.
  • the incident optical signal will change the effective refractive index of the optical resonator 340, and the optical signals of different intensities will cause different effective refractive index changes. Therefore, the optical resonant cavity 340 will output optical signals of different wavelengths from the download port, that is, output optical signals of different frequencies, so as to achieve intensity-to-frequency mapping and complete light quantization.
  • the micro-ring resonator Take the micro-ring resonator as an example.
  • this wavelength is called the resonance wavelength.
  • is the resonance wavelength
  • n eff is the effective refractive index of the micro-nano cavity
  • D is the diameter of the micro-nano cavity
  • m is an integer.
  • the signal processing device 300 may also include a multi-wavelength optical signal source 310.
  • the multi-wavelength optical signal source 310 is used to provide multi-wavelength optical signals.
  • the signal processing device 300 When the signal processing device 300 includes a multi-wavelength optical signal source 310, the multi-wavelength optical signal source 310 is connected to the beam combiner 320. Specifically, the output port of the multi-wavelength optical signal source 310 is connected to the input port of the beam combiner 320. Alternatively, the signal processing device 300 may reserve an interface, and the interface may be externally connected to a multi-wavelength optical signal source.
  • the intensity of the light output by the multi-wavelength optical signal source is less than the intensity of the optical pulse signal.
  • the multi-wavelength optical signal source 310 in the embodiment of the present application may include a plurality of discrete lasers, and the plurality of discrete lasers jointly output the multi-wavelength optical signal.
  • these multiple lasers can be separate or integrated.
  • the multi-wavelength optical signal source 310 may include a broad-spectrum light source and a cutting unit.
  • the cutting unit is used to cut the spectrum of the optical signal output by the broad-spectrum light source, and output the multi-wavelength optical signal.
  • the spectral components of the multi-wavelength optical signal include multiple spectral components obtained by the cutting.
  • the multi-wavelength optical signal source 310 may include a supercontinuum light source and a cutting unit.
  • the cutting unit is used to cut the spectrum of the optical signal output by the supercontinuum light source, and output the multi-wavelength optical signal.
  • the spectral components of the multi-wavelength optical signal include multiple spectral components obtained by the cutting.
  • an example of the cutting unit is a filter.
  • the multi-wavelength optical signal source 310 may be a multi-band fiber laser or comb light source.
  • the signal processing apparatus 300 may further include an encoding unit 370.
  • the encoding unit 370 is configured to perform the operation in S150, that is, to encode the second optical signal to obtain a digital signal.
  • the encoding unit 370 is connected to the optical resonant cavity 340. Specifically, the input port of the encoding unit 370 is connected to the output port of the optical resonant cavity 340 to output the second optical signal.
  • the encoding unit 370 may also be referred to as an encoder or an encoding module.
  • the encoding unit 370 may be a single device or a combination of multiple devices.
  • the sampling unit 330 may include a pulse laser 331 and an electro-optical modulator 332.
  • the output port of the pulse laser 331 is connected to an input port of the electro-optical modulator 332.
  • the output port of the electro-optical modulator 332 is used as the output port of the sampling unit 330 to connect to the input port of the combiner 320; the other input port of the electro-optical modulator 332 is used as the input port of the sampling unit 330 for inputting analog signals.
  • the clock frequency of the pulse laser 331 is the sampling clock frequency of the sampling unit 330.
  • the pulsed laser is used to output an optical pulse signal
  • the electro-optical modulator is used to sample an analog signal using the optical pulse signal, and output the sampled optical pulse signal obtained by sampling.
  • the pulsed laser may be a mode-locked pulsed laser or a Q-switched pulsed laser, etc.
  • the electro-optic modulator may be a Mach-Zhud (MZ) modulator, a micro-ring modulator, or an electro-absorption modulator.
  • the encoding unit 370 may include a wave decomposition multiplexer (demultiplexer, DEMUX) 371.
  • DEMUX decomposition multiplexer
  • the input port of the wavelength division multiplexer 371 serves as the input port of the encoding unit 370 and is connected to the output port of the optical resonator 340 for outputting the second optical signal.
  • the wavelength division multiplexer 371 is used to receive the optical signal output by the optical resonator 340, separate the optical carriers of different wavelengths in the optical signal, and output the separated optical carriers of different wavelengths through different output ports.
  • the optical carrier includes the second optical signal.
  • the wavelength division multiplexer may also be called a wavelength division demultiplexer, optical demultiplexer, demultiplexer, demultiplexer, demultiplexer, or optical demultiplexer.
  • the serial number of the port through which the wavelength division multiplexer 371 outputs the second optical signal can be understood as a digital signal corresponding to the second optical signal, that is, a digital signal corresponding to an analog signal.
  • the wavelength division multiplexer 371 includes 8 output ports. If the second optical signal is output from the third output port of the wavelength division multiplexer 371, it can be understood that the optical digital signal obtained by encoding the analog signal is 3.
  • the encoding unit 370 may also include an optical switch unit 372, and the optical switch unit 372 may include an optical switch array. Each row of optical switches in the optical switch array is connected to an output port of the wavelength division multiplexer 371.
  • the optical switch unit 372 is used to: receive the clock signal and the optical signal output by the wavelength division multiplexer 371, and when the clock signal is received, output the optical signal received from the wavelength division multiplexer 371, and when the clock signal is not received At this time, the optical signal received from the wavelength division multiplexer 371 is not output.
  • the frequency of the clock signal of the optical switch unit is the same as the frequency of the sampling clock of the sampling unit 330, so as to avoid the encoding unit 370 from outputting unnecessary digital signals.
  • the clock signal of the optical switch unit 372 may be the same as the clock signal of the pulse laser. Further, the clock signal of the pulse laser can be used as the clock signal of the optical switch unit 372. In this way, unnecessary signal conversion can be avoided.
  • each row of optical switches may include one or more optical switches. If multiple optical switches are included, the clock signal frequencies of the multiple optical switches should be the same.
  • the encoding unit 370 may further include an optical cross structure 373.
  • the input port of the optical cross structure 373 is connected to the output port of the wavelength division multiplexer 371, and the output port of the optical cross structure 373 serves as the output port of the encoding unit 370, and outputs a binary optical digital signal with a precision of 3 bits.
  • the third output port of the wavelength division multiplexer 371 outputs the second optical signal
  • the second optical signal is output from the first and second output ports of the optical cross structure 373 after passing through the optical cross structure 373.
  • the output optical signal of the output port of the optical cross structure 373 is recorded as "1" in binary, and no output optical signal is recorded as "0" in binary
  • the first and second output ports of the two-dimensional optical cross structure 373 The output of the second optical signal can be understood as an optical digital signal "011" in which the analog signal is encoded into a binary system.
  • optical cross structure in FIG. 7 is only an example, and the optical cross structure in the encoding unit 370 is not limited to this.
  • the number of crossovers and the number of output ports of the optical crossover structure can be increased.
  • the wavelength division multiplexer 371 and the optical cross structure 373 may be connected through an optical switch unit.
  • an optical switch unit may be connected after the optical cross structure 373.
  • the encoding unit 370 may also include a photoelectric conversion unit 374.
  • the input port of the photoelectric conversion unit 374 is connected to the output port of the optical cross structure 373, and the output port of the photoelectric conversion unit 374 is used as the output port of the encoding unit 370 to output a digital signal corresponding to an analog signal.
  • the photoelectric conversion unit 374 is used to receive the optical digital signal output by the optical cross structure 373 and convert the optical digital signal into an electrical digital signal.
  • the photoelectric conversion unit 374 may also be referred to as a photoelectric converter or a photoelectric conversion component.
  • the photoelectric conversion unit 374 may be a single device or a combination of multiple devices.
  • the photoelectric conversion unit 374 may also receive a clock signal, and only convert the optical signal into an electrical signal when the clock signal is received.
  • the clock signal of the photoelectric conversion unit 374 may be the same as the clock frequency of the optical pulse signal in the sampling unit 330.
  • the clock signal of the photoelectric conversion unit 374 may be the same as the clock signal of the pulse laser.
  • the clock signal of the pulse laser can be used as the clock signal of the photoelectric conversion unit 374. In this way, the photoelectric conversion unit 374 can perform signal conversion only when the sampling unit 330 performs sampling, thereby avoiding unnecessary signal conversion.
  • the photoelectric conversion unit 374 includes a photodetector.
  • the photodetector also known as the "photodetector” is used to detect the optical power incident on its surface, and convert the change of this optical power into a corresponding current, thereby completing the digital encoding of the optical signal.
  • An example of a photodetector is a photo-diode (PD) array.
  • the wavelength division multiplexer 371 and the optical cross structure 373 may be connected through an optical switch unit.
  • the optical cross structure 373 and the optical detector 374 may be connected by an optical switch unit.
  • one or more of the sampling unit 330, the beam combiner 320, and the optical resonant cavity 340 may be implemented on a silicon-based platform.
  • the sampling unit 330 includes a pulsed laser and an electro-optic modulator
  • the electro-optic modulator, beam combiner 320, and optical resonator 340 can be integrated on a silicon-based chip
  • the pulsed laser can be mounted on the silicon-based chip by hybrid integration.
  • the sampling unit 330 includes a pulse laser and an electro-optic modulator
  • the signal processing device 300 further includes an encoding unit 370
  • the electro-optic modulator, beam combiner 320, optical resonance 340, and encoding unit 370 can be integrated on a silicon-based chip.
  • Pulsed lasers can be mounted on silicon-based chips through hybrid integration.
  • the sampling unit 330 includes a pulse laser and an electro-optic modulator
  • the signal processing device 300 also includes a multi-wavelength optical signal source
  • the electro-optic modulator, beam combiner 320, and optical resonance 340 can be integrated on a silicon-based chip
  • pulse laser and The multi-wavelength optical signal source 310 can be mounted on a silicon-based chip in a hybrid and integrated manner.
  • the sampling unit 330 includes a pulse laser and an electro-optic modulator
  • the signal processing device 300 also includes a multi-wavelength optical signal source 310 and an encoding unit 370
  • the electro-optic modulator, beam combiner 320, optical resonance 340, and encoding unit 370 can be Integrated on a silicon-based chip
  • the pulse laser and the multi-wavelength optical signal source 310 can be mounted on the silicon-based chip in a hybrid and integrated manner.
  • the signal processing device 400 at least includes a sampling unit 430, a beam combiner 420, an optical resonant cavity 440, and a filter 450.
  • sampling unit 430 the beam combiner 420, and the optical resonant cavity 440 can refer to the sampling unit 330, the beam combiner 320 and the optical resonant cavity 340, respectively, which will not be repeated here.
  • the input port of the filter 450 is connected to the output port of the optical resonant cavity 440 for filtering the optical signal output by the optical resonant cavity 440. Specifically, after the filter 450 inputs the optical signal output by the optical resonator 440, it filters out signals other than the second optical signal, for example, filters out the noise signal, and only outputs the second optical signal, thereby improving the output of the second optical signal.
  • the signal-to-noise ratio is the filter 450 inputs the optical signal output by the optical resonator 440, it filters out signals other than the second optical signal, for example, filters out the noise signal, and only outputs the second optical signal, thereby improving the output of the second optical signal.
  • the signal processing apparatus 400 may further include a multi-wavelength optical signal source 410.
  • a multi-wavelength optical signal source 410 For related content of the multi-wavelength optical signal source 410, reference may be made to the multi-wavelength optical signal source 310, which is not repeated here.
  • the signal processing apparatus 400 may further include an encoding unit 470.
  • an encoding unit 470 For related content of the encoding unit 470, reference may be made to the encoding unit 370, which will not be repeated here.
  • the output port of the filter 450 is connected to the input port of the encoding unit 470; when the signal processing device 400 does not include the encoding unit 470, the output port of the filter 445 can be used as the signal processing device 400 The output port is used to connect the encoding unit.
  • the packaging manner of the signal processing device 400 may refer to the packaging manner of the signal processing device 300.
  • the filter 450 can also be integrated on a silicon-based chip.
  • FIG. 10 An exemplary structure diagram of a signal processing device 500 according to another embodiment of the present application is shown in FIG. 10.
  • the signal processing device 500 at least includes a sampling unit 530, a beam combiner 520, an optical resonant cavity 540, a filter 550, and an optical switch unit 560.
  • the filter 550 is optional.
  • the relevant content of the sampling unit 530, the beam combiner 520 and the optical resonant cavity 540 can refer to the sampling unit 330, the beam combiner 320 and the optical resonant cavity 340, respectively, and the relevant content of the filter 550 can refer to the filter 450. Repeat it again.
  • the input interface of the optical switch unit 560 is connected to the output interface of the filter 550.
  • the optical switch unit 560 may include an optical switch.
  • the optical switch unit 560 outputs the optical signal received from the filter 550 when receiving the clock signal, and does not output the optical signal received from the filter 550 when the clock signal is not received.
  • the clock signal may be the same as the clock frequency of the sampling unit 530 to avoid digital conversion of unnecessary signals.
  • the sampling unit 530 includes a pulse laser
  • the clock signal frequency of the optical switch unit 560 and the clock signal frequency of the pulse laser may be the same.
  • the clock signal of the pulse laser can be used as the clock signal of the optical switch unit 560.
  • the signal processing device 500 may further include a multi-wavelength optical signal source 510.
  • a multi-wavelength optical signal source 510 For related content of the multi-wavelength optical signal source 510, please refer to the multi-band signal source 310, which will not be repeated here.
  • the signal processing device 500 may further include an encoding unit 570.
  • an encoding unit 570 For related content of the encoding unit 570, reference may be made to the encoding unit 370, which will not be repeated here.
  • the output port of the optical switch unit 560 is connected to the input port of the encoding unit 570; when the signal processing device 500 does not include the encoding unit 570, the output port of the optical switch unit 560 can be used as signal processing The output port of the device 500 is used to connect an encoding unit.
  • the encoding unit 570 may not include an optical switch unit.
  • the packaging manner of the signal processing device 500 may refer to the packaging manner of the signal processing device 300.
  • the filter 550 and/or the optical switch unit 560 can also be integrated on a silicon-based chip.
  • the signal processing device 500 may not include the filter 550.
  • the port through which the optical resonant cavity 540 outputs the second optical signal is connected to the input port of the optical switch unit 560.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供信号处理装置和信号处理方法。本申请提供的信号处理装置包括:采样单元、合束器和光学谐振腔。采样单元与合束器相连,合束器与光学谐振腔相连;采样单元用于:使用光脉冲信号对模拟信号进行采样,输出采样光脉冲信号;合束器用于:将采样光脉冲信号与多波长光信号合成第一光信号;光学谐振腔用于:根据第一光信号进行谐振,输出第一光信号中的第二光信号,第二光信号的波长等于光学谐振腔的谐振波长。本申请提供的信号处理装置和信号处理方法,能够根据采样后的光脉冲的强度实现光量化,以便于实现模拟信号至数字信号的转换。

Description

信号处理装置和信号处理方法
本申请要求于2019年7月26日提交中国专利局、申请号为201910684048.1、申请名称为“信号处理装置和信号处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信号处理领域,并且更具体地,涉及信号处理装置和信号处理方法。
背景技术
自然界中存在的信息大多以模拟信号的形式存在。随着各种数字设备的使用日益广泛,使得模拟信号必须转换成数字信号才能进行处理。光模数转换器(analog-to-digital converter,ADC)是一种将模拟信号转换为相对应的数字信号的器件,其搭建了数字世界和模拟世界之间的桥梁。具体地,ADC通过采样、量化和编码三个过程实现模拟信号到数字信号的转换。
近年来,随着光子技术的飞速发展,尤其是具有高重复率和低时间抖动的锁模激光器的出现,光ADC的实现已经成为近30年来的一个研究热点。光ADC是指在光域内通过采样、量化、编码三个过程实现模拟信号到数字信号的转换。
目前,光域内实现采样及编码的技术已相对成熟。因此,实现光ADC的技术难点与重点主要集中在全光量化技术上。常用的一种全光量化技术中,主要通过非线性效应将采样后的光脉冲的强度信息转换为光脉冲光谱上的变化,并利用波长处理器件对光谱上的变化进行处理,从而实现光量化。
发明内容
本申请提供一种信号处理装置和信号处理方法,能够根据采样后的光脉冲信号的强度实现光量化,以便于更高效地实现模拟信号至数字信号的转换。
第一方面,本申请提供了一种信号处理装置,该信号处理装置包括:采样单元、合束器和光学谐振腔。所述采样单元与所述合束器相连,所述合束器与所述光学谐振腔相连;所述采样单元用于:使用光脉冲信号对模拟信号进行采样,输出采样光脉冲信号;所述合束器用于:将所述采样光脉冲信号与多波长光信号合成第一光信号;所述光学谐振腔用于:根据所述第一光信号进行谐振,输出所述第一光信号中的第二光信号,所述第二光信号的波长等于所述光学谐振腔的谐振波长。
本申请的信号处理装置,通过采样单元,将模拟信号的幅度大小体现到采样脉冲光信号的强度上;然后通过合束器将多波长光信号与采样光脉冲信号合成第一光信号并传输至光学谐振腔。光学谐振腔在第一光信号的强度引发的谐振谱线频移作用下,能够筛选出第一光信号中波长等于光学谐振腔的谐振波长的第二光信号,从而实现强度至波长的映射, 即实现模拟信号的幅度至波长的映射。这样,不同波长的第二光信号用于编码得到不同数字信号时,可以实现波长至数字信号的映射,即实现模拟信号至数字信号的转换。
其中,由光学谐振腔根据第一光信号的强度实现强度至频率的映射,与通过非线性光纤来实现光信号强度至频率的映射相比,可以减小信号处理装置的尺寸。另一方面,对光脉冲信号的强度的要求较小。
另外,由合束器将多波长光信号与采样光脉冲信号合成第一光信号提供给光学谐振腔,与由非线性光纤为光学谐振腔提供多波长光信号相比,可以节省光纤所占用的大空间,从而减小信号处理装置的尺寸。
结合第一方面,在第一种可能的实现方式中,所述光信号处理装置还包括多波长光信号源,所述多波长光信号源与所述合束器相连,所述多波长光信号源用于输出所述多波长光信号。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述多波长光信号源包括多个激光器。所述多个激光器联合输出所述多波长光信号;或,所述多波长光信号源包括宽谱光源和切割滤波器,所述切割滤波器用于对所述宽谱光源输出的光信号的频谱进行切割,并输出所述多波长光信号,所述多波长光信号的频谱分量包括所述切割得到的多个频谱分量;或,所述多波长光信号源包括超连续谱光源和切割滤波器,所述切割滤波器用于对所述超连续谱光源输出的光信号的频谱进行切割,并输出所述多波长光信号,所述多波长光信号的频谱分量包括所述切割得到的多个频谱分量;或,所述多波长光信号源包括多波段光纤激光器,所述多波段光纤激光器用于输出所述多波长光信号;或所述多波长光信号源包括梳状光源,所述梳状光源用于输出所述多波长光信号。
结合第一方面或第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述信号处理装置还可以包括滤波器,所述滤波器与所述光学谐振腔相连。所述滤波器用于过滤掉从所述光学谐振腔接收到的光信号中除所述第二光信号以外的光信号,以输出所述第二光信号。
通过滤波器对第二光信号进行滤波,可以滤除其他波长的光信号以及噪声信号等,从而可以使得第二光信号用于编码时,编码得到的数字信号更准确。
结合第三种可能的实现方式,在第四中可能的实现方式中,所述信号处理装置还包括波分解复用器,所述波分解复用器与所述滤波器相连;所述波分解复用器用于:分离从所述滤波器接收的光信号中不同波长的光载波,并从不同的输出端口输出所述分离得到的不同波长的光载波,所述光载波包括所述第二光信号。
其中,波分解复用器输出第二光信号的输出端口的序号信息可以作为模拟信号对应的一种数字光信号使用。
结合第三种可能的实现方式,在第五种可能的实现方式中,所述信号处理装置还包括光开关单元,所述光开关单元与所述滤波器相连;所述光开关单元用于:在接收到第一时钟信号时,输出所述第二光信号,其中,所述第一时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
该实现方式中,由光开关单元控制第二光信号的输出时钟频率,且第二光信号的输出时钟频率与光脉冲信号的时钟频率相同,从而有助于实现在采样单元采样时才对第二光信号进行编码,从而有助于避免对无用的信号进行编码。
结合后第一方面或第一种或第二种可能的实现方式,在第六种可能的实现方式中,所述信号处理装置还包括光开关单元,所述光开关单元与所述光学谐振腔相连;所述光开关单元用于:在接收到第一时钟信号时,输出所述第二光信号,其中,所述第一时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
该实现方式中,由光开关单元控制第二光信号的输出时钟频率,且第二光信号的输出时钟频率与光脉冲信号的时钟频率相同,从而有助于实现在采样单元采样时才对进行编码,从而有助于避免对无用的信号进行编码。
结合第五种或第六种可能的实现方式,在第七种可能的实现方式中,所述信号处理装置还包括波分解复用器,所述波分解复用器与所述光开关单元相连;所述波分解复用器用于:将所述第二光信号从与所述第二光信号的波长相对应的端口输出。
其中,波分解复用器输出第二光信号的输出端口的序号信息可以作为模拟信号对应的一种数字光信号使用。
结合第一方面或第一种可能的实现方式或第二种可能的实现方式,在第八种可能的实现方式中,所述信号处理装置还包括波分解复用器,所述波分解复用器与所述光学谐振腔相连。所述波分解复用器用于:分离从所述光开光单元接收的光信号中不同波长的光载波,并从不同的输出端口输出所述分离得到的不同波长的光载波,所述光载波包括所述第二光信号。
其中,波分解复用器输出第二光信号的输出端口的序号信息可以作为模拟信号对应的一种数字光信号使用。
结合第四种或第七种或第八种可能的实现方式,在第九种可能的实现方式中,所述信号处理装置还包括光交叉结构,所述光交叉结构包括N个输出端口,所述光交叉结构与所述波分解复用器相连;所述光交叉结构用于:从所述N个输出端口中的M个输出端口输出所述第二光信号,以实现所述模拟信号至精度为N比特的二进制数字光信号的编码,N为正整数。
结合第九种可能的实现方式,在第十种可能的实现方式中,所述信号处理装置还包括光电转换单元,所述光电转换单元与所述光交叉结构相连;所述光电转换单元用于:将接收到的光信号转换为电信号。
结合第十种可能的实现方式,在第十一种可能的实现方式中,所述光电转换单元具体用于:在接收到第二时钟信号时,将所述第二光信号转换为电信号,所述第二时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
结合第四种或第八种可能的实现方式,在第十二种可能的实现方式中,其特征在于,所述信号处理装置还包括光开关单元,所述光开关单元与所述波分解复用器相连;所述光开关单元用于:在接收到第一时钟信号时,输出所述第二光信号,其中,所述第一时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
结合第十二种可能的实现方式,在第十三种可能的实现方式中,所述信号处理装置还包括光交叉结构,所述光交叉结构包括N个输出端口,所述光交叉结构与所述光开关单元相连;所述二维光交叉结构用于:从所述N个输出端口中的M个输出端口输出所述第二光信号,以实现所述模拟信号至精度为N比特的二进制数字光信号的编码。
结合第十三种可能的实现方式,在第十四种可能的实现方式中,所述信号处理装置还 包括光电转换单元,所述光电转换单元与所述光交叉结构相连;所述光电转换单元用于:将接收到的光信号转换为电信号。
结合第十四种可能的实现方式,在第十五种可能的实现方式中,所述光电转换单元具体用于:在接收到第二时钟信号时,将所述第二光信号转换为电信号,所述第二时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
结合第一方面或上述任意一种可能的实现方式,在第十六种可能的实现方式中,所述采样单元包括脉冲激光器和电光调制器;其中,所述脉冲激光器用于输出所述光脉冲信号;所述电光调制器用于使用所述光脉冲信号对所述模拟信号进行采样,得到所述采样光脉冲信号。
结合第一方面或上述任意一种可能的实现方式,在第十七种可能的实现方式中,所述信号处理装置中的一个或多个元器件集成在硅基芯片上。
第二方面,本申请提供一种信号处理方法。该信号处理方法包括:使用光脉冲信号对模拟信号进行采样,得到采样光脉冲信号;将所述采样光脉冲信号和多波长光信号合成第一光信号;根据所述第一光信号的强度对光学谐振腔的谐振谱线进行调节,得到所述第一光信号中的第二光信号,所述第二光信号的波长与所述光学谐振腔的谐振波长相同。
本申请的信号处理方法中,将模拟信号的幅度大小体现到采样脉冲光的强度上;然后将多波长光信号与采样光脉冲信号合成第一光信号;在第一光信号的强度引发的谐振谱线频移作用下,筛选出第一光信号中波长等于光学谐振腔的谐振波长的第二光信号,从而实现强度至波长的映射,即实现模拟信号的幅度至波长的映射。这样,不同波长的第二光信号用于编码得到不同数字信号时,可以实现波长至数字信号的映射,即实现模拟信号至数字信号的转换。
结合第二方面,在第一种可能的实现方式中,所述信号处理方法还包括:对所述第二光信号进行编码处理,以得到数字信号。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述采样的时钟频率与所述编码的时钟频率相同。
该实现方式中,编码的时钟频率与采样的时钟频率相同,从而有助于实现在采样时才进行编码,从而有助于避免对无用的信号进行编码。
结合后第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述对所述第二光信号进行编码处理之前,所述信号处理方法还包括:对所述第二光信号进行滤波处理。
通过滤波器对第二光信号进行滤波,可以滤除其他波长的光信号以及噪声信号等,从而可以使得第二光信号用于编码时,编码得到的数字信号更准确。
第三方面,本申请提供一种光模数转换器,该光模数转换器包括第一方面或第一方面中任意一种可能的实现方式中所述的信号处理装置。
附图说明
图1是本申请一个实施例的信号处理方法的示意性流程图;
图2是本申请一个实施例的信号转换示意图;
图3是本申请一个实施例的信号处理装置的示意性结构图
图4是本申请另一个实施例的信号处理装置的示意性结构图;
图5是本申请另一个实施例的信号处理装置的示意性结构图;
图6是本申请另一个实施例的信号处理装置的示意性结构图;
图7是本申请另一个实施例的信号处理装置的示意性结构图;
图8是本申请另一个实施例的信号处理装置的示意性结构图;
图9是本申请另一个实施例的信号处理装置的示意性结构图;
图10是本申请另一个实施例的信号处理装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请一个实施例的信号处理方法100的示意性流程图。该方法100至少包括S110、S120和S130。
S110,使用光脉冲信号对模拟信号进行采样,得到采样光脉冲信号。
具体地,将模拟信号加载到光脉冲信号上进行采样,得到具有一定强度包络的采样光脉冲信号。该采样光脉冲信号的强度包络与模拟信号的包络相对应。这里的强度可以理解为功率,即不同强度的采样光脉冲信号的功率不同。
例如,以图2中的采样操作为例,将模拟信号加载到光脉冲信号上,依次得到强度为3、1和5的采样光脉冲信号。
S120,将所述采样光脉冲信号和多波长光信号合束成第一光信号。
换句话说,将采样光脉冲信号与多波长光信号合成一束光,合成后的光称为第一光信号。
通常情况下,采样脉冲光的强度大于多波长光信号的强度,且采样脉冲光的波长为单一波长。多波长光信号有多个波长分量。
假设采样脉冲光的波长为0,多波长光信号的多个波长分量包括λ1、λ3和λ5,则合成后的第一光信号的强度近似等于采样脉冲光的强度,且第一光信号也都有λ0、λ1、λ3和λ5这些波长分量。
若将波长等效为频率,且假设λ0对应f0,λ1对应f1,λ3对应f3,λ5对应f5,则第一光信号的强度近似等于采样脉冲光的强度,且第一光信号的频率分量包括f0、f1、f3和f5。
如图2所示,多波长光信号中可以包括频率为f1、频率为f3和频率为f5的光信号。
S130,根据所述第一光信号的强度对光学谐振腔的谐振谱线进行调节,得到所述第一光信号中的第二光信号,所述第二光信号的波长与所述光学谐振腔的谐振波长相同。
具体地,在第一光信号的强度引发的谐振谱线频移作用下,筛选出第一光信号中波长等于光学谐振腔的谐振波长的光信号(该光信号即为第二光信号),实现强度至波长的映射,即实现模拟信号的幅度至波长的映射,从而完成光信号的量化。这样,不同波长的第二光信号用于编码得到不同数字信号时,可以实现波长至数字信号的映射,即实现模拟信号至数字信号的转换。“强度-波长”的映射也可以称为“强度-频率”的映射。
如图2所示,S120中合成的第一光信号包含强度为3的采样脉冲光信号、频率为f1、频率为f3和频率为f5的光信号时,假设根据强度3的光信号进行谐振时的谐振波长对应的频率为f3,则第二光信号为频率f3的光信号。S120中合成的第一光信号包含强度为1 的采样脉冲光信号、频率为f1、频率为f3和频率为f5的光信号时,假设根据强度1的光信号进行谐振时的谐振波长对应的频率为f1,则第二光信号为频率f1的光信号。S120中合成的第一光信号包含强度为5的采样脉冲光信号、频率为f1、频率为f3和频率为f5的光信号时,假设根据强度5的光信号进行谐振时的谐振波长对应的频率为f5,则第二光信号为频率f5的光信号。
本申请实施例中,将多波长光信号与采样光脉冲信号合在一起,为光谐振腔提供波长等于谐振波长的光信号,以实现“强度至频率”的映射。而现有技术中,主要通过非线性光纤对采样光脉冲信号进行频谱展宽,使得展宽后的频谱中包括与采样光脉冲信号的强度相对应的频率,以实现“强度至频率”映射。本申请实施例的信号处理了方法与现有技术相比,可以减小执行该信号处理方法的装置的尺寸,以及降低对光脉冲信号的要求。
本申请实施例的信号处理方法中,可选地,还可以包括:S150,对所述第二光信号进行编码处理,以得到数字信号。其中,对不同频率的第二光信号进行编码,得到不同的数字信号。
例如,如图2所示,频率为f3的第二光信号编码得到二进制数字信号011,频率为f1的第二光信号编码得到二进制数字信号001,频率为f5的第二光信号编码得到二进制数字信号101。
可选地,S150中对第二光信号进行编码的时钟频率,与S110中光脉冲信号对模拟信号采样时的时频频率,可以相同。也就是说,在光脉冲信号对模拟信号进行采样时,才对第二光信号进行编码。这样,可以避免对不必要的光信号进行编码。
本申请实施例的信号处理方法中,可选地,对所述第二光信号进行编码处理之前,即S150之前,还可以包括:S140,对所述第二光信号进行滤波处理。
对第二光信号进行滤波,可以滤除其他波长的光信号以及噪声信号等,从而可以使得第二光信号用于编码时,编码得到的数字信号更准确。
基于上述描述的信号处理方法,下面介绍本申请的信号处理装置。应理解,本申请各个实施例中所述的相连,可以是直接相连,也可以是通过其他元器件相连。
本申请一个实施例的信号处理装置300的示例性结构如图3所示。该信号处理装置300包括:采样单元330、合束器320和光学谐振腔340。
采样单元330与合束器320相连,合束器320与光学谐振腔340相连。具体地,采样单元330的输出端口与合束器320的输入端口相连,合束器320的输出端口与光学谐振腔340的输入端口相连。
采样单元330用于执行S110中的操作,即接收模拟信号,使用光脉冲信号对模拟信号进行采样,输出采样光脉冲信号。其中,采样单元330也可以称为采样器或采样模块。采样单元330可以是单一器件,也可以多个器件的组合。
合束器320用于执行S120中的操作,即接收多波长光信号和采样单元330输出的采样脉冲光信号,将所述采样光脉冲信号与所述多波长光信号合成第一光信号。
光学谐振腔340用于执行S130中的操作,即接收合束器320输出的第一光信号,根据所述第一光信号进行谐振,输出所述第一光信号中的第二光信号,所述第二光信号的波长等于光学谐振腔340的谐振波长。
本申请实施例中的光学谐振腔340可以是微环谐振腔、微盘谐振腔、光栅法布里-珀 罗(fabry-perot,FP)谐振腔等。当然,本申请实施例的光学谐振腔340不限于这几种谐振腔,只要是能够根据光信号的强度进行谐振,输出相应频率光信号的谐振腔都可纳入本申请实施例的光学谐振腔的保护范围。
由于非线性效应,入射的光信号会改变光学谐振腔340的有效折射率,且不同强度的光信号会引起不同的有效折射率改变。因此,光学谐振腔340会从下载端口输出不同波长的光信号,即输出不同频率的光信号,从而实现强度至频率的映射,完成光量化。
以微环谐振腔为例,入射到微环谐振腔的光信号中,波长满足条件n eff*π*D=m*λ的光将会在微环谐振腔内发生谐振,最终输出该波长的光信号,该波长称为谐振波长。其中,λ为谐振波长,n eff为微纳谐振腔的有效折射率,D为微纳谐振腔的直径,m为整数。
可选地,信号处理装置300还可以包含多波长光信号源310。顾名思义,多波长光信号源310用于提供多波长光信号。
当信号处理装置300包含多波长光信号源310时,多波长光信号源310与合束器320相连。具体地,多波长光信号源310的输出端口与合束器320的输入端口相连。或者,信号处理装置300可以预留出接口,该接口可以外接多波长光信号源。
通常,多波长光信号源输出的光的强度小于光脉冲信号的强度。
可选地,本申请实施例中的多波长光信号源310可以包括多个分立的激光器,所述多个分立的激光器联合输出所述多波长光信号。其中,这多个激光器可以分立,也可以集成在一起。
可选地,所述多波长光信号源310可以包括宽谱光源和切割单元。所述切割单元用于对所述宽谱光源输出的光信号的频谱进行切割,并输出所述多波长光信号。所述多波长光信号的频谱分量包括所述切割得到的多个频谱分量。或者,多波长光信号源310可以包括超连续谱光源和切割单元。所述切割单元用于对所述超连续谱光源输出的光信号的频谱进行切割,并输出所述多波长光信号。所述多波长光信号的频谱分量包括所述切割得到的多个频谱分量。其中,切割单元的一种示例为滤波器。
具体地,多波长光信号源310可以为多波段光纤激光器或梳装光源。
可选地,信号处理装置300还可以包含编码单元370。编码单元370用于执行S150中的操作,即对第二光信号进行编码,得到数字信号。
编码单元370与光学谐振腔340相连。具体地,编码单元370的输入端口与光学谐振腔340输出第二光信号的输出端口相连。
编码单元370也可以称为编码器或编码模块。编码单元370可以是单一器件,也可以多个器件的组合。
在一些可能的实现方式中,如图4所示,采样单元330可以包括脉冲激光器331和电光调制器332。脉冲激光器331的输出端口与电光调制器332的一个输入端口相连。电光调制器332的输出端口作为采样单元330的输出端口与合束器320的输入端口相连;电光调制器332的另一个输入端口作为采样单元330的输入端口,用于输入模拟信号。脉冲激光器331的时钟频率即为采样单元330的采样时钟频率。
其中,脉冲激光器用于输出光脉冲信号,电光调制器用于使用所述光脉冲信号对模拟信号进行采样,并输出采样得到的采样光脉冲信号。
可选地,脉冲激光器可以是锁模脉冲激光器或调Q脉冲激光器等;电光调制器可以是 马赫-曽德(MZ)调制器、微环调制器或电吸收调制器等。
信号处理装置300包含编码单元370的情况下,在一些可能的实现方式中,如图5所示,编码单元370可以包含波分解复用器(demultiplexer,DEMUX)371。波分解复用器371的输入端口作为编码单元370的输入端口,与光学谐振腔340输出第二光信号的输出端口相连。
波分解复用器371用于接收光学谐振腔340输出的光信号,将该光信号中不同波长的光载波分离出来,并出不同的输出端口输出分离得到的不同波长的光载波,分离得到的光载波中包括第二光信号。
波分解复用器也可以称为波分去复用器、光去复用器、分波器、解复用器、去复用器或光解复用器。
在一些可能的实现方式中,波分解复用器371输出第二光信号的端口的序号可以理解为第二光信号对应的数字信号,即为模拟信号对应的数字信号。例如,波分解复用器371包含8个输出端口,若第二光信号从波分解复用器371的第3个输出端口输出,则可以理解,模拟信号编码得到的光数字信号为3。
编码单元370包含波分复用器371的情况下,在一些可能的实现方式中,如图6所示,编码单元370中还可以包括光开关单元372,该光开关单元372可以包括光开关阵列,这光开关阵列中的每行光开关与波分解复用器371的一个输出端口相连。
该光开关单元372用于:接收时钟信号和波分解复用器371输出的光信号,并在接收到时钟信号时,输出从波分解复用器371接收的光信号,在没有接收到时钟信号时,不输出从波分解复用器371接收的光信号。其中,光开关单元的时钟信号的频率与采样单元330的采样时钟频率相同,以避免编码单元370输出不必要的数字信号。
例如,采样单元330包含脉冲激光器的情况下,光开关单元372的时钟信号可以与脉冲激光器的时钟信号相同。进一步地,可以将脉冲激光器的时钟信号作为光开关单元372的时钟信号。这样,可以避免不必要的信号的转换。
其中,每一行光开关可以包括一个或多个光开关。若包括多个光开关,则这多个光开关的时钟信号频率应相同。
编码单元370包含波分复用器371的情况下,在另一些可能的实现方式中,如图7所示,编码单元370还可以包括光交叉结构373。光交叉结构373的输入端口与波分解复用器371的输出端口相连,光交叉结构373的输出端口作为编码单元370的输出端口,输出精度为3比特的二进制光数字信号。
例如,波分解复用器371的第三个输出端口输出第二光信号,则第二光信号经过光交叉结构373之后,从光交叉结构373的第一个和第二个输出端口输出。假设将光交叉结构373输出端口输出光信号记为二进制中的“1”,没有输出光信号记为二进制中的“0”,则二维光交叉结构373的第一个和第二个输出端口输出第二光信号可以理解为模拟信号被编码为二进制的光数字信号“011”。
应理解,图7中的光交叉结构仅是一种示例,编码单元370中的光交叉结构并不限于此。例如,需要输出编码精度更高的二进制数字信号时,可以增加光交叉结构的交叉数量和输出端口的数量。
图7所示的信号处理装置中,可选地,波分解复用器371和光交叉结构373之间可以 通过光开关单元相连。或者,光交叉结构373之后还可以连接光开关单元。该光开关单元的内容可以参考图6中的光开关单元372,此处不再赘述。
编码单元370包含波分复用器371和光交叉结构373的情况下,在一些可能的实现方式中,如图8所示,编码单元370还可以包含光电转换单元374。光电转换单元374的输入端口与光交叉结构373的输出端口相连,光电转换单元374的输出端口作为编码单元370的输出端口,输出模拟信号对应的数字信号。
光电转换单元374用于接收光交叉结构373输出的光数字信号,并将该光数字信号转换为电数字信号。
光电转换单元374也可以称为光电转换器或光电转换部件。光电转换单元374可以是单一器件,也可以多个器件的组合。
可选地,光电转换单元374还可以接收时钟信号,并在接收到时钟信号时,才将光信号转换为电信号。
可选地,光电转换单元374的时钟信号可以与采样单元330中的光脉冲信号的时钟频率相同。例如,采样单元330包括脉冲激光器的情况下,光电转换单元374的时钟信号可以与脉冲激光器的时钟信号相同。进一步地,可以将脉冲激光器的时钟信号作为光电转换单元374的时钟信号。这样,可以使得光电转换单元374可以仅在采样单元330进行采样时才进行信号转换,从而可以避免不必要的信号的转换。
在一些可能的实现方式中,光电转换单元374包括光探测器。光探测器,又名“光检测器”,用于检测出入射到其面上的光功率,并把这个光功率的变化转化为相应的电流,从而完成光信号的数字编码。光探测器的一种示例为光电二极管(photo-diode,PD)阵列。
应理解,图8所示的信号处理装置中,波分解复用器371与光交叉结构373之间可通过光开关单元相连。光交叉结构373与光探测器374之间可以通过光开关单元相连。该光开关单元的相关内容可以参考图6中的光开关单元372,此处不再赘述。
信号处理装置300中,采样单元330、合束器320和光学谐振腔340中一个或多个可以在硅基平台上实现。例如,采样单元330包括脉冲激光器和电光调制器时,电光调制器、合束器320和光学谐振腔340可以在硅基芯片上集成,脉冲激光器可以通过混合集成的方式贴装在硅基芯片上。
又如,采样单元330包括脉冲激光器和电光调制器,且信号处理装置300还包括编码单元370时,电光调制器、合束器320、光学谐振340和编码单元370可以在硅基芯片上集成,脉冲激光器可以通过混合集成的方式贴装在硅基芯片上。
例如,采样单元330包括脉冲激光器和电光调制器,且信号处理装置300还包括多波长光信号源时,电光调制器、合束器320和光学谐振340可以在硅基芯片上集成,脉冲激光器和多波长光信号源310可以通过混合集成的方式贴装在硅基芯片上。
例如,采样单元330包括脉冲激光器和电光调制器,且信号处理装置300还包括多波长光信号源310和编码单元370时,电光调制器、合束器320、光学谐振340和编码单元370可以在硅基芯片上集成,脉冲激光器和多波长光信号源310可以通过混合集成的方式贴装在硅基芯片上。
本申请另一个实施例的信号处理装置400的示例性结构图如图9所示。信号处理装置400至少包括采样单元430,合束器420、光学谐振腔440和滤波器450。
其中,采样单元430,合束器420和光学谐振腔440的相关内容分别可以参考采样单元330,合束器320和光学谐振腔340,此处不再赘述。
滤波器450的输入端口与光学谐振腔440的输出端口相连,用于对光学谐振腔440输出的光信号进行过滤。具体地,滤波器450输入光学谐振腔440输出的光信号之后,过滤掉除第二光信号之外的信号,例如过滤掉噪声信号,只输出第二光信号,从而提高输出的第二光信号的信噪比。
可选地,信号处理装置400还可以包括多波长光信号源410。多波长光信号源410的相关内容可以参考多波长光信号源310,此处不再赘述。
可选地,信号处理装置400还可以包括编码单元470。编码单元470的相关内容可以参考编码单元370,此处不再赘述。
当信号处理装置400包括编码单元470时,滤波器450的输出端口与编码单元470的输入端口相连;当信号处理装置400不包含编码单元470时,滤波器445的输出端口可以作为信号处理装置400的输出端口,用于外接编码单元。
信号处理装置400的封装方式可以参考信号处理装置300的封装方式。此外,滤波器450也可以集成在硅基芯片上。
本申请另一个实施例的信号处理装置500的示例性结构图如图10所示。信号处理装置500至少包括采样单元530,合束器520、光学谐振腔540、滤波器550和光开关单元560。其中,滤波器550是可选的。
其中,采样单元530,合束器520和光学谐振腔540的相关内容分别可以参考采样单元330,合束器320和光学谐振腔340,滤波器550的相关内容可以参考滤波器450,此处不再赘述。
光开关单元560的输入接口与滤波器550的输出接口相连。光开关单元560可以包含一个光开关。
光开关单元560在接收到时钟信号时,输出从滤波器550接收的光信号,没有接收到时钟信号时,不输出从滤波器550接收的光信号。该时钟信号可以与采样单元530进行采样的时钟频率相同,以避免对不必要的信号进行数字转换。
例如,采样单元530包含脉冲激光器时,光开关单元560的时钟信号频率与该脉冲激光器的时钟信号频率可以相同。进一步地,可以将脉冲激光器的时钟信号作为光开关单元560的时钟信号。
可选地,信号处理装置500还可以包括多波长光信号源510。多波长光信号源510的相关内容可以参考多波段信号源310,此处不再赘述。
可选地,信号处理装置500还可以包括编码单元570。编码单元570的相关内容可以参考编码单元370,此处不再赘述。
当信号处理装置500包括编码单元570时,光开关单元560的输出端口与编码单元570的输入端口相连;当信号处理装置500不包含编码单元570时,光开关单元560的输出端口可以作为信号处理装置500的输出端口,用于外接编码单元。
应理解,信号处理装置500包含编码单元570时,编码单元570中可以不包含光开关单元。
信号处理装置500的封装方式可以参考信号处理装置300的封装方式。此外,滤波器 550和/或光开关单元560也可以集成在硅基芯片上。
可选地,信号处理装置500中可以不包含滤波器550。这种实现方式中,光学谐振腔540输出第二光信号的端口与光开关单元560的输入端口相连。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种信号处理装置,其特征在于,包括:采样单元、合束器和光学谐振腔,其中:
    所述采样单元与所述合束器相连,所述合束器与所述光学谐振腔相连;
    所述采样单元用于:使用光脉冲信号对模拟信号进行采样,输出采样光脉冲信号;
    所述合束器用于:将所述采样光脉冲信号与多波长光信号合成第一光信号;
    所述光学谐振腔用于:根据所述第一光信号进行谐振,输出所述第一光信号中的第二光信号,所述第二光信号的波长等于所述光学谐振腔的谐振波长。
  2. 如权利要求1所述的信号处理装置,其特征在于,所述光信号处理装置还包括多波长光信号源,所述多波长光信号源与所述合束器相连。
  3. 如权利要求2所述的信号处理装置,其特征在于,所述多波长光信号源包括多个激光器,所述多个激光器联合输出所述多波长光信号;或
    所述多波长光信号源包括宽谱光源和切割滤波器,所述切割滤波器用于对所述宽谱光源输出的光信号的频谱进行切割,并输出所述多波长光信号,所述多波长光信号的频谱分量包括所述切割得到的多个频谱分量;或
    所述多波长光信号源包括超连续谱光源和切割滤波器,所述切割滤波器用于对所述超连续谱光源输出的光信号的频谱进行切割,并输出所述多波长光信号,所述多波长光信号的频谱分量包括所述切割得到的多个频谱分量;或
    所述多波长光信号源包括多波段光纤激光器,所述多波段光纤激光器用于输出所述多波长光信号;或
    所述多波长光信号源包括梳状光源,所述梳状光源用于输出所述多波长光信号。
  4. 如权利要求1至3中任一项所述的信号处理装置,其特征在于,所述信号处理装置还包括滤波器,所述滤波器与所述光学谐振腔相连;
    所述滤波器用于:过滤掉从所述光学谐振腔接收的光信号中除所述第二光信号以外的其他光信号,以输出所述第二光信号。
  5. 如权利要求4所述的信号处理装置,其特征在于,所述信号处理装置还包括波分解复用器,所述波分解复用器与所述滤波器相连;
    所述波分解复用器用于:分离从所述滤波器接收的光信号中不同波长的光载波,并从不同的输出端口输出所述分离得到的不同波长的光载波,所述光载波包括所述第二光信号。
  6. 如权利要求4所述的信号处理装置,其特征在于,所述信号处理装置还包括光开关单元,所述光开关单元与所述滤波器相连;
    所述光开关单元用于:在接收到第一时钟信号时,输出从所述滤波器接收的所述第二光信号,其中,所述第一时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
  7. 如权利要求1至3中任一项所述的信号处理装置,其特征在于,所述信号处理装置还包括光开关单元,所述光开关单元与所述光学谐振腔相连;
    所述光开关单元用于:在接收到第一时钟信号时,输出从所述光学谐振腔接收的所述第二光信号,其中,所述第一时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
  8. 如权利要求6或7所述的信号处理装置,其特征在于,所述信号处理装置还包括波分解复用器,所述波分解复用器与所述光开关单元相连;
    所述波分解复用器用于:分离从所述光开光单元接收的光信号中不同波长的光载波,并从不同的输出端口输出所述分离得到的不同波长的光载波,所述光载波包括所述第二光信号。
  9. 如权利要求1至3中任一项所述的信号处理装置,其特征在于,所述信号处理装置还包括波分解复用器,所述波分解复用器与所述光学谐振腔相连;
    所述波分解复用器用于:分离从所述光开光单元接收的光信号中不同波长的光载波,并从不同的输出端口输出所述分离得到的不同波长的光载波,所述光载波包括所述第二光信号。
  10. 根据权利要求5、8或9所述的信号处理装置,其特征在于,所述信号处理装置还包括光交叉结构,所述光交叉结构包括N个输出端口,所述光交叉结构与所述波分解复用器相连;
    所述光交叉结构用于:从所述N个输出端口中的M个输出端口输出所述第二光信号,以实现所述模拟信号至精度为N比特的二进制数字光信号的编码,N为正整数,M为小于或等于N的整数。
  11. 根据权利要求10所述的信号处理装置,其特征在于,所述信号处理装置还包括光电转换单元,所述光电转换单元与所述光交叉结构相连;
    所述光电转换单元用于:将接收到的所述第二光信号转换为电信号。
  12. 根据权利要求5或9所述的信号处理装置,其特征在于,所述信号处理装置还包括光开关单元,所述光开关单元与所述波分解复用器相连;
    所述光开关单元用于:在接收到第一时钟信号时,输出从所述波分解复用器接收的所述第二光信号,其中,所述第一时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
  13. 根据权利要求12所述的信号处理装置,其特征在于,所述信号处理装置还包括光交叉结构,所述光交叉结构包括N个输出端口,所述光交叉结构与所述光开关单元相连;
    所述光交叉结构用于:从所述N个输出端口中的M个输出端口输出所述第二光信号,以实现所述模拟信号至精度为N比特的二进制数字光信号的编码,N为正整数,M为小于N的整数。
  14. 根据权利要求13所述的信号处理装置,其特征在于,所述信号处理装置还包括光电转换单元,所述光电转换单元与所述光交叉结构相连;
    所述光电转换单元用于:将接收到的所述第二光信号转换为电信号。
  15. 根据权利要求11或14所述的信号处理装置,其特征在于,所述光电转换单元具体用于:在接收到第二时钟信号时,将所述第二光信号转换为电信号,所述第二时钟信号的时钟频率与所述光脉冲信号的时钟频率相同。
  16. 如权利要求1至15中任一项所述的信号处理装置,其特征在于,所述采样单元包括脉冲激光器和电光调制器;
    其中,所述脉冲激光器用于输出所述光脉冲信号;
    所述电光调制器用于使用所述光脉冲信号对所述模拟信号进行采样,得到所述采样光脉冲信号。
  17. 如权利要求1至16中任一项所述的信号处理装置,其特征在于,所述信号处理装置中的一个或多个元器件集成在硅基芯片上。
  18. 一种信号处理方法,其特征在于,包括:
    使用光脉冲信号对模拟信号进行采样,得到采样光脉冲信号;
    将所述采样光脉冲信号和多波长光信号合成第一光信号;
    根据所述第一光信号的强度对光学谐振腔的谐振谱线进行调节,得到所述第一光信号中的第二光信号,所述第二光信号的波长与所述光学谐振腔的谐振波长相同。
  19. 如权利要求18所述的信号处理方法,其特征在于,所述信号处理方法还包括:
    对所述第二光信号进行编码处理,以得到数字信号。
  20. 如权利要求19所述的信号处理方法,其特征在于,所述采样的时钟频率与所述编码的时钟频率相同。
  21. 如权利要求19或20所述的信号处理方法,其特征在于,所述对所述第二光信号进行编码处理之前,所述信号处理方法还包括:
    对所述第二光信号进行滤波处理。
  22. 一种光模数转换器,其特征在于,包括如权利要求1至17中任一项所述的信号处理装置。
PCT/CN2020/082966 2019-07-26 2020-04-02 信号处理装置和信号处理方法 WO2021017516A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/584,725 US11700064B2 (en) 2019-07-26 2022-01-26 Signal processing apparatus and signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910684048.1 2019-07-26
CN201910684048.1A CN112311467B (zh) 2019-07-26 2019-07-26 信号处理装置和信号处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/584,725 Continuation US11700064B2 (en) 2019-07-26 2022-01-26 Signal processing apparatus and signal processing method

Publications (1)

Publication Number Publication Date
WO2021017516A1 true WO2021017516A1 (zh) 2021-02-04

Family

ID=74229736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082966 WO2021017516A1 (zh) 2019-07-26 2020-04-02 信号处理装置和信号处理方法

Country Status (3)

Country Link
US (1) US11700064B2 (zh)
CN (1) CN112311467B (zh)
WO (1) WO2021017516A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722059A (zh) * 2012-06-14 2012-10-10 电子科技大学 一种基于动态光谱压缩的全光量化系统及其方法
CN103488023A (zh) * 2013-09-18 2014-01-01 上海交通大学 高精度光学模数转换器
US9201287B1 (en) * 2015-04-28 2015-12-01 Opel Solar, Inc. Photonic analog-to-digital converter
CN106602403A (zh) * 2017-02-28 2017-04-26 太原理工大学 基于微纳谐振腔实现低功率全光量化的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376169B2 (en) * 2005-03-07 2008-05-20 Joseph Reid Henrichs Optical phase conjugation laser diode
US8446305B1 (en) * 2009-09-30 2013-05-21 Rockwell Collins, Inc. Photonic analog to digital conversion
US8548331B1 (en) * 2011-09-23 2013-10-01 Rockwell Collins, Inc. Optically interleaved electronic analog to digital converters
US8965211B1 (en) * 2011-09-29 2015-02-24 Rockwell Collins, Inc. System and method of analog to digital conversion without phase ambiguity
CN104567958B (zh) * 2015-01-05 2017-06-30 华中科技大学 基于时分波分复用的分布式微结构传感网络及其使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722059A (zh) * 2012-06-14 2012-10-10 电子科技大学 一种基于动态光谱压缩的全光量化系统及其方法
CN103488023A (zh) * 2013-09-18 2014-01-01 上海交通大学 高精度光学模数转换器
US9201287B1 (en) * 2015-04-28 2015-12-01 Opel Solar, Inc. Photonic analog-to-digital converter
CN106602403A (zh) * 2017-02-28 2017-04-26 太原理工大学 基于微纳谐振腔实现低功率全光量化的方法和装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUO YA; LI PU; GUO YANGIANG; GUO XIAOMIN; LIU XIANGLIAN LIU YIMING; WANG YUNCAI: "Real-Time and High-Speed All-Optical Quantization by Slicing Supercontinuum Spectrum", LASER & OPTOELECTRONICS PROGRESS, vol. 55, no. 10, 27 April 2018 (2018-04-27), pages 1 - 6, XP055746044, ISSN: 1006-4125, DOI: 10.3788/LOP55.100701 *
KANG ZHE, YUAN JINHUI, WU QIANG, WANG TAO, LI SHA, SANG XINZHU, YU CHONGXIU, FARRELL GERALD: "Lumped Time-Delay Compensation Scheme for Coding Synchronization in the Nonlinear Spectral Quantization-Based All-Optical Analog-to-Digital Conversion", IEEE PHOTONICS JOURNAL, vol. 5, no. 6, 31 December 2013 (2013-12-31), pages 1 - 9, XP055776619, ISSN: 1943-0655, DOI: 10.1109/JPHOT.2013.2284252 *
NAGASHIMA TOMOTAKA, HASEGAWA MAKOTO, KONISHI TSUYOSHI: "40 GSample/s All-Optical Analog to Digital Conversion With Resolution Degradation Prevention", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 29, no. 1, 1 January 2017 (2017-01-01), pages 74 - 77, XP055776611, ISSN: 1041-1135, DOI: 10.1109/LPT.2016.2628868 *
TAKASHI NISHITANI ; TSUYOSHI KONISHI ; KAZUYOSHI ITOH: "Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 14, no. 3, 6 June 2008 (2008-06-06), pages 724 - 732, XP011215955, ISSN: 1077-260X, DOI: 10.1109/JSTQE.2008.916251 *
WANG CHAO: "Microwave Photonic Signal Processing Using Fiber Bragg Gratings", JOURNAL OF DATA ACQUISITION AND PROCESSING, vol. 29, no. 6, 15 November 2014 (2014-11-15), pages 859 - 873, XP055776629, ISSN: 1004-9037, DOI: 10.16337/j.1004-9037.2014.06.011 *

Also Published As

Publication number Publication date
CN112311467B (zh) 2022-08-09
CN112311467A (zh) 2021-02-02
US20220149949A1 (en) 2022-05-12
US11700064B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
CN111882052B (zh) 光子卷积神经网络系统
CN105467717B (zh) 一种基于时间拉伸的微波信号光学模数转换方法及装置
CN106933001B (zh) 基于硅光集成的光子模数转换芯片
CN106444215A (zh) 频率响应可配置的光模数转换装置
US9166701B1 (en) System and method for receiving optical signals
Yoo et al. Terahertz information and signal processing by RF-photonics
Fok et al. 4/spl times/2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion
CN101718944B (zh) 多波长空分光学模数转换器
CN106019767A (zh) 保偏时间交织光模数转换器
EP1955464B1 (en) A method and device for digitising an electrical signal
CN111458953A (zh) 基于光子并行采样的光模数转换架构及其实现方法
WO2021017516A1 (zh) 信号处理装置和信号处理方法
Ghelfi et al. All-optical parallelization for high sampling rate photonic ADC in fully digital radar systems
CN115840322A (zh) 基于波长复用和光学捕获的光子模数转换系统及芯片
CN110231746A (zh) 基于全光比较的光子模数转换系统和方法
CN115840323A (zh) 基于光学捕获原理的光子模数转换系统及芯片
CN113359369A (zh) 高频抗混叠带通可调光模数转换装置
CN111679530A (zh) 一种基于射频信号延迟光子时间拉伸模数转换方法及系统
Grein et al. Demonstration of a 10 GHz CMOS-compatible integrated photonic analog-to-digital converter
CN110175018A (zh) 一种多波长并行光量子随机数发生器
Goto et al. Recognition of wavelength-division-multiplexed time-series optical coded labels using collinear acoustooptic devices without time gating for photonic routing
CN114265261B (zh) 一种基于脉冲处理的高速光子模数转换方法及系统
CN209821815U (zh) 一种多波长并行光量子随机数发生器
CN115840321A (zh) 基于波长复用和光学捕获的光子模数转换方法及转换器
CN115840320A (zh) 基于光学捕获原理的光子模数转换方法及转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847496

Country of ref document: EP

Kind code of ref document: A1