WO2021016916A1 - Led显示屏、led显示系统和显示箱体 - Google Patents

Led显示屏、led显示系统和显示箱体 Download PDF

Info

Publication number
WO2021016916A1
WO2021016916A1 PCT/CN2019/098567 CN2019098567W WO2021016916A1 WO 2021016916 A1 WO2021016916 A1 WO 2021016916A1 CN 2019098567 W CN2019098567 W CN 2019098567W WO 2021016916 A1 WO2021016916 A1 WO 2021016916A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
transceiver
wireless transceiver
led display
chip
Prior art date
Application number
PCT/CN2019/098567
Other languages
English (en)
French (fr)
Inventor
冯思杭
韦桂锋
Original Assignee
西安诺瓦星云科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安诺瓦星云科技股份有限公司 filed Critical 西安诺瓦星云科技股份有限公司
Priority to PCT/CN2019/098567 priority Critical patent/WO2021016916A1/zh
Priority to CN201980006689.XA priority patent/CN112639935A/zh
Publication of WO2021016916A1 publication Critical patent/WO2021016916A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • This application relates to the field of display technology, and in particular to an LED display screen, an LED display system and a display box.
  • the LED display is composed of one display box equipped with a module controller. Each module controller can only control one display box. Therefore, if you want the LED display to display a complete picture, you need The matching host computer software configures the display connection. This is the method that the LED display control system industry has used for decades.
  • the embodiments of the present application provide an LED display screen, an LED display system, and a display box.
  • an LED display screen provided by an embodiment of the present application includes: a plurality of display boxes spliced together; each of the display boxes includes: a box frame having a first side, a second side, and a second side Three sides, a fourth side, and an accommodating space enclosed by the first side, the second side, the third side and the fourth side; wherein the first side and the third side The side surfaces are opposite sides, the second side surface and the fourth side surface are opposite sides; the module controller is arranged in the accommodating space and is provided with a transceiver interface group, a module interface group and the transceiver interface group.
  • the LED display unit is arranged on the box frame and includes one or more LED modules, wherein the LED display unit is electrically connected to the module The module interface group of the controller; and the first wireless transceiver, the second wireless transceiver, the third wireless transceiver, and the fourth wireless transceiver are respectively arranged on the first side, the second side, The third side surface and the fourth side surface are electrically connected to the transceiver interface group of the module controller, wherein the first wireless transceiver, the second wireless transceiver, and the third wireless The operating frequencies of the transceiver and the fourth wireless transceiver are located in the millimeter wave frequency band, and the front-end display cabinets of the two adjacent cascaded display cabinets among the plurality of display cabinets pass through their first One of the wireless trans
  • the LED display screen of this embodiment is equipped with wireless transceivers with working frequencies in the millimeter wave frequency band on the first to fourth sides of each display box.
  • Each wireless transceiver can automatically determine that the display box is in the entire LED display screen. In this way, the wireless cascade between the display boxes can be realized, which can simplify the connection configuration operation of the LED display screen, and significantly reduce the time cost and labor cost of installation, disassembly, and maintenance of the display box.
  • the setting of the pair of Ethernet interfaces facilitates the establishment of a wired connection between the front-end system controller and the first-level display box, thereby simplifying the connection scheme between the front-end system controller and the LED display;
  • the display screen is determined by the image data signal transmission direction of the first-level display box when multiple loading ports are loaded.
  • the operating frequency is in a frequency range of 57GHZ ⁇ 67GHZ or 71GHZ ⁇ 87GHZ.
  • the communication distance between the target wireless transceiver and the wireless transceiver adjacent to and opposite to the target wireless transceiver is less than or equal to 30 mm.
  • the wireless transceiver includes: a circuit board and a second Ethernet interface, a physical layer transceiver, a wireless transmitting chip, and a wireless receiving chip arranged on the circuit board; the second The Ethernet interface is electrically connected to the physical layer transceiver and is electrically connected to the module controller through a network cable.
  • the wireless transmitting chip and the wireless receiving chip are respectively electrically connected to the physical layer transceiver through a SerDes differential signal line pair .
  • the wireless transceiver further includes a wired power interface, and the wired power interface is wired to the module controller; the second Ethernet interface, the physical layer transceiver, and The wired power interface is located on the first side of the circuit board, and the wireless transmitting chip and the wireless receiving chip are located on the second side of the circuit board opposite to the first side, and on the circuit board
  • the second Ethernet interface is located at intervals in the length direction of the circuit board between the wireless sending chip and the wireless receiving chip, and the wireless sending chip and the wireless The working frequency of the receiving chip is in the millimeter wave frequency band.
  • the wireless transceiver includes: a circuit board and a DC-to-DC circuit, a wireless transmitting chip and a wireless receiving chip arranged on the circuit board; the circuit board is provided with a pad group, And the pad group is electrically connected to one end of a cable for transmitting data signals and power signals, and the other end of the cable is electrically connected to the module controller; the DC to DC circuit is electrically connected to the welding
  • the disk set is used to obtain a power signal
  • the wireless transmitting chip is electrically connected to the pad set through a SerDes differential signal line pair for receiving data signals from the pad set, and the wireless receiving chip uses another SerDes differential signal
  • the wire pair is electrically connected to the pad group for transmitting data signals to the pad group; the wireless transmitting chip and the wireless receiving chip are arranged at intervals in the length direction of the circuit board, and the wireless transmitting The working frequencies of the chip and the wireless receiving chip are located in the millimeter wave frequency band.
  • the wireless transceiver further includes a first ring-shaped absorbing material element and a second ring-shaped absorbing material element; the first ring-shaped absorbing material element is fixed on the circuit board and surrounds The wireless transmitting chip is arranged, and the second ring-shaped absorbing material element is fixed on the circuit board and arranged around the wireless receiving chip; the wireless transmitting chip is located in the center of the first ring-shaped absorbing material element The hole is eccentrically arranged, and the wireless receiving chip is eccentrically arranged in the central hole of the second annular wave absorbing material element.
  • the module controller is used to set the first wireless transceiver, the second wireless transceiver, and the third wireless transceiver when the LED display screen is connected and configured.
  • a pair of adjacent wireless transceivers of the fourth wireless transceiver and the fourth wireless transceiver are working in the transmitting mode and the other pair of adjacent wireless transceivers are working in the receiving mode, so that the multiple display boxes are automatically determined to be in all Describe the position coordinates in the LED display.
  • an LED display system provided by an embodiment of the present application includes: any one of the aforementioned LED display screens; and a system controller for receiving and processing an input video source to obtain an image data signal, and is provided with at least A loading port.
  • each of the loading ports is connected to one of the pair of Ethernet interfaces of the first-level display box corresponding to one of the plurality of display boxes through a cable for Perform image data signal transmission.
  • the LED display system of this embodiment not only realizes the wireless cascade connection between the display box and the display box, but also realizes the wired connection between the system controller and the display box through the wireless transceiver working in the millimeter wave frequency band, which greatly It simplifies the connection convenience of each module in the display system, and significantly reduces the time cost and labor cost of installation, disassembly, and maintenance of the display box.
  • the setting of the pair of Ethernet interfaces can also realize the automatic determination of the image data signal transmission direction of the first-level display cabinet when the LED display is loaded by multiple loading ports.
  • a display box provided by an embodiment of the present application includes: a rectangular box frame having a first side, a second side, a third side, and a fourth side, and a display box formed by the first side, the The accommodating space enclosed by the second side, the third side and the fourth side; wherein the first side and the third side are opposite sides, and the second side and the fourth side are Opposite side; the module controller is arranged in the accommodating space and is provided with a transceiver interface group, a module interface group, and a pair of Ethernet networks other than the transceiver interface group and the module interface group Interface; LED display unit, arranged on the rectangular box frame and electrically connected to the module interface group of the module controller; and a first wireless transceiver, a second wireless transceiver, and a third wireless transceiver And a fourth wireless transceiver, which are respectively arranged on the first side, the second side, the third side, and the fourth side and are electrically connected to the transceiver interface group of the module
  • the above technical solutions of the embodiments of the present application may have one or more of the following beneficial effects: by installing wireless devices with working frequencies in the millimeter wave band on the first to fourth sides of each display box in the LED display screen.
  • Transceiver which can use each wireless transceiver to automatically determine the position coordinates of the display box in the entire LED display, so as to realize the wireless cascade between the display boxes, which can simplify the connection configuration operation of the LED display. And significantly reduces the time cost and labor cost of installation, disassembly, and maintenance of the display box.
  • the specific circuit design of each wireless transceiver is beneficial to provide a stable and reliable wireless connection.
  • the setting of the pair of Ethernet interfaces facilitates the establishment of a wired connection between the front-end system controller and the first-level display box, thereby simplifying the connection between the front-end system controller and the LED display; this is because if the system controls The wireless connection between the monitor and the first-level display box needs to solve the power supply problem of the wireless transceiver configured for the system controller, resulting in a more complicated wireless connection scheme.
  • the setting of the pair of Ethernet interfaces can also realize the automatic determination of the image data signal transmission direction of the first-level display box when the LED display is loaded by multiple loading ports.
  • FIG. 1 is a schematic structural diagram of an LED display screen provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the connection relationship between the module controller and the LED display unit in the single display box shown in FIG. 1.
  • 3A and 3B are schematic diagrams of a front and back component layout of a circuit board of the wireless transceiver shown in FIG. 1.
  • Figures 4A and 4B are schematic diagrams of the front and back component layouts of another circuit board of the wireless transceiver shown in Figure 1
  • FIG. 5 is a schematic diagram of the connection configuration result of an LED display screen provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of an LED display system provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an LED display system provided by an embodiment of the application.
  • an LED display screen 100 provided by an embodiment of the present application includes: a plurality of display boxes 10; FIG. 1 only shows three display boxes 10 as an example, but the embodiment of the present application does not The specific number of boxes displayed in the LED display 100 is not limited.
  • each display box 10 includes: a box frame 11, an LED display unit 13, a module controller 15 and four wireless transceivers 17a-17d.
  • the box frame 11 has four side surfaces S1 to S4 and a accommodating space 110 surrounded by the four side surfaces S1 to S4.
  • the box frame 11 has a rectangular (including square) hollow structure; S1 and side S3 are opposite sides, and side S2 and side S4 are opposite sides.
  • the LED display unit 13 is disposed on the box frame 11, for example, the front surface of the box frame 11, and includes a plurality of LED modules 130. 2 shows that the LED display unit 13 includes four LED modules 130, but the embodiment of the present application does not limit the specific number of the LED modules 130 in the LED display unit 13 of the display box 10, and it may even have only one LED. Module. Furthermore, a single LED module 130 typically has a plurality of LED display pixels, and a single LED display pixel includes, for example, RGB LED lights.
  • the module controller 15 is disposed in the accommodating space 110 of the box frame 11 and is electrically connected to the LED display unit 13 for driving and controlling the LED display unit 13 for image display. As shown in FIG. 2, as a non-limiting embodiment, the module controller 15 is provided with a transceiver interface group 150, a module interface group 152, and a pair of Ethernet interfaces 153a and 153b, each of the LED display unit 13
  • the LED module 130 is electrically connected to the module interface group 152 through, for example, a flat cable connection or a board-to-board connection.
  • the module controller 15 may adopt a two-layer circuit board design of core board + adapter board, the module interface group 152 is arranged on the adapter board, the transceiver interface group 150 is arranged on the core board, or the adapter is arranged On the board, or part of the transceiver interface is arranged on the core board and another part of the transceiver interface is arranged on the adapter board.
  • the core board its main circuit elements include a programmable logic device and a microcontroller and storage device electrically connected to the programmable logic device, but the embodiment of the present application is not limited to this.
  • Ethernet interfaces 153a and 153b are provided on the core board or the adapter board, and are, for example, RJ45 integrated with the network transformer, or adopt a separate design of the network transformer and RJ45, and are electrically connected to the core through Ethernet physical layer transceivers. Programmable logic device on the board.
  • each wireless transceiver 17a-17d is respectively arranged on the four side surfaces S1 to S4 of the box frame 11.
  • the operating frequency of each wireless transceiver 17a-17d is in the millimeter wave frequency band.
  • the millimeter wave frequency band here typically refers to a frequency range of 30 GHz to 300 GHz, and a corresponding wavelength of 1 mm to 10 mm.
  • the wireless transceivers 17a-17d of this embodiment working in the millimeter wave frequency band are very suitable for the application of the display box in the LED display screen, because the LED display screen is typically composed of multiple display boxes.
  • the problem that needs to be considered is how to avoid wireless signal crosstalk between wireless transceivers in the same LED display that do not need to send and receive data, and the transmission is unstable and easy to be hindered.
  • the wireless transceivers 17a-17d of this embodiment work in the millimeter wave frequency band, which can greatly reduce the possibility of wireless signal crosstalk compared with wireless transceivers such as WiFi modules and Bluetooth modules in the prior art.
  • the infrared transceiver has stable transmission and is not easily blocked by obstacles.
  • the working frequency of the wireless transceivers 17a-17d is preferably in the frequency range of 57GHZ-67GHZ, or 71GHZ-87GHZ, for example, 60GHZ or 80GHZ.
  • any one of the wireless transceivers 17a-17d includes, for example, a circuit board 170, an Ethernet interface 171, a physical layer transceiver 173, and an Ethernet interface 171 provided on the circuit board 170.
  • the Ethernet interface 171 is electrically connected to the physical layer transceiver 173, and is connected to the transceiver interface group 150 of the module controller 15 through a cable, such as a network cable. Accordingly, the transceiver interface group 150 has, for example, four Ethernet interfaces in this embodiment.
  • the Ethernet interface 171 is an RJ45 integrated network transformer, or a separate design of the network transformer and RJ.
  • the wireless transmitting chip Tx and the wireless receiving chip Rx are electrically connected to the physical layer transceiver 173 respectively. Further, in order to improve signal transmission stability and transmission rate, the wireless transmitting chip Tx is electrically connected to the physical layer transceiver 173 through a differential signal line pair, for example, through two SerDes (Serializer and Deserializer) differential signal lines. Physical layer transceiver 173; Similarly, the wireless receiving chip Rx is electrically connected to the physical layer transceiver 173 through a differential signal line pair, for example, is electrically connected to the physical layer transceiver 173 through two SerDes differential signal lines.
  • SerDes Serializer and Deserializer
  • the physical layer transceiver 173 is configured with a SerDes interface, for example, to realize data transmission and reception; specifically, it can use the unshielded twisted pair-optical media converter (UTP-FIBER Media Converter) of the physical layer transceiver 173 to work.
  • the mode realizes the data transmission of the entire link.
  • the physical layer transceiver 173 here may be a 1GBase-T/2.5GBase-T/5GBase-T/10GBase-T type Ethernet physical layer transceiver.
  • the wireless data transmission and the data wireless reception are executed by two independent chips, which can effectively ensure the stability and reliability of data reception and transmission.
  • the circuit board 170 has a first side 170 a and a second side 170 b opposite to each other, and the Ethernet interface 171 and the physical layer transceiver 173 are disposed on the first side 170 a of the circuit board 170. Furthermore, the first side 170a of the circuit board 170 is also provided with a wired power interface 175, which has, for example, two 5V DC voltage input pins and two ground pins, but this embodiment is not limited to this; The wired power interface 175 is, for example, connected to the transceiver interface group 150 of the module controller 15 through a flat cable.
  • the transceiver interface group 150 also has a plurality of header pins to connect with the wired power interface 175 through a flat cable.
  • the wired power interface 175 and the physical layer transceiver 173 are located on opposite sides of the Ethernet interface 171 in the length direction of the circuit board 170 (in the longitudinal direction of FIG. 3A).
  • the design of arranging the Ethernet interface 171 in the middle position of the first side 170a of the circuit board 170 is beneficial to maximize the use of the space of the circuit board 170, and on the other hand, the circuit board 170 is connected Cables, such as network cables, are evenly pulled by the network cable.
  • the wired power interface 175 of this embodiment is electrically connected to the physical layer transceiver 173, the wireless transmitting chip Tx, and the wireless receiving chip Rx to provide the operating voltages required by each chip.
  • the wireless transmitting chip Tx and the wireless receiving chip Rx are arranged on the second side 170b of the circuit board 170, and in conjunction with FIGS. 3A and 3B, it can be seen that the wireless transmitting chip Tx and the wireless receiving chip Rx are in the length direction of the circuit board 170. Located on opposite sides of the Ethernet interface 171.
  • the arrangement of the wireless transmitting chip Tx and the wireless receiving chip Rx can maximize the distance between the chips and minimize the communication crosstalk between the wireless transmitting chip Tx and the wireless receiving chip Rx on the circuit board 170, thereby improving data Reliability of communication.
  • the operating frequencies of the wireless transmitting chip Tx and the wireless receiving chip Rx are located in the millimeter wave frequency band, for example, in the frequency range of 57GHZ-67GHZ or 71GHZ-87GHZ.
  • the second side 170b of the circuit board 170 is provided with ring-shaped wave absorbing material elements 177 and 179.
  • the ring-shaped absorbing material element 177 is arranged around the wireless receiving chip Rx on the second side 170b, and preferably, to prevent the antenna signal from affecting the built-in antenna of the wireless receiving chip Rx, the wireless receiving chip Rx is placed in the center of the ring-shaped absorbing material element 177.
  • the inside of the hole is eccentrically arranged, that is, the wireless receiving chip Rx is not arranged in the center; the ring-shaped wave absorbing material element 177 of this embodiment uses, for example, a Lidar JCS-9 type wave absorbing material.
  • the ring-shaped wave absorbing material element 179 is arranged around the wireless transmitting chip Tx on the second side 170b, and preferably, to prevent the antenna signal from affecting the built-in antenna of the wireless transmitting chip Tx, the wireless transmitting chip Tx is placed on the ring-shaped wave absorbing material element 179.
  • the central hole is eccentrically arranged, that is, the wireless transmitting chip Tx is not arranged in the center; the ring-shaped wave absorbing material element 179 of this embodiment uses, for example, a Lidar JCS-9 wave absorbing material.
  • the wireless transmitting chip Tx and the wireless receiving chip Rx of this embodiment may use commercially available KSS104M series chips, of course, other wireless transmitting and receiving chips suitable for working in the millimeter wave frequency band may also be used.
  • any one of the wireless transceivers 17a-17d includes, for example, a circuit board 270, a DC-to-DC circuit 271 provided on the circuit board 270, and a wireless transmitting chip Tx And wireless receiving chip Rx.
  • the circuit board 270 is provided with a pad group 2701, and the pad group 2701 is electrically connected to one end of a cable for transmitting data signals and power signals, such as a USB3.0 cable, and the other end of the cable, such as a USB3.0 cable, is connected
  • the transceiver interface group 150 of the module controller 15 it should be noted that, in this embodiment, the number of pads in the pad group 2701 in FIG.
  • the transceiver interface group 150 in this embodiment has, for example, four USB3.0 interfaces, such as four microUSB3.0 interfaces.
  • the DC-to-DC circuit 271 is electrically connected to the pad group 2701 to obtain a power signal, and it uses a power management chip (PMIC), for example.
  • PMIC power management chip
  • the wireless transmitting chip Tx is electrically connected to the pad group 2701 for receiving data signals from the pad group 2701
  • the wireless receiving chip Rx is electrically connected to the pad group 2701 for transmitting data signals to the pad group 2701.
  • the working frequencies of the wireless transmitting chip Tx and the wireless receiving chip Rx are located in the millimeter wave frequency band.
  • the millimeter wave frequency band here typically refers to a frequency range of 30 GHz to 300 GHz, and a corresponding wavelength of 1 mm to 10 mm.
  • the millimeter wave frequency band where the wireless transmitting chip Tx works is preferably 57GHZ-67GHZ, or 71GHZ-87GHZ.
  • the millimeter wave frequency band where the wireless receiving core Rx works is 57GHZ-67GHZ, or 71GHZ-87GHZ, for example, the wireless receiving chip Rx works at 60GHZ or 80GHZ.
  • the wireless data transmission and data wireless reception are executed by two independent chips, which can effectively ensure the stability and reliability of data reception and transmission.
  • the circuit board 270 has a first side 270a and a second side 270b opposite to each other.
  • the pad group 2701 and the DC-to-DC circuit 271 are located on the first side 270a of the circuit board 270, and the wireless transmitting chip Tx and the wireless receiving chip Rx are located on the second side 270b of the circuit board 270 at intervals.
  • the wireless transmitting chip Tx and the wireless receiving chip Rx are arranged at intervals in the length direction of the circuit board 270 (in the longitudinal direction of FIG.
  • the geometric center of the wireless transmitting chip Tx and the geometric center of the wireless receiving chip Rx are one
  • the distance between the two is preferably greater than 10 mm, such as 15 mm, in order to reduce the crosstalk between the wireless transmitting chip Tx and the wireless receiving chip Rx as much as possible, and ensure good wireless communication.
  • the wireless transmitting chip Tx and the wireless receiving chip Rx are respectively electrically connected to the pad group 2701 through a differential signal line pair, such as a SerDes differential signal line.
  • the wireless transmitting chip Tx is connected to a pair of the pad group 2701 through two differential signal lines.
  • Differential signal pads, and the wireless receiving chip Rx is connected to the other pair of differential signal pads in the pad group 2701 through two differential signal wires; this uses a pair of differential signal wires to realize the connection with the wireless transmitting chip Tx and the wireless receiving chip Rx
  • the connection can effectively improve the speed and stability of data transmission.
  • the arrangement of the ring-shaped absorbing material elements 273 and 275 can further reduce the signal crosstalk between the wireless transmitting chip Tx and the wireless receiving chip Rx, and enhance the wireless communication capability of the chip.
  • the ring-shaped absorbing material element 273 is fixed on the circuit board 270 and arranged around the wireless receiving chip Rx.
  • the wireless receiving chip Rx is placed in the center of the ring-shaped absorbing material element 273
  • the inside of the hole is eccentrically arranged, that is, the wireless receiving chip Rx is not arranged in the center;
  • the annular wave absorbing material element 273 of this embodiment uses, for example, a Lidar JCS-9 wave absorbing material.
  • the ring-shaped absorbing material element 275 is fixed on the circuit board 270 and arranged around the wireless transmitting chip Tx.
  • the wireless transmitting chip Tx is placed on the ring-shaped absorbing material element.
  • the central hole of 275 is eccentrically arranged, that is, the wireless transmitting chip Tx is not arranged in the center; the ring-shaped wave absorbing material element 275 of this embodiment is, for example, a Lidar JCS-9 type wave absorbing material.
  • the wireless transmitting chip Tx and the wireless receiving chip Rx of this embodiment may use commercially available KQG104-B3 series chips, of course, other wireless transmitting and receiving chips suitable for working in the millimeter wave frequency band may also be used.
  • the inventor has learned through experiments that the communication distance between two adjacent and opposite wireless transceivers that transmit image data signals in a wireless manner between two adjacent display boxes 10 is maintained at no more than 30 mm. When the signal transmission reliability is the highest, no obvious code loss phenomenon is found; and when the communication distance is increased to 35 mm, there is a certain possibility of code loss. As an example, the communication distance is set to be less than or equal to 10 mm, for example.
  • the inventor has also learned through experiments that the wireless transmission delay of the wireless transceivers 17a-17d of this embodiment can be kept within 500 picoseconds, which is equivalent to the delay of traditional network cable transmission, and obviously has fully satisfied the connection of the LED display. , Design and installation requirements.
  • Position coordinate assignment The module controller 15 in each display box 10 (refer to FIG. 1), for example, sets the wireless transceivers 17a, 17d on the adjacent first side S1 and fourth side S4 to work In the transmitting mode, the wireless transceivers 17b and 17c on the adjacent second side S2 and the third side S3 are set to work in the receiving mode. Next, the wireless transceiver 17a periodically sends the position coordinates of the display box 10 to the right, for example, M times, for receiving by the wireless transceiver 17c of the horizontally adjacent display box 10 to the right within a preset time period.
  • Coordinate assignment, and M here is greater than the number of columns of the display box 10 in the LED display; and the wireless transceiver 17d periodically sends down the position of the display box 10 for N times within a preset period of time.
  • the coordinates are received by the wireless transceivers 17b of the vertically adjacent display boxes 10 to realize row coordinate assignment, and N here is greater than the number of rows of the display box 10 in the LED display screen.
  • the position coordinates (C, R) are initialized to (0,0), and it receives the first time the adjacent left display box 10 sent After the first position coordinate (0,0), add 1 to the column coordinate of the received position coordinate to assign to your own coordinate, so that the column coordinate C in the position coordinate (C, R) is updated to 1; similar
  • the first time after it receives the first position coordinates (0,0) sent by the adjacent upper display box 10, it adds 1 to the row coordinates of the received position coordinates to give its own position coordinates, so that it The row coordinate R in the position coordinates (C, R) is updated to 1.
  • the position coordinates (C, R) are updated to (1, 1).
  • the second position coordinates, the third position coordinates, ..., the Mth position coordinates are issued, and the position coordinate assignment operation is carried out according to the following rules: If the next position coordinates (such as the second The second position coordinate) is the same as the column coordinate of the previous position coordinate (such as the first position coordinate), then the column coordinate C in the position coordinate (C, R) remains unchanged, otherwise, if it is different, the next time Add 1 to the column coordinates of the position coordinates and assign it to your own position coordinates; in the same way, if the adjacent upper side displays the last position coordinates (such as the second position coordinates) and the previous position coordinates (such as If the row coordinate of the first position coordinate) is the same, the row coordinate R in the position coordinate (C, R) remains unchanged, otherwise, if it is different, add 1 to the row coordinate of the next position coordinate and assign it to
  • the module controller 15 sets the wireless transceivers 17a-17d in each display box 10 to work in the transceiver mode, and uploads the position coordinates of each display box 10 to the front-end system (such as the system controller) in combination with the resolution information.
  • the front-end system can generate LED display topological information according to the acquired position coordinate information, thereby generating the configuration parameters of the LED display and sending them to each display box 10 in the LED display, where it is generated according to the position coordinate information
  • the display topology information is a mature technology, so it will not be detailed here.
  • the configuration parameters issued here include, for example, the position coordinates of each display box and the corresponding ranking number (for example, S1 to S4 in P1S1 to P1S4 and S1 to S2 in P2S1 to P2S2 in Figure 5 , Where P1 and P2 represent the identifications of the different loading ports of the aforementioned system controller) and even the orientation numbers of the wireless transceivers that need to be enabled when each display box performs image display.
  • P1 and P2 represent the identifications of the different loading ports of the aforementioned system controller
  • wireless transceivers with working frequencies in the millimeter wave frequency band are installed on the first to fourth sides of each display box in the LED display screen, which can automatically determine the display by using each wireless transceiver.
  • the position coordinates of the box in the entire LED display screen can be used to realize the wireless cascade between the display boxes, which can simplify the connection configuration operation of the LED display screen, and significantly reduce the installation, disassembly, and maintenance of the display box. Time cost and labor cost.
  • the specific circuit design of each wireless transceiver is beneficial to provide a stable and reliable wireless connection.
  • the LED display screen 100 of this embodiment is suitable for LED TV, rental, high-end fixed installation, LED conference screen, digital signage and other fields.
  • an LED display system provided by an embodiment of the present application includes: an LED display screen 100 and a system controller 200.
  • the specific structure of the LED display screen 100 can be referred to the related description of the foregoing embodiment, so it will not be repeated here.
  • the system controller 200 is provided with a loading port 201 and is used to receive and process an input video source to obtain an image data signal.
  • a wired connection is established between the load port 201 and the Ethernet interface 153 of the first-level display box (such as the leftmost display box in Figure 6) of the multiple display boxes 10 cascaded in the LED display 100 through a network cable Connect to realize the transmission of image data signals (for example, including RGB data packets and field packets) to the LED display 100.
  • the module controller 15 (refer to FIG.
  • each display box 10 in the LED display screen 100 of this embodiment is equipped with the judgment logic of the image data signal transmission direction, for example: detecting where the display box is Whether any one of the pair of Ethernet interfaces 153a, 153b in the body 10 has a cable, such as a network cable, is connected, and the image data signal transmission direction of the display box 10 is determined according to the detection result.
  • the left Ethernet interface 153a of the leftmost display box 10 has network cable access
  • the leftmost display box 10 as the first-level display box can automatically determine the image data signal transmission The direction is to pass right.
  • a pair of Ethernet interfaces 153a, 153b other than the transceiver interface group 150 and the module interface group 152 are provided on the module controller 15 to realize image data of multiple display cabinets 10 in cascade. Automatic determination of signal transmission direction.
  • the system controller 200 includes, for example, a video interface, a video decoder, a programmable logic device, an Ethernet physical layer transceiver, and an Ethernet interface (as the load port 201).
  • the video interface is used to receive an input video source, which is, for example, a standard digital video interface such as HDMI and DVI;
  • the video decoder is electrically connected between the video interface and the programmable logic device and is, for example, HDMI Receiver, DVI decoder, etc.;
  • the Ethernet physical layer transceiver is electrically connected between the programmable logic device and the Ethernet interface.
  • the programmable logic device is, for example, an FPGA (Field Programmable Gate Array), and the video decoder decodes the input video source to obtain the data and control signals and transmits them to the FPGA, which is buffered and replaced by the internal RAM.
  • the clock domain and bit width conversion operations are performed to obtain a processed image data signal, and the processed image data signal is sequentially output through the Ethernet physical layer transceiver and the Ethernet interface.
  • the Ethernet interface here is, for example, the RJ45 network port of the integrated network transformer or the separate design of the network transformer and RJ45.
  • FIG. 6 shows that the multiple cascaded display boxes 10 carried by the system controller 200 in the LED display system are not limited to being arranged in a single row, and can also be arranged in multiple rows, such as the one shown in FIG. 7 Two lines. Furthermore, in the embodiment shown in FIG.
  • the six display boxes of the LED display screen are loaded by the two loading ports 201 of the system controller 200, and one of the loading ports 201 (corresponding to the identification P1) is loaded There are three display boxes 10 in one row and the rightmost display box 10 in the second row, and the other loading port 201 (corresponding to identification P2) carries the other two display boxes 10 in the second row; the belt corresponding to identification P1
  • the four display boxes carried by the loading port 201 are sequentially wirelessly cascaded and the leftmost display box 10 in the first row is the first-level display box; the two display boxes carried by the loading port 201 corresponding to the mark P2 They are cascaded together and the middle display box 10 in the second row is the first-level display box.
  • the image data signal transmission direction is determined to be transmitted to the right (correspondingly the first The wireless transceiver 17c of the display box 10 on the far left of the row is disabled); for the middle display box 10 of the second row as the first-level display box, because the Ethernet interface 153b on the right has an access network cable, Therefore, the image data signal transmission direction is determined to pass to the left (correspondingly, the wireless transceiver 17a of the display box 10 in the middle of the second row is disabled).
  • the LED display system of this embodiment not only realizes the wireless connection between the display box and the display box through the wireless transceiver, but also realizes the wired connection between the system controller 200 and the first-level display box (
  • This kind of wired connection scheme is more convenient than the wireless connection scheme between the system controller and the first-level display cabinet, because the wireless connection with the first-level display cabinet needs to solve the power supply problem of the wireless transceiver configured for the system controller.
  • the wireless connection scheme is more complicated), which greatly simplifies the connection convenience of each module in the display system, and significantly reduces the time cost and labor cost of installation, disassembly, and maintenance of the display box.
  • the setting of the pair of Ethernet interfaces 153a, 153b is beneficial to realize the automatic determination of the image data signal transmission direction of the first-level display box.
  • the transceiver interface group 150 is not limited to having four Ethernet interfaces or four USB3.0 interfaces. It can also be any combination of Ethernet interfaces and USB3.0 interfaces but the total number is four. For example, two Ethernet interfaces and two USB3.0 interfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种LED显示屏(100)具有多个显示箱体(10),显示箱体(10)包括:箱体框架(11),具有第一至第四侧面(S1-S4)和由第一至第四侧面(S1-S4)共同围成的容置空间(110);模组控制器(15),设置在容置空间(110)内且设有收发器接口组(150)、模组接口组(152)以及一对以太网接口(153a,153b);LED显示单元(13),设置在箱体框架(11)上且电连接模组控制器(15)的模组接口组(152);以及第一至第四无线收发器(17a-17d),分别设置在第一至第四侧面(S1-S4)且电连接模组控制器(15)的收发器接口组(150),第一至第四无线收发器(17a-17d)的工作频率位于毫米波频段。简化了LED显示屏(100)的连接配置操作,并方便系统控制器(200)与首级显示箱体(10)建立有线连接以及在LED显示屏(100)由多个带载口(201)带载时首级显示箱体(10)的信号传输方向确定。

Description

LED显示屏、LED显示系统和显示箱体 技术领域
本申请涉及显示技术领域,尤其涉及一种LED显示屏、一种LED显示系统以及一种显示箱体。
背景技术
LED显示屏是由一个一个的配有模组控制器的显示箱体组成,每一个模组控制器只能控制一个显示箱体,故如果要让LED显示屏显示一副完整的画面,则需要配套的上位机软件进行显示屏连接的配置。这是LED显示屏控制系统行业几十年都使用的方式。
但是,随着行业的发展,LED显示屏的应用越来越广泛,用户对于LED显示屏的操作体验和需求也在不断的更新行业的认知和发展。其中经常被讨论的一点就是,LED显示屏连屏配置太复杂了,很大程度上影响了用户的体验。再者,LED显示屏已经从传统的户外传媒扩展到了室内会议室的应用,面对的用户群体已经不是行业内的专业人员,如果让这些非专业人员使用LED显示屏时还需要进行配置,这对于他们来讲是不现实的。这类人员需要的是和液晶电视一样的体验,即LED显示屏上电后就是显示完整的画面,连接上视频接口就可以进行信息的展示和讲演。因此,如何简化LED显示屏的连接配置是目前亟待解决的技术问题。
发明内容
为克服相关技术中存在的缺陷和不足,本申请的实施例提供一种LED显示屏、一种LED显示系统以及一种显示箱体。
一方面,本申请实施例提出的一种LED显示屏,包括:拼接在一起的多个显示箱体;每个所述显示箱体包括:箱体框架,具有第一侧面、第二侧面、第三侧面、第四侧面,和 由所述第一侧面、所述第二侧面、所述第三侧面与所述第四侧面围成的容置空间;其中所述第一侧面和所述第三侧面为相对侧面,所述第二侧面和所述第四侧面为相对侧面;模组控制器,设置在所述容置空间内且设有收发器接口组、模组接口组以及除所述收发器接口组和所述模组接口组之外的一对以太网接口,其中所述模组控制器用于检测所述一对以太网接口中的任一以太网接口是否有线缆接入、并根据检测结果确定所述显示箱体的图像数据信号传输方向;LED显示单元,设置在所述箱体框架上且包括一个或多个LED模组,其中所述LED显示单元电连接所述模组控制器的所述模组接口组;以及第一无线收发器、第二无线收发器、第三无线收发器和第四无线收发器,分别设置在所述第一侧面、所述第二侧面、所述第三侧面和所述第四侧面且电连接所述模组控制器的所述收发器接口组,其中所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器的工作频率位于毫米波频段,以及所述多个显示箱体中相邻的两个级联显示箱体的前级显示箱体通过自己的所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器中的一个目标无线收发器与后级显示箱体的所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器中与所述目标无线收发器彼此相邻且相对的一个无线收发器以无线方式进行图像数据信号传输。
本实施例的LED显示屏在各个显示箱体的第一至第四侧分别装设工作频率位于毫米波频段的无线收发器,其可以利用各个无线收发器自动确定显示箱体在整个LED显示屏中的位置坐标,藉此可以实现显示箱体之间的无线级联,从而可以简化LED显示屏的连接配置操作,并显著降低了安装、拆卸、维修显示箱体的时间成本与人工成本。再者,所述一对以太网接口的设置,方便前端系统控制器与首级显示箱体之间建立有线连接,藉此简化前端系统控制器与LED显示屏的连接方案;以及方便实现在LED显示屏由多个带载口带载时首级显示箱体的图像数据信号传输方向确定。
在本申请的一个实施例中,所述工作频率位于频率范围57GHZ~67GHZ或71GHZ~87GHZ。
在本申请的一个实施例中,所述目标无线收发器和与所述目标无线收发器彼此相邻且相对的所述无线收发器之间的通信距离小于或等于30毫米。
在本申请的一个实施例中,所述无线收发器包括:电路板和设置在所述电路板上的第二以太网接口、物理层收发器、无线发送芯片及无线接收芯片;所述第二以太网接口电连接所述物理层收发器、且通过网线电连接所述模组控制器,所述无线发送芯片和所述无线接收芯片分别通过SerDes差分信号线对电连接所述物理层收发器。
在本申请的一个实施例中,所述无线收发器还包括有线电源接口,且所述有线电源接口有线连接所述模组控制器;所述第二以太网接口、所述物理层收发器和所述有线电源接口位于所述电路板的第一侧,所述无线发送芯片和所述无线接收芯片位于所述电路板的相对于所述第一侧的第二侧、且在所述电路板的长度方向上间隔设置;所述第二以太网接口在所述电路板的所述长度方向上位于所述无线发送芯片和所述无线接收芯片之间,以及所述无线发送芯片和所述无线接收芯片的工作频率位于所述毫米波频段。
在本申请的一个实施例中,所述无线收发器包括:电路板和设置在所述电路板上的直流转直流电路、无线发送芯片和无线接收芯片;所述电路板设有焊盘组,且所述焊盘组电连接用于传输数据信号和电源信号的线缆的一端,以及所述线缆的另一端电连接所述模组控制器;所述直流转直流电路电连接所述焊盘组以获取电源信号,所述无线发送芯片通过SerDes差分信号线对电连接所述焊盘组以用于从所述焊盘组接收数据信号,以及所述无线接收芯片通过另一SerDes差分信号线对电连接所述焊盘组以用于向所述焊盘组传送数据信号;所述无线发送芯片和所述无线接收芯片在所述电路板的长度方向上间隔设置,以及所述无线发送芯片和所述无线接收芯片的工作频率位于所述毫米波频段。
在本申请的一个实施例中,所述无线收发器还包括第一环形吸波材料元件和第二环形吸波材料元件;所述第一环形吸波材料元件固定在所述电路板上且环绕所述无线发送芯片设置,以及所述第二环形吸波材料元件固定在所述电路板上且环绕所述无线接收芯片设置;所述无线发送芯片在所述第一环形吸波材料元件的中心孔内偏心设置,以及所述无线接收芯片在所述第二环形吸波材料元件的中心孔内偏心设置。
在本申请的一个实施例中,所述模组控制器用于在所述LED显示屏进行连接配置时设定所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器中一对相邻的无线收发器工作在发送模式且另一对相邻的无线收发器工作在接收模式,以使得所述多个显示箱体自动确定在所述LED显示屏中的位置坐标。
另一方面,本申请实施例提供的一种LED显示系统,包括:前述任意一种LED显示屏;以及系统控制器,用于接收并处理输入的视频源以得到图像数据信号、且设置有至少一个带载口。其中,每个所述带载口与所述多个显示箱体中的相对应的一个首级显示箱体的所述一对以太网接口中的一个以太网接口通过线缆有线连接以用于进行图像数据信号传输。
本实施例的LED显示系统通过工作在毫米波频段的无线收发器不但实现了显示箱体与显示箱体之间无线级联,还实现了系统控制器与显示箱体之间的有线连接,大大简化了显示系统中各个模块的连接便捷性,并显著降低了安装、拆卸、维修显示箱体的时间成本与人工成本。此外,所述一对以太网接口的设置,还可以实现在LED显示屏由多个带载口带载时首级显示箱体的图像数据信号传输方向自动确定。
再一方面,本申请实施例提供的一种显示箱体,包括:矩形箱体框架,具有第一侧面、第二侧面、第三侧面、第四侧面,和由所述第一侧面、所述第二侧面、所述第三侧面与所述第四侧面围成的容置空间;其中所述第一侧面和所述第三侧面为相对侧面,所述第二侧面和所述第四侧面为相对侧面;模组控制器,设置在所述容置空间内且设有收发器接口组、 模组接口组以及除所述收发器接口组和所述模组接口组之外的一对以太网接口;LED显示单元,设置在所述矩形箱体框架上且电连接所述模组控制器的所述模组接口组;以及第一无线收发器、第二无线收发器、第三无线收发器和第四无线收发器,分别设置在所述第一侧面、所述第二侧面、所述第三侧面和所述第四侧面且且电连接所述模组控制器的所述收发器接口组,以及所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器的工作频率位于频率范围57GHZ~67GHZ或71GHZ~87GHZ。所述收发器接口组具有四个以太网接口、或者四个USB3.0接口、或者两个以太网接口和两个USB3.0接口。
综上所述,本申请实施例上述技术方案可以具有如下一个或多个有益效果:通过在LED显示屏中各个显示箱体的第一至第四侧分别装设工作频率位于毫米波频段的无线收发器,其可以利用各个无线收发器自动确定显示箱体在整个LED显示屏中的位置坐标,藉此可以实现显示箱体之间的无线级联,从而可以简化LED显示屏的连接配置操作,并显著降低了安装、拆卸、维修显示箱体的时间成本与人工成本。再者,各个无线收发器的具体电路设计有利于提供稳定及可靠的无线连接。此外,所述一对以太网接口的设置,方便前端系统控制器与首级显示箱体之间建立有线连接,藉此简化前端系统控制器与LED显示屏的连接方案;这是因为如果系统控制器与首级显示箱体之间采用无线连接则需要解决为系统控制器配置的无线收发器的供电问题,导致无线连接方案较为复杂。另外,所述一对以太网接口的设置还可以实现在LED显示屏由多个带载口带载时首级显示箱体的图像数据信号传输方向自动确定。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于 本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种LED显示屏的结构示意图。
图2为图1所示单个显示箱体中的模组控制器和LED显示单元的连接关系示意图。
图3A和图3B为图1所示无线收发器的一种电路板正面和背面元件布局示意图。
图4A和图4B为图1所示无线收发器的另一种电路板正面和背面元件布局示意图
图5为本申请实施例提供的一种LED显示屏进行连接配置的结果示意图。
图6为本申请实施例提供的一种LED显示系统的结构示意图。
图7为本申请实施例提供的一种LED显示系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1和图2,本申请实施例提供的一种LED显示屏100,包括:多个显示箱体10;图1中仅示出三个显示箱体10作为举例,但本申请实施例并不限制LED显示屏100中显示箱体的具体数量。
结合图1和图2可知,每个显示箱体10包括:箱体框架11、LED显示单元13、模组控制器15和四个无线收发器17a~17d。
其中,箱体框架11具有四个侧面S1~S4和由所述四个侧面S1~S4围成的容置空间110,举例来说,箱体框架11例如为矩形(包含正方形)镂空结构;侧面S1和侧面S3为相对侧面,以及侧面S2和侧面S4为相对侧面。
LED显示单元13设置在箱体框架11上例如箱体框架11的正面,且包括多个LED模组130。图2中示出LED显示单元13包含四个LED模组130,但本申请实施例并不限制显示箱体10的LED显示单元13中的LED模组130的具体数量,其甚至可能只有一个LED模组。再者,单个LED模组130典型地具有多个LED显示像素,而单个LED显示像素例如包含RGB LED灯。
模组控制器15设置在箱体框架11的容置空间110内,且电连接LED显示单元13以用于驱动控制LED显示单元13进行图像显示。如图2所示,作为一个非限制性实施方式,模组控制器15例如设有收发器接口组150、模组接口组152和一对以太网接口153a及153b,LED显示单元13中的各个LED模组130例如通过排线连接方式或板对板连接方式电连接至模组接口组152。典型地,模组控制器15可以采用核心板+转接板的两层电路板设计,模组接口组152设置在转接板上,收发器接口组150设置在核心板上、或者设置转接板上、又或者其中一部分收发器接口设置在核心板上且另一部分收发器接口设置在转接板上。对于核心板,其主要的电路元件包括可编程逻辑器件和电连接所述可编程逻辑器件的微控制器及存储器件,但本申请实施例并不以此为限。再者,以太网接口153a、153b设置在核心板或者转接板上,并例如是集成网变的RJ45、或者采用网变与RJ45分离式设计,并分别经由以太网物理层收发器电连接核心板上的可编程逻辑器件。
再参见图1和图2,无线收发器17a~17d分别设置在箱体框架11的所述四个侧面S1~S4上。各个无线收发器17a~17d的工作频率位于毫米波频段。此处的毫米波频段典型地是指频率范围为30GHz~300GHz,相应波长为1毫米~10毫米。本实施例这种工作在毫米波频段的无线收发器17a~17d非常适合于LED显示屏中显示箱体的应用场合,因为LED显示屏典型地由多个显示箱体拼接而成,当将无线收发器17a~17d装设在各个显示箱体之后,需要考虑的问题是如何避免同一个LED显示屏中不需要进行数据收发的无线收发器之间的无 线信号串扰以及传输不稳定且容易受到障碍物阻挡,而本实施例无线收发器17a~17d工作在毫米波频段,相较于现有技术中的WiFi模块、蓝牙模块等无线收发器而言可以大大降低无线信号串扰可能,且相较于红外收发器而言传输稳定且不容易受到障碍物阻挡。再者,基于目前无线芯片的性能和频段的易获得性,本实施例优选为无线收发器17a~17d的工作频率为频率范围57GHZ-67GHZ、或71GHZ-87GHZ,例如为60GHZ或80GHZ。
参见图3A和图3B,在一个非限制性实施方式中,无线收发器17a~17d任一者例如包括:电路板170和设置在电路板170上的以太网接口171、物理层收发器173、无线发送芯片Tx及无线接收芯片Rx。以太网接口171电连接物理层收发器173、且通过线缆例如网线连接模组控制器15的收发器接口组150,相应地收发器接口组150在本实施方式中例如具有四个以太网接口。以太网接口171为集成网变的RJ45,或采用网变与RJ分离式设计。无线发送芯片Tx和无线接收芯片Rx分别电连接物理层收发器173。进一步地,为提升信号传输稳定性及传输速率,无线发送芯片Tx通过差分信号线对电连接物理层收发器173,例如通过两根SerDes(Serializer and Deserializer,串化解串器)差分信号线电连接物理层收发器173;类似地,无线接收芯片Rx通过差分信号线对电连接物理层收发器173,例如通过两根SerDes差分信号线电连接物理层收发器173。相应地,物理层收发器173例如配置有SerDes接口,藉此实现数据发送和接收;其具体可以利用物理层收发器173的非屏蔽双绞线-光纤媒体转换器(UTP-FIBER Media Converter)工作模式实现整个链路的数据传递。此处的物理层收发器173可以采用1GBase-T/2.5GBase-T/5GBase-T/10GBase-T型以太网物理层收发器。另外,值得一提的是,本实施例将数据无线发送和数据无线接收工作分别由两个独立芯片来执行,其可以有效确保数据接收和发送的稳定性及可靠性。
承上述,电路板170具有相对的第一侧170a和第二侧170b,以太网接口171和物理层收发器173设置在电路板170的第一侧170a。再者,电路板170的第一侧170a还设置有线 电源接口175,其例如具有两个5V直流电压输入引脚和两个接地引脚,但本实施例并不以此为限;此处的有线电源接口175例如通过排线连接至模组控制器15的收发器接口组150,相应地收发器接口组150还具有多个排针以与有线电源接口175通过排线连接。从图3A还可以得知,有线电源接口175和物理层收发器173在电路板170的长度方向上(图3A的纵向方向上)位于以太网接口171的相对两侧。本实施例这种将以太网接口171排布在电路板170的第一侧170a的中间位置之设计,一方面有利于最大化的利用电路板170的空间,再一方面使得电路板170在连接线缆例如网线时受网线的拉力均匀。再者,本实施例的有线电源接口175电连接物理层收发器173、无线发送芯片Tx和无线接收芯片Rx,以提供各个芯片所需工作电压。
在图3B中,无线发送芯片Tx和无线接收芯片Rx设置在电路板170的第二侧170b,并且结合图3A和3B可知,无线发送芯片Tx和无线接收芯片Rx在电路板170的长度方向上位于以太网接口171的相对两侧。无线发送芯片Tx和无线接收芯片Rx这种排布方式,可以最大化芯片之间的距离,将电路板170上的无线发送芯片Tx与无线接收芯片Rx之间的通信串扰最小化,进而提升数据通信的可靠性。再者,无线发送芯片Tx和无线接收芯片Rx的工作频率位于毫米波频段,例如具体位于频率范围57GHZ-67GHZ或71GHZ-87GHZ。
承上述,为了更好的减少无线发送芯片Tx和无线接收芯片Rx之间信号串扰,增强芯片的通信能力,在电路板170的第二侧170b设置有环形吸波材料元件177和179。其中,环形吸波材料元件177在第二侧170b环绕无线接收芯片Rx设置,并且优选地为防止影响无线接收芯片Rx内置天线的天线信号,将无线接收芯片Rx在环形吸波材料元件177的中心孔内偏心设置,也即无线接收芯片Rx不居中设置;本实施例的环形吸波材料元件177例如采用Lidar JCS-9型吸波材料。类似地,环形吸波材料元件179在第二侧170b环绕无线发送芯片Tx设置,并且优选地为防止影响无线发送芯片Tx内置天线的天线信号,将无线发 送芯片Tx在环形吸波材料元件179的中心孔内偏心设置,也即无线发送芯片Tx不居中设置;本实施例的环形吸波材料元件179例如采用Lidar JCS-9型吸波材料。作为非限制性举例,本实施例的无线发送芯片Tx和无线接收芯片Rx可以采用市售的KSS104M系列芯片,当然也可以采用其他适合工作在毫米波频段的无线发送及接收芯片。
参见图4A和图4B,在另一个非限制性实施方式中,无线收发器17a~17d任一者例如包括:电路板270和设置在电路板270上的直流转直流电路271、无线发送芯片Tx和无线接收芯片Rx。电路板270设有焊盘组2701,且焊盘组2701电连接用于传输数据信号和电源信号的线缆比如USB3.0线的一端,以及所述线缆比如USB3.0线的另一端连接模组控制器15的收发器接口组150;需要说明的是,在本实施例中,图4A中的焊盘组2701中的焊盘个数仅是示例说明,其并不用以限制本申请;相应地收发器接口组150在本实施方式中例如具有四个USB3.0接口比如四个micro USB3.0接口。直流转直流电路271电连接焊盘组2701以获取电源信号,且其例如采用电源管理芯片(PMIC)。无线发送芯片Tx电连接焊盘组2701以用于从焊盘组2701接收数据信号,以及无线接收芯片Rx电连接焊盘组2701以用于向焊盘组2701传送数据信号。无线发送芯片Tx和无线接收芯片Rx的工作频率位于毫米波频段。此处的毫米波频段典型地是指频率范围为30GHz~300GHz,相应波长为1毫米~10毫米。再者,基于目前无线芯片的性能和频段的易获得性,本实施例优选为无线发送芯片Tx工作的毫米波频段为57GHZ-67GHZ、或71GHZ-87GHZ,例如无线发送芯片Tx工作在60GHZ或80GHZ;类似地,无线接收芯Rx工作的毫米波频段为57GHZ-67GHZ、或71GHZ-87GHZ,例如无线接收芯片Rx工作在60GHZ或80GHZ。此外,值得一提的是,本实施例将数据无线发送和数据无线接收工作分别由两个独立芯片来执行,其可以有效确保数据接收和发送的稳定性及可靠性。
承上述,电路板270具有相对的第一侧270a和第二侧270b。焊盘组2701和直流转直 流电路271位于电路板270的第一侧270a,无线发送芯片Tx和无线接收芯片Rx相互间隔地位于电路板270的第二侧270b。无线发送芯片Tx和无线接收芯片Rx在电路板270的长度方向上(图4B的纵向方向上)间隔排列,并且通过试验得知,无线发送芯片Tx的几何中心和无线接收芯片Rx的几何中心之间的距离取大于10毫米为宜,比如15毫米,以便于尽可能降低无线发送芯片Tx和无线接收芯片Rx之间的串扰,保证无线的良好通信。再者,无线发送芯片Tx和无线接收芯片Rx分别通过差分信号线对例如SerDes差分信号线电连接焊盘组2701,例如无线发送芯片Tx通过两根差分信号线连接焊盘组2701中的一对差分信号焊盘,且无线接收芯片Rx通过两根差分信号线连接焊盘组2701中的另一对差分信号焊盘;这种利用差分信号线对来实现与无线发送芯片Tx及无线接收芯片Rx的连接可以有效提升数据传输的速率和稳定性。此外,环形吸波材料元件273、275的设置可以进一步减少无线发送芯片Tx和无线接收芯片Rx之间信号串扰,增强芯片的无线通信能力。环形吸波材料元件273固定在电路板270上且环绕无线接收芯片Rx设置,并且优选地为防止影响无线接收芯片Rx内置天线的天线信号,将无线接收芯片Rx在环形吸波材料元件273的中心孔内偏心设置,也即无线接收芯片Rx不居中设置;本实施例的环形吸波材料元件273例如采用Lidar JCS-9型吸波材料。类似地,环形吸波材料元件275固定在电路板270上且环绕无线发送芯片Tx设置,并且优选地为防止影响无线发送芯片Tx内置天线的天线信号,将无线发送芯片Tx在环形吸波材料元件275的中心孔内偏心设置,也即无线发送芯片Tx不居中设置;本实施例的环形吸波材料元件275例如采用Lidar JCS-9型吸波材料。作为非限制性举例,本实施例的无线发送芯片Tx和无线接收芯片Rx可以采用市售的KQG104-B3系列芯片,当然也可以采用其他适合工作在毫米波频段的无线发送及接收芯片。
此外,经发明人试验得知,相邻两个显示箱体10之间以无线方式进行图像数据信号传输的彼此相邻且相对的两个无线收发器之间的通信距离保持在不大于30毫米时信号传输可 靠度最高,未发现明显的丢码现象;而当该通信距离增大至35毫米时,存在一定的丢码可能性。作为一个举例,该通信距离例如设为小于或等于10毫米。此外,经发明人试验还获知,本实施例的无线收发器17a~17d进行无线传输的延迟可以保持在500皮秒之内,与传统网线传输的延迟相当,显然已经完全满足LED显示屏的连接、设计和安装需求。
参见图5,下面将举例描述一种LED显示屏中的多个显示箱体10进行连接配置的过程。
(1)初始化位置坐标:各个显示箱体10上电并进入连接配置模式时将自己的位置坐标初始化为(0,0),例如图5中的六个显示箱体10的位置坐标均初始化为(0,0)。
(2)位置坐标赋值:各个显示箱体10中的模组控制器15(参考图1)例如将自己相邻的第一侧面S1和第四侧面S4上的无线收发器17a、17d设为工作在发送模式,并将自己相邻的第二侧面S2和第三侧面S3上的无线收发器17b、17c设为工作在接收模式。接下来,无线收发器17a在预设时间段内向右周期性地多次比如M次发送所在显示箱体10的位置坐标供水平相邻的显示箱体10的无线收发器17c接收,以实现列坐标赋值,且此处的M大于LED显示屏中的显示箱体10的列数;以及无线收发器17d在预设时间段内向下周期性地多次比如N次发送所在显示箱体10的位置坐标供垂直相邻的显示箱体10的无线收发器17b接收,以实现行坐标赋值,且此处的N大于LED显示屏中的显示箱体10的行数。
举例来说,以图5中第二行的中间显示箱体10为例,位置坐标(C,R)初始化后为(0,0),其首次收到相邻左侧显示箱体10发出的第一次位置坐标(0,0)后,在该收到的位置坐标的列坐标上加1赋给自己的坐标,从而其位置坐标(C,R)中的列坐标C更新为1;类似地,其首次收到相邻上侧显示箱体10发出的第一次位置坐标(0,0)后,在该收到的位置坐标的行坐标上加1赋给自己的位置坐标,从而其位置坐标(C,R)中的行坐标R更新为1。如此一来,位置坐标(C,R)更新为(1,1)。
之后,其将陆续收到相邻左侧显示箱体10发出的第二次位置坐标、第三次位置坐标、…、 第M次位置坐标,以及陆续收到到相邻上侧显示箱体10发出的第二次位置坐标、第三次位置坐标、…、第N次位置坐标,并按照如下规则进行位置坐标赋值操作:若相邻左侧显示箱体发出的后一次位置坐标(例如第二次位置坐标)与发出的前一次位置坐标(例如第一次位置坐标)的列坐标相同,则位置坐标(C,R)中的列坐标C保持不变,反之若不同,则在该后一次位置坐标的列坐标上加1并赋给自己的位置坐标;同理,若相邻上侧显示箱体发出的后一次位置坐标(例如第二次位置坐标)与发出的前一次位置坐标(例如第一次位置坐标)的行坐标相同,则位置坐标(C,R)中的行坐标R保持不变,反之若不同,则在该后一次位置坐标的行坐标上加1并赋给自己的位置坐标。这样一来,在所述预设时间段结束或者位置坐标发送次数达到足够次数比如100次后,LED显示屏中的六个显示箱体10的位置坐标将可以呈现出如图5所示的结果,然后模组控制器15将各个显示箱体10中的无线收发器17a~17d设为工作在收发模式,各个显示箱体10的位置坐标结合分辨率信息上传至前端系统(例如系统控制器)后,可由前端系统根据获取到的位置坐标信息生成LED显示屏拓扑信息,藉此生成LED显示屏的配置参数并下发至LED显示屏中的各个显示箱体10,此处依据位置坐标信息生成显示屏拓扑信息为成熟技术,故在此不再详述。作为非限制性举例,此处下发的配置参数例如包含各个显示箱体的位置坐标和相对应的排序号(例如图5中P1S1~P1S4中的S1~S4和P2S1~P2S2中的S1~S2,其中P1、P2表示前述系统控制器不同带载口的标识)甚至是各个显示箱体进行图像显示时需要使能的无线收发器的方位编号。至此,即可完成LED显示屏中各个显示箱体10的连接配置工作,实现多个显示箱体10之间的无线级联。
综上所述,本申请实施例通过在LED显示屏中各个显示箱体的第一至第四侧分别装设工作频率位于毫米波频段的无线收发器,其可以利用各个无线收发器自动确定显示箱体在整个LED显示屏中的位置坐标,藉此可以实现显示箱体之间的无线级联,从而可以简化LED显示屏的连接配置操作,并显著降低了安装、拆卸、维修显示箱体的时间成本与人工成本。 再者,各个无线收发器的具体电路设计有利于提供稳定及可靠的无线连接。本实施例的LED显示屏100适用于LED电视、租赁、高端固装、LED会议屏、数字标牌等领域。
参见图6,本申请实施例提供的一种LED显示系统,包括:LED显示屏100和系统控制器200。LED显示屏100的具体结构可参考前述实施例相关描述,故在此不再赘述。系统控制器200设置有带载口201且用于接收并处理输入的视频源以得到图像数据信号。带载口201与LED显示屏100中级联的多个显示箱体10中的首级显示箱体(例如图6中的最左侧显示箱体)的以太网接口153之间通过网线建立有线连接,以实现向LED显示屏100传送图像数据信号(例如包含RGB数据包和场包)。再者,本实施例的LED显示屏100中的各个显示箱体10的模组控制器15(参考图1及图2)配置有图像数据信号传输方向的判断逻辑,例如是:检测所在显示箱体10中所述一对以太网接口153a、153b中的任一以太网接口是否有线缆例如网线接入、并根据检测结果确定所在显示箱体10的图像数据信号传输方向。以图6所示为例,因为最左侧显示箱体10的左侧以太网接口153a有网线接入,从而作为首级显示箱体的最左侧显示箱体10可以自动确定图像数据信号传输方向为向右传递。由此可见,在模组控制器15上设置除收发器接口组150和模组接口组152之外的一对以太网接口153a、153b,可以实现级联的多个显示箱体10的图像数据信号传输方向的自动化确定。
承上述,作为一个非限制性实施方式,系统控制器200例如包括视频接口、视频解码器、可编程逻辑器件、以太网物理层收发器和以太网接口(作为带载口201)。所述视频接口用于接收输入的视频源,其例如是HDMI、DVI等标准数字视频接口;所述视频解码器电连接在所述视频接口和所述可编程逻辑器件之间且其例如是HDMI接收器、DVI解码器等;所述以太网物理层收发器电连接在所述可编程逻辑器件和所述以太网接口之间。所述可编程逻辑器件例如是FPGA(Field Programmable Gate Array),所述视频解码器对输入的视频源进行解码处理得到的数据和控制信号传给FPGA,由FPGA通过内部的RAM进行缓存并进 行更换时钟域和位宽变换的操作以得到处理后图像数据信号,所述处理后图像数据信号再依次通过所述以太网物理层收发器和所述以太网接口输出。此处的以太网接口例如是集成网变的RJ45网口或采用网变与RJ45分离式设计。
此外,比较图6和图7可知,LED显示系统中的系统控制器200所带载的多个级联显示箱体10并不限于排列成单行,也可以排列成多行例如图7所示的两行。再者,在图7所示实施例中,LED显示屏的六个显示箱体由系统控制器200的两个带载口201带载,其中一个带载口201(对应标识P1)带载第一行三个显示箱体10和第二行最右侧显示箱体10,另一个带载口201(对应标识P2)带载第二行的另外两个显示箱体10;对应标识P1的带载口201所带载的四个显示箱体依次无线级联且第一行最左侧显示箱体10为首级显示箱体;对应标识P2的带载口201所带载的两个显示箱体级联在一起且第二行中间显示箱体10为首级显示箱体。对于作为首级显示箱体的第一行最左侧显示箱体10,由于其左侧的以太网接口153a有接入网线,故其图像数据信号传输方向确定为向右传递(相应地第一行最左侧显示箱体10的无线收发器17c被禁能);而对于作为首级显示箱体的第二行中间显示箱体10,由于其右侧的以太网接口153b有接入网线,故其图像数据信号传输方向确定为向左传递(相应地第二行中间显示箱体10的无线收发器17a被禁能)。
综上所述,本实施例的LED显示系统通过无线收发器不但实现了显示箱体与显示箱体之间无线连接,还实现了系统控制器200与首级显示箱体之间的有线连接(这种有线连接方案相对于系统控制器与首级显示箱体之间采用无线连接方案更为便利,因为与首级显示箱体无线连接需要解决为系统控制器配置的无线收发器的供电问题,导致无线连接方案较为复杂),大大简化了显示系统中各个模块的连接便捷性,并显著降低了安装、拆卸、维修显示箱体的时间成本与人工成本。此外,所述一对以太网接口153a、153b的设置,有利于实现首级显示箱体的图像数据信号传输方向的自动确定。
此外,可以理解的是,前述各个实施例仅为本申请的示例性说明,在技术特征不冲突、结构不矛盾、不违背本申请的发明目的前提下,各个实施例的技术方案可以任意组合、搭配使用。另外,值得一提的是,收发器接口组150不限于具有四个以太网接口或者四个USB3.0接口,也可以是以太网接口和USB3.0接口的任意数量组合但总数为四个,例如两个以太网接口和两个USB3.0接口。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种LED显示屏,其特征在于,包括:拼接在一起的多个显示箱体;每个所述显示箱体包括:
    箱体框架,具有第一侧面、第二侧面、第三侧面、第四侧面,和由所述第一侧面、所述第二侧面、所述第三侧面与所述第四侧面围成的容置空间;其中所述第一侧面和所述第三侧面为相对侧面,所述第二侧面和所述第四侧面为相对侧面;
    模组控制器,设置在所述容置空间内且设有收发器接口组、模组接口组以及除所述收发器接口组和所述模组接口组之外的一对以太网接口,其中所述模组控制器用于检测所述一对以太网接口中的任一以太网接口是否有线缆接入、并根据检测结果确定所述显示箱体的图像数据信号传输方向;
    LED显示单元,设置在所述箱体框架上且包括一个或多个LED模组,其中所述LED显示单元电连接所述模组控制器的所述模组接口组;以及
    第一无线收发器、第二无线收发器、第三无线收发器和第四无线收发器,分别设置在所述第一侧面、所述第二侧面、所述第三侧面和所述第四侧面且电连接所述模组控制器的所述收发器接口组,其中所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器的工作频率位于毫米波频段,以及所述多个显示箱体中相邻的两个级联显示箱体的前级显示箱体通过自己的所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器中的一个目标无线收发器与后级显示箱体的所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器中与所述目标无线收发器彼此相邻且相对的一个无线收发器以无线方式进行图像数据信号传输。
  2. 如权利要求1所述的LED显示屏,其特征在于,所述工作频率位于频率范围57GHZ~ 67GHZ、或71GHZ~87GHZ。
  3. 如权利要求1所述的LED显示屏,其特征在于,所述目标无线收发器和与所述目标无线收发器彼此相邻且相对的所述无线收发器之间的通信距离小于或等于30毫米。
  4. 如权利要求1所述的LED显示屏,其特征在于,所述无线收发器包括:电路板和设置在所述电路板上的第二以太网接口、物理层收发器、无线发送芯片及无线接收芯片;所述第二以太网接口电连接所述物理层收发器、且通过网线电连接所述模组控制器,所述无线发送芯片和所述无线接收芯片分别通过SerDes差分信号线对电连接所述物理层收发器。
  5. 如权利要求4所述的LED显示屏,其特征在于,所述无线收发器还包括有线电源接口,且所述有线电源接口有线连接所述模组控制器;所述第二以太网接口、所述物理层收发器和所述有线电源接口位于所述电路板的第一侧,所述无线发送芯片和所述无线接收芯片位于所述电路板的相对于所述第一侧的第二侧、且在所述电路板的长度方向上间隔设置;所述第二以太网接口在所述电路板的所述长度方向上位于所述无线发送芯片和所述无线接收芯片之间,以及所述无线发送芯片和所述无线接收芯片的工作频率位于所述毫米波频段。
  6. 如权利要求1所述的LED显示屏,其特征在于,所述无线收发器包括:电路板和设置在所述电路板上的直流转直流电路、无线发送芯片和无线接收芯片;所述电路板设有焊盘组,且所述焊盘组电连接用于传输数据信号和电源信号的线缆的一端,以及所述线缆的另一端电连接所述模组控制器;所述直流转直流电路电连接所述焊盘组以获取电源信号,所述无线发送芯片通过SerDes差分信号线对电连接所述焊盘组以用于从所述焊盘组接收数据信号,以及所述无线接收芯片通过另一SerDes差分信号线对电连接所述焊盘组以用于向所述焊盘组传送数据信号;所述无线发送芯片和所述无线接收芯片在所述电路板的长度方向上间隔设置,以及所述无线发送芯片和所述无线接收芯片的工作频率位于所述毫米波频段。
  7. 如权利要求4或5或6所述的LED显示屏,其特征在于,所述无线收发器还包括第一环形吸波材料元件和第二环形吸波材料元件;所述第一环形吸波材料元件固定在所述电路板上且环绕所述无线发送芯片设置,以及所述第二环形吸波材料元件固定在所述电路板上且环绕所述无线接收芯片设置;所述无线发送芯片在所述第一环形吸波材料元件的中心孔内偏心设置,以及所述无线接收芯片在所述第二环形吸波材料元件的中心孔内偏心设置。
  8. 如权利要求1所述的LED显示屏,其特征在于,所述模组控制器用于在所述LED显示屏进行连接配置时设定所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器中一对相邻的无线收发器工作在发送模式且另一对相邻的无线收发器工作在接收模式,以使得所述多个显示箱体自动确定在所述LED显示屏中的位置坐标。
  9. 一种LED显示系统,其特征在于,包括:
    如权利要求1至8任意一项所述的LED显示屏;以及
    系统控制器,用于接收并处理输入的视频源以得到图像数据信号、且设置有至少一个带载口,其中每个所述带载口与所述多个显示箱体中相对应的一个首级显示箱体的所述一对以太网接口中的一个以太网接口通过线缆形成有线连接以用于进行图像数据信号传输。
  10. 一种显示箱体,其特征在于,包括:
    矩形箱体框架,具有第一侧面、第二侧面、第三侧面、第四侧面,和由所述第一侧面、所述第二侧面、所述第三侧面与所述第四侧面围成的容置空间;其中所述第一侧面和所述第三侧面为相对侧面,所述第二侧面和所述第四侧面为相对侧面;
    模组控制器,设置在所述容置空间内且设有收发器接口组、模组接口组以及除所述收发器接口组和所述模组接口组之外的一对以太网接口,其中所述收发器接口组具有四个以太网接口、或者四个USB3.0接口、或者两个以太网接口和两个USB3.0接口;
    LED显示单元,设置在所述矩形箱体框架上且电连接所述模组控制器的所述模组接口组;以及
    第一无线收发器、第二无线收发器、第三无线收发器和第四无线收发器,分别设置在所述第一侧面、所述第二侧面、所述第三侧面和所述第四侧面且电连接所述模组控制器的所述收发器接口组,以及所述第一无线收发器、所述第二无线收发器、所述第三无线收发器和所述第四无线收发器的工作频率位于频率范围57GHZ~67GHZ或71GHZ~87GHZ。
PCT/CN2019/098567 2019-07-31 2019-07-31 Led显示屏、led显示系统和显示箱体 WO2021016916A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/098567 WO2021016916A1 (zh) 2019-07-31 2019-07-31 Led显示屏、led显示系统和显示箱体
CN201980006689.XA CN112639935A (zh) 2019-07-31 2019-07-31 Led显示屏、led显示系统和显示箱体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098567 WO2021016916A1 (zh) 2019-07-31 2019-07-31 Led显示屏、led显示系统和显示箱体

Publications (1)

Publication Number Publication Date
WO2021016916A1 true WO2021016916A1 (zh) 2021-02-04

Family

ID=74229578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098567 WO2021016916A1 (zh) 2019-07-31 2019-07-31 Led显示屏、led显示系统和显示箱体

Country Status (2)

Country Link
CN (1) CN112639935A (zh)
WO (1) WO2021016916A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157131A (zh) * 2011-04-15 2011-08-17 深圳市摩西尔电子有限公司 一种led显示屏及led控制系统
CN203179473U (zh) * 2013-03-19 2013-09-04 孔令霞 一种led单元箱体
CN104064120A (zh) * 2014-06-27 2014-09-24 深圳市奥拓电子股份有限公司 一种led箱体定位坐标方法、装置及led显示屏
KR101514252B1 (ko) * 2014-01-16 2015-04-23 (주)애드트로닉 실시간으로 출력상태 확인이 가능한 디스플레이 키패드를 갖는 전방 노출형 단면 엘이디 전광판 시스템
CN105573704A (zh) * 2015-12-23 2016-05-11 西安诺瓦电子科技有限公司 Led显示屏配屏方法
CN105810106A (zh) * 2014-12-29 2016-07-27 西安诺瓦电子科技有限公司 Led显示单元及其定位方法和定位装置、以及接收卡

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660916B (zh) * 2013-11-18 2018-09-18 杭州海康威视数字技术股份有限公司 屏幕拼接系统和视频数据流的处理方法
CN105632348B (zh) * 2015-12-23 2018-11-30 西安诺瓦电子科技有限公司 Led显示屏配屏方法及装置
CN107329724A (zh) * 2017-07-19 2017-11-07 京东方科技集团股份有限公司 显示装置及其显示方法
CN109358828B (zh) * 2018-09-09 2021-10-08 西安触点电子科技有限公司 一种显示单元、拼接显示装置及拼接显示系统
CN109066920A (zh) * 2018-09-29 2018-12-21 京东方科技集团股份有限公司 一种拼接显示屏及其供电方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157131A (zh) * 2011-04-15 2011-08-17 深圳市摩西尔电子有限公司 一种led显示屏及led控制系统
CN203179473U (zh) * 2013-03-19 2013-09-04 孔令霞 一种led单元箱体
KR101514252B1 (ko) * 2014-01-16 2015-04-23 (주)애드트로닉 실시간으로 출력상태 확인이 가능한 디스플레이 키패드를 갖는 전방 노출형 단면 엘이디 전광판 시스템
CN104064120A (zh) * 2014-06-27 2014-09-24 深圳市奥拓电子股份有限公司 一种led箱体定位坐标方法、装置及led显示屏
CN105810106A (zh) * 2014-12-29 2016-07-27 西安诺瓦电子科技有限公司 Led显示单元及其定位方法和定位装置、以及接收卡
CN105573704A (zh) * 2015-12-23 2016-05-11 西安诺瓦电子科技有限公司 Led显示屏配屏方法

Also Published As

Publication number Publication date
CN112639935A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
US8307401B1 (en) Managing compressed and uncompressed video streams over an asymmetric network
US9871700B2 (en) Methods and systems for changing topology of an asymmetric network
US11140381B1 (en) Noise cancellation in a wireless head mounted display
KR20100038421A (ko) 양방향 통신을 제공하는 미디어 인터페이스의 동작
US20070296461A1 (en) System, method and apparatus for transmitting and receiving a transition minimized differential signal
CN108449360B (zh) 智能交互一体机
US8909815B2 (en) Devices and methods for multiple data streams over USB 2.0
KR20160087879A (ko) 데이터 송신 방법, 프로세서 및 단말
US20140372631A1 (en) Adaptive cable interface
CN211019067U (zh) 数据交换设备、显示控制系统和显示系统
CN107040498A (zh) 同屏方法及终端
WO2021016916A1 (zh) Led显示屏、led显示系统和显示箱体
CN111063285A (zh) 显示控制系统和显示单元板
TWI616743B (zh) 電子裝置
CN106303677A (zh) 无线显示控制系统及无线显示控制方法
US11829678B2 (en) Receiving card and display control card component
CN112397011B (zh) Led显示屏、led显示系统和显示箱体
WO1999022300A1 (en) A system and method for transmitting r-g-b signals in a multi-user computer system
CN112309314A (zh) Led显示屏、led显示系统和显示箱体
NL2025755B1 (en) Systems and methods of controlling communication modes in an electronic device
CN112311413B (zh) 无线收发装置和led显示屏
CN104486575B (zh) 一种多位一体极简无线高清显示装置的控制方法
CN114596810A (zh) 显示控制装置和led显示系统
CN112396974A (zh) Led显示屏、led显示系统和显示箱体
CN205961262U (zh) 一种智能交互平板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939907

Country of ref document: EP

Kind code of ref document: A1