WO2021015331A1 - 5g communication relay device - Google Patents

5g communication relay device Download PDF

Info

Publication number
WO2021015331A1
WO2021015331A1 PCT/KR2019/009114 KR2019009114W WO2021015331A1 WO 2021015331 A1 WO2021015331 A1 WO 2021015331A1 KR 2019009114 W KR2019009114 W KR 2019009114W WO 2021015331 A1 WO2021015331 A1 WO 2021015331A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpe
radio signal
transmitted
control
base station
Prior art date
Application number
PCT/KR2019/009114
Other languages
French (fr)
Korean (ko)
Inventor
조창석
박웅희
이현옥
신만수
송민우
송상훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2019/009114 priority Critical patent/WO2021015331A1/en
Publication of WO2021015331A1 publication Critical patent/WO2021015331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a 5G communication relay device. More specifically, it relates to a 5G CPE (Customer Premises Equipment) for transmitting a 5G radio signal between a 5G base station and an electronic device and a control method thereof.
  • 5G CPE Customer Premises Equipment
  • Electronic devices can be divided into mobile/portable terminals and stationary terminals depending on whether they can be moved. Again, electronic devices can be divided into handheld terminals and vehicle mounted terminals depending on whether the user can directly carry them.
  • the functions of electronic devices are diversifying. For example, there are functions of data and voice communication, taking pictures and videos through a camera, recording voice, playing music files through a speaker system, and outputting images or videos to the display unit.
  • Some terminals add an electronic game play function or perform a multimedia player function.
  • recent mobile terminals can receive multicast signals providing visual content such as broadcasting and video or television programs.
  • Such electronic devices are diversified, they are implemented in the form of a multimedia player with complex functions such as, for example, taking photos or videos, playing music or video files, and receiving games and broadcasts. have.
  • wireless communication systems using LTE communication technology have recently been commercialized in electronic devices, providing various services.
  • wireless communication systems using 5G communication technology are expected to be commercialized and provide various services. Meanwhile, some of the LTE frequency bands may be allocated to provide 5G communication services.
  • the mobile terminal may be configured to provide 5G communication services in various frequency bands. Recently, attempts have been made to provide a 5G communication service using a Sub6 band below 6GHz band. However, in the future, it is expected to provide 5G communication service using millimeter wave (mmWave) band in addition to Sub6 band for faster data rate.
  • mmWave millimeter wave
  • the frequency bands to be allocated for 5G communication services in the millimeter wave (mmWave) band are the 28 GHz band, 39 GHz and 64 GHz bands.
  • the length of the wavelength is short, and thus there is a problem that the cell coverage providing the communication service is reduced.
  • a 5G communication relay apparatus that is, a 5G CPE (Customer Premises Equipment), which relays 5G radio signals between a base station and an electronic device in the mmWave band.
  • a 5G communication relay device that is, a 5G CPE
  • the 5G radio signal from the 5G base station has directivity, it is necessary to place the 5G CPE at a specific angle in the direction of the 5G radio signal at a specific location.
  • Another object of the present invention is to prevent a user or an installer from being exposed to a 5G radio signal in a test mode of a 5G communication relay device.
  • Another object of the present invention is to provide a method for limiting transmission of 5G radio signals in a test mode of a 5G communication relay device.
  • the 5G communication relay device includes a transceiver configured to transmit and receive a radio signal, and a control unit connected to the transceiver and configured to provide a radio signal received from a base station to an electronic device. .
  • the control unit controls a radio signal not to be transmitted through the transmission/reception unit, and is exposed to the body of the user or the installer in the test mode. It is possible to avoid the harmful effects of high-frequency signals.
  • the controller receives a master information block (MIB) through a physical broadcast channel (PBCH), and when the MIB is received, a radio signal is transmitted through the transceiver.
  • MIB master information block
  • PBCH physical broadcast channel
  • the TX disable process can be performed so that it is not. Accordingly, it is possible to limit Tx transmission in the test mode after receiving the minimum control data for 5G wireless connection. Therefore, there is an advantage in that it is possible to avoid harmful effects of high frequency signals without deteriorating the 5G radio connection probability.
  • the control unit may perform a TX activation process so that a radio signal can be transmitted through the transmission/reception unit.
  • control unit may control a control signal for RRC re-establishment to be transmitted when a radio resource control (RRC) connection fails.
  • RRC radio resource control
  • the control unit controls a radio signal not to be transmitted through the transceiver until the test process according to the test mode is completed. can do.
  • the control unit transmits a first radio signal for control data for an RRC state report in an RRC-connected state, and transmits a second radio signal for user data.
  • the transmission/reception unit may be controlled so that no radio signal is transmitted. Accordingly, when a 5G wireless connection is made, there is an advantage in that it is possible to avoid harmful effects of a high frequency signal while transmitting minimum signaling for maintaining the 5G wireless connection.
  • the controller may control a radio signal not to be transmitted through the transceiver.
  • the control unit changes the radio interface from LTE to new radio (NR) in a 5G non-stand-alone (NSA) structure and a 5G stand-alone (SA) structure to search for NR cells (NR cell search).
  • NR new radio
  • SA 5G stand-alone
  • a system information block (SIB) may be received through a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the RRC connection is successful and the RRC-connected state is If so, it is possible to control so that a radio signal is not transmitted through the transceiver until the test process according to the test mode is completed.
  • NR new radio
  • SA 5G stand-alone
  • control unit is based on a received signal quality in a TX disable process in which a radio signal is not transmitted through the transmission/reception unit, a TX activation procedure, a tilting procedure , You can control to perform one of the reinstallation procedures.
  • the controller may control to terminate the test mode and perform a TX activation procedure. Meanwhile, when the received signal quality is less than the first threshold and greater than or equal to the second threshold, control may be performed to perform the tilting procedure. In addition, when the received signal quality is less than the second threshold, the installation location may be moved to perform a re-installation procedure.
  • the controller may select a cell having the best received signal quality.
  • the controller may select a cell having the best received signal quality.
  • the Cell Selection RX level value or Cell Selection quality value of the selected cell it is possible to control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure.
  • the 5G CPE includes a transceiver configured to transmit and receive a radio signal, and a processor connected to the transceiver and operable to perform a test mode before being connected to a base station.
  • the processor may control a radio signal not to be transmitted through the transceiver. Accordingly, when the test mode is completed, the radio signal received from the base station may be transmitted to the electronic device.
  • the processor receives a system information block (SIB) through a physical downlink shared channel (PDSCH), and when the SIB is received, a radio signal is transmitted and received. It is possible to perform a TX disable process so that it is not transmitted through the unit.
  • SIB system information block
  • PDSCH physical downlink shared channel
  • the processor controls a radio signal not to be transmitted through the transceiver until the test process according to the test mode is completed. can do.
  • the processor transmits a first radio signal for control data for an RRC state report in an RRC-connected state, and a second radio signal for user data.
  • the transmission/reception unit may be controlled so that no radio signal is transmitted.
  • the processor when the SIB is received, the processor selects a cell having the best received signal quality, and activates TX based on the Cell Selection RX level value or Cell Selection quality value of the selected cell. It can be controlled to perform one of a procedure, a tilting procedure, or a reinstallation procedure. Meanwhile, if it is determined that the 5G CPE can register in the NR cell based on the received signal quality, the TX activation procedure may be performed.
  • the processor may perform pairing with the electronic device through a second wireless interface. Meanwhile, during the TX deactivation process, information related to the received signal quality received from the base station is controlled to be displayed on the electronic device, and when the test mode is ended, information indicating that the test mode has ended can be transmitted to the electronic device. have.
  • the processor may transmit control data for NR measurement and NR measurement report through a first radio signal in the RRC-connected state. Meanwhile, when the PDN (Packet Data Network) attachment is completed, user data may be transmitted through the second radio signal.
  • PDN Packet Data Network
  • the electronic device includes a transceiver configured to transmit and receive a radio signal, and a control unit connected to the transceiver and configured to transmit and receive a 5G radio signal with a base station through a 5G communication relay device. do. Meanwhile, when the 5G communication relay device operates in a test mode and a cell search is initiated, a 5G radio signal is not transmitted through the transceiver.
  • the control unit when the 5G communication relay device performs a TX disable process, causes the transmission/reception unit to perform transmission restriction signaling to limit the transmission of user data and control data. It can be controlled to transmit to a communication relay device.
  • the transmission restriction signaling may be transmitted to the 5G communication relay device through a second wireless interface different from the 5G wireless interface.
  • the minimum control data is transmitted in the test mode, thereby improving the possibility of 5G wireless connection.
  • FIG. 1A is a block diagram illustrating an electronic device related to the present invention
  • FIGS. 1B and 1C are conceptual views of an example of an electronic device related to the present disclosure viewed from different directions.
  • FIG. 2 shows a configuration of a wireless communication unit of an electronic device capable of operating in a plurality of wireless communication systems according to the present invention.
  • FIG 3 is a conceptual diagram of a method of installing a 5G communication relay device, that is, a 5G CPE according to the present invention.
  • 4A and 4B are flowcharts of a control operation performed in a 5G communication relay device, that is, a 5G CPE according to the present invention.
  • FIG. 5A is a flowchart illustrating an internal configuration of a 5G CPE and a 5G CPE control operation with an electronic device according to the present invention.
  • FIG. 5B shows a detailed configuration of a 5G CPE and an electronic device according to the present invention.
  • FIG. 6 is a flowchart of a method for controlling positioning and tilting of a 5G CPE according to the present invention.
  • FIG 7 shows various LEDs provided in the 5G CPE according to the present invention.
  • FIG. 8A is a flowchart of a cell selection and NR measurement method in 5G CPE according to the present invention.
  • FIG. 8B is a flowchart of a transmission control operation in 5G CPE according to an embodiment of the present invention.
  • FIG. 9A shows handover between air interfaces in a 5G NSA structure.
  • FIG. 9B shows handover between air interfaces in a 5G SA structure.
  • FIG. 10A is a flowchart of a method of accessing LTE and NR in 5G CPE according to the present invention.
  • FIG. 10B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to an embodiment of the present invention.
  • 11 is a flowchart illustrating a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to an embodiment of the present invention.
  • FIG. 12A is a flowchart illustrating an LTE and NR access method in 5G CPE according to another embodiment of the present invention.
  • FIG. 12B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to another embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to another embodiment of the present invention.
  • FIG. 14 is a flowchart of a method for controlling installation of 5G CPE based on Srxlev according to Method 1 in an NR network.
  • 15 is a flowchart of a RSRP-based 5G CPE installation control method according to Method 2 in an NR network.
  • FIG. 16 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • Electronic devices described herein include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, and a slate PC.
  • PDA personal digital assistants
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC tablet PC
  • ultrabook ultrabook
  • wearable device wearable device, for example, smartwatch, glass-type terminal (smart glass), HMD (head mounted display)
  • HMD head mounted display
  • FIG. 1A is a block diagram illustrating an electronic device related to the present invention
  • FIGS. 1B and 1C are conceptual views of an example of an electronic device related to the present disclosure viewed from different directions.
  • the electronic device 100 includes a wireless communication unit 110, an input unit 120, a sensing unit 140, an output unit 150, an interface unit 160, a memory 170, a control unit 180, and a power supply unit 190. ), etc.
  • the components shown in FIG. 1A are not essential for implementing an electronic device, and thus an electronic device described in the present specification may have more or fewer components than the components listed above.
  • the wireless communication unit 110 may be configured between the electronic device 100 and the wireless communication system, between the electronic device 100 and other electronic devices 100, or between the electronic device 100 and an external server. It may include one or more modules that enable wireless communication between. In addition, the wireless communication unit 110 may include one or more modules that connect the electronic device 100 to one or more networks.
  • the one or more networks may be, for example, a 4G communication network and a 5G communication network.
  • the wireless communication unit 110 may include at least one of a 4G wireless communication module 111, a 5G wireless communication module 112, a short-range communication module 113, and a location information module 114.
  • the 4G wireless communication module 111 may transmit and receive 4G base stations and 4G signals through a 4G mobile communication network. At this time, the 4G wireless communication module 111 may transmit one or more 4G transmission signals to the 4G base station. In addition, the 4G wireless communication module 111 may receive one or more 4G reception signals from the 4G base station.
  • an uplink (UL) multi-input multi-output (MIMO) may be performed by a plurality of 4G transmission signals transmitted to the 4G base station.
  • a downlink (DL) multi-input multiple output (MIMO) may be performed by a plurality of 4G reception signals received from a 4G base station.
  • the 5G wireless communication module 112 may transmit and receive 5G base stations and 5G signals through a 5G mobile communication network.
  • the 4G base station and the 5G base station may have a non-stand-alone (NSA) structure.
  • the 4G base station and the 5G base station may have a co-located structure disposed at the same location within a cell.
  • the 5G base station may be disposed in a separate location from the 4G base station in a stand-alone (SA) structure.
  • SA stand-alone
  • the 5G wireless communication module 112 may transmit and receive 5G base stations and 5G signals through a 5G mobile communication network. In this case, the 5G wireless communication module 112 may transmit one or more 5G transmission signals to the 5G base station. In addition, the 5G wireless communication module 112 may receive one or more 5G received signals from the 5G base station.
  • the 5G frequency band may use the same band as the 4G frequency band, and this may be referred to as LTE re-farming.
  • the 5G frequency band the Sub6 band, which is a band below 6GHz, may be used.
  • a millimeter wave (mmWave) band may be used as a 5G frequency band to perform broadband high-speed communication.
  • the electronic device 100 may perform beam forming to expand communication coverage with a base station.
  • uplink MIMO may be performed by a plurality of 5G transmission signals transmitted to the 5G base station.
  • downlink (DL) MIMO may be performed by a plurality of 5G reception signals received from the 5G base station.
  • the wireless communication unit 110 may be in a dual connectivity (DC) state with a 4G base station and a 5G base station through the 4G wireless communication module 111 and the 5G wireless communication module 112.
  • DC dual connectivity
  • the dual connection between the 4G base station and the 5G base station may be referred to as EN-DC (EUTRAN NR DC).
  • EUTRAN is an Evolved Universal Telecommunication Radio Access Network, which means 4G wireless communication system
  • NR is New Radio, which means 5G wireless communication system.
  • a 4G reception signal and a 5G reception signal may be simultaneously received through the 4G wireless communication module 111 and the 5G wireless communication module 112.
  • the short range communication module 113 is for short range communication, and includes BluetoothTM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and NFC. Near field communication may be supported by using at least one of (Near Field Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technologies.
  • the short-range communication module 114 may be configured between the electronic device 100 and a wireless communication system, between the electronic device 100 and other electronic devices 100, or between the electronic device 100 and other electronic devices 100 through wireless area networks. ) And a network in which the other electronic device 100 or an external server is located may support wireless communication.
  • the local area wireless communication network may be a wireless personal area network (Wireless Personal Area Networks).
  • short-range communication between electronic devices may be performed using the 4G wireless communication module 111 and the 5G wireless communication module 112.
  • short-range communication may be performed between electronic devices through a device-to-device (D2D) method without passing through a base station.
  • D2D device-to-device
  • carrier aggregation using at least one of the 4G wireless communication module 111 and 5G wireless communication module 112 and the Wi-Fi communication module 113 for transmission speed improvement and communication system convergence (convergence)
  • carrier aggregation using at least one of the 4G wireless communication module 111 and 5G wireless communication module 112 and the Wi-Fi communication module 113 for transmission speed improvement and communication system convergence (convergence)
  • 4G + WiFi carrier aggregation may be performed using the 4G wireless communication module 111 and the Wi-Fi communication module 113.
  • 5G + WiFi carrier aggregation may be performed using the 5G wireless communication module 112 and the Wi-Fi communication module 113.
  • the location information module 114 is a module for obtaining a location (or current location) of an electronic device, and a representative example thereof is a GPS (Global Positioning System) module or a WiFi (Wireless Fidelity) module.
  • a GPS module Global Positioning System
  • WiFi Wireless Fidelity
  • the electronic device may acquire the location of the electronic device using a signal transmitted from a GPS satellite.
  • the location of the electronic device may be obtained based on information of the Wi-Fi module and a wireless access point (AP) that transmits or receives a wireless signal.
  • AP wireless access point
  • the location information module 114 may perform any function among other modules of the wireless communication unit 110 in order to obtain data on the location of the electronic device as a substitute or additionally.
  • the location information module 114 is a module used to obtain the location (or current location) of the electronic device, and is not limited to a module that directly calculates or obtains the location of the electronic device.
  • the electronic device may acquire the location of the electronic device based on information of the 5G wireless communication module and a 5G base station transmitting or receiving a wireless signal.
  • the 5G base station in the mmWave band is deployed in a small cell having a narrow coverage, it is advantageous to obtain the location of the electronic device.
  • the input unit 120 includes a camera 121 or an image input unit for inputting an image signal, a microphone 122 for inputting an audio signal, or an audio input unit, and a user input unit 123 for receiving information from a user, for example, , A touch key, a mechanical key, etc.).
  • the voice data or image data collected by the input unit 120 may be analyzed and processed as a user's control command.
  • the sensing unit 140 may include one or more sensors for sensing at least one of information in the electronic device, information on surrounding environments surrounding the electronic device, and user information.
  • the sensing unit 140 includes a proximity sensor 141, an illumination sensor 142, a touch sensor, an acceleration sensor, a magnetic sensor, and gravity.
  • G-sensor for example, camera (see 121)), microphone (microphone, see 122), battery gauge, environmental sensor (for example, barometer, hygrometer, thermometer, radiation detection sensor, It may include at least one of a heat sensor, a gas sensor, etc.), and a chemical sensor (eg, an electronic nose, a healthcare sensor, a biometric sensor, etc.). Meanwhile, the electronic device disclosed in this specification may combine and utilize information sensed by at least two or more of these sensors.
  • the output unit 150 is for generating an output related to visual, auditory or tactile sense, and includes at least one of the display unit 151, the sound output unit 152, the hap tip module 153, and the light output unit 154 can do.
  • the display unit 151 may implement a touch screen by forming a layer structure or integrally with the touch sensor.
  • the touch screen may function as a user input unit 123 that provides an input interface between the electronic device 100 and a user, and may provide an output interface between the electronic device 100 and a user.
  • the interface unit 160 serves as a passage between various types of external devices connected to the electronic device 100.
  • the interface unit 160 connects a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, and a device equipped with an identification module. It may include at least one of a port, an audio input/output (I/O) port, an input/output (video I/O) port, and an earphone port.
  • the electronic device 100 may perform appropriate control related to the connected external device in response to the connection of the external device to the interface unit 160.
  • the memory 170 stores data supporting various functions of the electronic device 100.
  • the memory 170 may store a plurality of application programs or applications driven by the electronic device 100, data for the operation of the electronic device 100, and commands. At least some of these application programs may be downloaded from an external server through wireless communication. In addition, at least some of these application programs may exist on the electronic device 100 from the time of delivery for basic functions of the electronic device 100 (eg, incoming calls, outgoing functions, message receiving, and outgoing functions). Meanwhile, the application program may be stored in the memory 170, installed on the electronic device 100, and driven by the controller 180 to perform an operation (or function) of the electronic device.
  • the controller 180 In addition to operations related to the application program, the controller 180 generally controls overall operations of the electronic device 100.
  • the controller 180 may provide or process appropriate information or functions to a user by processing signals, data, information, etc. input or output through the above-described components or by driving an application program stored in the memory 170.
  • the controller 180 may control at least some of the components examined together with FIG. 1A. Furthermore, in order to drive the application program, the controller 180 may operate by combining at least two or more of the components included in the electronic device 100 with each other.
  • the power supply unit 190 receives external power and internal power under the control of the controller 180 and supplies power to each of the components included in the electronic device 100.
  • the power supply unit 190 includes a battery, and the battery may be a built-in battery or a replaceable battery.
  • At least some of the respective components may operate in cooperation with each other to implement an operation, control, or control method of an electronic device according to various embodiments described below.
  • the operation, control, or control method of the electronic device may be implemented on the electronic device by driving at least one application program stored in the memory 170.
  • the disclosed electronic device 100 includes a bar-shaped terminal body.
  • the present invention is not limited thereto, and may be applied to various structures such as a watch type, a clip type, a glass type, or a folder type in which two or more bodies are relatively movably coupled, a flip type, a slide type, a swing type, and a swivel type. .
  • a description of a specific type of electronic device may be generally applied to other types of electronic devices.
  • the terminal body may be understood as a concept referring to the electronic device 100 as at least one aggregate.
  • the electronic device 100 includes a case (for example, a frame, a housing, a cover, etc.) forming an exterior. As shown, the electronic device 100 may include a front case 101 and a rear case 102. Various electronic components are disposed in an inner space formed by the combination of the front case 101 and the rear case 102. At least one middle case may be additionally disposed between the front case 101 and the rear case 102.
  • a case for example, a frame, a housing, a cover, etc.
  • the electronic device 100 may include a front case 101 and a rear case 102.
  • Various electronic components are disposed in an inner space formed by the combination of the front case 101 and the rear case 102.
  • At least one middle case may be additionally disposed between the front case 101 and the rear case 102.
  • a display unit 151 is disposed on the front of the terminal body to output information. As illustrated, the window 151a of the display unit 151 may be mounted on the front case 101 to form the front surface of the terminal body together with the front case 101.
  • electronic components may be mounted on the rear case 102 as well.
  • Electronic components that can be mounted on the rear case 102 include a removable battery, an identification module, and a memory card.
  • a rear cover 103 for covering the mounted electronic component may be detachably coupled to the rear case 102. Accordingly, when the rear cover 103 is separated from the rear case 102, the electronic components mounted on the rear case 102 are exposed to the outside. Meanwhile, a part of the side surface of the rear case 102 may be implemented to operate as a radiator.
  • the rear cover 103 when the rear cover 103 is coupled to the rear case 102, a part of the side surface of the rear case 102 may be exposed. In some cases, when the rear case 102 is combined, the rear case 102 may be completely covered by the rear cover 103. Meanwhile, the rear cover 103 may be provided with an opening for exposing the camera 121b or the sound output unit 152b to the outside.
  • the electronic device 100 includes a display unit 151, first and second sound output units 152a and 152b, a proximity sensor 141, an illuminance sensor 142, a light output unit 154, and first and second sound output units.
  • Cameras 121a and 121b, first and second operation units 123a and 123b, microphone 122, interface unit 160, and the like may be provided.
  • the display unit 151 displays (outputs) information processed by the electronic device 100.
  • the display unit 151 may display execution screen information of an application program driven by the electronic device 100, or UI (User Interface) and GUI (Graphic User Interface) information according to such execution screen information. .
  • two or more display units 151 may exist depending on the implementation form of the electronic device 100.
  • a plurality of display units may be spaced apart or integrally disposed on one surface, or may be disposed on different surfaces, respectively.
  • the display unit 151 may include a touch sensor that senses a touch on the display unit 151 so as to receive a control command by a touch method. Using this, when a touch is made to the display unit 151, the touch sensor detects the touch, and the controller 180 may be configured to generate a control command corresponding to the touch based on this.
  • Content input by the touch method may be letters or numbers, or menu items that can be indicated or designated in various modes.
  • the display unit 151 may form a touch screen together with a touch sensor, and in this case, the touch screen may function as a user input unit 123 (see FIG. 1A). In some cases, the touch screen may replace at least some functions of the first manipulation unit 123a.
  • the first sound output unit 152a may be implemented as a receiver that transmits a call sound to the user's ear, and the second sound output unit 152b is a loud speaker that outputs various alarm sounds or multimedia reproduction sounds. ) Can be implemented.
  • the light output unit 154 is configured to output light for notifying when an event occurs. Examples of the event include message reception, call signal reception, missed call, alarm, schedule notification, e-mail reception, and information reception through an application.
  • the controller 180 may control the light output unit 154 to terminate the light output.
  • the first camera 121a processes an image frame of a still image or moving picture obtained by an image sensor in a photographing mode or a video call mode.
  • the processed image frame may be displayed on the display unit 151 and may be stored in the memory 170.
  • the first and second manipulation units 123a and 123b are an example of a user input unit 123 that is manipulated to receive a command for controlling the operation of the electronic device 100, and may also be collectively referred to as a manipulating portion. have.
  • the first and second operation units 123a and 123b may be employed in any manner as long as the user operates while receiving a tactile feeling such as touch, push, and scroll.
  • the first and second manipulation units 123a and 123b may also be employed in a manner in which the first and second manipulation units 123a and 123b are operated without a user's tactile feeling through proximity touch, hovering touch, or the like.
  • the electronic device 100 may be provided with a fingerprint recognition sensor for recognizing a user's fingerprint, and the controller 180 may use fingerprint information detected through the fingerprint recognition sensor as an authentication means.
  • the fingerprint recognition sensor may be embedded in the display unit 151 or the user input unit 123.
  • the microphone 122 is configured to receive a user's voice and other sounds.
  • the microphone 122 may be provided in a plurality of locations and configured to receive stereo sound.
  • the interface unit 160 becomes a passage through which the electronic device 100 can be connected to an external device.
  • the interface unit 160 is a connection terminal for connection with other devices (eg, earphones, external speakers), a port for short-range communication (eg, an infrared port (IrDA Port), a Bluetooth port (Bluetooth Port), a wireless LAN port, etc.], or at least one of a power supply terminal for supplying power to the electronic device 100.
  • the interface unit 160 may be implemented in the form of a socket for accommodating an external card such as a subscriber identification module (SIM) or a user identity module (UIM), or a memory card for storing information.
  • SIM subscriber identification module
  • UIM user identity module
  • a second camera 121b may be disposed on the rear surface of the terminal body.
  • the second camera 121b has a photographing direction substantially opposite to that of the first camera 121a.
  • the second camera 121b may include a plurality of lenses arranged along at least one line.
  • the plurality of lenses may be arranged in a matrix format.
  • Such a camera may be referred to as an array camera.
  • an image may be photographed in various ways using a plurality of lenses, and an image of better quality may be obtained.
  • the flash 124 may be disposed adjacent to the second camera 121b.
  • the flash 124 illuminates light toward the subject when photographing the subject with the second camera 121b.
  • a second sound output unit 152b may be additionally disposed on the terminal body.
  • the second sound output unit 152b may implement a stereo function together with the first sound output unit 152a, and may be used to implement a speakerphone mode during a call.
  • At least one antenna for wireless communication may be provided in the terminal body.
  • the antenna may be embedded in the terminal body or may be formed in a case. Meanwhile, a plurality of antennas connected to the 4G wireless communication module 111 and the 5G wireless communication module 112 may be disposed on the side of the terminal.
  • the antenna may be formed in a film type and attached to the inner surface of the rear cover 103, or a case including a conductive material may be configured to function as an antenna.
  • each of the plurality of antennas is implemented as an array antenna, a plurality of array antennas may be disposed in the electronic device.
  • mmWave millimeter wave
  • the terminal body is provided with a power supply unit 190 (refer to FIG. 1A) for supplying power to the electronic device 100.
  • the power supply unit 190 may include a battery 191 built in the terminal body or configured to be detachable from the outside of the terminal body.
  • the 5G communication relay device is a device that transmits a 5G radio signal between a base station and an electronic device, that is, a 5G UE.
  • a 5G communication relay device that is, a 5G CPE (Customer Premises Equipment)
  • the 5G communication relay apparatus may include a power and phase controller 230 to control the beam direction of each of the array antennas ANT1 to ANT4.
  • the power and phase controller 230 may control a magnitude and a phase of a signal applied to each antenna element of each of the array antennas ANT1 to ANT4.
  • the electronic device or 5G communication relay device further includes a first power amplifier 210, a second power amplifier 220, and an RFIC 250.
  • the electronic device may further include a modem 400 and an application processor 500.
  • the modem 400 and the application processor AP 500 may be physically implemented in one chip, and may be implemented in a logically and functionally separate form.
  • the present invention is not limited thereto and may be implemented in the form of physically separated chips depending on the application.
  • an electronic device or a 5G communication relay device includes a plurality of low noise amplifiers (LNAs) 410 to 440 in a receiver.
  • the first power amplifier 210, the second power amplifier 220, the controller 250, and the plurality of low noise amplifiers 310 to 340 are all operable in the first communication system and the second communication system.
  • the first communication system and the second communication system may be a 4G communication system and a 5G communication system, respectively.
  • the RFIC 250 may be configured as a 4G/5G integrated type, but is not limited thereto and may be configured as a 4G/5G separate type according to an application.
  • the RFIC 250 is configured as a 4G/5G integrated type, it is advantageous in terms of synchronization between 4G/5G circuits and has an advantage that control signaling by the modem 400 can be simplified.
  • the RFIC 250 when configured as a 4G/5G separate type, it may be referred to as a 4G RFIC and a 5G RFIC, respectively.
  • the RFIC 250 when the 5G band and the 4G band have a large difference in bands, such as when the 5G band is configured as a millimeter wave band, the RFIC 250 may be configured as a 4G/5G separate type. In this way, when the RFIC 250 is configured as a 4G/5G separate type, there is an advantage that RF characteristics can be optimized for each of the 4G band and the 5G band.
  • the RFIC 250 is configured as a 4G/5G separate type, the 4G RFIC and the 5G RFIC are logically and functionally separated, and physically, it is possible to be implemented in one chip.
  • the application processor (AP) 500 is configured to control the operation of each component of the electronic device. Specifically, the application processor (AP) 500 may control the operation of each component of the electronic device through the modem 400.
  • the modem 400 may be controlled through a power management IC (PMIC) for low power operation of an electronic device. Accordingly, the modem 400 may operate the power circuit of the transmitter and the receiver through the RFIC 250 in a low power mode.
  • PMIC power management IC
  • the application processor AP 500 may control the RFIC 250 through the modem 300 as follows. For example, if the electronic device is in the idle mode, at least one of the first and second power amplifiers 110 and 120 operates in a low power mode or is turned off through the modem 300 through the RFIC. 250 can be controlled.
  • the application processor (AP) 500 may control the modem 300 to provide wireless communication capable of low power communication.
  • the application processor (AP) 500 may control the modem 400 to enable wireless communication with the lowest power. Accordingly, even though the throughput is slightly sacrificed, the application processor (AP) 500 may control the modem 400 and the RFIC 250 to perform short-range communication using only the short-range communication module 113.
  • the modem 400 may be controlled to select an optimal wireless interface.
  • the application processor (AP, 450) may control the modem 400 to receive through both the 4G base station and the 5G base station according to the remaining battery capacity and available radio resource information.
  • the application processor (AP, 500) may receive the remaining battery level information from the PMIC, and the available radio resource information from the modem 400. Accordingly, if the remaining battery capacity and available radio resources are sufficient, the application processor (AP, 500) may control the modem 400 and the RFIC 250 to receive reception through both the 4G base station and the 5G base station.
  • the transmitting unit and the receiving unit of each radio system may be integrated into one transmitting and receiving unit. Accordingly, there is an advantage in that a circuit part integrating two types of system signals can be removed from the RF front-end.
  • the front end parts can be controlled by the integrated transmission/reception unit, the front end parts can be integrated more efficiently than when the transmission/reception system is separated for each communication system.
  • the multiple transmission/reception system as shown in FIG. 2 has the advantage of enabling efficient resource allocation since it is possible to control other communication systems as needed, and thereby minimize system delay.
  • the first power amplifier 210 and the second power amplifier 220 may operate in at least one of the first and second communication systems.
  • the first and second power amplifiers 220 can operate in both the first and second communication systems.
  • one of the first and second power amplifiers 210 and 220 may operate in the 4G band and the other may operate in the millimeter wave band. have.
  • 4x4 MIMO can be implemented using four antennas as shown in FIG. 2.
  • 4x4 DL MIMO may be performed through downlink (DL).
  • the first to fourth antennas ANT1 to ANT4 may be configured to operate in both the 4G band and the 5G band.
  • the 5G band is a millimeter wave (mmWave) band
  • the first to fourth antennas ANT1 to ANT4 may be configured to operate in any one of the 4G band and the 5G band.
  • each of a plurality of separate antennas may be configured as an array antenna in the millimeter wave band.
  • 2x2 MIMO can be implemented using two antennas connected to the first power amplifier 210 and the second power amplifier 220 among the four antennas.
  • 2x2 UL MIMO (2 Tx) may be performed through uplink (UL).
  • a transmission signal may be branched in each of one or two transmission paths, and the branched transmission signal may be connected to a plurality of antennas.
  • a switch-type splitter or power divider is built into the RFIC corresponding to the RFIC 250, so that separate parts do not need to be placed outside, thereby improving component mounting.
  • I can. Specifically, it is possible to select the transmission unit (TX) of two different communication systems by using a single pole double throw (SPDT) type switch inside the RFIC corresponding to the control unit 250.
  • TX transmission unit
  • SPDT single pole double throw
  • an electronic device capable of operating in a plurality of wireless communication systems according to the present invention may further include a duplexer 231, a filter 232, and a switch 233.
  • the duplexer 231 is configured to separate signals in the transmission band and the reception band from each other.
  • the signal of the transmission band transmitted through the first and second power amplifiers 210 and 220 is applied to the antennas ANT1 and ANT4 through the first output port of the duplexer 231.
  • signals in the reception band received through the antennas ANT1 and ANT4 are received by the low noise amplifiers 310 and 340 through the second output port of the duplexer 231.
  • the filter 232 may be configured to pass a signal in a transmission band or a reception band and block signals in the remaining bands.
  • the filter 232 may include a transmission filter connected to the first output port of the duplexer 231 and a reception filter connected to the second output port of the duplexer 231.
  • the filter 232 may be configured to pass only the signal of the transmission band or only the signal of the reception band according to the control signal.
  • the switch 233 is configured to transmit only either a transmission signal or a reception signal.
  • the switch 233 may be configured in the form of a single pole double throw (SPDT) so as to separate a transmission signal and a reception signal in a time division multiplexing (TDD) scheme.
  • the transmission signal and the reception signal are signals of the same frequency band, and accordingly, the duplexer 231 may be implemented in the form of a circulator.
  • the switch 233 is applicable to a frequency division multiplexing (FDD) scheme.
  • the switch 233 may be configured in the form of a Double Pole Double Throw (DPDT) so as to connect or block a transmission signal and a reception signal, respectively.
  • DPDT Double Pole Double Throw
  • the switch 233 is not necessarily required.
  • the electronic device may further include a modem 400 corresponding to a control unit.
  • the RFIC 250 and the modem 400 may be referred to as a first control unit (or a first processor) and a second control unit (a second processor), respectively.
  • the RFIC 250 and the modem 400 may be implemented as physically separate circuits.
  • the RFIC 250 and the modem 400 may be physically divided into one circuit logically or functionally.
  • the modem 400 may perform control and signal processing for transmission and reception of signals through different communication systems through the RFIC 250.
  • the modem 400 may be obtained through control information received from a 4G base station and/or a 5G base station.
  • the control information may be received through a physical downlink control channel (PDCCH), but is not limited thereto.
  • PDCCH physical downlink control channel
  • the modem 400 may control the RFIC 250 to transmit and/or receive signals through the first communication system and/or the second communication system at a specific time and frequency resource. Accordingly, the RFIC 250 may control transmission circuits including the first and second power amplifiers 210 and 220 to transmit a 4G signal or a 5G signal in a specific time period. Further, the RFIC 250 may control receiving circuits including the first to fourth low noise amplifiers 310 to 340 to receive a 4G signal or a 5G signal in a specific time period.
  • a 5G communication relay device that is, a 5G CPE (Customer Premises Equipment) that transmits a 5G radio signal to an electronic device equipped with a multiple transmission/reception system as shown in FIG. 2, and a control method thereof will be described.
  • 5G CPE Customer Premises Equipment
  • 5G CPE since the speed of the existing broadband network is low and enormous cost is incurred to install a new giga network, 5G CPE is required. In addition, even if a new subscriber is created, the distance for each household is long, so it may incur a lot of cost for laying cables and for engineers to visit and install them. In order to solve this problem, it is desirable to provide 5G communication services indoors through 5G CPE.
  • operators may consider a method of wirelessly supplying the Internet to each home using a high-speed communication network, instead of providing Internet service through a conventional cable.
  • 5G uses a very high frequency band as a high-speed communication network. Therefore, the 5G radio signal causes significant RF loss due to surrounding objects such as buildings and trees.
  • the 5G communication relay device that is, the 5G CPE according to the present invention may be implemented with the following technical features in order to solve the above-described problem.
  • a specific method for implementing the technical features of the 5G communication relay device, that is, 5G CPE according to the present invention is as follows.
  • FIG. 3 is a conceptual diagram for a method of installing a 5G communication relay device, that is, a 5G CPE according to the present invention.
  • FIGS. 4A and 4B are flowcharts illustrating a control operation performed in a 5G communication relay device, that is, a 5G CPE according to the present invention.
  • 5G New Radio (NR) signal strength may be measured.
  • a test mode may be performed (S110) while performing 5G NR measurement.
  • a TX disable procedure may be performed (S120).
  • the 5G NR base station is not yet connected. Accordingly, as shown in FIG. 4A, it is possible to indicate that “No NR Connection” is through an electronic device corresponding to the test tool.
  • No NR Connection means that there is no radio resource control (RRC) connection state.
  • RRC radio resource control
  • this test mode is mainly performed during the initial installation of 5G CPE.
  • the present invention is not limited thereto, and may be performed when the user is notified of the change in the propagation environment and the user selects a test mode. While the TX disable procedure is performed (S120), the 5G CPE does not perform any signal transmission procedure to the base station or the peripheral electronic device. However, control signal transmission may be performed exceptionally for NR measurement report according to 5G NR signal measurement.
  • the 5G CPE can be moved to another location indoors as shown in FIG. 3(b).
  • an NR connection is performed.
  • NR measurement according to the 5G NR signal measurement may be performed (S130) even while the TX disable procedure is performed (S120).
  • NR measurement is performed (S130) an NR connection may be made.
  • FIG. 4A it is possible to indicate that “NR Connection” is through an electronic device corresponding to the test tool.
  • NR Connection means a radio resource control (RRC) connection state.
  • RRC radio resource control
  • appropriate altitude detection may be performed through a tilting operation as shown in FIG. 3(c).
  • the tilting operation may also be performed through an electric tilting operation through beam forming for fine angle or height adjustment.
  • the 5G CPE may be rotated by a predetermined angle in a horizontal direction (S141).
  • the 5G CPE can be rotated within an azimuth angle of ⁇ 30 degrees in the horizontal direction.
  • the azimuth rotation angle is not limited thereto and may be an arbitrary rotation angle depending on the application.
  • the 5G CPE may be rotated by a predetermined angle in a vertical direction (S142).
  • the 5G CPE can be rotated within a range of an elevation angle of ⁇ 30 degrees in a vertical direction.
  • the elevation angle rotation angle is not limited thereto, and may be an arbitrary rotation angle depending on the application, and may be a value different from the azimuth rotation angle.
  • the 5G CPE instead of rotating the 5G CPE by a certain angle in the vertical direction, the height of the installation device in which the 5G CPE is installed can be adjusted. Therefore, the 5G CPE can be arranged in the optimal signal reception direction in the horizontal and vertical directions. Accordingly, the 5G CPE may turn off the test mode, transmit a signal received from the base station to the electronic device, and transmit the signal received from the electronic device to the base station.
  • the 5G CPE control operation according to the present invention can be performed in two steps as follows.
  • Step 1 Apply the Tx disable algorithm to ensure the safety of users or installers during installation
  • Step 2 Apply an algorithm that quickly detects which direction is the optimal tilt direction during installation
  • the application of the Tx disable algorithm is performed while the test mode is performed (S110) and the TX disable procedure is performed (S120). Meanwhile, even when the NR connection is established, the Tx disable algorithm may be performed until the test mode is terminated. Meanwhile, the application of an algorithm for quickly detecting which direction is the optimal tilt direction during installation is performed through a horizontal rotation step (S141) and a vertical rotation step (S142).
  • FIG. 5A is a flowchart illustrating an internal configuration of a 5G CPE and a 5G CPE control operation with an electronic device according to the present invention.
  • FIG. 5B shows a detailed configuration of a 5G CPE and an electronic device according to the present invention.
  • a test tool is an electronic device that performs 5G communication with a base station through 5G CPE.
  • BT is a wireless interface for performing short-range communication between a 5G CPE and an electronic device, and may be, for example, Bluetooth. However, it is not limited to Bluetooth and may be any short-range communication wireless interface such as Wi-Fi or Zigbee.
  • the RF/Protocol corresponds to a transmission/reception unit of a 5G CPE, and a control operation may be performed by a control unit (processor) of the 5G CPE.
  • the LED is provided in the 5G CPE, and can display the installation status and 5G signal quality of the 5G CPE.
  • the 5G CPE 500 includes a control unit (processor) 510, a transceiver 520, a second transmission/reception unit 530, and a display unit 540.
  • the electronic device 100 includes a transmission/reception unit 110, an output unit 150, and a control unit 180 corresponding to a wireless communication unit.
  • the 5G communication system can be configured to include a 4G base station 600 and a 5G base station 700.
  • the 5G CPE 500 may receive a 5G radio signal from the 5G base station 700 and relay it to the electronic device 100.
  • the 5G CPE 500 may receive a 5G radio signal from the electronic device 100 and transmit it to the 5G base station 700.
  • the 5G CPE 500 in a 5G non-stand-alone (NSA) structure, the 5G CPE 500 can maintain a dual connection state (EN-DC) with the 4G base station 600 and the 5G base station 700.
  • the 5G CPE 500 may transfer some control information to both the 4G base station 600 and the 5G base station 700.
  • the transceiver 110 corresponding to the wireless communication unit includes a 5G wireless communication module 112 and a short-range communication module 113.
  • the 5G wireless communication module 112 and the short-range communication module 113 correspond to the transmission/reception unit 112 and the second transmission/reception unit 112, respectively.
  • the transceiver 110 is configured to transmit and receive radio signals.
  • the controller 180 is connected to the transceiver 110 and is configured to transmit and receive a 5G radio signal with a base station through the 5G communication relay device 500.
  • the 5G communication relay device 500 operates in a test mode and a cell search is initiated, the 5G radio signal is not transmitted through the transceiver 110.
  • the controller 180 may transmit the user data and control data to the 5G communication relay device 500. 110) can be controlled.
  • the 5G base station 700 does not allocate time and frequency resources for transmitting user data and control data to the electronic device 100 and the 5G CPE 500.
  • the 5G base station 700 transfers a first radio resource to the electronic device 100 and 5G so as to transmit control data for NR measurement and NR measurement report in an RRC-connected state. Can be assigned to the CPE (500).
  • the 5G base station 700 may allocate a second radio resource to the electronic device 100 and the 5G CPE 500 to transmit user data when the PDN (Packet Data Network) attachment is completed. .
  • PDN Packet Data Network
  • the controller 180 can transmit a Tx restriction signaling to the 5G communication relay device 500.
  • the control unit 180 transmits a transmission restriction signaling limiting transmission of user data and control data.
  • the transmission restriction signaling may be transmitted to the 5G communication relay device 500 through a second wireless interface different from the 5G wireless interface.
  • the second wireless interface may be the aforementioned short-range wireless communication interface, for example, a Bluetooth or a Wi-Fi interface.
  • the controller 180 may transmit transmission restriction signaling to the 5G communication relay device 500 so as not to transmit control data.
  • the transmission restriction signaling is a message that restricts transmission of control data until RRC connection and measurement report.
  • the controller 180 may transmit the second transmission restriction signaling to the 5G communication relay device 500 so as not to transmit user data.
  • the second transmission restriction signaling is a message for restricting transmission of control data until the end of the test mode.
  • the transceiver 520 is configured to transmit and receive radio signals. Specifically, the transceiver 520 is configured to transmit and receive 5G NR signals, and may transmit and receive 4G LTE signals.
  • the 5G wireless communication module for transmitting and receiving 5G NR signals and the 4G wireless communication module for transmitting and receiving 4G LTE signals may be implemented on one physical chip or a separate chip.
  • the second transmission/reception unit 530 is configured to perform short-range communication with the electronic device 100. Specifically, the second transceiver 530 may perform a short-range communication with the paired electronic device 100 by performing a pairing process for short-range communication with the peripheral electronic device 100.
  • the control unit (processor) 510 is connected to the transmission/reception unit 520 and is configured to provide a radio signal received from the base station to the electronic device 100. According to the present invention, the control unit (processor) 510 can control so that a radio signal is not transmitted through the transmission/reception unit 520 when a cell search is initiated in a test mode. have.
  • the display unit 540 may be configured to display the 5G NR signal quality and status received from the base station.
  • the display unit 540 may display information guiding a user or an installation manager who installs the 5G CPE to arrange the 5G CPE at an optimal position and angle.
  • the 5G base station 700 is a 5G communication relay device, that is, when the 5G CEP 500 is operated in a test mode and a cell search is initiated, the 5G CEP 500 is It can be controlled not to transmit signals, including data and control data.
  • the 5G base station 700 when cell search is initiated, the 5G base station 700 does not allocate time and frequency resources for transmitting user data and control data to the electronic device 100 and the 5G CPE 500. However, the 5G base station 700 transfers a first radio resource to the electronic device 100 and 5G so as to transmit control data for NR measurement and NR measurement report in an RRC-connected state. Can be assigned to the CPE (500). On the other hand, the 5G base station 700 may allocate a second radio resource to the electronic device 100 and the 5G CPE 500 to transmit user data when the PDN (Packet Data Network) attachment is completed. .
  • PDN Packet Data Network
  • the 5G CPE control operation according to the present invention may be performed in two steps as follows.
  • Step 1 Apply the Tx disable algorithm to ensure the safety of users or installers during installation
  • Step 2 Apply an algorithm that quickly detects which direction is the optimal tilt direction during installation
  • the 5G CPE according to the present invention uses a 5G signal of a high frequency band, a safety method is applied so that no harmful effect to the human body occurs during installation.
  • the 5G CPE control operation according to the present invention is to prevent the use of the Tx function during positioning, rotation, and tilting operations of the 5G CPE.
  • the test tool corresponds to the electronic device 100.
  • the RF/Protocol may correspond to a transmission/reception unit or a control unit of a 5G CPE.
  • RF/Protocol is referred to as corresponding to the controller 510 of the 5G CPE.
  • BT refers to a second transmission/reception unit 530 of a 5G CPE that provides a second wireless interface for performing short-range communication with the electronic device 100.
  • the LED refers to the installation state of the 5G CPE and the 5G signal quality as a display unit 540.
  • the control unit 510 of the 5G CPE may control the LTE base station to be in an LTE connection state through activation of a communication function.
  • NR measurement can be performed on a received signal received from an NR base station.
  • NR measurement may be performed even during the 5G NR Disable process (S120).
  • the NR measurement may be performed during the optimal Tilt control process (S140).
  • the controller 510 of the 5G CPE may perform a test mode (S110).
  • the controller 510 may control to be paired with the electronic device 100 through the second transceiver 530 when entering the test mode (ie, determining that the test mode is).
  • the nearby electronic device may be recognized through an advertising process with the nearby electronic device.
  • the controller 510 disables TX so that the radio signal is not transmitted through the transceiver 520 when a specific control signal is received from the 5G base station or in an RRC connection state. Execute the process.
  • the controller 510 may search for an optimal direction of a signal received from a 5G base station in a horizontal direction and/or a vertical direction. Accordingly, the control unit 510 may perform one of a TX enable procedure (S150), a tilting procedure, and a reinstallation procedure based on the received signal quality from the 5G base station. Accordingly, when the received signal quality is good, the control unit 510 may indicate through the display unit 540 that the 5G CPE can be installed at a corresponding location. That is, the controller 510 may transmit information related to whether or not the 5G CPE can be installed at a corresponding location or an NR status to the display unit 540.
  • a TX enable procedure S150
  • the control unit 510 may indicate through the display unit 540 that the 5G CPE can be installed at a corresponding location. That is, the controller 510 may transmit information related to whether or not the 5G CPE can be installed at a corresponding location or an NR status to the display unit 540.
  • the display unit 540 may display the NR status as Red, Yellow, Green, or the like, respectively.
  • the LED is green, it indicates that the 5G signal strength is in a good state, and the 5G CPE can be installed normally at that location.
  • the LED is yellow, it indicates that the 5G signal strength is in a normal state, and installation is impossible unless the 5G CPE is tilted optimally in the horizontal and/or vertical directions.
  • the LED is displayed as red, it indicates that the 5G signal strength is in a weak state, and installation is impossible unless the 5G CPE is moved to another location.
  • the controller 510 accesses the 5G network through a ping operation to the 5G network and ends the test mode.
  • the controller 510 may terminate the test mode and transmit user data. Accordingly, the 5G CPE is connected to both the 5G base station and the 5G network.
  • the second transmission/reception unit 530 may perform a pairing operation with the electronic device 100.
  • the second transceiving unit 530 may transmit the received signal quality, for example, Reference Signal Received Power (RSRP) to the electronic device 100.
  • RSRP Reference Signal Received Power
  • FIG. 6 shows a flowchart of a method for controlling positioning and tilting of a 5G CPE according to the present invention.
  • the positioning and tilting control method of the 5G CPE may be performed by the controller 510 based on a signal received from a 5G base station through a transceiver.
  • the positioning and tilting control method of the 5G CPE may be performed by a mechanical method or an electrical method.
  • the controller 510 may perform 5G NR measurement (S130) at a corresponding location. If it is determined that attachment to the 5G network is not possible according to the 5G NR measurement (S130), the LED may be displayed in red. If it is determined that such a situation as the RRC connection failure is permanent, position control (S101) may be performed to position the 5G CPE to a location other than the corresponding location. In this regard, the 5G CPE may autonomously perform position control (S101) within the movable range. Alternatively, the 5G CPE may indicate that the position control (S101) is required through a display unit such as an LED or through a peripheral electronic device such as a user terminal.
  • horizontal rotation (tilt) control (S140) and/or vertical rotation (tilt) control (S150) may be performed according to the received signal quality through 5G NR measurement (S130), for example, RSRP, horizontal rotation (tilt) control (S140) and/or vertical rotation (tilt) control (S150) may be performed.
  • operations of the horizontal rotation (tilt) control (S140) and/or the vertical rotation (tilt) control (S150) may correspond to horizontal rotation (tilt) and/or vertical rotation (tilt), respectively.
  • the horizontal rotation (tilt) control (S141) may be performed. If the received signal quality through the horizontal rotation (tilt) control (S141) is less than or equal to the threshold, the vertical rotation (tilt) control (S142) may be performed.
  • the threshold which is the quality of the received signal, may correspond to 3 level.
  • the 3 level indicates that the 5G signal strength in which the LED is displayed as Green is in a good state, and that the 5G CPE can be installed normally at the corresponding location.
  • the number of antennas in the horizontal direction of the array antennas in the 5G CPE may be set to be greater than the number of antennas in the vertical direction. Accordingly, the antenna beam can be precisely adjusted in the horizontal direction and the antenna beam can be adjusted again in the vertical direction.
  • the received signal quality is greater than or equal to a threshold value through the horizontal rotation (tilt) control S140, there is an advantage that it is no longer necessary to perform the vertical rotation (tilt) control S150. Therefore, there is an advantage in that it is possible to improve the mechanical stability of the 5G CPE by not performing vertical rotation (tilt) of the 5G CPE.
  • the received signal quality at the corresponding position and angle is greater than or equal to the threshold, it is determined as a strong electric field state, and an adjustment procedure such as tilt can be stopped.
  • the horizontal rotation (tilt) control (S141) if the received signal quality is greater than or equal to a threshold, it is determined as a strong electric field state, and an adjustment procedure such as tilt may be stopped.
  • the vertical rotation (tilt) control (S142) if the received signal quality is greater than or equal to a threshold, it is determined as a strong electric field state, and an adjustment procedure such as tilt may be stopped.
  • the LED is displayed in yellow to indicate that the 5G signal strength is in a normal state, and installation is impossible unless the 5G CPE is tilted optimally in the horizontal and/or vertical directions.
  • the LED is displayed in red to indicate that the 5G signal strength is in a weak state, and installation is impossible unless the 5G CPE is moved to another location.
  • the tilting procedure may be performed.
  • the installation location may be moved to perform a re-installation procedure.
  • Figure 7 shows a variety of LEDs provided in the 5G CPE according to the present invention.
  • the 5G CPE includes an LED 540 indicating 5G NR signal strength.
  • the LED 540 may be disposed on the upper side in order for the installer to easily recognize the 5G NR signal quality, but is not limited thereto and may be changed according to an application. Accordingly, the LED 540 may display the NR status as Red, Yellow, Green, or the like, respectively.
  • the LED 540 when the LED 540 is displayed as Green, it indicates that the 5G signal strength is in a good state and that the 5G CPE can be installed normally at the corresponding location.
  • the LED 540 when the LED 540 is displayed in yellow, it indicates that the 5G signal strength is in a normal state, and installation is impossible unless the 5G CPE is optimally tilted in the horizontal and/or vertical directions.
  • the LED 540 when the LED 540 is displayed as red, it indicates that the 5G signal strength is in a weak state, and installation is impossible unless the 5G CPE is moved to another location.
  • the 5G CPE may further include a first LED 541 for guiding the direction to the left/right according to the left and right tilt.
  • the 5G CPE may further include a second LED 542 for guiding the direction upward and downward according to the vertical tilt.
  • the user or installer can select the corresponding button to enter the test mode, that is, the installation mode to install the 5G CPE.
  • the button may be physically provided on an electronic device paired with a 5G CPE or a 5G CPE, or may be displayed on a display.
  • the 5G CPE can activate the following functions when entering the test mode, that is, the installation mode.
  • CPE Side BT advertise mode can be controlled to be ON so that BT pairing with electronic devices is possible as an installation aid.
  • the LED 240 indicating the 5G NR signal strength may be displayed in a Blinking state. Accordingly, by displaying the LED 240 in a different color, for example, white Blinking, it is possible to inform the user or the installer that the 5G CPE is not to be moved at the corresponding location.
  • FIG. 8A shows a flowchart of a cell selection and NR measurement method in 5G CPE according to the present invention.
  • FIG. 8B is a flowchart of a transmission control operation in 5G CPE according to an embodiment of the present invention.
  • the cell selection and NR measurement method in 5G CPE includes a Power On step (S310), a frequency scanning step (S321), a PSS/SSS synchronization step (S322), an MIB receiving step (S323), and a SIB receiving step. It includes (S324).
  • S310 Power On step
  • S321 frequency scanning step
  • S322 PSS/SSS synchronization step
  • SIB receiving step MIB receiving step
  • SIB receiving step SIB receiving step. It includes (S324).
  • 5G CPE uses the stored cell information when there is an already accessed cell, and proceeds with a cell search when there is no accessed cell.
  • the 5G CPE performs PSS/SSS synchronization through a primary synchronization signal (PSS) and a secondary synchronization signal (SSS), enabling cell selection.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the base station periodically transmits synchronization signals (eg PSS, SSS) and cell common signals (eg CRS), and also periodically transmits PBCH.
  • synchronization signals eg PSS, SSS
  • cell common signals eg CRS
  • the 5G CPE acquires synchronization by receiving PSS, SSS, CRS, and PBCH, and decodes the MIB (Master information block) included in the PBCH, and uses it for PDSCH discovery and SIB reception.
  • MIB Master information block
  • MIB is transmitted through PBCH and includes basic information required for network access, broadcast downlink bandwidth information, and SFN (System frame number).
  • the SIB is transmitted through the PDSCH, and the transmission period of the SIB message is different according to the type. Meanwhile, an SIB message having the same transmission period may be combined and transmitted as a single system information (SI) message.
  • SI system information
  • FIG. 8B it shows the main features of the 5G NR signal transmission control method of the 5G CPE according to the present invention.
  • 5G NR signals of 6 GHz or higher used in 5G NR have strict FCC standards compared to conventional communication signals. Therefore, the Tx power of a high frequency band of 6 GHz or higher used in 5G NR may have a harmful effect on the human body.
  • the present invention proposes the following two Tx disable methods.
  • the received signal quality for example, RSRP is utilized. Specifically, only Tx signal transmission for RRC status report is allowed, and user data transmission for internet service, etc. is allowed only when 5G CPE installation is completed.
  • Tx signal transmission for specific control information for a short time is allowed, it is not a complete Tx disable method compared to Method 1.
  • the link connection can be maintained even when the link quality is not good.
  • a location such as positioning and tilting of 5G CPE, it can provide a high success rate of 5G CPE installation.
  • the transceiving unit 520 is configured to transmit and receive radio signals, in particular 5G NR signals.
  • the control unit 510 is connected to the transmission/reception unit 520 and is configured to provide a radio signal received from the base station to the electronic device 100.
  • the controller 510 may control a radio signal not to be transmitted through the transmission/reception unit 520.
  • the controller 510 may receive a system information block (SIB) through a physical downlink shared channel (PDSCH) (S324). Accordingly, when the SIB is received, the controller 510 may perform a TX disable process so that the radio signal is not transmitted through the transceiver 520.
  • SIB system information block
  • PDSCH physical downlink shared channel
  • the timing at which TX disable is initiated is not limited to the timing at which the SIB is received.
  • a time point at which TX disable is initiated may be made at a time point at which the MIB is received.
  • the control unit 510 may receive (S323) a master information block (MIB) through a physical broadcast channel (PBCH). Accordingly, when the MIB is received, the controller 510 may perform a TX disable process so that the radio signal is not transmitted through the transceiver 520.
  • MIB master information block
  • PBCH physical broadcast channel
  • This TX disable process may be terminated when the installation of the 5G communication relay device is completed. Accordingly, when the installation of the 5G communication relay device is completed, a TX activation process may be performed. Accordingly, when it is determined that the installation of the 5G communication relay device has been completed, the controller 510 may perform a TX activation process so that a radio signal can be transmitted through the transceiver 520.
  • a radio resource control (RRC) connection fails, a control signal for RRC re-establishment may be transmitted.
  • the control unit 510 may control a control signal for RRC re-establishment to be transmitted when a radio resource control (RRC) connection fails.
  • the control unit 510 resets the RRC to the base station so that when a radio resource control (RRC) connection fails, a control signal for re-establishment can be transmitted.
  • the request may be transmitted to the base station through the transceiver 520.
  • the RRC reconfiguration request is transmitted to the 5G base station, but may be transmitted to the 4G base station and/or the 5G base station in the 5G non-stand-alone (NSA) structure. Accordingly, there is an advantage in that the reliability of the RRC connection request can be improved and the RRC connection can be reset within a short time.
  • the control unit 510 controls the radio signal to not be transmitted through the transceiver 520 until the test process according to the test mode is completed. can do.
  • control unit 510 may control the transmission/reception unit 520 to transmit the first radio signal for control data for an RRC state report in an RRC-connected state.
  • control unit 510 may control the transmission/reception unit 520 so that the second radio signal for user data is not transmitted.
  • controlling the transmission/reception unit 520 can be interpreted as meaning that the controller 510 does not generate a signal including data.
  • control unit 510 generates a signal including data, but does not transmit a signal including data to the transmission/reception unit 520.
  • control unit 510 transmits a signal including data, but the transmission/reception unit 520 does not transmit the signal to a base station or a peripheral transmission device through an antenna.
  • the signal may not be amplified or transmitted through an antenna.
  • FIG. 9A shows handover between air interfaces in a 5G NSA structure.
  • FIG. 9B shows handover between air interfaces in a 5G SA structure.
  • 9a (a) shows an embodiment in which a 5G UE or 5G CPE handovers from a 4G base station to a 5G base station in an NSA structure.
  • LTE refers to a 4G base station and may be referred to as an eNB.
  • gNB corresponds to a 5G NR base station.
  • 9A (a) LTE-NR handover by an NSA network (NW) is performed under evolved packet core (EPC) control.
  • EPC evolved packet core
  • the EPC corresponds to a 4G core network, and both the 4G base station and the 5G base station may be connected to the EPC.
  • the 5G UE or 5G CPE can maintain a dual connectivity state, that is, EUTRAN NR Dual Connectivity (EN-DC) through the eNB and gNB.
  • EUTRAN NR Dual Connectivity EN-DC
  • Figure 9a (b) shows another embodiment of a 5G UE or 5G CPE handover from a 4G base station to a 5G base station in the NSA structure.
  • eLTE refers to a 4G base station and may be referred to as an eNB.
  • gNB corresponds to a 5G NR base station.
  • 9A (b) LTE-NR handover by the NSA network (NW) is performed under the control of 5G Core (5GC).
  • 5GC corresponds to a 5G core network, and both the 4G base station and the 5G base station may be connected to the 5GC.
  • the 5G UE or 5G CPE can maintain a dual connectivity state, that is, EUTRAN NR Dual Connectivity (EN-DC) through the eNB and gNB.
  • EUTRAN NR Dual Connectivity EN-DC
  • 9b (a) shows an embodiment in which a 5G UE or a 5G CPE handovers from a 4G base station to a 5G base station in an SA structure.
  • LTE refers to a 4G base station and may be referred to as an eNB.
  • gNB corresponds to a 5G NR base station.
  • 9B (a) a handover from an evolved packet core (EPC) to a 5G core (5GC) is also performed through an LTE-NR handover by an SA network (NW).
  • EPC evolved packet core
  • 5GC 5G core
  • NW SA network
  • 9b (b) shows another embodiment in which a 5G UE or 5G CPE handovers from a 4G base station to a 5G base station in an SA structure.
  • eLTE refers to a 4G base station and may be referred to as an eNB.
  • gNB corresponds to a 5G NR base station.
  • LTE-NR handover by an SA network (NW) is performed under 5G Core (5GC) control.
  • 5GC corresponds to a 5G core network, and both the 4G base station and the 5G base station may be connected to the 5GC.
  • the method for controlling signal transmission of 5G CPE according to the present invention may be performed as follows. Specifically, Method 1 (a method of completely limiting Tx) and Method 2 (a method of limiting only Tx for user data) are transitioned to NR in the scenario shown in Table 1. In order to determine whether a 5G mmWave communication service can be provided according to the change to NR, all of the above-described “Tx disable” algorithms may be applied.
  • a radio signal It can be controlled not to be transmitted through the transceiver 520.
  • the controller 510 may control the 5G radio signal not to be transmitted through the transceiver 520.
  • the control unit 510 may control the 4G radio signal to be selectively transmitted through the transmission/reception unit 520.
  • the controller 510 may control the transceiver 520 to transmit control information for searching and selecting an NR cell through a 4G radio signal.
  • Tx signal transmission may be restricted in the following manner.
  • the controller 510 may perform an operation as follows.
  • the controller 510 may receive a system information block (SIB) through a physical downlink shared channel (PDSCH).
  • SIB system information block
  • PDSCH physical downlink shared channel
  • the controller 510 may control a radio signal not to be transmitted through the transceiving unit 520 until a test process according to the test mode is completed.
  • SIB system information block
  • PDSCH physical downlink shared channel
  • the controller 510 may perform an operation as follows. .
  • the control unit 510 controls the radio signal not to be transmitted through the transceiver 520 until the test process according to the test mode is completed. can do.
  • FIG. 9B (b) in the case of initial access only to 5G NW in the 5G SA structure, it is difficult to transmit control information through 4G NW. Therefore, in the initial access to the 5G NW in the 5G SA structure, it is necessary to transmit the Tx signal for transmission of control information and the like until the RRC connection state is established even after receiving the SIB.
  • FIG. 10a shows a flow chart of the LTE and NR access method in 5G CPE according to the present invention.
  • FIG. 10B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to an embodiment of the present invention.
  • the 5G CPE may perform a TX disable process from before the cell selection step S320. Meanwhile, the 5G CPE may perform a power on step (S310) and a cell selection step (S320).
  • the cell selection step (S320) includes a frequency scanning step (S321), a PSS/SSS synchronization step (S322), an MIB receiving step (S323), and an SIB receiving step (S324). It may include.
  • the 5G CPE may further perform an LTE Attach and PDN setup step (S330). Thereafter, the 5G CPE may further perform an NR measurement and reporting process (S130) following the LTE Attach and PDN setup step (S330). Regarding the NR measurement and reporting process (S130), the 5G UE or 5G CPE may perform measurement for cell selection and reselection defined in 3GPP TS38.133. In this regard, the signal strength can be checked using the Srxlev and Squal parameters supported by the non-serving cell.
  • the 5G UE or 5G CPE may perform the NR measurement and reporting process (S130) through the following process.
  • the 5G UE or 5G CPE scans the RF channel to check the NR band, and checks the capability of the 5G UE or 5G CPE.
  • the control unit 510 determines received signal quality in the TX disable process in which a radio signal is not transmitted through the transmission/reception unit 520. ), you can perform different procedures. In this regard, the control unit 510 may control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on the received signal quality.
  • the controller 510 may select a cell having the best received signal quality.
  • the controller 510 may control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on a Cell Selection RX level value or a Cell Selection quality value of the selected cell.
  • a 5G UE or 5G CPE may receive an RRCConnectionReconfiguration message through a first base station, that is, a master base station (MeNB).
  • the first base station that is, the master base station (MeNB) may be a 4G LTE base station.
  • the 5G UE or 5G CPE receiving the RRCConnectionReconfiguration message may perform NR Measurements.
  • the control unit 510 of the 5G UE or 5G CPE transmits the NR Measurements report to the second base station through the first base station.
  • the NR Measurements report may be delivered through a MeasurementReport message after the RRCConnectionReconfigurationComplete message.
  • the control unit 510 does not transmit the NR Measurements report to the second base station through the first base station.
  • the first base station receiving the RRCConnectionReconfigurationComplete message may transmit the SeNB Modification Confirm message to the second base station, that is, the secondary base station (SeNB).
  • the second base station that is, the secondary base station (SeNB) may be a 5G NR base station.
  • the 5G NR base station can be interpreted as a secondary base station (SeNB).
  • the first base station receiving the MeasurementReport message may transmit the SCG configuration information message, that is, the SCGConfigInfoGUTRA message, to the second base station, that is, the secondary base station (SeNB).
  • the control unit (processor) 510 may select a cell having the best received signal quality when SIB is received.
  • the control unit (processor) 510 can control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on the Cell Selection RX level value or Cell Selection quality value of the selected cell. have.
  • the control unit (processor) 510 may perform a TX activation procedure if it is determined that the 5G CPE can be registered in the NR cell based on the received signal quality.
  • FIG. 11 is a flowchart of a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to an embodiment of the present invention.
  • the controller 510 of the 5G CPE may perform the NR measurement process (S130) in the Tx disable state.
  • the NR measurement process (S130) if the received signal quality, that is, Srxlev or squal is greater than or equal to the first threshold (Threshold #1), the test mode may be terminated and the TX activation procedure (S150) may be performed. In the TX activation procedure (S150), an NR measurement report process may be performed.
  • the controller 510 may control to perform the tilting procedure (S140). LED control that changes and displays the LED color according to the received signal quality can be performed.
  • the control unit 510 may move the installation location and perform a re-installation procedure (S160).
  • the LED control may be performed by changing the LED color according to the received signal quality and displaying or blinking by changing the LED color.
  • FIG. 12A is a flowchart of a method of accessing LTE and NR in 5G CPE according to another embodiment of the present invention.
  • FIG. 12B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to another embodiment of the present invention.
  • FIG. 12A it is similar to the procedure of FIG. 10A, except that transmission of all Tx signals is not restricted and control data transmission is allowed.
  • the 5G CPE may perform a TX disable process excluding specific control data transmission from before the cell selection step S320. Meanwhile, the 5G CPE may perform a power on step (S310) and a cell selection step (S320).
  • the cell selection step (S320) includes a frequency scanning step (S321), a PSS/SSS synchronization step (S322), an MIB receiving step (S323), and an SIB receiving step. It may include (S324).
  • the 5G CPE may further perform an LTE Attach and PDN setup step (S330). Thereafter, the 5G CPE may further perform an NR measurement and reporting process (S130) following the LTE Attach and PDN setup step (S330).
  • the PDN (Packet Data Network) attach is completed through the LTE Attach and PDN setup step (S330)
  • user data may be transmitted through a radio signal.
  • the user data may be transmitted as a second radio signal through a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the controller 510 may transmit user data through the second radio signal.
  • NR measurement and NR measurement report are performed in the RRC-connected state.
  • Control data for can be transmitted.
  • the control data may be transmitted as a first radio signal through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the controller 510 may transmit control data for NR measurement and NR measurement report through the first radio signal in the RRC-connected state.
  • the 5G UE or 5G CPE when a 5G UE or 5G CPE enters NR coverage in an LTE connection state, the 5G UE or 5G CPE receives an RRCConnectionReconfiguration message from the eNB.
  • the 5G UE or 5G CPE receives an RRCConnectionReconfiguration message from the eNB.
  • RRCConnectionReconfiguration message In this regard, in Method 1 described above of FIG. 10B, all Tx transmissions including control data transmission are restricted. However, in Method 2 of FIG. 12B, specific control data transmission is allowed for a short time.
  • Method 1 of FIG. 10B and Method 2 of FIG. 12B are whether control data is transmitted.
  • the common point between Method 1 of FIG. 10B and Method 2 of FIG. 12B is that transmission of user data is blocked while searching for the optimal installation location and direction of 5G CPE.
  • a 5G UE or a 5G CPE may receive an RRCConnectionReconfiguration message through a first base station, that is, a master base station (MeNB).
  • the first base station that is, the master base station (MeNB) may be a 4G LTE base station.
  • the 5G UE or 5G CPE receiving the RRCConnectionReconfiguration message may perform NR Measurements.
  • control unit 510 of the 5G UE or 5G CPE may allow transmission of a Tx signal for transmission of specific control information even during a Tx disable procedure like the NR Measurements process.
  • the NR Measurements report may be transmitted to the second base station through the first base station without determining whether the 5G CPE can be registered in the NR cell based on the received signal quality.
  • the NR Measurements report may be delivered through a MeasurementReport message.
  • the second base station that is, the secondary base station (SeNB) may be a 5G NR base station.
  • the 5G NR base station can be interpreted as a secondary base station (SeNB).
  • the first base station receiving the MeasurementReport message may transmit the SCG configuration information message, that is, the SCGConfigInfoGUTRA message, to the second base station, that is, the secondary base station (SeNB).
  • FIG. 13 is a flowchart of a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to another embodiment of the present invention.
  • the 5G CPE installation control method of FIG. 13 is similar to the 5G CPE installation control method of FIG. 11, but there is a difference that is performed based on RSRP among received signal quality.
  • the controller 510 of the 5G CPE may perform the NR measurement process (S130) in the Tx disable state.
  • the NR measurement process (S130) if the received signal quality, that is, RSRP is greater than or equal to the first threshold (Threshold #1), control to terminate the test mode and perform the TX enable procedure (S150).
  • the TX activation procedure (S150) an NR measurement report process may be performed.
  • the control unit 510 may control to perform the tilting procedure (S140). LED control that changes and displays the LED color according to the received signal quality can be performed.
  • the control unit 510 may move the installation location to perform a re-installation procedure (S160).
  • the LED control may be performed by changing the LED color according to the received signal quality and displaying or blinking by changing the LED color.
  • the 5G CPE operation of FIGS. 11 and 13 is similar in that it is a CPE operation sequence performed after NR measurement.
  • the 5G CPE operation of FIG. 13 has a difference in determining whether the 5G CPE is in the NR coverage area based on RSRP.
  • Method 1 according to FIG. 11 has the following technical characteristics.
  • method 2 according to FIG. 13 has the following technical characteristics.
  • the received signal quality of FIGS. 11 and 13, that is, the Srxlev or RSRP-based 5G CPE installation control method can be classified as follows.
  • 5G CPE can be installed at the corresponding position and angle without tilting procedure.
  • the 5G CPE is controlled to be reinstalled at different angles at different locations.
  • the base station periodically transmits a reference signal (RS), and the 5G UE or 5G CPE, which is a terminal, receives the RS.
  • RS reference signal
  • the 5G UE or 5G CPE detects the existence of a cell from the received RS and determines the quality of the radio link formed from the cell to the terminal.
  • the 5G UE or 5G CPE has the following advantages when using RS for cell presence detection and radio link quality determination.
  • the base station and the terminal in the RRC Idle state and the terminal in the RRC Connection state can use RS.
  • the signal strength of the serving cell and the neighboring cell or the signal strength relative to the total received power can be expressed using RS.
  • Receiving sensitivity can be converted to a power value, that is, dBm by using RS.
  • Table 2 shows RSRP thresholds for various control methods in relation to the RSRP-based 5G CPE installation control method according to the present invention.
  • RSRP threshold this may vary depending on the operator or network deployment situation. However, through Table 2, it is possible to select a primary candidate position for the 5G CPE to capture 5G NR signals.
  • Method 1 (FIG. 11) and Method 2 (FIG. 13) during handover from an LTE network to an NR network
  • Method 2 (FIG. 13) during handover from an LTE network to an NR network
  • a 5G CPE installation control method according to Method 1 (FIG. 14) and Method 2 (FIG. 15) in the NR network was described.
  • Method 1 (FIG. 14) and Method 2 (FIG. 15) may be performed in the 5G NR SA structure.
  • FIG. 14 shows a flowchart of a Srxlev-based 5G CPE installation control method according to Method 1 in an NR network.
  • FIG. 15 shows a flowchart of a RSRP-based 5G CPE installation control method according to Method 2 in an NR network.
  • NR initial acquisition and cell selection are performed in the same manner as LTE (S320a) (same except that the LTE attach part is omitted).
  • the tilting procedure (S140) is performed to improve performance.
  • NR initial acquisition and cell selection are performed in the same manner as LTE (S320a) (same except that the LTE attach part is omitted).
  • NR measurement is performed based on the RSRP received from the network in the RRC IDLE or RRC CONNECTION state (S130b).
  • a primary candidate location capable of receiving 5G NR signals is selected based on RSRP.
  • 5G communication relay device In the above, detailed operation of the 5G communication relay device according to an aspect of the present invention has been described. Hereinafter, detailed operations of 5G CPE (Customer Premises Equipment) according to another aspect of the present invention will be described.
  • 5G CPE Customer Premises Equipment
  • the 5G CPE includes a control unit (processor) 510 and a transmission/reception unit 520.
  • the 5G CPE may be configured to further include a second transmission/reception unit 530 and a display unit (LED) 540.
  • the transceiver 520 is configured to transmit and receive a radio signal. Specifically, the transmission/reception unit 520 may transmit and receive a 5G radio signal and transmit a 5G radio signal to the nearby electronic device 100. In addition, it is possible to receive a 5G radio signal from the electronic device 100 and transmit the 5G radio signal to the 5G base station.
  • the processor 510 is connected to the transceiver 520 and is operable to perform a test mode before being connected to the base station.
  • connection with the base station may mean RRC-connection, but is not limited thereto and may be interpreted as a different meaning depending on the application.
  • connection with a base station can be interpreted as transmitting a Tx signal including user data to the base station.
  • the processor 510 may control a radio signal not to be transmitted through the transceiver 520.
  • the processor 510 may transmit a radio signal received from the base station to the electronic device. Accordingly, when the test mode for installing the 5G CPE is completed, the processor 510 may transmit the 5G radio signal received from the base station to the electronic device 100.
  • the 5G CPE may perform a TX disable process (process) as follows.
  • the processor 510 may receive a system information block (SIB) through a physical downlink shared channel (PDSCH).
  • SIB system information block
  • PDSCH physical downlink shared channel
  • the processor 510 may perform a TX disable process so that a radio signal is not transmitted through the transceiver 520.
  • the processor 510 controls the radio signal not to be transmitted through the transceiver 520 until the test process according to the test mode is completed. can do.
  • 5G CPE can control transmission in different ways for specific control data and user data.
  • the processor 510 controls the transceiver 520 so that the first radio signal for control data for the RRC state report is transmitted even in the test mode in the RRC-connected state. I can.
  • the processor 510 may control the transceiving unit 520 so that the second radio signal for user data is not transmitted in the RRC-connected state.
  • the processor 510 may transmit control data for NR measurement and NR measurement report through the first radio signal in an RRC-connected state.
  • the processor 510 may transmit user data through the second radio signal.
  • the processor 510 may perform different installation procedures based on the received signal quality as follows.
  • the processor 510 may select a cell having the best received signal quality.
  • the processor 510 may control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on the Cell Selection RX level value or the Cell Selection quality value of the selected cell. Therefore, if the processor 510 determines that the 5G CPE can be registered in the NR cell based on the received signal quality, the processor 510 may perform a TX activation procedure.
  • the 5G CPE may display information necessary during the installation process through the display unit (LED) 540.
  • the processor 510 may perform pairing with the electronic device 100 through the second wireless interface. Further, the processor 510 may control information related to the quality of a received signal received from the base station during the TX deactivation process to be displayed on the electronic device. That is, the processor 510 may display information related to the received signal quality in red, yellow, green, etc. through the display unit (LED) 540, and also display this through the electronic device 100 of the user or installer. I can. Also, when the test mode is ended, the processor 510 may transmit information indicating that the test mode has ended to the electronic device 100.
  • FIG. 16 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • a wireless communication system includes a first communication device 910 and/or a second communication device 920.
  • 'A and/or B' may be interpreted as having the same meaning as'including at least one of A or B'.
  • the first communication device may represent a base station
  • the second communication device may represent an electronic device, that is, a 5G UE (or the first communication device may represent a terminal, and the second communication device may represent a base station).
  • the first communication device may represent a support station
  • the second communication device may represent 5G CPE (or the first communication device may represent 5G CPE, and the second communication device may represent a base station).
  • the first communication device may represent a 5G CPE
  • the second communication device may represent an electronic device, that is, a 5G UE (or the first communication device represents an electronic device, that is, a 5G UE, and the second communication device represents a 5G CPE. Can represent).
  • a base station is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), general gNB (gNB).
  • BS is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), general gNB (gNB).
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • gNB general gNB
  • 5G system 5G system
  • network AI system
  • RSU road side unit
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module May be replaced with terms such as.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • vehicle robot
  • AI module May be replaced with terms such as.
  • the first communication device and the second communication device include a processor (processor, 911,921), memory (memory, 914,924), one or more Tx/Rx RF modules (915,925), Tx processors (912,922), Rx processors (913,923) , Antennas 916 and 926.
  • the processor implements the previously salpin functions, processes and/or methods. More specifically, in the DL (communication from the first communication device to the second communication device), higher layer packets from the core network are provided to the processor 911. The processor implements the functions of the L2 layer. In the DL, the processor provides multiplexing between logical channels and transport channels and radio resource allocation to the second communication device 920, and is responsible for signaling to the second communication device.
  • the transmit (TX) processor 912 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • the signal processing function facilitates forward error correction (FEC) in the second communication device, and includes coding and interleaving.
  • FEC forward error correction
  • the coded and modulated symbols are divided into parallel streams, each stream is mapped to an OFDM subcarrier, multiplexed with a reference signal (RS) in the time and/or frequency domain, and uses Inverse Fast Fourier Transform (IFFT). These are combined together to create a physical channel carrying a time domain OFDMA symbol stream.
  • the OFDM stream is spatially precoded to produce multiple spatial streams. Each spatial stream may be provided to a different antenna 916 through a separate Tx/Rx module (or transceiver 915).
  • Each Tx/Rx module can modulate the RF carrier with each spatial stream for transmission.
  • each Tx/Rx module (or transceiver 925) receives a signal through each antenna 926 of each Tx/Rx module.
  • Each Tx/Rx module restores information modulated with an RF carrier and provides the information to the receive (RX) processor 923.
  • the RX processor implements a variety of layer 1 signal processing functions.
  • the RX processor may perform spatial processing on the information to recover any spatial stream destined for the second communication device. If multiple spatial streams are directed to the second communication device, they can be combined into a single OFDMA symbol stream by multiple RX processors.
  • the RX processor transforms the OFDMA symbol stream from time domain to frequency domain using Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the frequency domain signal contains a separate OFDMA symbol stream for each subcarrier of the OFDM signal.
  • the symbols and reference signal on each subcarrier are reconstructed and demodulated by determining the most probable signal constellation points transmitted by the first communication device. These soft decisions can be based on channel estimate values.
  • the soft decisions are decoded and deinterleaved to restore the data and control signal originally transmitted by the first communication device on the physical channel. Corresponding data and control signals are provided to the processor 921.
  • the UL (communication from the second communication device to the first communication device) is handled in the first communication device 910 in a manner similar to that described with respect to the receiver function in the second communication device 920.
  • Each Tx/Rx module 925 receives a signal through a respective antenna 926.
  • Each Tx/Rx module provides an RF carrier and information to the RX processor 923.
  • the processor 921 may be associated with a memory 924 that stores program code and data.
  • the memory may be referred to as a computer-readable medium.
  • the 5G communication relay device that is, the 5G CPE (Customer Premises Equipment) and the transmission signal control method thereof, that transmits such 5G radio signals will be described as follows.
  • the minimum control data is transmitted in the test mode, thereby improving the possibility of 5G wireless connection.
  • designing and driving a specific component including a control unit can be performed by a computer in a medium on which a program is recorded. It is possible to implement it as code.
  • the computer-readable medium includes all types of recording devices that store data that can be read by a computer system. Examples of computer-readable media include HDD (Hard Disk Drive), SSD (Solid State Disk), SDD (Silicon Disk Drive), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is also a carrier wave (e.g., transmission over the Internet).
  • the computer may include the control unit 180 of the terminal.

Abstract

A 5G communication relay device comprises: a transceiver configured to transmit and receive a radio signal; and a control unit which is connected to the transceiver and is configured to provide a radio signal received from a base station to an electronic device. When a cell search is initiated in a test mode, the control unit may perform control so that no radio signal is transmitted through the transceiver, thereby avoiding a harmful effect which may be caused by a high-frequency signal exposed to the body of a user or an installation manager in the test mode.

Description

5G 통신 중계 장치5G communication relay device
본 발명은 5G 통신 중계 장치에 관한 것이다. 보다 상세하게는, 5G 기지국과 전자 기기 간에 5G 무선 신호를 전달하는 5G CPE (Customer Premises Equipment) 및 그 제어 방법에 관한 것이다.The present invention relates to a 5G communication relay device. More specifically, it relates to a 5G CPE (Customer Premises Equipment) for transmitting a 5G radio signal between a 5G base station and an electronic device and a control method thereof.
전자기기(electronic devices)는 이동 가능여부에 따라 이동 단말기(mobile/portable terminal) 및 고정 단말기(stationary terminal)로 나뉠 수 있다. 다시 전자기기는 사용자의 직접 휴대 가능 여부에 따라 휴대(형) 단말기(handheld terminal) 및 거치형 단말기(vehicle mounted terminal)로 나뉠 수 있다. Electronic devices can be divided into mobile/portable terminals and stationary terminals depending on whether they can be moved. Again, electronic devices can be divided into handheld terminals and vehicle mounted terminals depending on whether the user can directly carry them.
전자기기의 기능은 다양화되고 있다. 예를 들면, 데이터와 음성통신, 카메라를 통한 사진촬영 및 비디오 촬영, 음성녹음, 스피커 시스템을 통한 음악파일 재생 그리고 디스플레이부에 이미지나 비디오를 출력하는 기능이 있다. 일부 단말기는 전자게임 플레이 기능이 추가되거나, 멀티미디어 플레이어 기능을 수행한다. 특히 최근의 이동 단말기는 방송과 비디오나 텔레비전 프로그램과 같은 시각적 컨텐츠를 제공하는 멀티캐스트 신호를 수신할 수 있다. The functions of electronic devices are diversifying. For example, there are functions of data and voice communication, taking pictures and videos through a camera, recording voice, playing music files through a speaker system, and outputting images or videos to the display unit. Some terminals add an electronic game play function or perform a multimedia player function. In particular, recent mobile terminals can receive multicast signals providing visual content such as broadcasting and video or television programs.
이와 같은 전자기기는 기능이 다양화됨에 따라 예를 들어, 사진이나 동영상의 촬영, 음악이나 동영상 파일의 재생, 게임, 방송의 수신 등의 복합적인 기능들을 갖춘 멀티미디어 기기(Multimedia player) 형태로 구현되고 있다. As such electronic devices are diversified, they are implemented in the form of a multimedia player with complex functions such as, for example, taking photos or videos, playing music or video files, and receiving games and broadcasts. have.
이러한 전자기기의 기능 지지 및 증대를 위해, 단말기의 구조적인 부분 및/또는 소프트웨어적인 부분을 개량하는 것이 고려될 수 있다.In order to support and increase the function of the electronic device, it may be considered to improve the structural part and/or the software part of the terminal.
상기 시도들에 더하여, 최근 전자기기는 LTE 통신 기술을 이용한 무선 통신 시스템이 상용화되어 다양한 서비스를 제공하고 있다. 또한, 향후에는 5G 통신 기술을 이용한 무선 통신 시스템이 상용화되어 다양한 서비스를 제공할 것으로 기대된다. 한편, LTE 주파수 대역 중 일부를 5G 통신 서비스를 제공하기 위하여 할당될 수 있다. In addition to the above attempts, wireless communication systems using LTE communication technology have recently been commercialized in electronic devices, providing various services. In addition, in the future, wireless communication systems using 5G communication technology are expected to be commercialized and provide various services. Meanwhile, some of the LTE frequency bands may be allocated to provide 5G communication services.
이와 관련하여, 이동 단말기는 5G 통신 서비스를 다양한 주파수 대역에서 제공하도록 구성될 수 있다. 최근에는 6GHz 대역 이하의 Sub6 대역을 이용하여 5G 통신 서비스를 제공하기 위한 시도가 이루어지고 있다. 하지만, 향후에는 보다 빠른 데이터 속도를 위해 Sub6 대역 이외에 밀리미터파(mmWave) 대역을 이용하여 5G 통신 서비스를 제공할 것으로 예상된다.In this regard, the mobile terminal may be configured to provide 5G communication services in various frequency bands. Recently, attempts have been made to provide a 5G communication service using a Sub6 band below 6GHz band. However, in the future, it is expected to provide 5G communication service using millimeter wave (mmWave) band in addition to Sub6 band for faster data rate.
한편, 이러한 밀리미터파(mmWave) 대역에서의 5G 통신 서비스를 위해 할당될 주파수 대역은 28GHz 대역, 39GHz 및 64 GHz 대역이 고려되고 있다. 한편, 이와 같은 28GHz 대역, 39GHz 및 64 GHz 대역에서는 파장의 길이가 짧아 해당 통신 서비스를 제공하는 셀 커버리지가 감소한다는 문제점이 있다. 이러한 문제점을 해결하기 위해, 밀리미터파(mmWave) 대역에서는 기지국과 전자 기기 간의 5G 무선 신호를 중계하는 5G 통신 중계 장치(communication relay apparatus), 즉 5G CPE (Customer Premises Equipment)를 사용하는 것을 고려할 수 있다.Meanwhile, the frequency bands to be allocated for 5G communication services in the millimeter wave (mmWave) band are the 28 GHz band, 39 GHz and 64 GHz bands. On the other hand, in the 28 GHz band, 39 GHz and 64 GHz band, the length of the wavelength is short, and thus there is a problem that the cell coverage providing the communication service is reduced. In order to solve this problem, it may be considered to use a 5G communication relay apparatus, that is, a 5G CPE (Customer Premises Equipment), which relays 5G radio signals between a base station and an electronic device in the mmWave band. .
특히, 전자 기기를 실내에서 사용하는 경우, 5G 무선 신호는 파장이 짧아서 건물 등 구조물을 통과하는 것이 어려울 수 있다. 다만, 5G 무선 신호는 건물의 유리창(window) 등 일부 구조물을 통과할 수 있다. 따라서, 5G 통신 중계 장치, 즉 5G CPE를 건물의 유리창 영역에 인접하게 배치하여야 한다. 특히, 5G 기지국으로부터 5G 무선 신호는 지향성(directivity)이 있으므로, 5G CPE를 특정 위치에서 5G 무선 신호 방향으로 특정 각도로 배치할 필요가 있다.In particular, when electronic devices are used indoors, it may be difficult to pass through structures such as buildings because the 5G radio signal has a short wavelength. However, the 5G radio signal may pass through some structures such as windows of a building. Therefore, a 5G communication relay device, that is, a 5G CPE, should be placed adjacent to the window area of the building. In particular, since the 5G radio signal from the 5G base station has directivity, it is necessary to place the 5G CPE at a specific angle in the direction of the 5G radio signal at a specific location.
이와 같이, 5G CPE를 건물 내 실내 공간에서 최적 위치와 방향으로 사용자 또는 설치 관리자가 설치하는 경우, 5G CPE가 5G 무선 신호를 송신하면 사용자 또는 설치 관리자는 5G 무선 신호에 노출되는 문제점이 있다.In this way, when a user or an installer installs a 5G CPE in an optimal position and direction in an indoor space of a building, when the 5G CPE transmits a 5G radio signal, the user or installer is exposed to the 5G radio signal.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다. 또한, 본 발명의 다른 일 목적은 5G 통신 중계 장치의 테스트 모드에서 사용자 또는 설치 관리자가 5G 무선 신호에 노출되는 것을 방지하기 위한 것이다.It is an object of the present invention to solve the above and other problems. In addition, another object of the present invention is to prevent a user or an installer from being exposed to a 5G radio signal in a test mode of a 5G communication relay device.
또한, 본 발명의 다른 일 목적은, 5G 통신 중계 장치의 테스트 모드에서 5G 무선 신호를 송신하는 것을 제한하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for limiting transmission of 5G radio signals in a test mode of a 5G communication relay device.
상기 또는 다른 목적을 달성하기 위해 본 발명에 따른 5G 통신 중계 장치가 제공된다. 상기 5G 통신 중계 장치는, 무선 신호(radio signal)를 송신 및 수신하도록 구성된 송수신부(transceiver), 및 상기 송수신부와 연결되고, 기지국으로부터 수신된 무선 신호를 전자 기기로 제공하도록 구성된 제어부를 포함한다. 한편, 상기 제어부는 테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하여, 테스트 모드에서 사용자 또는 설치 관리자의 신체에 노출되는 고주파 신호의 유해한 영향을 회피할 수 있다.In order to achieve the above or other objects, a 5G communication relay device according to the present invention is provided. The 5G communication relay device includes a transceiver configured to transmit and receive a radio signal, and a control unit connected to the transceiver and configured to provide a radio signal received from a base station to an electronic device. . Meanwhile, when a cell search is initiated in a test mode, the control unit controls a radio signal not to be transmitted through the transmission/reception unit, and is exposed to the body of the user or the installer in the test mode. It is possible to avoid the harmful effects of high-frequency signals.
일 실시 예에 따르면, 상기 제어부는 물리 방송 채널(physical broadcast channel: PBCH)를 통해 마스터 정보 블록(master information block: MIB)을 수신하고, 상기 MIB가 수신된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행할 수 있다. 이에 따라, 5G 무선 연결을 위한 최소한의 제어 데이터를 수신한 이후에 테스트 모드에서 Tx 송신을 제한할 수 있다. 따라서, 5G 무선 연결 가능성(radio connection probability)을 저하시키지 않으면서 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.According to an embodiment, the controller receives a master information block (MIB) through a physical broadcast channel (PBCH), and when the MIB is received, a radio signal is transmitted through the transceiver. The TX disable process can be performed so that it is not. Accordingly, it is possible to limit Tx transmission in the test mode after receiving the minimum control data for 5G wireless connection. Therefore, there is an advantage in that it is possible to avoid harmful effects of high frequency signals without deteriorating the 5G radio connection probability.
일 실시 예에 따르면, 상기 제어부는 상기 5G 통신 중계 장치의 설치(installation)가 완료된 것으로 판단되면 무선 신호가 상기 송수신부를 통해 송신될 수 있도록 TX 활성화(Enable) 과정을 수행할 수 있다. According to an embodiment, when it is determined that the installation of the 5G communication relay device is completed, the control unit may perform a TX activation process so that a radio signal can be transmitted through the transmission/reception unit.
일 실시 예에 따르면, 상기 제어부는 무선 자원 제어(radio resource control: RRC) 연결(connection)이 실패(fail)한 경우, RRC 재설정(re-establishment)을 위한 제어 신호는 송신될 수 있도록 제어할 수 있다. 이에 따라, 5G 무선 연결이 실패한 경우 테스트 모드에서 최소한의 제어 데이터는 송신하여 5G 무선 연결 가능성을 향상시킬 수 있다.According to an embodiment, the control unit may control a control signal for RRC re-establishment to be transmitted when a radio resource control (RRC) connection fails. have. Accordingly, when the 5G wireless connection fails, the minimum control data is transmitted in the test mode, thereby improving the possibility of 5G wireless connection.
일 실시 예에 따르면, 상기 제어부는 RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어할 수 있다.According to an embodiment, when the RRC connection is successful and the RRC-connected state is established, the control unit controls a radio signal not to be transmitted through the transceiver until the test process according to the test mode is completed. can do.
일 실시 예에 따르면, 상기 제어부는 RRC 연결 상태(RRC-connected state)에서 RRC 상태 보고(state report)를 위한 제어 데이터를 위한 제1 무선 신호는 송신되고, 사용자 데이터(user data)를 위한 제2 무선 신호는 송신되지 않도록 상기 송수신부를 제어할 수 있다. 이에 따라, 5G 무선 연결이 이루어진 경우 5G 무선 연결을 유지하기 위한 최소한의 시그널링을 송신하면서, 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.According to an embodiment, the control unit transmits a first radio signal for control data for an RRC state report in an RRC-connected state, and transmits a second radio signal for user data. The transmission/reception unit may be controlled so that no radio signal is transmitted. Accordingly, when a 5G wireless connection is made, there is an advantage in that it is possible to avoid harmful effects of a high frequency signal while transmitting minimum signaling for maintaining the 5G wireless connection.
일 실시 예에 따르면, 상기 제어부는, LTE에서 new radio (NR)로 무선 인터페이스가 변경되어 NR 셀 탐색(NR cell search)이 개시된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어할 수 있다. According to an embodiment, when a radio interface is changed from LTE to a new radio (NR) and NR cell search is started, the controller may control a radio signal not to be transmitted through the transceiver.
일 실시 예에 따르면, 상기 제어부는 5G non-stand-alone(NSA) 구조 및 5G stand-alone(SA) 구조에서 LTE에서 new radio (NR)로 무선 인터페이스가 변경되어 NR 셀 탐색(NR cell search)이 개시된 경우, 물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신할 수 있다. 또한, 상기 SIB가 수신된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어할 수 있다.According to an embodiment, the control unit changes the radio interface from LTE to new radio (NR) in a 5G non-stand-alone (NSA) structure and a 5G stand-alone (SA) structure to search for NR cells (NR cell search). In this case, a system information block (SIB) may be received through a physical downlink shared channel (PDSCH). In addition, when the SIB is received, it is possible to control so that a radio signal is not transmitted through the transceiver until a test process according to the test mode is completed.
일 실시 예에 따르면, 상기 제어부는 5G stand-alone(SA) 구조에서 new radio (NR)로 초기 액세스(initial access)를 수행하는 경우, RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 되면 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어할 수 있다.According to an embodiment, when performing initial access to a new radio (NR) in a 5G stand-alone (SA) structure, the RRC connection is successful and the RRC-connected state is If so, it is possible to control so that a radio signal is not transmitted through the transceiver until the test process according to the test mode is completed.
일 실시 예에 따르면, 상기 제어부는 무선 신호가 상기 송수신부를 통해 송신되지 않는 TX 비활성화(Disable) 과정에서 수신 신호 품질(received signal quality)에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다.According to an embodiment, the control unit is based on a received signal quality in a TX disable process in which a radio signal is not transmitted through the transmission/reception unit, a TX activation procedure, a tilting procedure , You can control to perform one of the reinstallation procedures.
일 실시 예에 따르면, 상기 제어부는 상기 수신 신호 품질이 제1 임계치 이상이면, 상기 테스트 모드를 종료하고 TX 활성화(Enable) 절차를 수행하도록 제어할 수 있다. 한편, 상기 수신 신호 품질이 상기 제1 임계치 미만이고 제2 임계치 이상이면, 상기 틸팅 절차를 수행하도록 제어할 수 있다. 또한, 상기 수신 신호 품질이 상기 제2 임계치 미만이면, 설치 장소를 이동하여 재설치 절차를 수행하도록 제어할 수 있다.According to an embodiment, when the received signal quality is greater than or equal to a first threshold, the controller may control to terminate the test mode and perform a TX activation procedure. Meanwhile, when the received signal quality is less than the first threshold and greater than or equal to the second threshold, control may be performed to perform the tilting procedure. In addition, when the received signal quality is less than the second threshold, the installation location may be moved to perform a re-installation procedure.
일 실시 예에 따르면, 상기 제어부는 상기 SIB가 수신된 경우, 상기 수신 신호 품질이 가장 우수한 셀을 선택할 수 있다. 한편, 상기 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다.According to an embodiment, when the SIB is received, the controller may select a cell having the best received signal quality. On the other hand, based on the Cell Selection RX level value or Cell Selection quality value of the selected cell, it is possible to control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure.
본 발명의 다른 양상에 따른 5G CPE (Customer Premises Equipment)가 제공된다. 5G CPE는 무선 신호(radio signal)를 송신 및 수신하도록 구성된 송수신부(transceiver), 및 상기 송수신부와 연결되고, 기지국과 연결되기 전에 테스트 모드를 수행하도록 동작가능한(operable) 프로세서를 포함한다. 상기 프로세서는 상기 테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어할 수 있다. 이에 따라, 상기 테스트 모드가 완료된 경우, 상기 기지국으로부터 수신된 무선 신호를 전자 기기로 전달할 수 있다.5G CPE (Customer Premises Equipment) according to another aspect of the present invention is provided. The 5G CPE includes a transceiver configured to transmit and receive a radio signal, and a processor connected to the transceiver and operable to perform a test mode before being connected to a base station. When a cell search is initiated in the test mode, the processor may control a radio signal not to be transmitted through the transceiver. Accordingly, when the test mode is completed, the radio signal received from the base station may be transmitted to the electronic device.
일 실시 예에 따르면, 상기 프로세서는 물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신하고, 상기 SIB가 수신된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행할 수 있다.According to an embodiment, the processor receives a system information block (SIB) through a physical downlink shared channel (PDSCH), and when the SIB is received, a radio signal is transmitted and received. It is possible to perform a TX disable process so that it is not transmitted through the unit.
일 실시 예에 따르면, 상기 프로세서는 RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어할 수 있다.According to an embodiment, when the RRC connection is successful and the RRC-connected state is established, the processor controls a radio signal not to be transmitted through the transceiver until the test process according to the test mode is completed. can do.
일 실시 예에 따르면, 상기 프로세서는 RRC 연결 상태(RRC-connected state)에서 RRC 상태 보고(state report)를 위한 제어 데이터를 위한 제1 무선 신호는 송신되고, 사용자 데이터(user data)를 위한 제2 무선 신호는 송신되지 않도록 상기 송수신부를 제어할 수 있다.According to an embodiment, the processor transmits a first radio signal for control data for an RRC state report in an RRC-connected state, and a second radio signal for user data. The transmission/reception unit may be controlled so that no radio signal is transmitted.
일 실시 예에 따르면, 상기 프로세서는 상기 SIB가 수신된 경우, 수신 신호 품질이 가장 우수한 셀을 선택하고, 상기 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다. 한편, 상기 수신 신호 품질에 기반하여 상기 5G CPE가 NR 셀에 등록(register) 가능하다고 판단되면, 상기 TX 활성화(Enable) 절차를 수행할 수 있다.According to an embodiment, when the SIB is received, the processor selects a cell having the best received signal quality, and activates TX based on the Cell Selection RX level value or Cell Selection quality value of the selected cell. It can be controlled to perform one of a procedure, a tilting procedure, or a reinstallation procedure. Meanwhile, if it is determined that the 5G CPE can register in the NR cell based on the received signal quality, the TX activation procedure may be performed.
일 실시 예에 따르면, 상기 프로세서는 상기 TX 비활성화(Disable) 과정이 개시되면, 상기 전자 기기와 제2 무선 인터페이스를 통해 페어링을 수행할 수 있다. 한편, 상기 TX 비활성화 과정 동안 상기 기지국으로부터 수신되는 수신 신호 품질과 연관된 정보가 상기 전자 기기에 표시되도록 제어하고, 상기 테스트 모드가 종료되는 경우, 상기 테스트 모드가 종료되었다는 정보를 상기 전자 기기로 전달할 수 있다.According to an embodiment, when the TX disable process is started, the processor may perform pairing with the electronic device through a second wireless interface. Meanwhile, during the TX deactivation process, information related to the received signal quality received from the base station is controlled to be displayed on the electronic device, and when the test mode is ended, information indicating that the test mode has ended can be transmitted to the electronic device. have.
일 실시 예에 따르면, 상기 프로세서는 상기 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터를 제1 무선 신호를 통해 송신할 수 있다. 한편, PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 제2 무선 신호를 통해 송신할 수 있다.According to an embodiment, the processor may transmit control data for NR measurement and NR measurement report through a first radio signal in the RRC-connected state. Meanwhile, when the PDN (Packet Data Network) attachment is completed, user data may be transmitted through the second radio signal.
본 발명의 또 다른 양상에 따른 5G 통신 중계 장치를 통해 5G 무선 신호를 송신 및 수신하는 전자 기기가 제공된다. 상기 전자 기기는 무선 신호(radio signal)를 송신 및 수신하도록 구성된 송수신부(transceiver), 및 상기 송수신부와 연결되고, 5G 통신 중계 장치를 통해 기지국과 5G 무선 신호를 송신 및 수신하도록 구성된 제어부를 포함한다. 한편, 상기 5G 통신 중계 장치가 테스트 모드(test mode)에서 동작하여 셀 탐색(cell search)이 개시(initiate)된 경우, 5G 무선 신호는 상기 송수신부를 통해 송신되지 않는 것을 특징으로 한다.An electronic device for transmitting and receiving 5G radio signals through a 5G communication relay device according to another aspect of the present invention is provided. The electronic device includes a transceiver configured to transmit and receive a radio signal, and a control unit connected to the transceiver and configured to transmit and receive a 5G radio signal with a base station through a 5G communication relay device. do. Meanwhile, when the 5G communication relay device operates in a test mode and a cell search is initiated, a 5G radio signal is not transmitted through the transceiver.
일 실시 예에 따르면, 상기 제어부는 상기 5G 통신 중계 장치가 TX 비활성화(Disable) 과정(process)을 수행하는 경우, 사용자 데이터 및 제어 데이터를 송신하지 않도록 제한하는 송신 제한 시그널링을 상기 송수신부로 하여금 상기 5G 통신 중계 장치로 송신하도록 제어할 수 있다. 여기서, 상기 송신 제한 시그널링은 5G 무선 인터페이스와 다른 제2 무선 인터페이스로 상기 5G 통신 중계 장치로 송신할 수 있다.According to an embodiment, when the 5G communication relay device performs a TX disable process, the control unit causes the transmission/reception unit to perform transmission restriction signaling to limit the transmission of user data and control data. It can be controlled to transmit to a communication relay device. Here, the transmission restriction signaling may be transmitted to the 5G communication relay device through a second wireless interface different from the 5G wireless interface.
본 발명에 따르면, 5G 통신 중계 장치의 테스트 모드에서 사용자 또는 설치 관리자의 신체에 노출되는 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.According to the present invention, there is an advantage in that it is possible to avoid harmful effects of a high frequency signal exposed to the body of a user or an installer in a test mode of a 5G communication relay device.
또한, 본 발명에 따르면, 무선 연결을 위한 최소한의 제어 데이터를 수신한 이후에 테스트 모드에서 Tx 송신을 제한하여, 5G 무선 연결 가능성을 저하시키지 않으면서 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.In addition, according to the present invention, by limiting Tx transmission in the test mode after receiving the minimum control data for wireless connection, there is an advantage in that it is possible to avoid harmful effects of high-frequency signals without deteriorating the possibility of 5G wireless connection. have.
또한, 본 발명에 따르면, 5G 무선 연결이 실패한 경우 테스트 모드에서 최소한의 제어 데이터는 송신하여 5G 무선 연결 가능성을 향상시킬 수 있다.In addition, according to the present invention, when the 5G wireless connection fails, the minimum control data is transmitted in the test mode, thereby improving the possibility of 5G wireless connection.
또한, 본 발명에 따르면, 5G 무선 연결이 이루어진 경우 5G 무선 연결을 유지하기 위한 최소한의 시그널링을 송신하면서, 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.In addition, according to the present invention, when a 5G wireless connection is established, there is an advantage in that it is possible to avoid harmful effects of a high frequency signal while transmitting minimum signaling for maintaining a 5G wireless connection.
도 1a 내지 도 1c를 참조하면, 도 1a는 본 발명과 관련된 전자 기기를 설명하기 위한 블록도이고, 도 1b 및 1c는 본 발명과 관련된 전자 기기의 일 예를 서로 다른 방향에서 바라본 개념도이다.1A to 1C, FIG. 1A is a block diagram illustrating an electronic device related to the present invention, and FIGS. 1B and 1C are conceptual views of an example of an electronic device related to the present disclosure viewed from different directions.
도 2는 본 발명에 따른 복수의 무선 통신 시스템에서 동작 가능한 전자 기기의 무선 통신부의 구성을 도시한다.2 shows a configuration of a wireless communication unit of an electronic device capable of operating in a plurality of wireless communication systems according to the present invention.
도 3은 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE의 설치 방법에 대한 개념도이다. 3 is a conceptual diagram of a method of installing a 5G communication relay device, that is, a 5G CPE according to the present invention.
도 4a 및 도 4b는 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE에서 수행되는 제어 동작의 흐름도를 나타낸다. 4A and 4B are flowcharts of a control operation performed in a 5G communication relay device, that is, a 5G CPE according to the present invention.
도 5a는 본 발명에 따른 5G CPE의 내부 구성과 전자 기기와의 5G CPE 제어 동작을 위한 흐름도를 나타낸다. 또한, 도 5b는 본 발명에 따른 5G CPE와 전자 기기의 상세 구성을 나타낸다.5A is a flowchart illustrating an internal configuration of a 5G CPE and a 5G CPE control operation with an electronic device according to the present invention. In addition, FIG. 5B shows a detailed configuration of a 5G CPE and an electronic device according to the present invention.
도 6은 본 발명에 따른 5G CPE의 포지셔닝 및 틸팅 제어 방법의 흐름도를 나타낸다.6 is a flowchart of a method for controlling positioning and tilting of a 5G CPE according to the present invention.
도 7은 본 발명에 따른 5G CPE에 구비되는 다양한 LED를 나타낸다.7 shows various LEDs provided in the 5G CPE according to the present invention.
도 8a는 본 발명에 따른 5G CPE에서의 셀 선택 및 NR 측정 방법의 흐름도를 나타낸다. 한편, 도 8b는 본 발명의 일 실시 예에 따른 5G CPE에서의 송신 제어 동작의 흐름도를 나타낸다.8A is a flowchart of a cell selection and NR measurement method in 5G CPE according to the present invention. Meanwhile, FIG. 8B is a flowchart of a transmission control operation in 5G CPE according to an embodiment of the present invention.
도 9a는 5G NSA 구조에서 무선 인터페이스 간 핸드오버를 나타낸다. 반면에, 도 9b는 5G SA 구조에서 무선 인터페이스 간 핸드오버를 나타낸다.9A shows handover between air interfaces in a 5G NSA structure. On the other hand, FIG. 9B shows handover between air interfaces in a 5G SA structure.
도 10a는 본 발명에 따른 5G CPE에서 LTE 및 NR 접속 방법의 흐름도를 나타낸다. 또한, 도 10b는 본 발명의 일 실시 예에 따른 5G CPE와 복수의 기지국 간의 메시지를 교환하는 흐름도를 나타낸다.10A is a flowchart of a method of accessing LTE and NR in 5G CPE according to the present invention. In addition, FIG. 10B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to an embodiment of the present invention.
도 11은 본 발명의 일 실시 예에 따른 5G CPE에서 수신 신호 품질 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다.11 is a flowchart illustrating a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to an embodiment of the present invention.
도 12a는 본 발명의 다른 실시 예에 따른 5G CPE에서 LTE 및 NR 접속 방법의 흐름도를 나타낸다. 또한, 도 12b는 본 발명의 다른 실시 예에 따른 5G CPE와 복수의 기지국 간의 메시지를 교환하는 흐름도를 나타낸다.12A is a flowchart illustrating an LTE and NR access method in 5G CPE according to another embodiment of the present invention. In addition, FIG. 12B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to another embodiment of the present invention.
도 13은 본 발명의 다른 실시 예에 따른 5G CPE에서 수신 신호 품질 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다.13 is a flowchart illustrating a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to another embodiment of the present invention.
도 14는 NR 네트워크에서 방법 1에 따른 Srxlev 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다. 14 is a flowchart of a method for controlling installation of 5G CPE based on Srxlev according to Method 1 in an NR network.
도 15는 NR 네트워크에서 방법 2에 따른 RSRP 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다.15 is a flowchart of a RSRP-based 5G CPE installation control method according to Method 2 in an NR network.
도 16은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.16 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, exemplary embodiments disclosed in the present specification will be described in detail with reference to the accompanying drawings, but identical or similar elements are denoted by the same reference numerals regardless of reference numerals, and redundant descriptions thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used interchangeably in consideration of only the ease of preparation of the specification, and do not have meanings or roles that are distinguished from each other by themselves. In addition, in describing the embodiments disclosed in the present specification, when it is determined that a detailed description of related known technologies may obscure the subject matter of the embodiments disclosed in the present specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are for easy understanding of the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the accompanying drawings, and all modifications included in the spirit and scope of the present invention It should be understood to include equivalents or substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers, such as first and second, may be used to describe various elements, but the elements are not limited by the terms. These terms are used only for the purpose of distinguishing one component from another component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being "connected" or "connected" to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in the middle. Should be. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it should be understood that there is no other component in the middle.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present application, terms such as "comprises" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
본 명세서에서 설명되는 전자 기기에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등이 포함될 수 있다. Electronic devices described herein include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, and a slate PC. , Tablet PC (tablet PC), ultrabook (ultrabook), wearable device (wearable device, for example, smartwatch, glass-type terminal (smart glass), HMD (head mounted display)), etc. may be included. have.
그러나, 본 명세서에 기재된 실시 예에 따른 구성은 이동 단말기에만 적용 가능한 경우를 제외하면, 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등과 같은 고정 단말기에도 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.However, it will be readily apparent to those skilled in the art that the configuration according to the embodiment described in the present specification may also be applied to fixed terminals such as digital TVs, desktop computers, and digital signage, except when applicable only to mobile terminals. will be.
도 1a 내지 도 1c를 참조하면, 도 1a는 본 발명과 관련된 전자 기기를 설명하기 위한 블록도이고, 도 1b 및 1c는 본 발명과 관련된 전자 기기의 일 예를 서로 다른 방향에서 바라본 개념도이다.1A to 1C, FIG. 1A is a block diagram illustrating an electronic device related to the present invention, and FIGS. 1B and 1C are conceptual views of an example of an electronic device related to the present disclosure viewed from different directions.
상기 전자 기기(100)는 무선 통신부(110), 입력부(120), 센싱부(140), 출력부(150), 인터페이스부(160), 메모리(170), 제어부(180) 및 전원 공급부(190) 등을 포함할 수 있다. 도 1a에 도시된 구성요소들은 전자 기기를 구현하는데 있어서 필수적인 것은 아니어서, 본 명세서 상에서 설명되는 전자 기기는 위에서 열거된 구성요소들 보다 많거나, 또는 적은 구성요소들을 가질 수 있다. The electronic device 100 includes a wireless communication unit 110, an input unit 120, a sensing unit 140, an output unit 150, an interface unit 160, a memory 170, a control unit 180, and a power supply unit 190. ), etc. The components shown in FIG. 1A are not essential for implementing an electronic device, and thus an electronic device described in the present specification may have more or fewer components than the components listed above.
보다 구체적으로, 상기 구성요소들 중 무선 통신부(110)는, 전자 기기(100)와 무선 통신 시스템 사이, 전자 기기(100)와 다른 전자 기기(100) 사이, 또는 전자 기기(100)와 외부서버 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다. 또한, 상기 무선 통신부(110)는, 전자 기기(100)를 하나 이상의 네트워크에 연결하는 하나 이상의 모듈을 포함할 수 있다. 여기서, 하나 이상의 네트워크는 예컨대 4G 통신 네트워크 및 5G 통신 네트워크일 수 있다.More specifically, among the components, the wireless communication unit 110 may be configured between the electronic device 100 and the wireless communication system, between the electronic device 100 and other electronic devices 100, or between the electronic device 100 and an external server. It may include one or more modules that enable wireless communication between. In addition, the wireless communication unit 110 may include one or more modules that connect the electronic device 100 to one or more networks. Here, the one or more networks may be, for example, a 4G communication network and a 5G communication network.
이러한 무선 통신부(110)는, 4G 무선 통신 모듈(111), 5G 무선 통신 모듈(112), 근거리 통신 모듈(113), 위치정보 모듈(114) 중 적어도 하나를 포함할 수 있다. The wireless communication unit 110 may include at least one of a 4G wireless communication module 111, a 5G wireless communication module 112, a short-range communication module 113, and a location information module 114.
4G 무선 통신 모듈(111)은 4G 이동통신 네트워크를 통해 4G 기지국과 4G 신호를 전송 및 수신할 수 있다. 이때, 4G 무선 통신 모듈(111)은 하나 이상의 4G 송신 신호를 4G 기지국으로 전송할 수 있다. 또한, 4G 무선 통신 모듈(111)은 하나 이상의 4G 수신 신호를 4G 기지국으로부터 수신할 수 있다. The 4G wireless communication module 111 may transmit and receive 4G base stations and 4G signals through a 4G mobile communication network. At this time, the 4G wireless communication module 111 may transmit one or more 4G transmission signals to the 4G base station. In addition, the 4G wireless communication module 111 may receive one or more 4G reception signals from the 4G base station.
이와 관련하여, 4G 기지국으로 전송되는 복수의 4G 송신 신호에 의해 상향링크(UL: Up-Link) 다중입력 다중출력(MIMO: Multi-Input Multi-Output)이 수행될 수 있다. 또한, 4G 기지국으로부터 수신되는 복수의 4G 수신 신호에 의해 하향링크(DL: Down-Link) 다중입력 다중출력(MIMO: Multi-Input Multi-Output)이 수행될 수 있다.In this regard, an uplink (UL) multi-input multi-output (MIMO) may be performed by a plurality of 4G transmission signals transmitted to the 4G base station. In addition, a downlink (DL) multi-input multiple output (MIMO) may be performed by a plurality of 4G reception signals received from a 4G base station.
5G 무선 통신 모듈(112)은 5G 이동통신 네트워크를 통해 5G 기지국과 5G 신호를 전송 및 수신할 수 있다. 여기서, 4G 기지국과 5G 기지국은 비-스탠드 얼론(NSA: Non-Stand-Alone) 구조일 수 있다. 예컨대, 4G 기지국과 5G 기지국은 셀 내 동일한 위치에 배치되는 공통-배치 구조(co-located structure)일 수 있다. 또는, 5G 기지국은 4G 기지국과 별도의 위치에 스탠드-얼론(SA: Stand-Alone) 구조로 배치될 수 있다.The 5G wireless communication module 112 may transmit and receive 5G base stations and 5G signals through a 5G mobile communication network. Here, the 4G base station and the 5G base station may have a non-stand-alone (NSA) structure. For example, the 4G base station and the 5G base station may have a co-located structure disposed at the same location within a cell. Alternatively, the 5G base station may be disposed in a separate location from the 4G base station in a stand-alone (SA) structure.
5G 무선 통신 모듈(112)은 5G 이동통신 네트워크를 통해 5G 기지국과 5G 신호를 전송 및 수신할 수 있다. 이때, 5G 무선 통신 모듈(112)은 하나 이상의 5G 송신 신호를 5G 기지국으로 전송할 수 있다. 또한, 5G 무선 통신 모듈(112)은 하나 이상의 5G 수신 신호를 5G 기지국으로부터 수신할 수 있다. The 5G wireless communication module 112 may transmit and receive 5G base stations and 5G signals through a 5G mobile communication network. In this case, the 5G wireless communication module 112 may transmit one or more 5G transmission signals to the 5G base station. In addition, the 5G wireless communication module 112 may receive one or more 5G received signals from the 5G base station.
이때, 5G 주파수 대역은 4G 주파수 대역과 동일한 대역을 사용할 수 있고, 이를 LTE 재배치(re-farming)이라고 지칭할 수 있다. 한편, 5G 주파수 대역으로, 6GHz 이하의 대역인 Sub6 대역이 사용될 수 있다. In this case, the 5G frequency band may use the same band as the 4G frequency band, and this may be referred to as LTE re-farming. On the other hand, as the 5G frequency band, the Sub6 band, which is a band below 6GHz, may be used.
반면, 광대역 고속 통신을 수행하기 위해 밀리미터파(mmWave) 대역이 5G 주파수 대역으로 사용될 수 있다. 밀리미터파(mmWave) 대역이 사용되는 경우, 전자 기기(100)는 기지국과의 통신 커버리지 확장(coverage expansion)을 위해 빔 포밍(beam forming)을 수행할 수 있다.On the other hand, a millimeter wave (mmWave) band may be used as a 5G frequency band to perform broadband high-speed communication. When a millimeter wave (mmWave) band is used, the electronic device 100 may perform beam forming to expand communication coverage with a base station.
한편, 5G 주파수 대역에 관계없이, 5G 통신 시스템에서는 전송 속도 향상을 위해, 더 많은 수의 다중입력 다중출력(MIMO: Multi-Input Multi-Output)을 지원할 수 있다. 이와 관련하여, 5G 기지국으로 전송되는 복수의 5G 송신 신호에 의해 상향링크(UL: Up-Link) MIMO가 수행될 수 있다. 또한, 5G 기지국으로부터 수신되는 복수의 5G 수신 신호에 의해 하향링크(DL: Down-Link) MIMO가 수행될 수 있다.Meanwhile, regardless of the 5G frequency band, in a 5G communication system, a greater number of multiple input multiple outputs (MIMO) may be supported to improve transmission speed. In this regard, uplink (UL) MIMO may be performed by a plurality of 5G transmission signals transmitted to the 5G base station. In addition, downlink (DL) MIMO may be performed by a plurality of 5G reception signals received from the 5G base station.
한편, 무선 통신부(110)는 4G 무선 통신 모듈(111)과 5G 무선 통신 모듈(112)을 통해 4G 기지국 및 5G 기지국과 이중 연결(DC: Dual Connectivity) 상태일 수 있다. 이와 같이, 4G 기지국 및 5G 기지국과의 이중 연결을 EN-DC(EUTRAN NR DC)이라 지칭할 수 있다. 여기서, EUTRAN은 Evolved Universal Telecommunication Radio Access Network로 4G 무선 통신 시스템을 의미하고, NR은 New Radio로 5G 무선 통신 시스템을 의미한다.Meanwhile, the wireless communication unit 110 may be in a dual connectivity (DC) state with a 4G base station and a 5G base station through the 4G wireless communication module 111 and the 5G wireless communication module 112. In this way, the dual connection between the 4G base station and the 5G base station may be referred to as EN-DC (EUTRAN NR DC). Here, EUTRAN is an Evolved Universal Telecommunication Radio Access Network, which means 4G wireless communication system, and NR is New Radio, which means 5G wireless communication system.
한편, 4G 기지국과 5G 기지국이 공통-배치 구조(co-located structure)이면, 이종 반송파 집성(inter-CA(Carrier Aggregation)을 통해 스루풋(throughput) 향상이 가능하다. 따라서, 4G 기지국 및 5G 기지국과 EN-DC 상태이면, 4G 무선 통신 모듈(111) 및 5G 무선 통신 모듈(112)을 통해 4G 수신 신호와 5G 수신 신호를 동시에 수신할 수 있다.On the other hand, if the 4G base station and the 5G base station have a co-located structure, it is possible to improve throughput through inter-CA (Carrier Aggregation). Therefore, with the 4G base station and the 5G base station In the EN-DC state, a 4G reception signal and a 5G reception signal may be simultaneously received through the 4G wireless communication module 111 and the 5G wireless communication module 112.
근거리 통신 모듈(113)은 근거리 통신(Short range communication)을 위한 것으로서, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다. 이러한, 근거리 통신 모듈(114)은, 근거리 무선 통신망(Wireless Area Networks)을 통해 전자 기기(100)와 무선 통신 시스템 사이, 전자 기기(100)와 다른 전자 기기(100) 사이, 또는 전자 기기(100)와 다른 전자 기기(100, 또는 외부서버)가 위치한 네트워크 사이의 무선 통신을 지원할 수 있다. 상기 근거리 무선 통신망은 근거리 무선 개인 통신망(Wireless Personal Area Networks)일 수 있다.The short range communication module 113 is for short range communication, and includes Bluetooth™, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and NFC. Near field communication may be supported by using at least one of (Near Field Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technologies. The short-range communication module 114 may be configured between the electronic device 100 and a wireless communication system, between the electronic device 100 and other electronic devices 100, or between the electronic device 100 and other electronic devices 100 through wireless area networks. ) And a network in which the other electronic device 100 or an external server is located may support wireless communication. The local area wireless communication network may be a wireless personal area network (Wireless Personal Area Networks).
한편, 4G 무선 통신 모듈(111) 및 5G 무선 통신 모듈(112)을 이용하여 전자 기기 간 근거리 통신이 수행될 수 있다. 일 실시 예에서, 기지국을 경유하지 않고 전자 기기들 간에 D2D (Device-to-Device) 방식에 의해 근거리 통신이 수행될 수 있다. Meanwhile, short-range communication between electronic devices may be performed using the 4G wireless communication module 111 and the 5G wireless communication module 112. In an embodiment, short-range communication may be performed between electronic devices through a device-to-device (D2D) method without passing through a base station.
한편, 전송 속도 향상 및 통신 시스템 융합(convergence)을 위해, 4G 무선 통신 모듈(111) 및 5G 무선 통신 모듈(112) 중 적어도 하나와 Wi-Fi 통신 모듈(113)을 이용하여 반송파 집성(CA)이 수행될 수 있다. 이와 관련하여, 4G 무선 통신 모듈(111)과 Wi-Fi 통신 모듈(113)을 이용하여 4G + WiFi 반송파 집성(CA)이 수행될 수 있다. 또는, 5G 무선 통신 모듈(112)과 Wi-Fi 통신 모듈(113)을 이용하여 5G + WiFi 반송파 집성(CA)이 수행될 수 있다.Meanwhile, carrier aggregation (CA) using at least one of the 4G wireless communication module 111 and 5G wireless communication module 112 and the Wi-Fi communication module 113 for transmission speed improvement and communication system convergence (convergence) This can be done. In this regard, 4G + WiFi carrier aggregation (CA) may be performed using the 4G wireless communication module 111 and the Wi-Fi communication module 113. Alternatively, 5G + WiFi carrier aggregation (CA) may be performed using the 5G wireless communication module 112 and the Wi-Fi communication module 113.
위치정보 모듈(114)은 전자 기기의 위치(또는 현재 위치)를 획득하기 위한 모듈로서, 그의 대표적인 예로는 GPS(Global Positioning System) 모듈 또는 WiFi(Wireless Fidelity) 모듈이 있다. 예를 들어, 전자 기기는 GPS모듈을 활용하면, GPS 위성에서 보내는 신호를 이용하여 전자 기기의 위치를 획득할 수 있다. 다른 예로서, 전자 기기는 Wi-Fi모듈을 활용하면, Wi-Fi모듈과 무선신호를 송신 또는 수신하는 무선 AP(Wireless Access Point)의 정보에 기반하여, 전자 기기의 위치를 획득할 수 있다. 필요에 따라서, 위치정보모듈(114)은 치환 또는 부가적으로 전자 기기의 위치에 관한 데이터를 얻기 위해 무선 통신부(110)의 다른 모듈 중 어느 기능을 수행할 수 있다. 위치정보모듈(114)은 전자 기기의 위치(또는 현재 위치)를 획득하기 위해 이용되는 모듈로, 전자 기기의 위치를 직접적으로 계산하거나 획득하는 모듈로 한정되지는 않는다. The location information module 114 is a module for obtaining a location (or current location) of an electronic device, and a representative example thereof is a GPS (Global Positioning System) module or a WiFi (Wireless Fidelity) module. For example, if the electronic device utilizes a GPS module, the electronic device may acquire the location of the electronic device using a signal transmitted from a GPS satellite. As another example, when the electronic device utilizes the Wi-Fi module, the location of the electronic device may be obtained based on information of the Wi-Fi module and a wireless access point (AP) that transmits or receives a wireless signal. If necessary, the location information module 114 may perform any function among other modules of the wireless communication unit 110 in order to obtain data on the location of the electronic device as a substitute or additionally. The location information module 114 is a module used to obtain the location (or current location) of the electronic device, and is not limited to a module that directly calculates or obtains the location of the electronic device.
구체적으로, 전자 기기는 5G 무선 통신 모듈(112)을 활용하면, 5G 무선 통신 모듈 과 무선신호를 송신 또는 수신하는 5G 기지국의 정보에 기반하여, 전자 기기의 위치를 획득할 수 있다. 특히, 밀리미터파(mmWave) 대역의 5G 기지국은 좁은 커버리지를 갖는 소형 셀(small cell)에 배치(deploy)되므로, 전자 기기의 위치를 획득하는 것이 유리하다.Specifically, if the electronic device utilizes the 5G wireless communication module 112, the electronic device may acquire the location of the electronic device based on information of the 5G wireless communication module and a 5G base station transmitting or receiving a wireless signal. In particular, since the 5G base station in the mmWave band is deployed in a small cell having a narrow coverage, it is advantageous to obtain the location of the electronic device.
입력부(120)는, 영상 신호 입력을 위한 카메라(121) 또는 영상 입력부, 오디오 신호 입력을 위한 마이크로폰(microphone, 122), 또는 오디오 입력부, 사용자로부터 정보를 입력받기 위한 사용자 입력부(123, 예를 들어, 터치키(touch key), 푸시키(mechanical key) 등)를 포함할 수 있다. 입력부(120)에서 수집한 음성 데이터나 이미지 데이터는 분석되어 사용자의 제어명령으로 처리될 수 있다.The input unit 120 includes a camera 121 or an image input unit for inputting an image signal, a microphone 122 for inputting an audio signal, or an audio input unit, and a user input unit 123 for receiving information from a user, for example, , A touch key, a mechanical key, etc.). The voice data or image data collected by the input unit 120 may be analyzed and processed as a user's control command.
센싱부(140)는 전자 기기 내 정보, 전자 기기를 둘러싼 주변 환경 정보 및 사용자 정보 중 적어도 하나를 센싱하기 위한 하나 이상의 센서를 포함할 수 있다. 예를 들어, 센싱부(140)는 근접센서(141, proximity sensor), 조도 센서(142, illumination sensor), 터치 센서(touch sensor), 가속도 센서(acceleration sensor), 자기 센서(magnetic sensor), 중력 센서(G-sensor), 자이로스코프 센서(gyroscope sensor), 모션 센서(motion sensor), RGB 센서, 적외선 센서(IR 센서: infrared sensor), 지문인식 센서(finger scan sensor), 초음파 센서(ultrasonic sensor), 광 센서(optical sensor, 예를 들어, 카메라(121 참조)), 마이크로폰(microphone, 122 참조), 배터리 게이지(battery gauge), 환경 센서(예를 들어, 기압계, 습도계, 온도계, 방사능 감지 센서, 열 감지 센서, 가스 감지 센서 등), 화학 센서(예를 들어, 전자 코, 헬스케어 센서, 생체 인식 센서 등) 중 적어도 하나를 포함할 수 있다. 한편, 본 명세서에 개시된 전자 기기는, 이러한 센서들 중 적어도 둘 이상의 센서에서 센싱되는 정보들을 조합하여 활용할 수 있다.The sensing unit 140 may include one or more sensors for sensing at least one of information in the electronic device, information on surrounding environments surrounding the electronic device, and user information. For example, the sensing unit 140 includes a proximity sensor 141, an illumination sensor 142, a touch sensor, an acceleration sensor, a magnetic sensor, and gravity. G-sensor, gyroscope sensor, motion sensor, RGB sensor, infrared sensor (IR sensor), fingerprint sensor (finger scan sensor), ultrasonic sensor (ultrasonic sensor) , Optical sensor (for example, camera (see 121)), microphone (microphone, see 122), battery gauge, environmental sensor (for example, barometer, hygrometer, thermometer, radiation detection sensor, It may include at least one of a heat sensor, a gas sensor, etc.), and a chemical sensor (eg, an electronic nose, a healthcare sensor, a biometric sensor, etc.). Meanwhile, the electronic device disclosed in this specification may combine and utilize information sensed by at least two or more of these sensors.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 디스플레이부(151), 음향 출력부(152), 햅팁 모듈(153), 광 출력부(154) 중 적어도 하나를 포함할 수 있다. 디스플레이부(151)는 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한 터치 스크린은, 전자 기기(100)와 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력부(123)로써 기능함과 동시에, 전자 기기(100)와 사용자 사이의 출력 인터페이스를 제공할 수 있다.The output unit 150 is for generating an output related to visual, auditory or tactile sense, and includes at least one of the display unit 151, the sound output unit 152, the hap tip module 153, and the light output unit 154 can do. The display unit 151 may implement a touch screen by forming a layer structure or integrally with the touch sensor. The touch screen may function as a user input unit 123 that provides an input interface between the electronic device 100 and a user, and may provide an output interface between the electronic device 100 and a user.
인터페이스부(160)는 전자 기기(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행한다. 이러한 인터페이스부(160)는, 유/무선 헤드셋 포트(port), 외부 충전기 포트(port), 유/무선 데이터 포트(port), 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트(port), 오디오 I/O(Input/Output) 포트(port), 비디오 I/O(Input/Output) 포트(port), 이어폰 포트(port) 중 적어도 하나를 포함할 수 있다. 전자 기기(100)에서는, 상기 인터페이스부(160)에 외부 기기가 연결되는 것에 대응하여, 연결된 외부 기기와 관련된 적절할 제어를 수행할 수 있다.The interface unit 160 serves as a passage between various types of external devices connected to the electronic device 100. The interface unit 160 connects a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, and a device equipped with an identification module. It may include at least one of a port, an audio input/output (I/O) port, an input/output (video I/O) port, and an earphone port. The electronic device 100 may perform appropriate control related to the connected external device in response to the connection of the external device to the interface unit 160.
또한, 메모리(170)는 전자 기기(100)의 다양한 기능을 지원하는 데이터를 저장한다. 메모리(170)는 전자 기기(100)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 전자 기기(100)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는, 무선 통신을 통해 외부 서버로부터 다운로드 될 수 있다. 또한 이러한 응용 프로그램 중 적어도 일부는, 전자 기기(100)의 기본적인 기능(예를 들어, 전화 착신, 발신 기능, 메시지 수신, 발신 기능)을 위하여 출고 당시부터 전자 기기(100)상에 존재할 수 있다. 한편, 응용 프로그램은, 메모리(170)에 저장되고, 전자 기기(100) 상에 설치되어, 제어부(180)에 의하여 상기 전자 기기의 동작(또는 기능)을 수행하도록 구동될 수 있다.In addition, the memory 170 stores data supporting various functions of the electronic device 100. The memory 170 may store a plurality of application programs or applications driven by the electronic device 100, data for the operation of the electronic device 100, and commands. At least some of these application programs may be downloaded from an external server through wireless communication. In addition, at least some of these application programs may exist on the electronic device 100 from the time of delivery for basic functions of the electronic device 100 (eg, incoming calls, outgoing functions, message receiving, and outgoing functions). Meanwhile, the application program may be stored in the memory 170, installed on the electronic device 100, and driven by the controller 180 to perform an operation (or function) of the electronic device.
제어부(180)는 상기 응용 프로그램과 관련된 동작 외에도, 통상적으로 전자 기기(100)의 전반적인 동작을 제어한다. 제어부(180)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리하거나 메모리(170)에 저장된 응용 프로그램을 구동함으로써, 사용자에게 적절한 정보 또는 기능을 제공 또는 처리할 수 있다.In addition to operations related to the application program, the controller 180 generally controls overall operations of the electronic device 100. The controller 180 may provide or process appropriate information or functions to a user by processing signals, data, information, etc. input or output through the above-described components or by driving an application program stored in the memory 170.
또한, 제어부(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, 도 1a와 함께 살펴본 구성요소들 중 적어도 일부를 제어할 수 있다. 나아가, 제어부(180)는 상기 응용 프로그램의 구동을 위하여, 전자 기기(100)에 포함된 구성요소들 중 적어도 둘 이상을 서로 조합하여 동작시킬 수 있다.Also, in order to drive an application program stored in the memory 170, the controller 180 may control at least some of the components examined together with FIG. 1A. Furthermore, in order to drive the application program, the controller 180 may operate by combining at least two or more of the components included in the electronic device 100 with each other.
전원공급부(190)는 제어부(180)의 제어 하에서, 외부의 전원, 내부의 전원을 인가받아 전자 기기(100)에 포함된 각 구성요소들에 전원을 공급한다. 이러한 전원공급부(190)는 배터리를 포함하며, 상기 배터리는 내장형 배터리 또는 교체가능한 형태의 배터리가 될 수 있다.The power supply unit 190 receives external power and internal power under the control of the controller 180 and supplies power to each of the components included in the electronic device 100. The power supply unit 190 includes a battery, and the battery may be a built-in battery or a replaceable battery.
상기 각 구성요소들 중 적어도 일부는, 이하에서 설명되는 다양한 실시 예들에 따른 전자 기기의 동작, 제어, 또는 제어방법을 구현하기 위하여 서로 협력하여 동작할 수 있다. 또한, 상기 전자 기기의 동작, 제어, 또는 제어방법은 상기 메모리(170)에 저장된 적어도 하나의 응용 프로그램의 구동에 의하여 전자 기기 상에서 구현될 수 있다. At least some of the respective components may operate in cooperation with each other to implement an operation, control, or control method of an electronic device according to various embodiments described below. In addition, the operation, control, or control method of the electronic device may be implemented on the electronic device by driving at least one application program stored in the memory 170.
도 1 b 및 1c를 참조하면, 개시된 전자 기기(100)는 바 형태의 단말기 바디를 구비하고 있다. 다만, 본 발명은 여기에 한정되지 않고 와치 타입, 클립 타입, 글래스 타입 또는 2 이상의 바디들이 상대 이동 가능하게 결합되는 폴더 타입, 플립 타입, 슬라이드 타입, 스윙 타입, 스위블 타입 등 다양한 구조에 적용될 수 있다. 전자 기기의 특정 유형에 관련될 것이나, 전자 기기의 특정유형에 관한 설명은 다른 타입의 전자 기기에 일반적으로 적용될 수 있다. 1B and 1C, the disclosed electronic device 100 includes a bar-shaped terminal body. However, the present invention is not limited thereto, and may be applied to various structures such as a watch type, a clip type, a glass type, or a folder type in which two or more bodies are relatively movably coupled, a flip type, a slide type, a swing type, and a swivel type. . Although it will relate to a specific type of electronic device, a description of a specific type of electronic device may be generally applied to other types of electronic devices.
여기에서, 단말기 바디는 전자 기기(100)를 적어도 하나의 집합체로 보아 이를 지칭하는 개념으로 이해될 수 있다.Here, the terminal body may be understood as a concept referring to the electronic device 100 as at least one aggregate.
전자 기기(100)는 외관을 이루는 케이스(예를 들면, 프레임, 하우징, 커버 등)를 포함한다. 도시된 바와 같이, 전자 기기(100)는 프론트 케이스(101)와 리어 케이스(102)를 포함할 수 있다. 프론트 케이스(101)와 리어 케이스(102)의 결합에 의해 형성되는 내부공간에는 각종 전자부품들이 배치된다. 프론트 케이스(101)와 리어 케이스(102) 사이에는 적어도 하나의 미들 케이스가 추가로 배치될 수 있다.The electronic device 100 includes a case (for example, a frame, a housing, a cover, etc.) forming an exterior. As shown, the electronic device 100 may include a front case 101 and a rear case 102. Various electronic components are disposed in an inner space formed by the combination of the front case 101 and the rear case 102. At least one middle case may be additionally disposed between the front case 101 and the rear case 102.
단말기 바디의 전면에는 디스플레이부(151)가 배치되어 정보를 출력할 수 있다. 도시된 바와 같이, 디스플레이부(151)의 윈도우(151a)는 프론트 케이스(101)에 장착되어 프론트 케이스(101)와 함께 단말기 바디의 전면을 형성할 수 있다.A display unit 151 is disposed on the front of the terminal body to output information. As illustrated, the window 151a of the display unit 151 may be mounted on the front case 101 to form the front surface of the terminal body together with the front case 101.
경우에 따라서, 리어 케이스(102)에도 전자부품이 장착될 수 있다. 리어 케이스(102)에 장착 가능한 전자부품은 착탈 가능한 배터리, 식별 모듈, 메모리 카드 등이 있다. 이 경우, 리어 케이스(102)에는 장착된 전자부품을 덮기 위한 후면커버(103)가 착탈 가능하게 결합될 수 있다. 따라서, 후면 커버(103)가 리어 케이스(102)로부터 분리되면, 리어 케이스(102)에 장착된 전자부품은 외부로 노출된다. 한편, 리어 케이스(102)의 측면 중 일부가 방사체(radiator)로 동작하도록 구현될 수 있다.In some cases, electronic components may be mounted on the rear case 102 as well. Electronic components that can be mounted on the rear case 102 include a removable battery, an identification module, and a memory card. In this case, a rear cover 103 for covering the mounted electronic component may be detachably coupled to the rear case 102. Accordingly, when the rear cover 103 is separated from the rear case 102, the electronic components mounted on the rear case 102 are exposed to the outside. Meanwhile, a part of the side surface of the rear case 102 may be implemented to operate as a radiator.
도시된 바와 같이, 후면커버(103)가 리어 케이스(102)에 결합되면, 리어 케이스(102)의 측면 일부가 노출될 수 있다. 경우에 따라서, 상기 결합시 리어 케이스(102)는 후면커버(103)에 의해 완전히 가려질 수도 있다. 한편, 후면커버(103)에는 카메라(121b)나 음향 출력부(152b)를 외부로 노출시키기 위한 개구부가 구비될 수 있다.As shown, when the rear cover 103 is coupled to the rear case 102, a part of the side surface of the rear case 102 may be exposed. In some cases, when the rear case 102 is combined, the rear case 102 may be completely covered by the rear cover 103. Meanwhile, the rear cover 103 may be provided with an opening for exposing the camera 121b or the sound output unit 152b to the outside.
전자 기기(100)에는 디스플레이부(151), 제1 및 제2 음향 출력부(152a, 152b), 근접 센서(141), 조도 센서(142), 광 출력부(154), 제1 및 제2 카메라(121a, 121b), 제1 및 제2 조작유닛(123a, 123b), 마이크로폰(122), 인터페이스부(160) 등이 구비될 수 있다.The electronic device 100 includes a display unit 151, first and second sound output units 152a and 152b, a proximity sensor 141, an illuminance sensor 142, a light output unit 154, and first and second sound output units. Cameras 121a and 121b, first and second operation units 123a and 123b, microphone 122, interface unit 160, and the like may be provided.
디스플레이부(151)는 전자 기기(100)에서 처리되는 정보를 표시(출력)한다. 예를 들어, 디스플레이부(151)는 전자 기기(100)에서 구동되는 응용 프로그램의 실행화면 정보, 또는 이러한 실행화면 정보에 따른 UI(User Interface), GUI(Graphic User Interface) 정보를 표시할 수 있다.The display unit 151 displays (outputs) information processed by the electronic device 100. For example, the display unit 151 may display execution screen information of an application program driven by the electronic device 100, or UI (User Interface) and GUI (Graphic User Interface) information according to such execution screen information. .
또한, 디스플레이부(151)는 전자 기기(100)의 구현 형태에 따라 2개 이상 존재할 수 있다. 이 경우, 전자 기기(100)에는 복수의 디스플레이부들이 하나의 면에 이격되거나 일체로 배치될 수 있고, 또한 서로 다른 면에 각각 배치될 수도 있다.In addition, two or more display units 151 may exist depending on the implementation form of the electronic device 100. In this case, in the electronic device 100, a plurality of display units may be spaced apart or integrally disposed on one surface, or may be disposed on different surfaces, respectively.
디스플레이부(151)는 터치 방식에 의하여 제어 명령을 입력 받을 수 있도록, 디스플레이부(151)에 대한 터치를 감지하는 터치센서를 포함할 수 있다. 이를 이용하여, 디스플레이부(151)에 대하여 터치가 이루어지면, 터치센서는 상기 터치를 감지하고, 제어부(180)는 이에 근거하여 상기 터치에 대응하는 제어명령을 발생시키도록 이루어질 수 있다. 터치 방식에 의하여 입력되는 내용은 문자 또는 숫자이거나, 각종 모드에서의 지시 또는 지정 가능한 메뉴항목 등일 수 있다.The display unit 151 may include a touch sensor that senses a touch on the display unit 151 so as to receive a control command by a touch method. Using this, when a touch is made to the display unit 151, the touch sensor detects the touch, and the controller 180 may be configured to generate a control command corresponding to the touch based on this. Content input by the touch method may be letters or numbers, or menu items that can be indicated or designated in various modes.
이처럼, 디스플레이부(151)는 터치센서와 함께 터치 스크린을 형성할 수 있으며, 이 경우에 터치 스크린은 사용자 입력부(123, 도 1a 참조)로 기능할 수 있다. 경우에 따라, 터치 스크린은 제1조작유닛(123a)의 적어도 일부 기능을 대체할 수 있다.As such, the display unit 151 may form a touch screen together with a touch sensor, and in this case, the touch screen may function as a user input unit 123 (see FIG. 1A). In some cases, the touch screen may replace at least some functions of the first manipulation unit 123a.
제1음향 출력부(152a)는 통화음을 사용자의 귀에 전달시키는 리시버(receiver)로 구현될 수 있으며, 제2 음향 출력부(152b)는 각종 알람음이나 멀티미디어의 재생음을 출력하는 라우드 스피커(loud speaker)의 형태로 구현될 수 있다.The first sound output unit 152a may be implemented as a receiver that transmits a call sound to the user's ear, and the second sound output unit 152b is a loud speaker that outputs various alarm sounds or multimedia reproduction sounds. ) Can be implemented.
광 출력부(154)는 이벤트의 발생시 이를 알리기 위한 빛을 출력하도록 이루어진다. 상기 이벤트의 예로는 메시지 수신, 호 신호 수신, 부재중 전화, 알람, 일정 알림, 이메일 수신, 애플리케이션을 통한 정보 수신 등을 들 수 있다. 제어부(180)는 사용자의 이벤트 확인이 감지되면, 빛의 출력이 종료되도록 광 출력부(154)를 제어할 수 있다.The light output unit 154 is configured to output light for notifying when an event occurs. Examples of the event include message reception, call signal reception, missed call, alarm, schedule notification, e-mail reception, and information reception through an application. When the user's event confirmation is detected, the controller 180 may control the light output unit 154 to terminate the light output.
제1카메라(121a)는 촬영 모드 또는 화상통화 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상의 화상 프레임을 처리한다. 처리된 화상 프레임은 디스플레이부(151)에 표시될 수 있으며, 메모리(170)에 저장될 수 있다.The first camera 121a processes an image frame of a still image or moving picture obtained by an image sensor in a photographing mode or a video call mode. The processed image frame may be displayed on the display unit 151 and may be stored in the memory 170.
제1 및 제2 조작유닛(123a, 123b)은 전자 기기(100)의 동작을 제어하기 위한 명령을 입력 받기 위해 조작되는 사용자 입력부(123)의 일 예로서, 조작부(manipulating portion)로도 통칭될 수 있다. 제1 및 제2 조작유닛(123a, 123b)은 터치, 푸시, 스크롤 등 사용자가 촉각적인 느낌을 받으면서 조작하게 되는 방식(tactile manner)이라면 어떤 방식이든 채용될 수 있다. 또한, 제1 및 제2 조작유닛(123a, 123b)은 근접 터치(proximity touch), 호버링(hovering) 터치 등을 통해서 사용자의 촉각적인 느낌이 없이 조작하게 되는 방식으로도 채용될 수 있다.The first and second manipulation units 123a and 123b are an example of a user input unit 123 that is manipulated to receive a command for controlling the operation of the electronic device 100, and may also be collectively referred to as a manipulating portion. have. The first and second operation units 123a and 123b may be employed in any manner as long as the user operates while receiving a tactile feeling such as touch, push, and scroll. In addition, the first and second manipulation units 123a and 123b may also be employed in a manner in which the first and second manipulation units 123a and 123b are operated without a user's tactile feeling through proximity touch, hovering touch, or the like.
한편, 전자 기기(100)에는 사용자의 지문을 인식하는 지문인식센서가 구비될 수 있으며, 제어부(180)는 지문인식센서를 통하여 감지되는 지문정보를 인증수단으로 이용할 수 있다. 상기 지문인식센서는 디스플레이부(151) 또는 사용자 입력부(123)에 내장될 수 있다.Meanwhile, the electronic device 100 may be provided with a fingerprint recognition sensor for recognizing a user's fingerprint, and the controller 180 may use fingerprint information detected through the fingerprint recognition sensor as an authentication means. The fingerprint recognition sensor may be embedded in the display unit 151 or the user input unit 123.
마이크로폰(122)은 사용자의 음성, 기타 소리 등을 입력 받도록 이루어진다. 마이크로폰(122)은 복수의 개소에 구비되어 스테레오 음향을 입력 받도록 구성될 수 있다.The microphone 122 is configured to receive a user's voice and other sounds. The microphone 122 may be provided in a plurality of locations and configured to receive stereo sound.
인터페이스부(160)는 전자 기기(100)를 외부기기와 연결시킬 수 있는 통로가 된다. 예를 들어, 인터페이스부(160)는 다른 장치(예를 들어, 이어폰, 외장 스피커)와의 연결을 위한 접속단자, 근거리 통신을 위한 포트[예를 들어, 적외선 포트(IrDA Port), 블루투스 포트(Bluetooth Port), 무선 랜 포트(Wireless LAN Port) 등], 또는 전자 기기(100)에 전원을 공급하기 위한 전원공급단자 중 적어도 하나일 수 있다. 이러한 인터페이스부(160)는 SIM(Subscriber Identification Module) 또는 UIM(User Identity Module), 정보 저장을 위한 메모리 카드 등의 외장형 카드를 수용하는 소켓의 형태로 구현될 수도 있다.The interface unit 160 becomes a passage through which the electronic device 100 can be connected to an external device. For example, the interface unit 160 is a connection terminal for connection with other devices (eg, earphones, external speakers), a port for short-range communication (eg, an infrared port (IrDA Port), a Bluetooth port (Bluetooth Port), a wireless LAN port, etc.], or at least one of a power supply terminal for supplying power to the electronic device 100. The interface unit 160 may be implemented in the form of a socket for accommodating an external card such as a subscriber identification module (SIM) or a user identity module (UIM), or a memory card for storing information.
단말기 바디의 후면에는 제2카메라(121b)가 배치될 수 있다. 이 경우, 제2카메라(121b)는 제1카메라(121a)와 실질적으로 반대되는 촬영 방향을 가지게 된다.A second camera 121b may be disposed on the rear surface of the terminal body. In this case, the second camera 121b has a photographing direction substantially opposite to that of the first camera 121a.
제2카메라(121b)는 적어도 하나의 라인을 따라 배열되는 복수의 렌즈를 포함할 수 있다. 복수의 렌즈는 행렬(matrix) 형식으로 배열될 수도 있다. 이러한 카메라는, 어레이(array) 카메라로 명명될 수 있다. 제2카메라(121b)가 어레이 카메라로 구성되는 경우, 복수의 렌즈를 이용하여 다양한 방식으로 영상을 촬영할 수 있으며, 보다 나은 품질의 영상을 획득할 수 있다.The second camera 121b may include a plurality of lenses arranged along at least one line. The plurality of lenses may be arranged in a matrix format. Such a camera may be referred to as an array camera. When the second camera 121b is configured as an array camera, an image may be photographed in various ways using a plurality of lenses, and an image of better quality may be obtained.
플래시(124)는 제2카메라(121b)에 인접하게 배치될 수 있다. 플래시(124)는 제2카메라(121b)로 피사체를 촬영하는 경우에 피사체를 향하여 빛을 비추게 된다.The flash 124 may be disposed adjacent to the second camera 121b. The flash 124 illuminates light toward the subject when photographing the subject with the second camera 121b.
단말기 바디에는 제2 음향 출력부(152b)가 추가로 배치될 수 있다. 제2 음향 출력부(152b)는 제1음향 출력부(152a)와 함께 스테레오 기능을 구현할 수 있으며, 통화시 스피커폰 모드의 구현을 위하여 사용될 수도 있다.A second sound output unit 152b may be additionally disposed on the terminal body. The second sound output unit 152b may implement a stereo function together with the first sound output unit 152a, and may be used to implement a speakerphone mode during a call.
단말기 바디에는 무선 통신을 위한 적어도 하나의 안테나가 구비될 수 있다. 안테나는 단말기 바디에 내장되거나, 케이스에 형성될 수 있다. 한편, 4G 무선 통신 모듈(111) 및 5G 무선 통신 모듈(112)와 연결되는 복수의 안테나는 단말기 측면에 배치될 수 있다. 또는, 안테나는 필름 타입으로 형성되어 후면 커버(103)의 내측면에 부착될 수도 있고, 도전성 재질을 포함하는 케이스가 안테나로서 기능하도록 구성될 수도 있다.At least one antenna for wireless communication may be provided in the terminal body. The antenna may be embedded in the terminal body or may be formed in a case. Meanwhile, a plurality of antennas connected to the 4G wireless communication module 111 and the 5G wireless communication module 112 may be disposed on the side of the terminal. Alternatively, the antenna may be formed in a film type and attached to the inner surface of the rear cover 103, or a case including a conductive material may be configured to function as an antenna.
한편, 단말기 측면에 배치되는 복수의 안테나는 MIMO를 지원하도록 4개 이상으로 구현될 수 있다. 또한, 5G 무선 통신 모듈(112)이 밀리미터파(mmWave) 대역에서 동작하는 경우, 복수의 안테나 각각이 배열 안테나(array antenna)로 구현됨에 따라, 전자 기기에 복수의 배열 안테나가 배치될 수 있다.Meanwhile, four or more antennas disposed on the side of the terminal may be implemented to support MIMO. In addition, when the 5G wireless communication module 112 operates in a millimeter wave (mmWave) band, since each of the plurality of antennas is implemented as an array antenna, a plurality of array antennas may be disposed in the electronic device.
단말기 바디에는 전자 기기(100)에 전원을 공급하기 위한 전원 공급부(190, 도 1a 참조)가 구비된다. 전원 공급부(190)는 단말기 바디에 내장되거나, 단말기 바디의 외부에서 착탈 가능하게 구성되는 배터리(191)를 포함할 수 있다.The terminal body is provided with a power supply unit 190 (refer to FIG. 1A) for supplying power to the electronic device 100. The power supply unit 190 may include a battery 191 built in the terminal body or configured to be detachable from the outside of the terminal body.
도 2는 본 발명에 따른 복수의 무선 통신 시스템에서 동작 가능한 전자 기기 또는 5G 통신 중계 장치의 무선 통신부의 구성을 도시한다. 여기서, 본 발명에 따른 5G 통신 중계 장치는 5G 무선 신호를 기지국과 전자 기기, 즉 5G UE 간에 전달하는 장치이다. 이와 관련하여, 5G 통신 중계 장치, 즉 5G CPE (Customer Premises Equipment)는 5G 무선 신호를 특정 방향에서 최적으로 송신 및 수신하기 위해 복수의 배열 안테나들(ANT1 내지 ANT4)를 구비할 수 있다. 또한, 5G 통신 중계 장치는 각각의 배열 안테나(ANT1 내지 ANT4)의 빔 방향을 제어하기 위해 전력 및 위상 제어부(230)를 구비할 수 있다. 이와 관련하여, 전력 및 위상 제어부(230)는 각각의 배열 안테나(ANT1 내지 ANT4)의 각각의 안테나 소자(element)에 인가되는 신호의 크기와 위상을 제어할 수 있다.2 shows a configuration of a wireless communication unit of an electronic device or a 5G communication relay device capable of operating in a plurality of wireless communication systems according to the present invention. Here, the 5G communication relay device according to the present invention is a device that transmits a 5G radio signal between a base station and an electronic device, that is, a 5G UE. In this regard, a 5G communication relay device, that is, a 5G CPE (Customer Premises Equipment), may include a plurality of array antennas ANT1 to ANT4 to optimally transmit and receive 5G radio signals in a specific direction. In addition, the 5G communication relay apparatus may include a power and phase controller 230 to control the beam direction of each of the array antennas ANT1 to ANT4. In this regard, the power and phase controller 230 may control a magnitude and a phase of a signal applied to each antenna element of each of the array antennas ANT1 to ANT4.
도 2를 참조하면, 전자 기기 또는 5G 통신 중계 장치는 제1 전력 증폭기(210), 제2 전력 증폭기(220) 및 RFIC(250)를 더 포함한다. 또한, 전자 기기는 모뎀(Modem, 400) 및 어플리케이션 프로세서(AP: Application Processor, 500)를 더 포함할 수 있다. 여기서, 모뎀(Modem, 400)과 어플리케이션 프로세서(AP, 500)와 물리적으로 하나의 chip에 구현되고, 논리적 및 기능적으로 분리된 형태로 구현될 수 있다. 하지만, 이에 한정되지 않고 응용에 따라 물리적으로 분리된 chip의 형태로 구현될 수도 있다.Referring to FIG. 2, the electronic device or 5G communication relay device further includes a first power amplifier 210, a second power amplifier 220, and an RFIC 250. In addition, the electronic device may further include a modem 400 and an application processor 500. Here, the modem 400 and the application processor AP 500 may be physically implemented in one chip, and may be implemented in a logically and functionally separate form. However, the present invention is not limited thereto and may be implemented in the form of physically separated chips depending on the application.
한편, 전자 기기 또는 5G 통신 중계 장치는 수신부에서 복수의 저잡음 증폭기(LNA: Low Noise Amplifier, 410 내지 440)을 포함한다. 여기서, 제1 전력 증폭기(210), 제2 전력 증폭기(220), 제어부(250) 및 복수의 저잡음 증폭기(310 내지 340)는 모두 제1 통신 시스템과 제2 통신 시스템에서 동작 가능하다. 이때, 제1 통신 시스템과 제2 통신 시스템은 각각 4G 통신 시스템과 5G 통신 시스템일 수 있다.Meanwhile, an electronic device or a 5G communication relay device includes a plurality of low noise amplifiers (LNAs) 410 to 440 in a receiver. Here, the first power amplifier 210, the second power amplifier 220, the controller 250, and the plurality of low noise amplifiers 310 to 340 are all operable in the first communication system and the second communication system. In this case, the first communication system and the second communication system may be a 4G communication system and a 5G communication system, respectively.
도 2에 도시된 바와 같이, RFIC(250)는 4G/5G 일체형으로 구성될 수 있지만, 이에 한정되지 않고 응용에 따라 4G/5G 분리형으로 구성될 수 있다. RFIC(250)가 4G/5G 일체형으로 구성되는 경우, 4G/5G 회로 간 동기화 (synchronization) 측면에서 유리할 뿐만 아니라, 모뎀(400)에 의한 제어 시그널링이 단순화될 수 있다는 장점이 있다. As shown in FIG. 2, the RFIC 250 may be configured as a 4G/5G integrated type, but is not limited thereto and may be configured as a 4G/5G separate type according to an application. When the RFIC 250 is configured as a 4G/5G integrated type, it is advantageous in terms of synchronization between 4G/5G circuits and has an advantage that control signaling by the modem 400 can be simplified.
한편, RFIC(250)가 4G/5G 분리형으로 구성되는 경우, 4G RFIC 및 5G RFIC로 각각 지칭될 수 있다. 특히, 5G 대역이 밀리미터파 대역으로 구성되는 경우와 같이 5G 대역과 4G 대역의 대역 차이가 큰 경우, RFIC(250)가 4G/5G 분리형으로 구성될 수 있다. 이와 같이, RFIC(250)가 4G/5G 분리형으로 구성되는 경우, 4G 대역과 5G 대역 각각에 대하여 RF 특성을 최적화할 수 있다는 장점이 있다.Meanwhile, when the RFIC 250 is configured as a 4G/5G separate type, it may be referred to as a 4G RFIC and a 5G RFIC, respectively. In particular, when the 5G band and the 4G band have a large difference in bands, such as when the 5G band is configured as a millimeter wave band, the RFIC 250 may be configured as a 4G/5G separate type. In this way, when the RFIC 250 is configured as a 4G/5G separate type, there is an advantage that RF characteristics can be optimized for each of the 4G band and the 5G band.
한편, RFIC(250)가 4G/5G 분리형으로 구성되는 경우에도 4G RFIC 및 5G RFIC가 논리적 및 기능적으로 분리되고 물리적으로는 하나의 chip에 구현되는 것도 가능하다.Meanwhile, even when the RFIC 250 is configured as a 4G/5G separate type, the 4G RFIC and the 5G RFIC are logically and functionally separated, and physically, it is possible to be implemented in one chip.
한편, 어플리케이션 프로세서(AP, 500)는 전자 기기의 각 구성부의 동작을 제어하도록 구성한다. 구체적으로, 어플리케이션 프로세서(AP, 500)는 모뎀(400)을 통해 전자 기기의 각 구성부의 동작을 제어할 수 있다. Meanwhile, the application processor (AP) 500 is configured to control the operation of each component of the electronic device. Specifically, the application processor (AP) 500 may control the operation of each component of the electronic device through the modem 400.
예를 들어, 전자 기기의 저전력 동작(low power operation)을 위해 전력 관리 IC (PMIC: Power Management IC)를 통해 모뎀(400)을 제어할 수 있다. 이에 따라, 모뎀(400)은 RFIC(250)를 통해 송신부 및 수신부의 전력 회로를 저전력 모드에서 동작시킬 수 있다.For example, the modem 400 may be controlled through a power management IC (PMIC) for low power operation of an electronic device. Accordingly, the modem 400 may operate the power circuit of the transmitter and the receiver through the RFIC 250 in a low power mode.
이와 관련하여, 어플리케이션 프로세서(AP, 500)는 전자 기기가 대기 모드(idle mode)에 있다고 판단되면, 모뎀(300)을 통해 RFIC(250)를 다음과 같이 제어할 수 있다. 예를 들어, 전자 기기가 대기 모드(idle mode)에 있다면, 제1 및 제2 전력 증폭기(110, 120) 중 적어도 하나가 저전력 모드에서 동작하거나 또는 오프(off)되도록 모뎀(300)을 통해 RFIC(250)를 제어할 수 있다. In this regard, when it is determined that the electronic device is in the idle mode, the application processor AP 500 may control the RFIC 250 through the modem 300 as follows. For example, if the electronic device is in the idle mode, at least one of the first and second power amplifiers 110 and 120 operates in a low power mode or is turned off through the modem 300 through the RFIC. 250 can be controlled.
다른 실시 예에 따르면, 어플리케이션 프로세서(AP, 500)는 전자 기기가 low battery mode이면, 저전력 통신이 가능한 무선 통신을 제공하도록 모뎀(300)을 제어할 수 있다. 예를 들어, 전자 기기가 4G 기지국, 5G 기지국 및 액세스 포인트 중 복수의 엔티티와 연결된 경우, 어플리케이션 프로세서(AP, 500)는 가장 저전력으로 무선 통신이 가능하도록 모뎀(400)을 제어할 수 있다. 이에 따라, 스루풋을 다소 희생하더라도 어플리케이션 프로세서(AP, 500)는 근거리 통신 모듈(113)만을 이용하여 근거리 통신을 수행하도록 모뎀(400)과 RFIC(250)를 제어할 수 있다.According to another embodiment, when the electronic device is in a low battery mode, the application processor (AP) 500 may control the modem 300 to provide wireless communication capable of low power communication. For example, when an electronic device is connected to a plurality of entities among a 4G base station, a 5G base station, and an access point, the application processor (AP) 500 may control the modem 400 to enable wireless communication with the lowest power. Accordingly, even though the throughput is slightly sacrificed, the application processor (AP) 500 may control the modem 400 and the RFIC 250 to perform short-range communication using only the short-range communication module 113.
또 다른 실시 예에 따르면, 전자 기기의 배터리 잔량이 임계치 이상이면, 최적의 무선 인터페이스를 선택하도록 모뎀(400)을 제어할 수 있다. 예를 들어, 어플리케이션 프로세서(AP, 450)는 배터리 잔량과 가용 무선 자원 정보에 따라 4G 기지국 및 5G 기지국 모두를 통해 수신할 수 있도록 모뎀(400)을 제어할 수 있다. 이때, 어플리케이션 프로세서(AP, 500)는 배터리 잔량 정보는 PMIC로부터 수신하고, 가용 무선 자원 정보는 모뎀(400)으로부터 수신할 수 있다. 이에 따라, 배터리 잔량과 가용 무선 자원이 충분하면, 어플리케이션 프로세서(AP, 500)는 4G 기지국 및 5G 기지국 모두를 통해 수신할 수 있도록 모뎀(400)과 RFIC(250)를 제어할 수 있다.According to another embodiment, when the remaining battery power of the electronic device is equal to or greater than a threshold, the modem 400 may be controlled to select an optimal wireless interface. For example, the application processor (AP, 450) may control the modem 400 to receive through both the 4G base station and the 5G base station according to the remaining battery capacity and available radio resource information. In this case, the application processor (AP, 500) may receive the remaining battery level information from the PMIC, and the available radio resource information from the modem 400. Accordingly, if the remaining battery capacity and available radio resources are sufficient, the application processor (AP, 500) may control the modem 400 and the RFIC 250 to receive reception through both the 4G base station and the 5G base station.
한편, 도 2의 다중 송수신 시스템(multi-transceiving system)은 각각의 무선 시스템(radio System)의 송신부와 수신부를 하나의 송수신부로 통합할 수 있다. 이에 따라, RF 프론트 엔드(Front-end)에서 두 종류의 시스템 신호를 통합하는 회로부분을 제거할 수 있다는 장점이 있다. Meanwhile, in the multi-transceiving system of FIG. 2, the transmitting unit and the receiving unit of each radio system may be integrated into one transmitting and receiving unit. Accordingly, there is an advantage in that a circuit part integrating two types of system signals can be removed from the RF front-end.
또한, 프론트 엔드 부품을 통합된 송수신부로 제어 가능하므로, 송수신 시스템이 통신 시스템 별로 분리되었을 경우보다 효율적으로 프론트 엔드 부품을 통합할 수 있다.In addition, since the front end parts can be controlled by the integrated transmission/reception unit, the front end parts can be integrated more efficiently than when the transmission/reception system is separated for each communication system.
또한, 통신 시스템 별로 분리되는 경우, 필요에 따라 다른 통신 시스템을 제어하는 것이 불가능하거나, 이로 인한 시스템 지연(system delay)를 가중시키기 때문에 효율적인 자원 할당이 불가능하다. 반면에, 도 2와 같은 다중 송수신 시스템은, 필요에 따라 다른 통신 시스템을 제어하는 것이 가능하고, 이로 인한 시스템 지연을 최소화할 수 있어 효율적인 자원 할당이 가능한 장점이 있다.In addition, when separated for each communication system, it is impossible to control other communication systems as necessary, or because a system delay is increased due to this, it is impossible to efficiently allocate resources. On the other hand, the multiple transmission/reception system as shown in FIG. 2 has the advantage of enabling efficient resource allocation since it is possible to control other communication systems as needed, and thereby minimize system delay.
한편, 제1 전력 증폭기(210)와 제2 전력 증폭기(220)는 제1 및 제2 통신 시스템 중 적어도 하나에서 동작할 수 있다. 이와 관련하여, 5G 통신 시스템이 4G 대역 또는 Sub6 대역에서 동작하는 경우, 제1 및 제2 전력 증폭기(220)는 제1 및 제2 통신 시스템에서 모두 동작 가능하다. Meanwhile, the first power amplifier 210 and the second power amplifier 220 may operate in at least one of the first and second communication systems. In this regard, when the 5G communication system operates in the 4G band or the Sub6 band, the first and second power amplifiers 220 can operate in both the first and second communication systems.
반면에, 5G 통신 시스템이 밀리미터파(mmWave) 대역에서 동작하는 경우, 제1 및 제2 전력 증폭기(210, 220)는 어느 하나는 4G 대역에서 동작하고, 다른 하나는 밀리미터파 대역에서 동작할 수 있다. On the other hand, when the 5G communication system operates in the millimeter wave (mmWave) band, one of the first and second power amplifiers 210 and 220 may operate in the 4G band and the other may operate in the millimeter wave band. have.
한편, 송수신부와 수신부를 통합하여, 송수신 겸용 안테나를 이용하여 하나의 안테나로 2개의 서로 다른 무선 통신 시스템을 구현할 수 있다. 이때, 도 2와 같이 4개의 안테나를 이용하여 4x4 MIMO 구현이 가능하다. 이때, 하향링크(DL)를 통해 4x4 DL MIMO가 수행될 수 있다. Meanwhile, by integrating the transmitting and receiving unit and the receiving unit, it is possible to implement two different wireless communication systems with a single antenna using a transmitting and receiving antenna. In this case, 4x4 MIMO can be implemented using four antennas as shown in FIG. 2. In this case, 4x4 DL MIMO may be performed through downlink (DL).
한편, 5G 대역이 Sub6 대역이면, 제1 내지 제4 안테나(ANT1 내지 ANT4)는 4G 대역과 5G 대역에서 모두 동작하도록 구성될 수 있다. 반면에, 5G 대역이 밀리미터파(mmWave) 대역이면, 제1 내지 제4 안테나(ANT1 내지 ANT4)는 4G 대역과 5G 대역 중 어느 하나의 대역에서 동작하도록 구성될 수 있다. 이때, 5G 대역이 밀리미터파(mmWave) 대역이면, 별도의 복수 안테나 각각이 밀리미터파 대역에서 배열 안테나로 구성될 수 있다.Meanwhile, if the 5G band is the Sub6 band, the first to fourth antennas ANT1 to ANT4 may be configured to operate in both the 4G band and the 5G band. On the other hand, if the 5G band is a millimeter wave (mmWave) band, the first to fourth antennas ANT1 to ANT4 may be configured to operate in any one of the 4G band and the 5G band. In this case, if the 5G band is a millimeter wave (mmWave) band, each of a plurality of separate antennas may be configured as an array antenna in the millimeter wave band.
한편, 4개의 안테나 중 제1 전력 증폭기(210)와 제2 전력 증폭기(220)에 연결된 2개의 안테나를 이용하여 2x2 MIMO 구현이 가능하다. 이때, 상향링크(UL)를 통해 2x2 UL MIMO (2 Tx)가 수행될 수 있다. 또는, 2x2 UL MIMO에 한정되는 것은 아니고, 1 Tx 또는 4 Tx로 구현 가능하다. 이때, 5G 통신 시스템이 1 Tx로 구현되는 경우, 제1 및 제2 전력 증폭기(210, 220) 중 어느 하나만 5G 대역에서 동작하면 된다. 한편, 5G 통신 시스템이 4Tx로 구현되는 경우, 5G 대역에서 동작하는 추가적인 전력 증폭기가 더 구비될 수 있다. 또는, 하나 또는 두 개의 송신 경로 각각에서 송신 신호를 분기하고, 분기된 송신 신호를 복수의 안테나에 연결할 수 있다.Meanwhile, 2x2 MIMO can be implemented using two antennas connected to the first power amplifier 210 and the second power amplifier 220 among the four antennas. In this case, 2x2 UL MIMO (2 Tx) may be performed through uplink (UL). Alternatively, it is not limited to 2x2 UL MIMO, and may be implemented with 1 Tx or 4 Tx. In this case, when the 5G communication system is implemented with 1 Tx, only one of the first and second power amplifiers 210 and 220 needs to operate in the 5G band. Meanwhile, when the 5G communication system is implemented with 4Tx, an additional power amplifier operating in the 5G band may be further provided. Alternatively, a transmission signal may be branched in each of one or two transmission paths, and the branched transmission signal may be connected to a plurality of antennas.
한편, RFIC(250)에 해당하는 RFIC 내부에 스위치 형태의 분배기(Splitter) 또는 전력 분배기(power divider)가 내장되어 있어, 별도의 부품이 외부에 배치될 필요가 없고 이로 인해 부품 실장성을 개선시킬 수 있다. 구체적으로, 제어부(250)에 해당하는 RFIC 내부에 SPDT (Single Pole Double Throw) 형태의 스위치를 사용하여 2개의 서로 다른 통신 시스템의 송신부(TX) 선택이 가능하다.On the other hand, a switch-type splitter or power divider is built into the RFIC corresponding to the RFIC 250, so that separate parts do not need to be placed outside, thereby improving component mounting. I can. Specifically, it is possible to select the transmission unit (TX) of two different communication systems by using a single pole double throw (SPDT) type switch inside the RFIC corresponding to the control unit 250.
또한, 본 발명에 따른 복수의 무선 통신 시스템에서 동작 가능한 전자 기기는 듀플렉서(duplexer, 231), 필터(232) 및 스위치(233)를 더 포함할 수 있다.In addition, an electronic device capable of operating in a plurality of wireless communication systems according to the present invention may further include a duplexer 231, a filter 232, and a switch 233.
듀플렉서(231)는 송신 대역과 수신 대역의 신호를 상호 분리하도록 구성된다. 이때, 제1 및 제2 전력 증폭기(210, 220)를 통해 송신되는 송신 대역의 신호는 듀플렉서(231)의 제1 출력 포트를 통해 안테나(ANT1, ANT4)에 인가된다. 반면에, 안테나(ANT1, ANT4)를 통해 수신되는 수신 대역의 신호는 듀플렉서(231)의 제2 출력포트를 통해 저잡음 증폭기(310, 340)로 수신된다. The duplexer 231 is configured to separate signals in the transmission band and the reception band from each other. In this case, the signal of the transmission band transmitted through the first and second power amplifiers 210 and 220 is applied to the antennas ANT1 and ANT4 through the first output port of the duplexer 231. On the other hand, signals in the reception band received through the antennas ANT1 and ANT4 are received by the low noise amplifiers 310 and 340 through the second output port of the duplexer 231.
필터(232)는 송신 대역 또는 수신 대역의 신호를 통과(pass)시키고 나머지 대역의 신호는 차단(block)하도록 구성될 수 있다. 이때, 필터(232)는 듀플렉서(231)의 제1 출력 포트에 연결되는 송신 필터와 듀플렉서(231)의 제2 출력포트에 연결되는 수신 필터로 구성될 수 있다. 대안적으로, 필터(232)는 제어 신호에 따라 송신 대역의 신호만을 통과시키거나 또는 수신 대역의 신호만을 통과시키도록 구성될 수 있다.The filter 232 may be configured to pass a signal in a transmission band or a reception band and block signals in the remaining bands. In this case, the filter 232 may include a transmission filter connected to the first output port of the duplexer 231 and a reception filter connected to the second output port of the duplexer 231. Alternatively, the filter 232 may be configured to pass only the signal of the transmission band or only the signal of the reception band according to the control signal.
스위치(233)는 송신 신호 또는 수신 신호 중 어느 하나만을 전달하도록 구성된다. 본 발명의 일 실시 예에서, 스위치(233)는 시분할 다중화(TDD: Time Division Duplex) 방식으로 송신 신호와 수신 신호를 분리하도록 SPDT (Single Pole Double Throw) 형태로 구성될 수 있다. 이때, 송신 신호와 수신 신호는 동일 주파수 대역의 신호이고, 이에 따라 듀플렉서(231)는 서큘레이터(circulator) 형태로 구현될 수 있다.The switch 233 is configured to transmit only either a transmission signal or a reception signal. In an embodiment of the present invention, the switch 233 may be configured in the form of a single pole double throw (SPDT) so as to separate a transmission signal and a reception signal in a time division multiplexing (TDD) scheme. In this case, the transmission signal and the reception signal are signals of the same frequency band, and accordingly, the duplexer 231 may be implemented in the form of a circulator.
한편, 본 발명의 다른 실시 예에서, 스위치(233)는 주파수 분할 다중화(FDD: Time Division Duplex) 방식에서도 적용 가능하다. 이때, 스위치(233)는 송신 신호와 수신 신호를 각각 연결 또는 차단할 수 있도록 DPDT (Double Pole Double Throw) 형태로 구성될 수 있다. 한편, 듀플렉서(231)에 의해 송신 신호와 수신 신호의 분리가 가능하므로, 스위치(233)가 반드시 필요한 것은 아니다. Meanwhile, in another embodiment of the present invention, the switch 233 is applicable to a frequency division multiplexing (FDD) scheme. In this case, the switch 233 may be configured in the form of a Double Pole Double Throw (DPDT) so as to connect or block a transmission signal and a reception signal, respectively. On the other hand, since the transmission signal and the reception signal can be separated by the duplexer 231, the switch 233 is not necessarily required.
한편, 본 발명에 따른 전자 기기는 제어부에 해당하는 모뎀(400)을 더 포함할 수 있다. 이때, RFIC(250)와 모뎀(400)을 각각 제1 제어부 (또는 제1 프로세서)와 제2 제어부(제2 프로세서)로 지칭할 수 있다. 한편, RFIC(250)와 모뎀(400)은 물리적으로 분리된 회로로 구현될 수 있다. 또는, RFIC(250)와 모뎀(400)은 물리적으로 하나의 회로에 논리적 또는 기능적으로 구분될 수 있다.Meanwhile, the electronic device according to the present invention may further include a modem 400 corresponding to a control unit. In this case, the RFIC 250 and the modem 400 may be referred to as a first control unit (or a first processor) and a second control unit (a second processor), respectively. Meanwhile, the RFIC 250 and the modem 400 may be implemented as physically separate circuits. Alternatively, the RFIC 250 and the modem 400 may be physically divided into one circuit logically or functionally.
모뎀(400)은 RFIC(250)를 통해 서로 다른 통신 시스템을 통한 신호의 송신과 수신에 대한 제어 및 신호 처리를 수행할 수 있다. 모뎀(400)은 4G 기지국 및/또는 5G 기지국으로부터 수신된 제어 정보(Control Information)을 통해 획득할 수 있다. 여기서, 제어 정보는 물리 하향링크 제어 채널(PDCCH: Physical Downlink Control Channel)을 통해 수신될 수 있지만, 이에 한정되는 것은 아니다. The modem 400 may perform control and signal processing for transmission and reception of signals through different communication systems through the RFIC 250. The modem 400 may be obtained through control information received from a 4G base station and/or a 5G base station. Here, the control information may be received through a physical downlink control channel (PDCCH), but is not limited thereto.
모뎀(400)은 특정 시간 및 주파수 자원에서 제1 통신 시스템 및/또는 제2 통신 시스템을 통해 신호를 송신 및/또는 수신하도록 RFIC(250)를 제어할 수 있다. 이에 따라, RFIC(250)는 특정 시간 구간에서 4G 신호 또는 5G 신호를 송신하도록 제1 및 제2 전력 증폭기(210, 220)를 포함한 송신 회로들을 제어할 수 있다. 또한, RFIC(250)는 특정 시간 구간에서 4G 신호 또는 5G 신호를 수신하도록 제1 내지 제4 저잡음 증폭기(310 내지 340)를 포함한 수신 회로들을 제어할 수 있다.The modem 400 may control the RFIC 250 to transmit and/or receive signals through the first communication system and/or the second communication system at a specific time and frequency resource. Accordingly, the RFIC 250 may control transmission circuits including the first and second power amplifiers 210 and 220 to transmit a 4G signal or a 5G signal in a specific time period. Further, the RFIC 250 may control receiving circuits including the first to fourth low noise amplifiers 310 to 340 to receive a 4G signal or a 5G signal in a specific time period.
한편, 도 2와 같은 다중 송수신 시스템이 구비된 전자 기기로 5G 무선 신호를 전달하는 5G 통신 중계 장치, 즉 5G CPE (Customer Premises Equipment) 및 그 제어 방법에 대해 살펴보기로 한다.Meanwhile, a 5G communication relay device, that is, a 5G CPE (Customer Premises Equipment) that transmits a 5G radio signal to an electronic device equipped with a multiple transmission/reception system as shown in FIG. 2, and a control method thereof will be described.
이와 관련하여, 기존 브로드 밴드 망(broadband network)의 속도가 낮고, 새로운 기가 네트워크를 설치하기 위해서는 막대한 비용이 발생하기 때문에, 5G CPE가 필요하다. 또한, 새로운 가입자가 생기더라도 각 세대별 거리가 멀기 때문에 케이블을 매설하고, 엔지니어들이 방문해서 설치하는데 많은 비용이 발생할 수 있다. 이러한 문제점을 해결하기 위해 5G 통신 서비스는 실내에서 5G CPE를 통해 제공되는 것이 바람직하다.In this regard, since the speed of the existing broadband network is low and enormous cost is incurred to install a new giga network, 5G CPE is required. In addition, even if a new subscriber is created, the distance for each household is long, so it may incur a lot of cost for laying cables and for engineers to visit and install them. In order to solve this problem, it is desirable to provide 5G communication services indoors through 5G CPE.
4G LTE 이후 새로운 비즈니스를 창출하고자 하는 망 사업자들이 경쟁적으로 5G 망 구축을 진행하고 있다. 하지만, 5G 망이 4G 망보다 빠르다는 장점만으로 새로운 비즈니스를 창출하기는 어려운 상황이다. Network operators who want to create new business after 4G LTE are competitively building 5G networks. However, it is difficult to create new business only with the advantage that 5G networks are faster than 4G networks.
따라서, 사업자(operator)들은 기존의 케이블로 인터넷 서비스를 제공하는 대신, 초고속 통신망을 활용하여 무선으로 각 가정으로 인터넷을 공급하는 방안을 고려할 수 있다.Accordingly, operators may consider a method of wirelessly supplying the Internet to each home using a high-speed communication network, instead of providing Internet service through a conventional cable.
하지만, 기존 LTE나 3G에서 사용한 주파수와 비교하면, 5G는 초고속 통신망으로 매우 높은 주파수 대역을 사용한다. 따라서, 5G 무선 신호는 건물, 나무 등 주변의 오브젝트에 기인하여 RF 손실이 크게 발생한다.However, compared to the frequencies used in existing LTE or 3G, 5G uses a very high frequency band as a high-speed communication network. Therefore, the 5G radio signal causes significant RF loss due to surrounding objects such as buildings and trees.
사업자는 5G CPE를 제공하고, 사용자가 self-install을 하여 엔지니어가 방문하거나 케이블을 따로 매설하지 않기를 원할 수 있다. 하지만, 5G NR radio 특성상 설치를 위한 5G CPE의 최적 설치 각도 및 위치를 파악하기 힘들다는 문제점이 있다.Operators may want to provide 5G CPE, and users do self-install so that engineers do not visit or lay separate cables. However, due to the characteristics of 5G NR radio, there is a problem in that it is difficult to determine the optimal installation angle and location of 5G CPE for installation.
따라서, 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE는 전술한 문제점을 해결하기 위해 다음과 같은 기술적 특징이 구현될 수 있다.Accordingly, the 5G communication relay device, that is, the 5G CPE according to the present invention may be implemented with the following technical features in order to solve the above-described problem.
1) 높은 전력 등급, 즉 Power class 1(예: 48dBm)을 지원하는 안테나를 사용하여 indoor용 CPE를 제안한다.1) We propose an indoor CPE using an antenna that supports high power class, that is, Power class 1 (eg, 48dBm).
2) 지향성 안테나와 빔포밍 방식 사용하여 5G CPE의 5G 서비스 coverage를 확장한다.2) Extend 5G service coverage of 5G CPE using a directional antenna and beamforming method.
3) 지향성 안테나를 사용하는 경우 5G 서비스를 제공하는 각도 영역(angular region)이 제한되는 이슈를 커버하기 위한 방안을 적용한다3) When using a directional antenna, apply a method to cover the issue of limited angular regions providing 5G services.
4) 높은 주파수를 사용하는 경우 인체에 해로운 영향이 발생하지 않도록 safety 방안을 적용한다.4) When using a high frequency, apply safety measures to prevent harmful effects on the human body.
이러한 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE의 기술적 특징을 구현하기 위한 구체적인 방식은 다음과 같다.A specific method for implementing the technical features of the 5G communication relay device, that is, 5G CPE according to the present invention is as follows.
1) 고주파 특성을 갖는 5G 무선 신호는 직진성이 강하므로, 실내에서 신호가 포착(capture)되는 영역을 탐색하기 어렵다. 따라서, 실내에서 신호를 수신 및 포착하기 위해 5G CPE에 대한 적절한 포지셔닝(positioning)이 필요하다.1) Since 5G radio signals with high frequency characteristics have strong linearity, it is difficult to search for an area where signals are captured indoors. Therefore, proper positioning of the 5G CPE is required to receive and capture signals indoors.
2) 고주파 특성에 따라 파장이 짧아 신호의 도달 거리가 짧기 때문에, 기지국 방향, 즉 최적 신호 방향으로 빔포밍을 수행하여야 5G 수신 성능을 만족할 수 있다. 따라서, 5G CPE와 기지국 간 최적 신호 방향을 탐색하는 틸팅(tilting) 동작이 필요하다.2) Since the wavelength is short according to the high-frequency characteristics and the reach of the signal is short, beamforming must be performed in the direction of the base station, that is, in the optimal signal direction, to satisfy 5G reception performance. Therefore, a tilting operation is required to search for an optimal signal direction between the 5G CPE and the base station.
이와 관련하여, 도 3은 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE의 설치 방법에 대한 개념도이다. 한편, 도 4a 및 도 4b는 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE에서 수행되는 제어 동작의 흐름도를 나타낸다. In this regard, FIG. 3 is a conceptual diagram for a method of installing a 5G communication relay device, that is, a 5G CPE according to the present invention. Meanwhile, FIGS. 4A and 4B are flowcharts illustrating a control operation performed in a 5G communication relay device, that is, a 5G CPE according to the present invention.
도 3의 (a)를 참조하면, 5G NR(New Radio) 신호 강도(signal strength)를 측정할 수 있다. 이와 관련하여 도 4a를 참조하면, 5G NR 측정을 수행하는 동안 테스트 모드가 수행(S110)될 수 있다. 한편, 테스트 모드가 수행(S110)됨에 따라, TX 비활성화(Disable) 절차가 수행(S120)될 수 있다. 이와 관련하여, 테스트 모드가 수행(S110)되고, TX 비활성화(Disable) 절차가 수행(S120)되는 동안 5G NR 기지국과는 아직 연결 상태가 아니다. 따라서, 도 4a에 도시된 바와 같이, Test Tool에 해당하는 전자 기기를 통해 'No NR Connection'임을 표시할 수 있다. 여기서, No NR Connection은 무선 자원 제어(radio resource control: RRC) 연결(connection) 상태가 아님을 의미한다.Referring to FIG. 3A, 5G New Radio (NR) signal strength may be measured. In this regard, referring to FIG. 4A, a test mode may be performed (S110) while performing 5G NR measurement. On the other hand, as the test mode is performed (S110), a TX disable procedure may be performed (S120). In this regard, while the test mode is performed (S110) and the TX disable procedure is performed (S120), the 5G NR base station is not yet connected. Accordingly, as shown in FIG. 4A, it is possible to indicate that “No NR Connection” is through an electronic device corresponding to the test tool. Here, No NR Connection means that there is no radio resource control (RRC) connection state.
한편, 이러한 테스트 모드는 주로 5G CPE의 초기 설치 시에 이루어진다. 하지만, 이에 한정되는 것은 아니고, 전파 환경 변화에 따라 사용자에게 이를 통지하고 사용자가 테스트 모드를 선택하는 경우에 수행될 수 있다. TX 비활성화(Disable) 절차가 수행(S120)되는 동안 5G CPE는 기지국 또는 주변 전자 기기로의 임의의 신호 송신 절차를 수행하지 않는다. 하지만, 5G NR 신호 측정에 따른 NR 측정 보고를 위해 제어 신호 송신은 예외적으로 수행될 수 있다. On the other hand, this test mode is mainly performed during the initial installation of 5G CPE. However, the present invention is not limited thereto, and may be performed when the user is notified of the change in the propagation environment and the user selects a test mode. While the TX disable procedure is performed (S120), the 5G CPE does not perform any signal transmission procedure to the base station or the peripheral electronic device. However, control signal transmission may be performed exceptionally for NR measurement report according to 5G NR signal measurement.
5G NR 신호 강도가 일정 수준 이상이 되지 않으면, 도 3(b)와 같이 실내의 다른 위치로 5G CPE를 이동시킬 수 있다. 이와 같이 실내의 다른 위치에서 5G NR 신호 강도가 일정 수준 이상이 되면, NR 연결(connection)이 수행된다. 이와 관련하여 도 4a를 참조하면, TX 비활성화(Disable) 절차가 수행(S120)되는 동안에도 5G NR 신호 측정에 따른 NR 측정이 수행(S130)될 수 있다. 이와 관련하여, NR 측정이 수행(S130)됨에 따라 NR 연결(connection)이 이루어질 수 있다. 따라서, 도 4a에 도시된 바와 같이, Test Tool에 해당하는 전자 기기를 통해 'NR Connection'임을 표시할 수 있다. 여기서, NR Connection은 무선 자원 제어(radio resource control: RRC) 연결(connection) 상태임을 의미한다.If the 5G NR signal strength does not exceed a certain level, the 5G CPE can be moved to another location indoors as shown in FIG. 3(b). As described above, when the 5G NR signal strength is higher than a certain level at another location indoors, an NR connection is performed. In this regard, referring to FIG. 4A, NR measurement according to the 5G NR signal measurement may be performed (S130) even while the TX disable procedure is performed (S120). In this regard, as NR measurement is performed (S130), an NR connection may be made. Accordingly, as shown in FIG. 4A, it is possible to indicate that “NR Connection” is through an electronic device corresponding to the test tool. Here, NR Connection means a radio resource control (RRC) connection state.
NR 연결이 이루어지면, 도 3(c)와 같이 틸팅(tilting) 동작을 통해 적절한 고도(altitude) 검출을 수행할 수 있다. 이러한 틸팅 동작은 기계적 틸팅 동작 이외에 미세한 각도 또는 높이 조정을 위해 빔 포밍 등을 통해 전기적 틸팅 동작도 가능하다.When the NR connection is established, appropriate altitude detection may be performed through a tilting operation as shown in FIG. 3(c). In addition to the mechanical tilting operation, the tilting operation may also be performed through an electric tilting operation through beam forming for fine angle or height adjustment.
도 3(c)를 참조하면, 수평 방향(horizontal direction)에서 5G CPE를 일정 각도만큼 회전(S141)시킬 수 있다. 예를 들어, 수평 방향에서 ±30도의 방위각(azimuth angle) 범위 내에서 5G CPE를 회전시킬 수 있다. 하지만, 방위각 회전 각도는 이에 한정되는 것은 아니고 응용에 따라 임의의 회전 각도일 수 있다. Referring to FIG. 3C, the 5G CPE may be rotated by a predetermined angle in a horizontal direction (S141). For example, the 5G CPE can be rotated within an azimuth angle of ±30 degrees in the horizontal direction. However, the azimuth rotation angle is not limited thereto and may be an arbitrary rotation angle depending on the application.
또한, 도 3(c)를 참조하면, 수직 방향(vertical direction)에서 5G CPE를 일정 각도만큼 회전(S142)시킬 수 있다. 예를 들어, 수직 방향에서 ±30도의 고도각(elevation angle) 범위 내에서 5G CPE를 회전시킬 수 있다. 하지만, 고도각 회전 각도는 이에 한정되는 것은 아니고 응용에 따라 임의의 회전 각도일 수 있고, 방위각 회전 각도와 상이한 값일 수 있다. 또한, 수직 방향에서 5G CPE를 일정 각도만큼 회전시키는 것에 대신하여 5G CPE가 설치된 설치 기구의 높이를 조절할 수 있다. 따라서, 5G CPE를 수평 방향 및 수직 방향에서 최적의 신호 수신 방향으로 배치시킬 수 있다. 이에 따라, 5G CPE는 테스트 모드를 오프하고 기지국으로부터 수신된 신호를 전자 기기로 전달하고, 전자 기기로부터 수신된 신호를 기지국으로 전달할 수 있다.In addition, referring to FIG. 3(c), the 5G CPE may be rotated by a predetermined angle in a vertical direction (S142). For example, the 5G CPE can be rotated within a range of an elevation angle of ±30 degrees in a vertical direction. However, the elevation angle rotation angle is not limited thereto, and may be an arbitrary rotation angle depending on the application, and may be a value different from the azimuth rotation angle. In addition, instead of rotating the 5G CPE by a certain angle in the vertical direction, the height of the installation device in which the 5G CPE is installed can be adjusted. Therefore, the 5G CPE can be arranged in the optimal signal reception direction in the horizontal and vertical directions. Accordingly, the 5G CPE may turn off the test mode, transmit a signal received from the base station to the electronic device, and transmit the signal received from the electronic device to the base station.
따라서, 본 발명에 따른 5G CPE 제어 동작은 다음과 같이 2 단계로 이루어질 수 있다.Therefore, the 5G CPE control operation according to the present invention can be performed in two steps as follows.
1단계: 설치 시 사용자 또는 설치 관리자의 안전을 보장하기 위한 Tx disable 알고리즘 적용Step 1: Apply the Tx disable algorithm to ensure the safety of users or installers during installation
2단계: 설치 시 어느 방향이 최적의 Tilt 방향인지 빠르게 감지하는 알고리즘 적용Step 2: Apply an algorithm that quickly detects which direction is the optimal tilt direction during installation
이와 관련하여, Tx disable 알고리즘 적용은 테스트 모드가 수행(S110)되고, TX 비활성화(Disable) 절차가 수행(S120)되는 동안 이루어진다. 한편, NR connection이 이루어진 경우에도 Tx disable 알고리즘은 테스트 모드가 종료되기 전까지 이루어질 수 있다. 한편, 설치 시 어느 방향이 최적의 Tilt 방향인지 빠르게 감지하는 알고리즘 적용은 수평 회전 단계(S141) 및 수직 회전 단계(S142)를 통해 이루어진다.In this regard, the application of the Tx disable algorithm is performed while the test mode is performed (S110) and the TX disable procedure is performed (S120). Meanwhile, even when the NR connection is established, the Tx disable algorithm may be performed until the test mode is terminated. Meanwhile, the application of an algorithm for quickly detecting which direction is the optimal tilt direction during installation is performed through a horizontal rotation step (S141) and a vertical rotation step (S142).
한편, 도 5a는 본 발명에 따른 5G CPE의 내부 구성과 전자 기기와의 5G CPE 제어 동작을 위한 흐름도를 나타낸다. 또한, 도 5b는 본 발명에 따른 5G CPE와 전자 기기의 상세 구성을 나타낸다. Meanwhile, FIG. 5A is a flowchart illustrating an internal configuration of a 5G CPE and a 5G CPE control operation with an electronic device according to the present invention. In addition, FIG. 5B shows a detailed configuration of a 5G CPE and an electronic device according to the present invention.
도 5a를 참조하면, Test Tool은 5G CPE를 통해 기지국과 5G 통신을 수행하는 전자 기기이다. 한편, BT는 5G CPE와 전자 기기 간의 근거리 통신을 수행하기 위한 무선 인터페이스로, 예를 들어 블루투스일 수 있다. 하지만, 블루투스에 한정되는 것은 아니고 와이파이, 지그비 등 임의의 근거리 통신 무선 인터페이스일 수 있다. 한편, RF/Protocol은 5G CPE의 송수신부에 해당하고, 5G CPE의 제어부 (프로세서)에 의해 제어 동작이 수행될 수 있다. 또한, LED는 5G CPE에 구비되고, 5G CPE의 설치 상태 및 5G 신호 품질 등을 표시할 수 있다.5A, a test tool is an electronic device that performs 5G communication with a base station through 5G CPE. Meanwhile, BT is a wireless interface for performing short-range communication between a 5G CPE and an electronic device, and may be, for example, Bluetooth. However, it is not limited to Bluetooth and may be any short-range communication wireless interface such as Wi-Fi or Zigbee. Meanwhile, the RF/Protocol corresponds to a transmission/reception unit of a 5G CPE, and a control operation may be performed by a control unit (processor) of the 5G CPE. In addition, the LED is provided in the 5G CPE, and can display the installation status and 5G signal quality of the 5G CPE.
도 5b를 참조하면, 5G CPE(500)는 제어부 (프로세서)(510), 송수신부(transceiver, 520), 제2 송수신부(530) 및 표시부(540)를 포함한다. 한편, 전자 기기(100)는 무선 통신부에 해당하는 송수신부(110), 출력부(150) 및 제어부(180)를 포함한다. Referring to FIG. 5B, the 5G CPE 500 includes a control unit (processor) 510, a transceiver 520, a second transmission/reception unit 530, and a display unit 540. Meanwhile, the electronic device 100 includes a transmission/reception unit 110, an output unit 150, and a control unit 180 corresponding to a wireless communication unit.
또한, 본 발명에 따른 5G 통신 시스템은 4G 기지국(600) 및 5G 기지국(700)을 포함하도록 구성 가능하다. 이와 관련하여, 5G CPE(500)는 5G 기지국(700)으로부터 5G 무선 신호를 수신하여 전자 기기(100)로 중계할 수 있다. 또한, 5G CPE(500)는 전자 기기(100)로부터 5G 무선 신호를 수신하여 5G 기지국(700)으로 전달할 수 있다. 이와 관련하여, 5G NSA (non-stand-alone) 구조에서, 5G CPE(500)는 4G 기지국(600) 및 5G 기지국(700)과 이중 연결 상태(EN-DC)를 유지할 수 있다. 또한, 5G NSA 구조에서, 5G CPE(500)는 일부 제어 정보를 4G 기지국(600) 및 5G 기지국(700)으로 모두 전달할 수 있다.In addition, the 5G communication system according to the present invention can be configured to include a 4G base station 600 and a 5G base station 700. In this regard, the 5G CPE 500 may receive a 5G radio signal from the 5G base station 700 and relay it to the electronic device 100. In addition, the 5G CPE 500 may receive a 5G radio signal from the electronic device 100 and transmit it to the 5G base station 700. In this regard, in a 5G non-stand-alone (NSA) structure, the 5G CPE 500 can maintain a dual connection state (EN-DC) with the 4G base station 600 and the 5G base station 700. In addition, in the 5G NSA structure, the 5G CPE 500 may transfer some control information to both the 4G base station 600 and the 5G base station 700.
도 1a 및 도 5b를 참조하면, 무선 통신부에 해당하는 송수신부(110)는 5G 무선 통신 모듈(112) 및 근거리 통신 모듈(113)을 포함한다. 여기서, 5G 무선 통신 모듈(112) 및 근거리 통신 모듈(113)을 각각 송수신부(112) 및 제2 송수신부(112)에 해당한다.1A and 5B, the transceiver 110 corresponding to the wireless communication unit includes a 5G wireless communication module 112 and a short-range communication module 113. Here, the 5G wireless communication module 112 and the short-range communication module 113 correspond to the transmission/reception unit 112 and the second transmission/reception unit 112, respectively.
5G UE인 전자 기기와 관련하여, 송수신부(110)는 무선 신호(radio signal)를 송신 및 수신하도록 구성된다. 한편, 제어부(180)는 송수신부(110)와 연결되고, 5G 통신 중계 장치(500)를 통해 기지국과 5G 무선 신호를 송신 및 수신하도록 구성된다. 이와 관련하여, 5G 통신 중계 장치(500)가 테스트 모드(test mode)에서 동작하여 셀 탐색(cell search)이 개시(initiate)된 경우, 5G 무선 신호는 송수신부(110)를 통해 송신되지 않는다. 이를 위해, 5G 통신 중계 장치(500)가 TX 비활성화(Disable) 과정(process)을 수행하는 경우, 제어부(180)는 5G 통신 중계 장치(500)로 사용자 데이터 및 제어 데이터를 송신하지 않도록 송수신부(110)를 제어할 수 있다.With regard to an electronic device that is a 5G UE, the transceiver 110 is configured to transmit and receive radio signals. Meanwhile, the controller 180 is connected to the transceiver 110 and is configured to transmit and receive a 5G radio signal with a base station through the 5G communication relay device 500. In this regard, when the 5G communication relay device 500 operates in a test mode and a cell search is initiated, the 5G radio signal is not transmitted through the transceiver 110. To this end, when the 5G communication relay device 500 performs a TX disable process, the controller 180 may transmit the user data and control data to the 5G communication relay device 500. 110) can be controlled.
한편, 셀 탐색이 개시된 경우, 5G 기지국(700)은 사용자 데이터 및 제어 데이터를 송신하기 위한 시간 및 주파수 자원을 전자 기기(100)와 5G CPE(500)에게 할당하지 않는다. 하지만, 5G 기지국(700)은 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터를 송신하도록 제1 무선 자원(radio resource)을 전자 기기(100)와 5G CPE(500)에게 할당할 수 있다. 반면에, 5G 기지국(700)은 PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 송신하도록 제2 무선 자원을 전자 기기(100)와 5G CPE(500)에게 할당할 수 있다.Meanwhile, when cell search is started, the 5G base station 700 does not allocate time and frequency resources for transmitting user data and control data to the electronic device 100 and the 5G CPE 500. However, the 5G base station 700 transfers a first radio resource to the electronic device 100 and 5G so as to transmit control data for NR measurement and NR measurement report in an RRC-connected state. Can be assigned to the CPE (500). On the other hand, the 5G base station 700 may allocate a second radio resource to the electronic device 100 and the 5G CPE 500 to transmit user data when the PDN (Packet Data Network) attachment is completed. .
따라서, 5G 통신 중계 장치(500)가 TX 비활성화(Disable) 과정(process)을 수행하는 경우, 제어부(180)는 5G 통신 중계 장치(500)에게 송신 제한 시그널링(Tx restriction signalling)을 송신할 수 있다. 이와 관련하여, 5G 통신 중계 장치(500)가 TX 비활성화(Disable) 과정(process)을 수행하는 경우, 제어부(180)는 사용자 데이터 및 제어 데이터를 송신하지 않도록 제한하는 송신 제한 시그널링을 송수신부(110)로 하여금 5G 통신 중계 장치(500)로 송신하도록 제어할 수 있다. 여기서, 송신 제한 시그널링은 5G 무선 인터페이스와 다른 제2 무선 인터페이스로 5G 통신 중계 장치(500)로 송신될 수 있다. 구체적으로, 제2 무선 인터페이스는 전술한 근거리 무선 통신 인터페이스, 예를 들어, 블루투스, 와이파이 인터페이스 등일 수 있다.Therefore, when the 5G communication relay device 500 performs a TX disable process, the controller 180 can transmit a Tx restriction signaling to the 5G communication relay device 500. . In this regard, when the 5G communication relay device 500 performs a TX disable process, the control unit 180 transmits a transmission restriction signaling limiting transmission of user data and control data. ) Can be controlled to transmit to the 5G communication relay device 500. Here, the transmission restriction signaling may be transmitted to the 5G communication relay device 500 through a second wireless interface different from the 5G wireless interface. Specifically, the second wireless interface may be the aforementioned short-range wireless communication interface, for example, a Bluetooth or a Wi-Fi interface.
구체적으로, 제어 데이터 송신을 위한 제1 무선 자원이 할당된 경우에도, 제어부(180)는 제어 데이터를 송신하지 않도록 5G 통신 중계 장치(500)에게 송신 제한 시그널링을 송신할 수 있다. 여기서, 송신 제한 시그널링은 RRC 연결 및 측정 보고 전까지 제어 데이터를 송신하지 않도록 제한하는 메시지이다.Specifically, even when a first radio resource for transmission of control data is allocated, the controller 180 may transmit transmission restriction signaling to the 5G communication relay device 500 so as not to transmit control data. Here, the transmission restriction signaling is a message that restricts transmission of control data until RRC connection and measurement report.
또한, 사용자 데이터 송신을 위한 제2 무선 자원이 할당된 경우에도, 제어부(180)는 사용자 데이터를 송신하지 않도록 5G 통신 중계 장치(500)에게 제2 송신 제한 시그널링을 송신할 수 있다. 여기서, 제2 송신 제한 시그널링은 테스트 모드 종료 전까지 제어 데이터를 송신하지 않도록 제한하는 메시지이다.In addition, even when a second radio resource for user data transmission is allocated, the controller 180 may transmit the second transmission restriction signaling to the 5G communication relay device 500 so as not to transmit user data. Here, the second transmission restriction signaling is a message for restricting transmission of control data until the end of the test mode.
5G CPE와 관련하여, 송수신부(520)는 무선 신호(radio signal)를 송신 및 수신하도록 구성된다. 구체적으로, 송수신부(520)는 5G NR 신호를 송신 및 수신하도록 구성되고, 4G LTE 신호를 송신 및 수신할 수 있다. 이와 관련하여, 5G NR 신호를 송신 및 수신하는 5G 무선통신 모듈과 4G LTE 신호를 송신 및 수신하는 4G 무선통신 모듈은 하나의 물리적 칩에 구현되거나 또는 별도의 칩에 구현될 수 있다.With regard to the 5G CPE, the transceiver 520 is configured to transmit and receive radio signals. Specifically, the transceiver 520 is configured to transmit and receive 5G NR signals, and may transmit and receive 4G LTE signals. In this regard, the 5G wireless communication module for transmitting and receiving 5G NR signals and the 4G wireless communication module for transmitting and receiving 4G LTE signals may be implemented on one physical chip or a separate chip.
제2 송수신부(530)는 전자 기기(100)와 근거리 통신을 수행하도록 구성된다. 구체적으로, 제2 송수신부(530)는 주변 전자 기기(100)와의 근거리 통신을 위한 페어링 과정을 수행하여, 페어링된 전자 기기(100)와 근거리 통신을 수행할 수 있다.The second transmission/reception unit 530 is configured to perform short-range communication with the electronic device 100. Specifically, the second transceiver 530 may perform a short-range communication with the paired electronic device 100 by performing a pairing process for short-range communication with the peripheral electronic device 100.
제어부 (프로세서)(510)는 송수신부(520)와 연결되고, 기지국으로부터 수신된 무선 신호를 전자 기기(100)로 제공하도록 구성된다. 본 발명에 따르면, 제어부 (프로세서)(510)는 테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다.The control unit (processor) 510 is connected to the transmission/reception unit 520 and is configured to provide a radio signal received from the base station to the electronic device 100. According to the present invention, the control unit (processor) 510 can control so that a radio signal is not transmitted through the transmission/reception unit 520 when a cell search is initiated in a test mode. have.
표시부(540)는 기지국으로부터 수신되는 5G NR 신호 품질 및 상태를 표시하도록 구성될 수 있다. 또한, 표시부(540)는 5G CPE를 설치하는 사용자 또는 설치 관리자에게 5G CPE를 최적의 위치와 각도에 배치할 수 있도록 가이드하는 정보를 표시할 수 있다.The display unit 540 may be configured to display the 5G NR signal quality and status received from the base station. In addition, the display unit 540 may display information guiding a user or an installation manager who installs the 5G CPE to arrange the 5G CPE at an optimal position and angle.
한편, 5G 기지국(700)은 5G 통신 중계 장치, 즉 5G CEP(500)가 테스트 모드(test mode)에서 동작하여 셀 탐색(cell search)이 개시(initiate)된 경우, 5G CEP(500)가 사용자 데이터 및 제어 데이터를 포함하여 신호를 송신하지 않도록 제어할 수 있다. On the other hand, the 5G base station 700 is a 5G communication relay device, that is, when the 5G CEP 500 is operated in a test mode and a cell search is initiated, the 5G CEP 500 is It can be controlled not to transmit signals, including data and control data.
이를 위해, 셀 탐색이 개시된 경우, 5G 기지국(700)은 사용자 데이터 및 제어 데이터를 송신하기 위한 시간 및 주파수 자원을 전자 기기(100)와 5G CPE(500)에게 할당하지 않는다. 하지만, 5G 기지국(700)은 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터를 송신하도록 제1 무선 자원(radio resource)을 전자 기기(100)와 5G CPE(500)에게 할당할 수 있다. 반면에, 5G 기지국(700)은 PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 송신하도록 제2 무선 자원을 전자 기기(100)와 5G CPE(500)에게 할당할 수 있다.To this end, when cell search is initiated, the 5G base station 700 does not allocate time and frequency resources for transmitting user data and control data to the electronic device 100 and the 5G CPE 500. However, the 5G base station 700 transfers a first radio resource to the electronic device 100 and 5G so as to transmit control data for NR measurement and NR measurement report in an RRC-connected state. Can be assigned to the CPE (500). On the other hand, the 5G base station 700 may allocate a second radio resource to the electronic device 100 and the 5G CPE 500 to transmit user data when the PDN (Packet Data Network) attachment is completed. .
도 3 내지 도 5b를 참조하면, 본 발명에 따른 5G CPE 제어 동작은 다음과 같이 2 단계로 이루어질 수 있다.3 to 5B, the 5G CPE control operation according to the present invention may be performed in two steps as follows.
1단계: 설치 시 사용자 또는 설치 관리자의 안전을 보장하기 위한 Tx disable 알고리즘 적용Step 1: Apply the Tx disable algorithm to ensure the safety of users or installers during installation
2단계: 설치 시 어느 방향이 최적의 Tilt 방향인지 빠르게 감지하는 알고리즘 적용Step 2: Apply an algorithm that quickly detects which direction is the optimal tilt direction during installation
따라서, 본 발명에 따른 5G CPE는 높은 주파수 대역의 5G 신호를 사용하므로, 설치 도중 인체에 유해한 영향이 발생하지 않도록 safety 방안을 적용한다. 구체적으로, 본 발명에 따른 5G CPE 제어 동작은 5G CPE의 포지셔닝, 회전 및 틸팅 동작 시 Tx 기능을 사용하지 않도록 하는 것이다.Therefore, since the 5G CPE according to the present invention uses a 5G signal of a high frequency band, a safety method is applied so that no harmful effect to the human body occurs during installation. Specifically, the 5G CPE control operation according to the present invention is to prevent the use of the Tx function during positioning, rotation, and tilting operations of the 5G CPE.
도 5b를 참조하면, Test Tool은 전자 기기(100)에 해당한다. 한편, RF/Protocol은 5G CPE의 송수신부 또는 제어부에 해당할 수 있다. 설명의 편의를 위해, RF/Protocol은 5G CPE의 제어부(510)에 해당하는 것으로 지칭한다. 한편, BT는 전자 기기(100)와 근거리 통신을 수행하기 위한 제2 무선 인터페이스를 제공하는 5G CPE의 제2 송수신부(530)로 지칭한다. 또한, LED는 5G CPE의 설치 상태 및 5G 신호 품질 등을 표시 표시부(540)로 지칭한다. Referring to FIG. 5B, the test tool corresponds to the electronic device 100. Meanwhile, the RF/Protocol may correspond to a transmission/reception unit or a control unit of a 5G CPE. For convenience of explanation, RF/Protocol is referred to as corresponding to the controller 510 of the 5G CPE. Meanwhile, BT refers to a second transmission/reception unit 530 of a 5G CPE that provides a second wireless interface for performing short-range communication with the electronic device 100. In addition, the LED refers to the installation state of the 5G CPE and the 5G signal quality as a display unit 540.
5G CPE의 제어부(510)는 통신 기능 활성화(activation)를 통해 LTE 기지국과 LTE 연결(LTE connection) 상태가 되도록 제어할 수 있다. LTE 연결 상태에서 NR 기지국으로부터 수신되는 수신 신호에 대한 NR 측정 (NR measurement)을 수행할 수 있다. 이와 관련하여, NR 측정은 5G NR Disable 과정(S120) 동안에도 수행될 수 있다. 또한, NR 측정은 최적 Tilt 제어 과정(S140) 동안에도 수행될 수 있다.The control unit 510 of the 5G CPE may control the LTE base station to be in an LTE connection state through activation of a communication function. In the LTE connection state, NR measurement can be performed on a received signal received from an NR base station. In this regard, NR measurement may be performed even during the 5G NR Disable process (S120). Also, the NR measurement may be performed during the optimal Tilt control process (S140).
한편, 5G CPE의 제어부(510)는 5G CPE를 설치(install)하려는 사용자 입력이 수신(예: Button On)되면, 테스트 모드를 수행(S110) 할 수 있다. 또한, 제어부(510)는 테스트 모드에 진입 (즉, 테스트 모드라고 판단)한 경우 제2 송수신부(530)를 통해 전자 기기(100)와 페어링 되도록 제어할 수 있다. 테스트 모드에서 전자 기기(100)와 페어링을 위해, 주변 전자 기기와의 Advertising 과정을 통해 주변 전자 기기를 인식할 수 있다.Meanwhile, when a user input for installing a 5G CPE is received (eg, Button On), the controller 510 of the 5G CPE may perform a test mode (S110). In addition, the controller 510 may control to be paired with the electronic device 100 through the second transceiver 530 when entering the test mode (ie, determining that the test mode is). For pairing with the electronic device 100 in the test mode, the nearby electronic device may be recognized through an advertising process with the nearby electronic device.
5G NR Disable 과정(S120)과 관련하여, 제어부(510)는 5G 기지국으로부터 특정 제어 신호가 수신되거나 또는 RRC 연결 상태인 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행한다. Regarding the 5G NR Disable process (S120), the controller 510 disables TX so that the radio signal is not transmitted through the transceiver 520 when a specific control signal is received from the 5G base station or in an RRC connection state. Execute the process.
최적 Tilt 제어 과정(S140)과 관련하여, 제어부(510)는 수평 방향 및/또는 수직 방향에서 5G 기지국으로부터 수신되는 신호의 최적 방향을 탐색할 수 있다. 이에 따라, 제어부(510)는 5G 기지국으로부터의 수신 신호 품질(received signal quality)에 기반하여, TX 활성화(Enable) 절차(S150), 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행할 수 있다. 따라서, 수신 신호 품질이 양호한 경우, 제어부(510)는 5G CPE가 해당 위치에서 설치 가능함을 표시부(540)를 통해 표시할 수 있다. 즉, 제어부(510)는 5G CPE가 해당 위치에서 설치 가능한지 여부와 관련된 정보 또는 NR 상태(status)를 표시부(540)로 전달할 수 있다. 이에 따라, 표시부(540)는 NR 상태(status)를 각각 Red, Yellow, Green 등으로 표시할 수 있다. 예를 들어, LED가 Green으로 표시되면 5G 신호 강도가 양호한 상태(good state)이고, 5G CPE가 해당 위치에서 정상 설치 가능함을 나타내다. 반면에, LED가 Yellow로 표시되면 5G 신호 강도가 일반 상태(normal state)이고, 5G CPE를 수평 및/수직 방향에서 최적 틸트 하지 않으면 설치가 불가능함을 나타낸다. 반면에, LED가 Red로 표시되면 5G 신호 강도가 취약 상태(weak state)로, 5G CPE를 다른 위치로 이동하지 않으면 설치가 불가능함을 나타낸다.Regarding the optimal tilt control process (S140), the controller 510 may search for an optimal direction of a signal received from a 5G base station in a horizontal direction and/or a vertical direction. Accordingly, the control unit 510 may perform one of a TX enable procedure (S150), a tilting procedure, and a reinstallation procedure based on the received signal quality from the 5G base station. Accordingly, when the received signal quality is good, the control unit 510 may indicate through the display unit 540 that the 5G CPE can be installed at a corresponding location. That is, the controller 510 may transmit information related to whether or not the 5G CPE can be installed at a corresponding location or an NR status to the display unit 540. Accordingly, the display unit 540 may display the NR status as Red, Yellow, Green, or the like, respectively. For example, if the LED is green, it indicates that the 5G signal strength is in a good state, and the 5G CPE can be installed normally at that location. On the other hand, if the LED is yellow, it indicates that the 5G signal strength is in a normal state, and installation is impossible unless the 5G CPE is tilted optimally in the horizontal and/or vertical directions. On the other hand, when the LED is displayed as red, it indicates that the 5G signal strength is in a weak state, and installation is impossible unless the 5G CPE is moved to another location.
TX 활성화(Enable) 절차(S150)가 수행되면, 제어부(510)는 5G 네트워크로의 ping 동작을 통해 5G 네트워크에 액세스하고, 테스트 모드를 종료한다. 이와 관련하여, 제어부(510)는 PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 테스트 모드를 종료하고 사용자 데이터를 송신할 수 있다. 이에 따라, 5G CPE는 5G 기지국 및 5G 네트워크에 모두 연결 상태가 된다.When the TX enable procedure (S150) is performed, the controller 510 accesses the 5G network through a ping operation to the 5G network and ends the test mode. In this regard, when the PDN (Packet Data Network) attachment is completed, the controller 510 may terminate the test mode and transmit user data. Accordingly, the 5G CPE is connected to both the 5G base station and the 5G network.
전술한 바와 같이, 테스트 모드가 수행(S110)되면, 제2 송수신부(530)는 전자 기기(100)와 페어링 동작 수행할 수 있다. 전자 기기(100)와 페어링이 이루어지면, 제2 송수신부(530)는 수신 신호 품질, 예를 들어 RSRP(Reference Signal Received Power)를 전자 기기(100)로 전달할 수 있다. 한편, 테스트 모드가 종료되면, 전자 기기(100)와 5G CPE와의 정보 전달이 종료될 수 있다.As described above, when the test mode is performed (S110), the second transmission/reception unit 530 may perform a pairing operation with the electronic device 100. When pairing with the electronic device 100 is made, the second transceiving unit 530 may transmit the received signal quality, for example, Reference Signal Received Power (RSRP) to the electronic device 100. Meanwhile, when the test mode is terminated, information transfer between the electronic device 100 and the 5G CPE may be terminated.
한편, 도 6은 본 발명에 따른 5G CPE의 포지셔닝 및 틸팅 제어 방법의 흐름도를 나타낸다. 도 5a 및 도 6을 참조하면, 5G CPE의 포지셔닝 및 틸팅 제어 방법은 제어부(510)가 송수신부를 통해 5G 기지국으로부터 수신된 신호를 기반으로 수행될 수 있다. 이와 관련하여, 5G CPE의 포지셔닝 및 틸팅 제어 방법은 기계적 방식 또는 전기적 방식으로 수행될 수 있다.Meanwhile, FIG. 6 shows a flowchart of a method for controlling positioning and tilting of a 5G CPE according to the present invention. 5A and 6, the positioning and tilting control method of the 5G CPE may be performed by the controller 510 based on a signal received from a 5G base station through a transceiver. In this regard, the positioning and tilting control method of the 5G CPE may be performed by a mechanical method or an electrical method.
도 6을 참조하면, 제어부(510)는 해당 위치에서 5G NR 측정(S130)을 수행할 수 있다. 5G NR 측정(S130)에 따라 5G 네트워크에 어태치(attach)가 가능하지 않다고 판단되면 LED를 Red로 표시할 수 있다. 이러한 RRC 연결 실패와 같은 상황이 영구적이라고 판단되면, 해당 위치가 아닌 다른 위치로 5G CPE를 포지셔닝 하도록 포지션 제어(S101)를 수행할 수 있다. 이와 관련하여, 5G CPE가 이동 가능 범위 내에서 자율적으로 포지션 제어(S101)를 수행할 수 있다. 대안으로, 5G CPE는 LED 등 표시부를 통해 또는 사용자 단말 등 주변 전자 기기를 통해 포지션 제어(S101)가 필요함을 표시할 수 있다.Referring to FIG. 6, the controller 510 may perform 5G NR measurement (S130) at a corresponding location. If it is determined that attachment to the 5G network is not possible according to the 5G NR measurement (S130), the LED may be displayed in red. If it is determined that such a situation as the RRC connection failure is permanent, position control (S101) may be performed to position the 5G CPE to a location other than the corresponding location. In this regard, the 5G CPE may autonomously perform position control (S101) within the movable range. Alternatively, the 5G CPE may indicate that the position control (S101) is required through a display unit such as an LED or through a peripheral electronic device such as a user terminal.
한편, 5G NR 측정(S130)을 통한 수신 신호 품질, 예를 들어 RSRP에 따라 수평 방향 회전 (틸트) 제어(S140) 및/또는 수직 방향 회전 (틸트) 제어(S150) 동작을 수행할 수 있다. 이와 관련하여, 수평 방향 회전 (틸트) 제어(S140) 및/또는 수직 방향 회전 (틸트) 제어(S150) 동작은 각각 좌우 회전 (틸트) 및/또는 상하 회전 (틸트)에 해당할 수 있다.On the other hand, according to the received signal quality through 5G NR measurement (S130), for example, RSRP, horizontal rotation (tilt) control (S140) and/or vertical rotation (tilt) control (S150) may be performed. In this regard, operations of the horizontal rotation (tilt) control (S140) and/or the vertical rotation (tilt) control (S150) may correspond to horizontal rotation (tilt) and/or vertical rotation (tilt), respectively.
이와 관련하여, 5G NR 측정(S130)을 통한 수신 신호 품질인 임계치 이하이면, 수평 방향 회전 (틸트) 제어(S141)를 수행할 수 있다. 수평 방향 회전 (틸트) 제어(S141)를 통해서도 통한 수신 신호 품질인 임계치 이하이면, 수직 방향 회전 (틸트) 제어(S142) 동작을 수행할 수 있다. 이와 관련하여, 수신 신호 품질인 임계치는 3 level에 해당할 수 있다. 여기서, 3 level은 LED가 Green으로 표시되는 5G 신호 강도가 양호한 상태(good state)이고, 5G CPE가 해당 위치에서 정상 설치 가능함을 나타내다. In this regard, if the quality of the received signal through the 5G NR measurement (S130) is less than or equal to the threshold, the horizontal rotation (tilt) control (S141) may be performed. If the received signal quality through the horizontal rotation (tilt) control (S141) is less than or equal to the threshold, the vertical rotation (tilt) control (S142) may be performed. In this regard, the threshold, which is the quality of the received signal, may correspond to 3 level. Here, the 3 level indicates that the 5G signal strength in which the LED is displayed as Green is in a good state, and that the 5G CPE can be installed normally at the corresponding location.
이와 관련하여, 5G CPE 내의 배열 안테나의 수평 방향의 안테나 개수가 수직 방향의 안테나 개수보다 더 많도록 설정될 수 있다. 따라서, 수평 방향으로 안테나 빔을 정밀하게 조정하고, 수직 방향으로 안테나 빔을 다시 조정할 수 있다. 이와 관련하여, 수평 방향 회전 (틸트) 제어(S140)를 통해서 수신 신호 품질이 임계치 이상이면 더 이상 수직 방향 회전 (틸트) 제어(S150) 동작을 수행할 필요가 없다는 장점이 있다. 따라서, 5G CPE의 수직 방향 회전 (틸트)를 가능한 수행하지 않아 5G CPE의 기구적 안정성을 향상시킬 수 있다는 장점이 있다. In this regard, the number of antennas in the horizontal direction of the array antennas in the 5G CPE may be set to be greater than the number of antennas in the vertical direction. Accordingly, the antenna beam can be precisely adjusted in the horizontal direction and the antenna beam can be adjusted again in the vertical direction. In this regard, if the received signal quality is greater than or equal to a threshold value through the horizontal rotation (tilt) control S140, there is an advantage that it is no longer necessary to perform the vertical rotation (tilt) control S150. Therefore, there is an advantage in that it is possible to improve the mechanical stability of the 5G CPE by not performing vertical rotation (tilt) of the 5G CPE.
따라서, 해당 위치 및 각도에서 수신 신호 품질이 임계치 이상이면 강 전계(strong electric field) 상태로 판단하고 틸트 등 조정 절차를 중단(stop adjustment)할 수 있다. 또한, 수평 방향 회전 (틸트) 제어(S141)를 통해 수신 신호 품질이 임계치 이상이면 강 전계(strong electric field) 상태로 판단하고 틸트 등 조정 절차를 중단(stop adjustment)할 수 있다. 또한 수직 방향 회전 (틸트) 제어(S142)를 통해 수신 신호 품질이 임계치 이상이면 강 전계(strong electric field) 상태로 판단하고 틸트 등 조정 절차를 중단(stop adjustment)할 수 있다.Accordingly, if the received signal quality at the corresponding position and angle is greater than or equal to the threshold, it is determined as a strong electric field state, and an adjustment procedure such as tilt can be stopped. In addition, through the horizontal rotation (tilt) control (S141), if the received signal quality is greater than or equal to a threshold, it is determined as a strong electric field state, and an adjustment procedure such as tilt may be stopped. In addition, through the vertical rotation (tilt) control (S142), if the received signal quality is greater than or equal to a threshold, it is determined as a strong electric field state, and an adjustment procedure such as tilt may be stopped.
반면에, 수직 방향 회전 (틸트) 제어(S142)를 통해서도 수신 신호 품질이 임계치 미만이면 약 전계(weak electric field) 상태로 판단할 수 있다. 이에 따라, LED를 Yellow로 표시하여 5G 신호 강도가 일반 상태(normal state)이고, 5G CPE를 수평 및/수직 방향에서 최적 틸트 하지 않으면 설치가 불가능함을 표시할 수 있다. 한편, 5G 신호 강도에 따라, LED를 Red로 표시하여 5G 신호 강도가 취약 상태(weak state)로, 5G CPE를 다른 위치로 이동하지 않으면 설치가 불가능함을 표시할 수 있다. 구체적으로, 수신 신호 품질이 상기 제1 임계치 미만이고 제2 임계치 이상 (2 level)이면, 틸팅 절차를 수행하도록 제어할 수 있다. 반면에, 수신 신호 품질이 상기 제2 임계치 미만 (1 level)이면, 설치 장소를 이동하여 재설치 절차를 수행하도록 제어할 수 있다.On the other hand, even through the vertical rotation (tilt) control (S142), if the received signal quality is less than the threshold, it may be determined as a weak electric field state. Accordingly, the LED is displayed in yellow to indicate that the 5G signal strength is in a normal state, and installation is impossible unless the 5G CPE is tilted optimally in the horizontal and/or vertical directions. On the other hand, according to the 5G signal strength, the LED is displayed in red to indicate that the 5G signal strength is in a weak state, and installation is impossible unless the 5G CPE is moved to another location. Specifically, when the received signal quality is less than the first threshold and equal to or greater than the second threshold (2 level), the tilting procedure may be performed. On the other hand, if the received signal quality is less than the second threshold (1 level), the installation location may be moved to perform a re-installation procedure.
이하에서는, 본 발명에 따른 5G CPE 설치 시 최적 틸팅 방향 예측 방법에 대해 살펴보기로 한다. 이와 관련하여, 도 7은 본 발명에 따른 5G CPE에 구비되는 다양한 LED를 나타낸다. 도 7를 참조하면, 5G CPE는 5G NR 신호 강도를 나타내는 LED(540)를 포함한다. LED(540)는 설치 관리자가 5G NR 신호 품질을 용이하게 인식하기 위해 상부 측면에 배치될 수 있지만, 이에 한정되는 것은 아니고 응용에 따라 변경 가능하다. 이에 따라, LED(540)는 NR 상태(status)를 각각 Red, Yellow, Green 등으로 표시할 수 있다. 예를 들어, LED(540)가 Green으로 표시되면 5G 신호 강도가 양호한 상태(good state)이고, 5G CPE가 해당 위치에서 정상 설치 가능함을 나타내다. 반면에, LED(540)가 Yellow로 표시되면 5G 신호 강도가 일반 상태(normal state)이고, 5G CPE를 수평 및/수직 방향에서 최적 틸트 하지 않으면 설치가 불가능함을 나타낸다. 반면에, LED(540)가 Red로 표시되면 5G 신호 강도가 취약 상태(weak state)로, 5G CPE를 다른 위치로 이동하지 않으면 설치가 불가능함을 나타낸다.Hereinafter, a method for predicting an optimal tilting direction when installing a 5G CPE according to the present invention will be described. In this regard, Figure 7 shows a variety of LEDs provided in the 5G CPE according to the present invention. Referring to FIG. 7, the 5G CPE includes an LED 540 indicating 5G NR signal strength. The LED 540 may be disposed on the upper side in order for the installer to easily recognize the 5G NR signal quality, but is not limited thereto and may be changed according to an application. Accordingly, the LED 540 may display the NR status as Red, Yellow, Green, or the like, respectively. For example, when the LED 540 is displayed as Green, it indicates that the 5G signal strength is in a good state and that the 5G CPE can be installed normally at the corresponding location. On the other hand, when the LED 540 is displayed in yellow, it indicates that the 5G signal strength is in a normal state, and installation is impossible unless the 5G CPE is optimally tilted in the horizontal and/or vertical directions. On the other hand, when the LED 540 is displayed as red, it indicates that the 5G signal strength is in a weak state, and installation is impossible unless the 5G CPE is moved to another location.
5G CPE는 좌우 틸트에 따라 좌측/우측으로 방향을 가이드하는 제1 LED(541)를 더 포함할 수 있다. 또한, 5G CPE는 상하 틸트에 따라 상부/하부로 방향을 가이드하는 제2 LED(542)를 더 포함할 수 있다. The 5G CPE may further include a first LED 541 for guiding the direction to the left/right according to the left and right tilt. In addition, the 5G CPE may further include a second LED 542 for guiding the direction upward and downward according to the vertical tilt.
한편, 사용자 또는 설치 관리자가 5G CPE를 설치하기 위해 테스트 모드, 즉 설치 모드로 진입하기 위해 해당 버튼을 선택할 수 있다. 이러한 테스트 모드, 즉 설치 모드로 진입하기 위해 해당 버튼은 5G CPE 또는 5G CPE와 페어링된 전자 기기에 물리적으로 구비되거나 또는 디스플레이 상에 표시될 수 있다. 이와 관련하여, 5G CPE는 테스트 모드, 즉 설치 모드 진입 시 다음과 같은 기능을 활성화할 수 있다.Meanwhile, the user or installer can select the corresponding button to enter the test mode, that is, the installation mode to install the 5G CPE. In order to enter this test mode, that is, the installation mode, the button may be physically provided on an electronic device paired with a 5G CPE or a 5G CPE, or may be displayed on a display. In this regard, the 5G CPE can activate the following functions when entering the test mode, that is, the installation mode.
1) 5G CPE 설치 시 5G NR 유해 전파로부터 인체를 보호하기 위하여 TX power disable, RX Only mode로 진입할 수 있다.1) When installing 5G CPE, you can enter TX power disable, RX Only mode to protect the human body from harmful 5G NR radio waves.
2) 최적 설치 위치, 각도를 찾기 위한 알고리즘을 적용할 수 있다.2) Algorithm to find the optimum installation position and angle can be applied.
3) 설치 보조수단으로 전자 기기와 BT pairing 이 가능하게 CPE Side BT advertise mode가 ON 상태가 되도록 제어할 수 있다.3) CPE Side BT advertise mode can be controlled to be ON so that BT pairing with electronic devices is possible as an installation aid.
한편, 5G CPE 설치 시, 5G 신호를 측정하고, 최적의 수신 각도를 찾기 위하여 5G CPE를 정지 상태로 유지하도록 할 수 있다. 이를 위해, 5G NR 신호 강도를 표시하는 LED(240)를 Blinking 상태로 표시할 수 있다. 이에 따라, LED(240)를 다른 색, 예컨대 흰색 Blinking으로 표시하여, 사용자 또는 설치 관리자에게 해당 위치에서 5G CPE를 이동시키지 않을 것을 알려줄 수 있다.On the other hand, when 5G CPE is installed, it is possible to measure 5G signals and keep the 5G CPE in a stopped state in order to find the optimal reception angle. To this end, the LED 240 indicating the 5G NR signal strength may be displayed in a Blinking state. Accordingly, by displaying the LED 240 in a different color, for example, white Blinking, it is possible to inform the user or the installer that the 5G CPE is not to be moved at the corresponding location.
이하에서는, 본 발명에 따른 셀 선택 및 NR 측정 시나리오에 대해 설명하기로 한다. 이와 관련하여, 도 8a는 본 발명에 따른 5G CPE에서의 셀 선택 및 NR 측정 방법의 흐름도를 나타낸다. 한편, 도 8b는 본 발명의 일 실시 예에 따른 5G CPE에서의 송신 제어 동작의 흐름도를 나타낸다.Hereinafter, a cell selection and NR measurement scenario according to the present invention will be described. In this regard, FIG. 8A shows a flowchart of a cell selection and NR measurement method in 5G CPE according to the present invention. Meanwhile, FIG. 8B is a flowchart of a transmission control operation in 5G CPE according to an embodiment of the present invention.
도 8a를 참조하면, 5G CPE에서의 셀 선택 및 NR 측정 방법은 Power On 단계(S310), 주파수 스캐닝 단계(S321), PSS/SSS 동기화 단계(S322), MIB 수신 단계(S323) 및 SIB 수신 단계(S324)를 포함한다. 전술한 단계의 기술적 특징은 다음과 같다.Referring to FIG. 8A, the cell selection and NR measurement method in 5G CPE includes a Power On step (S310), a frequency scanning step (S321), a PSS/SSS synchronization step (S322), an MIB receiving step (S323), and a SIB receiving step. It includes (S324). The technical characteristics of the above steps are as follows.
1) Power On 단계(S310)1) Power On step (S310)
5G CPE는 이미 액세스된 cell이 있는 경우 저장되어 있는 cell information을 사용하고, 액세스된 cell이 없는 경우 cell search를 진행한다.5G CPE uses the stored cell information when there is an already accessed cell, and proceeds with a cell search when there is no accessed cell.
2) Cell search - Frequency scanning 단계(S321)2) Cell search-Frequency scanning step (S321)
5G CPE가 기지국이 속한 셀과의 시간 및 주파수 동기화를 획득하고 셀의 물리 계층 셀 ID를 검출하는 절차이다. 따라서, cell search을 통해 5G CPE는 기지국과 통신을 시작한다. This is a procedure in which the 5G CPE acquires time and frequency synchronization with the cell to which the base station belongs and detects the physical layer cell ID of the cell. Therefore, the 5G CPE starts communicating with the base station through cell search.
3) PSS/SSS synchronization 단계(S322)3) PSS/SSS synchronization step (S322)
5G CPE는 PSS(Primary synchronization signal)과 SSS(secondary synchronization signal)을 통해 PSS/SSS synchronization를 수행하여, cell selection이 가능하다.The 5G CPE performs PSS/SSS synchronization through a primary synchronization signal (PSS) and a secondary synchronization signal (SSS), enabling cell selection.
4) MIB 수신 단계 (S323) 및 SIB 수신 단계 (S324)4) MIB receiving step (S323) and SIB receiving step (S324)
기지국은 동기신호(예. PSS, SSS)와 셀 공통신호(예. CRS)를 주기적으로 전송하고, PBCH도 주기적으로 전송한다.The base station periodically transmits synchronization signals (eg PSS, SSS) and cell common signals (eg CRS), and also periodically transmits PBCH.
5G CPE는 PSS, SSS, CRS, PBCH를 수신하여 동기를 획득하고, PBCH에 포함된 MIB(Master information block)을 복호하고, 이를 PDSCH 탐색과 SIB 수신하기 위해 사용한다.The 5G CPE acquires synchronization by receiving PSS, SSS, CRS, and PBCH, and decodes the MIB (Master information block) included in the PBCH, and uses it for PDSCH discovery and SIB reception.
MIB는 PBCH를 통해 전송되고, 망 접속에 필요한 기본 정보, Broadcast downlink 대역폭 정보 및 SFN(System frame number)를 포함한다MIB is transmitted through PBCH and includes basic information required for network access, broadcast downlink bandwidth information, and SFN (System frame number).
SIB는 PDSCH를 통해 전송되고, SIB message는 종류에 따라 전송 주기가 다르다. 한편, 전송 주기가 같은 SIB message를 하나의 SI(system information) 메시지로 결합하여 전송될 수 있다.The SIB is transmitted through the PDSCH, and the transmission period of the SIB message is different according to the type. Meanwhile, an SIB message having the same transmission period may be combined and transmitted as a single system information (SI) message.
도 8b를 참조하면, 본 발명에 따른 5G CPE의 5G NR 신호 송신 제어 방법의 주요 특징을 나타낸다. Referring to FIG. 8B, it shows the main features of the 5G NR signal transmission control method of the 5G CPE according to the present invention.
이와 관련하여, 5G NR에서 사용하는 6GHz 이상의 5G NR 신호는 기존 통신 신호 대비 FCC 규격이 엄격하다. 따라서, 5G NR에서 사용하는 6GHz 이상의 고 주파수 대역의 Tx power가 인체에 유해한 영향을 미칠 수 있다. 이러한 문제점을 해결하기 위해, 본발명에서는 다음과 같은 2가지 Tx disable 방법을 제안한다.In this regard, 5G NR signals of 6 GHz or higher used in 5G NR have strict FCC standards compared to conventional communication signals. Therefore, the Tx power of a high frequency band of 6 GHz or higher used in 5G NR may have a harmful effect on the human body. To solve this problem, the present invention proposes the following two Tx disable methods.
방법1 Method 1 . Cell selection 이전에 Tx 신호를 완전히 제한(restrict)하는 방법. How to completely restrict the Tx signal before cell selection
Control을 위한 최소한의 Tx 신호도 전송하는 것을 제한하고, PBCH 정보만을 활용한다. 이 경우에도, RRC 연결 Fail 시 재시도가 추가되지만, 5G NR 송신 신호 노출에 대한 높은 safety 레벨을 제공할 수 있다.It limits transmission of the minimum Tx signal for control and utilizes only PBCH information. Even in this case, a retry is added when the RRC connection fails, but a high safety level for 5G NR transmission signal exposure can be provided.
방법2 Method 2 . RRC 연결 이후 최소한의 Tx 신호 전송만 허용하는 방법. How to allow only minimum Tx signal transmission after RRC connection
RRC 연결(connection)된 경우, 수신 신호 품질, 예컨대, RSRP를 활용한다. 구체적으로, RRC 상태 보고(report)를 위한 Tx 신호 전송만 허용하고, internet service 등을 위한 user data 전송은 5G CPE 설치가 완료된 경우에만 허용한다.In the case of RRC connection, the received signal quality, for example, RSRP is utilized. Specifically, only Tx signal transmission for RRC status report is allowed, and user data transmission for internet service, etc. is allowed only when 5G CPE installation is completed.
짧은 시간 동안 특정 제어 정보에 대한 Tx 신호 전송은 허용하므로, 방법 1에 비해 완전한 Tx disable 방식은 아니다. 하지만, 링크 품질이 양호하지 않은 경우에도 링크 연결을 유지할 수 있다. 또한, 5G CPE의 포지셔닝 및 틸트와 같은 위치 선정 시, 5G CPE 설치의 높은 성공률을 제공할 수 있다.Since Tx signal transmission for specific control information for a short time is allowed, it is not a complete Tx disable method compared to Method 1. However, the link connection can be maintained even when the link quality is not good. In addition, when selecting a location such as positioning and tilting of 5G CPE, it can provide a high success rate of 5G CPE installation.
한편, 도 5a, 도 5b 및 도 8b를 참조하여, 본 발명에 따른 5G 통신 중계 장치, 즉 5G CPE의 제어 동작에 대해 설명하면 다음과 같다. 이와 관련하여, 송수신부(520)는 무선 신호, 특히 5G NR 신호를 송신 및 수신하도록 구성된다. 한편, 제어부(510)는 송수신부(520)와 연결되고, 기지국으로부터 수신된 무선 신호를 전자 기기(100)로 제공하도록 구성된다. 또한, 제어부(510)는 테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다.Meanwhile, a control operation of a 5G communication relay device, that is, a 5G CPE, according to the present invention will be described with reference to FIGS. 5A, 5B, and 8B. In this regard, the transceiving unit 520 is configured to transmit and receive radio signals, in particular 5G NR signals. Meanwhile, the control unit 510 is connected to the transmission/reception unit 520 and is configured to provide a radio signal received from the base station to the electronic device 100. In addition, when a cell search is initiated in a test mode, the controller 510 may control a radio signal not to be transmitted through the transmission/reception unit 520.
이와 관련하여, 제어부(510)는 물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신(S324)할 수 있다. 이에 따라, 제어부(510)는 SIB가 수신된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행할 수 있다.In this regard, the controller 510 may receive a system information block (SIB) through a physical downlink shared channel (PDSCH) (S324). Accordingly, when the SIB is received, the controller 510 may perform a TX disable process so that the radio signal is not transmitted through the transceiver 520.
한편, TX 비활성화(Disable)가 개시되는 시점이 SIB가 수신된 시점으로 한정되는 것은 아니다. 대안으로, TX 비활성화(Disable)가 개시되는 시점이 MIB가 수신된 시점에서 이루어질 수 있다. 이와 관련하여, 제어부(510)는 물리 방송 채널(physical broadcast channel: PBCH)를 통해 마스터 정보 블록(master information block: MIB)을 수신(S323)할 수 있다. 이에 따라, 제어부(510)는 MIB가 수신된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행할 수 있다.Meanwhile, the timing at which TX disable is initiated is not limited to the timing at which the SIB is received. Alternatively, a time point at which TX disable is initiated may be made at a time point at which the MIB is received. In this regard, the control unit 510 may receive (S323) a master information block (MIB) through a physical broadcast channel (PBCH). Accordingly, when the MIB is received, the controller 510 may perform a TX disable process so that the radio signal is not transmitted through the transceiver 520.
이러한 TX 비활성화(Disable) 과정은 5G 통신 중계 장치의 설치(installation)가 완료되면 종료될 수 있다. 이에 따라, 5G 통신 중계 장치의 설치가 완료되면, TX 활성화(Enable) 과정이 수행될 수 있다. 따라서, 제어부(510)는 5G 통신 중계 장치의 설치(installation)가 완료된 것으로 판단되면 무선 신호가 송수신부(520)를 통해 송신될 수 있도록 TX 활성화(Enable) 과정을 수행할 수 있다.This TX disable process may be terminated when the installation of the 5G communication relay device is completed. Accordingly, when the installation of the 5G communication relay device is completed, a TX activation process may be performed. Accordingly, when it is determined that the installation of the 5G communication relay device has been completed, the controller 510 may perform a TX activation process so that a radio signal can be transmitted through the transceiver 520.
한편, 전술한 방법 1이 사용되는 경우에도, 무선 자원 제어(radio resource control: RRC) 연결(connection)이 실패(fail)한 경우, RRC 재설정(re-establishment)을 위한 제어 신호는 송신될 수 있다. 이를 위해, 제어부(510)는 무선 자원 제어(radio resource control: RRC) 연결(connection)이 실패(fail)한 경우, RRC 재설정(re-establishment)을 위한 제어 신호는 송신될 수 있도록 제어할 수 있다. Meanwhile, even when the above-described Method 1 is used, when a radio resource control (RRC) connection fails, a control signal for RRC re-establishment may be transmitted. . To this end, the control unit 510 may control a control signal for RRC re-establishment to be transmitted when a radio resource control (RRC) connection fails. .
구체적으로, 제어부(510)는 무선 자원 제어(radio resource control: RRC) 연결(connection)이 실패(fail)한 경우, RRC 재설정(re-establishment)을 위한 제어 신호는 송신될 수 있도록 기지국으로 RRC 재설정 요청을 송수신부(520)를 통해 기지국으로 전송할 수 있다. 이러한 RRC 재설정 요청은 5G 기지국으로 전송되지만, 5G non-stand-alone(NSA) 구조에서는 4G 기지국 및/또는 5G 기지국으로 전송될 수 있다. 이에 따라, RRC 연결 요청의 신뢰성을 향상시키고 빠른 시간 내에 RRC 연결이 재설정될 수 있다는 장점이 있다.Specifically, the control unit 510 resets the RRC to the base station so that when a radio resource control (RRC) connection fails, a control signal for re-establishment can be transmitted. The request may be transmitted to the base station through the transceiver 520. The RRC reconfiguration request is transmitted to the 5G base station, but may be transmitted to the 4G base station and/or the 5G base station in the 5G non-stand-alone (NSA) structure. Accordingly, there is an advantage in that the reliability of the RRC connection request can be improved and the RRC connection can be reset within a short time.
이에 따라, RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 다시 TX 비활성화(Disable) 상태를 유지할 필요가 있다. 따라서, 제어부(510)는 RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다.Accordingly, when the RRC connection is successful and becomes an RRC-connected state, it is necessary to maintain the TX disabled state again. Therefore, when the RRC connection is successful and the RRC-connected state is reached, the control unit 510 controls the radio signal to not be transmitted through the transceiver 520 until the test process according to the test mode is completed. can do.
한편, 방법 2와 같이 예외적으로 특정 제어 정보의 송신은 허용하는 경우, 제어 정보와 사용자 데이터에 대해 다른 방식이 적용될 수 있다. 이와 관련하여, 제어부(510)는 RRC 연결 상태(RRC-connected state)에서 RRC 상태 보고(state report)를 위한 제어 데이터를 위한 제1 무선 신호는 송신되도록 송수신부(520)를 제어할 수 있다. 반면에, 제어부(510)는 사용자 데이터(user data)를 위한 제2 무선 신호는 송신되지 않도록 송수신부(520)를 제어할 수 있다.On the other hand, when the transmission of specific control information is exceptionally allowed as in Method 2, different methods may be applied to the control information and user data. In this regard, the control unit 510 may control the transmission/reception unit 520 to transmit the first radio signal for control data for an RRC state report in an RRC-connected state. On the other hand, the control unit 510 may control the transmission/reception unit 520 so that the second radio signal for user data is not transmitted.
이와 관련하여, '송수신부(520)를 제어'의 의미는 제어부(510)가 데이터를 포함하는 신호를 생성하지 않는다는 의미로 해석 가능하다. 또한, 제어부(510)가 데이터를 포함하는 신호를 생성하지만 데이터를 포함하는 신호를 송수신부(520)로 전달하지 않는다는 의미로 해석 가능하다. 또한, 제어부(510)가 데이터를 포함하는 신호를 전달하지만, 송수신부(520)가 상기 신호를 안테나를 통해 기지국 또는 주변 전달기기로 송신하지 않는다는 의미로 해석 가능하다. 이와 관련하여, 송수신부(520)의 전력 증폭기 전단 또는 후단에 구비되는 스위치를 오프(OFF)하여 상기 신호가 증폭되지 않거나 안테나를 통해 송신되지 않도록 제어할 수 있다.In this regard, the meaning of “controlling the transmission/reception unit 520” can be interpreted as meaning that the controller 510 does not generate a signal including data. In addition, it can be interpreted as meaning that the control unit 510 generates a signal including data, but does not transmit a signal including data to the transmission/reception unit 520. In addition, it can be interpreted as meaning that the control unit 510 transmits a signal including data, but the transmission/reception unit 520 does not transmit the signal to a base station or a peripheral transmission device through an antenna. In this regard, by turning off a switch provided at the front or rear end of the power amplifier of the transmission/reception unit 520, the signal may not be amplified or transmitted through an antenna.
한편, 본 발명에 따른 5G CPE의 신호 송신 제어 방법은 5G non-stand-alone(NSA) 구조 및 5G stand-alone(SA) 구조에서 모두 지원될 수 있다. 이와 관련하여, 도 9a는 5G NSA 구조에서 무선 인터페이스 간 핸드오버를 나타낸다. 반면에, 도 9b는 5G SA 구조에서 무선 인터페이스 간 핸드오버를 나타낸다.Meanwhile, the method for controlling signal transmission of 5G CPE according to the present invention may be supported in both a 5G non-stand-alone (NSA) structure and a 5G stand-alone (SA) structure. In this regard, FIG. 9A shows handover between air interfaces in a 5G NSA structure. On the other hand, FIG. 9B shows handover between air interfaces in a 5G SA structure.
도 9a (a)는 NSA 구조에서 5G UE 또는 5G CPE가 4G 기지국에서 5G 기지국으로 핸드오버 하는 일 실시예를 나타낸다. 여기서, LTE는 4G 기지국을 의미하고, eNB로 지칭할 수 있다. 반면에, gNB는 5G NR 기지국에 해당한다. 도 9a (a)를 참조하면, NSA 네트워크(NW)에 의한 LTE-NR 핸드오버가 evolved packet core (EPC) 제어 하에 이루어진다. 여기서, EPC는 4G 코어 네트워크에 해당하고, 4G 기지국과 5G 기지국이 모두 EPC에 연결될 수 있다. 한편, 5G UE 또는 5G CPE가 5G 기지국으로 핸드오버 된 경우에도, 5G UE 또는 5G CPE는 eNB와 gNB를 통해 이중 연결 상태, 즉 EUTRAN NR Dual Connectivity (EN-DC)를 유지할 수 있다.9a (a) shows an embodiment in which a 5G UE or 5G CPE handovers from a 4G base station to a 5G base station in an NSA structure. Here, LTE refers to a 4G base station and may be referred to as an eNB. On the other hand, gNB corresponds to a 5G NR base station. 9A (a), LTE-NR handover by an NSA network (NW) is performed under evolved packet core (EPC) control. Here, the EPC corresponds to a 4G core network, and both the 4G base station and the 5G base station may be connected to the EPC. On the other hand, even when the 5G UE or 5G CPE is handed over to the 5G base station, the 5G UE or 5G CPE can maintain a dual connectivity state, that is, EUTRAN NR Dual Connectivity (EN-DC) through the eNB and gNB.
반면에, 도 9a (b)는 NSA 구조에서 5G UE 또는 5G CPE가 4G 기지국에서 5G 기지국으로 핸드오버 하는 다른 실시예를 나타낸다. 여기서, eLTE는 4G 기지국을 의미하고, eNB로 지칭할 수 있다. 반면에, gNB는 5G NR 기지국에 해당한다. 도 9a (b)를 참조하면, NSA 네트워크(NW)에 의한 LTE-NR 핸드오버가 5G Core (5GC) 제어 하에 이루어진다. 여기서, 5GC는 5G 코어 네트워크에 해당하고, 4G 기지국과 5G 기지국이 모두 5GC에 연결될 수 있다. 한편, 5G UE 또는 5G CPE가 5G 기지국으로 핸드오버 된 경우에도, 5G UE 또는 5G CPE는 eNB와 gNB를 통해 이중 연결 상태, 즉 EUTRAN NR Dual Connectivity (EN-DC)를 유지할 수 있다.On the other hand, Figure 9a (b) shows another embodiment of a 5G UE or 5G CPE handover from a 4G base station to a 5G base station in the NSA structure. Here, eLTE refers to a 4G base station and may be referred to as an eNB. On the other hand, gNB corresponds to a 5G NR base station. 9A (b), LTE-NR handover by the NSA network (NW) is performed under the control of 5G Core (5GC). Here, 5GC corresponds to a 5G core network, and both the 4G base station and the 5G base station may be connected to the 5GC. On the other hand, even when the 5G UE or 5G CPE is handed over to the 5G base station, the 5G UE or 5G CPE can maintain a dual connectivity state, that is, EUTRAN NR Dual Connectivity (EN-DC) through the eNB and gNB.
도 9b (a)는 SA 구조에서 5G UE 또는 5G CPE가 4G 기지국에서 5G 기지국으로 핸드오버 하는 일 실시예를 나타낸다. 여기서, LTE는 4G 기지국을 의미하고, eNB로 지칭할 수 있다. 반면에, gNB는 5G NR 기지국에 해당한다. 도 9b (a)를 참조하면, SA 네트워크(NW)에 의한 LTE-NR 핸드오버를 통해 evolved packet core (EPC)에서 5G Core (5GC)로의 핸드오버도 수행된다.9b (a) shows an embodiment in which a 5G UE or a 5G CPE handovers from a 4G base station to a 5G base station in an SA structure. Here, LTE refers to a 4G base station and may be referred to as an eNB. On the other hand, gNB corresponds to a 5G NR base station. 9B (a), a handover from an evolved packet core (EPC) to a 5G core (5GC) is also performed through an LTE-NR handover by an SA network (NW).
도 9b (b)는 SA 구조에서 5G UE 또는 5G CPE가 4G 기지국에서 5G 기지국으로 핸드오버 하는 다른 실시예를 나타낸다. 여기서, eLTE는 4G 기지국을 의미하고, eNB로 지칭할 수 있다. 반면에, gNB는 5G NR 기지국에 해당한다. 도 9b (b)를 참조하면, SA 네트워크(NW)에 의한 LTE-NR 핸드오버가 5G Core (5GC) 제어 하에 이루어진다. 여기서, 5GC는 5G 코어 네트워크에 해당하고, 4G 기지국과 5G 기지국이 모두 5GC에 연결될 수 있다.9b (b) shows another embodiment in which a 5G UE or 5G CPE handovers from a 4G base station to a 5G base station in an SA structure. Here, eLTE refers to a 4G base station and may be referred to as an eNB. On the other hand, gNB corresponds to a 5G NR base station. Referring to FIG. 9B (b), LTE-NR handover by an SA network (NW) is performed under 5G Core (5GC) control. Here, 5GC corresponds to a 5G core network, and both the 4G base station and the 5G base station may be connected to the 5GC.
한편, 전술한 다양한 형태의 5G NR 배치(deployment)에서, 본 발명에 따른 5G CPE의 신호 송신 제어 방법이 다음과 같이 수행될 수 있다. 구체적으로, 방법 1 (Tx를 완전히 제한하는 방법)와 방법2(User data를 위한 Tx만 제한하는 방법)는 표 1과 같은 시나리오에서 NR로 변경(transition)이 이루어진다. 이러한 NR로의 변경에 따라 5G mmWave 통신 서비스가 제공될 수 있는 영역인지를 판단하기 위해 전술한 “Tx disable” 알고리즘을 모두 적용할 수 있다.Meanwhile, in the above-described various types of 5G NR deployment, the method for controlling signal transmission of 5G CPE according to the present invention may be performed as follows. Specifically, Method 1 (a method of completely limiting Tx) and Method 2 (a method of limiting only Tx for user data) are transitioned to NR in the scenario shown in Table 1. In order to determine whether a 5G mmWave communication service can be provided according to the change to NR, all of the above-described “Tx disable” algorithms may be applied.
DeploymentDeployment NSANSA SASA
NR로 이동가능한 시나리오Scenarios that can be moved to NR LTE => NR(A)LTE => NR(A) 1) NR (B)2) LTE => NR(A)1) NR (B) 2) LTE => NR(A)
Tx disable 적용 가능 여부Whether Tx disable is applicable 방법 1 및 방법 2 모두 적용 가능Applicable to both Method 1 and Method 2 방법 1 및 방법 2 모두 적용 가능Applicable to both Method 1 and Method 2
이와 관련하여, (A)와 같이 NSA 또는 SA 구조에서 LTE => NR로 변경되는 경우, LTE attach 상태에서 5G UE 또는 5G CPE가 NR 커버리지에 있는 경우, NR로 핸드오버가 수행될 수 있다.In this regard, when the NSA or SA structure is changed to LTE => NR as shown in (A), when the 5G UE or 5G CPE is in NR coverage in the LTE attach state, handover to NR may be performed.
반면에, (B)와 같이 Core 네트워크 deployment가 (A)와 상이한 경우, NR로 핸드오버가 수행됨에 따라 5G gNB를 통해서만 통신이 수행될 수 있다.On the other hand, when the Core network deployment is different from (A) as shown in (B), communication may be performed only through 5G gNB as handover is performed to NR.
도 5a, 도 5b, 도 8b, 도 9a 및 도 9b를 참조하면, 제어부(510)는 LTE에서 new radio (NR)로 무선 인터페이스가 변경되어 NR 셀 탐색(NR cell search)이 개시된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다. 구체적으로, 반면에, NR 셀 탐색(NR cell search)이 개시된 경우, 제어부(510)는 5G 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다. 반면에, 반면에, NR 셀 탐색(NR cell search)이 개시된 경우, 제어부(510)는 4G 무선 신호는 송수신부(520)를 통해 선택적으로 송신되도록 제어할 수 있다. 예를 들어, 제어부(510)는 NR 셀 탐색 및 선택을 위한 제어 정보를 4G 무선 신호를 통해 송신되도록 송수신부(520)를 제어할 수 있다.5A, 5B, 8B, 9A, and 9B, when the radio interface is changed from LTE to new radio (NR) and NR cell search is started, a radio signal It can be controlled not to be transmitted through the transceiver 520. Specifically, on the other hand, when NR cell search is initiated, the controller 510 may control the 5G radio signal not to be transmitted through the transceiver 520. On the other hand, on the other hand, when NR cell search is initiated, the control unit 510 may control the 4G radio signal to be selectively transmitted through the transmission/reception unit 520. For example, the controller 510 may control the transceiver 520 to transmit control information for searching and selecting an NR cell through a 4G radio signal.
전술한 방법 1과 관련하여, 5G non-stand-alone(NSA) 구조 및 5G stand-alone(SA) 구조에서 다음과 같은 방식으로 Tx 신호 송신을 제한할 수 있다. 구체적으로, 5G non-stand-alone(NSA) 구조 및 5G stand-alone(SA) 구조에서 LTE에서 new radio (NR)로 무선 인터페이스가 변경되어 NR 셀 탐색(NR cell search)이 개시된 경우, 제어부(510)는 다음과 같이 동작을 수행할 수 있다. 이와 관련하여, 제어부(510)는 물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신할 수 있다. 또한, 제어부(510)는 SIB가 수신된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다. 이와 관련하여, 전술한 방법 1과 같은 방식을 사용하여 5G Tx 신호의 송신을 가능한 방지할 수 있다는 장점이 있다.Regarding the above-described Method 1, in the 5G non-stand-alone (NSA) structure and the 5G stand-alone (SA) structure, Tx signal transmission may be restricted in the following manner. Specifically, when the radio interface is changed from LTE to new radio (NR) in the 5G non-stand-alone (NSA) structure and the 5G stand-alone (SA) structure, and NR cell search is initiated, the controller ( 510 may perform an operation as follows. In this regard, the controller 510 may receive a system information block (SIB) through a physical downlink shared channel (PDSCH). In addition, when the SIB is received, the controller 510 may control a radio signal not to be transmitted through the transceiving unit 520 until a test process according to the test mode is completed. In this regard, there is an advantage in that transmission of a 5G Tx signal can be prevented as much as possible by using the same method as in Method 1 described above.
한편, 전술한 방법 2와 관련하여, 5G stand-alone(SA) 구조에서 new radio (NR)로 초기 액세스(initial access)를 수행하는 경우, 제어부(510)는 다음과 같이 동작을 수행할 수 있다. 이와 관련하여, 제어부(510)는 RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 되면 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다. 이와 관련하여, 도 9b (b)를 참조하면, 5G SA 구조에서 5G NW로만 초기 접속하는 경우에는 4G NW를 통한 제어 정보의 전송이 어렵게 된다. 따라서, 5G SA 구조에서 5G NW로의 초기 액세스 시, SIB를 수신한 이후에도 RRC 연결 상태가 될 때까지는 제어 정보 등의 전송을 위해 Tx 신호를 송신할 필요가 있다.On the other hand, with respect to the above-described Method 2, when performing initial access with a new radio (NR) in a 5G stand-alone (SA) structure, the controller 510 may perform an operation as follows. . In this regard, when the RRC connection is successful and the RRC-connected state is reached, the control unit 510 controls the radio signal not to be transmitted through the transceiver 520 until the test process according to the test mode is completed. can do. In this regard, referring to FIG. 9B (b), in the case of initial access only to 5G NW in the 5G SA structure, it is difficult to transmit control information through 4G NW. Therefore, in the initial access to the 5G NW in the 5G SA structure, it is necessary to transmit the Tx signal for transmission of control information and the like until the RRC connection state is established even after receiving the SIB.
한편, 본 발명에 따른 5G CPE의 5G 신호 송신 제어 방법과 관련하여, 수신 신호 품질(received signal quality)에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 또는 재설치 절차를 수행할 수 있다. 이와 관련하여, 도 10a는 본 발명에 따른 5G CPE에서 LTE 및 NR 접속 방법의 흐름도를 나타낸다. 또한, 도 10b는 본 발명의 일 실시 예에 따른 5G CPE와 복수의 기지국 간의 메시지를 교환하는 흐름도를 나타낸다.On the other hand, with respect to the 5G signal transmission control method of 5G CPE according to the present invention, based on received signal quality, a TX enable procedure, a tilting procedure, or a reinstallation procedure can be performed. have. In this regard, Figure 10a shows a flow chart of the LTE and NR access method in 5G CPE according to the present invention. In addition, FIG. 10B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to an embodiment of the present invention.
도 10a를 참조하면, 5G CPE는 셀 선택(cell selection) 단계(S320) 이전부터 TX 비활성화(Disable) 과정을 수행할 수 있다. 한편, 5G CPE는 Power On 단계(S310) 및 셀 선택 단계(S320)를 수행할 수 있다. 여기서, 도 8a, 도 8b 및 도 10a를 참조하면, 셀 선택 단계(S320)는 주파수 스캐닝 단계(S321), PSS/SSS 동기화 단계(S322), MIB 수신 단계(S323) 및 SIB 수신 단계(S324)를 포함할 수 있다. Referring to FIG. 10A, the 5G CPE may perform a TX disable process from before the cell selection step S320. Meanwhile, the 5G CPE may perform a power on step (S310) and a cell selection step (S320). Here, referring to FIGS. 8A, 8B and 10A, the cell selection step (S320) includes a frequency scanning step (S321), a PSS/SSS synchronization step (S322), an MIB receiving step (S323), and an SIB receiving step (S324). It may include.
한편, 5G CPE는 LTE Attach 및 PDN 셋업 단계(S330)을 더 수행할 수 있다. 이후, 5G CPE는 LTE Attach 및 PDN 셋업 단계(S330)에 후속하여 NR 측정 및 보고 과정(S130)을 더 수행할 수 있다. NR 측정 및 보고 과정(S130)과 관련하여, 5G UE 또는 5G CPE는 3GPP TS38.133에 정의된 cell selection과 reselection을 위해서 measurement를 진행할 수 있다. 이와 관련하여, Non-Serving cell에서 지원하는 Srxlev과 Squal 파라미터를 사용하여 신호 강도를 확인할 수 있다.Meanwhile, the 5G CPE may further perform an LTE Attach and PDN setup step (S330). Thereafter, the 5G CPE may further perform an NR measurement and reporting process (S130) following the LTE Attach and PDN setup step (S330). Regarding the NR measurement and reporting process (S130), the 5G UE or 5G CPE may perform measurement for cell selection and reselection defined in 3GPP TS38.133. In this regard, the signal strength can be checked using the Srxlev and Squal parameters supported by the non-serving cell.
구체적으로, 5G UE 또는 5G CPE는 다음과 같은 과정을 통해 NR 측정 및 보고 과정(S130)을 수행할 수 있다.Specifically, the 5G UE or 5G CPE may perform the NR measurement and reporting process (S130) through the following process.
1) 5G UE 또는 5G CPE는 RF 채널을 스캔(scan)하여 NR 대역(band)을 확인하고, 5G UE 또는 5G CPE의 능력(capability)를 확인한다.1) The 5G UE or 5G CPE scans the RF channel to check the NR band, and checks the capability of the 5G UE or 5G CPE.
2) PBCH와 PDSCH를 통해 MIB(Master Information Block)과 SIB(System Information Block)을 수신한다. 2) Receives MIB (Master Information Block) and SIB (System Information Block) through PBCH and PDSCH.
3) 3GPP TS38.133의 5.2.3.2(Cell selection criterion)의 Srxlev와 squal을 사용하여 수신 신호 품질 (예: 수신 신호 강도)가 가장 우수한 셀의 신호 품질(예: 신호 강도, power 세기)를 확인한다.3) Using Srxlev and squal of 5.2.3.2 (Cell selection criterion) of 3GPP TS38.133, check the signal quality (eg, signal strength, power strength) of the cell with the best received signal quality (eg, received signal strength). do.
4) 5G NR의 경우, 5G 주파수의 특성상 LOS(Line of Sight) 특성을 보장받거나 또는 5G 기지국과의 거리가 근접한 경우, 우수한 신호 품질 (예: 최대 power 세기)의 신호를 수신할 수 있다.4) In the case of 5G NR, when the LOS (Line of Sight) characteristic is guaranteed due to the characteristic of 5G frequency, or when the distance to the 5G base station is close, signals with excellent signal quality (eg, maximum power strength) can be received.
도 5a, 도 5b, 도 8a, 도 8b 및 도 10a를 참조하면, 제어부(510)는 무선 신호가 송수신부(520)를 통해 송신되지 않는 TX 비활성화(Disable) 과정에서 수신 신호 품질(received signal quality)에 기반하여 서로 다른 절차를 수행할 수 있다. 이와 관련하여, 제어부(510)는 수신 신호 품질에 기반하여 TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다. 5A, 5B, 8A, 8B, and 10A, the control unit 510 determines received signal quality in the TX disable process in which a radio signal is not transmitted through the transmission/reception unit 520. ), you can perform different procedures. In this regard, the control unit 510 may control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on the received signal quality.
구체적으로, 제어부(510)는 SIB가 수신된 경우, 수신 신호 품질이 가장 우수한 셀을 선택할 수 있다. 또한, 제어부(510)는 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다.Specifically, when the SIB is received, the controller 510 may select a cell having the best received signal quality. In addition, the controller 510 may control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on a Cell Selection RX level value or a Cell Selection quality value of the selected cell.
도 10b를 참조하면, 5G UE 또는 5G CPE는 제1 기지국, 즉 마스터 기지국(MeNB)을 통해 RRCConnectionReconfiguration 메시지를 수신할 수 있다. 여기서, 제1 기지국, 즉 마스터 기지국(MeNB)은 4G LTE 기지국일 수 있다. 이에 따라, RRCConnectionReconfiguration 메시지를 수신한 5G UE 또는 5G CPE는 NR Measurements를 수행할 수 있다. Referring to FIG. 10B, a 5G UE or 5G CPE may receive an RRCConnectionReconfiguration message through a first base station, that is, a master base station (MeNB). Here, the first base station, that is, the master base station (MeNB) may be a 4G LTE base station. Accordingly, the 5G UE or 5G CPE receiving the RRCConnectionReconfiguration message may perform NR Measurements.
이와 관련하여, 5G UE 또는 5G CPE의 제어부(510)는 수신 신호 품질에 기반하여 5G CPE가 NR 셀에 등록(register) 가능하다고 판단되면, NR Measurements report를 제1 기지국을 통해 제2 기지국으로 전달할 수 있다. 여기서, NR Measurements report는 RRCConnectionReconfigurationComplete 메시지 이후 MeasurementReport 메시지를 통해 전달될 수 있다. 반면에, 제어부(510)는 수신 신호 품질에 기반하여 5G CPE가 NR 셀에 등록 가능하지 않다고 판단되면, NR Measurements report를 제1 기지국을 통해 제2 기지국으로 전달하지 않는다. In this regard, when it is determined that the 5G CPE can register in the NR cell based on the received signal quality, the control unit 510 of the 5G UE or 5G CPE transmits the NR Measurements report to the second base station through the first base station. I can. Here, the NR Measurements report may be delivered through a MeasurementReport message after the RRCConnectionReconfigurationComplete message. On the other hand, if it is determined that the 5G CPE is not registerable in the NR cell based on the received signal quality, the control unit 510 does not transmit the NR Measurements report to the second base station through the first base station.
이와 관련하여, RRCConnectionReconfigurationComplete 메시지를 수신한 제1 기지국, 즉 마스터 기지국(MeNB)은 제2 기지국, 즉 세컨더리 기지국(SeNB)로 SeNB Modification Confirm 메시지를 전달할 수 있다. 여기서, 제2 기지국, 즉 세컨더리 기지국(SeNB)은 5G NR 기지국일 수 있다. 5G NSA 구조에서 5G NR 기지국은 세컨더리 기지국(SeNB)으로 해석될 수 있다. 또한, MeasurementReport 메시지를 수신한 제1 기지국, 즉 마스터 기지국(MeNB)은 제2 기지국, 즉 세컨더리 기지국(SeNB)로 SCG 설정 정보 메시지, 즉 SCGConfigInfoGUTRA 메시지를 전달할 수 있다.In this regard, the first base station receiving the RRCConnectionReconfigurationComplete message, that is, the master base station (MeNB), may transmit the SeNB Modification Confirm message to the second base station, that is, the secondary base station (SeNB). Here, the second base station, that is, the secondary base station (SeNB) may be a 5G NR base station. In the 5G NSA structure, the 5G NR base station can be interpreted as a secondary base station (SeNB). In addition, the first base station receiving the MeasurementReport message, that is, the master base station (MeNB), may transmit the SCG configuration information message, that is, the SCGConfigInfoGUTRA message, to the second base station, that is, the secondary base station (SeNB).
셀 선택과 관련하여, 제어부 (프로세서)(510)는 SIB가 수신된 경우, 수신 신호 품질이 가장 우수한 셀을 선택할 수 있다. 또한, 제어부 (프로세서)(510)는 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다. 이와 관련하여, 수신 신호 품질에 기반하여 상기 5G CPE가 NR 셀에 등록(register) 가능하다고 판단되면, 제어부 (프로세서)(510)는 TX 활성화(Enable) 절차를 수행할 수 있다.Regarding cell selection, the control unit (processor) 510 may select a cell having the best received signal quality when SIB is received. In addition, the control unit (processor) 510 can control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on the Cell Selection RX level value or Cell Selection quality value of the selected cell. have. In this regard, if it is determined that the 5G CPE can be registered in the NR cell based on the received signal quality, the control unit (processor) 510 may perform a TX activation procedure.
한편, 도 11은 본 발명의 일 실시 예에 따른 5G CPE에서 수신 신호 품질 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다.Meanwhile, FIG. 11 is a flowchart of a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to an embodiment of the present invention.
도 5a, 도 5b, 도 6, 도 8a, 도 8b, 도 10a 및 도 11을 참조하면, 5G CPE의 제어부(510)는 Tx disable 상태에서 NR 측정 과정(S130)을 수행할 수 있다. NR 측정 과정(S130)에서, 수신 신호 품질, 즉 Srxlev 또는 squal이 제1 임계치(Threshold #1) 이상이면, 테스트 모드를 종료하고 TX 활성화(Enable) 절차(S150)를 수행하도록 제어할 수 있다. TX 활성화(Enable) 절차(S150)에서, NR 측정 보고 과정이 수행될 수 있다. 5A, 5B, 6, 8A, 8B, 10A, and 11, the controller 510 of the 5G CPE may perform the NR measurement process (S130) in the Tx disable state. In the NR measurement process (S130), if the received signal quality, that is, Srxlev or squal is greater than or equal to the first threshold (Threshold #1), the test mode may be terminated and the TX activation procedure (S150) may be performed. In the TX activation procedure (S150), an NR measurement report process may be performed.
한편, 수신 신호 품질, 즉 Srxlev 또는 squal이 제1 임계치(Threshold #1) 미만이고 제2 임계치(Threshold #2) 이상이면, 제어부(510)는 틸팅 절차(S140)를 수행하도록 제어할 수 있다. 수신 신호 품질에 따라 LED 색을 변경하여 표시하는 LED 제어가 수행될 수 있다.On the other hand, if the received signal quality, that is, Srxlev or squal is less than the first threshold #1 and more than the second threshold #2, the controller 510 may control to perform the tilting procedure (S140). LED control that changes and displays the LED color according to the received signal quality can be performed.
반면에, 수신 신호 품질, 즉 Srxlev 또는 squal이 제2 임계치(Threshold #2) 미만이면, 제어부(510)는 설치 장소를 이동하여 재설치 절차를 수행하도록 제어(S160)할 수 있다. 재설치 절차가 수행되어야 하는 것을 사용자 또는 설치 관리자에게 알리기 위해 수신 신호 품질에 따라 LED 색을 변경하여 표시하거나 또는 LED 색을 달리하여 blinking하는 LED 제어가 수행될 수 있다.On the other hand, if the received signal quality, that is, Srxlev or squal is less than the second threshold (Threshold #2), the control unit 510 may move the installation location and perform a re-installation procedure (S160). In order to inform the user or the installer that the re-installation procedure should be performed, the LED control may be performed by changing the LED color according to the received signal quality and displaying or blinking by changing the LED color.
한편, 도 12a는 본 발명의 다른 실시 예에 따른 5G CPE에서 LTE 및 NR 접속 방법의 흐름도를 나타낸다. 또한, 도 12b는 본 발명의 다른 실시 예에 따른 5G CPE와 복수의 기지국 간의 메시지를 교환하는 흐름도를 나타낸다.Meanwhile, FIG. 12A is a flowchart of a method of accessing LTE and NR in 5G CPE according to another embodiment of the present invention. In addition, FIG. 12B is a flowchart illustrating a message exchange between a 5G CPE and a plurality of base stations according to another embodiment of the present invention.
도 12a를 참조하면, 도 10a의 절차와 유사하지만, 모든 Tx 신호 전송이 제한되는 것은 아니고 control data 전송은 허용된다는 차이점이 있다. Referring to FIG. 12A, it is similar to the procedure of FIG. 10A, except that transmission of all Tx signals is not restricted and control data transmission is allowed.
도 12a를 참조하면, 5G CPE는 셀 선택(cell selection) 단계(S320) 이전부터 특정 control data 전송을 제외한 TX 비활성화(Disable) 과정을 수행할 수 있다. 한편, 5G CPE는 Power On 단계(S310) 및 셀 선택 단계(S320)를 수행할 수 있다. 여기서, 도 8a, 도 8b, 도 10a 및 도 12a를 참조하면, 셀 선택 단계(S320)는 주파수 스캐닝 단계(S321), PSS/SSS 동기화 단계(S322), MIB 수신 단계(S323) 및 SIB 수신 단계(S324)를 포함할 수 있다. Referring to FIG. 12A, the 5G CPE may perform a TX disable process excluding specific control data transmission from before the cell selection step S320. Meanwhile, the 5G CPE may perform a power on step (S310) and a cell selection step (S320). Here, referring to FIGS. 8A, 8B, 10A and 12A, the cell selection step (S320) includes a frequency scanning step (S321), a PSS/SSS synchronization step (S322), an MIB receiving step (S323), and an SIB receiving step. It may include (S324).
한편, 5G CPE는 LTE Attach 및 PDN 셋업 단계(S330)을 더 수행할 수 있다. 이후, 5G CPE는 LTE Attach 및 PDN 셋업 단계(S330)에 후속하여 NR 측정 및 보고 과정(S130)을 더 수행할 수 있다. 이와 관련하여, LTE Attach 및 PDN 셋업 단계(S330)를 통해 PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 무선 신호를 통해 송신할 수 있다. 여기서, 사용자 데이터는 물리 상향링크 공유 채널(physical uplink shared channel: PUSCH)을 통해 제2 무선 신호로 전송될 수 있다. 따라서, 제어부(510)는 PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 제2 무선 신호를 통해 송신할 수 있다.Meanwhile, the 5G CPE may further perform an LTE Attach and PDN setup step (S330). Thereafter, the 5G CPE may further perform an NR measurement and reporting process (S130) following the LTE Attach and PDN setup step (S330). In this regard, when the PDN (Packet Data Network) attach is completed through the LTE Attach and PDN setup step (S330), user data may be transmitted through a radio signal. Here, the user data may be transmitted as a second radio signal through a physical uplink shared channel (PUSCH). Accordingly, when the PDN (Packet Data Network) attach is completed, the controller 510 may transmit user data through the second radio signal.
반면에, LTE Attach 및 PDN 셋업 단계(S330)를 통해 PDN (Packet Data Network) 어태치(attach)가 완료되기 이전에도 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터는 전송될 수 있다. 여기서, 제어 데이터는 물리 상향링크 제어 채널(physical uplink control channel: PUCCH)을 통해 제1 무선 신호로 전송될 수 있다. 따라서, 제어부(510)는 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터를 제1 무선 신호를 통해 송신할 수 있다.On the other hand, even before the PDN (Packet Data Network) attach is completed through the LTE Attach and PDN setup step (S330), NR measurement and NR measurement report are performed in the RRC-connected state. Control data for can be transmitted. Here, the control data may be transmitted as a first radio signal through a physical uplink control channel (PUCCH). Accordingly, the controller 510 may transmit control data for NR measurement and NR measurement report through the first radio signal in the RRC-connected state.
도 12b를 참조하면, 5G UE 또는 5G CPE가 LTE 연결 상태에서, NR coverage에 진입한 경우, 5G UE 또는 5G CPE는 eNB로부터 RRCConnectionReconfiguration 메시지를 수신한다. 이와 관련하여, 도 10b의 전술된 방법 1에서는 Control data 전송을 포함하여 모든 Tx 전송을 제한한다. 하지만, 도 12b의 방법 2에서는 짧은 시간 동안 특정 control data 전송은 허용한다.Referring to FIG. 12B, when a 5G UE or 5G CPE enters NR coverage in an LTE connection state, the 5G UE or 5G CPE receives an RRCConnectionReconfiguration message from the eNB. In this regard, in Method 1 described above of FIG. 10B, all Tx transmissions including control data transmission are restricted. However, in Method 2 of FIG. 12B, specific control data transmission is allowed for a short time.
도 10b의 방법 1과 도 12b의 방법 2에 의한 차이점은 control data의 전송 여부이다. 반면에, 도 10b의 방법 1과 도 12b의 방법 2의 공통점은 5G CPE의 최적 설치 위치와 방향을 탐색하는 동안 user data의 전송은 차단된다는 것이다.The difference between Method 1 of FIG. 10B and Method 2 of FIG. 12B is whether control data is transmitted. On the other hand, the common point between Method 1 of FIG. 10B and Method 2 of FIG. 12B is that transmission of user data is blocked while searching for the optimal installation location and direction of 5G CPE.
구체적으로, 도 12b를 참조하면, 5G UE 또는 5G CPE는 제1 기지국, 즉 마스터 기지국(MeNB)을 통해 RRCConnectionReconfiguration 메시지를 수신할 수 있다. 여기서, 제1 기지국, 즉 마스터 기지국(MeNB)은 4G LTE 기지국일 수 있다. 이에 따라, RRCConnectionReconfiguration 메시지를 수신한 5G UE 또는 5G CPE는 NR Measurements를 수행할 수 있다. Specifically, referring to FIG. 12B, a 5G UE or a 5G CPE may receive an RRCConnectionReconfiguration message through a first base station, that is, a master base station (MeNB). Here, the first base station, that is, the master base station (MeNB) may be a 4G LTE base station. Accordingly, the 5G UE or 5G CPE receiving the RRCConnectionReconfiguration message may perform NR Measurements.
이와 관련하여, 5G UE 또는 5G CPE의 제어부(510)는 NR Measurements 과정과 같이 Tx 비활성화(Disable) 절차 동안에도 특정 Control information 전송을 위한 Tx 신호 전송은 허용할 수 있다.In this regard, the control unit 510 of the 5G UE or 5G CPE may allow transmission of a Tx signal for transmission of specific control information even during a Tx disable procedure like the NR Measurements process.
따라서, 수신 신호 품질에 기반하여 5G CPE가 NR 셀에 등록(register) 가능한지 여부를 판단하지 않고, NR Measurements report를 제1 기지국을 통해 제2 기지국으로 전달할 수 있다. 여기서, NR Measurements report는 MeasurementReport 메시지를 통해 전달될 수 있다. 여기서, 제2 기지국, 즉 세컨더리 기지국(SeNB)은 5G NR 기지국일 수 있다. 5G NSA 구조에서 5G NR 기지국은 세컨더리 기지국(SeNB)으로 해석될 수 있다. 또한, MeasurementReport 메시지를 수신한 제1 기지국, 즉 마스터 기지국(MeNB)은 제2 기지국, 즉 세컨더리 기지국(SeNB)로 SCG 설정 정보 메시지, 즉 SCGConfigInfoGUTRA 메시지를 전달할 수 있다.Accordingly, the NR Measurements report may be transmitted to the second base station through the first base station without determining whether the 5G CPE can be registered in the NR cell based on the received signal quality. Here, the NR Measurements report may be delivered through a MeasurementReport message. Here, the second base station, that is, the secondary base station (SeNB) may be a 5G NR base station. In the 5G NSA structure, the 5G NR base station can be interpreted as a secondary base station (SeNB). In addition, the first base station receiving the MeasurementReport message, that is, the master base station (MeNB), may transmit the SCG configuration information message, that is, the SCGConfigInfoGUTRA message, to the second base station, that is, the secondary base station (SeNB).
한편, 도 13은 본 발명의 다른 실시 예에 따른 5G CPE에서 수신 신호 품질 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다. 이와 관련하여, 도 13의 5G CPE 설치 제어 방법은 도 11의 5G CPE 설치 제어 방법과 유사하지만, 수신 신호 품질 중 RSRP에 기반하여 수행되는 차이점이 있다.Meanwhile, FIG. 13 is a flowchart of a method for controlling installation of 5G CPE based on received signal quality in 5G CPE according to another embodiment of the present invention. In this regard, the 5G CPE installation control method of FIG. 13 is similar to the 5G CPE installation control method of FIG. 11, but there is a difference that is performed based on RSRP among received signal quality.
도 5a, 도 5b, 도 6, 도 8a, 도 8b, 도 10a 및 도 13을 참조하면, 5G CPE의 제어부(510)는 Tx disable 상태에서 NR 측정 과정(S130)을 수행할 수 있다. NR 측정 과정(S130)에서, 수신 신호 품질, 즉 RSRP가 제1 임계치(Threshold #1) 이상이면, 테스트 모드를 종료하고 TX 활성화(Enable) 절차(S150)를 수행하도록 제어할 수 있다. TX 활성화(Enable) 절차(S150)에서, NR 측정 보고 과정이 수행될 수 있다. 5A, 5B, 6, 8A, 8B, 10A, and 13, the controller 510 of the 5G CPE may perform the NR measurement process (S130) in the Tx disable state. In the NR measurement process (S130), if the received signal quality, that is, RSRP is greater than or equal to the first threshold (Threshold #1), control to terminate the test mode and perform the TX enable procedure (S150). In the TX activation procedure (S150), an NR measurement report process may be performed.
한편, 수신 신호 품질, 즉 RSRP가 제1 임계치(Threshold #1) 미만이고 제2 임계치(Threshold #2) 이상이면, 제어부(510)는 틸팅 절차(S140)를 수행하도록 제어할 수 있다. 수신 신호 품질에 따라 LED 색을 변경하여 표시하는 LED 제어가 수행될 수 있다.On the other hand, if the received signal quality, that is, RSRP is less than the first threshold (Threshold #1) and the second threshold (Threshold #2) or more, the control unit 510 may control to perform the tilting procedure (S140). LED control that changes and displays the LED color according to the received signal quality can be performed.
반면에, 수신 신호 품질, 즉 RSRP가 제2 임계치(Threshold #2) 미만이면, 제어부(510)는 설치 장소를 이동하여 재설치 절차를 수행하도록 제어(S160)할 수 있다. 재설치 절차가 수행되어야 하는 것을 사용자 또는 설치 관리자에게 알리기 위해 수신 신호 품질에 따라 LED 색을 변경하여 표시하거나 또는 LED 색을 달리하여 blinking하는 LED 제어가 수행될 수 있다.On the other hand, if the received signal quality, that is, RSRP, is less than the second threshold (Threshold #2), the control unit 510 may move the installation location to perform a re-installation procedure (S160). In order to inform the user or the installer that the re-installation procedure should be performed, the LED control may be performed by changing the LED color according to the received signal quality and displaying or blinking by changing the LED color.
결론적으로, 도 11과 도 13의 5G CPE 동작은 NR measurement이후에 수행되는 CPE 동작 시퀀스라는 점에서 유사하다. 하지만, 도 13의 5G CPE 동작은 RSRP를 기반으로 5G CPE가 NR 커버리지 영역에 있는 지 여부를 판단하는 점에서 차별점이 있다.In conclusion, the 5G CPE operation of FIGS. 11 and 13 is similar in that it is a CPE operation sequence performed after NR measurement. However, the 5G CPE operation of FIG. 13 has a difference in determining whether the 5G CPE is in the NR coverage area based on RSRP.
한편, 도 11에 따른 방식 1은 다음과 같은 기술적 특징이 있다.Meanwhile, Method 1 according to FIG. 11 has the following technical characteristics.
1) 모든 Tx 송신을 제한하므로 Safety level이 높다.1) As all Tx transmissions are restricted, the safety level is high.
2) 빠른 시점에 5G CPE의 후보 위치(candidate position) 선정이 가능하다.2) It is possible to select a candidate position for 5G CPE at an early time.
3) cell selection criterion에 만족하는지 여부에 대한 최종 확인(final check)은 필요하다.3) A final check is required whether or not the cell selection criterion is satisfied.
반면에, 도 13에 따른 방식 2는 다음과 같은 기술적 특징이 있다.On the other hand, method 2 according to FIG. 13 has the following technical characteristics.
1) control data의 전송을 일부 허용하고, user data은 전송은 제한한다.1) Partial transmission of control data is allowed, and transmission of user data is restricted.
2) Cell registration이후, user data의 전송을 허용한다.2) After cell registration, user data transmission is allowed.
한편, 도 11과 도 13의 수신 신호 품질, 즉 Srxlev 또는 RSRP 기반 5G CPE 설치 제어 방법은 다음과 같은 분류 가능하다.Meanwhile, the received signal quality of FIGS. 11 and 13, that is, the Srxlev or RSRP-based 5G CPE installation control method can be classified as follows.
Case 1) Tilt 절차 (S140)Case 1) Tilt procedure (S140)
약 전계 영역에 배치되어 tilting procedure가 필요한 경우, tilting procedure를 진행한다.If it is placed in the weak electric field and requires a tilting procedure, proceed with the tilting procedure.
Case 2) Tx Enable 절차 (S150)Case 2) Tx Enable procedure (S150)
강 전계 영역에 배치되어 tilting procedure 없이 5G CPE를 해당 위치 및 해당 각도로 설치 가능하다.As it is placed in the strong electric field, 5G CPE can be installed at the corresponding position and angle without tilting procedure.
Case3) 재설치 절차 (S150)Case3) Reinstallation procedure (S150)
No NR service일 경우, 5G CPE를 다른 위치에서 다른 각도로 재설치 하도록 제어한다.In the case of No NR service, the 5G CPE is controlled to be reinstalled at different angles at different locations.
한편, 방법 2에 따라 Tx disable 절차에서 user data 전송만 제한하는 경우, 다음과 같은 기술적 특징을 갖는다.Meanwhile, when only user data transmission is restricted in the Tx disable procedure according to Method 2, it has the following technical characteristics.
기지국은 주기적으로 RS(Reference signal)을 전송하고, 단말인 5G UE 또는 5G CPE는 RS를 수신한다. The base station periodically transmits a reference signal (RS), and the 5G UE or 5G CPE, which is a terminal, receives the RS.
5G UE 또는 5G CPE는 수신한 RS로부터 셀의 존재를 탐지하고, 셀에서 단말로 형성된 무선 링크의 품질을 판단한다.The 5G UE or 5G CPE detects the existence of a cell from the received RS and determines the quality of the radio link formed from the cell to the terminal.
5G UE 또는 5G CPE는 셀의 존재 탐지 및 무선 링크 품질 판단을 위해 RS를 사용하는 경우 다음과 같은 장점이 있다.The 5G UE or 5G CPE has the following advantages when using RS for cell presence detection and radio link quality determination.
1) 기지국과 RRC Idle 상태인 단말과 RRC Connection 상태인 단말에서 모두 RS를 활용할 수 있다. 1) The base station and the terminal in the RRC Idle state and the terminal in the RRC Connection state can use RS.
2) 서빙 셀 및 이웃 셀의 신호 세기 혹은 총 수신 전력 대비 신호 세기를 RS를 활용하여 나타낼 수 있다. 2) The signal strength of the serving cell and the neighboring cell or the signal strength relative to the total received power can be expressed using RS.
3) 수신 감도(receiving sensitivity)를 RS를 활용하여 전력 값, 즉 dBm으로 변환할 수 있다.3) Receiving sensitivity can be converted to a power value, that is, dBm by using RS.
이와 관련하여, 3GPP TS 38.213, 7.1.1 UE behaviour 및 TS 38.215, 5.1 Measurement capabilities for NR를 참조하여, RSRP(Reference Signal Receive Power)를 사용하여 1) 내지 3)과 관련하여 셀의 존재 탐지 및 무선 링크 품질 판단이 가능하다. 한편, 표 2는 본 발명에 따른 RSRP 기반 5G CPE 설치 제어 방법과 관련하여, 다양한 제어 방법에 대한 RSRP 임계치를 나타낸다.In this regard, with reference to 3GPP TS 38.213, 7.1.1 UE behavior and TS 38.215, 5.1 Measurement capabilities for NR, detection of cell presence and radio in relation to 1) to 3) using RSRP (Reference Signal Receive Power) Link quality can be judged. Meanwhile, Table 2 shows RSRP thresholds for various control methods in relation to the RSRP-based 5G CPE installation control method according to the present invention.
Signal Strength MetricSignal Strength Metric SS-RSRP RangeSS-RSRP Range
Adequate 5G SignalAdequate 5G Signal SS-RSRP >= Threshold #1SS-RSRP >= Threshold #1
Inadequate 5G SignalInadequate 5G Signal Threshold #2 <= SS-RSRP < Threshold #1Threshold #2 <= SS-RSRP <Threshold #1
No 5G Signal No 5G Signal SS-RSRP < Threshold #2SS-RSRP <Threshold #2
RSRP threshold와 관련하여, 이는 사업자 또는 네트워크 deployment 상황에 따라 달라질 수 있다. 하지만, 표 2를 통해서 5G CPE가 5G NR 신호를 포착할 수 있는 1차 candidate position 선정 가능하다.Regarding the RSRP threshold, this may vary depending on the operator or network deployment situation. However, through Table 2, it is possible to select a primary candidate position for the 5G CPE to capture 5G NR signals.
이상에서는 LTE 네트워크에서 NR 네트워크로의 핸드 오버 시 방법 1 (도 11) 및 방법 2 (도 13)에 따른 5G CPE 설치 제어 방법에 대해 살펴보았다. 이하에서는, NR 네트워크에서 방법 1 (도 14) 및 방법 2 (도 15)에 따른 5G CPE 설치 제어 방법에 대해 살펴보았다. 이와 관련하여, 5G NR SA 구조에서 방법 1 (도 14) 및 방법 2 (도 15)가 수행될 수 있다.In the above, the 5G CPE installation control method according to Method 1 (FIG. 11) and Method 2 (FIG. 13) during handover from an LTE network to an NR network has been described. Hereinafter, a 5G CPE installation control method according to Method 1 (FIG. 14) and Method 2 (FIG. 15) in the NR network was described. In this regard, Method 1 (FIG. 14) and Method 2 (FIG. 15) may be performed in the 5G NR SA structure.
구체적으로, 도 14는 NR 네트워크에서 방법 1에 따른 Srxlev 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다. 반면에, 도 15는 NR 네트워크에서 방법 2에 따른 RSRP 기반 5G CPE 설치 제어 방법의 흐름도를 나타낸다.Specifically, FIG. 14 shows a flowchart of a Srxlev-based 5G CPE installation control method according to Method 1 in an NR network. On the other hand, FIG. 15 shows a flowchart of a RSRP-based 5G CPE installation control method according to Method 2 in an NR network.
도 14를 참조하면, 방법 1에 따른 Srxlev 기반 5G CPE 설치 제어 방법의 기술적 특징에 대해 요약하면 다음과 같다.Referring to FIG. 14, the technical characteristics of the Srxlev-based 5G CPE installation control method according to Method 1 will be summarized as follows.
1) LTE와 동일하게 NR initial acquisition 및 cell selection을 진행 (S320a)한다 (LTE attach 부분이 생략되는 것을 제외하고 동일함).1) NR initial acquisition and cell selection are performed in the same manner as LTE (S320a) (same except that the LTE attach part is omitted).
2) PBCH와 PDSCH를 통해 MIB(Master Information Block)과 SIB(System Information Block)을 수신한다. 2) Receives MIB (Master Information Block) and SIB (System Information Block) through PBCH and PDSCH.
3) 모든 Tx 신호 전송을 disable한 상태에서, TS 5.2.3.2(Cell selection criterion)의 Srxlev와 squal을 사용하여 신호 품질이 가장 우수한 셀의 신호 품질 (예: 신호 강도, power 세기)를 확인(S130)한다.3) With all Tx signal transmission disabled, use Srxlev and squal of TS 5.2.3.2 (Cell selection criterion) to check the signal quality (e.g., signal strength, power strength) of the cell with the best signal quality (S130 )do.
4) NR의 경우, 주파수의 특성상 LOS(Line of Sight)특성이 보장되거나 또는 기지국과 거리가 근접한 경우, 우수한 신호 품질의 신호를 수신할 수 있다.4) In the case of NR, when the LOS (Line of Sight) characteristic is guaranteed due to the characteristic of the frequency or when the distance to the base station is close, a signal of excellent signal quality can be received.
5) 5G mmWave 신호를 수신할 수 있는 위치로 1차적으로 판단되는 경우, 성능 향상을 위해 tilting procedure(S140)를 진행한다.5) If it is determined primarily as a location that can receive 5G mmWave signals, the tilting procedure (S140) is performed to improve performance.
6) Installation mode를 종료하고, 5G NR data service를 위해 Tx enable 절차(S150)를 진행한다.6) End the installation mode, and proceed with the Tx enable procedure (S150) for 5G NR data service.
반면에, 도 15를 참조하면, 방법 2에 따른 RSRP 기반 5G CPE 설치 제어 방법의 기술적 특징에 대해 요약하면 다음과 같다.On the other hand, referring to FIG. 15, the technical characteristics of the RSRP-based 5G CPE installation control method according to Method 2 will be summarized as follows.
1) LTE와 동일하게 NR initial acquisition 및 cell selection을 진행 (S320a)한다 (LTE attach 부분이 생략되는 것을 제외하고 동일함).1) NR initial acquisition and cell selection are performed in the same manner as LTE (S320a) (same except that the LTE attach part is omitted).
2) PBCH와 PDSCH를 통해 MIB(Master Information Block)과 SIB(System Information Block)을 수신한다. 2) Receives MIB (Master Information Block) and SIB (System Information Block) through PBCH and PDSCH.
3) RRC IDLE 혹은 RRC CONNECTION상태에서 네트워크로부터 수신한 RSRP를 기반으로 NR measurement를 수행(S130b)한다. 이와 관련하여, RSRP를 기반으로 5G NR 신호 수신이 가능한 1차 candidate 위치를 선정한다.3) NR measurement is performed based on the RSRP received from the network in the RRC IDLE or RRC CONNECTION state (S130b). In this regard, a primary candidate location capable of receiving 5G NR signals is selected based on RSRP.
4) 5G mmWave 신호 품질이 더 좋은 방향 선정을 위해 5G 안테나의 방향을 틸트하는 tilting procedure(S140)를 진행한다.4) In order to select a direction with better 5G mmWave signal quality, proceed with the tilting procedure (S140) of tilting the direction of the 5G antenna.
5) Installation mode를 종료하고, 5G NR data service를 위해 Tx enable 절차(S150)를 진행한다.5) End the installation mode and proceed with the Tx enable procedure (S150) for 5G NR data service.
이상에서는 본 발명의 일 양상에 따른 5G 통신 중계 장치의 상세한 동작에 대해 살펴보았다. 이하에서는 본 발명의 다른 양상에 따른 5G CPE (Customer Premises Equipment)의 상세한 동작에 대해 살펴보기로 한다.In the above, detailed operation of the 5G communication relay device according to an aspect of the present invention has been described. Hereinafter, detailed operations of 5G CPE (Customer Premises Equipment) according to another aspect of the present invention will be described.
도 3 내지 도 15를 참조하여, 본 발명에 따른 테스트 모드에서 Tx 신호 제어를 수행하는 5G CPE (Customer Premises Equipment)에 대해 설명하면 다음과 같다. 이와 관련하여, 5G CPE는 제어부 (프로세서)(510) 및 송수신부(520)를 포함한다. 또한, 5G CPE는 제2 송수신부(530) 및 표시부(LED)(540)를 더 포함하도록 구성 가능하다.Referring to FIGS. 3 to 15, 5G CPE (Customer Premises Equipment) performing Tx signal control in a test mode according to the present invention will be described as follows. In this regard, the 5G CPE includes a control unit (processor) 510 and a transmission/reception unit 520. In addition, the 5G CPE may be configured to further include a second transmission/reception unit 530 and a display unit (LED) 540.
송수신부(520)는 무선 신호(radio signal)를 송신 및 수신하도록 구성된다. 구체적으로, 송수신부(520)는 5G 무선 신호를 송신 및 수신하여 주변의 전자 기기(100)로 5G 무선 신호를 전달할 수 있다. 또한, 전자 기기(100)로부터 5G 무선 신호를 수신하여 5G 기지국으로 5G 무선 신호를 송신할 수 있다.The transceiver 520 is configured to transmit and receive a radio signal. Specifically, the transmission/reception unit 520 may transmit and receive a 5G radio signal and transmit a 5G radio signal to the nearby electronic device 100. In addition, it is possible to receive a 5G radio signal from the electronic device 100 and transmit the 5G radio signal to the 5G base station.
프로세서(510)는 송수신부(520)와 연결되고, 기지국과 연결되기 전에 테스트 모드를 수행하도록 동작가능 (operable)하다. 여기서, 기지국과 연결의 의미는 RRC-connection을 의미할 수 있지만, 이에 한정되는 것은 아니고 응용에 따라 다른 의미로 해석 가능하다. 예를 들어, 기지국과 연결의 의미는 기지국으로 사용자 데이터를 포함하는 Tx 신호를 송신하는 것으로 해석 가능하다. The processor 510 is connected to the transceiver 520 and is operable to perform a test mode before being connected to the base station. Here, the meaning of connection with the base station may mean RRC-connection, but is not limited thereto and may be interpreted as a different meaning depending on the application. For example, the meaning of connection with a base station can be interpreted as transmitting a Tx signal including user data to the base station.
구체적으로, 프로세서(510)는 테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다. 또한, 프로세서(510)는 테스트 모드가 완료된 경우, 기지국으로부터 수신된 무선 신호를 전자 기기로 전달할 수 있다. 따라서, 프로세서(510)는 5G CPE 설치를 위한 테스트 모드가 완료된 경우, 기지국으로부터 수신된 5G 무선 신호를 전자 기기(100)로 전달할 수 있다.Specifically, when a cell search is initiated in a test mode, the processor 510 may control a radio signal not to be transmitted through the transceiver 520. In addition, when the test mode is completed, the processor 510 may transmit a radio signal received from the base station to the electronic device. Accordingly, when the test mode for installing the 5G CPE is completed, the processor 510 may transmit the 5G radio signal received from the base station to the electronic device 100.
본 발명에 따른 5G CPE는 다음과 같이 TX 비활성화(Disable) 과정(process)을 수행할 수 있다. 이와 관련하여, 프로세서(510)는 물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신할 수 있다. 또한, 프로세서(510)는 SIB가 수신된 경우, 무선 신호가 송수신부(520)를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행할 수 있다.The 5G CPE according to the present invention may perform a TX disable process (process) as follows. In this regard, the processor 510 may receive a system information block (SIB) through a physical downlink shared channel (PDSCH). In addition, when the SIB is received, the processor 510 may perform a TX disable process so that a radio signal is not transmitted through the transceiver 520.
한편, 프로세서(510)는 RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 송수신부(520)를 통해 송신되지 않도록 제어할 수 있다.On the other hand, when the RRC connection is successful and the RRC-connected state is reached, the processor 510 controls the radio signal not to be transmitted through the transceiver 520 until the test process according to the test mode is completed. can do.
한편, 5G CPE는 특정 제어 데이터와 사용자 데이터에 대해 다른 방식으로 송신 제어가 가능하다. 이와 관련하여, 프로세서(510)는 RRC 연결 상태(RRC-connected state)에서 RRC 상태 보고(state report)를 위한 제어 데이터를 위한 제1 무선 신호가 테스트 모드에서도 송신되도록 송수신부(520)를 제어할 수 있다. 이때, 프로세서(510)는 RRC 연결 상태(RRC-connected state)에서 사용자 데이터(user data)를 위한 제2 무선 신호는 송신되지 않도록 송수신부(520)를 제어할 수 있다.On the other hand, 5G CPE can control transmission in different ways for specific control data and user data. In this regard, the processor 510 controls the transceiver 520 so that the first radio signal for control data for the RRC state report is transmitted even in the test mode in the RRC-connected state. I can. In this case, the processor 510 may control the transceiving unit 520 so that the second radio signal for user data is not transmitted in the RRC-connected state.
이러한 테스트 모드에서의 예외적인 송신 절차와 테스트 모드를 종료하고 사용자 데이터를 종료하는 방법은 다음과 같다. 이와 관련하여, 프로세서(510)는 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터를 제1 무선 신호를 통해 송신할 수 있다. 또한, 프로세서(510)는 PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 제2 무선 신호를 통해 송신할 수 있다.The exceptional transmission procedure in the test mode and the method for terminating the test mode and user data are as follows. In this regard, the processor 510 may transmit control data for NR measurement and NR measurement report through the first radio signal in an RRC-connected state. In addition, when the PDN (Packet Data Network) attachment is completed, the processor 510 may transmit user data through the second radio signal.
한편, 프로세서(510)는 다음과 같이 수신 신호 품질에 기반하여 서로 다른 설치 절차를 수행할 수 있다. 이와 관련하여, 프로세서(510)는 SIB가 수신된 경우, 수신 신호 품질이 가장 우수한 셀을 선택할 수 있다. 또한, 프로세서(510)는 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어할 수 있다. 따라서, 프로세서(510)는 수신 신호 품질에 기반하여 5G CPE가 NR 셀에 등록(register) 가능하다고 판단되면, TX 활성화(Enable) 절차를 수행할 수 있다.Meanwhile, the processor 510 may perform different installation procedures based on the received signal quality as follows. In this regard, when the SIB is received, the processor 510 may select a cell having the best received signal quality. In addition, the processor 510 may control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure based on the Cell Selection RX level value or the Cell Selection quality value of the selected cell. Therefore, if the processor 510 determines that the 5G CPE can be registered in the NR cell based on the received signal quality, the processor 510 may perform a TX activation procedure.
한편, 5G CPE는 설치 과정에서 필요한 정보를 표시부(LED)(540)를 통해 표시할 수 있다. 이와 관련하여, 프로세서(510)는 TX 비활성화(Disable) 과정이 개시되면, 전자 기기(100)와 제2 무선 인터페이스를 통해 페어링을 수행할 수 있다. 또한, 프로세서(510)는 TX 비활성화 과정 동안 기지국으로부터 수신되는 수신 신호 품질과 연관된 정보가 전자 기기에 표시되도록 제어할 수 있다. 즉, 프로세서(510)는 수신 신호 품질과 연관된 정보를 표시부(LED)(540)를 통해 Red, Yellow, Green 등으로 표시할 수 있고, 이를 사용자 또는 설치 관리자의 전자 기기(100)를 통해서도 표시할 수 있다. 또한, 프로세서(510)는 테스트 모드가 종료되는 경우, 상기 테스트 모드가 종료되었다는 정보를 전자 기기(100)로 전달할 수 있다.Meanwhile, the 5G CPE may display information necessary during the installation process through the display unit (LED) 540. In this regard, when the TX disable process is started, the processor 510 may perform pairing with the electronic device 100 through the second wireless interface. Further, the processor 510 may control information related to the quality of a received signal received from the base station during the TX deactivation process to be displayed on the electronic device. That is, the processor 510 may display information related to the received signal quality in red, yellow, green, etc. through the display unit (LED) 540, and also display this through the electronic device 100 of the user or installer. I can. Also, when the test mode is ended, the processor 510 may transmit information indicating that the test mode has ended to the electronic device 100.
이상에서는 본 발명에 따른 5G 무선 신호를 전달하는 5G 통신 중계 장치, 즉 5G CPE (Customer Premises Equipment)와 이의 송신 신호 제어 방법에 대해 살펴보았다. 이러한 5G 송신 신호 제어 방법을 수행하는 5G CPE, 전자 기기와 기지국을 포함하는 무선 통신 시스템에 대해 살펴보면 다음과 같다. 이와 관련하여, 도 16은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.In the above, a 5G communication relay device for transmitting a 5G radio signal according to the present invention, that is, a 5G CPE (Customer Premises Equipment) and a transmission signal control method thereof have been described. A 5G CPE performing the 5G transmission signal control method, a wireless communication system including an electronic device and a base station is as follows. In this regard, FIG. 16 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
도 16을 참조하면, 무선 통신 시스템은 제 1 통신 장치(910) 및/또는 제 2 통신 장치(920)을 포함한다. 'A 및/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일한 의미로 해석될 수 있다. 제 1 통신 장치가 기지국을 나타내고, 제 2 통신 장치가 전자 기기, 즉 5G UE를 나타낼 수 있다 (또는 제 1 통신 장치가 단말을 나타내고, 제 2 통신 장치가 기지국을 나타낼 수 있다). Referring to FIG. 16, a wireless communication system includes a first communication device 910 and/or a second communication device 920. 'A and/or B'may be interpreted as having the same meaning as'including at least one of A or B'. The first communication device may represent a base station, and the second communication device may represent an electronic device, that is, a 5G UE (or the first communication device may represent a terminal, and the second communication device may represent a base station).
한편, 제 1 통신 장치가 지지국을 나타내고, 제2 통신 장치가 5G CPE를 나타낼 수 있다 (또는 제 1 통신 장치가 5G CPE를 나타내고, 제 2 통신 장치가 기지국을 나타낼 수 있다). 또한, 제 1 통신 장치가 5G CPE를 나타내고, 제2 통신 장치가 전자 기기, 즉 5G UE를 나타낼 수 있다 (또는 제 1 통신 장치가 전자 기기, 즉 5G UE를 나타내고, 제 2 통신 장치가 5G CPE를 나타낼 수 있다).On the other hand, the first communication device may represent a support station, and the second communication device may represent 5G CPE (or the first communication device may represent 5G CPE, and the second communication device may represent a base station). In addition, the first communication device may represent a 5G CPE, and the second communication device may represent an electronic device, that is, a 5G UE (or the first communication device represents an electronic device, that is, a 5G UE, and the second communication device represents a 5G CPE. Can represent).
기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB), 5G 시스템, 네트워크, AI 시스템, RSU(road side unit), 로봇 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈 등의 용어로 대체될 수 있다.A base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), general gNB (gNB). NB), 5G system, network, AI system, RSU (road side unit), can be replaced by terms such as robot. In addition, the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module May be replaced with terms such as.
제 1 통신 장치와 제 2 통신 장치는 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 코어 네트워크로부터의 상위 계층 패킷은 프로세서(911)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. DL에서, 프로세서는 논리 채널과 전송 채널 간의 다중화(multiplexing), 무선 자원 할당을 제 2 통신 장치(920)에 제공하며, 제 2 통신 장치로의 시그널링을 담당한다. 전송(TX) 프로세서(912)는 L1 계층 (즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 제 2 통신 장치에서 FEC(forward error correction)을 용이하게 하고, 코딩 및 인터리빙(coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호(Reference Signal, RS)와 멀티플렉싱되며, IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx 모듈(또는 송수신기,915)를 통해 상이한 안테나(916)에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 제 2 통신 장치에서, 각각의 Tx/Rx 모듈(또는 송수신기,925)는 각 Tx/Rx 모듈의 각 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여, 수신(RX) 프로세서(923)에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 제 2 통신 장치로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 제 2 통신 장치로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA 심볼 스트림으로 결합될 수 있다. RX 프로세서는 고속 푸리에 변환 (FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 제 1 통신 장치에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조 된다. 이러한 연 판정(soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 제 1 통신 장치에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙 된다. 해당 데이터 및 제어 신호는 프로세서(921)에 제공된다.The first communication device and the second communication device include a processor (processor, 911,921), memory (memory, 914,924), one or more Tx/Rx RF modules (915,925), Tx processors (912,922), Rx processors (913,923) , Antennas 916 and 926. The processor implements the previously salpin functions, processes and/or methods. More specifically, in the DL (communication from the first communication device to the second communication device), higher layer packets from the core network are provided to the processor 911. The processor implements the functions of the L2 layer. In the DL, the processor provides multiplexing between logical channels and transport channels and radio resource allocation to the second communication device 920, and is responsible for signaling to the second communication device. The transmit (TX) processor 912 implements various signal processing functions for the L1 layer (ie, the physical layer). The signal processing function facilitates forward error correction (FEC) in the second communication device, and includes coding and interleaving. The coded and modulated symbols are divided into parallel streams, each stream is mapped to an OFDM subcarrier, multiplexed with a reference signal (RS) in the time and/or frequency domain, and uses Inverse Fast Fourier Transform (IFFT). These are combined together to create a physical channel carrying a time domain OFDMA symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Each spatial stream may be provided to a different antenna 916 through a separate Tx/Rx module (or transceiver 915). Each Tx/Rx module can modulate the RF carrier with each spatial stream for transmission. In the second communication device, each Tx/Rx module (or transceiver 925) receives a signal through each antenna 926 of each Tx/Rx module. Each Tx/Rx module restores information modulated with an RF carrier and provides the information to the receive (RX) processor 923. The RX processor implements a variety of layer 1 signal processing functions. The RX processor may perform spatial processing on the information to recover any spatial stream destined for the second communication device. If multiple spatial streams are directed to the second communication device, they can be combined into a single OFDMA symbol stream by multiple RX processors. The RX processor transforms the OFDMA symbol stream from time domain to frequency domain using Fast Fourier Transform (FFT). The frequency domain signal contains a separate OFDMA symbol stream for each subcarrier of the OFDM signal. The symbols and reference signal on each subcarrier are reconstructed and demodulated by determining the most probable signal constellation points transmitted by the first communication device. These soft decisions can be based on channel estimate values. The soft decisions are decoded and deinterleaved to restore the data and control signal originally transmitted by the first communication device on the physical channel. Corresponding data and control signals are provided to the processor 921.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.The UL (communication from the second communication device to the first communication device) is handled in the first communication device 910 in a manner similar to that described with respect to the receiver function in the second communication device 920. Each Tx/Rx module 925 receives a signal through a respective antenna 926. Each Tx/Rx module provides an RF carrier and information to the RX processor 923. The processor 921 may be associated with a memory 924 that stores program code and data. The memory may be referred to as a computer-readable medium.
한편, 이와 같은 5G 무선 신호를 전달하는 5G 통신 중계 장치, 즉 5G CPE (Customer Premises Equipment)와 이의 송신 신호 제어 방법의 기술적 효과에 대해 설명하면 다음과 같다. Meanwhile, the technical effects of the 5G communication relay device, that is, the 5G CPE (Customer Premises Equipment) and the transmission signal control method thereof, that transmits such 5G radio signals will be described as follows.
본 발명에 따르면, 5G 통신 중계 장치의 테스트 모드에서 사용자 또는 설치 관리자의 신체에 노출되는 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.According to the present invention, there is an advantage in that it is possible to avoid harmful effects of a high frequency signal exposed to the body of a user or an installer in a test mode of a 5G communication relay device.
또한, 본 발명에 따르면, 무선 연결을 위한 최소한의 제어 데이터를 수신한 이후에 테스트 모드에서 Tx 송신을 제한하여, 5G 무선 연결 가능성을 저하시키지 않으면서 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.In addition, according to the present invention, by limiting Tx transmission in the test mode after receiving the minimum control data for wireless connection, there is an advantage in that it is possible to avoid harmful effects of high-frequency signals without deteriorating the possibility of 5G wireless connection. have.
또한, 본 발명에 따르면, 5G 무선 연결이 실패한 경우 테스트 모드에서 최소한의 제어 데이터는 송신하여 5G 무선 연결 가능성을 향상시킬 수 있다.In addition, according to the present invention, when the 5G wireless connection fails, the minimum control data is transmitted in the test mode, thereby improving the possibility of 5G wireless connection.
또한, 본 발명에 따르면, 5G 무선 연결이 이루어진 경우 5G 무선 연결을 유지하기 위한 최소한의 시그널링을 송신하면서, 고주파 신호의 유해한 영향을 회피할 수 있다는 장점이 있다.In addition, according to the present invention, when a 5G wireless connection is established, there is an advantage in that it is possible to avoid harmful effects of a high frequency signal while transmitting minimum signaling for maintaining a 5G wireless connection.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다. Further scope of applicability of the present invention will become apparent from the detailed description below. However, since various changes and modifications within the spirit and scope of the present invention can be clearly understood by those skilled in the art, specific embodiments such as the detailed description and preferred embodiments of the present invention should be understood as being given by way of example only.
전술한 본 발명과 관련하여, 센서 기반 틸트 정보를 이용하여 빔 포밍을 수행하는 배열 안테나를 구비하는 전자 기기에서 제어부를 포함한 특정 컴포넌트의 설계 및 이의 구동은 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 단말기의 제어부(180)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In relation to the present invention described above, in an electronic device having an array antenna that performs beamforming using sensor-based tilt information, designing and driving a specific component including a control unit can be performed by a computer in a medium on which a program is recorded. It is possible to implement it as code. The computer-readable medium includes all types of recording devices that store data that can be read by a computer system. Examples of computer-readable media include HDD (Hard Disk Drive), SSD (Solid State Disk), SDD (Silicon Disk Drive), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is also a carrier wave (e.g., transmission over the Internet). In addition, the computer may include the control unit 180 of the terminal. Therefore, the detailed description above should not be construed as restrictive in all respects and should be considered as illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

Claims (22)

  1. 5G 통신 중계 장치에 있어서,In the 5G communication relay device,
    무선 신호(radio signal)를 송신 및 수신하도록 구성된 송수신부(transceiver); 및A transceiver configured to transmit and receive a radio signal; And
    상기 송수신부와 연결되고, 기지국으로부터 수신된 무선 신호를 전자 기기로 제공하도록 구성된 제어부를 포함하고,A control unit connected to the transceiver and configured to provide a radio signal received from a base station to an electronic device,
    상기 제어부는,The control unit,
    테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하는, 5G 통신 중계 장치.When a cell search is initiated in a test mode, the 5G communication relay device controls a radio signal not to be transmitted through the transceiver.
  2. 제1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신하고,Receiving a system information block (SIB) through a physical downlink shared channel (physical downlink shared channel: PDSCH),
    상기 SIB가 수신된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행하는, 5G 통신 중계 장치. When the SIB is received, the 5G communication relay device performs a TX disable process so that a radio signal is not transmitted through the transceiver.
  3. 제2 항에 있어서,The method of claim 2,
    상기 제어부는,The control unit,
    물리 방송 채널(physical broadcast channel: PBCH)를 통해 마스터 정보 블록(master information block: MIB)을 수신하고,Receive a master information block (MIB) through a physical broadcast channel (PBCH),
    상기 MIB가 수신된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행하는, 5G 통신 중계 장치.When the MIB is received, the 5G communication relay device performs a TX disable process so that a radio signal is not transmitted through the transceiver.
  4. 제1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    상기 5G 통신 중계 장치의 설치(installation)가 완료된 것으로 판단되면 무선 신호가 상기 송수신부를 통해 송신될 수 있도록 TX 활성화(Enable) 과정을 수행하는, 5G 통신 중계 장치.When it is determined that the installation of the 5G communication relay device is complete, the 5G communication relay device performs a TX activation process so that a radio signal can be transmitted through the transceiver.
  5. 제2 항 또는 제3 항에 있어서,The method according to claim 2 or 3,
    상기 제어부는,The control unit,
    무선 자원 제어(radio resource control: RRC) 연결(connection)이 실패(fail)한 경우, RRC 재설정(re-establishment)을 위한 제어 신호는 송신될 수 있도록 제어하는, 5G 통신 중계 장치.When a radio resource control (RRC) connection fails, a control signal for RRC re-establishment is controlled to be transmitted. 5G communication relay device.
  6. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하는, 5G 통신 중계 장치.When the RRC connection is successful and the RRC-connected state is reached, a 5G communication relay device for controlling a radio signal not to be transmitted through the transceiver until a test process according to the test mode is completed.
  7. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    RRC 연결 상태(RRC-connected state)에서 RRC 상태 보고(state report)를 위한 제어 데이터를 위한 제1 무선 신호는 송신되고, 사용자 데이터(user data)를 위한 제2 무선 신호는 송신되지 않도록 상기 송수신부를 제어하는, 5G 통신 중계 장치.In the RRC-connected state, the first radio signal for control data for RRC state report is transmitted, and the second radio signal for user data is not transmitted. Controlling, 5G communication relay device.
  8. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    LTE에서 new radio (NR)로 무선 인터페이스가 변경되어 NR 셀 탐색(NR cell search)이 개시된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하는, 5G 통신 중계 장치.When a radio interface is changed from LTE to a new radio (NR) and an NR cell search is started, a 5G communication relay device that controls a radio signal not to be transmitted through the transceiver.
  9. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    5G non-stand-alone(NSA) 구조 및 5G stand-alone(SA) 구조에서 LTE에서 new radio (NR)로 무선 인터페이스가 변경되어 NR 셀 탐색(NR cell search)이 개시된 경우, 물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신하고,When the NR cell search is initiated due to the change of the radio interface from LTE to new radio (NR) in 5G non-stand-alone (NSA) and 5G stand-alone (SA) structures, physical downlink shared channel Receiving a system information block (SIB) through (physical downlink shared channel: PDSCH),
    상기 SIB가 수신된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하는, 5G 통신 중계 장치.When the SIB is received, the 5G communication relay device controls a radio signal not to be transmitted through the transceiver until a test process according to the test mode is completed.
  10. 제1항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    5G stand-alone(SA) 구조에서 new radio (NR)로 초기 액세스(initial access)를 수행하는 경우, RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 되면 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하는, 5G 통신 중계 장치.In the case of performing initial access with a new radio (NR) in a 5G stand-alone (SA) structure, when the RRC connection is successful and the RRC-connected state is reached, the test process according to the test mode is performed. 5G communication relay device for controlling so that a radio signal is not transmitted through the transceiver until completion.
  11. 제1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    무선 신호가 상기 송수신부를 통해 송신되지 않는 TX 비활성화(Disable) 과정에서 수신 신호 품질(received signal quality)에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어하는, 5G 통신 중계 장치.Control to perform one of a TX enable procedure, a tilting procedure, and a reinstallation procedure based on the received signal quality in the TX disable process in which the radio signal is not transmitted through the transceiver. To do, 5G communication relay device.
  12. 제11 항에 있어서,The method of claim 11,
    상기 제어부는, The control unit,
    상기 수신 신호 품질이 제1 임계치 이상이면, 상기 테스트 모드를 종료하고 TX 활성화(Enable) 절차를 수행하도록 제어하고,If the received signal quality is greater than or equal to a first threshold, control to terminate the test mode and perform a TX activation procedure,
    상기 수신 신호 품질이 상기 제1 임계치 미만이고 제2 임계치 이상이면, 상기 틸팅 절차를 수행하도록 제어하고,If the received signal quality is less than the first threshold and greater than or equal to a second threshold, controlling to perform the tilting procedure,
    상기 수신 신호 품질이 상기 제2 임계치 미만이면, 설치 장소를 이동하여 재설치 절차를 수행하도록 제어하는, 5G 통신 중계 장치.If the received signal quality is less than the second threshold, the 5G communication relay device for controlling to perform a re-installation procedure by moving an installation location.
  13. 제2 항에 있어서,The method of claim 2,
    상기 제어부는,The control unit,
    상기 SIB가 수신된 경우, 상기 수신 신호 품질이 가장 우수한 셀을 선택하고, When the SIB is received, selects a cell having the best received signal quality,
    상기 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어하는, 5G 통신 중계 장치.Based on the Cell Selection RX level value or the Cell Selection quality value of the selected cell, controlling to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure.
  14. 5G CPE (Customer Premises Equipment)에 있어서,In 5G CPE (Customer Premises Equipment),
    무선 신호(radio signal)를 송신 및 수신하도록 구성된 송수신부(transceiver); 및A transceiver configured to transmit and receive a radio signal; And
    상기 송수신부와 연결되고, 기지국과 연결되기 전에 테스트 모드를 수행하도록 동작 가능한(operable) 프로세서를 포함하고,A processor connected to the transceiver and operable to perform a test mode before being connected to the base station,
    상기 프로세서는,The processor,
    상기 테스트 모드(test mode)에서 셀 탐색(cell search)이 개시(initiate)된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하고,When a cell search is initiated in the test mode, a radio signal is controlled not to be transmitted through the transceiver,
    상기 테스트 모드가 완료된 경우, 상기 기지국으로부터 수신된 무선 신호를 전자 기기로 전달하는, 5G CPE.When the test mode is completed, transmitting the radio signal received from the base station to the electronic device, 5G CPE.
  15. 제14 항에 있어서,The method of claim 14,
    상기 프로세서는,The processor,
    물리 하향링크 공유 채널(physical downlink shared channel: PDSCH)를 통해 시스템 정보 블록(system information block: SIB)을 수신하고,Receiving a system information block (SIB) through a physical downlink shared channel (physical downlink shared channel: PDSCH),
    상기 SIB가 수신된 경우, 무선 신호가 상기 송수신부를 통해 송신되지 않도록 TX 비활성화(Disable) 과정(process)을 수행하는, 5G CPE.When the SIB is received, the 5G CPE performs a TX disable process (process) so that a radio signal is not transmitted through the transceiver.
  16. 제14 항에 있어서,The method of claim 14,
    상기 프로세서는,The processor,
    RRC 연결이 성공하여 RRC 연결 상태(RRC-connected state)가 된 경우, 상기 테스트 모드에 따른 테스트 과정이 완료될 때까지 무선 신호가 상기 송수신부를 통해 송신되지 않도록 제어하는, 5G CPE.When the RRC connection is successful and the RRC-connected state is reached, a 5G CPE for controlling a radio signal not to be transmitted through the transceiver until a test process according to the test mode is completed.
  17. 제16항에 있어서,The method of claim 16,
    상기 프로세서는,The processor,
    RRC 연결 상태(RRC-connected state)에서 RRC 상태 보고(state report)를 위한 제어 데이터를 위한 제1 무선 신호는 송신되고, 사용자 데이터(user data)를 위한 제2 무선 신호는 송신되지 않도록 상기 송수신부를 제어하는, 5G CPE.In the RRC-connected state, the first radio signal for control data for RRC state report is transmitted, and the second radio signal for user data is not transmitted. Controlled, 5G CPE.
  18. 제15 항에 있어서,The method of claim 15,
    상기 프로세서는,The processor,
    상기 SIB가 수신된 경우, 수신 신호 품질이 가장 우수한 셀을 선택하고, When the SIB is received, selects a cell having the best received signal quality,
    상기 선택된 셀의 Cell Selection RX level value 또는 Cell Selection quality value에 기반하여, TX 활성화(Enable) 절차, 틸팅(Tilting) 절차, 재설치 절차 중 하나를 수행하도록 제어하고,Based on the Cell Selection RX level value or Cell Selection quality value of the selected cell, control to perform one of a TX activation procedure, a tilting procedure, and a reinstallation procedure,
    상기 수신 신호 품질에 기반하여 상기 5G CPE가 NR 셀에 등록(register) 가능하다고 판단되면, 상기 TX 활성화(Enable) 절차를 수행하는, 5G CPE.If it is determined that the 5G CPE can be registered in an NR cell based on the received signal quality, the 5G CPE performs the TX activation procedure.
  19. 제14 항에 있어서,The method of claim 14,
    상기 프로세서는,The processor,
    상기 TX 비활성화(Disable) 과정이 개시되면, 상기 전자 기기와 제2 무선 인터페이스를 통해 페어링을 수행하고,When the TX disable process is started, pairing is performed with the electronic device through a second wireless interface,
    상기 TX 비활성화 과정 동안 상기 기지국으로부터 수신되는 수신 신호 품질과 연관된 정보가 상기 전자 기기에 표시되도록 제어하고,Control to display information related to the quality of a received signal received from the base station during the TX deactivation process on the electronic device,
    상기 테스트 모드가 종료되는 경우, 상기 테스트 모드가 종료되었다는 정보를 상기 전자 기기로 전달하는, 5G CPE.When the test mode is ended, transmitting information that the test mode has ended to the electronic device.
  20. 제17 항에 있어서,The method of claim 17,
    상기 프로세서는,The processor,
    상기 RRC 연결 상태(RRC-connected state)에서 NR 측정(measurement) 및 NR 측정 보고를 위한 제어 데이터를 제1 무선 신호를 통해 송신하고,In the RRC-connected state, control data for NR measurement and NR measurement report is transmitted through a first radio signal,
    PDN (Packet Data Network) 어태치(attach)가 완료된 경우, 사용자 데이터를 제2 무선 신호를 통해 송신하는, 5G CPE.5G CPE for transmitting user data through a second radio signal when the PDN (Packet Data Network) attach is completed.
  21. 전자 기기에 있어서,In an electronic device,
    무선 신호(radio signal)를 송신 및 수신하도록 구성된 송수신부(transceiver); 및A transceiver configured to transmit and receive a radio signal; And
    상기 송수신부와 연결되고, 5G 통신 중계 장치를 통해 기지국과 5G 무선 신호를 송신 및 수신하도록 구성된 제어부를 포함하고,A control unit connected to the transceiver and configured to transmit and receive a 5G radio signal with a base station through a 5G communication relay device,
    상기 5G 통신 중계 장치가 테스트 모드(test mode)에서 동작하여 셀 탐색(cell search)이 개시(initiate)된 경우, 5G 무선 신호는 상기 송수신부를 통해 송신되지 않는 것을 특징으로 하는, 전자 기기.When the 5G communication relay device is operated in a test mode and a cell search is initiated, a 5G radio signal is not transmitted through the transceiver.
  22. 제21 항에 있어서,The method of claim 21,
    상기 제어부는,The control unit,
    상기 5G 통신 중계 장치가 TX 비활성화(Disable) 과정(process)을 수행하는 경우, 사용자 데이터 및 제어 데이터를 송신하지 않도록 제한하는 송신 제한 시그널링을 상기 송수신부로 하여금 상기 5G 통신 중계 장치로 송신하도록 제어하고, When the 5G communication relay device performs a TX disable process (process), control the transmission/reception unit to transmit a transmission restriction signaling limiting transmission of user data and control data to the 5G communication relay device,
    상기 송신 제한 시그널링은 5G 무선 인터페이스와 다른 제2 무선 인터페이스로 상기 5G 통신 중계 장치로 송신되는, 전자 기기.The electronic device, wherein the transmission restriction signaling is transmitted to the 5G communication relay device through a second air interface different from the 5G air interface.
PCT/KR2019/009114 2019-07-23 2019-07-23 5g communication relay device WO2021015331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/009114 WO2021015331A1 (en) 2019-07-23 2019-07-23 5g communication relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/009114 WO2021015331A1 (en) 2019-07-23 2019-07-23 5g communication relay device

Publications (1)

Publication Number Publication Date
WO2021015331A1 true WO2021015331A1 (en) 2021-01-28

Family

ID=74193767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009114 WO2021015331A1 (en) 2019-07-23 2019-07-23 5g communication relay device

Country Status (1)

Country Link
WO (1) WO2021015331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911694A (en) * 2021-02-05 2021-06-04 陕西天基通信科技有限责任公司 Method for calculating uplink transmission open-loop power control of 5G repeater by using 4G field intensity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108493A (en) * 2013-02-28 2014-09-11 엘지전자 주식회사 Remote device for a multimedia commerce service and method for the same
US20140304382A1 (en) * 2000-05-01 2014-10-09 Novell, Inc. System and method for automatic provisioning of onsite networking services
KR101727662B1 (en) * 2012-10-15 2017-04-17 이카노스 커뮤니케이션스, 인크. Method and apparatus for detecting and analyzing noise and other events affecting a communication system
US20180146384A1 (en) * 2014-05-15 2018-05-24 Promptlink Communications, Inc. High-volume wireless device testing
US20190188999A1 (en) * 2016-05-19 2019-06-20 Nippon Telegraph And Telephone Corporation Sensor relay apparatus and sensor relay system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140304382A1 (en) * 2000-05-01 2014-10-09 Novell, Inc. System and method for automatic provisioning of onsite networking services
KR101727662B1 (en) * 2012-10-15 2017-04-17 이카노스 커뮤니케이션스, 인크. Method and apparatus for detecting and analyzing noise and other events affecting a communication system
KR20140108493A (en) * 2013-02-28 2014-09-11 엘지전자 주식회사 Remote device for a multimedia commerce service and method for the same
US20180146384A1 (en) * 2014-05-15 2018-05-24 Promptlink Communications, Inc. High-volume wireless device testing
US20190188999A1 (en) * 2016-05-19 2019-06-20 Nippon Telegraph And Telephone Corporation Sensor relay apparatus and sensor relay system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911694A (en) * 2021-02-05 2021-06-04 陕西天基通信科技有限责任公司 Method for calculating uplink transmission open-loop power control of 5G repeater by using 4G field intensity

Similar Documents

Publication Publication Date Title
WO2021049674A1 (en) Electronic device having antenna
WO2021075761A1 (en) Electronic device for selecting cell, and method therefor
WO2021187639A1 (en) Electronic device having antenna
WO2021187640A1 (en) Electronic device having antenna
WO2021182650A1 (en) Electronic device having 5g antenna
WO2021182651A1 (en) Electronic device equipped with 5g antenna
WO2021215554A1 (en) Electronic device having antenna
WO2021045268A1 (en) Electronic device having antenna
WO2022035259A1 (en) Method for managing session
WO2021153811A1 (en) Electronic device for supporting dual connectivity, and method for controlling electronic device
WO2022045384A1 (en) Electronic device having antenna
WO2021235578A1 (en) Electronic device having antenna
WO2021177575A1 (en) Electronic device comprising antenna
WO2021215550A1 (en) Electronic device supporting srs, and method for controlling electronic device
WO2021153819A1 (en) Electronic device that operates in plurality of communication systems
WO2021187633A1 (en) Electronic device for supporting 5g communication and method for controlling electronic device
WO2021015331A1 (en) 5g communication relay device
WO2021020608A1 (en) 5g customer premises equipment
WO2021049679A1 (en) Electronic device having antenna
WO2021251515A1 (en) Electronic device having antenna
WO2021206199A1 (en) Electronic device with antenna
WO2021162146A1 (en) Electronic device having sim card
WO2017095122A1 (en) Apparatus and method for controlling transmission and reception in a wireless communication system
WO2020241921A1 (en) Beamforming electronic device
WO2021020599A1 (en) Electronic device with antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938591

Country of ref document: EP

Kind code of ref document: A1