WO2021016937A1 - Method and apparatus for improving energy efficiency - Google Patents

Method and apparatus for improving energy efficiency Download PDF

Info

Publication number
WO2021016937A1
WO2021016937A1 PCT/CN2019/098688 CN2019098688W WO2021016937A1 WO 2021016937 A1 WO2021016937 A1 WO 2021016937A1 CN 2019098688 W CN2019098688 W CN 2019098688W WO 2021016937 A1 WO2021016937 A1 WO 2021016937A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy efficiency
frequency
information
scheduling
radio unit
Prior art date
Application number
PCT/CN2019/098688
Other languages
French (fr)
Inventor
Tao Huang
Ang FENG
Jinlai HE
Junming Li
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to PCT/CN2019/098688 priority Critical patent/WO2021016937A1/en
Publication of WO2021016937A1 publication Critical patent/WO2021016937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure generally relates to communication networks, and more specifically, to method and apparatus for improving energy efficiency.
  • Radio unit Energy consumption is important for operation and management of a communication network such as mobile network.
  • various types of radio units may be employed to support wireless communications in the network. It may be attractive to make a radio unit operate with relatively low energy consumption.
  • characteristics of energy consumption of a radio unit are not considered in current operation of a communication device such as a radio base station (RBS) . This may increase system energy cost and degrade network performance. Therefore, it may be desirable to optimize energy efficiency of a radio unit in a communication network.
  • Various exemplary embodiments of the present disclosure propose a solution for improving energy efficiency, which can enable energy consumption variation of a radio unit in frequency domain to be considered in resource scheduling and allocation, so as to reduce energy consumption and enhance network performance by maximizing the utilization of radio resource for which the radio unit may have good energy efficiency.
  • a method performed by a network node such as a base station.
  • the method comprises obtaining energy efficiency information.
  • the energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies.
  • the method may further comprise scheduling radio resource based at least in part on the energy efficiency information.
  • the scheduling of the radio resource based at least in part on the energy efficiency information may comprise: performing physical resource block (PRB) allocation in frequency domain, according to a scheduling rule related to the energy efficiency information.
  • PRB physical resource block
  • the scheduling of the radio resource based at least in part on the energy efficiency information may comprise: optimizing the PRB allocation based at least in part on one or more of service requirement, channel quality, subscriber information and network configuration.
  • the energy efficiency information may be obtained according to at least one of: test information of the radio unit, and design information applicable to a type of radio units comprising the radio unit.
  • the method according to the first aspect of the present disclosure may further comprise: transmitting scheduling information to a terminal device.
  • the scheduling information may indicate radio resource scheduled for the terminal device.
  • an apparatus which may be implemented as a network node.
  • the apparatus may comprise one or more processors and one or more memories storing computer program codes.
  • the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least to obtain energy efficiency information which may indicate energy efficiency of a radio unit of the network node at different frequencies.
  • the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least further to schedule radio resource based at least in part on the energy efficiency information.
  • the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus according to the second aspect of the present disclosure at least to perform any step of the method according to the first aspect of the present disclosure.
  • a computer-readable medium having computer program codes embodied thereon which, when executed on a computer, cause the computer to perform any step of the method according to the first aspect of the present disclosure.
  • an apparatus which may be implemented as a network node.
  • the apparatus may comprise an obtaining unit and a scheduling unit.
  • the obtaining unit may be operable to carry out at least the obtaining step of the method according to the first aspect of the present disclosure.
  • the scheduling unit may be operable to carry out at least the scheduling step of the method according to the first aspect of the present disclosure.
  • a method performed by a terminal device such as a user equipment (UE) .
  • the method comprises receiving scheduling information from a network node.
  • the scheduling information may indicate radio resource scheduled for the terminal device based at least in part on energy efficiency information.
  • the energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies.
  • the radio resource scheduled for the terminal device may comprise one or more PRBs.
  • the one or more PRBs may be allocated in frequency domain according to a scheduling rule related to the energy efficiency information.
  • the allocation of the one or more PRBs may be optimized based at least in part on one or more of service requirement, channel quality, subscriber information and network configuration.
  • the energy efficiency information may be based at least in part on at least one of: test information of the radio unit, and design information applicable to a type of radio units comprising the radio unit.
  • the method according to the fifth aspect of the present disclosure may further comprise: communicating with the network node according to the scheduling information.
  • an apparatus which may be implemented as a terminal device.
  • the apparatus comprises one or more processors and one or more memories storing computer program codes.
  • the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least to receive scheduling information from a network node.
  • the scheduling information may indicate radio resource scheduled for the terminal device based at least in part on energy efficiency information.
  • the energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies.
  • the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least further to communicate with the network node according to the scheduling information.
  • the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus according to the sixth aspect of the present disclosure at least to perform any step of the method according to the fifth aspect of the present disclosure.
  • a computer-readable medium having computer program codes embodied thereon which, when executed on a computer, cause the computer to perform any step of the method according to the fifth aspect of the present disclosure.
  • an apparatus which may be implemented as a terminal device.
  • the apparatus comprises a receiving unit and optionally a communicating unit.
  • the receiving unit may be operable to carry out at least the receiving step of the method according to the fifth aspect of the present disclosure.
  • the communicating unit may be operable to carry out at least the communicating step of the method according to the fifth aspect of the present disclosure.
  • the energy efficiency of the radio unit at the different frequencies may be related to at least one of: filter insertion loss at the different frequencies, and power amplifier efficiency at the different frequencies.
  • the energy efficiency information may indicate that the energy efficiency of the radio unit is higher at a first frequency than at a second frequency.
  • the scheduling rule may indicate that transmission power for a PRB allocated to the first frequency is higher than transmission power for a PRB allocated to the second frequency.
  • the energy efficiency information may indicate that the energy efficiency of the radio unit is higher at a third frequency than at a fourth frequency.
  • the scheduling rule may indicate that a probability with which a PRB is allocated to the third frequency is higher than a probability with which the PRB is allocated to the fourth frequency.
  • Various exemplary embodiments according to the present disclosure may be applicable for different types of radio units in wireless communication networks.
  • the proposed solution can save energy and improve network throughput by optimizing the resource scheduling in consideration of energy efficiency characteristics of a radio unit in frequency domain.
  • Fig. 1A-1B are diagrams illustrating examples of filter insertion loss at different frequencies according to some embodiments of the present disclosure
  • Fig. 1C is a diagram illustrating an example of power amplifier (PA) efficiency at different frequencies according to an embodiment of the present disclosure
  • Fig. 2A is a diagram illustrating an example of power consumption of a radio unit at different frequencies according to an embodiment of the present disclosure
  • Fig. 2B is a diagram illustrating an example of variation of the energy efficiency factor at different frequencies according to an embodiment of the present disclosure
  • Figs. 3A-3B are diagrams illustrating exemplary energy efficiency scheduling schemes according to some embodiments of the present disclosure.
  • Fig. 4 is a flowchart illustrating a method according to some embodiments of the present disclosure.
  • Fig. 5 is a flowchart illustrating another method according to some embodiments of the present disclosure.
  • Fig. 6 is a block diagram illustrating an apparatus according to some embodiments of the present disclosure.
  • Fig. 7 is a block diagram illustrating another apparatus according to some embodiments of the present disclosure.
  • Fig. 8 is a block diagram illustrating yet another apparatus according to some embodiments of the present disclosure.
  • Fig. 9 is a block diagram illustrating a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments of the present disclosure
  • Fig. 10 is a block diagram illustrating a host computer communicating via a base station with a UE over a partially wireless connection in accordance with some embodiments of the present disclosure
  • Fig. 11 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure
  • Fig. 12 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure
  • Fig. 13 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure.
  • Fig. 14 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure.
  • the term “communication network” refers to a network following any suitable communication standards, such as new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , and so on.
  • NR new radio
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • HSPA high-speed packet access
  • the communications between a terminal device and a network node in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , 4G, 4.5G, 5G communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • the term “network node” refers to a network device in a communication network via which a terminal device accesses to the network and receives services therefrom.
  • the network node may refer to a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a controller or any other suitable device in a wireless communication network.
  • BS base station
  • AP access point
  • MCE multi-cell/multicast coordination entity
  • the BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNodeB or gNB next generation NodeB
  • RRU remote radio unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • the network node comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like. More generally, however, the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide some service to a terminal device that has accessed to the wireless communication network.
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • transmission points transmission nodes
  • positioning nodes positioning nodes and/or the like.
  • the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide
  • terminal device refers to any end device that can access a communication network and receive services therefrom.
  • the terminal device may refer to a mobile terminal, a user equipment (UE) , or other suitable devices.
  • the UE may be, for example, a subscriber station, a portable subscriber station, a mobile station (MS) or an access terminal (AT) .
  • the terminal device may include, but not limited to, portable computers, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, a mobile phone, a cellular phone, a smart phone, a tablet, a wearable device, a personal digital assistant (PDA) , a vehicle, and the like.
  • PDA personal digital assistant
  • a terminal device may also be called an IoT device and represent a machine or other device that performs monitoring, sensing and/or measurements etc., and transmits the results of such monitoring, sensing and/or measurements etc. to another terminal device and/or a network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3rd generation partnership project (3GPP) context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • 3GPP 3rd generation partnership project
  • the terminal device may be a UE implementing the 3GPP narrow band Internet of things (NB-IoT) standard.
  • NB-IoT 3GPP narrow band Internet of things
  • machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g. refrigerators, televisions, personal wearables such as watches etc.
  • a terminal device may represent a vehicle or other equipment, for example, a medical instrument that is capable of monitoring, sensing and/or reporting etc. on its operational status or other functions associated with its operation.
  • the terms “first” , “second” and so forth refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on” .
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” .
  • the term “another embodiment” is to be read as “at least one other embodiment” .
  • Other definitions, explicit and implicit, may be included below.
  • Wireless communication networks are widely deployed to provide various telecommunication services such as voice, video, data, messaging and broadcasts.
  • energy efficiency of a communication device becomes more and more important for a mobile network.
  • energy cost is the major operating expense for mobile network operators (MNO) .
  • Radio base station is a non-negligible part of a communication network. Deployment of RBSs with high energy efficiency may be a competitive advantage for mobile telecommunication equipment manufacturers. There may be several energy saving approaches, both with hardware and software/feature. For example, Gallium Nitride power amplifier (PA) transistors with high efficiency and high-integrated chips may be used at hardware side. In addition, envelope tracking and out-phasing technologies can also be used to increase PA efficiency. For software/feature side, the following three options may be applied to save energy:
  • PA Gallium Nitride power amplifier
  • Low energy scheduler solution shaping the downlink traffic data that maximizes the number of blanked subframes (e.g., it may be only allowed to transmit the downlink traffic data in the case of meeting specific criteria) ;
  • SBPS Symbol based power saving
  • MIMO sleep mode reducing power consumption by automatically changing MIMO configuration to single input multiple output (SIMO) configuration in the case that low traffic conditions are detected on a cell, and unused PAs are shutdown accordingly.
  • SIMO single input multiple output
  • Radio units may have different energy efficiency at different frequencies because filter insertion loss and PA efficiency are frequency dependent.
  • Various exemplary embodiments of the present disclosure propose a solution to support optimization of resource scheduling.
  • energy efficiency behavior of a radio unit at different frequencies can be characterized and used for physical resource blocks (PRBs) scheduling and allocation.
  • PRBs physical resource blocks
  • a baseband processing unit (BPU) can prioritize the utilization of frequency resource with good energy efficiency and reduce energy consumption of the radio unit.
  • the proposed solution can be implemented on a new RBS and/or an installed RBS, and enable energy consumption of the RBS to be reduced without any hardware cost. It may be easy for an MNO to understand and apply the proposed solution, since the energy saving can be achieved and measured on a live network, which makes the solution a good candidate as commercial software feature.
  • Figs. 1A-1B are diagrams illustrating examples of filter insertion loss at different frequencies according to some embodiments of the present disclosure.
  • the filter insertion loss in two exemplary frequency ranges are schematically depicted in Figs. 1A-1B, respectively.
  • the frequency ranges, the measured frequencies and the filter insertion loss values shown in Figs. 1A-1B are just as examples, and similar filter insertion loss characteristics may be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
  • a filter of a radio unit may have different insertion loss at different frequencies.
  • the filter may have bigger insertion loss at bottom frequencies (i.e., the left part of the frequency band) and top frequencies (i.e., the right part of the frequency band) than middle frequencies (i.e., the middle part of the frequency band) .
  • radio units are calibrated during production to have the same output power at an antenna port for different frequencies. Filter insertion loss varied with frequency may be compensated by different PA output power at different frequencies. Different PA output power means different energy consumption.
  • Fig. 1C is a diagram illustrating an example of PA efficiency at different frequencies according to an embodiment of the present disclosure. As shown in Fig. 1C, due to the impaction by transistor characteristic and matching, a PA may have different efficiency at different frequencies, especially for a wide frequency range. Similar to Figs. 1A-1B, Fig. 1C merely shows an example of PA efficiency at different frequencies within an exemplary frequency range. It can be realized that similar characteristics of PA efficiency may also be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
  • Fig. 2A is a diagram illustrating an example of power consumption of a radio unit at different frequencies according to an embodiment of the present disclosure.
  • radio power consumption may be different when the same amount of data is transmitted at different frequencies, and thus a radio unit may have different energy efficiency at different frequencies.
  • sending the same amount of data at different frequencies may result in different radio power consumption (also called energy consumption in some embodiments) .
  • radio power consumption also called energy consumption in some embodiments
  • sending data at frequency F2 has the lowest energy consumption
  • sending data at frequency F1 has the highest energy consumption.
  • the frequency bands, the measured frequencies and the power consumption values shown in Fig. 2A are just as examples, and similar characteristics of radio power consumption may also be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
  • the energy/power consumption characteristics of a radio unit may be considered for operations of a network node such as RBS.
  • a network node such as RBS.
  • power consumption variation of a radio unit in frequency domain may be characterized by an energy efficiency factor.
  • Fig. 2B is a diagram illustrating an example of variation of the energy efficiency factor at different frequencies according to an embodiment of the present disclosure.
  • the energy efficiency factor may be the measurement on efficiency of a radio unit in converting electric power to radio frequency (RF) power.
  • the energy efficiency factor can be obtained by measuring the output power W of the radio unit, recording the current C and the voltage V of a PA at different frequencies for the radio unit.
  • the energy efficiency factor for each frequency can be calculated according to the formula W/ (V*C) .
  • W/ (V*C) the formula
  • the larger value of the energy efficiency factor means better energy efficiency of the radio unit.
  • different values of the energy efficiency factor reflect that the radio unit has varied energy efficiency at different frequencies, and the energy efficiency at middle frequencies is higher than that at bottom and top frequencies in the frequency band. It can be appreciated that similar characteristics of energy efficiency of a radio unit may also be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
  • the energy efficiency factor can be determined by a production test of the radio unit.
  • the energy efficiency of the radio unit can be measured at different frequencies during the production test. This approach can accurately characterize the radio unit, although the cost may be the increased production test time.
  • the energy efficiency factor can be determined by using some typical design values. In this case, several samples may be measured and typical values can be calculated for a certain type of product. Then the same set of values (e.g., the typical values calculated for this type of product) can be used to represent the energy efficiency factor for different radio units belonging to this type of product. This approach can save production test time and may be used for delivered radio units, although some unit variation may not be covered.
  • Figs. 3A-3B are diagrams illustrating exemplary energy efficiency scheduling schemes according to some embodiments of the present disclosure.
  • the upper part of Fig. 3A shows a scheduling scheme which allocates PRBs randomly to the corresponding frequencies without considering energy efficiency of a radio unit.
  • the lower part of Fig. 3A shows a scheduling scheme which can optimize energy efficiency of a radio unit by maximizing the utilization of frequency resource with good energy efficiency (e.g., which can be indicated by an energy efficiency factor) .
  • the upper part of Fig. 3B shows a conventional scheduling scheme which allocates PRBs randomly within the available frequency band
  • the lower part of Fig. 3B shows a scheme using an energy efficiency scheduler.
  • an energy efficiency factor may be used to calculate and optimize radio resource (e.g., one or more physical resource blocks (PRBs) , etc. ) allocation in frequency domain.
  • radio resource e.g., one or more physical resource blocks (PRBs) , etc.
  • the energy efficiency factor and/or related information may be obtained by a baseband processing unit (BPU) , for example, from a radio unit or any other suitable device or component.
  • BPU baseband processing unit
  • the energy efficiency factor may be preconfigured to an energy efficiency scheduler of the BPU.
  • the BPU can schedule one or more PRBs (which are represented by vertical bars with different height to indicate different normalized PRB power, as shown in Fig. 3A) for communication.
  • the BPU can allocate high power PRBs (e.g., PRBs configured with high transmission power) to the frequencies with good energy efficiency (corresponding to high energy efficiency factor values) , and allocate low power PRBs (e.g., PRBs configured with low transmission power) to the frequencies with bad energy efficiency (corresponding to low energy efficiency factor values) .
  • the BPU may avoid allocating PRBs to the frequencies (e.g., top and bottom frequencies) with bad energy efficiency, so that the best energy efficiency can be achieved.
  • the scheduled PRBs are represented by vertical bars with the same height, meaning that the PRBs distributed in the frequency band have the same normalized PRB power. It can be appreciated that the same or similar scheduling scheme as described with respect to Fig. 3B may be applicable to allocation of PRBs with different normalized PRB power.
  • the scheduling schemes as shown in the lower parts of Figs. 3A-3B may be used in combination to schedule PRBs.
  • the BPU may choose not to use some frequencies with bad energy efficiency, and can perform PRB allocation at the remaining frequencies available for scheduling. Then the BPU may allocate high power PRBs to the available frequencies having relatively higher energy efficiency, and allocate low power PRBs to the available frequencies having relatively lower energy efficiency.
  • a high power PRB may not be always allocated to a frequency with relatively higher energy efficiency, especially for the case that the channel quality at this frequency is lower than a specific quality threshold.
  • energy efficiency and the channel quality there may be other factors (e.g., user demand, service requirement, etc. ) to be considered when allocating PRBs to different frequencies.
  • some exemplary embodiments may also be implemented by using other suitable scheduling schemes which can optimize the energy efficiency of a radio unit by maximizing the utilization of frequency resource with good energy efficiency, without degrading network performance and affecting user experience.
  • some PRBs may be configured with specified frequency resource, for example, the PRBs containing cell specific reference signal (CRS) in an LTE network.
  • CRS cell specific reference signal
  • Various exemplary embodiments propose a solution of improving energy efficiency, for example, by adjusting allocation of some PRBs (e.g., user specific PRBs including user payload and user reference signal) in frequency domain according to the scheduling schemes shown in the lower parts of Figs. 3A-3B.
  • the proposed solution may be valid for both 4G/LTE and 5G/NR networks and applicable for different types of radio units. There may be significant benefits on classic macro and middle band advanced antenna systems (AAS) radio units where a PA may consume a large part of energy.
  • AAS advanced antenna systems
  • the proposed solution may have no dependence on the hardware realization of a radio unit and a BPU. It can be used for various devices from different vendors, and can work together with existing energy efficiency features, such as LESS, SBPS, MIMO sleep mode, etc.
  • the proposed solution can work for open-radio access network (O-RAN) where radio units and BPUs may be provided by different vendors.
  • the proposed solution can be implemented on an installed RBS, for example, by using typical design values to characterize the energy efficiency factor of a radio unit of the RBS.
  • the operation temperature of the radio unit may be lower, and this can bring benefit to mean time between failure (MTBF) of a product.
  • some radio units may not have the same output power at different frequencies, mainly due to limitation of the PA and/or thermal dissipation and/or power supply capability. In this case, the radio power consumption at different frequencies may be similar but the output power is different.
  • the proposed solution then can make frequencies corresponding to higher output power to be utilized with higher probability, so as to improve network coverage and throughput.
  • Fig. 4 is a flowchart illustrating a method 400 according to some embodiments of the present disclosure.
  • the method 400 illustrated in Fig. 4 may be performed by a network node or an apparatus communicatively coupled to the network node.
  • the network node may comprise a base station, an AP, a transmission point or any other suitable entity which may be capable of serving one or more terminal devices such as UEs according to specific communication configuration.
  • the network node can obtain energy efficiency information, as shown in block 402.
  • the energy efficiency information (e.g., the energy efficiency factor as described with respect to Fig. 2B, Fig. 3A and Fig. 3B) may indicate energy efficiency of a radio unit of the network node at different frequencies.
  • the energy efficiency of the radio unit at the different frequencies may be related to filter insertion loss at the different frequencies and/or PA efficiency at the different frequencies, as described in connection with Figs. 1A-2B. It can be appreciated that the energy efficiency of the radio unit at the different frequencies may also be related to other possible factors such as physical characteristics of the radio unit and/or environmental elements.
  • the energy efficiency information may be obtained according to test information of the radio unit, for example, some values of the energy efficiency factor measured by the production test of the radio unit.
  • the energy efficiency information may be obtained according to design information applicable to a type of radio units comprising the radio unit, for example, some typical design values of the energy efficiency factor measured and/or calculated for a certain type of product to which the radio unit belongs.
  • the energy efficiency information may be preconfigured for the network node, and/or transferred to the network node from a device or unit (e.g., the radio unit) accessible by the network node.
  • the network node can schedule radio resource based at least in part on the energy efficiency information, as shown in block 404.
  • the radio resource may comprise downlink transmission resource to be scheduled for one or more terminal devices served by the network node. It can be realized that although some exemplary embodiments are described in the context of downlink resource scheduling, the method 400 illustrated in Fig. 4 may also be applicable to uplink resource scheduling in some cases.
  • the scheduling of the radio resource based at least in part on the energy efficiency information may comprise: performing PRB allocation in frequency domain, according to a scheduling rule related to the energy efficiency information.
  • the energy efficiency information may indicate that the energy efficiency of the radio unit is higher at a first frequency than at a second frequency.
  • the scheduling rule may indicate that transmission power for a PRB allocated to the first frequency is higher than transmission power for a PRB allocated to the second frequency. That is to say, the scheduling rule may indicate to allocate a PRB with relatively higher power to a frequency with relatively higher energy efficiency as much as possible.
  • the scheduling rule may indicate that a probability with which a PRB is allocated to the third frequency is higher than a probability with which the PRB is allocated to the fourth frequency. That is to say, the scheduling rule may indicate to prioritize utilization of the frequency resource with relatively higher energy efficiency.
  • the scheduling of the radio resource based at least in part on the energy efficiency information may further comprise: optimizing the PRB allocation based at least in part on one or more of service requirement, channel quality, subscriber information, network configuration, etc. Considering that a frequency with higher energy efficiency may not have good channel quality and cannot support traffic transmission for a specific service, it may be advantageous to adjust the PRB allocation according to other information about service requirement, channel quality, subscriber information and/or network configuration, so as to achieve balance between energy efficiency and communication performance.
  • the network node can transmit scheduling information to a terminal device.
  • the scheduling information may indicate radio resource scheduled for the terminal device, for example, one or more PRBs assigned to the terminal device.
  • the one or more PRBs may be distributed in frequency domain in a manner that the energy/power of the network node can be saved without affecting traffic throughput and user experience.
  • Fig. 5 is a flowchart illustrating a method 500 according to some embodiments of the present disclosure.
  • the method 500 illustrated in Fig. 5 may be performed by a terminal device or an apparatus communicatively coupled to the terminal device.
  • the terminal device such as a UE may be capable of communicating with a network node (e.g., a base station, an AP, a transmission point, etc. ) according to specific communication configuration.
  • a network node e.g., a base station, an AP, a transmission point, etc.
  • operations/steps of the method 500 illustrated in Fig. 5 may correspond to operations/steps of the method 400 illustrated in Fig. 4.
  • the network node described in connection with Fig. 4 can perform the method 400 to implement at least part of resource scheduling for the terminal device as described in connection with Fig. 5.
  • the terminal device can receive scheduling information from a network node, as shown in block 502.
  • the scheduling information may indicate radio resource scheduled for the terminal device based at least in part on energy efficiency information.
  • the terminal device may communicate with the network node according to the scheduling information, as shown in block 504.
  • the scheduling information received by the terminal device as described in block 502 may correspond to the scheduling information transmitted by the network node as described in connection with Fig. 4.
  • the energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies. As described with respect to Fig. 4. the energy efficiency information may be based at least in part on test information of the radio unit and/or design information applicable to a type of radio units comprising the radio unit.
  • the radio resource scheduled for the terminal device may comprise one or more PRBs which are allocated in frequency domain according to a scheduling rule related to the energy efficiency information.
  • the scheduling rule may indicate that a frequency with higher energy efficiency is preferred in PRB allocation.
  • the scheduling rule may indicate that a high power PRB has a larger probability to be allocated to a frequency with higher energy efficiency.
  • the allocation of the one or more PRBs may be optimized, for example, based at least in part on service requirement, channel quality, subscriber information, network configuration and/or any other information which may affect resource allocation.
  • the optimization of the PRB allocation can save at least energy consumption of the network node while maintaining communication performance between the network node and the terminal device.
  • Figs. 4-5 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) .
  • the schematic flow chart diagrams described above are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of specific embodiments of the presented methods. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated methods. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.
  • Fig. 6 is a block diagram illustrating an apparatus 600 according to various embodiments of the present disclosure.
  • the apparatus 600 may comprise one or more processors such as processor 601 and one or more memories such as memory 602 storing computer program codes 603.
  • the memory 602 may be non-transitory machine/processor/computer readable storage medium.
  • the apparatus 600 may be implemented as an integrated circuit chip or module that can be plugged or installed into a network node as described with respect to Fig. 4 or a terminal device as described with respect to Fig. 5.
  • the apparatus 600 may be implemented as a network node as described with respect to Fig. 4 or a terminal device as described with respect to Fig. 5.
  • the one or more memories 602 and the computer program codes 603 may be configured to, with the one or more processors 601, cause the apparatus 600 at least to perform any operation of the method as described in connection with Fig. 4. In other implementations, the one or more memories 602 and the computer program codes 603 may be configured to, with the one or more processors 601, cause the apparatus 600 at least to perform any operation of the method as described in connection with Fig. 5. Alternatively or additionally, the one or more memories 602 and the computer program codes 603 may be configured to, with the one or more processors 601, cause the apparatus 600 at least to perform more or less operations to implement the proposed methods according to the exemplary embodiments of the present disclosure.
  • Fig. 7 is a block diagram illustrating an apparatus 700 according to some embodiments of the present disclosure.
  • the apparatus 700 may comprise an obtaining unit 701 and a scheduling unit 702.
  • the apparatus 700 may be implemented in a network node such as a base station.
  • the obtaining unit 701 may be operable to carry out the operation in block 402
  • the scheduling unit 702 may be operable to carry out the operation in block 404.
  • the obtaining unit 701 and/or the scheduling unit 702 may be operable to carry out more or less operations to implement the proposed methods according to the exemplary embodiments of the present disclosure.
  • Fig. 8 is a block diagram illustrating an apparatus 800 according to some embodiments of the present disclosure.
  • the apparatus 800 may comprise a receiving unit 801 and optionally a communicating unit 802.
  • the apparatus 800 may be implemented in a terminal device such as a UE.
  • the receiving unit 801 may be operable to carry out the operation in block 502
  • the communicating unit 802 may be operable to carry out the operation in block 504.
  • the receiving unit 801 and/or the communicating unit 802 may be operable to carry out more or less operations to implement the proposed methods according to the exemplary embodiments of the present disclosure.
  • Fig. 9 is a block diagram illustrating a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments of the present disclosure.
  • a communication system includes a telecommunication network 910, such as a 3GPP-type cellular network, which comprises an access network 911, such as a radio access network, and a core network 914.
  • the access network 911 comprises a plurality of base stations 912a, 912b, 912c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area 913a, 913b, 913c.
  • Each base station 912a, 912b, 912c is connectable to the core network 914 over a wired or wireless connection 915.
  • a first UE 991 located in a coverage area 913c is configured to wirelessly connect to, or be paged by, the corresponding base station 912c.
  • a second UE 992 in a coverage area 913a is wirelessly connectable to the corresponding base station 912a. While a plurality of UEs 991, 992 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 912.
  • the telecommunication network 910 is itself connected to a host computer 930, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm.
  • the host computer 930 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider.
  • Connections 921 and 922 between the telecommunication network 910 and the host computer 930 may extend directly from the core network 914 to the host computer 930 or may go via an optional intermediate network 920.
  • An intermediate network 920 may be one of, or a combination of more than one of, a public, private or hosted network; the intermediate network 920, if any, may be a backbone network or the Internet; in particular, the intermediate network 920 may comprise two or more sub-networks (not shown) .
  • the communication system of Fig. 9 as a whole enables connectivity between the connected UEs 991, 992 and the host computer 930.
  • the connectivity may be described as an over-the-top (OTT) connection 950.
  • the host computer 930 and the connected UEs 991, 992 are configured to communicate data and/or signaling via the OTT connection 950, using the access network 911, the core network 914, any intermediate network 920 and possible further infrastructure (not shown) as intermediaries.
  • the OTT connection 950 may be transparent in the sense that the participating communication devices through which the OTT connection 950 passes are unaware of routing of uplink and downlink communications.
  • the base station 912 may not or need not be informed about the past routing of an incoming downlink communication with data originating from the host computer 930 to be forwarded (e.g., handed over) to a connected UE 991. Similarly, the base station 912 need not be aware of the future routing of an outgoing uplink communication originating from the UE 991 towards the host computer 930.
  • Fig. 10 is a block diagram illustrating a host computer communicating via a base station with a UE over a partially wireless connection in accordance with some embodiments of the present disclosure.
  • a host computer 1010 comprises hardware 1015 including a communication interface 1016 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of the communication system 1000.
  • the host computer 1010 further comprises a processing circuitry 1018, which may have storage and/or processing capabilities.
  • the processing circuitry 1018 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • the host computer 1010 further comprises software 1011, which is stored in or accessible by the host computer 1010 and executable by the processing circuitry 1018.
  • the software 1011 includes a host application 1012.
  • the host application 1012 may be operable to provide a service to a remote user, such as UE 1030 connecting via an OTT connection 1050 terminating at the UE 1030 and the host computer 1010. In providing the service to the remote user, the host application 1012 may provide user data which is transmitted using the OTT connection 1050.
  • the communication system 1000 further includes a base station 1020 provided in a telecommunication system and comprising hardware 1025 enabling it to communicate with the host computer 1010 and with the UE 1030.
  • the hardware 1025 may include a communication interface 1026 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 1000, as well as a radio interface 1027 for setting up and maintaining at least a wireless connection 1070 with the UE 1030 located in a coverage area (not shown in Fig. 10) served by the base station 1020.
  • the communication interface 1026 may be configured to facilitate a connection 1060 to the host computer 1010.
  • the connection 1060 may be direct or it may pass through a core network (not shown in Fig.
  • the hardware 1025 of the base station 1020 further includes a processing circuitry 1028, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • the base station 1020 further has software 1021 stored internally or accessible via an external connection.
  • the communication system 1000 further includes the UE 1030 already referred to.
  • Its hardware 1035 may include a radio interface 1037 configured to set up and maintain a wireless connection 1070 with a base station serving a coverage area in which the UE 1030 is currently located.
  • the hardware 1035 of the UE 1030 further includes a processing circuitry 1038, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • the UE 1030 further comprises software 1031, which is stored in or accessible by the UE 1030 and executable by the processing circuitry 1038.
  • the software 1031 includes a client application 1032.
  • the client application 1032 may be operable to provide a service to a human or non-human user via the UE 1030, with the support of the host computer 1010.
  • an executing host application 1012 may communicate with the executing client application 1032 via the OTT connection 1050 terminating at the UE 1030 and the host computer 1010.
  • the client application 1032 may receive request data from the host application 1012 and provide user data in response to the request data.
  • the OTT connection 1050 may transfer both the request data and the user data.
  • the client application 1032 may interact with the user to generate the user data that it provides.
  • the host computer 1010, the base station 1020 and the UE 1030 illustrated in Fig. 10 may be similar or identical to the host computer 930, one of base stations 912a, 912b, 912c and one of UEs 991, 992 of Fig. 9, respectively.
  • the inner workings of these entities may be as shown in Fig. 10 and independently, the surrounding network topology may be that of Fig. 9.
  • the OTT connection 1050 has been drawn abstractly to illustrate the communication between the host computer 1010 and the UE 1030 via the base station 1020, without explicit reference to any intermediary devices and the precise routing of messages via these devices.
  • Network infrastructure may determine the routing, which it may be configured to hide from the UE 1030 or from the service provider operating the host computer 1010, or both. While the OTT connection 1050 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
  • Wireless connection 1070 between the UE 1030 and the base station 1020 is in accordance with the teachings of the embodiments described throughout this disclosure.
  • One or more of the various embodiments improve the performance of OTT services provided to the UE 1030 using the OTT connection 1050, in which the wireless connection 1070 forms the last segment. More precisely, the teachings of these embodiments may improve the latency and the power consumption, and thereby provide benefits such as lower complexity, reduced time required to access a cell, better responsiveness, extended battery lifetime, etc.
  • a measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve.
  • the measurement procedure and/or the network functionality for reconfiguring the OTT connection 1050 may be implemented in software 1011 and hardware 1015 of the host computer 1010 or in software 1031 and hardware 1035 of the UE 1030, or both.
  • sensors may be deployed in or in association with communication devices through which the OTT connection 1050 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which the software 1011, 1031 may compute or estimate the monitored quantities.
  • the reconfiguring of the OTT connection 1050 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect the base station 1020, and it may be unknown or imperceptible to the base station 1020. Such procedures and functionalities may be known and practiced in the art.
  • measurements may involve proprietary UE signaling facilitating the host computer 1010’s measurements of throughput, propagation times, latency and the like.
  • the measurements may be implemented in that the software 1011 and 1031 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1050 while it monitors propagation times, errors etc.
  • Fig. 11 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 11 will be included in this section.
  • the host computer provides user data.
  • substep 1111 (which may be optional) of step 1110, the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE.
  • step 1130 the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure.
  • step 1140 the UE executes a client application associated with the host application executed by the host computer.
  • Fig. 12 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 12 will be included in this section.
  • the host computer provides user data.
  • the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE.
  • the transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure.
  • step 1230 (which may be optional) , the UE receives the user data carried in the transmission.
  • Fig. 13 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 13 will be included in this section.
  • step 1310 the UE receives input data provided by the host computer. Additionally or alternatively, in step 1320, the UE provides user data.
  • substep 1321 (which may be optional) of step 1320, the UE provides the user data by executing a client application.
  • substep 1311 (which may be optional) of step 1310, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer.
  • the executed client application may further consider user input received from the user.
  • the UE initiates, in substep 1330 (which may be optional) , transmission of the user data to the host computer.
  • step 1340 of the method the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
  • Fig. 14 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 14 will be included in this section.
  • the base station receives user data from the UE.
  • the base station initiates transmission of the received user data to the host computer.
  • step 1430 (which may be optional) , the host computer receives the user data carried in the transmission initiated by the base station.
  • a method implemented in a communication system which may include a host computer, a base station and a UE.
  • the method may comprise providing user data at the host computer.
  • the method may comprise, at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station which may perform any step of the exemplary method 400 as describe with respect to Fig. 4.
  • a communication system including a host computer.
  • the host computer may comprise processing circuitry configured to provide user data, and a communication interface configured to forward the user data to a cellular network for transmission to a UE.
  • the cellular network may comprise a base station having a radio interface and processing circuitry.
  • the base station s processing circuitry may be configured to perform any step of the exemplary method 400 as describe with respect to Fig. 4.
  • a method implemented in a communication system which may include a host computer, a base station and a UE.
  • the method may comprise providing user data at the host computer.
  • the method may comprise, at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station.
  • the UE may perform any step of the exemplary method 500 as describe with respect to Fig. 5.
  • a communication system including a host computer.
  • the host computer may comprise processing circuitry configured to provide user data, and a communication interface configured to forward user data to a cellular network for transmission to a UE.
  • the UE may comprise a radio interface and processing circuitry.
  • the UE’s processing circuitry may be configured to perform any step of the exemplary method 500 as describe with respect to Fig. 5.
  • a method implemented in a communication system which may include a host computer, a base station and a UE.
  • the method may comprise, at the host computer, receiving user data transmitted to the base station from the UE which may perform any step of the exemplary method 500 as describe with respect to Fig. 5.
  • a communication system including a host computer.
  • the host computer may comprise a communication interface configured to receive user data originating from a transmission from a UE to a base station.
  • the UE may comprise a radio interface and processing circuitry.
  • the UE’s processing circuitry may be configured to perform any step of the exemplary method 500 as describe with respect to Fig. 5.
  • a method implemented in a communication system which may include a host computer, a base station and a UE.
  • the method may comprise, at the host computer, receiving, from the base station, user data originating from a transmission which the base station has received from the UE.
  • the base station may perform any step of the exemplary method 400 as describe with respect to Fig. 4.
  • a communication system which may include a host computer.
  • the host computer may comprise a communication interface configured to receive user data originating from a transmission from a UE to a base station.
  • the base station may comprise a radio interface and processing circuitry.
  • the base station’s processing circuitry may be con-figured to perform any step of the exemplary method 400 as describe with respect to Fig. 4.
  • the various exemplary embodiments may be implemented in hardware or special purpose chips, circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the exemplary embodiments of the disclosure may be practiced in various components such as integrated circuit chips and modules. It should thus be appreciated that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, where the integrated circuit may comprise circuitry (as well as possibly firmware) for embodying at least one or more of a data processor, a digital signal processor, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this disclosure.
  • exemplary embodiments of the disclosure may be embodied in computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device.
  • the computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, random access memory (RAM) , etc.
  • RAM random access memory
  • the function of the program modules may be combined or distributed as desired in various embodiments.
  • the function may be embodied in whole or partly in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA) , and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for improving energy efficiency is provided. The method which may be performed by a network node comprises obtaining energy efficiency information (402). The energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies. The method may further comprise scheduling radio resource based at least in part on the energy efficiency information (404).

Description

METHOD AND APPARATUS FOR IMPROVING ENERGY EFFICIENCY FIELD OF THE INVENTION
The present disclosure generally relates to communication networks, and more specifically, to method and apparatus for improving energy efficiency.
BACKGROUND
This section introduces aspects that may facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
Communication service providers and network operators have been continually facing challenges to deliver value and convenience to consumers by, for example, providing compelling network services and performance. With the rapid development of networking and communication technologies, wireless communication networks are expected to achieve high traffic capacity and end-user data rate with lower latency. In order to meet dramatically increasing network service demands, one interesting option for communication technique development is to configure various types of resource such as power resource and time-frequency resource for a radio device to be adaptive to the changing network environment and different quality of service (QoS) requirements of a diversity of traffics.
SUMMARY
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed  subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Energy consumption is important for operation and management of a communication network such as mobile network. With the evolution of new mobile technologies and growing network traffics, various types of radio units may be employed to support wireless communications in the network. It may be attractive to make a radio unit operate with relatively low energy consumption. However, characteristics of energy consumption of a radio unit are not considered in current operation of a communication device such as a radio base station (RBS) . This may increase system energy cost and degrade network performance. Therefore, it may be desirable to optimize energy efficiency of a radio unit in a communication network.
Various exemplary embodiments of the present disclosure propose a solution for improving energy efficiency, which can enable energy consumption variation of a radio unit in frequency domain to be considered in resource scheduling and allocation, so as to reduce energy consumption and enhance network performance by maximizing the utilization of radio resource for which the radio unit may have good energy efficiency.
According to a first aspect of the present disclosure, there is provided a method performed by a network node such as a base station. The method comprises obtaining energy efficiency information. The energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies. The method may further comprise scheduling radio resource based at least in part on the energy efficiency information.
In accordance with some exemplary embodiments, the scheduling of the radio resource based at least in part on the energy efficiency information may comprise: performing physical resource block (PRB) allocation in frequency domain, according  to a scheduling rule related to the energy efficiency information.
In accordance with some exemplary embodiments, the scheduling of the radio resource based at least in part on the energy efficiency information may comprise: optimizing the PRB allocation based at least in part on one or more of service requirement, channel quality, subscriber information and network configuration.
In accordance with some exemplary embodiments, the energy efficiency information may be obtained according to at least one of: test information of the radio unit, and design information applicable to a type of radio units comprising the radio unit.
In accordance with some exemplary embodiments, the method according to the first aspect of the present disclosure may further comprise: transmitting scheduling information to a terminal device. The scheduling information may indicate radio resource scheduled for the terminal device.
According to a second aspect of the present disclosure, there is provided an apparatus which may be implemented as a network node. The apparatus may comprise one or more processors and one or more memories storing computer program codes. The one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least to obtain energy efficiency information which may indicate energy efficiency of a radio unit of the network node at different frequencies. According to some exemplary embodiments, the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least further to schedule radio resource based at least in part on the energy efficiency information.
In accordance with some exemplary embodiments, the one or more memories and the computer program codes may be configured to, with the one or more  processors, cause the apparatus according to the second aspect of the present disclosure at least to perform any step of the method according to the first aspect of the present disclosure.
According to a third aspect of the present disclosure, there is provided a computer-readable medium having computer program codes embodied thereon which, when executed on a computer, cause the computer to perform any step of the method according to the first aspect of the present disclosure.
According to a fourth aspect of the present disclosure, there is provided an apparatus which may be implemented as a network node. The apparatus may comprise an obtaining unit and a scheduling unit. In accordance with some exemplary embodiments, the obtaining unit may be operable to carry out at least the obtaining step of the method according to the first aspect of the present disclosure. The scheduling unit may be operable to carry out at least the scheduling step of the method according to the first aspect of the present disclosure.
According to a fifth aspect of the present disclosure, there is provided a method performed by a terminal device such as a user equipment (UE) . The method comprises receiving scheduling information from a network node. The scheduling information may indicate radio resource scheduled for the terminal device based at least in part on energy efficiency information. The energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies.
In accordance with some exemplary embodiments, the radio resource scheduled for the terminal device may comprise one or more PRBs. According to an exemplary embodiment, the one or more PRBs may be allocated in frequency domain according to a scheduling rule related to the energy efficiency information.
In accordance with some exemplary embodiments, the allocation of the one  or more PRBs may be optimized based at least in part on one or more of service requirement, channel quality, subscriber information and network configuration.
In accordance with some exemplary embodiments, the energy efficiency information may be based at least in part on at least one of: test information of the radio unit, and design information applicable to a type of radio units comprising the radio unit.
In accordance with some exemplary embodiments, the method according to the fifth aspect of the present disclosure may further comprise: communicating with the network node according to the scheduling information.
According to a sixth aspect of the present disclosure, there is provided an apparatus which may be implemented as a terminal device. The apparatus comprises one or more processors and one or more memories storing computer program codes. The one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least to receive scheduling information from a network node. The scheduling information may indicate radio resource scheduled for the terminal device based at least in part on energy efficiency information. The energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies.
According to some exemplary embodiments, the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus at least further to communicate with the network node according to the scheduling information.
In accordance with some exemplary embodiments, the one or more memories and the computer program codes may be configured to, with the one or more processors, cause the apparatus according to the sixth aspect of the present disclosure  at least to perform any step of the method according to the fifth aspect of the present disclosure.
According to a seventh aspect of the present disclosure, there is provided a computer-readable medium having computer program codes embodied thereon which, when executed on a computer, cause the computer to perform any step of the method according to the fifth aspect of the present disclosure.
According to an eighth aspect of the present disclosure, there is provided an apparatus which may be implemented as a terminal device. The apparatus comprises a receiving unit and optionally a communicating unit. In accordance with some exemplary embodiments, the receiving unit may be operable to carry out at least the receiving step of the method according to the fifth aspect of the present disclosure. The communicating unit may be operable to carry out at least the communicating step of the method according to the fifth aspect of the present disclosure.
In accordance with some exemplary embodiments, the energy efficiency of the radio unit at the different frequencies may be related to at least one of: filter insertion loss at the different frequencies, and power amplifier efficiency at the different frequencies.
In accordance with some exemplary embodiments, the energy efficiency information may indicate that the energy efficiency of the radio unit is higher at a first frequency than at a second frequency. In this case, the scheduling rule may indicate that transmission power for a PRB allocated to the first frequency is higher than transmission power for a PRB allocated to the second frequency.
In accordance with some exemplary embodiments, the energy efficiency information may indicate that the energy efficiency of the radio unit is higher at a third frequency than at a fourth frequency. In this case, the scheduling rule may indicate that  a probability with which a PRB is allocated to the third frequency is higher than a probability with which the PRB is allocated to the fourth frequency.
Various exemplary embodiments according to the present disclosure may be applicable for different types of radio units in wireless communication networks. The proposed solution can save energy and improve network throughput by optimizing the resource scheduling in consideration of energy efficiency characteristics of a radio unit in frequency domain.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure itself, the preferable mode of use and further objectives are best understood by reference to the following detailed description of the embodiments when read in conjunction with the accompanying drawings, in which:
Fig. 1A-1B are diagrams illustrating examples of filter insertion loss at different frequencies according to some embodiments of the present disclosure;
Fig. 1C is a diagram illustrating an example of power amplifier (PA) efficiency at different frequencies according to an embodiment of the present disclosure;
Fig. 2A is a diagram illustrating an example of power consumption of a radio unit at different frequencies according to an embodiment of the present disclosure;
Fig. 2B is a diagram illustrating an example of variation of the energy efficiency factor at different frequencies according to an embodiment of the present disclosure;
Figs. 3A-3B are diagrams illustrating exemplary energy efficiency scheduling schemes according to some embodiments of the present disclosure;
Fig. 4 is a flowchart illustrating a method according to some embodiments of the present disclosure;
Fig. 5 is a flowchart illustrating another method according to some embodiments of the present disclosure;
Fig. 6 is a block diagram illustrating an apparatus according to some embodiments of the present disclosure;
Fig. 7 is a block diagram illustrating another apparatus according to some embodiments of the present disclosure;
Fig. 8 is a block diagram illustrating yet another apparatus according to some embodiments of the present disclosure;
Fig. 9 is a block diagram illustrating a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments of the present disclosure;
Fig. 10 is a block diagram illustrating a host computer communicating via a base station with a UE over a partially wireless connection in accordance with some embodiments of the present disclosure;
Fig. 11 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure;
Fig. 12 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure;
Fig. 13 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment of the present disclosure; and
Fig. 14 is a flowchart illustrating a method implemented in a communication  system, in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
The embodiments of the present disclosure are described in detail with reference to the accompanying drawings. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure. Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present disclosure should be or are in any single embodiment of the disclosure. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present disclosure. Furthermore, the described features, advantages, and characteristics of the disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the disclosure may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the disclosure.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , and so on. Furthermore, the communications between a terminal device and a network node in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G,  the third generation (3G) , 4G, 4.5G, 5G communication protocols, and/or any other protocols either currently known or to be developed in the future.
The term “network node” refers to a network device in a communication network via which a terminal device accesses to the network and receives services therefrom. The network node may refer to a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a controller or any other suitable device in a wireless communication network. The BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
Yet further examples of the network node comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like. More generally, however, the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide some service to a terminal device that has accessed to the wireless communication network.
The term “terminal device” refers to any end device that can access a communication network and receive services therefrom. By way of example and not limitation, the terminal device may refer to a mobile terminal, a user equipment (UE) , or other suitable devices. The UE may be, for example, a subscriber station, a portable subscriber station, a mobile station (MS) or an access terminal (AT) . The terminal device may include, but not limited to, portable computers, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, a mobile phone, a cellular phone, a smart phone, a tablet, a wearable device,  a personal digital assistant (PDA) , a vehicle, and the like.
As yet another specific example, in an Internet of things (IoT) scenario, a terminal device may also be called an IoT device and represent a machine or other device that performs monitoring, sensing and/or measurements etc., and transmits the results of such monitoring, sensing and/or measurements etc. to another terminal device and/or a network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3rd generation partnership project (3GPP) context be referred to as a machine-type communication (MTC) device.
As one particular example, the terminal device may be a UE implementing the 3GPP narrow band Internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g. refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment, for example, a medical instrument that is capable of monitoring, sensing and/or reporting etc. on its operational status or other functions associated with its operation.
As used herein, the terms “first” , “second” and so forth refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
Wireless communication networks are widely deployed to provide various telecommunication services such as voice, video, data, messaging and broadcasts. With dramatic increase of network requirements on traffic capacity and data rates, energy efficiency of a communication device becomes more and more important for a mobile network. On the other hand, energy cost is the major operating expense for mobile network operators (MNO) .
Energy consumption of a radio base station (RBS) is a non-negligible part of a communication network. Deployment of RBSs with high energy efficiency may be a competitive advantage for mobile telecommunication equipment manufacturers. There may be several energy saving approaches, both with hardware and software/feature. For example, Gallium Nitride power amplifier (PA) transistors with high efficiency and high-integrated chips may be used at hardware side. In addition, envelope tracking and out-phasing technologies can also be used to increase PA efficiency. For software/feature side, the following three options may be applied to save energy:
● Low energy scheduler solution (LESS) : shaping the downlink traffic data that maximizes the number of blanked subframes (e.g., it may be only allowed to transmit the downlink traffic data in the case of meeting specific criteria) ;
● Symbol based power saving (SBPS) : turning off power amplifiers (PAs) when there are transmission symbols with no indicated power; and
● Multiple input multiple output (MIMO) sleep mode: reducing power consumption by automatically changing MIMO configuration to single input multiple output (SIMO) configuration in the case that low traffic conditions are detected on a cell, and unused PAs are shutdown accordingly.
Radio units may have different energy efficiency at different frequencies  because filter insertion loss and PA efficiency are frequency dependent. Currently, no solution is targeting to overcome energy efficiency variation of a radio unit in frequency domain due to the natural characteristic of a filter and a PA.
Various exemplary embodiments of the present disclosure propose a solution to support optimization of resource scheduling. According to the proposed solution, energy efficiency behavior of a radio unit at different frequencies can be characterized and used for physical resource blocks (PRBs) scheduling and allocation. Taking advantage of energy efficiency characteristics of a radio unit, a baseband processing unit (BPU) can prioritize the utilization of frequency resource with good energy efficiency and reduce energy consumption of the radio unit. The proposed solution can be implemented on a new RBS and/or an installed RBS, and enable energy consumption of the RBS to be reduced without any hardware cost. It may be easy for an MNO to understand and apply the proposed solution, since the energy saving can be achieved and measured on a live network, which makes the solution a good candidate as commercial software feature.
Figs. 1A-1B are diagrams illustrating examples of filter insertion loss at different frequencies according to some embodiments of the present disclosure. For illustrative purposes, the filter insertion loss in two exemplary frequency ranges are schematically depicted in Figs. 1A-1B, respectively. It will be appreciated that the frequency ranges, the measured frequencies and the filter insertion loss values shown in Figs. 1A-1B are just as examples, and similar filter insertion loss characteristics may be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
As shown in Figs. 1A-1B, a filter of a radio unit may have different insertion loss at different frequencies. In most cases, for a specific frequency band, the filter may have bigger insertion loss at bottom frequencies (i.e., the left part of the frequency band)  and top frequencies (i.e., the right part of the frequency band) than middle frequencies (i.e., the middle part of the frequency band) . To keep network coverage, normally, radio units are calibrated during production to have the same output power at an antenna port for different frequencies. Filter insertion loss varied with frequency may be compensated by different PA output power at different frequencies. Different PA output power means different energy consumption.
Fig. 1C is a diagram illustrating an example of PA efficiency at different frequencies according to an embodiment of the present disclosure. As shown in Fig. 1C, due to the impaction by transistor characteristic and matching, a PA may have different efficiency at different frequencies, especially for a wide frequency range. Similar to Figs. 1A-1B, Fig. 1C merely shows an example of PA efficiency at different frequencies within an exemplary frequency range. It can be realized that similar characteristics of PA efficiency may also be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
Fig. 2A is a diagram illustrating an example of power consumption of a radio unit at different frequencies according to an embodiment of the present disclosure. Considering filter insertion loss and PA efficiency are frequency dependent, radio power consumption may be different when the same amount of data is transmitted at different frequencies, and thus a radio unit may have different energy efficiency at different frequencies. As shown in Fig. 2A, sending the same amount of data at different frequencies may result in different radio power consumption (also called energy consumption in some embodiments) . For the exemplary frequencies such as F1, F2 and F3 shown in Fig. 2A, sending data at frequency F2 has the lowest energy consumption, and sending data at frequency F1 has the highest energy consumption. It can be appreciated that the frequency bands, the measured frequencies and the power consumption values shown in Fig. 2A are just as examples, and similar characteristics of radio power consumption may also be observed for other frequency bands and the  corresponding frequencies according to some embodiments of the present disclosure.
In accordance with some exemplary embodiments, the energy/power consumption characteristics of a radio unit (e.g., as show in Fig. 2A) may be considered for operations of a network node such as RBS. For example, power consumption variation of a radio unit in frequency domain may be characterized by an energy efficiency factor.
Fig. 2B is a diagram illustrating an example of variation of the energy efficiency factor at different frequencies according to an embodiment of the present disclosure. The energy efficiency factor may be the measurement on efficiency of a radio unit in converting electric power to radio frequency (RF) power. As an example, the energy efficiency factor can be obtained by measuring the output power W of the radio unit, recording the current C and the voltage V of a PA at different frequencies for the radio unit. The energy efficiency factor for each frequency can be calculated according to the formula W/ (V*C) . Optionally, based at least in part on values of the energy efficiency factor measured for some frequencies, it may be possible to use interpolation to derive corresponding values of the energy efficiency factor for all frequencies within the considered frequency band. The larger value of the energy efficiency factor means better energy efficiency of the radio unit.
As shown in Fig. 2B, different values of the energy efficiency factor reflect that the radio unit has varied energy efficiency at different frequencies, and the energy efficiency at middle frequencies is higher than that at bottom and top frequencies in the frequency band. It can be appreciated that similar characteristics of energy efficiency of a radio unit may also be observed for other frequency bands and the corresponding frequencies according to some embodiments of the present disclosure.
In accordance with some exemplary embodiments, there may be different approaches to characterize an energy efficiency factor of a radio unit. According to an  exemplary embodiment, the energy efficiency factor can be determined by a production test of the radio unit. For example, the energy efficiency of the radio unit can be measured at different frequencies during the production test. This approach can accurately characterize the radio unit, although the cost may be the increased production test time. Alternatively or additionally, the energy efficiency factor can be determined by using some typical design values. In this case, several samples may be measured and typical values can be calculated for a certain type of product. Then the same set of values (e.g., the typical values calculated for this type of product) can be used to represent the energy efficiency factor for different radio units belonging to this type of product. This approach can save production test time and may be used for delivered radio units, although some unit variation may not be covered.
Figs. 3A-3B are diagrams illustrating exemplary energy efficiency scheduling schemes according to some embodiments of the present disclosure. The upper part of Fig. 3A shows a scheduling scheme which allocates PRBs randomly to the corresponding frequencies without considering energy efficiency of a radio unit. The lower part of Fig. 3A shows a scheduling scheme which can optimize energy efficiency of a radio unit by maximizing the utilization of frequency resource with good energy efficiency (e.g., which can be indicated by an energy efficiency factor) . Similarly, the upper part of Fig. 3B shows a conventional scheduling scheme which allocates PRBs randomly within the available frequency band, and the lower part of Fig. 3B shows a scheme using an energy efficiency scheduler.
According to the scheduling schemes as shown in the lower parts of Figs. 3A-3B, an energy efficiency factor may be used to calculate and optimize radio resource (e.g., one or more physical resource blocks (PRBs) , etc. ) allocation in frequency domain. In an exemplary embodiment, the energy efficiency factor and/or related information may be obtained by a baseband processing unit (BPU) , for example, from a radio unit or any other suitable device or component. Alternatively or  additionally, the energy efficiency factor may be preconfigured to an energy efficiency scheduler of the BPU.
In accordance with some exemplary embodiments, the BPU can schedule one or more PRBs (which are represented by vertical bars with different height to indicate different normalized PRB power, as shown in Fig. 3A) for communication. According to the scheduling scheme shown in the lower part of Fig. 3A, the BPU can allocate high power PRBs (e.g., PRBs configured with high transmission power) to the frequencies with good energy efficiency (corresponding to high energy efficiency factor values) , and allocate low power PRBs (e.g., PRBs configured with low transmission power) to the frequencies with bad energy efficiency (corresponding to low energy efficiency factor values) .
In accordance with an exemplary embodiment where frequency domain resource is not fully occupied, according to the scheduling scheme shown in the lower part of Fig. 3B, the BPU may avoid allocating PRBs to the frequencies (e.g., top and bottom frequencies) with bad energy efficiency, so that the best energy efficiency can be achieved. In Fig. 3B, the scheduled PRBs are represented by vertical bars with the same height, meaning that the PRBs distributed in the frequency band have the same normalized PRB power. It can be appreciated that the same or similar scheduling scheme as described with respect to Fig. 3B may be applicable to allocation of PRBs with different normalized PRB power.
In accordance with some exemplary embodiments, the scheduling schemes as shown in the lower parts of Figs. 3A-3B may be used in combination to schedule PRBs. For the case that the frequency domain resource is sufficient and the PRBs to be scheduled are configured with different PRB power, the BPU may choose not to use some frequencies with bad energy efficiency, and can perform PRB allocation at the remaining frequencies available for scheduling. Then the BPU may allocate high power  PRBs to the available frequencies having relatively higher energy efficiency, and allocate low power PRBs to the available frequencies having relatively lower energy efficiency.
In accordance with some exemplary embodiments, there may be balance between energy efficiency and frequency channel quality for different users. For example, a high power PRB may not be always allocated to a frequency with relatively higher energy efficiency, especially for the case that the channel quality at this frequency is lower than a specific quality threshold. In addition to the energy efficiency and the channel quality, there may be other factors (e.g., user demand, service requirement, etc. ) to be considered when allocating PRBs to different frequencies. It can be appreciated that some exemplary embodiments may also be implemented by using other suitable scheduling schemes which can optimize the energy efficiency of a radio unit by maximizing the utilization of frequency resource with good energy efficiency, without degrading network performance and affecting user experience.
It is noted that according to various communication standards, some PRBs may be configured with specified frequency resource, for example, the PRBs containing cell specific reference signal (CRS) in an LTE network. For this type of PRBs, it may not be necessary to optimize PRB allocation in frequency domain for better energy efficiency.
Various exemplary embodiments propose a solution of improving energy efficiency, for example, by adjusting allocation of some PRBs (e.g., user specific PRBs including user payload and user reference signal) in frequency domain according to the scheduling schemes shown in the lower parts of Figs. 3A-3B. The proposed solution may be valid for both 4G/LTE and 5G/NR networks and applicable for different types of radio units. There may be significant benefits on classic macro and middle band advanced antenna systems (AAS) radio units where a PA may consume a large part of  energy. The proposed solution may have no dependence on the hardware realization of a radio unit and a BPU. It can be used for various devices from different vendors, and can work together with existing energy efficiency features, such as LESS, SBPS, MIMO sleep mode, etc. By standardizing the format of an energy efficiency factor, the proposed solution can work for open-radio access network (O-RAN) where radio units and BPUs may be provided by different vendors. In addition, the proposed solution can be implemented on an installed RBS, for example, by using typical design values to characterize the energy efficiency factor of a radio unit of the RBS. With reduced energy consumption, the operation temperature of the radio unit may be lower, and this can bring benefit to mean time between failure (MTBF) of a product. On the other hand, some radio units may not have the same output power at different frequencies, mainly due to limitation of the PA and/or thermal dissipation and/or power supply capability. In this case, the radio power consumption at different frequencies may be similar but the output power is different. The proposed solution then can make frequencies corresponding to higher output power to be utilized with higher probability, so as to improve network coverage and throughput.
It is noted that some embodiments of the present disclosure are mainly described in relation to LTE or NR specifications being used as non-limiting examples for certain exemplary network configurations and system deployments. As such, the description of exemplary embodiments given herein specifically refers to terminology which is directly related thereto. Such terminology is only used in the context of the presented non-limiting examples and embodiments, and does naturally not limit the present disclosure in any way. Rather, any other system configuration or radio technologies may equally be utilized as long as exemplary embodiments described herein are applicable.
Fig. 4 is a flowchart illustrating a method 400 according to some embodiments of the present disclosure. The method 400 illustrated in Fig. 4 may be  performed by a network node or an apparatus communicatively coupled to the network node. In accordance with an exemplary embodiment, the network node may comprise a base station, an AP, a transmission point or any other suitable entity which may be capable of serving one or more terminal devices such as UEs according to specific communication configuration.
According to the exemplary method 400 illustrated in Fig. 4, the network node can obtain energy efficiency information, as shown in block 402. The energy efficiency information (e.g., the energy efficiency factor as described with respect to Fig. 2B, Fig. 3A and Fig. 3B) may indicate energy efficiency of a radio unit of the network node at different frequencies. In accordance with some exemplary embodiments, the energy efficiency of the radio unit at the different frequencies may be related to filter insertion loss at the different frequencies and/or PA efficiency at the different frequencies, as described in connection with Figs. 1A-2B. It can be appreciated that the energy efficiency of the radio unit at the different frequencies may also be related to other possible factors such as physical characteristics of the radio unit and/or environmental elements.
In accordance with some exemplary embodiments, the energy efficiency information may be obtained according to test information of the radio unit, for example, some values of the energy efficiency factor measured by the production test of the radio unit. Alternatively or additionally, the energy efficiency information may be obtained according to design information applicable to a type of radio units comprising the radio unit, for example, some typical design values of the energy efficiency factor measured and/or calculated for a certain type of product to which the radio unit belongs. Optionally, the energy efficiency information may be preconfigured for the network node, and/or transferred to the network node from a device or unit (e.g., the radio unit) accessible by the network node.
In accordance with some exemplary embodiments, the network node can schedule radio resource based at least in part on the energy efficiency information, as shown in block 404. The radio resource may comprise downlink transmission resource to be scheduled for one or more terminal devices served by the network node. It can be realized that although some exemplary embodiments are described in the context of downlink resource scheduling, the method 400 illustrated in Fig. 4 may also be applicable to uplink resource scheduling in some cases.
In accordance with some exemplary embodiments, the scheduling of the radio resource based at least in part on the energy efficiency information may comprise: performing PRB allocation in frequency domain, according to a scheduling rule related to the energy efficiency information. According to an exemplary embodiment, the energy efficiency information may indicate that the energy efficiency of the radio unit is higher at a first frequency than at a second frequency. In this case, the scheduling rule may indicate that transmission power for a PRB allocated to the first frequency is higher than transmission power for a PRB allocated to the second frequency. That is to say, the scheduling rule may indicate to allocate a PRB with relatively higher power to a frequency with relatively higher energy efficiency as much as possible.
Alternatively or additionally, in the case that the energy efficiency information indicates that the energy efficiency of the radio unit is higher at a third frequency than at a fourth frequency, the scheduling rule may indicate that a probability with which a PRB is allocated to the third frequency is higher than a probability with which the PRB is allocated to the fourth frequency. That is to say, the scheduling rule may indicate to prioritize utilization of the frequency resource with relatively higher energy efficiency.
In accordance with some exemplary embodiments, the scheduling of the radio resource based at least in part on the energy efficiency information may further  comprise: optimizing the PRB allocation based at least in part on one or more of service requirement, channel quality, subscriber information, network configuration, etc. Considering that a frequency with higher energy efficiency may not have good channel quality and cannot support traffic transmission for a specific service, it may be advantageous to adjust the PRB allocation according to other information about service requirement, channel quality, subscriber information and/or network configuration, so as to achieve balance between energy efficiency and communication performance.
In accordance with some exemplary embodiments, the network node can transmit scheduling information to a terminal device. The scheduling information may indicate radio resource scheduled for the terminal device, for example, one or more PRBs assigned to the terminal device. According to an exemplary embodiment, the one or more PRBs may be distributed in frequency domain in a manner that the energy/power of the network node can be saved without affecting traffic throughput and user experience.
Fig. 5 is a flowchart illustrating a method 500 according to some embodiments of the present disclosure. The method 500 illustrated in Fig. 5 may be performed by a terminal device or an apparatus communicatively coupled to the terminal device. In accordance with an exemplary embodiment, the terminal device such as a UE may be capable of communicating with a network node (e.g., a base station, an AP, a transmission point, etc. ) according to specific communication configuration. It can be appreciated that operations/steps of the method 500 illustrated in Fig. 5 may correspond to operations/steps of the method 400 illustrated in Fig. 4. The network node described in connection with Fig. 4 can perform the method 400 to implement at least part of resource scheduling for the terminal device as described in connection with Fig. 5.
According to the exemplary method 500 illustrated in Fig. 5, the terminal  device can receive scheduling information from a network node, as shown in block 502. The scheduling information may indicate radio resource scheduled for the terminal device based at least in part on energy efficiency information. Optionally, the terminal device may communicate with the network node according to the scheduling information, as shown in block 504. It can be appreciated that the scheduling information received by the terminal device as described in block 502 may correspond to the scheduling information transmitted by the network node as described in connection with Fig. 4. Correspondingly, the energy efficiency information may indicate energy efficiency of a radio unit of the network node at different frequencies. As described with respect to Fig. 4. the energy efficiency information may be based at least in part on test information of the radio unit and/or design information applicable to a type of radio units comprising the radio unit.
In accordance with some exemplary embodiments, the radio resource scheduled for the terminal device may comprise one or more PRBs which are allocated in frequency domain according to a scheduling rule related to the energy efficiency information. As described in connection with Fig. 4, the scheduling rule may indicate that a frequency with higher energy efficiency is preferred in PRB allocation. Alternatively and additionally, the scheduling rule may indicate that a high power PRB has a larger probability to be allocated to a frequency with higher energy efficiency.
In accordance with some exemplary embodiments, the allocation of the one or more PRBs may be optimized, for example, based at least in part on service requirement, channel quality, subscriber information, network configuration and/or any other information which may affect resource allocation. As mentioned previously, the optimization of the PRB allocation can save at least energy consumption of the network node while maintaining communication performance between the network node and the terminal device.
The various blocks shown in Figs. 4-5 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) . The schematic flow chart diagrams described above are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of specific embodiments of the presented methods. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated methods. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.
Fig. 6 is a block diagram illustrating an apparatus 600 according to various embodiments of the present disclosure. As shown in Fig. 6, the apparatus 600 may comprise one or more processors such as processor 601 and one or more memories such as memory 602 storing computer program codes 603. The memory 602 may be non-transitory machine/processor/computer readable storage medium. In accordance with some exemplary embodiments, the apparatus 600 may be implemented as an integrated circuit chip or module that can be plugged or installed into a network node as described with respect to Fig. 4 or a terminal device as described with respect to Fig. 5. In such case, the apparatus 600 may be implemented as a network node as described with respect to Fig. 4 or a terminal device as described with respect to Fig. 5.
In some implementations, the one or more memories 602 and the computer program codes 603 may be configured to, with the one or more processors 601, cause the apparatus 600 at least to perform any operation of the method as described in connection with Fig. 4. In other implementations, the one or more memories 602 and the computer program codes 603 may be configured to, with the one or more processors 601, cause the apparatus 600 at least to perform any operation of the method as described in connection with Fig. 5. Alternatively or additionally, the one or more  memories 602 and the computer program codes 603 may be configured to, with the one or more processors 601, cause the apparatus 600 at least to perform more or less operations to implement the proposed methods according to the exemplary embodiments of the present disclosure.
Fig. 7 is a block diagram illustrating an apparatus 700 according to some embodiments of the present disclosure. As shown in Fig. 7, the apparatus 700 may comprise an obtaining unit 701 and a scheduling unit 702. In an exemplary embodiment, the apparatus 700 may be implemented in a network node such as a base station. The obtaining unit 701 may be operable to carry out the operation in block 402, and the scheduling unit 702 may be operable to carry out the operation in block 404. Optionally, the obtaining unit 701 and/or the scheduling unit 702 may be operable to carry out more or less operations to implement the proposed methods according to the exemplary embodiments of the present disclosure.
Fig. 8 is a block diagram illustrating an apparatus 800 according to some embodiments of the present disclosure. As shown in Fig. 8, the apparatus 800 may comprise a receiving unit 801 and optionally a communicating unit 802. In an exemplary embodiment, the apparatus 800 may be implemented in a terminal device such as a UE. The receiving unit 801 may be operable to carry out the operation in block 502, and the communicating unit 802 may be operable to carry out the operation in block 504. Optionally, the receiving unit 801 and/or the communicating unit 802 may be operable to carry out more or less operations to implement the proposed methods according to the exemplary embodiments of the present disclosure.
Fig. 9 is a block diagram illustrating a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments of the present disclosure.
With reference to Fig. 9, in accordance with an embodiment, a  communication system includes a telecommunication network 910, such as a 3GPP-type cellular network, which comprises an access network 911, such as a radio access network, and a core network 914. The access network 911 comprises a plurality of  base stations  912a, 912b, 912c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a  corresponding coverage area  913a, 913b, 913c. Each  base station  912a, 912b, 912c is connectable to the core network 914 over a wired or wireless connection 915. A first UE 991 located in a coverage area 913c is configured to wirelessly connect to, or be paged by, the corresponding base station 912c. A second UE 992 in a coverage area 913a is wirelessly connectable to the corresponding base station 912a. While a plurality of  UEs  991, 992 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 912.
The telecommunication network 910 is itself connected to a host computer 930, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm. The host computer 930 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider.  Connections  921 and 922 between the telecommunication network 910 and the host computer 930 may extend directly from the core network 914 to the host computer 930 or may go via an optional intermediate network 920. An intermediate network 920 may be one of, or a combination of more than one of, a public, private or hosted network; the intermediate network 920, if any, may be a backbone network or the Internet; in particular, the intermediate network 920 may comprise two or more sub-networks (not shown) .
The communication system of Fig. 9 as a whole enables connectivity between the connected  UEs  991, 992 and the host computer 930. The connectivity may be described as an over-the-top (OTT) connection 950. The host computer 930 and the  connected  UEs  991, 992 are configured to communicate data and/or signaling via the OTT connection 950, using the access network 911, the core network 914, any intermediate network 920 and possible further infrastructure (not shown) as intermediaries. The OTT connection 950 may be transparent in the sense that the participating communication devices through which the OTT connection 950 passes are unaware of routing of uplink and downlink communications. For example, the base station 912 may not or need not be informed about the past routing of an incoming downlink communication with data originating from the host computer 930 to be forwarded (e.g., handed over) to a connected UE 991. Similarly, the base station 912 need not be aware of the future routing of an outgoing uplink communication originating from the UE 991 towards the host computer 930.
Fig. 10 is a block diagram illustrating a host computer communicating via a base station with a UE over a partially wireless connection in accordance with some embodiments of the present disclosure.
Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to Fig. 10. In a communication system 1000, a host computer 1010 comprises hardware 1015 including a communication interface 1016 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of the communication system 1000. The host computer 1010 further comprises a processing circuitry 1018, which may have storage and/or processing capabilities. In particular, the processing circuitry 1018 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. The host computer 1010 further comprises software 1011, which is stored in or accessible by the host computer 1010 and executable by the processing circuitry 1018. The software 1011 includes a host application 1012. The host application 1012  may be operable to provide a service to a remote user, such as UE 1030 connecting via an OTT connection 1050 terminating at the UE 1030 and the host computer 1010. In providing the service to the remote user, the host application 1012 may provide user data which is transmitted using the OTT connection 1050.
The communication system 1000 further includes a base station 1020 provided in a telecommunication system and comprising hardware 1025 enabling it to communicate with the host computer 1010 and with the UE 1030. The hardware 1025 may include a communication interface 1026 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 1000, as well as a radio interface 1027 for setting up and maintaining at least a wireless connection 1070 with the UE 1030 located in a coverage area (not shown in Fig. 10) served by the base station 1020. The communication interface 1026 may be configured to facilitate a connection 1060 to the host computer 1010. The connection 1060 may be direct or it may pass through a core network (not shown in Fig. 10) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system. In the embodiment shown, the hardware 1025 of the base station 1020 further includes a processing circuitry 1028, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. The base station 1020 further has software 1021 stored internally or accessible via an external connection.
The communication system 1000 further includes the UE 1030 already referred to. Its hardware 1035 may include a radio interface 1037 configured to set up and maintain a wireless connection 1070 with a base station serving a coverage area in which the UE 1030 is currently located. The hardware 1035 of the UE 1030 further includes a processing circuitry 1038, which may comprise one or more programmable  processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. The UE 1030 further comprises software 1031, which is stored in or accessible by the UE 1030 and executable by the processing circuitry 1038. The software 1031 includes a client application 1032. The client application 1032 may be operable to provide a service to a human or non-human user via the UE 1030, with the support of the host computer 1010. In the host computer 1010, an executing host application 1012 may communicate with the executing client application 1032 via the OTT connection 1050 terminating at the UE 1030 and the host computer 1010. In providing the service to the user, the client application 1032 may receive request data from the host application 1012 and provide user data in response to the request data. The OTT connection 1050 may transfer both the request data and the user data. The client application 1032 may interact with the user to generate the user data that it provides.
It is noted that the host computer 1010, the base station 1020 and the UE 1030 illustrated in Fig. 10 may be similar or identical to the host computer 930, one of  base stations  912a, 912b, 912c and one of  UEs  991, 992 of Fig. 9, respectively. This is to say, the inner workings of these entities may be as shown in Fig. 10 and independently, the surrounding network topology may be that of Fig. 9.
In Fig. 10, the OTT connection 1050 has been drawn abstractly to illustrate the communication between the host computer 1010 and the UE 1030 via the base station 1020, without explicit reference to any intermediary devices and the precise routing of messages via these devices. Network infrastructure may determine the routing, which it may be configured to hide from the UE 1030 or from the service provider operating the host computer 1010, or both. While the OTT connection 1050 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
Wireless connection 1070 between the UE 1030 and the base station 1020 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to the UE 1030 using the OTT connection 1050, in which the wireless connection 1070 forms the last segment. More precisely, the teachings of these embodiments may improve the latency and the power consumption, and thereby provide benefits such as lower complexity, reduced time required to access a cell, better responsiveness, extended battery lifetime, etc.
A measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring the OTT connection 1050 between the host computer 1010 and the UE 1030, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring the OTT connection 1050 may be implemented in software 1011 and hardware 1015 of the host computer 1010 or in software 1031 and hardware 1035 of the UE 1030, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which the OTT connection 1050 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which the  software  1011, 1031 may compute or estimate the monitored quantities. The reconfiguring of the OTT connection 1050 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect the base station 1020, and it may be unknown or imperceptible to the base station 1020. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating the host computer 1010’s measurements of throughput, propagation times, latency and the like. The measurements may be  implemented in that the  software  1011 and 1031 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1050 while it monitors propagation times, errors etc.
Fig. 11 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 11 will be included in this section. In step 1110, the host computer provides user data. In substep 1111 (which may be optional) of step 1110, the host computer provides the user data by executing a host application. In step 1120, the host computer initiates a transmission carrying the user data to the UE. In step 1130 (which may be optional) , the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1140 (which may also be optional) , the UE executes a client application associated with the host application executed by the host computer.
Fig. 12 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 12 will be included in this section. In step 1210 of the method, the host computer provides user data. In an optional substep (not shown) the host computer provides the user data by executing a host application. In step 1220, the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1230 (which may be optional) , the UE receives the user data carried in the transmission.
Fig. 13 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 13 will be included in this section. In step 1310 (which may be optional) , the UE receives input data provided by the host computer. Additionally or alternatively, in step 1320, the UE provides user data. In substep 1321 (which may be optional) of step 1320, the UE provides the user data by executing a client application. In substep 1311 (which may be optional) of step 1310, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer. In providing the user data, the executed client application may further consider user input received from the user. Regardless of the specific manner in which the user data was provided, the UE initiates, in substep 1330 (which may be optional) , transmission of the user data to the host computer. In step 1340 of the method, the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
Fig. 14 is a flowchart illustrating a method implemented in a communication system, in accordance with an embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Fig. 9 and Fig. 10. For simplicity of the present disclosure, only drawing references to Fig. 14 will be included in this section. In step 1410 (which may be optional) , in accordance with the teachings of the embodiments described throughout this disclosure, the base station receives user data from the UE. In step 1420 (which may be optional) , the base station initiates transmission of the received user data to the host computer. In step 1430 (which may be optional) , the host computer receives the user data carried in the transmission initiated by the base station.
According to some exemplary embodiments, there is provided a method  implemented in a communication system which may include a host computer, a base station and a UE. The method may comprise providing user data at the host computer. Optionally, the method may comprise, at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station which may perform any step of the exemplary method 400 as describe with respect to Fig. 4.
According to some exemplary embodiments, there is provided a communication system including a host computer. The host computer may comprise processing circuitry configured to provide user data, and a communication interface configured to forward the user data to a cellular network for transmission to a UE. The cellular network may comprise a base station having a radio interface and processing circuitry. The base station’s processing circuitry may be configured to perform any step of the exemplary method 400 as describe with respect to Fig. 4.
According to some exemplary embodiments, there is provided a method implemented in a communication system which may include a host computer, a base station and a UE. The method may comprise providing user data at the host computer. Optionally, the method may comprise, at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station. The UE may perform any step of the exemplary method 500 as describe with respect to Fig. 5.
According to some exemplary embodiments, there is provided a communication system including a host computer. The host computer may comprise processing circuitry configured to provide user data, and a communication interface configured to forward user data to a cellular network for transmission to a UE. The UE may comprise a radio interface and processing circuitry. The UE’s processing circuitry may be configured to perform any step of the exemplary method 500 as describe with  respect to Fig. 5.
According to some exemplary embodiments, there is provided a method implemented in a communication system which may include a host computer, a base station and a UE. The method may comprise, at the host computer, receiving user data transmitted to the base station from the UE which may perform any step of the exemplary method 500 as describe with respect to Fig. 5.
According to some exemplary embodiments, there is provided a communication system including a host computer. The host computer may comprise a communication interface configured to receive user data originating from a transmission from a UE to a base station. The UE may comprise a radio interface and processing circuitry. The UE’s processing circuitry may be configured to perform any step of the exemplary method 500 as describe with respect to Fig. 5.
According to some exemplary embodiments, there is provided a method implemented in a communication system which may include a host computer, a base station and a UE. The method may comprise, at the host computer, receiving, from the base station, user data originating from a transmission which the base station has received from the UE. The base station may perform any step of the exemplary method 400 as describe with respect to Fig. 4.
According to some exemplary embodiments, there is provided a communication system which may include a host computer. The host computer may comprise a communication interface configured to receive user data originating from a transmission from a UE to a base station. The base station may comprise a radio interface and processing circuitry. The base station’s processing circuitry may be con-figured to perform any step of the exemplary method 400 as describe with respect to Fig. 4.
In general, the various exemplary embodiments may be implemented in hardware or special purpose chips, circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
As such, it should be appreciated that at least some aspects of the exemplary embodiments of the disclosure may be practiced in various components such as integrated circuit chips and modules. It should thus be appreciated that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, where the integrated circuit may comprise circuitry (as well as possibly firmware) for embodying at least one or more of a data processor, a digital signal processor, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this disclosure.
It should be appreciated that at least some aspects of the exemplary embodiments of the disclosure may be embodied in computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The computer executable instructions may be stored on a computer readable medium such as a hard  disk, optical disk, removable storage media, solid state memory, random access memory (RAM) , etc. As will be appreciated by one of skill in the art, the function of the program modules may be combined or distributed as desired in various embodiments. In addition, the function may be embodied in whole or partly in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA) , and the like.
The present disclosure includes any novel feature or combination of features disclosed herein either explicitly or any generalization thereof. Various modifications and adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. However, any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure.

Claims (34)

  1. A method (400) performed by a network node, comprising:
    obtaining (402) energy efficiency information which indicates energy efficiency of a radio unit of the network node at different frequencies; and
    scheduling (404) radio resource based at least in part on the energy efficiency information.
  2. The method according to claim 1, wherein the energy efficiency of the radio unit at the different frequencies is related to at least one of:
    filter insertion loss at the different frequencies; and
    power amplifier efficiency at the different frequencies.
  3. The method according to claim 1 or 2, wherein the scheduling of the radio resource based at least in part on the energy efficiency information comprises:
    performing physical resource block allocation in frequency domain, according to a scheduling rule related to the energy efficiency information.
  4. The method according to claim 3, wherein the scheduling rule indicates that transmission power for a physical resource block allocated to a first frequency is higher than transmission power for a physical resource block allocated to a second frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the first frequency than at the second frequency.
  5. The method according to any of claims 3-4, wherein the scheduling rule indicates that a probability with which a physical resource block is allocated to a third frequency  is higher than a probability with which the physical resource block is allocated to a fourth frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the third frequency than at the fourth frequency.
  6. The method according to any of claims 3-5, wherein the scheduling of the radio resource based at least in part on the energy efficiency information further comprises:
    optimizing the physical resource block allocation based at least in part on one or more of: service requirement, channel quality, subscriber information and network configuration.
  7. The method according to any of claims 1-6, wherein the energy efficiency information is obtained according to at least one of:
    test information of the radio unit; and
    design information applicable to a type of radio units comprising the radio unit.
  8. The method according to any of claims 1-7, further comprising:
    transmitting scheduling information to a terminal device, wherein the scheduling information indicates radio resource scheduled for the terminal device.
  9. A network node (600) , comprising:
    one or more processors (601) ; and
    one or more memories (602) storing computer program codes (603) ,
    the one or more memories (602) and the computer program codes (603) configured to, with the one or more processors (601) , cause the network node (600) at least to:
    obtain energy efficiency information which indicates energy efficiency of a radio unit of the network node at different frequencies; and
    schedule radio resource based at least in part on the energy efficiency information.
  10. The network node according to claim 9, wherein the energy efficiency of the radio unit at the different frequencies is related to at least one of:
    filter insertion loss at the different frequencies; and
    power amplifier efficiency at the different frequencies.
  11. The network node according to claim 9 or 10, wherein the scheduling of the radio resource based at least in part on the energy efficiency information comprises:
    performing physical resource block allocation in frequency domain, according to a scheduling rule related to the energy efficiency information.
  12. The network node according to claim 11, wherein the scheduling rule indicates that transmission power for a physical resource block allocated to a first frequency is higher than transmission power for a physical resource block allocated to a second frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the first frequency than at the second frequency.
  13. The network node according to any of claims 11-12, wherein the scheduling rule indicates that a probability with which a physical resource block is allocated to a third frequency is higher than a probability with which the physical resource block is allocated to a fourth frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the third frequency than at the fourth frequency.
  14. The network node according to any of claims 11-13, wherein the scheduling of the radio resource based at least in part on the energy efficiency information further comprises:
    optimizing the physical resource block allocation based at least in part on one or more of: service requirement, channel quality, subscriber information and network configuration.
  15. The network node according to any of claims 9-14, wherein the energy efficiency information is obtained according to at least one of:
    test information of the radio unit; and
    design information applicable to a type of radio units comprising the radio unit.
  16. The network node according to any of claims 9-15, wherein the one or more memories and the computer program codes are configured to, with the one or more processors, cause the network node at least further to:
    transmit scheduling information to a terminal device, wherein the scheduling information indicates radio resource scheduled for the terminal device.
  17. A computer-readable medium having computer program codes (603) embodied thereon which, when executed on a computer, cause the computer to perform any step of the method according to any one of claims 1-8.
  18. A method (500) performed by a terminal device, comprising:
    receiving (502) scheduling information from a network node, wherein the scheduling information indicates radio resource scheduled for the terminal device based at least in part on energy efficiency information, and wherein the energy efficiency information indicates energy efficiency of a radio unit of the network node at different frequencies.
  19. The method according to claim 18, wherein the energy efficiency of the radio unit at the different frequencies is related to at least one of:
    filter insertion loss at the different frequencies; and
    power amplifier efficiency at the different frequencies.
  20. The method according to claim 18 or 19, wherein the radio resource scheduled for the terminal device comprises one or more physical resource blocks which are allocated in frequency domain according to a scheduling rule related to the energy efficiency information.
  21. The method according to claim 20, wherein the scheduling rule indicates that transmission power for a physical resource block allocated to a first frequency is higher than transmission power for a physical resource block allocated to a second frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the first frequency than at the second frequency.
  22. The method according to any of claims 20-21, wherein the scheduling rule indicates that a probability with which a physical resource block is allocated to a third frequency is higher than a probability with which the physical resource block is allocated to a fourth frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the third frequency than at the fourth frequency.
  23. The method according to any of claims 20-22, wherein the allocation of the one or more physical resource blocks is optimized based at least in part on one or more of: service requirement, channel quality, subscriber information and network configuration.
  24. The method according to any of claims 18-23, wherein the energy efficiency information is based at least in part on at least one of:
    test information of the radio unit; and
    design information applicable to a type of radio units comprising the radio unit.
  25. The method according to any of claims 18-24, further comprising:
    communicating (504) with the network node according to the scheduling information.
  26. A terminal device (600) , comprising:
    one or more processors (601) ; and
    one or more memories (602) storing computer program codes (603) ,
    the one or more memories (602) and the computer program codes (603) configured to, with the one or more processors (601) , cause the terminal device (600) at least to:
    receive scheduling information from a network node, wherein the scheduling information indicates radio resource scheduled for the terminal device based at least in part on energy efficiency information, and wherein the energy efficiency information indicates energy efficiency of a radio unit of the network node at different frequencies.
  27. The terminal device according to claim 26, wherein the energy efficiency of the radio unit at the different frequencies is related to at least one of:
    filter insertion loss at the different frequencies; and
    power amplifier efficiency at the different frequencies.
  28. The terminal device according to claim 26 or 27, wherein the radio resource scheduled for the terminal device comprises one or more physical resource blocks which are allocated in frequency domain according to a scheduling rule related to the energy efficiency information.
  29. The terminal device according to claim 28, wherein the scheduling rule indicates that transmission power for a physical resource block allocated to a first frequency is higher than transmission power for a physical resource block allocated to a second frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the first frequency than at the second frequency.
  30. The terminal device according to any of claims 28-29, wherein the scheduling rule indicates that a probability with which a physical resource block is allocated to a third frequency is higher than a probability with which the physical resource block is allocated to a fourth frequency, and wherein the energy efficiency information indicates that the energy efficiency of the radio unit is higher at the third frequency than at the fourth frequency.
  31. The terminal device according to any of claims 28-30, wherein the allocation of the one or more physical resource blocks is optimized based at least in part on one or more of: service requirement, channel quality, subscriber information and network configuration.
  32. The terminal device according to any of claims 26-31, wherein the energy efficiency information is based at least in part on at least one of:
    test information of the radio unit; and
    design information applicable to a type of radio units comprising the radio unit.
  33. The terminal device according to any of claims 26-32, wherein the one or more memories and the computer program codes are configured to, with the one or more processors, cause the terminal device at least further to:
    communicate with the network node according to the scheduling information.
  34. A computer-readable medium having computer program codes (603) embodied thereon which, when executed on a computer, cause the computer to perform any step of the method according to any one of claims 18-25.
PCT/CN2019/098688 2019-07-31 2019-07-31 Method and apparatus for improving energy efficiency WO2021016937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098688 WO2021016937A1 (en) 2019-07-31 2019-07-31 Method and apparatus for improving energy efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098688 WO2021016937A1 (en) 2019-07-31 2019-07-31 Method and apparatus for improving energy efficiency

Publications (1)

Publication Number Publication Date
WO2021016937A1 true WO2021016937A1 (en) 2021-02-04

Family

ID=74228898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098688 WO2021016937A1 (en) 2019-07-31 2019-07-31 Method and apparatus for improving energy efficiency

Country Status (1)

Country Link
WO (1) WO2021016937A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096335A (en) * 2012-12-26 2013-05-08 陈宏滨 Optimization method of spectrum efficiency and energy efficiency of wireless communication system
CN103458524A (en) * 2012-06-01 2013-12-18 华为技术有限公司 User scheduling method, device and system
WO2016045748A1 (en) * 2014-09-26 2016-03-31 Huawei Technologies Co., Ltd. Methods and network nodes in a wireless communication network
CN105792219A (en) * 2016-03-15 2016-07-20 李小荣 Energy-efficiency priority type resource distribution method of micro station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458524A (en) * 2012-06-01 2013-12-18 华为技术有限公司 User scheduling method, device and system
CN103096335A (en) * 2012-12-26 2013-05-08 陈宏滨 Optimization method of spectrum efficiency and energy efficiency of wireless communication system
WO2016045748A1 (en) * 2014-09-26 2016-03-31 Huawei Technologies Co., Ltd. Methods and network nodes in a wireless communication network
CN105792219A (en) * 2016-03-15 2016-07-20 李小荣 Energy-efficiency priority type resource distribution method of micro station

Similar Documents

Publication Publication Date Title
US20230422263A1 (en) Transmission profiles for nr
CN110235465B (en) SC-MCCH fragment scheduling for FeMTC and eNB-IoT
US10897777B2 (en) Method and apparatus for uplink transmission
US11838090B2 (en) Method and apparatus for information sharing
EP4014457B1 (en) Method and apparatus for transmission configuration
WO2020227913A1 (en) Method and apparatus for beam management
US11395330B2 (en) Method and apparatus for adaptive scheduling and transmission
WO2021016937A1 (en) Method and apparatus for improving energy efficiency
WO2020057240A1 (en) Method and apparatus for adaptive priority control between control information and user data
US20230246761A1 (en) Method and apparatus for multicast communication
US20230269757A1 (en) Method and apparatus for multicast communication
WO2022027307A1 (en) Method and apparatus for carrier control
US20230239170A1 (en) Method and apparatus for multicast communication
WO2023174177A1 (en) Multiple-input and multiple-output (mimo) antenna muting with ue assist
US12028860B2 (en) Terminal device, network device and methods therein
WO2020029675A1 (en) Method and apparatus for sounding reference signal transmission
WO2021046763A1 (en) Method and apparatus for interference avoidance
US20220330274A1 (en) Methods and Devices for Wireless Communication
US20220116966A1 (en) Terminal device, network device and methods therein
WO2021007820A1 (en) Methods and apparatuses for load balance
WO2022086426A1 (en) Method and apparatus for downlink power allocation for 16 qam modulation scheme in nb-iot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939742

Country of ref document: EP

Kind code of ref document: A1