WO2021017127A1 - Layer modulation of coded and unencoded bits - Google Patents

Layer modulation of coded and unencoded bits Download PDF

Info

Publication number
WO2021017127A1
WO2021017127A1 PCT/CN2019/107511 CN2019107511W WO2021017127A1 WO 2021017127 A1 WO2021017127 A1 WO 2021017127A1 CN 2019107511 W CN2019107511 W CN 2019107511W WO 2021017127 A1 WO2021017127 A1 WO 2021017127A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
constellation point
point
bits
layered
Prior art date
Application number
PCT/CN2019/107511
Other languages
French (fr)
Inventor
Jian Li
Changlong Xu
Liangming WU
Joseph Binamira SORIAGA
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Publication of WO2021017127A1 publication Critical patent/WO2021017127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection

Definitions

  • the following relates generally to wireless communications, and more specifically to layer modulation of coded and unencoded bits.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support layer modulation of coded and unencoded bits.
  • the described techniques provide a construction approach for a multi-layer modulation constellation formed using any size-combination of unencoded and encoded bits.
  • the described techniques provide for mapping encoded bits to an inner constellation, mapping unencoded bits to an outer constellation, and then mapping the inner constellation to a constellation point within the outer constellation.
  • a transmitting device (which may be an example of a user equipment (UE) and/or a base station) may identify a set of unencoded bits and a set of encoded bits for transmission.
  • UE user equipment
  • base station may identify a set of unencoded bits and a set of encoded bits for transmission.
  • the transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bids to a second constellation point of an inner constellation.
  • the inner constellation may correspond to the first constellation point of the outer constellation. That is, the inner constellation may be mapped to the first constellation point of the outer constellation. This may create a multi-layer modulation constellation, which can be adjusted in size depending on the number of unencoded bits and/or encoded bits.
  • the transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • a receiving device may receive the signal carrying the set of unencoded bits and the set of encoded bits.
  • the receiving device may identify the set of unencoded bits based on the first constellation point of the outer constellation and identify the set of encoded bits based on the second constellation point of the inner constellation.
  • a method of wireless communication at a transmitting device may include identifying a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, mapping the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, mapping the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmitting the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the apparatus may include means for identifying a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, mapping the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, mapping the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmitting the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • a non-transitory computer-readable medium storing code for wireless communication at a transmitting device is described.
  • the code may include instructions executable by a processor to identify a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • mapping the set of encoded bits to the second constellation point of the inner constellation may include operations, features, means, or instructions for mapping the inner constellation over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  • I/Q in-phase/quadrature
  • transmitting the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point may include operations, features, means, or instructions for selecting an in-phase value and a quadrature value corresponding to the set of un-encoded bits and the set of encoded bits based on the second constellation point, and modulating the set of un-encoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
  • the outer constellation includes a set of constellation points, and the inner constellation may be the same for each constellation point of the outer constellation.
  • the multi-layer modulation constellation includes a quadrature amplitude modulation (QAM) constellation, and where the inner constellation includes a different QAM pattern than the outer constellation.
  • QAM quadrature amplitude modulation
  • one or more of the inner constellation or the outer constellation includes a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  • one or more of the inner constellation or the outer constellation includes a square-shaped QAM8 constellation with a hollow center.
  • one or more of the inner constellation or the outer constellation includes a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for mapping the first constellation point and the second constellation point to a layered constellation point.
  • mapping the first constellation point and the second constellation point to the layered constellation point may include operations, features, means, or instructions for scaling the first constellation point of the outer constellation, and summing the scaled first constellation point and the second constellation point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for shifting the layered constellation point based on an offset, where the offset may be based on a result of performing a minimum function on the layered constellation point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for rotating the shifted layered constellation point based on a modulo function, where the modulo function may be based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for shifting the rotated layered constellation point based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  • the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  • a method of wireless communication at a receiving device may include receiving a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identifying the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identifying the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • the apparatus may include means for receiving a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identifying the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identifying the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • a non-transitory computer-readable medium storing code for wireless communication at a receiving device is described.
  • the code may include instructions executable by a processor to receive a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • identifying the set of encoded bits based on the second constellation point of the inner constellation may include operations, features, means, or instructions for determining that the inner constellation was mapped over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation.
  • receiving the signal indicating the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point may include operations, features, means, or instructions for identifying an in-phase value and a quadrature value corresponding to the set of un-encoded bits and the set of encoded bits based on the second constellation point, and demodulating the set of un-encoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
  • the outer constellation includes a set of constellation points, and the inner constellation may be the same for each constellation point of the outer constellation.
  • the multi-layer modulation constellation includes a QAM constellation, and where the inner constellation includes a different QAM pattern than the outer constellation.
  • one or more of the inner constellation or the outer constellation includes a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  • one or more of the inner constellation or the outer constellation includes a square-shaped QAM8 constellation with a hollow center.
  • one or more of the inner constellation or the outer constellation includes a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first constellation point and the second constellation point may be mapped to a layered constellation point.
  • determining that the first constellation point and the second constellation point may be mapped to the layered constellation point may include operations, features, means, or instructions for determining the first constellation point of the outer constellation may be scaled by a scaling factor and that the scaled first constellation point may be summed with the second constellation point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the layered constellation point may be shifted based on an offset, where the offset may be based on a result of performing a minimum function on the layered constellation point.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the shifted layered constellation point may be rotated based on a modulo function, where the modulo function may be based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the rotated layered constellation point may be shifted based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  • the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  • FIG. 1 illustrates an example of a system for wireless communications that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIGs. 2A and 2B illustrate examples of a transmit/receive chain configuration that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a constellation construction configuration that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIGs. 4A through 4N illustrate examples of constellation configurations that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIG. 5 through 12 illustrate an example of constellation configurations that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIGs. 13 and 14 show block diagrams of devices that support layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIG. 15 shows a block diagram of a communications manager that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIG. 16 shows a diagram of a system including a user equipment (UE) that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • UE user equipment
  • FIG. 17 shows a diagram of a system including a base station that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • FIGs. 18 through 22 show flowcharts illustrating methods that support layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • Wireless communication systems typically use various modulation techniques in order to exchange information (e.g., bits) over a wireless medium between wireless devices.
  • modulation techniques includes quadrature amplitude modulation (QAM) , which is a modulation technique that encodes several bits per transmission step in the amplitude of the waveform and, in addition, in a phase shift as compared to a reference signal. That is, the bits are encoded in two dimensions (e.g., amplitude and phase shift) .
  • QAM quadrature amplitude modulation
  • some wireless communication systems limit the number of bits that can be modulated using QAM modulation, which may limit or reduce system throughput.
  • the described techniques provide a multi-layer modulation constellation based on any combination of unencoded bits and encoded bits.
  • the described techniques provide for mapping encoded bits to an inner constellation, mapping unencoded bits to an outer constellation, and then mapping the inner constellation to a constellation point within the outer constellation.
  • transmitting device (which may be an example of a user equipment (UE) and/or a base station) may identify a set of unencoded bits and a set of encoded bits for transmission.
  • the transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bids to a second constellation point of an inner constellation.
  • the inner constellation may correspond to the first constellation point of the outer constellation. That is, the inner constellation may be mapped to the first constellation point of the outer constellation. This may create a multi-layer modulation constellation, which can be adjusted in size depending on the number of unencoded bits and/or encoded bits.
  • the transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • a receiving device may receive the signal carrying the set of unencoded bits and the set of encoded bits.
  • the receiving device may identify the set of unencoded bits based on the first constellation point of the outer constellation and identify the set of encoded bits based on the second constellation point of the inner constellation.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or another interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • a transmitting device (which may be an example of a UE 115 and/or a base station 105) may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
  • the transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation.
  • the transmitting device may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation.
  • the transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • a receiving device (which may be an example of a UE 115 and/or a base station 105) may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation.
  • the receiving device may identify the set of unencoded bits based at least in part on the first constellation point of the outer constellation of the multi-layer modulation constellation.
  • the receiving device may identify the set of encoded bits based at least in part on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • FIGs. 2A and 2B illustrate an example of a transmit/receive chain configuration 200 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • transmit/receive chain configuration 200 may implement aspects of wireless communications system 100.
  • FIG. 2A illustrates an example of a transmit/receive chain configuration 200-a including a transmit chain 205
  • FIG. 2B illustrates an example of a transmit/receive chain configuration 200-b including a receive chain 225.
  • the transmit chain 205 and/or receive chain 225 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • Wireless communication systems typically use various modulation techniques in order to exchange information (e.g., bits) over a wireless medium between wireless devices.
  • modulation techniques includes QAM, which is a modulation technique that encodes several bits per transmission step in the amplitude of the waveform and, in addition, in a phase shift as compared to a reference signal. That is, the bits are encoded in two dimensions (e.g., amplitude and phase shift) .
  • QAM is a modulation technique that encodes several bits per transmission step in the amplitude of the waveform and, in addition, in a phase shift as compared to a reference signal. That is, the bits are encoded in two dimensions (e.g., amplitude and phase shift) .
  • some wireless communication systems limit the number of bits that can be modulated using QAM modulation, which may limit or reduce system throughput.
  • Some wireless communication systems may utilize an equal error protection (UEP) modulation techniques where encoded bits (also referred to as coded bits) and non-encoded or unencoded bits (also referred to as uncoded bits) are modulated together for transmission.
  • UDP equal error protection
  • a serial string of bits is fed into a serial-to-parallel (S/P) converter 210 where the bits are divided into a set of unencoded bits (e.g., u0, u1, u2, etc. ) and a set of bits to be fed to forward error correction (FEC) encoder 215 for encoding.
  • S/P serial-to-parallel
  • FEC forward error correction
  • the output of FEC encoder 215 includes a set of encoded bits (e.g., c0, c1, c2, etc. ) .
  • the set of encoded bits and the set of unencoded bits are then fed to layered modulation 220 for modulation prior to transmission.
  • a signal carrying the modulated sets of encoded bits and unencoded bits are received at a receive chain 225, where they are split for further processing.
  • the set of encoded bits are fed to the coded bits (C/Bits) demodulation 230 where they are de-modulated and fed to the FEC decoder 235 for decoding.
  • the set of unencoded bits are fed into the uncoded bits (U/Bits) demodulation 240 where they are demodulated.
  • the output of the FEC decoder 235 includes the set of coded bits (e.g., c0, c1, c2, etc. ) , or at least the set of previously encoded bits.
  • the output of the uncoded bits demodulation 240 includes the set of encoded bits (e.g., u0, u1, u2, etc. ) .
  • the set of encoded bits output from FEC decoder 235 may be fed to uncoded bits demodulation 240 to be used for distinguishing between the encoded bits and the unencoded bits.
  • the output of the uncoded bits demodulation 240 is then fed to parallel-to-serial (P/S) converter 245 where the set of encoded bits and the set of an encoded bits are converted into a serial string for further processing.
  • P/S parallel-to-serial
  • transmit chain 205 and receive chain 225 are provided by way of example only, and may be modified to include additional or fewer components as is illustrated in transmit/receive chain configuration 200.
  • aspects of the described techniques may include the use of a layered modulation techniques where multiple constellations (e.g., QAM constellations) are layered in a manner that provides increased flexibility in selecting an available QAM constellation size and may increase the QAM constellation size, in some examples, such that increased system throughput is achieved.
  • the layered modulation techniques described herein may create a multi-layer modulation constellation (e.g., a multi-layer QAM constellation) that can be used for communicating information between a transmitting device (e.g., a base station and/or UE) and a receiving device (e.g., the UE and/or a base station) .
  • the term transmitting device as used herein may generally refer to a UE, a base station, or any other wireless device performing wireless transmissions over a wireless medium.
  • the term receiving device as used herein may generally refer to a UE, a base station, or any other wireless device receiving wireless transmissions over a wireless medium.
  • a transmitting device implementing transmit chain 205 may identify the set of unencoded bits and the set of encoded bits for transmission, e.g., to be transmitted using a multi-layer modulation constellation.
  • the set of encoded bits and the set of unencoded bits may be output from S/P converter 210. More particularly, the set of unencoded bits may be output from S/P converter 210 and the set of encoded bits may be output from FEC encoder 215.
  • the set of unencoded bits and the set of encoded bits may be fed to layered modulation 220 for modulation using a multi-layer modulation constellation in accordance with aspects of the described techniques.
  • the transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bits to a second constellation point of an inner constellation.
  • the inner constellation may correspond to (e.g., be mapped to) the first constellation point of the outer constellation. That is, the inner constellation may be mapped over an in-phase/quadrature (I/Q) plane such that the inner constellation is mapped to (e.g., surrounds and covers) the first constellation point of the outer constellation.
  • I/Q in-phase/quadrature
  • the size of the inner constellation, the outer constellation, and, as a result, the multi-layer modulation constellation may vary depending on the number of bits in the set of encoded bits and/or the number of bits in the set of unencoded bits. Accordingly, and for each QAM symbol, the number of encoded bits in the set of encoded bits may be represented as m, the number of unencoded bits in the set of unencoded bits may be represented as n. Each QAM symbol may be represented by u 1 , u 2 ...u n c 1 c 2 ...c m .
  • bits in the set of encoded bits are mapped as an inner constellation (x i , y i ) and the bits in the set of unencoded bits (e.g., u 1 , u 2 ...u n ) are mapped as an outer constellation (x o , y o ) .
  • the transmitting device may select an in-phase value (e.g., I) and a quadrature value (e.g., Q) that corresponds to the set of unencoded bits and the set of encoded bits based on the second constellation point, and use these values to modulate the bits in the set of unencoded bits and the set of encoded bits onto a carrier frequency.
  • the transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point, e.g., in the modulated carrier frequency.
  • the receiving device may receive a signal (e.g., the modulated carrier frequency) indicating the set of unencoded bits and the set of encoded bits.
  • the receiving device may determine or otherwise identify the set of unencoded bits based on the first constellation point of the outer constellation and determine or otherwise identify the set of encoded bits based at least in part on the second constellation point of the inner constellation.
  • the receive chain 225 of the receiving device may receive the signal and divide the signal for feeding into the coded bits demodulation 230 and the uncoded bits demodulation 240. Based on the output of the coded bits demodulation 230, FEC decoder 235, and/or uncoded bits demodulation 240, the receiving device may identify the bits in the set of encoded bits and the bits in the set of unencoded bits.
  • FIG. 3 illustrates an example of a constellation construction configuration 300 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • constellation construction configuration 300 may implement aspects of wireless communications system 100 and/or transmit/receive chain configuration 200. Aspects of constellation construction configuration 300 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • a transmitting device may create a multi-layer modulation constellation 325 based on an inner constellation 305 and an outer constellation 315. For example, the transmitting device may identify a set of unencoded bits and a set of encoded bits for transmission using the multi-layer modulation constellation 325. The transmitting device may map the set of unencoded bits to a first constellation point 320 of outer constellation 315 and map the set of encoded bits to a second constellation point 310 of inner constellation 305. The inner constellation 305 may correspond to the first constellation point 320 of the outer constellation 315.
  • aspects of the described techniques may place the inner constellation 305 with the center of the constellation points of the outer constellation 315 in a uniform manner. That is, theoretically and for each constellation point within the outer constellation 315, a copy of the inner constellation 305 may be placed (e.g., centered) around the constellation point of the outer constellation 315.
  • the resultant constellation e.g., multi-layer modulation constellation 325) is created by placing a copy of the inner constellation 305 at each constellation point of the outer constellation 315.
  • the multi-layer modulation constellation 325 includes a plurality of copies 330 of the inner constellation 305 that are repeated (e.g., the same) for each constellation point of the outer constellation.
  • the number of bits in the set of encoded bits and the number of bits in the set of unencoded bits may determine the size of the inner constellation 305, the outer constellation 315, and the resulting multi-layer modulation constellation 325.
  • the inner constellation 305 may have eight available constellation points representative of the 8 possible combinations for the three bits in the set of encoded bits. That is, the three bits in the set of encoded bits may be set to 0-7 and represented as values 000, 001, 010, 011, 100, 101, 110, and 111, where each represented value may correspond to a unique constellation point within the inner constellation 305.
  • the outer constellation 315 may have 16 available constellation points representative of the 16 possible combinations for the four bits in the set of unencoded bits. That is, the four bits in the set of unencoded bits may be set to 0-15 and represented as values 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111, where each represented value may correspond to a unique constellation point within the outer constellation 315.
  • the correspondence between a particular constellation point and a represented value may be provided in any order.
  • the represented value of 000 may correspond to the upper left constellation point and continue in a left-to-right/top-to-bottom manner, may correspond to the bottom right constellation point and continue in a circular manner for each of the other constellation points (in either a clockwise circular fashion or a counterclockwise circular fashion) , may correspond to the bottom right constellation point and continue in a right-to-left/bottom-to-top manner, and the like.
  • Other schemes may be implemented mapping the represented values to the corresponding constellation points of the inner constellation 305.
  • the represented value of 0000 may correspond to the upper left constellation point and continue in a left-to-right/top-to-bottom manner, may correspond to the bottom right constellation point and continue in a circular manner for each of the other constellation points (in either a clockwise circular fashion or a counterclockwise circular fashion) , may correspond to the bottom right constellation point and continue in a right-to-left/bottom-to-top manner, and the like.
  • Other schemes may be implemented mapping the represented values to the corresponding constellation points of the outer constellation 315.
  • a particular represented value combining the bits in the set of unencoded bits and the bits in the set of encoded bits may correspond to a particular constellation point within the multi-layer modulation constellation 325. More particularly, the second constellation point 310 of the inner constellation 305 may be selected (e.g., mapped to) based on the actual represented value in the bits of the set of encoded bits and the first constellation point 320 of the outer constellation 315 may be selected (e.g., mapped to) based on the actual represented value in the bits of the set of unencoded bits.
  • a receiving device may receive the signal (e.g., the modulated carrier frequency) indicating the set of encoded bits and the set of unencoded bits and use this information to recover the represented values for the set of encoded bits and the set of unencoded bits.
  • the receiving device may identify the set of unencoded bits based on the first constellation point 320 of the outer constellation 315 of the multi-layer modulation constellation 325. That is, the receiving device may determine where the modulated carrier frequency (e.g., the constellation point) lies within the multi-layer modulation constellation 325.
  • the receiving device may determine or otherwise identify the I/Q values within the multi-layer modulation constellation 325. This may identify the corresponding constellation point within the multi-layer modulation constellation 325. From this, the receiving device may determine the corresponding first constellation point 320 of the outer constellation 315. From this, the receiving device may be able to determine or otherwise identify the bits (e.g., the represented value) in the set of unencoded bits.
  • the receiving device may identify the set of encoded bits based on the second constellation point 310 of the inner constellation 305 of the multi-layer modulation constellation 325. That is, the receiving device may determine where the modulated carrier frequency (e.g., the constellation point) lies within the outer constellation 315. For example, the receiving device may determine or otherwise identify the I/Q values within the outer constellation 315. This may further identify the corresponding constellation point within the multi-layer modulation constellation 325. From this, the receiving device may determine the corresponding second constellation point 310 of the inner constellation 305. From this, the receiving device may be able to determine or otherwise identify the bits (e.g., the represented value) in the set of encoded bits.
  • the modulated carrier frequency e.g., the constellation point
  • FIGs. 4A through 4N illustrate examples of a multi-layer modulation constellation 400 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the multi-layer modulation constellation 400 may implement aspects of wireless communications system 100, transmit/receive chain configuration 200, and/or constellation construction configuration 300. Aspects of the multi-layer modulation constellation 400 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • the transmitting device may create a multi-layer modulation constellation 400 based on an inner constellation and an outer constellation. For example, the transmitting device may identify a set of unencoded bits and a set of encoded bits for transmission using the multi-layer modulation constellation 400. The transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bits to a second constellation point of the inner constellation. The inner constellation may correspond to the first constellation point of the outer constellation. Using this technique, the transmitting device may create or otherwise form the multi-layer modulation constellation 400 for transmission. Accordingly, the transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the receiving device may receive the signal indicating the set of encoded bits and the set of unencoded bits and identify the set of unencoded bits based on the first constellation point of the outer constellation and identify the set of encoded bits based on the second constellation point of the inner constellation.
  • the number of bits in the set of encoded bits and/or the number of bits in the set of unencoded bits may be selected depended upon the number of bits in the represented value being communicated in the signal. Accordingly, the number of bits in the set of encoded bits and the set of unencoded bits may, collectively, determine the number of bits that can be communicated or otherwise indicated in the signal and, consequently, the size and/or shape of the multi-layer modulation constellation 400 used to transmit the set of encoded bits and the set of unencoded bits.
  • the multi-layer modulation constellation may be a QAM constellation that is formed based on the inner constellation and the outer constellation.
  • Each of the inner constellation and the outer constellation may have a different shape (e.g., a QAM pattern) and/or size (e.g., QAM size) that is the same or is different.
  • FIGs. 4A through 4N illustrate various examples of multi-layer modulation constellation 400 that may be formed or otherwise utilized based on the varying QAM pattern and/or QAM size for the inner and outer constellations, in accordance with aspects of the described techniques.
  • multi-layer modulation constellation 400-a of FIG. 4A illustrates two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM32 multi-layer modulation constellation 402 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
  • the second example includes a QAM32 multi-layer modulation constellation 404 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-b of FIG. 4B illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM64 multi-layer modulation constellation 406 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
  • the second example includes a QAM64 multi-layer modulation constellation 408 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-c of FIG. 4C illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM64 multi-layer modulation constellation 410 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
  • the second example includes a QAM128 multi-layer modulation constellation 412 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-d of FIG. 4D illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM128 multi-layer modulation constellation 414 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
  • the second example includes a QAM128 multi-layer modulation constellation 416 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-e of FIG. 4E illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM128 multi-layer modulation constellation 418 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
  • the second example includes a QAM256 multi-layer modulation constellation 420 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on six bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-f of FIG. 4F illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM256 multi-layer modulation constellation 422 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits.
  • the second example includes a QAM256 multi-layer modulation constellation 424 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-g of FIG. 4G illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM256 multi-layer modulation constellation 426 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
  • the second example includes a QAM256 multi-layer modulation constellation 428 that is formed based on an inner constellation sized based on six bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-h of FIG. 4H illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM512 multi-layer modulation constellation 430 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on seven bits being in the set of unencoded bits.
  • the second example includes a QAM512 multi-layer modulation constellation 432 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on six bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-i of FIG. 4I illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM512 multi-layer modulation constellation 434 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits.
  • the second example includes a QAM512 multi-layer modulation constellation 436 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-j of FIG. 4J illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM512 multi-layer modulation constellation 438 that is formed based on an inner constellation sized based on six bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
  • the second example includes a QAM512 multi-layer modulation constellation 440 that is formed based on an inner constellation sized based on seven bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-k of FIG. 4K illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM1024 multi-layer modulation constellation 442 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on eight bits being in the set of unencoded bits.
  • the second example includes a QAM1024 multi-layer modulation constellation 444 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on seven bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-l of FIG. 4L illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM1024 multi-layer modulation constellation 446 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on six bits being in the set of unencoded bits.
  • the second example includes a QAM1024 multi-layer modulation constellation 448 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-m of FIG. 4M illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • the first example includes a QAM1024 multi-layer modulation constellation 450 that is formed based on an inner constellation sized based on six bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
  • the second example includes a QAM1024 multi-layer modulation constellation 452 that is formed based on an inner constellation sized based on seven bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
  • Multi-layer modulation constellation 400-n of FIG. 4N illustrates a final example of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400.
  • This example includes a QAM1024 multi-layer modulation constellation 454 that is formed based on an inner constellation sized based on eight bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
  • aspects of the described techniques may enable the use of a multi-layer modulation constellation 400 having a size (e.g., QAM size) and/or pattern (e.g., QAM pattern) that is based, at least in some aspects, on the number of bits in the set of encoded bits and/or the number of bits in the set of unencoded bits.
  • a size e.g., QAM size
  • pattern e.g., QAM pattern
  • FIG. 5 illustrates an example of an outer modulation mapping 500 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • This outer modulation mapping 500 may be applicable to schemes using three unencoded bits.
  • the outer modulation mapping 500 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, and/or constellation construction configuration 300.
  • Aspects of the outer modulation mapping 500 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • outer modulation mapping 500 may be based on a mapping between unencoded bits table 505 and an outer constellation 510.
  • outer constellation 510 may be associated with QAM symbols.
  • the number of unencoded bits may be 3, while the number of encoded bits may be a value m.
  • each symbol may be represented by the variables c1, c2, ...cm for the set of encoded bits, and u1, u2, and u3 for the set of unencoded bits (e.g. unencoded bits u1, u2, and u3 from unencoded bits table 505) .
  • encoded bits c1 c2 ...cm may map as an inner constellation (x i , y i )
  • unencoded bits u1 u2 u3 may map as an outer constellation (x o , y o ) .
  • a transmitting device may create outer constellation 510 based on the outer modulation mapping 500 between the set of unencoded bits u1, u2, u3 from unencoded bits table 505 and x-y coordinates of outer constellation 510. For example, the transmitting device may identify the set of unencoded bits for transmission and use the outer modulation mapping 500 to map the unencoded bits to a constellation point on outer constellation 510. As shown, the transmitting device may map the set of unencoded bits from unencoded bits table 505 to a first constellation point (e.g., x-y coordinate) of outer constellation 510. As described herein, an inner constellation may correspond to the first constellation point of the outer constellation 510.
  • a first constellation point e.g., x-y coordinate
  • the transmitting device may create or otherwise form a multi-layer modulation constellation for transmission based on the outer modulation mapping 500. Accordingly, the transmitting device may transmit the set of unencoded bits from unencoded bits table 505 according to the first constellation point of outer constellation 510 and a set of encoded bits according to a second constellation point of an inner constellation. In some cases, a receiving device may receive the signal indicating the set of encoded bits and the set of unencoded bits and identify the set of unencoded bits based on the first constellation point of the outer constellation 510 and identify the set of encoded bits based on the second constellation point of the inner constellation.
  • FIG. 6 illustrates an example of a layered constellation 600 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • layered constellation 600 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, and/or constellation construction configuration 300.
  • aspects of the layered constellation 600 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • the transmitting device may map the first constellation point of outer constellation 510 and the second constellation point of the inner constellation to a layered constellation point (e.g., x-y coordinate (x l , y l ) ) of layered constellation 600.
  • mapping the first constellation point and the second constellation point to the layered constellation point of layered constellation 600 includes scaling the first constellation point of the outer constellation 510 and summing the scaled first constellation point and the second constellation point.
  • scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  • constructing a multi-layer modulation constellation may include mapping unencoded bits u1, u2, and u3 and encoded bits c1, c2, to cm as layered constellation point (x l , y l ) based on the following equations:
  • x l is the x-coordinate of the layered constellation point of layered constellation 600
  • y l is the y-coordinate of the layered constellation point of layered constellation 600
  • x o is the x-coordinate of the outer constellation point of outer constellation 510
  • y o is the y-coordinate of the outer constellation point of outer constellation 510
  • the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  • constructing a multi-layer modulation constellation may include shifting the layered constellation point (x l , y l ) based at least in part on an offset.
  • the offset may be based at least in part on a result of performing a minimum (MIN) function on the layered constellation point.
  • constructing the multi-layer modulation constellation may include rotating the shifted layered constellation point based at least in part on a modulo function.
  • the modulo function may be based at least in part on a result of performing a maximum (MAX) function on the layered constellation point (x l , y l ) and a Hamming distance (dH) .
  • constructing the multi-layer modulation constellation may include shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point (e.g., after the shifting and the rotating above) and a result of performing a mean function on the layered constellation point.
  • FIG. 7 illustrates an example of a multi-layer modulation constellation 700 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • multi-layer modulation constellation 700 may implement aspects of wireless communication system 100.
  • multi-layer modulation constellation 700 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600.
  • Aspects of the multi-layer modulation constellation 700 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • multi-layer modulation constellation 700 may be a QAM constellation that is formed based on an inner constellation and outer constellation (e.g., outer constellation 510) .
  • Each of the inner constellation and the outer constellation may have a shape (e.g., a QAM pattern) that is the same or is different and/or size (e.g., QAM size) that is the same or is different.
  • FIG. 7 illustrates various examples of multi-layer modulation constellations that may be formed or otherwise utilized based on the varying QAM pattern and/or QAM size for the inner and outer constellations, in accordance with aspects of the described techniques.
  • Multi-layer modulation constellation 700 of FIG. 7 illustrates two examples of the various QAM pattern and/or QAM size.
  • the first example includes a QAM32 multi-layer modulation constellation 705 that is formed based on an inner constellation sized that is based on there being 2 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • QAM32 multi-layer modulation constellation 705 may be formed based on the process of forming QAM32 multi-layer modulation constellation 402 of FIG. 4A.
  • QAM32 multi-layer modulation constellation 705 (and QAM32 multi-layer modulation constellation 402) includes a hole in the center where constellation points do not occur.
  • the hole in QAM32 multi-layer modulation constellation 705 (and QAM32 multi-layer modulation constellation 402) may result in power inefficiencies compared to a double square QAM (DSQ32) multi-layer modulation constellation 710.
  • the second example includes the DSQ32 multi-layer modulation constellation 710 that eliminates the hole shown in QAM32 multi-layer modulation constellation 705 based on shifting the layered constellation point (x l , y l ) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point.
  • the DSQ32 multi-layer modulation constellation 710 may be formed based on an inner constellation sized that is based on there being 2 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • DSQ32 multi-layer modulation constellation 710 may improve power efficiency over QAM32 multi-layer modulation constellation 705. In some cases, DSQ32 multi-layer modulation constellation 710 may have a 1dB gain over QAM32 multi-layer modulation constellation 705.
  • FIG. 8 illustrates an example of a multi-layer modulation constellation 800 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • multi-layer modulation constellation 800 may implement aspects of wireless communication system 100.
  • multi-layer modulation constellation 800 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600.
  • Aspects of the multi-layer modulation constellation 800 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • Multi-layer modulation constellation 800 of FIG. 8 illustrates two examples of the various QAM pattern and/or QAM size.
  • the first example includes a QAM64 multi-layer modulation constellation 805 that is formed based on an inner constellation sized that is based on there being 3 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • QAM64 multi-layer modulation constellation 805 may be formed based on the process of forming QAM64 multi-layer modulation constellation 408 of FIG. 4B.
  • QAM64 multi-layer modulation constellation 805 (and QAM64 multi-layer modulation constellation 408) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM64 multi-layer modulation constellation 805 (and QAM64 multi-layer modulation constellation 408) may result in power inefficiencies.
  • the second example includes a DSQ64 multi-layer modulation constellation 810 that eliminates the hole shown in QAM64 multi-layer modulation constellation 805 based on shifting the layered constellation point (x l , y l ) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point.
  • the DSQ64 multi-layer modulation constellation 810 may be formed based on an inner constellation sized that is based on there being 3 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • DSQ64 multi-layer modulation constellation 810 may improve power efficiency over QAM64 multi-layer modulation constellation 805. In some cases, DSQ64 multi-layer modulation constellation 810 may have a 1dB gain over QAM64 multi-layer modulation constellation 805.
  • FIG. 9 illustrates an example of a multi-layer modulation constellation 900 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • multi-layer modulation constellation 900 may implement aspects of wireless communication system 100.
  • multi-layer modulation constellation 900 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600.
  • Aspects of the multi-layer modulation constellation 900 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • Multi-layer modulation constellation 900 of FIG. 9 illustrates two examples of the various QAM pattern and/or QAM size.
  • the first example includes a QAM128 multi-layer modulation constellation 905 that is formed based on an inner constellation sized that is based on there being 4 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • QAM128 multi-layer modulation constellation 905 may be formed based on the process of forming QAM128 multi-layer modulation constellation 416 of FIG. 4D.
  • QAM128 multi-layer modulation constellation 905 (and QAM128 multi-layer modulation constellation 416) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM128 multi-layer modulation constellation 905 (and QAM128 multi-layer modulation constellation 416) may result in power inefficiencies.
  • the second example includes a DSQ128 multi-layer modulation constellation 910 that eliminates the hole shown in QAM128 multi-layer modulation constellation 905 based on shifting the layered constellation point (x l , y l ) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point.
  • the DSQ128 multi-layer modulation constellation 910 may be formed based on an inner constellation sized that is based on there being 4 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • DSQ128 multi-layer modulation constellation 910 may improve power efficiency over QAM128 multi-layer modulation constellation 905. In some cases, DSQ128 multi-layer modulation constellation 910 may have a 1dB gain over QAM128 multi-layer modulation constellation 905.
  • FIG. 10 illustrates an example of a multi-layer modulation constellation 1000 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • multi-layer modulation constellation 1000 may implement aspects of wireless communication system 100.
  • multi-layer modulation constellation 1000 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600.
  • Aspects of the multi-layer modulation constellation 1000 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • Multi-layer modulation constellation 1000 of FIG. 10 illustrates two examples of the various QAM pattern and/or QAM size.
  • the first example includes a QAM256 multi-layer modulation constellation 1005 that is formed based on an inner constellation sized that is based on there being 5 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • QAM256 multi-layer modulation constellation 1005 may be formed based on the process of forming QAM256 multi-layer modulation constellation 426 of FIG. 4G.
  • QAM256 multi-layer modulation constellation 1005 (and QAM256 multi-layer modulation constellation 426) includes a hole in the center where constellation points do not occur.
  • the hole in QAM256 multi-layer modulation constellation 1005 (and QAM256 multi-layer modulation constellation 426) may result in power inefficiencies.
  • the second example includes a DSQ256 multi-layer modulation constellation 1010 that eliminates the hole shown in QAM256 multi-layer modulation constellation 1005 based on shifting the layered constellation point (x l , y l ) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point.
  • the DSQ256 multi-layer modulation constellation 1010 may be formed based on an inner constellation sized that is based on there being 5 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • DSQ256 multi-layer modulation constellation 1010 may improve power efficiency over QAM256 multi-layer modulation constellation 1005. In some cases, DSQ256 multi-layer modulation constellation 1010 may have a 1dB gain over QAM256 multi-layer modulation constellation 1005.
  • FIG. 11 illustrates an example of a multi-layer modulation constellation 1100 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • multi-layer modulation constellation 1100 may implement aspects of wireless communication system 100.
  • multi-layer modulation constellation 1100 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600.
  • Aspects of the multi-layer modulation constellation 1100 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • Multi-layer modulation constellation 1100 of FIG. 11 illustrates two examples of the various QAM pattern and/or QAM size.
  • the first example includes a QAM512 multi-layer modulation constellation 1105 that is formed based on an inner constellation sized that is based on there being 6 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • QAM512 multi-layer modulation constellation 1105 may be formed based on the process of forming QAM512 multi-layer modulation constellation 438 of FIG. 4J.
  • QAM512 multi-layer modulation constellation 1105 (and QAM512 multi-layer modulation constellation 438) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM512 multi-layer modulation constellation 1105 (and QAM512 multi-layer modulation constellation 438) may result in power inefficiencies.
  • the second example includes a DSQ512 multi-layer modulation constellation 1110 that eliminates the hole shown in QAM512 multi-layer modulation constellation 1105 based on shifting the layered constellation point (x l , y l ) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point.
  • the DSQ512 multi-layer modulation constellation 1110 may be formed based on an inner constellation sized that is based on there being 6 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • DSQ512 multi-layer modulation constellation 1110 may improve power efficiency over QAM512 multi-layer modulation constellation 1105. In some cases, DSQ512 multi-layer modulation constellation 1110 may have a 1dB gain over QAM512 multi-layer modulation constellation 1105.
  • FIG. 12 illustrates an example of a multi-layer modulation constellation 1200 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • multi-layer modulation constellation 1200 may implement aspects of wireless communication system 100.
  • multi-layer modulation constellation 1200 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600.
  • Aspects of the multi-layer modulation constellation 1200 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
  • Multi-layer modulation constellation 1200 of FIG. 12 illustrates two examples of the various QAM pattern and/or QAM size.
  • the first example includes a QAM1024 multi-layer modulation constellation 1205 that is formed based on an inner constellation sized that is based on there being 7 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • QAM1024 multi-layer modulation constellation 1205 may be formed based on the process of forming QAM1024 multi-layer modulation constellation 452 of FIG. 4M.
  • QAM1024 multi-layer modulation constellation 1205 (and QAM1024 multi-layer modulation constellation 452) includes a hole in the center where constellation points do not occur.
  • the hole in QAM1024 multi-layer modulation constellation 1205 (and QAM1024 multi-layer modulation constellation 452) may result in power inefficiencies.
  • the second example includes a DSQ1024 multi-layer modulation constellation 1210 that eliminates the hole shown in QAM1024 multi-layer modulation constellation 1205 based on shifting the layered constellation point (x l , y l ) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point.
  • the DSQ1024 multi-layer modulation constellation 1210 may be formed based on an inner constellation sized that is based on there being 7 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits.
  • DSQ1024 multi-layer modulation constellation 1210 may improve power efficiency over QAM1024 multi-layer modulation constellation 1205. In some cases, DSQ1024 multi-layer modulation constellation 1210 may have a 1dB gain over QAM1024 multi-layer modulation constellation 1205.
  • FIG. 13 shows a block diagram 1300 of a device 1305 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of aspects of a transmitting device and/or a receiving device, which may be examples of a UE 115 or base station 105 as described herein.
  • the device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1320.
  • the device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to layer modulation of coded and unencoded bits, etc. ) . Information may be passed on to other components of the device 1305.
  • the receiver 1310 may be an example of aspects of the transceiver1620 or 1720 as described with reference to FIGs. 16 and 17.
  • the receiver 1310 may utilize a single antenna or a set of antennas.
  • the communications manager 1315 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the communications manager 1315 may also receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • the communications manager 1315 may be an example of aspects of the communications manager 1610 or 1710 as described herein.
  • the communications manager 1315 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1315 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1315, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1315, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • Transmitter 1320 may transmit signals generated by other components of the device 1305.
  • the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module.
  • the transmitter 1320 may be an example of aspects of the transceiver1620 or 1720 as described with reference to FIGs. 16 and 17.
  • the transmitter 1320 may utilize a single antenna or a set of antennas.
  • FIG. 14 shows a block diagram 1400 of a device 1405 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of aspects of a device 1305, a transmitting device, and/or a receiving device, which may be examples of a UE 115, or a base station 105 as described herein.
  • the device 1405 may include a receiver 1410, a communications manager 1415, and a transmitter 1440.
  • the device 1405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 1410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to layer modulation of coded and unencoded bits, etc. ) . Information may be passed on to other components of the device 1405.
  • the receiver 1410 may be an example of aspects of the transceiver 1620 or 1720 as described with reference to FIGs. 16 and 17.
  • the receiver 1410 may utilize a single antenna or a set of antennas.
  • the communications manager 1415 may be an example of aspects of the communications manager 1315 as described herein.
  • the communications manager 1415 may include a bit identification manager 1420, an outer constellation manager 1425, an inner constellation manager 1430, and a bit transmission manager 1435.
  • the communications manager 1415 may be an example of aspects of the communications manager 1610 or 1710 as described herein.
  • the bit identification manager 1420 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
  • the outer constellation manager 1425 may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation.
  • the inner constellation manager 1430 may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the bit transmission manager 1435 may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the bit transmission manager 1435 may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the outer constellation manager 1425 may identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation.
  • the inner constellation manager 1430 may identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • Transmitter 1440 may transmit signals generated by other components of the device 1405.
  • the transmitter 1440 may be collocated with a receiver 1410 in a transceiver module.
  • the transmitter 1440 may be an example of aspects of the transceiver 1620 or 1720 as described with reference to FIGs. 16 and 17.
  • the transmitter 1440 may utilize a single antenna or a set of antennas.
  • FIG. 15 shows a block diagram 1500 of a communications manager 1505 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the communications manager 1505 may be an example of aspects of a communications manager 1315, a communications manager 1415, or a communications manager 1610 described herein.
  • the communications manager 1505 may include a bit identification manager 1510, an outer constellation manager 1515, an inner constellation manager 1520, a bit transmission manager 1525, an I/Q mapping manager 1530, layer constellation manager 1535, shift constellation manager 1540, rotation constellation manager 1545. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the bit identification manager 1510 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
  • the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  • the outer constellation manager 1515 may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. In some examples, the outer constellation manager 1515 may identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation. In some cases, the outer constellation includes a set of constellation points, and the inner constellation is the same for each constellation point of the outer constellation. In some cases, the outer constellation includes a set of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  • the inner constellation manager 1520 may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation. In some examples, the inner constellation manager 1520 may identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • the bit transmission manager 1525 may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the bit transmission manager 1525 may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the multi-layer modulation constellation includes a QAM constellation, and where the inner constellation includes a different QAM pattern than the outer constellation.
  • one or more of the inner constellation or the outer constellation includes a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  • one or more of the inner constellation or the outer constellation includes a square-shaped QAM8 constellation with a hollow center.
  • one or more of the inner constellation or the outer constellation includes a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  • the I/Q mapping manager 1530 may map the inner constellation over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation. In some examples, the I/Q mapping manager 1530 may select an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based on the second constellation point. In some examples, the I/Q mapping manager 1530 may modulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
  • the I/Q mapping manager 1530 may determine that the inner constellation was mapped over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation. In some examples, the I/Q mapping manager 1530 may identify an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based on the second constellation point. In some examples, the I/Q mapping manager 1530 may demodulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
  • the layer constellation manager 1535 may map the first constellation point and the second constellation point to a layered constellation point. In some examples, the layer constellation manager 1535 may scale the first constellation point of the outer constellation. In some examples, the layer constellation manager 1535 may sum the scaled first constellation point and the second constellation point. In some examples, the layer constellation manager 1535 may scale the first constellation point to maintain a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  • the shift constellation manager 1540 may shift the layered constellation point based on an offset, where the offset is based on a result of performing a minimum function on the layered constellation point. In some examples, the shift constellation manager 1540 may shift the rotated layered constellation point based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point. The rotation constellation manager 1545 may rotate the shifted layered constellation point based on a modulo function, where the modulo function is based on a Hamming distance and a result of performing a maximum function on the layered constellation point or on the shifted layered constellation point.
  • the layer constellation manager 1535 may determine that the first constellation point and the second constellation point are mapped to a layered constellation point. In some examples, the layer constellation manager 1535 may determine the first constellation point of the outer constellation is scaled by a scaling factor and that the scaled first constellation point is summed with the second constellation point.
  • the shift constellation manager 1540 may determine the layered constellation point is shifted based on an offset, where the offset is based on a result of performing a minimum function on the layered constellation point. In some examples, the shift constellation manager 1540 may determine the rotated layered constellation point is shifted based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point. In some examples, the rotation constellation manager 1545 may determine the shifted layered constellation point is rotated based on a modulo function, where the modulo function is based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  • FIG. 16 shows a diagram of a system 1600 including a device 1605 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the device 1605 may be an example of or include the components of device 1305, device 1405, a transmitting device, and/or a receiving device, which may be example of a UE 115 as described herein.
  • the device 1605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1610, a transceiver 1620, an antenna 1625, memory 1630, a processor 1640, and an I/O controller 1650. These components may be in electronic communication via one or more buses (e.g., bus 1655) .
  • buses e.g., bus 1655
  • the communications manager 1610 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the communications manager 1610 may also receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • Transceiver 1620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1625. However, in some cases the device may have more than one antenna 1625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1630 may include RAM, ROM, or a combination thereof.
  • the memory 1630 may store computer-readable code 1635 including instructions that, when executed by a processor (e.g., the processor 1640) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1640
  • the memory 1630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1640 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1640.
  • the processor 1640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1630) to cause the device 1605 to perform various functions (e.g., functions or tasks supporting layer modulation of coded and unencoded bits) .
  • the I/O controller 1650 may manage input and output signals for the device 1605.
  • the I/O controller 1650 may also manage peripherals not integrated into the device 1605.
  • the I/O controller 1650 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1650 may utilize an operating system such as or another known operating system.
  • the I/O controller 1650 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1650 may be implemented as part of a processor.
  • a user may interact with the device 1605 via the I/O controller 1650 or via hardware components controlled by the I/O controller 1650.
  • the code 1635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1635 may not be directly executable by the processor 1640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 17 shows a diagram of a system 1700 including a device 1705 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the device 1705 may be an example of or include the components of device 1305, device 1405, a transmitting device, and/or a receiving device, which may be examples of a base station 105 as described herein.
  • the device 1705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1710, a network communications manager 1715, a transceiver 1720, an antenna 1725, memory 1730, a processor 1740, and an inter-station communications manager 1745. These components may be in electronic communication via one or more buses (e.g., bus 1755) .
  • buses e.g., bus 1755
  • the communications manager 1710 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the communications manager 1710 may also receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • Network communications manager 1715 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1715 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • Transceiver 1720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1725. However, in some cases the device may have more than one antenna 1725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1730 may include RAM, ROM, or a combination thereof.
  • the memory 1730 may store computer-readable code 1735 including instructions that, when executed by a processor (e.g., the processor 1740) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1740
  • the memory 1730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1740.
  • the processor 1740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1730) to cause the device 1705 to perform various functions (e.g., functions or tasks supporting layer modulation of coded and unencoded bits) .
  • Inter-station communications manager 1745 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1745 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1745 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1735 may not be directly executable by the processor 1740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a transmitting device, which may be an example of a UE 115 or base station 105, or its components, as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 13 through 17.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally, or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a bit identification manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a transmitting device, which may be an example of a UE 115 or base station 105, or its components, as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 13 through 17.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a bit identification manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the inner constellation over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by an I/Q mapping manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a transmitting device, which may be an example of a UE 115 or base station 105, or its components, as described herein.
  • the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 13 through 17.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a bit identification manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may select an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based on the second constellation point.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an I/Q mapping manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may modulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
  • the operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by an I/Q mapping manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  • the operations of 2030 may be performed according to the methods described herein. In some examples, aspects of the operations of 2030 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the operations of method 2100 may be implemented by a receiving device, which may be an example of a UE 115 or base station 105, or its components, as described herein.
  • the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 13 through 17.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
  • the operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation.
  • the operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  • the operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
  • FIG. 22 shows a flowchart illustrating a method 2200 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
  • the operations of method 2200 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 13 through 17.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may map the first constellation point and the second constellation point to a layered constellation point.
  • the operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by a layer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may scale the first constellation point of the outer constellation.
  • the operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by a layer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may sum the scaled first constellation point and the second constellation point.
  • the operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a layer constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may shift the layered constellation point based on an offset, where the offset is based on a result of performing a minimum function on the layered constellation point.
  • the operations of 2220 may be performed according to the methods described herein. In some examples, aspects of the operations of 2220 may be performed by a shift constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may rotate the shifted layered constellation point based on a modulo function, where the modulo function is based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  • the operations of 2225 may be performed according to the methods described herein. In some examples, aspects of the operations of 2225 may be performed by a rotation constellation manager as described with reference to FIGs. 13 through 17.
  • the UE or base station may shift the rotated layered constellation point based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  • the operations of 2230 may be performed according to the methods described herein. In some examples, aspects of the operations of 2230 may be performed by a shift constellation manager as described with reference to FIGs. 13 through 17.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A transmitting device may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation. The transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. The transmitting device may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation. The transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.

Description

LAYER MODULATION OF CODED AND UNENCODED BITS
CROSS REFERENCES
The present Application for Patent claims benefit of International Patent No. PCT/CN2019/098269 to Li et al., entitled “LAYER MODULATION OF CODED AND UNENCODED BITS” , filed July 30, 2019, assigned to the assignee hereof, and expressly incorporated herein.
BACKGROUND
The following relates generally to wireless communications, and more specifically to layer modulation of coded and unencoded bits.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support layer modulation of coded and unencoded bits. Generally, the described techniques provide a construction approach for a multi-layer modulation constellation formed using any size-combination of unencoded and encoded bits. Broadly, the described techniques provide for mapping encoded bits to an inner constellation, mapping unencoded bits to an outer constellation, and then mapping the inner constellation to a  constellation point within the outer constellation. For example, a transmitting device (which may be an example of a user equipment (UE) and/or a base station) may identify a set of unencoded bits and a set of encoded bits for transmission. The transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bids to a second constellation point of an inner constellation. In some aspects, the inner constellation may correspond to the first constellation point of the outer constellation. That is, the inner constellation may be mapped to the first constellation point of the outer constellation. This may create a multi-layer modulation constellation, which can be adjusted in size depending on the number of unencoded bits and/or encoded bits. The transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
A receiving device (e.g., which may be an example of a UE and/or a base station) may receive the signal carrying the set of unencoded bits and the set of encoded bits. The receiving device may identify the set of unencoded bits based on the first constellation point of the outer constellation and identify the set of encoded bits based on the second constellation point of the inner constellation.
A method of wireless communication at a transmitting device is described. The method may include identifying a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, mapping the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, mapping the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmitting the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
An apparatus for wireless communication at a transmitting device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of  encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
Another apparatus for wireless communication at a transmitting device is described. The apparatus may include means for identifying a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, mapping the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, mapping the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmitting the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
A non-transitory computer-readable medium storing code for wireless communication at a transmitting device is described. The code may include instructions executable by a processor to identify a set of un-encoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of un-encoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, mapping the set of encoded bits to the second constellation point of the inner constellation may include operations, features, means, or instructions for mapping the inner constellation over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point may  include operations, features, means, or instructions for selecting an in-phase value and a quadrature value corresponding to the set of un-encoded bits and the set of encoded bits based on the second constellation point, and modulating the set of un-encoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the outer constellation includes a set of constellation points, and the inner constellation may be the same for each constellation point of the outer constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multi-layer modulation constellation includes a quadrature amplitude modulation (QAM) constellation, and where the inner constellation includes a different QAM pattern than the outer constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, one or more of the inner constellation or the outer constellation includes a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, one or more of the inner constellation or the outer constellation includes a square-shaped QAM8 constellation with a hollow center.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, one or more of the inner constellation or the outer constellation includes a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for mapping the first constellation point and the second constellation point to a layered constellation point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, mapping the first constellation point and the second constellation point to the layered constellation point may include operations, features, means,  or instructions for scaling the first constellation point of the outer constellation, and summing the scaled first constellation point and the second constellation point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for shifting the layered constellation point based on an offset, where the offset may be based on a result of performing a minimum function on the layered constellation point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for rotating the shifted layered constellation point based on a modulo function, where the modulo function may be based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for shifting the rotated layered constellation point based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
A method of wireless communication at a receiving device is described. The method may include receiving a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identifying the set of un-encoded bits based on the first constellation point  of the outer constellation of the multi-layer modulation constellation, and identifying the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
An apparatus for wireless communication at a receiving device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
Another apparatus for wireless communication at a receiving device is described. The apparatus may include means for receiving a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identifying the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identifying the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
A non-transitory computer-readable medium storing code for wireless communication at a receiving device is described. The code may include instructions executable by a processor to receive a signal indicating a set of un-encoded bits and a set of encoded bits, the set of un-encoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation  constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of un-encoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the set of encoded bits based on the second constellation point of the inner constellation may include operations, features, means, or instructions for determining that the inner constellation was mapped over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the signal indicating the set of un-encoded bits and the set of encoded bits according to the first constellation point and the second constellation point may include operations, features, means, or instructions for identifying an in-phase value and a quadrature value corresponding to the set of un-encoded bits and the set of encoded bits based on the second constellation point, and demodulating the set of un-encoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the outer constellation includes a set of constellation points, and the inner constellation may be the same for each constellation point of the outer constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multi-layer modulation constellation includes a QAM constellation, and where the inner constellation includes a different QAM pattern than the outer constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, one or more of the inner constellation or the outer constellation includes a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, one or more of the inner constellation or the outer constellation includes a square-shaped QAM8 constellation with a hollow center.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, one or more of the inner constellation or the outer constellation includes a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first constellation point and the second constellation point may be mapped to a layered constellation point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining that the first constellation point and the second constellation point may be mapped to the layered constellation point may include operations, features, means, or instructions for determining the first constellation point of the outer constellation may be scaled by a scaling factor and that the scaled first constellation point may be summed with the second constellation point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the layered constellation point may be shifted based on an offset, where the offset may be based on a result of performing a minimum function on the layered constellation point.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the shifted layered constellation point may be rotated based on a modulo  function, where the modulo function may be based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the rotated layered constellation point may be shifted based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIGs. 2A and 2B illustrate examples of a transmit/receive chain configuration that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a constellation construction configuration that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIGs. 4A through 4N illustrate examples of constellation configurations that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIG. 5 through 12 illustrate an example of constellation configurations that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIGs. 13 and 14 show block diagrams of devices that support layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIG. 15 shows a block diagram of a communications manager that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIG. 16 shows a diagram of a system including a user equipment (UE) that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIG. 17 shows a diagram of a system including a base station that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
FIGs. 18 through 22 show flowcharts illustrating methods that support layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Wireless communication systems typically use various modulation techniques in order to exchange information (e.g., bits) over a wireless medium between wireless devices. One example of such modulation techniques includes quadrature amplitude modulation (QAM) , which is a modulation technique that encodes several bits per transmission step in the amplitude of the waveform and, in addition, in a phase shift as compared to a reference signal. That is, the bits are encoded in two dimensions (e.g., amplitude and phase shift) . However, some wireless communication systems limit the number of bits that can be modulated using QAM modulation, which may limit or reduce system throughput.
Aspects of the disclosure are initially described in the context of a wireless communications system. Generally, the described techniques provide a multi-layer modulation constellation based on any combination of unencoded bits and encoded bits. Broadly, the described techniques provide for mapping encoded bits to an inner constellation, mapping unencoded bits to an outer constellation, and then mapping the inner constellation to a constellation point within the outer constellation. For example, transmitting device (which may be an example of a user equipment (UE) and/or a base station) may identify a set of unencoded bits and a set of encoded bits for transmission. The transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bids to a second constellation point of an inner constellation. In some aspects, the inner constellation may correspond to the first constellation point of the outer constellation. That is, the inner constellation may be mapped to the first constellation point of  the outer constellation. This may create a multi-layer modulation constellation, which can be adjusted in size depending on the number of unencoded bits and/or encoded bits. The transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
A receiving device (e.g., which may be an example of a UE and/or a base station) may receive the signal carrying the set of unencoded bits and the set of encoded bits. The receiving device may identify the set of unencoded bits based on the first constellation point of the outer constellation and identify the set of encoded bits based on the second constellation point of the inner constellation.
Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to layer modulation of coded and unencoded bits.
FIG. 1 illustrates an example of a wireless communications system 100 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a  wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or another interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access  node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and  designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more  directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications  at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe  or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include  base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum  utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
A transmitting device (which may be an example of a UE 115 and/or a base station 105) may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation. The transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. The transmitting device may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation. The transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
A receiving device (which may be an example of a UE 115 and/or a base station 105) may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation. The receiving device may identify the set of unencoded bits based at least in part on the first constellation point of the outer constellation of the multi-layer modulation constellation. The receiving device may identify the set of encoded bits based at least in part on the second constellation point of the inner constellation of the multi-layer modulation constellation.
FIGs. 2A and 2B illustrate an example of a transmit/receive chain configuration 200 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, transmit/receive chain configuration 200 may implement aspects of wireless communications system 100. In particular, FIG. 2A illustrates an example of a transmit/receive chain configuration 200-a including a transmit chain 205 and FIG. 2B illustrates an example of a transmit/receive chain configuration 200-b including a receive chain 225. The transmit chain 205 and/or receive chain 225 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
Wireless communication systems typically use various modulation techniques in order to exchange information (e.g., bits) over a wireless medium between wireless devices. One example of such modulation techniques includes QAM, which is a modulation technique that encodes several bits per transmission step in the amplitude of the waveform and, in addition, in a phase shift as compared to a reference signal. That is, the bits are encoded in two dimensions (e.g., amplitude and phase shift) . However, some wireless communication systems limit the number of bits that can be modulated using QAM modulation, which may limit or reduce system throughput.
Some wireless communication systems may utilize an equal error protection (UEP) modulation techniques where encoded bits (also referred to as coded bits) and non-encoded or unencoded bits (also referred to as uncoded bits) are modulated together for transmission. For example, and referring to transmit chain 205 of FIG. 2A, a serial string of bits is fed into a serial-to-parallel (S/P) converter 210 where the bits are divided into a set of unencoded bits (e.g., u0, u1, u2, etc. ) and a set of bits to be fed to forward error correction (FEC) encoder 215 for encoding. Accordingly, the output of FEC encoder 215 includes a set of encoded bits (e.g., c0, c1, c2, etc. ) . The set of encoded bits and the set of unencoded bits are then fed to layered modulation 220 for modulation prior to transmission.
In another example and referring to receive chain 225 of FIG. 2B, a signal carrying the modulated sets of encoded bits and unencoded bits are received at a receive chain 225, where they are split for further processing. For example, the set of encoded bits are fed to the coded bits (C/Bits) demodulation 230 where they are de-modulated and fed to the FEC decoder 235 for decoding. Meanwhile, the set of unencoded bits are fed into the uncoded bits (U/Bits) demodulation 240 where they are demodulated. The output of the FEC decoder 235 includes the set of coded bits (e.g., c0, c1, c2, etc. ) , or at least the set of previously encoded bits. The output of the uncoded bits demodulation 240 includes the set of encoded bits (e.g., u0, u1, u2, etc. ) . In some aspects, the set of encoded bits output from FEC decoder 235 may be fed to uncoded bits demodulation 240 to be used for distinguishing between the encoded bits and the unencoded bits. The output of the uncoded bits demodulation 240 is then fed to parallel-to-serial (P/S) converter 245 where the set of encoded bits and the set of an encoded bits are converted into a serial string for further processing.
It is to be understood that the transmit chain 205 and receive chain 225 are provided by way of example only, and may be modified to include additional or fewer components as is illustrated in transmit/receive chain configuration 200.
Aspects of the described techniques may include the use of a layered modulation techniques where multiple constellations (e.g., QAM constellations) are layered in a manner that provides increased flexibility in selecting an available QAM constellation size and may increase the QAM constellation size, in some examples, such that increased system throughput is achieved. The layered modulation techniques described herein may create a multi-layer modulation constellation (e.g., a multi-layer QAM constellation) that can be used for communicating information between a transmitting device (e.g., a base station and/or UE) and a receiving device (e.g., the UE and/or a base station) . That is, the term transmitting device as used herein may generally refer to a UE, a base station, or any other wireless device performing wireless transmissions over a wireless medium. Similarly, the term receiving device as used herein may generally refer to a UE, a base station, or any other wireless device receiving wireless transmissions over a wireless medium.
For example, and again referring to transmit chain 205, a transmitting device implementing transmit chain 205 may identify the set of unencoded bits and the set of encoded bits for transmission, e.g., to be transmitted using a multi-layer modulation constellation. For example, the set of encoded bits and the set of unencoded bits may be output from S/P converter 210. More particularly, the set of unencoded bits may be output from S/P converter 210 and the set of encoded bits may be output from FEC encoder 215. The set of unencoded bits and the set of encoded bits may be fed to layered modulation 220 for modulation using a multi-layer modulation constellation in accordance with aspects of the described techniques.
For example, the transmitting device (e.g., layered modulation 220) may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bits to a second constellation point of an inner constellation. In some aspects, the inner constellation may correspond to (e.g., be mapped to) the first constellation point of the outer constellation. That is, the inner constellation may be mapped over an in-phase/quadrature (I/Q) plane such that the inner constellation is mapped to (e.g., surrounds and covers) the first constellation point of the outer constellation.
In some aspects, the size of the inner constellation, the outer constellation, and, as a result, the multi-layer modulation constellation may vary depending on the number of bits in the set of encoded bits and/or the number of bits in the set of unencoded bits. Accordingly, and for each QAM symbol, the number of encoded bits in the set of encoded bits may be represented as m, the number of unencoded bits in the set of unencoded bits may be represented as n. Each QAM symbol may be represented by u 1, u 2…u nc 1c 2…c m. The bits in the set of encoded bits (e.g., c 1, c 2…c m) are mapped as an inner constellation (x i, y i) and the bits in the set of unencoded bits (e.g., u 1, u 2…u n) are mapped as an outer constellation (x o, y o) . Next, u 1u 2…u nc 1c 2…c m are mapped as layered constellation (x l, y l) , e.g., the multi-layer modulation constellation, as x l=x o*L+x i and y l=y o*L+y i, wherein L refers to a scaling factor (e.g., scale) to keep the same Hamming (H) distance on the inner and multi-layer modulation constellations, e.g., d H { (x l, y l) } =d H { (x o, y o) } . Accordingly, the transmitting device may select an in-phase value (e.g., I) and a quadrature value (e.g., Q) that corresponds to the set of unencoded bits and the set of encoded bits based on the second constellation point, and use these values to modulate the bits in the set of unencoded bits and the set of encoded bits onto a carrier frequency. The transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point, e.g., in the modulated carrier frequency.
The receiving device may receive a signal (e.g., the modulated carrier frequency) indicating the set of unencoded bits and the set of encoded bits. The receiving device may determine or otherwise identify the set of unencoded bits based on the first constellation point of the outer constellation and determine or otherwise identify the set of encoded bits based at least in part on the second constellation point of the inner constellation. For example, the receive chain 225 of the receiving device may receive the signal and divide the signal for feeding into the coded bits demodulation 230 and the uncoded bits demodulation 240. Based on the output of the coded bits demodulation 230, FEC decoder 235, and/or uncoded bits demodulation 240, the receiving device may identify the bits in the set of encoded bits and the bits in the set of unencoded bits.
FIG. 3 illustrates an example of a constellation construction configuration 300 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, constellation construction configuration 300 may implement aspects of wireless communications system 100 and/or transmit/receive chain  configuration 200. Aspects of constellation construction configuration 300 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
As discussed above, a transmitting device may create a multi-layer modulation constellation 325 based on an inner constellation 305 and an outer constellation 315. For example, the transmitting device may identify a set of unencoded bits and a set of encoded bits for transmission using the multi-layer modulation constellation 325. The transmitting device may map the set of unencoded bits to a first constellation point 320 of outer constellation 315 and map the set of encoded bits to a second constellation point 310 of inner constellation 305. The inner constellation 305 may correspond to the first constellation point 320 of the outer constellation 315.
That is, aspects of the described techniques may place the inner constellation 305 with the center of the constellation points of the outer constellation 315 in a uniform manner. That is, theoretically and for each constellation point within the outer constellation 315, a copy of the inner constellation 305 may be placed (e.g., centered) around the constellation point of the outer constellation 315. The resultant constellation (e.g., multi-layer modulation constellation 325) is created by placing a copy of the inner constellation 305 at each constellation point of the outer constellation 315. Accordingly, the multi-layer modulation constellation 325 includes a plurality of copies 330 of the inner constellation 305 that are repeated (e.g., the same) for each constellation point of the outer constellation.
Generally, the number of bits in the set of encoded bits and the number of bits in the set of unencoded bits may determine the size of the inner constellation 305, the outer constellation 315, and the resulting multi-layer modulation constellation 325. In the example illustrated in FIG. 3, there are three bits in the set of encoded bits and four bits in the set of unencoded bits. Accordingly, the inner constellation 305 may have eight available constellation points representative of the 8 possible combinations for the three bits in the set of encoded bits. That is, the three bits in the set of encoded bits may be set to 0-7 and represented as  values  000, 001, 010, 011, 100, 101, 110, and 111, where each represented value may correspond to a unique constellation point within the inner constellation 305. Similarly, the outer constellation 315 may have 16 available constellation points representative of the 16 possible combinations for the four bits in the set of unencoded bits.  That is, the four bits in the set of unencoded bits may be set to 0-15 and represented as  values  0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111, where each represented value may correspond to a unique constellation point within the outer constellation 315.
In some aspects, the correspondence between a particular constellation point and a represented value may be provided in any order. For example and with reference to the inner constellation 305, the represented value of 000 may correspond to the upper left constellation point and continue in a left-to-right/top-to-bottom manner, may correspond to the bottom right constellation point and continue in a circular manner for each of the other constellation points (in either a clockwise circular fashion or a counterclockwise circular fashion) , may correspond to the bottom right constellation point and continue in a right-to-left/bottom-to-top manner, and the like. Other schemes may be implemented mapping the represented values to the corresponding constellation points of the inner constellation 305.
Similarly and with reference to the outer constellation 315, the represented value of 0000 may correspond to the upper left constellation point and continue in a left-to-right/top-to-bottom manner, may correspond to the bottom right constellation point and continue in a circular manner for each of the other constellation points (in either a clockwise circular fashion or a counterclockwise circular fashion) , may correspond to the bottom right constellation point and continue in a right-to-left/bottom-to-top manner, and the like. Other schemes may be implemented mapping the represented values to the corresponding constellation points of the outer constellation 315.
In this manner, a particular represented value combining the bits in the set of unencoded bits and the bits in the set of encoded bits may correspond to a particular constellation point within the multi-layer modulation constellation 325. More particularly, the second constellation point 310 of the inner constellation 305 may be selected (e.g., mapped to) based on the actual represented value in the bits of the set of encoded bits and the first constellation point 320 of the outer constellation 315 may be selected (e.g., mapped to) based on the actual represented value in the bits of the set of unencoded bits.
Accordingly, a receiving device may receive the signal (e.g., the modulated carrier frequency) indicating the set of encoded bits and the set of unencoded bits and use this information to recover the represented values for the set of encoded bits and the set of  unencoded bits. For example, the receiving device may identify the set of unencoded bits based on the first constellation point 320 of the outer constellation 315 of the multi-layer modulation constellation 325. That is, the receiving device may determine where the modulated carrier frequency (e.g., the constellation point) lies within the multi-layer modulation constellation 325. For example, the receiving device may determine or otherwise identify the I/Q values within the multi-layer modulation constellation 325. This may identify the corresponding constellation point within the multi-layer modulation constellation 325. From this, the receiving device may determine the corresponding first constellation point 320 of the outer constellation 315. From this, the receiving device may be able to determine or otherwise identify the bits (e.g., the represented value) in the set of unencoded bits.
Next, the receiving device may identify the set of encoded bits based on the second constellation point 310 of the inner constellation 305 of the multi-layer modulation constellation 325. That is, the receiving device may determine where the modulated carrier frequency (e.g., the constellation point) lies within the outer constellation 315. For example, the receiving device may determine or otherwise identify the I/Q values within the outer constellation 315. This may further identify the corresponding constellation point within the multi-layer modulation constellation 325. From this, the receiving device may determine the corresponding second constellation point 310 of the inner constellation 305. From this, the receiving device may be able to determine or otherwise identify the bits (e.g., the represented value) in the set of encoded bits.
FIGs. 4A through 4N illustrate examples of a multi-layer modulation constellation 400 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, the multi-layer modulation constellation 400 may implement aspects of wireless communications system 100, transmit/receive chain configuration 200, and/or constellation construction configuration 300. Aspects of the multi-layer modulation constellation 400 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
As discussed above, the transmitting device may create a multi-layer modulation constellation 400 based on an inner constellation and an outer constellation. For example, the transmitting device may identify a set of unencoded bits and a set of encoded bits for  transmission using the multi-layer modulation constellation 400. The transmitting device may map the set of unencoded bits to a first constellation point of an outer constellation and map the set of encoded bits to a second constellation point of the inner constellation. The inner constellation may correspond to the first constellation point of the outer constellation. Using this technique, the transmitting device may create or otherwise form the multi-layer modulation constellation 400 for transmission. Accordingly, the transmitting device may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point. The receiving device may receive the signal indicating the set of encoded bits and the set of unencoded bits and identify the set of unencoded bits based on the first constellation point of the outer constellation and identify the set of encoded bits based on the second constellation point of the inner constellation.
As is also discussed above, the number of bits in the set of encoded bits and/or the number of bits in the set of unencoded bits may be selected depended upon the number of bits in the represented value being communicated in the signal. Accordingly, the number of bits in the set of encoded bits and the set of unencoded bits may, collectively, determine the number of bits that can be communicated or otherwise indicated in the signal and, consequently, the size and/or shape of the multi-layer modulation constellation 400 used to transmit the set of encoded bits and the set of unencoded bits. For example, the multi-layer modulation constellation may be a QAM constellation that is formed based on the inner constellation and the outer constellation. Each of the inner constellation and the outer constellation may have a different shape (e.g., a QAM pattern) and/or size (e.g., QAM size) that is the same or is different. Broadly, FIGs. 4A through 4N illustrate various examples of multi-layer modulation constellation 400 that may be formed or otherwise utilized based on the varying QAM pattern and/or QAM size for the inner and outer constellations, in accordance with aspects of the described techniques.
For example, multi-layer modulation constellation 400-a of FIG. 4A illustrates two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM32 multi-layer modulation constellation 402 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits. The second example includes a QAM32 multi-layer modulation constellation 404 that is formed based on an inner constellation sized based on three bits being in the set of  encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-b of FIG. 4B illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM64 multi-layer modulation constellation 406 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits. The second example includes a QAM64 multi-layer modulation constellation 408 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-c of FIG. 4C illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM64 multi-layer modulation constellation 410 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits. The second example includes a QAM128 multi-layer modulation constellation 412 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-d of FIG. 4D illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM128 multi-layer modulation constellation 414 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits. The second example includes a QAM128 multi-layer modulation constellation 416 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-e of FIG. 4E illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM128 multi-layer modulation constellation 418 that is formed based on an inner constellation sized based on five bits being  in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits. The second example includes a QAM256 multi-layer modulation constellation 420 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on six bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-f of FIG. 4F illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM256 multi-layer modulation constellation 422 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits. The second example includes a QAM256 multi-layer modulation constellation 424 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-g of FIG. 4G illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM256 multi-layer modulation constellation 426 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits. The second example includes a QAM256 multi-layer modulation constellation 428 that is formed based on an inner constellation sized based on six bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-h of FIG. 4H illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM512 multi-layer modulation constellation 430 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on seven bits being in the set of unencoded bits. The second example includes a QAM512 multi-layer modulation constellation 432 that is formed based on an inner constellation sized based on three bits  being in the set of encoded bits and the outer constellation sized based on six bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-i of FIG. 4I illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM512 multi-layer modulation constellation 434 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits. The second example includes a QAM512 multi-layer modulation constellation 436 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-j of FIG. 4J illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM512 multi-layer modulation constellation 438 that is formed based on an inner constellation sized based on six bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits. The second example includes a QAM512 multi-layer modulation constellation 440 that is formed based on an inner constellation sized based on seven bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-k of FIG. 4K illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM1024 multi-layer modulation constellation 442 that is formed based on an inner constellation sized based on two bits being in the set of encoded bits and the outer constellation sized based on eight bits being in the set of unencoded bits. The second example includes a QAM1024 multi-layer modulation constellation 444 that is formed based on an inner constellation sized based on three bits being in the set of encoded bits and the outer constellation sized based on seven bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-l of FIG. 4L illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation  constellation 400. The first example includes a QAM1024 multi-layer modulation constellation 446 that is formed based on an inner constellation sized based on four bits being in the set of encoded bits and the outer constellation sized based on six bits being in the set of unencoded bits. The second example includes a QAM1024 multi-layer modulation constellation 448 that is formed based on an inner constellation sized based on five bits being in the set of encoded bits and the outer constellation sized based on five bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-m of FIG. 4M illustrates another two examples of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. The first example includes a QAM1024 multi-layer modulation constellation 450 that is formed based on an inner constellation sized based on six bits being in the set of encoded bits and the outer constellation sized based on four bits being in the set of unencoded bits. The second example includes a QAM1024 multi-layer modulation constellation 452 that is formed based on an inner constellation sized based on seven bits being in the set of encoded bits and the outer constellation sized based on three bits being in the set of unencoded bits.
Multi-layer modulation constellation 400-n of FIG. 4N illustrates a final example of the various QAM pattern and/or QAM size of the multi-layer modulation constellation 400. This example includes a QAM1024 multi-layer modulation constellation 454 that is formed based on an inner constellation sized based on eight bits being in the set of encoded bits and the outer constellation sized based on two bits being in the set of unencoded bits.
Accordingly, aspects of the described techniques may enable the use of a multi-layer modulation constellation 400 having a size (e.g., QAM size) and/or pattern (e.g., QAM pattern) that is based, at least in some aspects, on the number of bits in the set of encoded bits and/or the number of bits in the set of unencoded bits.
FIG. 5 illustrates an example of an outer modulation mapping 500 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. This outer modulation mapping 500 may be applicable to schemes using three unencoded bits. In some examples, the outer modulation mapping 500 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, and/or constellation construction configuration 300. Aspects of the outer modulation mapping  500 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
In some examples, outer modulation mapping 500 may be based on a mapping between unencoded bits table 505 and an outer constellation 510. In some cases, outer constellation 510 may be associated with QAM symbols. For a given QAM symbol, the number of unencoded bits may be 3, while the number of encoded bits may be a value m. For example, each symbol may be represented by the variables c1, c2, …cm for the set of encoded bits, and u1, u2, and u3 for the set of unencoded bits (e.g. unencoded bits u1, u2, and u3 from unencoded bits table 505) . In some cases, encoded bits c1 c2 …cm may map as an inner constellation (x i, y i) , while unencoded bits u1 u2 u3 may map as an outer constellation (x o, y o) .
In some cases, a transmitting device may create outer constellation 510 based on the outer modulation mapping 500 between the set of unencoded bits u1, u2, u3 from unencoded bits table 505 and x-y coordinates of outer constellation 510. For example, the transmitting device may identify the set of unencoded bits for transmission and use the outer modulation mapping 500 to map the unencoded bits to a constellation point on outer constellation 510. As shown, the transmitting device may map the set of unencoded bits from unencoded bits table 505 to a first constellation point (e.g., x-y coordinate) of outer constellation 510. As described herein, an inner constellation may correspond to the first constellation point of the outer constellation 510. In some cases, the transmitting device may create or otherwise form a multi-layer modulation constellation for transmission based on the outer modulation mapping 500. Accordingly, the transmitting device may transmit the set of unencoded bits from unencoded bits table 505 according to the first constellation point of outer constellation 510 and a set of encoded bits according to a second constellation point of an inner constellation. In some cases, a receiving device may receive the signal indicating the set of encoded bits and the set of unencoded bits and identify the set of unencoded bits based on the first constellation point of the outer constellation 510 and identify the set of encoded bits based on the second constellation point of the inner constellation.
In the illustrated example, unencoded bit values u1=0, u2=0, and u3=0 from unencoded bits table 505 may map to x-y coordinate (0, 3) on outer constellation 510.  Similarly, unencoded bit values u1=0, u2=0, and u3=1 from unencoded bits table 505 may map to x-y coordinate (1, 2) on outer constellation 510, and so forth.
FIG. 6 illustrates an example of a layered constellation 600 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, layered constellation 600 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, and/or constellation construction configuration 300. Aspects of the layered constellation 600 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
In some examples, the transmitting device may map the first constellation point of outer constellation 510 and the second constellation point of the inner constellation to a layered constellation point (e.g., x-y coordinate (x l, y l) ) of layered constellation 600. In some cases, mapping the first constellation point and the second constellation point to the layered constellation point of layered constellation 600 includes scaling the first constellation point of the outer constellation 510 and summing the scaled first constellation point and the second constellation point. In some cases, scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
In some examples, constructing a multi-layer modulation constellation may include mapping unencoded bits u1, u2, and u3 and encoded bits c1, c2, to cm as layered constellation point (x l, y l) based on the following equations:
x l = x o*L + x i   (eq. 1)
y l = y o*L + y i   (eq. 2)
where x l is the x-coordinate of the layered constellation point of layered constellation 600, y l is the y-coordinate of the layered constellation point of layered constellation 600, x o is the x-coordinate of the outer constellation point of outer constellation 510, y o is the y-coordinate of the outer constellation point of outer constellation 510, and L is a scale value that maintains the Hamming distance (dH) of the inner constellation or outer constellation 510 in the layered constellation 600 (i.e., dH { (x l, y l) } = dH { (x o, y o) } ) . In some cases, the set of  encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
In some cases, constructing a multi-layer modulation constellation may include shifting the layered constellation point (x l, y l) based at least in part on an offset. In some cases, the offset may be based at least in part on a result of performing a minimum (MIN) function on the layered constellation point. For example, constructing a multi-layer modulation constellation may include shifting the l layered constellation point (x l, y l) by offset = {min {x l} , min {y l} } , where after this shifting, min {x l} =0, and min {y l} =0.
In some examples, constructing the multi-layer modulation constellation may include rotating the shifted layered constellation point based at least in part on a modulo function. In some cases, the modulo function may be based at least in part on a result of performing a maximum (MAX) function on the layered constellation point (x l, y l) and a Hamming distance (dH) . In some example, layered constellation point (x l, y l) may be rotated where the rotation is based on {mod (x l + y l, D) , mod (-x l + y l, D) } , where D = max {x l} + dH.
In some examples, constructing the multi-layer modulation constellation may include shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point (e.g., after the shifting and the rotating above) and a result of performing a mean function on the layered constellation point. For example, constructing the multi-layer modulation constellation may include shifting the constellation to be symmetric {0, 0} , based on x l = x l -mean (x l) , and y l = y l -mean (y l) .
FIG. 7 illustrates an example of a multi-layer modulation constellation 700 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, multi-layer modulation constellation 700 may implement aspects of wireless communication system 100. In some examples, multi-layer modulation constellation 700 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600. Aspects of the multi-layer modulation constellation 700 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
In some cases, multi-layer modulation constellation 700 may be a QAM constellation that is formed based on an inner constellation and outer constellation (e.g., outer constellation 510) . Each of the inner constellation and the outer constellation may have a shape (e.g., a QAM pattern) that is the same or is different and/or size (e.g., QAM size) that is the same or is different. FIG. 7 illustrates various examples of multi-layer modulation constellations that may be formed or otherwise utilized based on the varying QAM pattern and/or QAM size for the inner and outer constellations, in accordance with aspects of the described techniques.
Multi-layer modulation constellation 700 of FIG. 7 illustrates two examples of the various QAM pattern and/or QAM size. The first example includes a QAM32 multi-layer modulation constellation 705 that is formed based on an inner constellation sized that is based on there being 2 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, QAM32 multi-layer modulation constellation 705 may be formed based on the process of forming QAM32 multi-layer modulation constellation 402 of FIG. 4A. As shown, QAM32 multi-layer modulation constellation 705 (and QAM32 multi-layer modulation constellation 402) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM32 multi-layer modulation constellation 705 (and QAM32 multi-layer modulation constellation 402) may result in power inefficiencies compared to a double square QAM (DSQ32) multi-layer modulation constellation 710.
The second example includes the DSQ32 multi-layer modulation constellation 710 that eliminates the hole shown in QAM32 multi-layer modulation constellation 705 based on shifting the layered constellation point (x l, y l) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point. The DSQ32 multi-layer modulation constellation 710 may be formed based on an inner constellation sized that is based on there being 2 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, DSQ32 multi-layer modulation constellation 710 may improve power efficiency over QAM32 multi-layer modulation constellation 705. In some cases, DSQ32 multi-layer modulation constellation 710 may have a 1dB gain over QAM32 multi-layer modulation constellation 705.
FIG. 8 illustrates an example of a multi-layer modulation constellation 800 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, multi-layer modulation constellation 800 may implement aspects of wireless communication system 100. In some examples, multi-layer modulation constellation 800 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600. Aspects of the multi-layer modulation constellation 800 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
Multi-layer modulation constellation 800 of FIG. 8 illustrates two examples of the various QAM pattern and/or QAM size. The first example includes a QAM64 multi-layer modulation constellation 805 that is formed based on an inner constellation sized that is based on there being 3 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, QAM64 multi-layer modulation constellation 805 may be formed based on the process of forming QAM64 multi-layer modulation constellation 408 of FIG. 4B. As shown, QAM64 multi-layer modulation constellation 805 (and QAM64 multi-layer modulation constellation 408) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM64 multi-layer modulation constellation 805 (and QAM64 multi-layer modulation constellation 408) may result in power inefficiencies.
The second example includes a DSQ64 multi-layer modulation constellation 810 that eliminates the hole shown in QAM64 multi-layer modulation constellation 805 based on shifting the layered constellation point (x l, y l) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point. The DSQ64 multi-layer modulation constellation 810 may be formed based on an inner constellation sized that is based on there being 3 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, DSQ64 multi-layer modulation constellation 810 may improve power efficiency over QAM64 multi-layer modulation constellation 805. In some cases, DSQ64  multi-layer modulation constellation 810 may have a 1dB gain over QAM64 multi-layer modulation constellation 805.
FIG. 9 illustrates an example of a multi-layer modulation constellation 900 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, multi-layer modulation constellation 900 may implement aspects of wireless communication system 100. In some examples, multi-layer modulation constellation 900 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600. Aspects of the multi-layer modulation constellation 900 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
Multi-layer modulation constellation 900 of FIG. 9 illustrates two examples of the various QAM pattern and/or QAM size. The first example includes a QAM128 multi-layer modulation constellation 905 that is formed based on an inner constellation sized that is based on there being 4 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, QAM128 multi-layer modulation constellation 905 may be formed based on the process of forming QAM128 multi-layer modulation constellation 416 of FIG. 4D. As shown, QAM128 multi-layer modulation constellation 905 (and QAM128 multi-layer modulation constellation 416) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM128 multi-layer modulation constellation 905 (and QAM128 multi-layer modulation constellation 416) may result in power inefficiencies.
The second example includes a DSQ128 multi-layer modulation constellation 910 that eliminates the hole shown in QAM128 multi-layer modulation constellation 905 based on shifting the layered constellation point (x l, y l) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point. The DSQ128 multi-layer modulation constellation 910 may be formed based on an inner constellation sized that is based on there being 4 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded  bits. In some cases, DSQ128 multi-layer modulation constellation 910 may improve power efficiency over QAM128 multi-layer modulation constellation 905. In some cases, DSQ128 multi-layer modulation constellation 910 may have a 1dB gain over QAM128 multi-layer modulation constellation 905.
FIG. 10 illustrates an example of a multi-layer modulation constellation 1000 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, multi-layer modulation constellation 1000 may implement aspects of wireless communication system 100. In some examples, multi-layer modulation constellation 1000 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600. Aspects of the multi-layer modulation constellation 1000 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
Multi-layer modulation constellation 1000 of FIG. 10 illustrates two examples of the various QAM pattern and/or QAM size. The first example includes a QAM256 multi-layer modulation constellation 1005 that is formed based on an inner constellation sized that is based on there being 5 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, QAM256 multi-layer modulation constellation 1005 may be formed based on the process of forming QAM256 multi-layer modulation constellation 426 of FIG. 4G. As shown, QAM256 multi-layer modulation constellation 1005 (and QAM256 multi-layer modulation constellation 426) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM256 multi-layer modulation constellation 1005 (and QAM256 multi-layer modulation constellation 426) may result in power inefficiencies.
The second example includes a DSQ256 multi-layer modulation constellation 1010 that eliminates the hole shown in QAM256 multi-layer modulation constellation 1005 based on shifting the layered constellation point (x l, y l) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point. The DSQ256 multi-layer modulation constellation 1010 may be  formed based on an inner constellation sized that is based on there being 5 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, DSQ256 multi-layer modulation constellation 1010 may improve power efficiency over QAM256 multi-layer modulation constellation 1005. In some cases, DSQ256 multi-layer modulation constellation 1010 may have a 1dB gain over QAM256 multi-layer modulation constellation 1005.
FIG. 11 illustrates an example of a multi-layer modulation constellation 1100 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, multi-layer modulation constellation 1100 may implement aspects of wireless communication system 100. In some examples, multi-layer modulation constellation 1100 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600. Aspects of the multi-layer modulation constellation 1100 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
Multi-layer modulation constellation 1100 of FIG. 11 illustrates two examples of the various QAM pattern and/or QAM size. The first example includes a QAM512 multi-layer modulation constellation 1105 that is formed based on an inner constellation sized that is based on there being 6 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, QAM512 multi-layer modulation constellation 1105 may be formed based on the process of forming QAM512 multi-layer modulation constellation 438 of FIG. 4J. As shown, QAM512 multi-layer modulation constellation 1105 (and QAM512 multi-layer modulation constellation 438) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM512 multi-layer modulation constellation 1105 (and QAM512 multi-layer modulation constellation 438) may result in power inefficiencies.
The second example includes a DSQ512 multi-layer modulation constellation 1110 that eliminates the hole shown in QAM512 multi-layer modulation constellation 1105 based on shifting the layered constellation point (x l, y l) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and  shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point. The DSQ512 multi-layer modulation constellation 1110 may be formed based on an inner constellation sized that is based on there being 6 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, DSQ512 multi-layer modulation constellation 1110 may improve power efficiency over QAM512 multi-layer modulation constellation 1105. In some cases, DSQ512 multi-layer modulation constellation 1110 may have a 1dB gain over QAM512 multi-layer modulation constellation 1105.
FIG. 12 illustrates an example of a multi-layer modulation constellation 1200 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. In some examples, multi-layer modulation constellation 1200 may implement aspects of wireless communication system 100. In some examples, multi-layer modulation constellation 1200 may be implemented by aspects of wireless communications system 100, transmit/receive chain configuration 200, constellation construction configuration 300, outer modulation mapping 500, and/or layered constellation 600. Aspects of the multi-layer modulation constellation 1200 may be implemented by a transmitting device and/or a receiving device, which may be examples of a UE and/or a base station as described herein.
Multi-layer modulation constellation 1200 of FIG. 12 illustrates two examples of the various QAM pattern and/or QAM size. The first example includes a QAM1024 multi-layer modulation constellation 1205 that is formed based on an inner constellation sized that is based on there being 7 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, QAM1024 multi-layer modulation constellation 1205 may be formed based on the process of forming QAM1024 multi-layer modulation constellation 452 of FIG. 4M. As shown, QAM1024 multi-layer modulation constellation 1205 (and QAM1024 multi-layer modulation constellation 452) includes a hole in the center where constellation points do not occur. In some cases, the hole in QAM1024 multi-layer modulation constellation 1205 (and QAM1024 multi-layer modulation constellation 452) may result in power inefficiencies.
The second example includes a DSQ1024 multi-layer modulation constellation 1210 that eliminates the hole shown in QAM1024 multi-layer modulation constellation 1205  based on shifting the layered constellation point (x l, y l) based at least in part on an offset, rotating the shifted layered constellation point based at least in part on a modulo function, and shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point. The DSQ1024 multi-layer modulation constellation 1210 may be formed based on an inner constellation sized that is based on there being 7 bits in the set of encoded bits and an outer constellation sized that is based on there being 3 bits in the set of unencoded bits. In some cases, DSQ1024 multi-layer modulation constellation 1210 may improve power efficiency over QAM1024 multi-layer modulation constellation 1205. In some cases, DSQ1024 multi-layer modulation constellation 1210 may have a 1dB gain over QAM1024 multi-layer modulation constellation 1205.
FIG. 13 shows a block diagram 1300 of a device 1305 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The device 1305 may be an example of aspects of a transmitting device and/or a receiving device, which may be examples of a UE 115 or base station 105 as described herein. The device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1320. The device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to layer modulation of coded and unencoded bits, etc. ) . Information may be passed on to other components of the device 1305. The receiver 1310 may be an example of aspects of the transceiver1620 or 1720 as described with reference to FIGs. 16 and 17. The receiver 1310 may utilize a single antenna or a set of antennas.
When device 1305 is a transmitting device, the communications manager 1315 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
When device 1305 is a receiving device, the communications manager 1315 may also receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation. The communications manager 1315 may be an example of aspects of the  communications manager  1610 or 1710 as described herein.
The communications manager 1315, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1315, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1315, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1315, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
Transmitter 1320 may transmit signals generated by other components of the device 1305. In some examples, the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module. For example, the transmitter 1320 may be an example of aspects of  the transceiver1620 or 1720 as described with reference to FIGs. 16 and 17. The transmitter 1320 may utilize a single antenna or a set of antennas.
FIG. 14 shows a block diagram 1400 of a device 1405 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The device 1405 may be an example of aspects of a device 1305, a transmitting device, and/or a receiving device, which may be examples of a UE 115, or a base station 105 as described herein. The device 1405 may include a receiver 1410, a communications manager 1415, and a transmitter 1440. The device 1405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 1410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to layer modulation of coded and unencoded bits, etc. ) . Information may be passed on to other components of the device 1405. The receiver 1410 may be an example of aspects of the  transceiver  1620 or 1720 as described with reference to FIGs. 16 and 17. The receiver 1410 may utilize a single antenna or a set of antennas.
The communications manager 1415 may be an example of aspects of the communications manager 1315 as described herein. The communications manager 1415 may include a bit identification manager 1420, an outer constellation manager 1425, an inner constellation manager 1430, and a bit transmission manager 1435. The communications manager 1415 may be an example of aspects of the  communications manager  1610 or 1710 as described herein.
The bit identification manager 1420 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation.
The outer constellation manager 1425 may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation.
The inner constellation manager 1430 may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
The bit transmission manager 1435 may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
The bit transmission manager 1435 may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
The outer constellation manager 1425 may identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation.
The inner constellation manager 1430 may identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
Transmitter 1440 may transmit signals generated by other components of the device 1405. In some examples, the transmitter 1440 may be collocated with a receiver 1410 in a transceiver module. For example, the transmitter 1440 may be an example of aspects of the  transceiver  1620 or 1720 as described with reference to FIGs. 16 and 17. The transmitter 1440 may utilize a single antenna or a set of antennas.
FIG. 15 shows a block diagram 1500 of a communications manager 1505 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The communications manager 1505 may be an example of aspects of a communications manager 1315, a communications manager 1415, or a communications manager 1610 described herein. The communications manager 1505 may include a bit identification manager 1510, an outer constellation manager 1515, an inner constellation manager 1520, a bit transmission manager 1525, an I/Q mapping manager 1530, layer constellation manager 1535, shift constellation manager 1540, rotation constellation manager 1545. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The bit identification manager 1510 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation. In some cases, the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
The outer constellation manager 1515 may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. In some examples, the outer constellation manager 1515 may identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation. In some cases, the outer constellation includes a set of constellation points, and the inner constellation is the same for each constellation point of the outer constellation. In some cases, the outer constellation includes a set of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
The inner constellation manager 1520 may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation. In some examples, the inner constellation manager 1520 may identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
The bit transmission manager 1525 may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point. In some examples, the bit transmission manager 1525 may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation.
In some cases, the multi-layer modulation constellation includes a QAM constellation, and where the inner constellation includes a different QAM pattern than the outer constellation. In some cases, one or more of the inner constellation or the outer constellation includes a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation. In some cases, one or more  of the inner constellation or the outer constellation includes a square-shaped QAM8 constellation with a hollow center. In some cases, one or more of the inner constellation or the outer constellation includes a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
The I/Q mapping manager 1530 may map the inner constellation over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation. In some examples, the I/Q mapping manager 1530 may select an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based on the second constellation point. In some examples, the I/Q mapping manager 1530 may modulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
In some examples, the I/Q mapping manager 1530 may determine that the inner constellation was mapped over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation. In some examples, the I/Q mapping manager 1530 may identify an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based on the second constellation point. In some examples, the I/Q mapping manager 1530 may demodulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value.
The layer constellation manager 1535 may map the first constellation point and the second constellation point to a layered constellation point. In some examples, the layer constellation manager 1535 may scale the first constellation point of the outer constellation. In some examples, the layer constellation manager 1535 may sum the scaled first constellation point and the second constellation point. In some examples, the layer constellation manager 1535 may scale the first constellation point to maintain a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
In some cases, the shift constellation manager 1540 may shift the layered constellation point based on an offset, where the offset is based on a result of performing a minimum function on the layered constellation point. In some examples, the shift constellation manager 1540 may shift the rotated layered constellation point based on a  difference of the layered constellation point and a result of performing a mean function of the layered constellation point. The rotation constellation manager 1545 may rotate the shifted layered constellation point based on a modulo function, where the modulo function is based on a Hamming distance and a result of performing a maximum function on the layered constellation point or on the shifted layered constellation point.
In some examples, the layer constellation manager 1535 may determine that the first constellation point and the second constellation point are mapped to a layered constellation point. In some examples, the layer constellation manager 1535 may determine the first constellation point of the outer constellation is scaled by a scaling factor and that the scaled first constellation point is summed with the second constellation point.
In some examples, the shift constellation manager 1540 may determine the layered constellation point is shifted based on an offset, where the offset is based on a result of performing a minimum function on the layered constellation point. In some examples, the shift constellation manager 1540 may determine the rotated layered constellation point is shifted based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point. In some examples, the rotation constellation manager 1545 may determine the shifted layered constellation point is rotated based on a modulo function, where the modulo function is based on a result of performing a maximum function on the layered constellation point and a Hamming distance.
FIG. 16 shows a diagram of a system 1600 including a device 1605 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The device 1605 may be an example of or include the components of device 1305, device 1405, a transmitting device, and/or a receiving device, which may be example of a UE 115 as described herein. The device 1605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1610, a transceiver 1620, an antenna 1625, memory 1630, a processor 1640, and an I/O controller 1650. These components may be in electronic communication via one or more buses (e.g., bus 1655) .
When device 1605 is a transmitting device, the communications manager 1610 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of unencoded bits to a first constellation point of  an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
When device 1605 is a receiving device, the communications manager 1610 may also receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
Transceiver 1620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1625. However, in some cases the device may have more than one antenna 1625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1630 may include RAM, ROM, or a combination thereof. The memory 1630 may store computer-readable code 1635 including instructions that, when executed by a processor (e.g., the processor 1640) cause the device to perform various functions described herein. In some cases, the memory 1630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable  logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1640 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1640. The processor 1640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1630) to cause the device 1605 to perform various functions (e.g., functions or tasks supporting layer modulation of coded and unencoded bits) .
The I/O controller 1650 may manage input and output signals for the device 1605. The I/O controller 1650 may also manage peripherals not integrated into the device 1605. In some cases, the I/O controller 1650 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1650 may utilize an operating system such as
Figure PCTCN2019107511-appb-000001
or another known operating system. In other cases, the I/O controller 1650 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1650 may be implemented as part of a processor. In some cases, a user may interact with the device 1605 via the I/O controller 1650 or via hardware components controlled by the I/O controller 1650.
The code 1635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1635 may not be directly executable by the processor 1640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 17 shows a diagram of a system 1700 including a device 1705 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The device 1705 may be an example of or include the components of device 1305, device 1405, a transmitting device, and/or a receiving device, which may be examples of a base station 105 as described herein. The device 1705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1710, a network communications manager 1715, a transceiver 1720, an antenna 1725, memory 1730, a  processor 1740, and an inter-station communications manager 1745. These components may be in electronic communication via one or more buses (e.g., bus 1755) .
When device 1705 is a transmitting device, the communications manager 1710 may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation, map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation, map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, and transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
When device 1705 is a receiving device, the communications manager 1710 may also receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation, identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation, and identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation.
Network communications manager 1715 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1715 may manage the transfer of data communications for client devices, such as one or more UEs 115.
Transceiver 1720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1725. However, in some cases the device may have more than one antenna 1725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1730 may include RAM, ROM, or a combination thereof. The memory 1730 may store computer-readable code 1735 including instructions that, when executed by a processor (e.g., the processor 1740) cause the device to perform various functions described herein. In some cases, the memory 1730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1740. The processor 1740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1730) to cause the device 1705 to perform various functions (e.g., functions or tasks supporting layer modulation of coded and unencoded bits) .
Inter-station communications manager 1745 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1745 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1745 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1735 may not be directly executable by the processor 1740  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 18 shows a flowchart illustrating a method 1800 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a transmitting device, which may be an example of a UE 115 or base station 105, or its components, as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 13 through 17. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally, or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE or base station may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a bit identification manager as described with reference to FIGs. 13 through 17.
At 1810, the UE or base station may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
At 1815, the UE or base station may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
At 1820, the UE or base station may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point. The operations of 1820 may be performed according to the methods described herein. In  some examples, aspects of the operations of 1820 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
FIG. 19 shows a flowchart illustrating a method 1900 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a transmitting device, which may be an example of a UE 115 or base station 105, or its components, as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 13 through 17. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1905, the UE or base station may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a bit identification manager as described with reference to FIGs. 13 through 17.
At 1910, the UE or base station may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
At 1915, the UE or base station may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
At 1920, the UE or base station may map the inner constellation over a portion of an I/Q plane corresponding to the first constellation point of the outer constellation. The operations of 1920 may be performed according to the methods described herein. In some  examples, aspects of the operations of 1920 may be performed by an I/Q mapping manager as described with reference to FIGs. 13 through 17.
At 1925, the UE or base station may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point. The operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
FIG. 20 shows a flowchart illustrating a method 2000 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a transmitting device, which may be an example of a UE 115 or base station 105, or its components, as described herein. For example, the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 13 through 17. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the UE or base station may identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a bit identification manager as described with reference to FIGs. 13 through 17.
At 2010, the UE or base station may map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
At 2015, the UE or base station may map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the outer constellation. The operations of 2015 may be performed according to the methods described  herein. In some examples, aspects of the operations of 2015 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
At 2020, the UE or base station may select an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based on the second constellation point. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an I/Q mapping manager as described with reference to FIGs. 13 through 17.
At 2025, the UE or base station may modulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based on the in-phase value and the quadrature value. The operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by an I/Q mapping manager as described with reference to FIGs. 13 through 17.
At 2030, the UE or base station may transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point. The operations of 2030 may be performed according to the methods described herein. In some examples, aspects of the operations of 2030 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
FIG. 21 shows a flowchart illustrating a method 2100 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The operations of method 2100 may be implemented by a receiving device, which may be an example of a UE 115 or base station 105, or its components, as described herein. For example, the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 13 through 17. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 2105, the UE or base station may receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, where the inner constellation corresponds to the first constellation point of the  outer constellation. The operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a bit transmission manager as described with reference to FIGs. 13 through 17.
At 2110, the UE or base station may identify the set of unencoded bits based on the first constellation point of the outer constellation of the multi-layer modulation constellation. The operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by an outer constellation manager as described with reference to FIGs. 13 through 17.
At 2115, the UE or base station may identify the set of encoded bits based on the second constellation point of the inner constellation of the multi-layer modulation constellation. The operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by an inner constellation manager as described with reference to FIGs. 13 through 17.
FIG. 22 shows a flowchart illustrating a method 2200 that supports layer modulation of coded and unencoded bits in accordance with aspects of the present disclosure. The operations of method 2200 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 13 through 17. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 2205, the UE or base station may map the first constellation point and the second constellation point to a layered constellation point. The operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by a layer constellation manager as described with reference to FIGs. 13 through 17.
At 2210, the UE or base station may scale the first constellation point of the outer constellation. The operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by a layer constellation manager as described with reference to FIGs. 13 through 17.
At 2215, the UE or base station may sum the scaled first constellation point and the second constellation point. The operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a layer constellation manager as described with reference to FIGs. 13 through 17.
At 2220, the UE or base station may shift the layered constellation point based on an offset, where the offset is based on a result of performing a minimum function on the layered constellation point. The operations of 2220 may be performed according to the methods described herein. In some examples, aspects of the operations of 2220 may be performed by a shift constellation manager as described with reference to FIGs. 13 through 17.
At 2225, the UE or base station may rotate the shifted layered constellation point based on a modulo function, where the modulo function is based on a result of performing a maximum function on the layered constellation point and a Hamming distance. The operations of 2225 may be performed according to the methods described herein. In some examples, aspects of the operations of 2225 may be performed by a rotation constellation manager as described with reference to FIGs. 13 through 17.
At 2230, the UE or base station may shift the rotated layered constellation point based on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point. The operations of 2230 may be performed according to the methods described herein. In some examples, aspects of the operations of 2230 may be performed by a shift constellation manager as described with reference to FIGs. 13 through 17.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) ,  and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be  referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features  implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (120)

  1. A method for wireless communication at a transmitting device, comprising:
    identifying a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation;
    mapping the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation;
    mapping the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation; and
    transmitting the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  2. The method of claim 1, wherein mapping the set of encoded bits to the second constellation point of the inner constellation comprises:
    mapping the inner constellation over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  3. The method of claim 1, wherein transmitting the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point comprises:
    selecting an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    modulating the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  4. The method of claim 1, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  5. The method of claim 1, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  6. The method of claim 5, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  7. The method of claim 5, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  8. The method of claim 5, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  9. The method of claim 1, further comprising:
    mapping the first constellation point and the second constellation point to a layered constellation point.
  10. The method of claim 9, wherein mapping the first constellation point and the second constellation point to the layered constellation point comprises:
    scaling the first constellation point of the outer constellation; and
    summing the scaled first constellation point and the second constellation point.
  11. The method of claim 10, wherein:
    scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  12. The method of claim 9, further comprising:
    shifting the layered constellation point based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  13. The method of claim 12, further comprising:
    rotating the shifted layered constellation point based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  14. The method of claim 13, further comprising:
    shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  15. The method of claim 1, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  16. A method for wireless communication at a receiving device, comprising:
    receiving a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation;
    identifying the set of unencoded bits based at least in part on the first constellation point of the outer constellation of the multi-layer modulation constellation; and
    identifying the set of encoded bits based at least in part on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  17. The method of claim 16, wherein identifying the set of encoded bits based on the second constellation point of the inner constellation comprises:
    determining that the inner constellation was mapped over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  18. The method of claim 16, wherein receiving the signal indicating the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point comprises:
    identifying an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    demodulating the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  19. The method of claim 16, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  20. The method of claim 16, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  21. The method of claim 20, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  22. The method of claim 20, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  23. The method of claim 20, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  24. The method of claim 16, further comprising:
    determining that the first constellation point and the second constellation point are mapped to a layered constellation point.
  25. The method of claim 24, wherein determining that the first constellation point and the second constellation point are mapped to the layered constellation point comprises:
    determining the first constellation point of the outer constellation is scaled by a scaling factor and that the scaled first constellation point is summed with the second constellation point.
  26. The method of claim 25, wherein:
    scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  27. The method of claim 24, further comprising:
    determining the layered constellation point is shifted based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  28. The method of claim 27, further comprising:
    determining the shifted layered constellation point is rotated based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  29. The method of claim 28, further comprising:
    determining the rotated layered constellation point is shifted based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  30. The method of claim 16, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  31. An apparatus for wireless communication at a transmitting device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation;
    map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation;
    map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation; and
    transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  32. The apparatus of claim 31, wherein the instructions to map the set of encoded bits to the second constellation point of the inner constellation are executable by the processor to cause the apparatus to:
    map the inner constellation over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  33. The apparatus of claim 31, wherein the instructions to transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point are executable by the processor to cause the apparatus to:
    select an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    modulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  34. The apparatus of claim 31, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  35. The apparatus of claim 31, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and  wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  36. The apparatus of claim 35, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  37. The apparatus of claim 35, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  38. The apparatus of claim 35, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  39. The apparatus of claim 31, wherein the instructions are further executable by the processor to cause the apparatus to:
    map the first constellation point and the second constellation point to a layered constellation point.
  40. The apparatus of claim 39, wherein the instructions to map the first constellation point and the second constellation point to the layered constellation point are executable by the processor to cause the apparatus to:
    scale the first constellation point of the outer constellation; and
    sum the scaled first constellation point and the second constellation point.
  41. The apparatus of claim 40, wherein scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  42. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    shift the layered constellation point based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  43. The apparatus of claim 42, wherein the instructions are further executable by the processor to cause the apparatus to:
    rotate the shifted layered constellation point based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    shift the rotated layered constellation point based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  45. The apparatus of claim 31, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  46. An apparatus for wireless communication at a receiving device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation;
    identify the set of unencoded bits based at least in part on the first constellation point of the outer constellation of the multi-layer modulation constellation; and
    identify the set of encoded bits based at least in part on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  47. The apparatus of claim 46, wherein the instructions to identify the set of encoded bits based on the second constellation point of the inner constellation are executable by the processor to cause the apparatus to:
    determine that the inner constellation was mapped over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  48. The apparatus of claim 46, wherein the instructions to receive the signal indicating the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point are executable by the processor to cause the apparatus to:
    identify an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    demodulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  49. The apparatus of claim 46, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  50. The apparatus of claim 46, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  51. The apparatus of claim 50, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  52. The apparatus of claim 50, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  53. The apparatus of claim 50, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  54. The apparatus of claim 46, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first constellation point and the second constellation point are mapped to a layered constellation point.
  55. The apparatus of claim 54, wherein the instructions to determine that the first constellation point and the second constellation point are mapped to the layered constellation point are executable by the processor to cause the apparatus to:
    determine the first constellation point of the outer constellation is scaled by a scaling factor and that the scaled first constellation point is summed with the second constellation point.
  56. The apparatus of claim 55, wherein scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  57. The apparatus of claim 54, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the layered constellation point is shifted based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  58. The apparatus of claim 57, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the shifted layered constellation point is rotated based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  59. The apparatus of claim 58, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the rotated layered constellation point is shifted based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  60. The apparatus of claim 46, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  61. An apparatus for wireless communication at a transmitting device, comprising:
    means for identifying a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation;
    means for mapping the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation;
    means for mapping the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation; and
    means for transmitting the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  62. The apparatus of claim 61, wherein the means for mapping the set of encoded bits to the second constellation point of the inner constellation comprises:
    means for mapping the inner constellation over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  63. The apparatus of claim 61, wherein the means for transmitting the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point comprises:
    means for selecting an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    means for modulating the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  64. The apparatus of claim 61, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  65. The apparatus of claim 61, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  66. The apparatus of claim 65, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  67. The apparatus of claim 65, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  68. The apparatus of claim 65, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  69. The apparatus of claim 61, further comprising:
    means for mapping the first constellation point and the second constellation point to a layered constellation point.
  70. The apparatus of claim 69, wherein the means for mapping the first constellation point and the second constellation point to the layered constellation point comprises:
    means for scaling the first constellation point of the outer constellation; and
    means for summing the scaled first constellation point and the second constellation point.
  71. The apparatus of claim 70, wherein scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  72. The apparatus of claim 69, further comprising:
    means for shifting the layered constellation point based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  73. The apparatus of claim 72, further comprising:
    means for rotating the shifted layered constellation point based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  74. The apparatus of claim 73, further comprising:
    means for shifting the rotated layered constellation point based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  75. The apparatus of claim 61, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  76. An apparatus for wireless communication at a receiving device, comprising:
    means for receiving a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation;
    means for identifying the set of unencoded bits based at least in part on the first constellation point of the outer constellation of the multi-layer modulation constellation; and
    means for identifying the set of encoded bits based at least in part on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  77. The apparatus of claim 76, wherein the means for identifying the set of encoded bits based on the second constellation point of the inner constellation comprises:
    means for determining that the inner constellation was mapped over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  78. The apparatus of claim 76, wherein the means for receiving the signal indicating the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point comprises:
    means for identifying an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    means for demodulating the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  79. The apparatus of claim 76, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  80. The apparatus of claim 76, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  81. The apparatus of claim 80, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  82. The apparatus of claim 80, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  83. The apparatus of claim 80, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  84. The apparatus of claim 76, further comprising:
    means for determining that the first constellation point and the second constellation point are mapped to a layered constellation point.
  85. The apparatus of claim 84, wherein the means for determining that the first constellation point and the second constellation point are mapped to the layered constellation point comprises:
    means for determining the first constellation point of the outer constellation is scaled by a scaling factor and that the scaled first constellation point is summed with the second constellation point.
  86. The apparatus of claim 85, wherein scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  87. The apparatus of claim 84, further comprising:
    means for determining the layered constellation point is shifted based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  88. The apparatus of claim 87, further comprising:
    means for determining the shifted layered constellation point is rotated based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  89. The apparatus of claim 88, further comprising:
    means for determining the rotated layered constellation point is shifted based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  90. The apparatus of claim 76, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  91. A non-transitory computer-readable medium storing code for wireless communication at a transmitting device, the code comprising instructions executable by a processor to:
    identify a set of unencoded bits and a set of encoded bits to be transmitted using multi-layer modulation constellation;
    map the set of unencoded bits to a first constellation point of an outer constellation of the multi-layer modulation constellation;
    map the set of encoded bits to a second constellation point of an inner constellation of the multi-layer modulation constellation, wherein the inner constellation corresponds to the first constellation point of the outer constellation; and
    transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point.
  92. The non-transitory computer-readable medium of claim 91, wherein the instructions to map the set of encoded bits to the second constellation point of the inner constellation are executable to:
    map the inner constellation over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  93. The non-transitory computer-readable medium of claim 91, wherein the instructions to transmit the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point are executable to:
    select an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    modulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  94. The non-transitory computer-readable medium of claim 91, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  95. The non-transitory computer-readable medium of claim 91, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  96. The non-transitory computer-readable medium of claim 95, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  97. The non-transitory computer-readable medium of claim 95, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  98. The non-transitory computer-readable medium of claim 95, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  99. The non-transitory computer-readable medium of claim 91, wherein the instructions are further executable to:
    map the first constellation point and the second constellation point to a layered constellation point.
  100. The non-transitory computer-readable medium of claim 99, wherein the instructions to map the first constellation point and the second constellation point to the layered constellation point are executable to:
    scale the first constellation point of the outer constellation; and
    sum the scaled first constellation point and the second constellation point.
  101. The non-transitory computer-readable medium of claim 100, wherein scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  102. The non-transitory computer-readable medium of claim 99, wherein the instructions are further executable to:
    shift the layered constellation point based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  103. The non-transitory computer-readable medium of claim 102, wherein the instructions are further executable to:
    rotate the shifted layered constellation point based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  104. The non-transitory computer-readable medium of claim 103, wherein the instructions are further executable to:
    shift the rotated layered constellation point based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  105. The non-transitory computer-readable medium of claim 91, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
  106. A non-transitory computer-readable medium storing code for wireless communication at a receiving device, the code comprising instructions executable by a processor to:
    receive a signal indicating a set of unencoded bits and a set of encoded bits, the set of unencoded bits mapped to a first constellation point of an outer constellation of a multi-layer modulation constellation and the set of encoded bits mapped to a second constellation point of an inner constellation of the multi-layer modulation constellation,  wherein the inner constellation corresponds to the first constellation point of the outer constellation;
    identify the set of unencoded bits based at least in part on the first constellation point of the outer constellation of the multi-layer modulation constellation; and
    identify the set of encoded bits based at least in part on the second constellation point of the inner constellation of the multi-layer modulation constellation.
  107. The non-transitory computer-readable medium of claim 106, wherein the instructions to identify the set of encoded bits based on the second constellation point of the inner constellation are executable to:
    determine that the inner constellation was mapped over a portion of an in-phase/quadrature (I/Q) plane corresponding to the first constellation point of the outer constellation.
  108. The non-transitory computer-readable medium of claim 106, wherein the instructions to receive the signal indicating the set of unencoded bits and the set of encoded bits according to the first constellation point and the second constellation point are executable to:
    identify an in-phase value and a quadrature value corresponding to the set of unencoded bits and the set of encoded bits based at least in part on the second constellation point; and
    demodulate the set of unencoded bits and the set of encoded bits onto a carrier frequency based at least in part on the in-phase value and the quadrature value.
  109. The non-transitory computer-readable medium of claim 106, wherein the outer constellation comprises a plurality of constellation points, and the inner constellation is the same for each constellation point of the outer constellation.
  110. The non-transitory computer-readable medium of claim 106, wherein the multi-layer modulation constellation comprises a quadrature amplitude modulation (QAM) constellation, and wherein the inner constellation comprises a different QAM pattern than the outer constellation.
  111. The non-transitory computer-readable medium of claim 110, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped  QAM4 constellation, a square QAM16 constellation, a square QAM64 constellation, or a square QAM 256 constellation.
  112. The non-transitory computer-readable medium of claim 110, wherein one or more of the inner constellation or the outer constellation comprises a square-shaped QAM8 constellation with a hollow center.
  113. The non-transitory computer-readable medium of claim 110, wherein one or more of the inner constellation or the outer constellation comprises a cross-shaped QAM32 constellation or a cross-shaped QAM128 constellation.
  114. The non-transitory computer-readable medium of claim 106, wherein the instructions are further executable to:
    determine that the first constellation point and the second constellation point are mapped to a layered constellation point.
  115. The non-transitory computer-readable medium of claim 114, wherein the instructions to determine that the first constellation point and the second constellation point are mapped to the layered constellation point are executable to:
    determine the first constellation point of the outer constellation is scaled by a scaling factor and that the scaled first constellation point is summed with the second constellation point.
  116. The non-transitory computer-readable medium of claim 115, wherein scaling the first constellation point maintains a Hamming distance of the first constellation point and the second constellation point relative to the layered constellation point.
  117. The non-transitory computer-readable medium of claim 114, wherein the instructions are further executable to:
    determine the layered constellation point is shifted based at least in part on an offset, wherein the offset is based at least in part on a result of performing a minimum function on the layered constellation point.
  118. The non-transitory computer-readable medium of claim 117, wherein the instructions are further executable to:
    determine the shifted layered constellation point is rotated based at least in part on a modulo function, wherein the modulo function is based at least in part on a result of performing a maximum function on the layered constellation point and a Hamming distance.
  119. The non-transitory computer-readable medium of claim 118, wherein the instructions are further executable to:
    determine the rotated layered constellation point is shifted based at least in part on a difference of the layered constellation point and a result of performing a mean function of the layered constellation point.
  120. The non-transitory computer-readable medium of claim 106, wherein the set of encoded bits includes m encoded bits and the set of unencoded bits includes three unencoded bits.
PCT/CN2019/107511 2019-07-30 2019-09-24 Layer modulation of coded and unencoded bits WO2021017127A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/098269 WO2021016832A1 (en) 2019-07-30 2019-07-30 Layer modulation of coded and unencoded bits
CNPCT/CN2019/098269 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021017127A1 true WO2021017127A1 (en) 2021-02-04

Family

ID=74228541

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/098269 WO2021016832A1 (en) 2019-07-30 2019-07-30 Layer modulation of coded and unencoded bits
PCT/CN2019/104698 WO2021017101A1 (en) 2019-07-30 2019-09-06 Crc for data with multiple channel coding schemes
PCT/CN2019/107511 WO2021017127A1 (en) 2019-07-30 2019-09-24 Layer modulation of coded and unencoded bits

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/098269 WO2021016832A1 (en) 2019-07-30 2019-07-30 Layer modulation of coded and unencoded bits
PCT/CN2019/104698 WO2021017101A1 (en) 2019-07-30 2019-09-06 Crc for data with multiple channel coding schemes

Country Status (1)

Country Link
WO (3) WO2021016832A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010376A2 (en) * 2005-07-20 2007-01-25 Nokia Corporation Adaptive multilevel block coded modulation for ofdm systems
CN103516661A (en) * 2012-06-27 2014-01-15 华为技术有限公司 High-order modulation method, de-mapping method and corresponding apparatus
CN105594175A (en) * 2014-08-20 2016-05-18 华为技术有限公司 Digital modulation method and device
WO2018042248A2 (en) * 2016-09-02 2018-03-08 Marvell World Trade Ltd. Systems and methods for performing multi-level coding in a discrete multitone modulation communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583728B2 (en) * 2002-10-25 2009-09-01 The Directv Group, Inc. Equalizers for layered modulated and other signals
CN100571419C (en) * 2004-12-21 2009-12-16 中兴通讯股份有限公司 The method for transmitting and receiving of a kind of coding modulation and demodulation system and signal thereof
CN101277165A (en) * 2007-03-30 2008-10-01 北京三星通信技术研究有限公司 MIMO-MMSE-SIC-HARQ communication system
CN103427943A (en) * 2012-05-25 2013-12-04 华为技术有限公司 Coding modulation method and apparatus for high-order modulation, and decoding method and apparatus for high-order modulation
CN108632192B (en) * 2017-03-24 2020-04-03 华为技术有限公司 Data transmission method, equipment and system
WO2018205226A1 (en) * 2017-05-11 2018-11-15 Nokia Technologies Oy Transmission control mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010376A2 (en) * 2005-07-20 2007-01-25 Nokia Corporation Adaptive multilevel block coded modulation for ofdm systems
CN103516661A (en) * 2012-06-27 2014-01-15 华为技术有限公司 High-order modulation method, de-mapping method and corresponding apparatus
CN105594175A (en) * 2014-08-20 2016-05-18 华为技术有限公司 Digital modulation method and device
WO2018042248A2 (en) * 2016-09-02 2018-03-08 Marvell World Trade Ltd. Systems and methods for performing multi-level coding in a discrete multitone modulation communication system
CN109804582A (en) * 2016-09-02 2019-05-24 马维尔国际贸易有限公司 System and method for executing multilevel coding in Discrete MultiTone modulation communication system

Also Published As

Publication number Publication date
WO2021016832A1 (en) 2021-02-04
WO2021017101A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US10880914B2 (en) Grant free uplink transmission techniques
US11050523B2 (en) Techniques to interpret control information based on a repetition factor
US20190037376A1 (en) Enhanced machine type communications physical uplink control channel design
US11658857B2 (en) Phase tracking reference signal for sub-symbol phase tracking
US11658780B2 (en) Demodulation reference signal multiplexing scheme selection for uplink transmission
US11178671B2 (en) High-reliability modulation coding scheme and logical channel prioritization
WO2019157764A1 (en) Self-decodable redundancy versions for polar codes
WO2019074855A1 (en) Transport block size, soft channel bit buffer size, and rate matching for short transmission time intervals
US20200351987A1 (en) Methods, apparatuses and systems for dynamic spectrum sharing between legacy and next generation networks
US11324040B2 (en) Synchronized uplink grant-free non-orthogonal multiple access transmission design
US10742283B2 (en) Transmit diversity schemes for uplink sequence transmissions
US11329789B2 (en) Transmission methods to handle vulnerable symbols
US11265097B2 (en) Code division multiplexing group hopping for multi-transmission/reception point
US11611978B2 (en) Reference modulation and coding scheme table in sidelink signaling
WO2021017127A1 (en) Layer modulation of coded and unencoded bits
WO2021046739A1 (en) A two encoder scheme for unequal error protection
WO2019169526A1 (en) Wireless devices pairing for downlink mu-mimo transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939327

Country of ref document: EP

Kind code of ref document: A1