WO2021017112A1 - 一种皮下血管光学视频图像的成像方法 - Google Patents

一种皮下血管光学视频图像的成像方法 Download PDF

Info

Publication number
WO2021017112A1
WO2021017112A1 PCT/CN2019/105488 CN2019105488W WO2021017112A1 WO 2021017112 A1 WO2021017112 A1 WO 2021017112A1 CN 2019105488 W CN2019105488 W CN 2019105488W WO 2021017112 A1 WO2021017112 A1 WO 2021017112A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
blood vessels
image data
optical
video images
Prior art date
Application number
PCT/CN2019/105488
Other languages
English (en)
French (fr)
Inventor
石旭刚
石恩睿
Original Assignee
杭州泽铭睿股权投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州泽铭睿股权投资有限公司 filed Critical 杭州泽铭睿股权投资有限公司
Publication of WO2021017112A1 publication Critical patent/WO2021017112A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1176Recognition of faces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Definitions

  • the present invention relates to the technical field of optical imaging of subcutaneous blood vessels, in particular to an imaging method of optical video images of subcutaneous blood vessels.
  • Subcutaneous blood vessel images have a wide range of applications, such as the diagnosis of medical diseases, and can also be used as biometrics for identification. Because human skin is translucent, when visible light illuminates the skin, the hemoglobin in the subcutaneous blood vessels will affect Light has a certain absorption effect. When the blood volume in the blood vessel changes, the intensity of the absorbed light will also change accordingly, resulting in a corresponding change in the intensity of the light reflected by the skin. Therefore, the optical imaging image of the skin contains Image information of subcutaneous blood vessels.
  • the reflected light is received by a black-and-white camera with a filter, the same position is selected as the region of interest on each frame of image obtained, and the waveform of the gray average value of the region of interest is calculated over time, and the response measurement is obtained
  • the PPG signal of blood flow changes in the skin area.
  • IPPG technology can obtain the PPG signal of blood flow changes in the area of interest, but it cannot obtain a complete dynamic video image of the blood vessels under the skin.
  • IPPG can be applied to physiological indicators that do not require high precision Detection, such as heart rate, but it is more difficult to detect physiological indicators such as blood pressure, respiration, and mental stress. If a complete dynamic video image of blood vessels under the skin can be obtained, it can be further used for the detection of many physiological indicators.
  • the purpose of the present invention is to solve the shortcomings in the prior art, and proposes an imaging method for optical video images of subcutaneous blood vessels.
  • an imaging method for optical video images of subcutaneous blood vessels characterized in that it comprises the following steps:
  • S01 Read the image data under the skin, and read N frames of RGB image data from the optical video image of the blood vessels under the skin of the living human detected by the optical sensor;
  • S02 Select the original data of the blood spectrum optical image, and select the green component G image data from the read RGB image data as the original data for extracting the blood spectrum optical image;
  • S04 Obtain an optical image of the blood spectrum, calculate all selected N frames of image data, and obtain a blood vessel optical imaging image of each frame of image data, that is, an optical image of the blood spectrum, according to the calculated value.
  • the optical video image of the blood vessel under the human skin is the optical video image of the human face, and the face area of each frame of image can be detected by the face detection technology.
  • the reading of N frames of RGB image data should be performed in a continuous manner, and during the reading process, no discontinuous RGB image data should appear to ensure the stability of the RGB image data.
  • the image data of the green component G corresponds to the green pixel in the area with blood vessels under the skin, and it can be determined whether the pixel is a blood vessel pixel.
  • the change rule of a certain pixel value in each frame of image data is different.
  • the value of the G component value G(x,y) of the pixel (x,y) at a certain position under the face skin in the consecutive N frames of images forms a G component sequence ⁇ G(x,y)[ n] ⁇ , where 0 ⁇ n ⁇ N, can realize the calculation of the component sequence of pixels at all positions under the face skin.
  • the frequency spectrum F(x,y)[k] of the pixel can be obtained, and the pixel can be judged Whether there is a periodic change pattern consistent with the heartbeat.
  • the pixels with similarly calculated periodic changes of the heartbeat are marked as blood vessel pixels, and other pixel values are set to 0, which can clearly distinguish between blood vessel pixels and other non-vascular pixels.
  • the value calculated for each frame of image data is one pixel, and by dynamically connecting all the pixels in sequence, and detecting and identifying these pixels, the blood spectrum optical image can be obtained.
  • the DFT transform refers to the discrete Fourier transform, which is a discrete form of the Fourier transform in both the time domain and the frequency domain.
  • the time domain sampling of the signal is transformed into the frequency domain sampling of the DTFT to obtain the face.
  • the spectrum of the pixel of the component sequence at a certain position under the skin, after all the component sequences are repeatedly calculated, the spectrum of the pixel of the component sequence at all positions under the skin of the face can be obtained, which is convenient for subsequent observation and marking.
  • the invention provides an imaging method for optical video images of subcutaneous blood vessels. Has the following beneficial effects:
  • the imaging method of optical video images of subcutaneous blood vessels can calculate the pixel change rule of the image data of each position under the skin of the human face, and determine whether the pixel is a blood vessel pixel, so as to accurately find the optical image of the subcutaneous blood vessel.
  • Video image
  • the imaging method of optical video images of subcutaneous blood vessels can detect continuous and dynamic optical video images of blood vessels. At the same time, each pixel in the optical video image can reflect the real-time changes of blood flow in blood vessels under the skin. In this way, the information of the change of blood flow in the blood vessel is retained to the greatest extent, and the accuracy of the optical video image is improved.
  • FIG. 1 is a schematic flowchart of a method for imaging optical video images of subcutaneous blood vessels proposed by the present invention.
  • an imaging method for optical video images of subcutaneous blood vessels includes the following steps:
  • S01 Read the image data under the skin, and read N frames of RGB image data from the optical video image of the blood vessels under the skin of the living human detected by the optical sensor;
  • S02 Select the original data of the blood spectrum optical image, and select the green component G image data from the read RGB image data as the original data for extracting the blood spectrum optical image;
  • S04 Obtain an optical image of the blood spectrum, calculate all selected N frames of image data, and obtain a blood vessel optical imaging image of each frame of image data, that is, an optical image of the blood spectrum, according to the calculated value.
  • step S01 the optical video image of the blood vessel under the human skin is the optical video image of the human face, and the face area of each frame of the image can be detected by the face detection technology.
  • step S01 N frames of RGB image data should be read in a continuous manner, and during the reading process, no discontinuous RGB image data should appear to ensure the stability of the RGB image data.
  • the green component G image data corresponds to the green pixel in the area with blood vessels under the skin, it can be judged whether the pixel is a blood vessel pixel, and the pixels corresponding to the area with blood vessels under the skin.
  • the characteristic of periodic change causes the intensity of the absorbed light to have corresponding periodic change characteristics.
  • the final imaging reaction is that the change of certain pixel values in this area also has the characteristic of periodic change with the heartbeat. On the contrary, The pixels corresponding to other tissues do not have similar periodic changes.
  • step S03 for N consecutive frames of skin video image data, the change rule of a certain pixel value in each frame of image data is different. If it is a noise point, the change of its pixel value is random.
  • step S03 the value of the G component value G(x,y) of the pixel (x,y) at a certain position under the face skin in the consecutive N frames of images forms a G component sequence ⁇ G(x,y)[n] ⁇ , where 0 ⁇ n ⁇ N, can realize the calculation of the component sequence of pixels at all positions under the face skin.
  • the frequency spectrum F(x,y)[k] of the pixel can be obtained, and it can be judged whether the pixel has Periodic changes consistent with heartbeat.
  • step S03 a pixel with a similarly calculated periodic variation of the heartbeat is marked as a blood vessel pixel, and other pixel values are set to 0, which can clearly distinguish between blood vessel pixels and other non-vascular pixels.
  • step S04 the value calculated for each frame of image data is one pixel, and by dynamically connecting all the pixels in sequence, and detecting and identifying these pixels, the blood spectrum optical image can be obtained.
  • DFT transform refers to the discrete Fourier transform, which is a discrete form of the Fourier transform in both the time domain and the frequency domain.
  • the time domain sampling of the signal is transformed into the frequency domain sampling of the DTFT, and the face under the skin can be obtained.
  • the frequency spectrum of the pixel of the component sequence in a certain position after repeated calculation of all the component sequences, the frequency spectrum of the pixel of the component sequence at all positions under the skin of the face can be obtained, which is convenient for subsequent observation and marking.
  • the principle of the imaging method of optical video images of subcutaneous blood vessels is to use the blood flow volume in the blood vessels under the skin of a living person to pump blood according to the cycle of the heart and have the characteristics of periodic changes, which causes the intensity of light absorbed by the blood vessels to appear periodically.
  • the periodic changes in the intensity of light absorbed by the blood vessels will cause the intensity of the light reflected by the blood vessels under the surface of the skin to change periodically. This change will eventually be reflected in the pixels at the corresponding positions of the blood vessels in the image sensor image.
  • photosensitive intensity by detecting this periodic change of pixels, the pixels corresponding to the imaging of the blood vessel can be marked, thereby obtaining a continuous optical video image of the blood vessel, that is, the blood spectrum optical image.
  • the description with reference to the terms “one embodiment”, “example”, “specific example”, etc. means that the specific feature, structure, material or characteristic described in combination with the embodiment or example is included in at least the present invention. In one embodiment or example.
  • the schematic representation of the above-mentioned terms does not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Mathematical Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种皮下血管光学视频图像的成像方法,包括以下步骤:读取皮肤下的图像数据,选取血谱光学图像的原始数据,计算数据分量的变化规律,获取血谱光学图像。该皮下血管光学视频图像的成像方法可以计算出人脸皮肤下的每个位置的图像数据的像素变化规律,并且判断出像素是否为血管像素,以便于准确的找到皮下血管的光学视频图像,同时可以检测出血管的连续的、动态的光学视频图像,同时光学视频图像中的每个像素都能够反应皮肤下血管中血流的实时变化情况,从而最大限度地保留了血管中血流的变化信息,提高光学视频图像的准确性。

Description

一种皮下血管光学视频图像的成像方法 技术领域
本发明涉及皮肤下血管光学成像技术技术领域,尤其涉及一种皮下血管光学视频图像的成像方法。
背景技术
皮下血管图像具有广泛的应用价值,如可应用医学疾病的诊断,也可以作为生物特征用于身份识别,由于人的皮肤具有半透明的特点,当可见光照射皮肤时,皮下血管中的血红蛋白会对光线具有一定的吸收作用,当血管中的血容量变化时,对吸收的光线的强度也会相应的发生变化,从而造成皮肤反射光线的强度作相应的变化,因此皮肤的光学成像图像中包含了皮下血管的图像信息。
通过加有滤光片的黑白相机接收反射光,在获得的每一帧图像上选取相同位置作为感兴趣区域,计算出感兴趣区域的灰度平均值随时间变化的波形,就得到了反应测量皮肤区域血流变化的PPG信号,IPPG技术可以得到感兴趣区域的血流变化的PPG信号,但是并不能得到完整的皮肤下血管的动态视频图像,IPPG可以应用于对精度要求不高的生理指标检测,如心率等,但对于像血压、呼吸、精神压力等生理指标的检测就会比较困难,如果能得到皮肤下完整的血管动态视频图像,则可进一步用于很多生理指标的检测。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种皮下血管光学视频图像的成像方法。
为了实现上述目的,本发明采用了如下技术方案:一种皮下血管光学视频图像的成像方法,其特征在于,包括以下步骤:
S01:读取皮肤下的图像数据,从光学传感器检测到的活体人皮肤下的血管的光学视频图像中,读取N帧RGB图像数据;
S02:选取血谱光学图像的原始数据,从读取的RGB图像数据中选取绿色分量G图像数据,作为提取血谱光学图像的原始数据;
S03:计算数据分量的变化规律,对连续N帧图像数据中每个像素绿色分量G(x,y)计算其变化规律,标记并且识别N帧图像数据中所有的像素类别;
S04:获取血谱光学图像,将选取的N帧图像数据都进行计算,根据计算得到的数值,可以得到每帧图像数据的血管光学成像图像,即血谱光学图像。
作为上述技术方案的进一步描述:
所述步骤S01中,体人皮肤下的血管的光学视频图像为人脸的光学视频图像,可以通过人脸检测技术检测出每帧图像的人脸区域。
作为上述技术方案的进一步描述:
所述步骤S01中,读取N帧RGB图像数据应该采用连续的方式进行读取,并且在读取的过程中,不可出现间断不连续的RGB图像数据,确保RGB图像数据的稳定性。
作为上述技术方案的进一步描述:
所述步骤S02中,绿色分量G图像数据对应于皮下有血管的区域的绿色像素,即可判断该像素是否为血管像素。
作为上述技术方案的进一步描述:
所述步骤S03中,对于连续N帧的皮肤视频图像数据,每帧图像数据中的某个像素值的变化规律是不一样的。
作为上述技术方案的进一步描述:
所述步骤S03中,人脸皮肤下某个位置像素(x,y)的G分量值G(x,y)在连续N帧图像中的数值组成一个G分量序列{G(x,y)[n]},其中,0≤n<N,可以实现对人脸皮肤下所有位置像素的分量序列的计算。
作为上述技术方案的进一步描述:
所述对G分量序列{G(x,y)[n]},0≤n<N,进行DFT变换后,即可获取该像素的频谱F(x,y)[k],可以判断该像素是否具有与心跳一致的周期性变化规律。
作为上述技术方案的进一步描述:
所述步骤S03中,对于具有类似计算的心跳周期性变化规律的像素标注为血管像素,而其它像素值设置为0,可以清楚明了的区分血管像素以及其它非血管像素。
作为上述技术方案的进一步描述:
所述步骤S04中,每帧图像数据计算得到的数值均为一个像素点,通过动态依次连接所有的像素点,并检测和标识这些像素点,即可得到血谱光学图像。
作为上述技术方案的进一步描述:
所述DFT变换是指离散傅里叶变换,是傅里叶变换在时域和频域 上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样,即可获得人脸皮肤下某一个位置中分量序列的像素的频谱,重复计算所有的分量序列后,可以得到人脸皮肤下所有位置处的分量序列的像素的频谱,方便后续的观察标记。
有益效果
本发明提供了一种皮下血管光学视频图像的成像方法。具备以下有益效果:
(1):该皮下血管光学视频图像的成像方法可以计算出人脸皮肤下的每个位置的图像数据的像素变化规律,并且判断出像素是否为血管像素,以便于准确的找到皮下血管的光学视频图像。
(2):该皮下血管光学视频图像的成像方法可以检测出血管的连续的、动态的光学视频图像,同时光学视频图像中的每个像素都能够反应皮肤下血管中血流的实时变化情况,从而最大限度地保留了血管中血流的变化信息,提高光学视频图像的准确性。
附图说明
图1为本发明提出的一种皮下血管光学视频图像的成像方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
如图1所示,一种皮下血管光学视频图像的成像方法,包括以下 步骤:
S01:读取皮肤下的图像数据,从光学传感器检测到的活体人皮肤下的血管的光学视频图像中,读取N帧RGB图像数据;
S02:选取血谱光学图像的原始数据,从读取的RGB图像数据中选取绿色分量G图像数据,作为提取血谱光学图像的原始数据;
S03:计算数据分量的变化规律,对连续N帧图像数据中每个像素绿色分量G(x,y)计算其变化规律,标记并且识别N帧图像数据中所有的像素类别;
S04:获取血谱光学图像,将选取的N帧图像数据都进行计算,根据计算得到的数值,可以得到每帧图像数据的血管光学成像图像,即血谱光学图像。
步骤S01中,体人皮肤下的血管的光学视频图像为人脸的光学视频图像,可以通过人脸检测技术检测出每帧图像的人脸区域。
步骤S01中,读取N帧RGB图像数据应该采用连续的方式进行读取,并且在读取的过程中,不可出现间断不连续的RGB图像数据,确保RGB图像数据的稳定性。
步骤S02中,绿色分量G图像数据对应于皮下有血管的区域的绿色像素,即可判断该像素是否为血管像素,对应于皮下有血管的区域的像素,则由于血管中的血容量具有随心跳周期性变化的特性,造成其吸收光线的强度也会有相应的周期性变化特征,最终在成像上的反应是该区域的某些像素值的变化也具有随心跳周期性变化的特征,反之,其它组织对应的像素则不具备类似周期性变化的特点。
步骤S03中,对于连续N帧的皮肤视频图像数据,每帧图像数据中的某个像素值的变化规律是不一样的,如果是噪声点,则其像素值的变化是随机的。
步骤S03中,人脸皮肤下某个位置像素(x,y)的G分量值G(x,y)在连续N帧图像中的数值组成一个G分量序列{G(x,y)[n]},其中,0≤n<N,可以实现对人脸皮肤下所有位置像素的分量序列的计算。
对G分量序列{G(x,y)[n]},0≤n<N,进行DFT变换后,即可获取该像素的频谱F(x,y)[k],可以判断该像素是否具有与心跳一致的周期性变化规律。
步骤S03中,对于具有类似计算的心跳周期性变化规律的像素标注为血管像素,而其它像素值设置为0,可以清楚明了的区分血管像素以及其它非血管像素。
步骤S04中,每帧图像数据计算得到的数值均为一个像素点,通过动态依次连接所有的像素点,并检测和标识这些像素点,即可得到血谱光学图像。
DFT变换是指离散傅里叶变换,是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样,即可获得人脸皮肤下某一个位置中分量序列的像素的频谱,重复计算所有的分量序列后,可以得到人脸皮肤下所有位置处的分量序列的像素的频谱,方便后续的观察标记。
皮下血管光学视频图像的成像方法原理是利用活体人皮肤下的血管中的血流容量根据心脏的周期泵血而具有周期性变化的特点,从 而造成血管吸收光线的强度也相应的会出现周期性变化,这种血管吸收光线的强度的周期性变化会造成皮肤表面下血管相应位置反射光线的强度也会进行周期性变化,这种变化最终会反映在图像感器成像图像中血管对应位置像素的感光强度上,通过检测像素的这种周期性变化就可以标示出血管对应成像的像素,从而得到连续的血管光学视频图像,即血谱光学图像。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种皮下血管光学视频图像的成像方法,其特征在于,包括以下步骤:
    S01:读取皮肤下的图像数据,从光学传感器检测到的活体人皮肤下的血管的光学视频图像中,读取N帧RGB图像数据;
    S02:选取血谱光学图像的原始数据,从读取的RGB图像数据中选取绿色分量G图像数据,作为提取血谱光学图像的原始数据;
    S03:计算数据分量的变化规律,对连续N帧图像数据中每个像素绿色分量G(x,y)计算其变化规律,标记并且识别N帧图像数据中所有的像素类别;
    S04:获取血谱光学图像,将选取的N帧图像数据都进行计算,根据计算得到的数值,可以得到每帧图像数据的血管光学成像图像,即血谱光学图像。
  2. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S01中,体人皮肤下的血管的光学视频图像为人脸的光学视频图像,可以通过人脸检测技术检测出每帧图像的人脸区域。
  3. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S01中,读取N帧RGB图像数据应该采用连续的方式进行读取,并且在读取的过程中,不可出现间断不连续的RGB图像数据,确保RGB图像数据的稳定性。
  4. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S02中,绿色分量G图像数据对应于皮下 有血管的区域的绿色像素,即可判断该像素是否为血管像素。
  5. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S03中,对于连续N帧的皮肤视频图像数据,每帧图像数据中的某个像素值的变化规律是不一样的。
  6. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S03中,人脸皮肤下某个位置像素(x,y)的G分量值G(x,y)在连续N帧图像中的数值组成一个G分量序列{G(x,y)[n]},其中,0≤n<N,可以实现对人脸皮肤下所有位置像素的分量序列的计算。
  7. 根据权利要求6所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述对G分量序列{G(x,y)[n]},0≤n<N,进行DFT变换后,即可获取该像素的频谱F(x,y)[k],可以判断该像素是否具有与心跳一致的周期性变化规律。
  8. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S03中,对于具有类似计算的心跳周期性变化规律的像素标注为血管像素,而其它像素值设置为0,可以清楚明了的区分血管像素以及其它非血管像素。
  9. 根据权利要求1所述的一种皮下血管光学视频图像的成像方法,其特征在于,所述步骤S04中,每帧图像数据计算得到的数值均为一个像素点,通过动态依次连接所有的像素点,并检测和标识这些像素点,即可得到血谱光学图像。
  10. 根据权利要求7所述的一种皮下血管光学视频图像的成像方 法,其特征在于,所述DFT变换是指离散傅里叶变换,是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样,即可获得人脸皮肤下某一个位置中分量序列的像素的频谱,重复计算所有的分量序列后,可以得到人脸皮肤下所有位置处的分量序列的像素的频谱,方便后续的观察标记。
PCT/CN2019/105488 2019-07-31 2019-09-12 一种皮下血管光学视频图像的成像方法 WO2021017112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910704108.1 2019-07-31
CN201910704108.1A CN110279402A (zh) 2019-07-31 2019-07-31 一种皮下血管光学视频图像的成像方法

Publications (1)

Publication Number Publication Date
WO2021017112A1 true WO2021017112A1 (zh) 2021-02-04

Family

ID=68024496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105488 WO2021017112A1 (zh) 2019-07-31 2019-09-12 一种皮下血管光学视频图像的成像方法

Country Status (2)

Country Link
CN (1) CN110279402A (zh)
WO (1) WO2021017112A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112842285B (zh) * 2020-12-31 2021-09-24 山东大学齐鲁医院 一种内镜下辅助识别粘膜下血管的方法及系统
CN113920119B (zh) * 2021-12-14 2022-03-18 南京精益安防系统科技有限公司 一种基于热成像技术的心率呼吸分析处理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782718A (zh) * 2010-02-24 2012-11-14 富士通先端科技株式会社 认证装置、认证程序以及认证方法
US20130322729A1 (en) * 2012-05-30 2013-12-05 Xerox Corporation Processing a video for vascular pattern detection and cardiac function analysis
KR20140103788A (ko) * 2013-02-19 2014-08-27 서강대학교산학협력단 반사 스펙트럼 추정을 이용하여 생체 내의 혈관을 영상화하는 방법, 그 방법을 이용한 혈관천자 안내 장치 및 사용자 인증 장치
CN104246820A (zh) * 2012-03-16 2014-12-24 环球机器人株式会社 个人认证方法以及个人认证装置
CN105873503A (zh) * 2013-12-25 2016-08-17 旭化成株式会社 脉搏波测定装置、便携式设备、医疗设备系统以及生物体信息通信系统
CN106377226A (zh) * 2016-08-30 2017-02-08 苏州品诺维新医疗科技有限公司 一种心血管状态检测装置及斜率信息的确定方法
CN106725263A (zh) * 2016-12-15 2017-05-31 深圳开立生物医疗科技股份有限公司 应用于内窥镜系统的成像方法
JP2018171516A (ja) * 2018-08-06 2018-11-08 カシオ計算機株式会社 画像処理方法、診断装置、並びにプログラム
CN109523545A (zh) * 2018-11-28 2019-03-26 荆门博谦信息科技有限公司 一种非接触式心率检测方法及系统
CN109977858A (zh) * 2019-03-25 2019-07-05 北京科技大学 一种基于图像分析的心率检测方法及装置
CN110420011A (zh) * 2019-08-07 2019-11-08 杭州泽铭睿股权投资有限公司 一种具有血谱光学图像成像功能的摄像机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104138254A (zh) * 2013-05-10 2014-11-12 天津点康科技有限公司 非接触式自动心率测量系统及测量方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782718A (zh) * 2010-02-24 2012-11-14 富士通先端科技株式会社 认证装置、认证程序以及认证方法
CN104246820A (zh) * 2012-03-16 2014-12-24 环球机器人株式会社 个人认证方法以及个人认证装置
US20130322729A1 (en) * 2012-05-30 2013-12-05 Xerox Corporation Processing a video for vascular pattern detection and cardiac function analysis
KR20140103788A (ko) * 2013-02-19 2014-08-27 서강대학교산학협력단 반사 스펙트럼 추정을 이용하여 생체 내의 혈관을 영상화하는 방법, 그 방법을 이용한 혈관천자 안내 장치 및 사용자 인증 장치
CN105873503A (zh) * 2013-12-25 2016-08-17 旭化成株式会社 脉搏波测定装置、便携式设备、医疗设备系统以及生物体信息通信系统
CN106377226A (zh) * 2016-08-30 2017-02-08 苏州品诺维新医疗科技有限公司 一种心血管状态检测装置及斜率信息的确定方法
CN106725263A (zh) * 2016-12-15 2017-05-31 深圳开立生物医疗科技股份有限公司 应用于内窥镜系统的成像方法
JP2018171516A (ja) * 2018-08-06 2018-11-08 カシオ計算機株式会社 画像処理方法、診断装置、並びにプログラム
CN109523545A (zh) * 2018-11-28 2019-03-26 荆门博谦信息科技有限公司 一种非接触式心率检测方法及系统
CN109977858A (zh) * 2019-03-25 2019-07-05 北京科技大学 一种基于图像分析的心率检测方法及装置
CN110420011A (zh) * 2019-08-07 2019-11-08 杭州泽铭睿股权投资有限公司 一种具有血谱光学图像成像功能的摄像机

Also Published As

Publication number Publication date
CN110279402A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN107529646B (zh) 一种基于欧拉影像放大的无接触式心率测量方法及装置
Fan et al. Robust blood pressure estimation using an RGB camera
CN108471989A (zh) 用于生成承载对象的生命体征信息的光体积描记图像的设备、系统和方法
CN114820494A (zh) 用于可视化流动的使用机器学习的散斑对比度分析
CN109637660B (zh) 一种基于深度卷积神经网络的舌诊分析方法及系统
Blöcher et al. An online PPGI approach for camera based heart rate monitoring using beat-to-beat detection
CN111387959A (zh) 一种基于ippg的非接触式生理参数检测方法
CN109389568B (zh) 自动测量皮肤光学相干层析图像中表皮厚度的方法
WO2021017112A1 (zh) 一种皮下血管光学视频图像的成像方法
US10357228B2 (en) Image processing method and apparatus
CN102488508A (zh) 一种基于图像捕获的心率测量方法
Patil et al. CamBP: A camera-based, non-contact blood pressure monitor
WO2007132865A1 (ja) 血管老化の検出システム
Schrumpf et al. Exploiting weak head movements for camera-based respiration detection
CN110236544B (zh) 基于相关系数的中风灌注成像病变区域检测系统及方法
Fan et al. Robust contactless pulse transit time estimation based on signal quality metric
Liu et al. Real-time visual analysis of microvascular blood flow for critical care
CN112716468A (zh) 基于三维卷积网络的非接触心率测量方法及装置
Hu et al. Study on Real-Time Heart Rate Detection Based on Multi-People.
CN111820870A (zh) 生物影像处理方法以及生理信息检测装置
Sarkar et al. Evaluation of video magnification for nonintrusive heart rate measurement
Almeida et al. Hemodynamic features extraction from a new arterial pressure waveform probe
Elhajjar et al. Assessing Confidence in Video Magnification Heart Rate Measurement using Multiple ROIs
CN108703770B (zh) 心室容积监测设备和方法
CN112784731A (zh) 一种检测驾驶员的生理指标、及建立模型的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939768

Country of ref document: EP

Kind code of ref document: A1