WO2021015210A1 - Metal raw material melting device, molten metal melting and holding system, and metal raw material melting method - Google Patents

Metal raw material melting device, molten metal melting and holding system, and metal raw material melting method Download PDF

Info

Publication number
WO2021015210A1
WO2021015210A1 PCT/JP2020/028332 JP2020028332W WO2021015210A1 WO 2021015210 A1 WO2021015210 A1 WO 2021015210A1 JP 2020028332 W JP2020028332 W JP 2020028332W WO 2021015210 A1 WO2021015210 A1 WO 2021015210A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
molten metal
metal
chamber
vortex chamber
Prior art date
Application number
PCT/JP2020/028332
Other languages
French (fr)
Japanese (ja)
Inventor
謙三 高橋
Original Assignee
株式会社 ヂーマグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ヂーマグ filed Critical 株式会社 ヂーマグ
Publication of WO2021015210A1 publication Critical patent/WO2021015210A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material

Definitions

  • the present invention relates to a metal raw material melting device, a metal molten metal melting and holding system, and a metal raw material melting method. Regarding the holding system and the method for dissolving the metal raw material.
  • non-ferrous metal melting and holding furnaces that melt and hold non-ferrous metals such as aluminum, copper, and magnesium are (i) a type consisting of only the furnace body, and (ii) the inside of the furnace body is divided into two to increase the volume. The smaller one is the front furnace, (iii) the front furnace is equipped with a mechanical pump to melt and circulate non-ferrous metals, and (iv) the melting furnace is attached to the outside of the furnace body. ..
  • the metal raw material is put into the melting furnace externally attached to the furnace body.
  • a permanent magnet arranged on the outer periphery or below the melting furnace having a vortex chamber is rotationally driven.
  • the molten metal in the vortex chamber is rotated by the eddy current to form a vortex.
  • a metal raw material such as chips is put into this vortex, the metal raw material is drawn into the vortex and melts in the molten metal.
  • the molten metal in the furnace can be circulated without using a mechanical pump.
  • the molten metal may leak from the connection portion between the furnace body and the melting furnace, or the molten metal may pop out from the vortex chamber.
  • large-scale construction is required to make a hole in the wall of the furnace body to connect the melting furnace and to install a magnetic field device including a permanent magnet and its driving mechanism.
  • the present invention has been made based on the above technical recognition, and an object thereof is a metal raw material which can be easily incorporated into a holding furnace, can be used safely, and can dissolve a metal raw material quickly and efficiently. It is an object of the present invention to provide a melting device, a molten metal melting and holding system having the metal raw material melting device, and a metal raw material melting method using the metal raw material melting device.
  • the metal raw material melting apparatus is A metal raw material melting device installed in a molten metal holding furnace.
  • a drive unit which is provided in a body in which a suction port and a discharge port are communicated with each other and drives the metal molten metal of the metal molten metal holding furnace to be sucked from the suction port and discharged from the discharge port.
  • a melting unit provided on the body and for dissolving the metal raw material charged into the vortex formed by the driving unit driving the molten metal.
  • the drive unit A drive chamber unit formed in the middle of the passageway and having a drive chamber inlet and a drive chamber outlet, A magnetic field device storage chamber formed in an upper portion of the drive chamber portion as a blind hole drilled from the top surface along the direction from the top surface to the bottom surface of the body.
  • a magnetic field device that is housed in the magnetic field device storage chamber and runs a magnetic field line in the vertical direction on the molten metal in the drive chamber.
  • a pair of drives are arranged so as to sandwich the drive chamber portion in a width direction intersecting the direction connecting the drive chamber inlet and the drive chamber outlet, and a current is passed in the width direction through the molten metal in the drive chamber portion.
  • the melting portion has a vortex chamber formed from the top surface of the body until it communicates with the communication passage.
  • the vortex chamber has a metal raw material input port opened on the top surface of the body, a vortex chamber inlet opened on the side wall of the vortex chamber, and a vortex chamber outlet opened on the side wall of the vortex chamber.
  • the vortex chamber inlet and the vortex chamber outlet are tangential to the vortex chamber so that the metal molten metal flowing in from the vortex chamber inlet and flowing out from the vortex chamber outlet forms a vortex of the metal molten metal in the vortex chamber.
  • the vortex chamber inlet communicates with the suction port of the body and the vortex chamber outlet communicates with the drive chamber inlet, or the vortex chamber inlet communicates with the drive chamber outlet and the vortex chamber outlet communicates with the body. It is characterized in communicating with the discharge port.
  • the method for dissolving a metal raw material according to the present invention is A method for melting a metal raw material using a metal raw material melting device installed in a molten metal holding furnace.
  • the metal raw material melting device is provided on a body in which a suction port and a discharge port are communicated with each other through a continuous passage.
  • a drive unit that drives the molten metal of the molten metal holding furnace to be sucked from the suction port and discharged from the discharge port, and is provided on the body until it communicates from the top surface of the body to the communication passage.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG. It is sectional drawing which follows the line II-II of FIG. It is sectional drawing which follows the line III-III of FIG. It is a top view of the body of the metal raw material melting apparatus which concerns on embodiment.
  • FIG. 6 is a cross-sectional view taken along the line II of FIG. It is sectional drawing which follows the line II-II of FIG. It is sectional drawing which follows the line III-III of FIG. It is a partial sectional view of the magnetic field apparatus which concerns on embodiment.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG. It is sectional drawing which follows the line II-II of FIG. It is sectional drawing which follows the line III-III of FIG. It is sectional drawing which follows the longitudinal direction of the body which concerns on modification 1 of embodiment. It is a top view of the metal raw material melting apparatus which concerns on modification 2 of Embodiment. It is a top view of the metal raw material melting apparatus which concerns on modification 3 of embodiment.
  • the metal molten metal melting and holding system 1000 includes a metal molten metal holding furnace 100 and a metal raw material melting device 1 installed in the metal molten metal holding furnace 100.
  • the molten metal holding furnace is also simply referred to as a “holding furnace”.
  • the metal molten metal melting and holding system 1000 dissolves metal raw materials (aluminum chips, powdery raw materials, etc.) charged into the melting portion (vortex chamber 2A) of the metal raw material melting device 1 in the metal molten metal.
  • metal raw materials aluminum chips, powdery raw materials, etc.
  • the molten metal driven by the driving unit of the metal raw material melting device 1 is discharged to the holding furnace 100 to perform in-furnace stirring.
  • the molten metal is a molten metal of a non-ferrous metal, and is a molten metal of a metal (for example, Al, Cu, Zn, Si) or an alloy (for example, an alloy composed of at least two of Al, Cu, Zn and Si, or a magnesium alloy). ..
  • the metal raw material melting device 1 is installed along the side wall surface of the molten metal holding furnace 100.
  • the metal raw material melting device 1 is fixed to the side wall (outer wall) of the holding furnace 100 by using fastening members such as bolts and nuts.
  • the molten metal holding furnace 100 has a structure in which the upper side is open and all sides are surrounded by outer walls.
  • a partition may be provided in the holding furnace 100, and the smaller volume may be used as the front furnace.
  • the metal raw material melting device 1 is not limited to the case where it is installed along the side wall surface of the holding furnace 100 as shown in FIG. Depending on the size and shape of the holding furnace 100, the metal raw material melting device 1 may be installed at a position where the molten metal in the holding furnace 100 can be efficiently agitated.
  • metal raw material melting devices 1 may be installed in the holding furnace 100 in FIG. 1, a plurality of metal raw material melting devices 1 may be installed.
  • the metal raw material melting devices 1 may be installed at the two diagonal corners of the holding furnace 100, or the metal raw material melting devices 1 may be installed at the four corners of the holding furnace 100, respectively.
  • the metal raw material melting device 1 may be installed in the front furnace.
  • the metal raw material melting device 1 may be installed on the main bus instead of the front furnace.
  • the metal raw material melting device 1 uses a Lorentz force to drive a molten metal and a metal raw material to be charged into a pulling vortex formed in the vortex chamber 2A by sucking the molten metal by the driving unit. It has a melting part that melts.
  • the specific configurations of the driving unit and the melting unit will be described later.
  • the metal raw material melting device 1 is used for the body 2 made of a fireproof material, the magnetic field device 3 for applying a magnetic field to the molten metal flowing in the body 2, and the molten metal flowing in the body 2. It has a pair of electrodes 4 and 5 for passing an electric current, and a power supply device 6 connected to the electrodes 4 and 5 and outputting a predetermined electric current.
  • FIG. 6 is a plan view of the body 2.
  • FIG. 7 is a cross-sectional view taken along the line II of FIG.
  • FIG. 8 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 9 is a cross-sectional view taken along the line III-III of FIG.
  • the body 2 has a substantially rectangular parallelepiped shape in the present embodiment, and is provided with a cylindrical hole-shaped vortex chamber 2A and a magnetic field device storage chamber 3B.
  • the body 2 is made of a refractory material (eg, silicon carbide (SiC)).
  • the body 2 communicates the suction port P1 and the discharge port P6 with a communication passage.
  • this communication passage includes a vortex chamber inflow passage 2P, a vortex chamber 2A, a vortex chamber outflow passage 2Q, a drive chamber portion 2R, and an outflow passage 2S.
  • the vortex chamber inflow path 2P is a flow path that communicates the suction port P1 and the vortex chamber inlet P2.
  • the vortex chamber outflow path 2Q is a flow path that communicates the vortex chamber outlet P3 and the drive chamber inlet P4.
  • the outflow path 2S may be omitted if necessary.
  • the vortex chamber inlet P2 communicates with the suction port P1
  • the vortex chamber outlet P3 communicates with the drive chamber inlet P4 of the drive chamber portion 2R.
  • the molten metal in the holding furnace 100 is sucked into the metal raw material melting device 1 from the suction port P1 and discharged from the discharge port P6 through the communication passage. More specifically, the molten metal sucked from the suction port P1 flows into the vortex chamber 2A through the vortex chamber inflow path 2P. The molten metal that has flowed into the vortex chamber 2A through the vortex chamber inflow path 2P swirls along the swirling vortex formed in the vortex chamber 2A, and then goes out from the vortex chamber outlet P3 to pass through the vortex chamber outflow path 2Q. It flows into the drive chamber 2R through the drive chamber.
  • the molten metal that has flowed into the drive chamber 2R flows in the drive chamber 2R while receiving Lorentz force (described later), and is then discharged from the discharge port P6 to the outside of the body 2 through the outflow path 2S. As shown in FIG. 12, the molten metal discharged from the discharge port P6 circulates in the holding furnace 100.
  • the body 2 includes a drive unit that drives the molten metal of the molten metal holding furnace 100 to be sucked from the suction port P1 and discharged from the discharge port P6, and a melting unit that melts the metal raw material charged into the molten metal.
  • a drive unit that drives the molten metal of the molten metal holding furnace 100 to be sucked from the suction port P1 and discharged from the discharge port P6, and a melting unit that melts the metal raw material charged into the molten metal.
  • the melting portion is provided on the body 2 on the downstream side of the driving portion.
  • the melting unit and the driving unit are integrally provided on the body 2. The details of the melting unit and the driving unit will be described in detail later.
  • a cylindrical hole-shaped vortex chamber 2A is formed in the body 2.
  • the vortex chamber 2A is configured to be bored from the top surface 2u of the body 2 until it communicates with the above-mentioned communication passage.
  • the vortex chamber 2A is formed in the shape of a cylindrical hole whose central axis is parallel in the vertical direction, and the bottom surface of the vortex chamber 2A is flat.
  • the shape of the vortex chamber 2A is not limited to a columnar shape, and may be an elliptical shape, a polygonal shape, or the like.
  • the vortex chamber 2A has a vortex chamber inlet P2 and a vortex chamber outlet P3 opened on the side wall of the cylindrical hole-shaped vortex chamber 2A, and a metal raw material input opened on the top surface 2u of the body 2. It has a mouth P7 and.
  • the bottom surface of the vortex chamber is not provided with an outlet for discharging the molten metal from the vortex chamber. Therefore, it is not necessary to provide a molten metal discharge path extending vertically downward from the bottom surface of the vortex chamber. Since the molten metal discharge path is not provided, a deep vortex chamber can be formed, and as a result, a deep vortex can be formed.
  • the metal molten metal flowing in from the vortex chamber inlet P2 and flowing out from the vortex chamber outlet P3 forms a vortex of the metal molten metal in the vortex chamber 2A.
  • the vortex chamber inlet P2 is provided so that at least the outer side wall 2Ps1 of the side wall 2Ps1 and the side wall 2Ps2 of the vortex chamber inflow path 2P is smoothly connected to the side wall of the vortex chamber 2A.
  • the vortex chamber outlet P3 is provided so that at least the outer side wall 2Qs1 of the side wall 2Qs1 and the side wall 2Qs2 of the vortex chamber outflow path 2Q is smoothly connected to the side wall of the vortex chamber 2A.
  • the side wall 2Ps1 and the side wall 2Qs1 are formed so as to extend along the tangential direction of the side wall of the columnar vortex chamber 2A.
  • the body 2 is provided with a magnetic field device storage chamber 2B.
  • the magnetic field device storage chamber 2B is formed in an upper portion of the drive chamber portion 2R as a blind hole drilled from the top surface 2u along the direction from the top surface 2u to the bottom surface 2w of the body 2.
  • a magnetic field device 3 that generates a magnetic field is housed in the drive chamber portion 2R.
  • a heat insulating layer (not shown) may be provided on the side surface 2Bs and / or the bottom surface 2Bb of the magnetic field device storage chamber 2B. As a result, the magnetic field device 3 can be suppressed from being heated by the heat of the molten metal or the like in the holding furnace 100, and the magnetic field strength can be maintained.
  • two tubular portions 2C1 and 2C2 are provided on the bottom surface 2Bb of the magnetic field device storage chamber 2B.
  • the tubular portion 2C1 is projected from the bottom surface 2Bb so as to surround the opening of the molten metal pool portion ES1 in the bottom surface 2Bb of the magnetic field device storage chamber 2B. Then, as shown in FIGS. 2 and 4, the electrode 4 is inserted into the tubular portion 2C1. Similarly, the tubular portion 2C2 is projected from the bottom surface 2Bb so as to surround the opening of the molten metal pool portion ES2 in the bottom surface 2Bb of the magnetic field device storage chamber 2B. Then, the electrode 5 is inserted into the tubular portion 2C2.
  • the molten metal that has risen from the molten metal pools ES1 and ES2 according to the liquid level of the vortex chamber 2A leaks into the magnetic field device storage chamber 2B. Can be prevented.
  • the body 2 is provided with a drive chamber portion 2R in which the molten metal is driven by Lorentz force.
  • the drive chamber portion 2R is formed in the middle of the communication passage, and has a drive chamber inlet P4 and a drive chamber outlet P5.
  • the body 2 is provided with molten metal pools ES1 and ES2.
  • the molten metal pool portion ES1 is provided in a concave shape on the side wall 2Rs1 of the drive chamber portion 2R, and communicates the side wall 2Rs1 of the drive chamber portion 2R with the bottom surface 2Bb of the magnetic field device storage chamber 2B.
  • the molten metal pool portion ES2 is provided in a concave shape on the side wall 2Rs2 of the drive chamber portion 2R, and communicates the side wall 2Rs2 of the drive chamber portion 2R with the bottom surface 2Bb of the magnetic field device storage chamber 2B.
  • the body 2 may be provided with an engaging portion (not shown) used when the metal raw material melting device 1 is installed or replaced in the holding furnace 100.
  • hooks are provided at a plurality of locations on the top surface 2u of the body 2.
  • the body 2 is integrally formed by using a refractory material in the present embodiment, it may be formed by combining a plurality of members.
  • the magnetic field device 3 is housed in the magnetic field device storage chamber 2B, and is configured to run magnetic field lines in the vertical direction on the molten metal in the drive chamber portion 2R.
  • the magnetic field device 3 has a magnet body 31, a blower 32, and a storage container 33 for accommodating the magnet body 31.
  • the magnet body 31 is a permanent magnet having a substantially donut shape, and the lower surface and the upper surface are magnetized to form N poles and S poles (in FIG. 10, the lower surface is magnetized to the N pole and the upper surface is magnetized to the S pole).
  • the magnetic field lines ML in the vertical direction run.
  • the magnetic field lines ML penetrate the refractory material that separates the magnetic field device storage chamber 2B and the drive chamber portion 2R, and reach the molten metal of the drive chamber portion 2R.
  • the Lorentz force acts on the molten metal due to the intersection of the magnetic field lines ML and the current I flowing between the electrodes 4 and 5, and the molten metal is driven from the drive chamber inlet P4 toward the drive chamber outlet P5.
  • the shape of the magnet body 31 is not limited to the donut shape, and may be another shape.
  • the magnet body 31 may be configured such that a plurality of permanent magnet bar magnets are arranged in the vertical direction so that the magnetic poles are aligned along the outer circumference of the blower pipe 32d.
  • the magnet body 31 may be composed of an electromagnet. In this case, it is natural that the power consumption increases.
  • the blower 32 has a blower 32a, a connection pipe 32b, a flexible connection pipe 32c, and a hollow blower pipe 32d penetrating the donut-shaped magnet body 31.
  • the blower 32a sends cooling air to the upper end of the blower pipe 32d via the connection pipe 32b and the flexible connection pipe 32c.
  • the air sent into the blower pipe 32d cools the magnet body 31 through the blower pipe 32d, and then, as shown in FIG. 10, is ejected from the lower end of the blower pipe 32d and blown onto the lower bottom 33c2 of the storage container 33. Reflects.
  • the reflected air passes through the air hole H2 of the upper bottom 33c1 and passes through the side surface of the magnet body 31, and is discharged to the outside of the storage container 33 through the air hole H1.
  • an air curtain is formed around the magnet body 31 by the air blown from the blower device 32.
  • the magnet body 31 can be suppressed from being heated by the heat of the molten metal or the like in the holding furnace 100, and the magnetic field strength can be maintained.
  • the storage container 33 has an outer cylinder 33a made of a non-magnetic member such as stainless steel and a heat-resistant material, and a heat insulating material cylinder 33b housed in a so-called nested state inside the outer cylinder 33a. And a stainless steel cylinder 33c.
  • the bottom of the innermost stainless steel cylinder 33c is a double bottom of an upper base 33c1 and a lower base 33c2.
  • the inside of the stainless steel cylinder 33c is divided into an upper space and a lower space by the upper bottom 33c1.
  • the upper base 33c1 is provided with an air hole H2 that penetrates the upper base 33c1 and communicates the upper space and the lower space.
  • the cooling air sent from the blower 32a to the lower space through the blower pipe 32d flows into the upper space through these air holes H2 and flows out from the air hole H1 to the outside.
  • the air hole H1 is a communication between the hole 31da provided in the lid 33d of the outer cylinder 33a, the hole 31ea provided in the lid 33e of the heat insulating material cylinder 33b, and the hole 31fa provided in the lid 33f of the stainless steel cylinder 33c. It is configured as.
  • the magnetic field device 3 is not limited to the above configuration.
  • the magnetic field device 3 may be composed of only permanent magnets.
  • the magnetic field device 3 may be housed in the magnetic field device storage chamber 2B so that the position can be adjusted along the vertical direction, so that the magnetic field strength in the drive chamber portion 2R can be adjusted.
  • a moving means (not shown) for adjusting the vertical position of the magnetic field device 3 is provided.
  • This moving means may move the storage container 33 in the vertical direction, or may not move the storage container 33 and move the magnet body 31 in the storage container 33 up and down along the blower pipe 32d. It may be something to make.
  • the moving means may be, for example, a pedestal having a variable height, a plurality of types of pedestals having different heights, or a crane for suspending the magnetic field device 3 at a variable height.
  • the magnetic field strength penetrating the molten metal in the drive chamber unit 2R can be changed, and the driving force (Lorentz force) of the driving unit can be adjusted. That is, as the magnetic field device 3 is moved downward (that is, closer to the bottom surface 2Bb of the magnetic field device storage chamber 2B), the magnetic field strength penetrating the molten metal in the drive chamber portion 2R increases, and the driving force increases. On the contrary, as the magnetic field device 3 is moved upward (that is, away from the bottom surface 2Bb of the magnetic field device storage chamber 2B), the magnetic field strength penetrating the molten metal in the drive chamber portion 2R becomes smaller, and the driving force becomes smaller.
  • the Lorentz force acting on the molten metal can be adjusted even when a constant current is passed between the electrodes 4 and 5.
  • the driving force can be primarily adjusted by the current flowing through the electrodes 4 and 5, and then the driving force can be secondarily adjusted by the vertical position of the magnetic field device 3.
  • the range of adjustment of the driving force can be expanded.
  • the secondary adjustment can avoid an increase in power consumption and reduce the running cost.
  • the pair of electrodes 4 and 5 have the drive chamber portion 2R in the width direction of the drive chamber portion 2R (that is, the direction intersecting the direction connecting the drive chamber inlet P4 and the drive chamber outlet P5). It is arranged so as to sandwich.
  • the electrodes 4 and 5 are electrodes for passing an electric current in the width direction of the drive chamber portion 2R via the molten metal in the drive chamber portion 2R.
  • the electrode 4 is arranged so as to come into contact with the molten metal that has flowed from the drive chamber portion 2R into the molten metal pool portion ES1 in the used state.
  • the electrode 5 is arranged so as to come into contact with the molten metal that has flowed from the drive chamber portion 2R into the molten metal pool portion ES2 in the used state.
  • the electrodes 4 and 5 are arranged so as to be immersed in the molten metal in the molten metal pools ES1 and ES2, so that a current in the width direction flows through the molten metal in the drive chamber 2R. ..
  • the electrode which is a consumable item, can be easily replaced.
  • the tips of the electrodes 4 and 5 are made of an abrasion-resistant material such as tungsten.
  • the shapes of the electrodes 4 and 5 are not limited to the round bar shape in the present embodiment, but may be other shapes such as a flat plate shape, a comb shape, and a net shape. Further, the electrodes 4 and 5 may be composed of a plurality of electrode rods electrically connected to each other.
  • the power supply device 6 controls a DC power supply 61 connected to electrodes 4 and 5 via wiring 7 and a control unit (power supply control panel) that controls the DC power supply 61 to output a predetermined current. 62 and.
  • a control unit power supply control panel
  • the control unit 62 responds to the discharge amount of the molten metal required to sufficiently agitate the molten metal in the holding furnace 100, the depth of the vortex required to efficiently dissolve the metal raw material in the vortex chamber 2A, and the like.
  • the magnitude of the current output by the DC power supply 61 is determined.
  • the control unit 62 may change the magnitude of the current output to the electrodes 4 and 5 according to the liquid level of the molten metal in the holding furnace 100.
  • the liquid level of the molten metal is measured by a known measuring means using a floating body or the like.
  • the control unit 62 controls the DC power supply 61 so as to increase the current when the liquid level of the molten metal in the holding furnace 100 is lower than a predetermined level.
  • the liquid level in the vortex chamber 2A is also low, so that the vortex in the vortex chamber 2A becomes shallow and the dissolution efficiency of the metal raw material is lowered.
  • the drive unit sucks the molten metal in the vortex chamber 2A into the drive chamber 2R with a stronger force, so that the molten metal in the vortex chamber 2A swirls faster.
  • the vortex of the vortex chamber 2A can be deepened.
  • the control unit 62 may control the DC power supply 61 so as to reduce the current. As a result, power consumption can be suppressed.
  • a pulse power supply may be used instead of the DC power supply 61.
  • the drive unit includes a drive chamber unit 2R, a magnetic field device storage chamber 2B, a magnetic field device 3, a pair of electrodes 4 and 5, and a power supply device 6.
  • the magnetic field line ML output from the magnetic field device 3 runs in the vertical direction, penetrates the fireproof material separating the magnetic field device storage chamber 2B and the drive chamber portion 2R, and drives. It reaches the molten metal of Murobe 2R. Further, the current I flowing between the electrodes 4 and 5 flows in the molten metal of the drive chamber portion 2R in the width direction.
  • Lorentz force acts on the molten metal of the drive chamber 2R due to the intersection of the magnetic field lines ML and the current I.
  • the molten metal of the drive chamber portion 2R is driven from the drive chamber inlet P4 toward the drive chamber outlet P5.
  • the molten metal of the holding furnace 100 is sucked into the body 2 from the suction port P1, forms a vortex in the vortex chamber 2A, flows through the drive chamber portion 2R, and is discharged from the discharge port P6. ..
  • the molten metal in the holding furnace 100 is agitated along the flow F.
  • the metal raw material melting device 1 driving unit functions as a pump for stirring the molten metal in the holding furnace 100.
  • the molten metal in the drive chamber 2R is driven toward the discharge port P6 by the Lorentz force, so that the molten metal in the vortex chamber 2A is sucked and a spiral pulling vortex is formed in the vortex chamber 2A. Become.
  • the width of the vortex chamber outflow path 2Q may be widened from the vortex chamber outlet P3 to the drive chamber inlet P4.
  • the width of the drive chamber portion 2R is widened, and the current path between the electrodes 4 and 5 can be lengthened.
  • the Lorentz force acting on the molten metal is increased, and the driving force of the molten metal by the driving unit can be improved.
  • the melting portion has a vortex chamber 2A formed in the body 2.
  • the molten metal of the vortex chamber 2A is pulled by the suction force of the driving unit, and a spiral pulling vortex V is formed in the vortex chamber 2A.
  • the molten metal flowing in from the vortex chamber inlet P2 descends along the spiral of the pulling vortex V, flows out from the vortex chamber outlet P3 provided in the lower part of the vortex chamber 2A, and heads for the drive chamber portion 2R.
  • a metal raw material (aluminum chips or the like for molten aluminum) into the spiral vortex formed in the vortex chamber 2A in this way from the metal raw material input port P7, the metal raw material is rapidly dissolved in the molten metal. Can be done.
  • the material to be charged into the vortex chamber 2A may be a material having a relatively small specific gravity, light weight and easy floating, such as chips or powdery materials.
  • the bottom surface 2Pb of the vortex chamber inflow path 2P may be located at a position higher than the bottom surface 2Ab of the vortex chamber 2A.
  • the bottom portion of the vortex is suppressed from being disturbed by the molten metal flowing in from the vortex chamber inlet P2, so that the vortex is clearly and deeply formed in the vortex chamber 2A.
  • the dissolution efficiency of the metal raw material can be improved.
  • the height of the bottom surface 2Pb of the vortex chamber inlet P2 may be the same as the height of the upper end of the vortex chamber outlet P3.
  • the vortex chamber outlet P3 may be provided so that its lower end is in contact with the bottom surface 2Ab of the vortex chamber 2A. As a result, a deeper vortex can be formed for the same liquid level, and the dissolution efficiency of the metal raw material can be improved. Further, it is possible to prevent the molten metal in the vortex chamber 2A from remaining in the vortex chamber 2A when the operation of the metal raw material melting device 1 is stopped.
  • the width of the vortex chamber inflow path 2P may be narrowed as it progresses from the suction port P1 to the vortex chamber inlet P2. As a result, the flow velocity of the molten metal flowing into the vortex chamber 2A increases, and a firm vortex can be formed in the vortex chamber 2A.
  • the metal raw material melting device 1 is installed and used in the holding furnace 100, and the driving unit that drives the molten metal using Lorentz force is downstream of the melting unit. It is provided on the side and is configured to suck the molten metal of the vortex chamber 2A. As a result, a deep and firm pulling vortex is formed in the vortex chamber 2A. Therefore, even if the metal raw material input from the metal raw material input port P7 has a relatively light apparent specific gravity such as chips or powder, it is spirally drawn into the vortex and efficiently into the molten metal. Dissolves well.
  • the temperature of the molten metal in the vortex chamber 2A is maintained at a high temperature. , The input metal raw material can be melted quickly.
  • the magnetic field device 3 is arranged above the drive chamber portion 2R, the flow path of the molten metal can be provided at a low position of the body 2.
  • the vortex chamber outlet P3 can be provided at a low position, and a deep vortex can be formed in the vortex chamber 2A.
  • the metal raw material can be efficiently melted.
  • metal raw materials such as aluminum chips can be dissolved quickly and efficiently.
  • a hole is made in the wall of the holding furnace to connect the melting furnace, or the holding furnace or the side wall of the melting furnace or the side wall of the melting furnace.
  • the present embodiment since there is no risk of molten metal leaking from the joint portion between the melting furnace and the holding furnace, it can be used extremely safely as compared with the conventional case. Further, even when the molten metal is ejected from the vortex chamber 2A, the molten metal that has ejected stays in the holding furnace 100 because the metal raw material melting device 1 is arranged in the holding furnace 100, and the safety is not impaired.
  • the metal raw material melting device 1 is a pump or a pump that agitates the molten metal in the holding furnace 100 by discharging the molten metal sucked from the vortex chamber 2A into the holding furnace 100 from the discharge port P6. It also functions as a stirrer. Since the installation position of the metal raw material melting device 1 in the holding furnace 100 is not particularly limited, select a position (such as a corner of the holding furnace) where the metal raw material is melted or the metal molten metal is stirred most efficiently, and the metal raw material melting device is used. 1 can be installed.
  • the metal raw material melting device 1 of the present embodiment is configured as an all-in-one type including the magnetic field device 3, the metal raw material melting device 1 is taken out from the holding furnace 100 at the time of failure or cleaning of the metal raw material melting device 1. All you have to do is replace it with a new one.
  • the metal raw material melting device 1 can be taken out and cleaned easily for removing slag of non-ferrous metal adhering to the suction port P1 and the discharge port P6. Further, even if a problem occurs in the metal raw material melting device 1, the metal raw material melting device 1 can be taken out from the holding furnace 100 and repaired. Even during the repair, the loss due to downtime can be minimized by installing the spare metal raw material melting device 1 in the holding furnace 100 or performing the molten metal stirring work by the conventional method.
  • the metal raw material melting device 1 is arranged so that the bottom surface 2w of the body 2 is in contact with the bottom surface of the holding furnace 100, the bottom surface of the vortex chamber 2A is at a lower position than the conventional external vortex chamber. As a result, even if the liquid level of the molten metal in the holding furnace 100 fluctuates, the amount of molten metal required to form a vortex in the vortex chamber 2A can be secured, and it is possible to avoid a large decrease in the melting capacity.
  • the metal raw material melting device 1 can be installed at any position in the holding furnace 100, even if the holding furnace 100 has a front furnace, the volume of the front furnace is small. It is not necessary to install the metal raw material melting device 1 in the above. That is, since the volume of the front furnace is small, the temperature of the molten metal drops sharply depending on the position where the raw material is charged. However, by installing the metal raw material melting device 1 in the main bath with a large volume, the temperature drops when the raw material is charged. Can be prevented and the metal raw material can be dissolved efficiently.
  • the magnetic field device 3 uses a permanent magnet, the power consumption can be significantly reduced as compared with the case of the electromagnet, and the structure of the magnetic field device 3 can be simplified.
  • the dissolution efficiency can be significantly improved as compared with the conventional case. Moreover, since the Lorentz force of the permanent magnet is used, the power consumption can be significantly reduced. Therefore, in the case of a 100-ton furnace as an example, a stirring device having an output of 300 to 500 kW was conventionally required for stirring in the furnace, but according to the present embodiment, the stirring device is unnecessary and the stirring device is less than 10 kW. By operating the metal raw material melting device 1 with electric power, stirring in the furnace can be sufficiently performed.
  • the molten metal in the furnace is agitated without using the mechanical pump, it is not necessary to perform maintenance on the mechanical pump. Therefore, the maintainability can be improved and the running cost can be significantly reduced.
  • the metal raw material melting device 1 includes a magnetic field device 3 in the body 2, and the bottom surface 2Bb of the magnetic field device storage chamber 2B is obtained in advance so that a predetermined magnetic field strength can be obtained in the drive chamber portion 2R.
  • the thickness etc. is designed. Therefore, according to the present embodiment, when incorporating the metal raw material melting device 1 into the holding furnace, the thickness of the wall of the holding furnace is adjusted as in the case where the magnetic field device is installed near the side wall or the bottom wall of the holding furnace. It is not necessary to adjust or set the magnetic field strength of the magnetic field device 3 in consideration.
  • the metal raw material melting device 1 has a built-in magnetic field device 3, and the magnetic field device 3 and the drive chamber 2R are arranged in the body 2 so as to be separated by a relatively thin fireproof material wall. Therefore, it is possible to secure a sufficient driving force with a relatively small magnetic field strength, and it is possible to reduce the size and cost of the magnetic field device as compared with the conventional external type magnetic field device.
  • the Lorentz force is used as a driving force for drawing and melting the metal raw material charged into the metal raw material input port P7 into the molten metal. Therefore, by adjusting at least one of the current and the magnetic field strength, a desired attractive force can be generated and a vortex can be formed in the vortex chamber 2A.
  • the suction force of the molten metal is adjusted by adjusting the magnitude of the current output by the DC power supply 61 (primary adjustment) and then adjusting the magnetic field strength in the drive chamber 2R (secondary adjustment). be able to.
  • the present embodiment By providing a plurality of means for adjusting the magnetic field strength in this way, according to the present embodiment, it is possible to easily adjust the driving force of the molten metal and widen the range of adjusting the driving force. it can. Further, by bringing the permanent magnet closer to the drive chamber portion 2R, the driving force can be increased without increasing the current. That is, by performing the secondary adjustment, the running cost can be suppressed as compared with the primary adjustment.
  • the magnitude of the driving force can be adjusted by two parameters of current and magnetic field strength.
  • the driving force (Lorentz force) does not have to be large, but it is desirable to set the value to an appropriate size for each system in order to efficiently dissolve the metal raw material.
  • the driving force can be adjusted by two parameters (that is, current and magnetic field strength), the driving force can be easily set to an appropriate magnitude according to the system.
  • the central axis of the shape of the vortex chamber 2A is tilted by a predetermined angle from the vertical direction.
  • raw materials such as chips can be easily taken in by the vortex.
  • the vortex chamber 2A is provided at an angle, a part of the vortex of the molten metal collapses near the top thereof and covers the metal raw material charged into the vortex chamber 2A.
  • metal raw materials such as aluminum chips can be dissolved more efficiently.
  • a drive unit is provided not only on the downstream side of the vortex chamber 2A but also on the upstream side of the vortex chamber 2A. That is, in this modification, the body 2 is provided with two drive units with the vortex chamber 2A interposed therebetween. As a result, the driving force of the molten metal is further increased, so that a firm and deep vortex can be formed in the vortex chamber 2A, and the molten metal in the holding furnace 100 can be agitated with a large stirring force.
  • the vortex chamber inlet P2 communicates with the drive chamber outlet P5B of the drive chamber portion 2RB on the upstream side
  • the vortex chamber outlet P3 communicates with the drive chamber inlet P4 of the drive chamber portion 2R on the downstream side.
  • the driving force of the driving unit provided on the upstream side of the vortex chamber 2A may be smaller than the driving force of the driving unit provided on the downstream side of the vortex chamber 2A. As a result, a pulling vortex can be formed in the vortex chamber 2A while increasing the driving force.
  • the magnitude of the current flowing between the electrodes 4B and 5B of the driving unit provided on the upstream side of the vortex chamber 2A is adjusted between the electrodes 4 and 5 of the driving unit provided on the downstream side of the vortex chamber 2A.
  • the height of the magnetic field device 3 of the drive unit provided on the upstream side of the vortex chamber 2A should be smaller than the current flowing through the vortex chamber 2A, and / or the height of the magnetic field device 3 of the drive unit provided on the downstream side of the vortex chamber 2A. This can be done by increasing the value (that is, decreasing the magnetic field strength of the drive chamber 2R).
  • ⁇ Modification example 3> In the metal raw material melting device 1C according to this modification, as shown in FIG. 18, a drive unit is provided on the upstream side of the vortex chamber 2A instead of the downstream side of the vortex chamber 2A.
  • the vortex chamber inlet P2 communicates with the drive chamber outlet P5B of the drive chamber portion 2RB on the upstream side, and the vortex chamber outlet P3 communicates with the discharge port P6B of the body 2.
  • the metal raw material melting apparatus according to the present invention is configured as an all-in-one type. That is, the metal raw material melting device according to the present invention is configured as a single unit complete assembly, and functions as a melting furnace and also as a stirrer by itself without requiring any other members or devices. To do. Therefore, the metal raw material melting apparatus according to the present invention is extremely useful for industrial use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

[Problem] To provide a metal raw material melting device which can be easily incorporated into a holding furnace, can be used safely, and can melt a metal raw material quickly and efficiently. [Solution] A metal raw material melting device (1) which is installed in a molten metal holding furnace (100) comprises: a drive unit that is disposed in a body (2) with a suction port (P1) and a discharge port (P6) connected by a communication path and drives the molten metal in the molten metal holding furnace (100) to be sucked from the suction port (P1) and discharged from the discharge port (P6); and a melting unit that is disposed in the body (2) and melts the metal raw material charged into the vortex formed by the drive unit driving the molten metal.

Description

金属原料溶解装置、金属溶湯溶解保持システムおよび金属原料溶解方法Metal raw material melting device, metal molten metal melting and holding system and metal raw material melting method
 本発明は、金属原料溶解装置、金属溶湯溶解保持システムおよび金属原料溶解方法に関し、より詳しくは、金属原料を金属溶湯に溶解させるための金属原料溶解装置、当該金属原料溶解装置を有する金属溶湯溶解保持システム、および金属原料溶解方法に関する。 The present invention relates to a metal raw material melting device, a metal molten metal melting and holding system, and a metal raw material melting method. Regarding the holding system and the method for dissolving the metal raw material.
 従来、アルミニウム、銅、マグネシウム等の非鉄金属を溶解し保持する非鉄金属溶解保持炉は、(i)炉本体のみから構成されるタイプ、(ii)炉本体の内部を二つに仕切り、容積の小さい方を前炉としたタイプ、(iii)前炉にメカニカルポンプを設け、非鉄金属の溶解と循環を行うタイプ、および(iv)炉本体の外側に溶解炉を付設したタイプに大別される。 Conventionally, non-ferrous metal melting and holding furnaces that melt and hold non-ferrous metals such as aluminum, copper, and magnesium are (i) a type consisting of only the furnace body, and (ii) the inside of the furnace body is divided into two to increase the volume. The smaller one is the front furnace, (iii) the front furnace is equipped with a mechanical pump to melt and circulate non-ferrous metals, and (iv) the melting furnace is attached to the outside of the furnace body. ..
特開2013-76537号公報Japanese Unexamined Patent Publication No. 2013-76537
 しかしながら、上記従来のタイプi~ivの溶解保持炉は以下のような問題がある。 However, the above-mentioned conventional type i to iv melting and holding furnaces have the following problems.
 タイプiの場合、金属溶湯の成分の均一化および溶湯温度の均一化を図るために炉内の金属溶湯を撹拌する必要がある。しかしながら、この撹拌作業は人手により行われるため、大変危険であるという問題がある。 In the case of type i, it is necessary to stir the molten metal in the furnace in order to homogenize the components of the molten metal and the temperature of the molten metal. However, since this stirring operation is performed manually, there is a problem that it is very dangerous.
 タイプiiの場合、アルミニウム切粉等の金属原料を前炉に投入して金属溶湯中に溶解させる。しかしながら、炉内の金属溶湯が循環していないため、金属原料の投入に伴い前炉内の溶湯温度が急低下する。このため、金属原料の溶解効率が非常に低くなってしまうという問題がある。 In the case of type ii, a metal raw material such as aluminum chips is put into the front furnace and dissolved in the molten metal. However, since the molten metal in the furnace is not circulated, the temperature of the molten metal in the front furnace drops sharply as the metal raw material is added. Therefore, there is a problem that the dissolution efficiency of the metal raw material becomes very low.
 タイプiiiの場合、メカニカルポンプで炉内の金属溶湯を循環させるため、金属原料を投入しても溶湯温度が大きく下がらない。しかしながら、メカニカルポンプの損傷が激しいため、比較的短期間でメカニカルポンプを修理または交換しなくてはならない。このため、ランニングコストが嵩むという問題がある。 In the case of type iii, since the molten metal in the furnace is circulated by the mechanical pump, the temperature of the molten metal does not drop significantly even if the metal raw material is added. However, due to the severe damage to the mechanical pump, the mechanical pump must be repaired or replaced in a relatively short period of time. Therefore, there is a problem that the running cost increases.
 タイプivの場合、炉本体に外付けされた溶解炉に金属原料が投入される。例えば特許文献1に記載されているように、渦室を有する溶解炉の外周または下方に配置された永久磁石を回転駆動させる。これにより、渦室内の溶湯が渦電流により回転し、渦を形成する。この渦に切粉等の金属原料が投入されると、金属原料は渦の中に引き込まれ、金属溶湯中に溶解する。メカニカルポンプを使用することなく、炉内の金属溶湯を循環させることができる。しかしながら、炉本体と溶解炉との間の接続部分から金属溶湯が漏れ出したり、渦室から金属溶湯が飛び出るおそれがあるという問題がある。また、炉本体の壁に穴を開けて溶解炉を接続したり、永久磁石およびその駆動機構を含む磁場装置を設置等するために大がかりな工事が必要となる。 In the case of type iv, the metal raw material is put into the melting furnace externally attached to the furnace body. For example, as described in Patent Document 1, a permanent magnet arranged on the outer periphery or below the melting furnace having a vortex chamber is rotationally driven. As a result, the molten metal in the vortex chamber is rotated by the eddy current to form a vortex. When a metal raw material such as chips is put into this vortex, the metal raw material is drawn into the vortex and melts in the molten metal. The molten metal in the furnace can be circulated without using a mechanical pump. However, there is a problem that the molten metal may leak from the connection portion between the furnace body and the melting furnace, or the molten metal may pop out from the vortex chamber. In addition, large-scale construction is required to make a hole in the wall of the furnace body to connect the melting furnace and to install a magnetic field device including a permanent magnet and its driving mechanism.
 本発明は上記の技術的認識に基づいてなされたものであり、その目的は、保持炉に容易に組み込むことができ、安全に使用可能であり、迅速かつ効率良く金属原料を溶解可能な金属原料溶解装置、当該金属原料溶解装置を有する金属溶湯溶解保持システム、および当該金属原料溶解装置を用いた金属原料溶解方法を提供することである。 The present invention has been made based on the above technical recognition, and an object thereof is a metal raw material which can be easily incorporated into a holding furnace, can be used safely, and can dissolve a metal raw material quickly and efficiently. It is an object of the present invention to provide a melting device, a molten metal melting and holding system having the metal raw material melting device, and a metal raw material melting method using the metal raw material melting device.
 本発明に係る金属原料溶解装置は、
 金属溶湯保持炉内に設置される金属原料溶解装置であって、
 吸引口と吐出口とを連通路で連通したボディに設けられており、前記金属溶湯保持炉の金属溶湯を前記吸引口から吸引して前記吐出口から吐出するように駆動する駆動部と、
 前記ボディに設けられており、前記駆動部が金属溶湯を駆動することにより形成される渦中に投入される金属原料を溶解する溶解部と、
 を備え、
 前記駆動部は、
 前記連通路の途中に形成され、駆動室入口と駆動室出口を有する駆動室部と、
 前記ボディの天面から底面に向かう方向に沿って前記天面から穿けた止り穴として前記駆動室部の上方部分に形成された磁場装置収納室と、
 前記磁場装置収納室に収納され、前記駆動室部内の金属溶湯に上下方向に磁力線を走らせる磁場装置と、
 前記駆動室入口と前記駆動室出口を結ぶ方向と交差する幅方向に前記駆動室部を挟むように配置され、前記駆動室部内の金属溶湯を介して前記幅方向に電流を流すための一対の電極と、
 を有し、
 前記溶解部は、前記ボディの前記天面から前記連通路に連通するまで穿設された渦室を有し、
 前記渦室は、前記ボディの前記天面に開口した金属原料投入口と、前記渦室の側壁に開口した渦室入口と、前記渦室の側壁に開口した渦室出口とを有し、
 前記渦室入口および前記渦室出口は、前記渦室入口から流入して前記渦室出口から流出する金属溶湯が前記渦室内に金属溶湯の渦を形成するように、前記渦室の接線方向に沿って開口する位置に設けられ、
 前記渦室入口は前記ボディの前記吸引口と連通し且つ前記渦室出口は前記駆動室入口に連通し、または、前記渦室入口は前記駆動室出口に連通し前記渦室出口は前記ボディにおける前記吐出口に連通することを特徴とする。
The metal raw material melting apparatus according to the present invention is
A metal raw material melting device installed in a molten metal holding furnace.
A drive unit which is provided in a body in which a suction port and a discharge port are communicated with each other and drives the metal molten metal of the metal molten metal holding furnace to be sucked from the suction port and discharged from the discharge port.
A melting unit provided on the body and for dissolving the metal raw material charged into the vortex formed by the driving unit driving the molten metal.
With
The drive unit
A drive chamber unit formed in the middle of the passageway and having a drive chamber inlet and a drive chamber outlet,
A magnetic field device storage chamber formed in an upper portion of the drive chamber portion as a blind hole drilled from the top surface along the direction from the top surface to the bottom surface of the body.
A magnetic field device that is housed in the magnetic field device storage chamber and runs a magnetic field line in the vertical direction on the molten metal in the drive chamber.
A pair of drives are arranged so as to sandwich the drive chamber portion in a width direction intersecting the direction connecting the drive chamber inlet and the drive chamber outlet, and a current is passed in the width direction through the molten metal in the drive chamber portion. With electrodes
Have,
The melting portion has a vortex chamber formed from the top surface of the body until it communicates with the communication passage.
The vortex chamber has a metal raw material input port opened on the top surface of the body, a vortex chamber inlet opened on the side wall of the vortex chamber, and a vortex chamber outlet opened on the side wall of the vortex chamber.
The vortex chamber inlet and the vortex chamber outlet are tangential to the vortex chamber so that the metal molten metal flowing in from the vortex chamber inlet and flowing out from the vortex chamber outlet forms a vortex of the metal molten metal in the vortex chamber. It is provided at a position that opens along
The vortex chamber inlet communicates with the suction port of the body and the vortex chamber outlet communicates with the drive chamber inlet, or the vortex chamber inlet communicates with the drive chamber outlet and the vortex chamber outlet communicates with the body. It is characterized in communicating with the discharge port.
 本発明に係る金属原料溶解方法は、
 金属溶湯保持炉内に設置される金属原料溶解装置を用いた金属原料の溶解方法であって、前記金属原料溶解装置は、吸引口と吐出口とを連通路で連通したボディに設けられ、前記金属溶湯保持炉の金属溶湯を前記吸引口から吸引して前記吐出口から吐出するように駆動する駆動部と、前記ボディに設けられ、前記ボディの天面から前記連通路に連通するまで穿設された渦室を有する溶解部と、を有し、
 前記駆動部が前記ボディの駆動室部内の金属溶湯をローレンツ力により駆動して前記渦室内の金属溶湯を吸引することにより前記渦室に渦を形成するステップと、
 前記ボディの天面に開口した金属原料投入口から前記形成された渦の中に金属原料を投入して溶解させるステップと、
 を備えることを特徴とする。
The method for dissolving a metal raw material according to the present invention is
A method for melting a metal raw material using a metal raw material melting device installed in a molten metal holding furnace. The metal raw material melting device is provided on a body in which a suction port and a discharge port are communicated with each other through a continuous passage. A drive unit that drives the molten metal of the molten metal holding furnace to be sucked from the suction port and discharged from the discharge port, and is provided on the body until it communicates from the top surface of the body to the communication passage. With a melting part having a vortex chamber
A step in which the drive unit drives the molten metal in the drive chamber of the body by Lorentz force and sucks the molten metal in the vortex chamber to form a vortex in the vortex chamber.
A step of charging a metal raw material into the formed vortex from a metal raw material input port opened on the top surface of the body and dissolving the metal raw material.
It is characterized by having.
実施形態に係る金属溶湯溶解保持システムの平面図である。It is a top view of the metal molten metal dissolution holding system which concerns on embodiment. 実施形態に係る金属原料溶解装置の平面図である。It is a top view of the metal raw material melting apparatus which concerns on embodiment. 図2のI-I線に沿う断面図である。FIG. 5 is a cross-sectional view taken along the line II of FIG. 図2のII-II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. 図2のIII-III線に沿う断面図である。It is sectional drawing which follows the line III-III of FIG. 実施形態に係る金属原料溶解装置のボディの平面図である。It is a top view of the body of the metal raw material melting apparatus which concerns on embodiment. 図6のI-I線に沿う断面図である。FIG. 6 is a cross-sectional view taken along the line II of FIG. 図6のII-II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. 図6のIII-III線に沿う断面図である。It is sectional drawing which follows the line III-III of FIG. 実施形態に係る磁場装置の一部断面図である。It is a partial sectional view of the magnetic field apparatus which concerns on embodiment. 図10のIV-IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 動作状態における、実施形態に係る金属溶湯溶解保持システムの平面図である。It is a top view of the metal molten metal dissolution holding system which concerns on embodiment in an operating state. 図12のI-I線に沿う断面図である。FIG. 5 is a cross-sectional view taken along the line II of FIG. 図12のII-II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. 図12のIII-III線に沿う断面図である。It is sectional drawing which follows the line III-III of FIG. 実施形態の変形例1に係るボディの長手方向に沿う断面図である。It is sectional drawing which follows the longitudinal direction of the body which concerns on modification 1 of embodiment. 実施形態の変形例2に係る金属原料溶解装置の平面図である。It is a top view of the metal raw material melting apparatus which concerns on modification 2 of Embodiment. 実施形態の変形例3に係る金属原料溶解装置の平面図である。It is a top view of the metal raw material melting apparatus which concerns on modification 3 of embodiment.
 以下、本発明に係る実施形態について図面を参照しながら説明する。なお、各図においては、同等の機能を有する構成要素に同一の符号を付している。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In each figure, the same reference numerals are given to the components having the same functions.
<金属溶湯溶解保持システム>
 まず、図1を参照して、本発明の実施形態に係る金属溶湯溶解保持システム1000について説明する。
<Metal melt dissolution retention system>
First, the molten metal dissolution and holding system 1000 according to the embodiment of the present invention will be described with reference to FIG.
 図1に示すように、金属溶湯溶解保持システム1000は、金属溶湯保持炉100と、この金属溶湯保持炉100内に設置された金属原料溶解装置1と、を備えている。なお、以下の説明では金属溶湯保持炉を単に「保持炉」ともいう。 As shown in FIG. 1, the metal molten metal melting and holding system 1000 includes a metal molten metal holding furnace 100 and a metal raw material melting device 1 installed in the metal molten metal holding furnace 100. In the following description, the molten metal holding furnace is also simply referred to as a “holding furnace”.
 金属溶湯溶解保持システム1000は、後ほど詳しく説明するように、金属原料溶解装置1の溶解部(渦室2A)に投入された金属原料(アルミニウム切粉、粉状原料など)を金属溶湯に溶解させるとともに、金属原料溶解装置1の駆動部により駆動された金属溶湯を保持炉100に吐出して炉内撹拌を行うものとして構成されている。 As will be described in detail later, the metal molten metal melting and holding system 1000 dissolves metal raw materials (aluminum chips, powdery raw materials, etc.) charged into the melting portion (vortex chamber 2A) of the metal raw material melting device 1 in the metal molten metal. At the same time, the molten metal driven by the driving unit of the metal raw material melting device 1 is discharged to the holding furnace 100 to perform in-furnace stirring.
 金属溶湯は、非鉄金属の溶湯であり、金属(例えばAl,Cu,Zn,Si)または合金(例えばAl,Cu,ZnおよびSiのうち少なくとも2つからなる合金、またはマグネシウム合金)の溶湯である。 The molten metal is a molten metal of a non-ferrous metal, and is a molten metal of a metal (for example, Al, Cu, Zn, Si) or an alloy (for example, an alloy composed of at least two of Al, Cu, Zn and Si, or a magnesium alloy). ..
 図1に示すように、金属原料溶解装置1は、金属溶湯保持炉100の側壁面に沿って設置されている。例えば、金属原料溶解装置1は、ボルト・ナット等の締結部材を用いて保持炉100の側壁(外壁)に固定される。 As shown in FIG. 1, the metal raw material melting device 1 is installed along the side wall surface of the molten metal holding furnace 100. For example, the metal raw material melting device 1 is fixed to the side wall (outer wall) of the holding furnace 100 by using fastening members such as bolts and nuts.
 金属溶湯保持炉100は、上方が開口し、四方を外壁で囲まれた構成を有する。保持炉100内に仕切りを設けて、容積の小さい方を前炉とすることもある。 The molten metal holding furnace 100 has a structure in which the upper side is open and all sides are surrounded by outer walls. A partition may be provided in the holding furnace 100, and the smaller volume may be used as the front furnace.
 なお、金属原料溶解装置1は、図1に示すように保持炉100の側壁面に沿って設置する場合に限られない。保持炉100の大きさや形状に応じて、保持炉100内の金属溶湯を効率的に撹拌可能な位置に金属原料溶解装置1を設置してもよい。 Note that the metal raw material melting device 1 is not limited to the case where it is installed along the side wall surface of the holding furnace 100 as shown in FIG. Depending on the size and shape of the holding furnace 100, the metal raw material melting device 1 may be installed at a position where the molten metal in the holding furnace 100 can be efficiently agitated.
 また、図1では保持炉100内に金属原料溶解装置1を1つだけ設置しているが、複数の金属原料溶解装置1を設置してもよい。例えば、保持炉100の対角線上の2隅にそれぞれ金属原料溶解装置1を設置してもよいし、保持炉100の四隅にそれぞれ金属原料溶解装置1を設置してもよい。 Further, although only one metal raw material melting device 1 is installed in the holding furnace 100 in FIG. 1, a plurality of metal raw material melting devices 1 may be installed. For example, the metal raw material melting devices 1 may be installed at the two diagonal corners of the holding furnace 100, or the metal raw material melting devices 1 may be installed at the four corners of the holding furnace 100, respectively.
 また、保持炉100が前炉を有する場合、前炉に金属原料溶解装置1を設置してもよい。あるいは、前炉を有する場合であっても、あえて前炉ではなくメインバスの方に金属原料溶解装置1を設置してもよい。 Further, when the holding furnace 100 has a front furnace, the metal raw material melting device 1 may be installed in the front furnace. Alternatively, even if a front furnace is provided, the metal raw material melting device 1 may be installed on the main bus instead of the front furnace.
<金属原料溶解装置>
 次に、図2~図11を参照して、実施形態に係る金属原料溶解装置1について詳しく説明する。
<Metallic material melting device>
Next, the metal raw material melting apparatus 1 according to the embodiment will be described in detail with reference to FIGS. 2 to 11.
 金属原料溶解装置1は、ローレンツ力を利用して金属溶湯を駆動する駆動部と、この駆動部によって金属溶湯が吸引されることにより渦室2Aに形成される引き渦に投入される金属原料を溶解する溶解部とを備えている。駆動部および溶解部の具体的な構成については後述する。 The metal raw material melting device 1 uses a Lorentz force to drive a molten metal and a metal raw material to be charged into a pulling vortex formed in the vortex chamber 2A by sucking the molten metal by the driving unit. It has a melting part that melts. The specific configurations of the driving unit and the melting unit will be described later.
 図2~図5に示すように、金属原料溶解装置1は、耐火材からなるボディ2と、ボディ2内を流れる金属溶湯に磁場を印加する磁場装置3と、ボディ2内を流れる金属溶湯に電流を流すための一対の電極4,5と、電極4,5に接続され所定の電流を出力する電源装置6と、を有している。以下、各構成要素について詳しく説明する。 As shown in FIGS. 2 to 5, the metal raw material melting device 1 is used for the body 2 made of a fireproof material, the magnetic field device 3 for applying a magnetic field to the molten metal flowing in the body 2, and the molten metal flowing in the body 2. It has a pair of electrodes 4 and 5 for passing an electric current, and a power supply device 6 connected to the electrodes 4 and 5 and outputting a predetermined electric current. Hereinafter, each component will be described in detail.
 まず、ボディ2について図6~図9を参照して説明する。図6はボディ2の平面図である。図7は図6のI-I線に沿う断面図である。図8は図6のII-II線に沿う断面図である。図9は図6のIII-III線に沿う断面図である。 First, the body 2 will be described with reference to FIGS. 6 to 9. FIG. 6 is a plan view of the body 2. FIG. 7 is a cross-sectional view taken along the line II of FIG. FIG. 8 is a cross-sectional view taken along the line II-II of FIG. FIG. 9 is a cross-sectional view taken along the line III-III of FIG.
 ボディ2は、本実施形態では略直方体状を有しており、円柱穴状の渦室2Aと、磁場装置収納室3Bとが設けられている。このボディ2は耐火材(例えばシリコンカーバイド(SiC))から構成される。 The body 2 has a substantially rectangular parallelepiped shape in the present embodiment, and is provided with a cylindrical hole-shaped vortex chamber 2A and a magnetic field device storage chamber 3B. The body 2 is made of a refractory material (eg, silicon carbide (SiC)).
 ボディ2は、吸引口P1と吐出口P6とを連通路で連通している。この連通路は、図6に示すように、渦室流入路2P、渦室2A、渦室流出路2Q、駆動室部2Rおよび流出路2Sを含む。ここで、渦室流入路2Pは、吸引口P1と渦室入口P2とを連通する流路である。渦室流出路2Qは、渦室出口P3と駆動室入口P4とを連通する流路である。なお、流出路2Sは必要に応じて省略してもよい。 The body 2 communicates the suction port P1 and the discharge port P6 with a communication passage. As shown in FIG. 6, this communication passage includes a vortex chamber inflow passage 2P, a vortex chamber 2A, a vortex chamber outflow passage 2Q, a drive chamber portion 2R, and an outflow passage 2S. Here, the vortex chamber inflow path 2P is a flow path that communicates the suction port P1 and the vortex chamber inlet P2. The vortex chamber outflow path 2Q is a flow path that communicates the vortex chamber outlet P3 and the drive chamber inlet P4. The outflow path 2S may be omitted if necessary.
 本実施形態では、渦室入口P2は吸引口P1と連通し、渦室出口P3は駆動室部2Rの駆動室入口P4に連通している。 In the present embodiment, the vortex chamber inlet P2 communicates with the suction port P1, and the vortex chamber outlet P3 communicates with the drive chamber inlet P4 of the drive chamber portion 2R.
 保持炉100内の金属溶湯は、吸引口P1から金属原料溶解装置1内に吸引され、連通路を通って吐出口P6から吐出される。より詳しくは、吸引口P1から吸引された金属溶湯は、渦室流入路2Pを通って渦室2Aに流入する。渦室流入路2Pを通って渦室2Aに流入した金属溶湯は、渦室2Aに形成された旋回渦に沿って旋回した後、渦室出口P3から外に出て、渦室流出路2Qを通って駆動室部2Rに流入する。駆動室部2Rに流入した金属溶湯は、ローレンツ力(後述)を受けながら駆動室部2R内を流動し、その後、流出路2Sを通って吐出口P6からボディ2の外に吐出される。図12に示すように、吐出口P6から吐出された金属溶湯は保持炉100内を循環する。 The molten metal in the holding furnace 100 is sucked into the metal raw material melting device 1 from the suction port P1 and discharged from the discharge port P6 through the communication passage. More specifically, the molten metal sucked from the suction port P1 flows into the vortex chamber 2A through the vortex chamber inflow path 2P. The molten metal that has flowed into the vortex chamber 2A through the vortex chamber inflow path 2P swirls along the swirling vortex formed in the vortex chamber 2A, and then goes out from the vortex chamber outlet P3 to pass through the vortex chamber outflow path 2Q. It flows into the drive chamber 2R through the drive chamber. The molten metal that has flowed into the drive chamber 2R flows in the drive chamber 2R while receiving Lorentz force (described later), and is then discharged from the discharge port P6 to the outside of the body 2 through the outflow path 2S. As shown in FIG. 12, the molten metal discharged from the discharge port P6 circulates in the holding furnace 100.
 ボディ2には、金属溶湯保持炉100の金属溶湯を吸引口P1から吸引して吐出口P6から吐出するように駆動する駆動部と、金属溶湯中に投入される金属原料を溶解する溶解部とが設けられている。本実施形態では、溶解部は駆動部の下流側におけるボディ2に設けられている。溶解部と駆動部はボディ2に一体に設けられている。溶解部と駆動部の詳細については後ほど詳しく説明する。 The body 2 includes a drive unit that drives the molten metal of the molten metal holding furnace 100 to be sucked from the suction port P1 and discharged from the discharge port P6, and a melting unit that melts the metal raw material charged into the molten metal. Is provided. In the present embodiment, the melting portion is provided on the body 2 on the downstream side of the driving portion. The melting unit and the driving unit are integrally provided on the body 2. The details of the melting unit and the driving unit will be described in detail later.
 ボディ2には、図6、図7および図9に示すように、円柱穴状の渦室2Aが形成されている。この渦室2Aは、ボディ2の天面2uから前述の連通路に連通するまで穿設されたものとして構成されている。本実施形態では、図8に示すように、渦室2Aは中心軸が鉛直方向に平行な円柱穴状に形成されており、渦室2Aの底面は平坦である。なお、渦室2Aの形状は円柱状に限らず、楕円形状、多角形状等であってもよい。 As shown in FIGS. 6, 7 and 9, a cylindrical hole-shaped vortex chamber 2A is formed in the body 2. The vortex chamber 2A is configured to be bored from the top surface 2u of the body 2 until it communicates with the above-mentioned communication passage. In the present embodiment, as shown in FIG. 8, the vortex chamber 2A is formed in the shape of a cylindrical hole whose central axis is parallel in the vertical direction, and the bottom surface of the vortex chamber 2A is flat. The shape of the vortex chamber 2A is not limited to a columnar shape, and may be an elliptical shape, a polygonal shape, or the like.
 渦室2Aは、図7および図9に示すように、円柱穴状の渦室2Aの側壁に開口した渦室入口P2および渦室出口P3と、ボディ2の天面2uに開口した金属原料投入口P7と、を有する。このように本実施形態では、従来の渦室のように渦室の底面に渦室から金属溶湯を流出させる出口を設けない。このため、渦室の底面から鉛直下方に伸びる溶湯排出路を設ける必要がない。溶湯排出路を設けないため、深い渦室を形成することができ、その結果、深い渦を形成することができるようになる。 As shown in FIGS. 7 and 9, the vortex chamber 2A has a vortex chamber inlet P2 and a vortex chamber outlet P3 opened on the side wall of the cylindrical hole-shaped vortex chamber 2A, and a metal raw material input opened on the top surface 2u of the body 2. It has a mouth P7 and. As described above, in the present embodiment, unlike the conventional vortex chamber, the bottom surface of the vortex chamber is not provided with an outlet for discharging the molten metal from the vortex chamber. Therefore, it is not necessary to provide a molten metal discharge path extending vertically downward from the bottom surface of the vortex chamber. Since the molten metal discharge path is not provided, a deep vortex chamber can be formed, and as a result, a deep vortex can be formed.
 渦室入口P2および渦室出口P3は、図6に示すように、渦室入口P2から流入して渦室出口P3から流出する金属溶湯が渦室2A内に金属溶湯の渦を形成するように、円柱穴状の渦室2Aの接線方向に沿って開口する位置に設けられている。より詳しくは、渦室流入路2Pの側壁2Ps1および側壁2Ps2のうち少なくとも外側の側壁2Ps1が渦室2Aの側壁に滑らかに接続するように渦室入口P2は設けられている。同様に、渦室流出路2Qの側壁2Qs1および側壁2Qs2のうち少なくとも外側の側壁2Qs1が渦室2Aの側壁に滑らかに接続するように渦室出口P3は設けられている。図6に示すように、本実施形態では、側壁2Ps1および側壁2Qs1は円柱状の渦室2Aの側壁の接線方向に沿って延在するように形成されている。 In the vortex chamber inlet P2 and the vortex chamber outlet P3, as shown in FIG. 6, the metal molten metal flowing in from the vortex chamber inlet P2 and flowing out from the vortex chamber outlet P3 forms a vortex of the metal molten metal in the vortex chamber 2A. , It is provided at a position where it opens along the tangential direction of the cylindrical hole-shaped vortex chamber 2A. More specifically, the vortex chamber inlet P2 is provided so that at least the outer side wall 2Ps1 of the side wall 2Ps1 and the side wall 2Ps2 of the vortex chamber inflow path 2P is smoothly connected to the side wall of the vortex chamber 2A. Similarly, the vortex chamber outlet P3 is provided so that at least the outer side wall 2Qs1 of the side wall 2Qs1 and the side wall 2Qs2 of the vortex chamber outflow path 2Q is smoothly connected to the side wall of the vortex chamber 2A. As shown in FIG. 6, in the present embodiment, the side wall 2Ps1 and the side wall 2Qs1 are formed so as to extend along the tangential direction of the side wall of the columnar vortex chamber 2A.
 また、ボディ2には、図6、図8および図9に示すように、磁場装置収納室2Bが設けられている。この磁場装置収納室2Bは、ボディ2の天面2uから底面2wに向かう方向に沿って天面2uから穿けた止り穴として駆動室部2Rの上方部分に形成されている。磁場装置収納室2Bには、駆動室部2R内に磁場を生じさせる磁場装置3が収納されている。 Further, as shown in FIGS. 6, 8 and 9, the body 2 is provided with a magnetic field device storage chamber 2B. The magnetic field device storage chamber 2B is formed in an upper portion of the drive chamber portion 2R as a blind hole drilled from the top surface 2u along the direction from the top surface 2u to the bottom surface 2w of the body 2. In the magnetic field device storage chamber 2B, a magnetic field device 3 that generates a magnetic field is housed in the drive chamber portion 2R.
 なお、磁場装置収納室2Bの側面2Bsおよび/または底面2Bbには断熱層(図示せず)が設けられていてもよい。これにより、保持炉100内の金属溶湯等の熱により磁場装置3が加熱されることを抑制し、磁場強度を維持することができる。 A heat insulating layer (not shown) may be provided on the side surface 2Bs and / or the bottom surface 2Bb of the magnetic field device storage chamber 2B. As a result, the magnetic field device 3 can be suppressed from being heated by the heat of the molten metal or the like in the holding furnace 100, and the magnetic field strength can be maintained.
 図6および図8に示すように、磁場装置収納室2Bの底面2Bbには、2つの筒部2C1および2C2が設けられている。 As shown in FIGS. 6 and 8, two tubular portions 2C1 and 2C2 are provided on the bottom surface 2Bb of the magnetic field device storage chamber 2B.
 筒部2C1は、図8に示すように、磁場装置収納室2Bの底面2Bbにおける溶湯溜まり部ES1の開口を囲むように底面2Bbから凸設されている。そして、図2および図4に示すように、電極4が筒部2C1に挿入されている。 同様に、筒部2C2は、磁場装置収納室2Bの底面2Bbにおける溶湯溜まり部ES2の開口を囲むように底面2Bbから凸設されている。そして、電極5が筒部2C2に挿入されている。 As shown in FIG. 8, the tubular portion 2C1 is projected from the bottom surface 2Bb so as to surround the opening of the molten metal pool portion ES1 in the bottom surface 2Bb of the magnetic field device storage chamber 2B. Then, as shown in FIGS. 2 and 4, the electrode 4 is inserted into the tubular portion 2C1. Similarly, the tubular portion 2C2 is projected from the bottom surface 2Bb so as to surround the opening of the molten metal pool portion ES2 in the bottom surface 2Bb of the magnetic field device storage chamber 2B. Then, the electrode 5 is inserted into the tubular portion 2C2.
 このような筒部2C1,2C2を設けることにより、図14に示すように、渦室2Aの液面レベルに合わせて溶湯溜まり部ES1,ES2から上昇した金属溶湯が磁場装置収納室2Bに漏れ出すことを防止できる。 By providing such tubular portions 2C1 and 2C2, as shown in FIG. 14, the molten metal that has risen from the molten metal pools ES1 and ES2 according to the liquid level of the vortex chamber 2A leaks into the magnetic field device storage chamber 2B. Can be prevented.
 図6,図8および図9に示すように、ボディ2には、金属溶湯がローレンツ力により駆動される駆動室部2Rが設けられている。この駆動室部2Rは、連通路の途中に形成され、駆動室入口P4と駆動室出口P5を有する。 As shown in FIGS. 6, 8 and 9, the body 2 is provided with a drive chamber portion 2R in which the molten metal is driven by Lorentz force. The drive chamber portion 2R is formed in the middle of the communication passage, and has a drive chamber inlet P4 and a drive chamber outlet P5.
 図6および図8に示すように、ボディ2には、溶湯溜まり部ES1,ES2が設けられている。溶湯溜まり部ES1は、駆動室部2Rの側壁2Rs1に凹状に設けられており、駆動室部2Rの側壁2Rs1と磁場装置収納室2Bの底面2Bbとを連通させる。同様に、溶湯溜まり部ES2は、駆動室部2Rの側壁2Rs2に凹状に設けられており、駆動室部2Rの側壁2Rs2と磁場装置収納室2Bの底面2Bbとを連通させる。 As shown in FIGS. 6 and 8, the body 2 is provided with molten metal pools ES1 and ES2. The molten metal pool portion ES1 is provided in a concave shape on the side wall 2Rs1 of the drive chamber portion 2R, and communicates the side wall 2Rs1 of the drive chamber portion 2R with the bottom surface 2Bb of the magnetic field device storage chamber 2B. Similarly, the molten metal pool portion ES2 is provided in a concave shape on the side wall 2Rs2 of the drive chamber portion 2R, and communicates the side wall 2Rs2 of the drive chamber portion 2R with the bottom surface 2Bb of the magnetic field device storage chamber 2B.
 なお、ボディ2には、金属原料溶解装置1を保持炉100内に設置または交換する際に用いられる係合部(図示せず)が設けられてもよい。例えば、ボディ2の天面2uにおいて複数箇所にフックが設けられる。 The body 2 may be provided with an engaging portion (not shown) used when the metal raw material melting device 1 is installed or replaced in the holding furnace 100. For example, hooks are provided at a plurality of locations on the top surface 2u of the body 2.
 また、ボディ2は、本実施形態では耐火材を用いて一体的に形成されているが、複数の部材を組み合わせて構成されてもよい。 Further, although the body 2 is integrally formed by using a refractory material in the present embodiment, it may be formed by combining a plurality of members.
 次に、磁場装置3について説明する。 Next, the magnetic field device 3 will be described.
 磁場装置3は、磁場装置収納室2Bに収納され、駆動室部2R内の金属溶湯に上下方向に磁力線を走らせるように構成されている。 The magnetic field device 3 is housed in the magnetic field device storage chamber 2B, and is configured to run magnetic field lines in the vertical direction on the molten metal in the drive chamber portion 2R.
 図10に示すように、磁場装置3は、磁石体31と、送風装置32と、磁石体31を収納する収納容器33と、を有する。 As shown in FIG. 10, the magnetic field device 3 has a magnet body 31, a blower 32, and a storage container 33 for accommodating the magnet body 31.
 磁石体31は、ほぼドーナツ状の永久磁石で、下面および上面が磁化されて、N極とS極となっている(図10では下面がN極、上面がS極に磁化されている)。これにより、上下方向の磁力線MLが走ることになる。この磁力線MLは、図4および図5に示すように、磁場装置収納室2Bと駆動室部2Rを隔てる耐火材を貫通し、駆動室部2Rの金属溶湯に到る。図14に示すように、磁力線MLと電極4,5間に流れる電流Iが交差することにより金属溶湯にローレンツ力が作用し、金属溶湯は駆動室入口P4から駆動室出口P5に向かって駆動される。 The magnet body 31 is a permanent magnet having a substantially donut shape, and the lower surface and the upper surface are magnetized to form N poles and S poles (in FIG. 10, the lower surface is magnetized to the N pole and the upper surface is magnetized to the S pole). As a result, the magnetic field lines ML in the vertical direction run. As shown in FIGS. 4 and 5, the magnetic field lines ML penetrate the refractory material that separates the magnetic field device storage chamber 2B and the drive chamber portion 2R, and reach the molten metal of the drive chamber portion 2R. As shown in FIG. 14, the Lorentz force acts on the molten metal due to the intersection of the magnetic field lines ML and the current I flowing between the electrodes 4 and 5, and the molten metal is driven from the drive chamber inlet P4 toward the drive chamber outlet P5. To.
 なお、磁石体31の形状はドーナツ状に限られず、他の形状であってもよい。例えば、磁石体31は、複数の永久磁石の棒磁石を送風管32dの外周に沿って磁極が揃うように縦方向に並べたものとして構成されてもよい。 The shape of the magnet body 31 is not limited to the donut shape, and may be another shape. For example, the magnet body 31 may be configured such that a plurality of permanent magnet bar magnets are arranged in the vertical direction so that the magnetic poles are aligned along the outer circumference of the blower pipe 32d.
 また、磁石体31は電磁石で構成されてもよい。この場合には、消費電力が増すのは当然である。 Further, the magnet body 31 may be composed of an electromagnet. In this case, it is natural that the power consumption increases.
 送風装置32は、図10に示すように、ブロワー32aと、接続管32bと、フレキシブル接続管32cと、ドーナツ状の磁石体31を貫通する中空の送風管32dと、を有している。ブロワー32aは、接続管32bおよびフレキシブル接続管32cを介して送風管32dの上端に冷却用の空気を送り込む。送風管32dに送り込まれた空気は送風管32dを通って磁石体31を冷却し、その後、図10に示すように、送風管32dの下端から噴出し、収納容器33の下底33c2に吹き付けられて反射する。反射した空気は、上底33c1の空気孔H2を通って磁石体31の側面を通過し、空気孔H1を通って収納容器33の外部に排出される。このようにして送風装置32から送風される空気により磁石体31の周囲にエアカーテンが形成される。これにより、保持炉100内の金属溶湯等の熱により磁石体31が加熱されることを抑制し、磁場強度を維持することができる。 As shown in FIG. 10, the blower 32 has a blower 32a, a connection pipe 32b, a flexible connection pipe 32c, and a hollow blower pipe 32d penetrating the donut-shaped magnet body 31. The blower 32a sends cooling air to the upper end of the blower pipe 32d via the connection pipe 32b and the flexible connection pipe 32c. The air sent into the blower pipe 32d cools the magnet body 31 through the blower pipe 32d, and then, as shown in FIG. 10, is ejected from the lower end of the blower pipe 32d and blown onto the lower bottom 33c2 of the storage container 33. Reflects. The reflected air passes through the air hole H2 of the upper bottom 33c1 and passes through the side surface of the magnet body 31, and is discharged to the outside of the storage container 33 through the air hole H1. In this way, an air curtain is formed around the magnet body 31 by the air blown from the blower device 32. As a result, the magnet body 31 can be suppressed from being heated by the heat of the molten metal or the like in the holding furnace 100, and the magnetic field strength can be maintained.
 収納容器33は、図10に示すように、ステンレス等の非磁性部材かつ耐熱性の材料からなる外筒33aと、この外筒33aの内部に、いわゆる入れ子状態に収納された、断熱材筒33bおよびステンレス筒33cとを有している。 As shown in FIG. 10, the storage container 33 has an outer cylinder 33a made of a non-magnetic member such as stainless steel and a heat-resistant material, and a heat insulating material cylinder 33b housed in a so-called nested state inside the outer cylinder 33a. And a stainless steel cylinder 33c.
 最も内側のステンレス筒33cの底は、上底33c1と下底33c2の二重底になっている。上底33c1によりステンレス筒33cの内部は、上側の空間と下側の空間に区画されている。さらに、この上底33c1には、この上底33c1を貫通し、上側の空間と下側の空間とを連通させる空気孔H2が穿設されている。ブロワー32aから送風管32dを通じて下側の空間に送られた冷却用の空気は、これらの空気孔H2から上側の空間に流入し、空気孔H1から外部に流出することになる。空気孔H1は、外筒33aの蓋33dに設けられた孔31daと、断熱材筒33bの蓋33eに設けられた孔31eaと、ステンレス筒33cの蓋33fに設けられた孔31faが連通したものとして構成されている。 The bottom of the innermost stainless steel cylinder 33c is a double bottom of an upper base 33c1 and a lower base 33c2. The inside of the stainless steel cylinder 33c is divided into an upper space and a lower space by the upper bottom 33c1. Further, the upper base 33c1 is provided with an air hole H2 that penetrates the upper base 33c1 and communicates the upper space and the lower space. The cooling air sent from the blower 32a to the lower space through the blower pipe 32d flows into the upper space through these air holes H2 and flows out from the air hole H1 to the outside. The air hole H1 is a communication between the hole 31da provided in the lid 33d of the outer cylinder 33a, the hole 31ea provided in the lid 33e of the heat insulating material cylinder 33b, and the hole 31fa provided in the lid 33f of the stainless steel cylinder 33c. It is configured as.
 なお、磁場装置3は上記の構成に限られない。例えば、磁場装置3は永久磁石のみで構成されてもよい。この場合、磁場装置収納室2Bの側面2Bsおよび底面2Bbに断熱層を設けることが好ましい。 The magnetic field device 3 is not limited to the above configuration. For example, the magnetic field device 3 may be composed of only permanent magnets. In this case, it is preferable to provide a heat insulating layer on the side surface 2Bs and the bottom surface 2Bb of the magnetic field device storage chamber 2B.
 また、磁場装置3は、磁場装置収納室2Bに縦方向に沿って位置調整可能に収納されて、駆動室部2R内の磁場強度を調整可能としてもよい。この場合、磁場装置3の縦方向の位置を調整する移動手段(図示せず)が設けられる。この移動手段は、収納容器33を縦方向に移動させるものであってもよいし、あるいは、収納容器33は移動させず、収納容器33内の磁石体31を送風管32dに沿って上下に移動させるものであってもよい。移動手段は、例えば、高さ可変の台座であってもよいし、高さの異なる複数種類の台座であってもよいし、磁場装置3を高さ可変に吊り下げるクレーンであってもよい。 Further, the magnetic field device 3 may be housed in the magnetic field device storage chamber 2B so that the position can be adjusted along the vertical direction, so that the magnetic field strength in the drive chamber portion 2R can be adjusted. In this case, a moving means (not shown) for adjusting the vertical position of the magnetic field device 3 is provided. This moving means may move the storage container 33 in the vertical direction, or may not move the storage container 33 and move the magnet body 31 in the storage container 33 up and down along the blower pipe 32d. It may be something to make. The moving means may be, for example, a pedestal having a variable height, a plurality of types of pedestals having different heights, or a crane for suspending the magnetic field device 3 at a variable height.
 上記のように磁場装置3の縦方向位置を変えることにより、駆動室部2R内の金属溶湯を貫通する磁場強度を変化させ、駆動部の駆動力(ローレンツ力)を調整することができる。すなわち、磁場装置3を下側に移動させる(すなわち、磁場装置収納室2Bの底面2Bbに近づける)につれて、駆動室部2R内の金属溶湯を貫通する磁場強度が大きくなり、駆動力は大きくなる。反対に、磁場装置3を上側に移動させる(すなわち、磁場装置収納室2Bの底面2Bbから遠ざける)につれて、駆動室部2R内の金属溶湯を貫通する磁場強度が小さくなり、駆動力は小さくなる。 By changing the vertical position of the magnetic field device 3 as described above, the magnetic field strength penetrating the molten metal in the drive chamber unit 2R can be changed, and the driving force (Lorentz force) of the driving unit can be adjusted. That is, as the magnetic field device 3 is moved downward (that is, closer to the bottom surface 2Bb of the magnetic field device storage chamber 2B), the magnetic field strength penetrating the molten metal in the drive chamber portion 2R increases, and the driving force increases. On the contrary, as the magnetic field device 3 is moved upward (that is, away from the bottom surface 2Bb of the magnetic field device storage chamber 2B), the magnetic field strength penetrating the molten metal in the drive chamber portion 2R becomes smaller, and the driving force becomes smaller.
 上記のように磁場装置3を上下動させることで、電極4および電極5間に一定の電流を流した状態においても、金属溶湯に作用するローレンツ力を調整することができるようになる。これにより、例えば、電極4,5に流す電流によって駆動力を一次調整し、その後、磁場装置3の縦方向位置により駆動力を二次調整することができる。これにより、駆動力の調整範囲の幅を拡げることができる。また、二次調整により、消費電力の増加を回避し、ランニングコストの低減を図ることができる。 By moving the magnetic field device 3 up and down as described above, the Lorentz force acting on the molten metal can be adjusted even when a constant current is passed between the electrodes 4 and 5. Thereby, for example, the driving force can be primarily adjusted by the current flowing through the electrodes 4 and 5, and then the driving force can be secondarily adjusted by the vertical position of the magnetic field device 3. As a result, the range of adjustment of the driving force can be expanded. In addition, the secondary adjustment can avoid an increase in power consumption and reduce the running cost.
 次に、一対の電極4,5について説明する。 Next, the pair of electrodes 4 and 5 will be described.
 一対の電極4,5は、図2および図4に示すように、駆動室部2Rの幅方向(すなわち、駆動室入口P4と駆動室出口P5を結ぶ方向と交差する方向)に駆動室部2Rを挟むように配置されている。電極4,5は、駆動室部2R内の金属溶湯を介して駆動室部2Rの幅方向に電流を流すための電極である。 As shown in FIGS. 2 and 4, the pair of electrodes 4 and 5 have the drive chamber portion 2R in the width direction of the drive chamber portion 2R (that is, the direction intersecting the direction connecting the drive chamber inlet P4 and the drive chamber outlet P5). It is arranged so as to sandwich. The electrodes 4 and 5 are electrodes for passing an electric current in the width direction of the drive chamber portion 2R via the molten metal in the drive chamber portion 2R.
 電極4は、図14に示すように、使用状態において、駆動室部2Rから溶湯溜まり部ES1に流れ込んだ金属溶湯に接触するように配置されている。同様に、電極5は、使用状態において、駆動室部2Rから溶湯溜まり部ES2に流れ込んだ金属溶湯に接触するように配置されている。このように電極4,5は、溶湯溜まり部ES1,ES2内の金属溶湯に浸されるように配置されることで、駆動室部2Rの金属溶湯に幅方向の電流を流すように構成される。このような構成により、本実施形態によれば、消耗品である電極を容易に取り替えることができる。 As shown in FIG. 14, the electrode 4 is arranged so as to come into contact with the molten metal that has flowed from the drive chamber portion 2R into the molten metal pool portion ES1 in the used state. Similarly, the electrode 5 is arranged so as to come into contact with the molten metal that has flowed from the drive chamber portion 2R into the molten metal pool portion ES2 in the used state. In this way, the electrodes 4 and 5 are arranged so as to be immersed in the molten metal in the molten metal pools ES1 and ES2, so that a current in the width direction flows through the molten metal in the drive chamber 2R. .. With such a configuration, according to the present embodiment, the electrode, which is a consumable item, can be easily replaced.
 電極4,5の先端部分(金属溶湯と接触する部分)はタングステンなどの耐摩耗材で構成されている。 The tips of the electrodes 4 and 5 (the parts that come into contact with the molten metal) are made of an abrasion-resistant material such as tungsten.
 なお、電極4,5の形状は、本実施形態では丸棒状であるが、これに限られず、平板状、櫛状、網状等の他の形状であってもよい。また、電極4,5は、互いに電気的に接続された複数本の電極棒から構成されてもよい。 The shapes of the electrodes 4 and 5 are not limited to the round bar shape in the present embodiment, but may be other shapes such as a flat plate shape, a comb shape, and a net shape. Further, the electrodes 4 and 5 may be composed of a plurality of electrode rods electrically connected to each other.
 次に、電源装置6について説明する。 Next, the power supply device 6 will be described.
 電源装置6は、図4に示すように、電極4,5に配線7を介して接続された直流電源61と、直流電源61を制御して所定の電流を出力させる制御部(電源制御盤)62と、を有する。 As shown in FIG. 4, the power supply device 6 controls a DC power supply 61 connected to electrodes 4 and 5 via wiring 7 and a control unit (power supply control panel) that controls the DC power supply 61 to output a predetermined current. 62 and.
 制御部62は、保持炉100内の金属溶湯を十分に撹拌するために必要な金属溶湯の吐出量や、渦室2Aで金属原料を効率良く溶解させるために必要な渦の深さ等に応じて、直流電源61が出力する電流の大きさを決定する。 The control unit 62 responds to the discharge amount of the molten metal required to sufficiently agitate the molten metal in the holding furnace 100, the depth of the vortex required to efficiently dissolve the metal raw material in the vortex chamber 2A, and the like. The magnitude of the current output by the DC power supply 61 is determined.
 制御部62は、保持炉100内の金属溶湯の液面レベルに応じて、電極4,5に出力する電流の大きさを変化させてもよい。この場合、金属溶湯の液面レベルは、浮体等を利用した公知の計測手段により計測される。 The control unit 62 may change the magnitude of the current output to the electrodes 4 and 5 according to the liquid level of the molten metal in the holding furnace 100. In this case, the liquid level of the molten metal is measured by a known measuring means using a floating body or the like.
 より詳しくは、制御部62は、保持炉100内の金属溶湯の液面レベルが所定のレベルよりも低い場合、電流を上げるように直流電源61を制御する。液面レベルが低い場合、渦室2A内の液面レベルも低くなるため渦室2Aの渦が浅くなり、金属原料の溶解効率が低下する。しかし、液面レベルが低下した場合に電流を上げることで、駆動部は渦室2Aの金属溶湯をより強い力で駆動室部2Rに吸引するため、渦室2A内の金属溶湯がより速く旋回するようになり、渦室2Aの渦を深くすることができる。制御部62は、保持炉100内の金属溶湯の液面レベルが所定のレベル以上の場合、電流を下げるように直流電源61を制御してもよい。これにより、消費電力を抑えることができる。 More specifically, the control unit 62 controls the DC power supply 61 so as to increase the current when the liquid level of the molten metal in the holding furnace 100 is lower than a predetermined level. When the liquid level is low, the liquid level in the vortex chamber 2A is also low, so that the vortex in the vortex chamber 2A becomes shallow and the dissolution efficiency of the metal raw material is lowered. However, by increasing the current when the liquid level drops, the drive unit sucks the molten metal in the vortex chamber 2A into the drive chamber 2R with a stronger force, so that the molten metal in the vortex chamber 2A swirls faster. The vortex of the vortex chamber 2A can be deepened. When the liquid level of the molten metal in the holding furnace 100 is equal to or higher than a predetermined level, the control unit 62 may control the DC power supply 61 so as to reduce the current. As a result, power consumption can be suppressed.
 なお、作業者が手動で直流電源61の出力を調整してもよい。 Note that the operator may manually adjust the output of the DC power supply 61.
 また、直流電源61に代えて、パルス電源を用いてもよい。 Further, a pulse power supply may be used instead of the DC power supply 61.
 次に、上述した構成(ボディ2、磁場装置3、電極4,5および電源装置6)から構成される駆動部および溶解部について説明する。 Next, a drive unit and a melting unit composed of the above-described configurations (body 2, magnetic field device 3, electrodes 4, 5 and power supply device 6) will be described.
 [駆動部]
 まず、金属溶湯を駆動する駆動部について説明する。
[Drive part]
First, the drive unit that drives the molten metal will be described.
 駆動部は、駆動室部2Rと、磁場装置収納室2Bと、磁場装置3と、一対の電極4,5と、電源装置6とを有している。 The drive unit includes a drive chamber unit 2R, a magnetic field device storage chamber 2B, a magnetic field device 3, a pair of electrodes 4 and 5, and a power supply device 6.
 磁場装置3(磁石体31)から出力される磁力線MLは、図14および図15に示すように、上下方向に走り、磁場装置収納室2Bと駆動室部2Rを隔てる耐火材を貫通し、駆動室部2Rの金属溶湯に到る。また、電極4および電極5間を流れる電流Iは、駆動室部2Rの金属溶湯中を幅方向に流れる。 As shown in FIGS. 14 and 15, the magnetic field line ML output from the magnetic field device 3 (magnet body 31) runs in the vertical direction, penetrates the fireproof material separating the magnetic field device storage chamber 2B and the drive chamber portion 2R, and drives. It reaches the molten metal of Murobe 2R. Further, the current I flowing between the electrodes 4 and 5 flows in the molten metal of the drive chamber portion 2R in the width direction.
 磁力線MLと電流Iが交差することにより駆動室部2Rの金属溶湯にローレンツ力が作用する。これにより、駆動室部2Rの金属溶湯は、駆動室入口P4から駆動室出口P5に向かって駆動される。このローレンツ力による駆動によって、保持炉100の金属溶湯は、吸引口P1からボディ2内に吸引され、渦室2Aで渦を形成した後、駆動室部2Rを流れて吐出口P6より吐出される。 Lorentz force acts on the molten metal of the drive chamber 2R due to the intersection of the magnetic field lines ML and the current I. As a result, the molten metal of the drive chamber portion 2R is driven from the drive chamber inlet P4 toward the drive chamber outlet P5. By driving by this Lorentz force, the molten metal of the holding furnace 100 is sucked into the body 2 from the suction port P1, forms a vortex in the vortex chamber 2A, flows through the drive chamber portion 2R, and is discharged from the discharge port P6. ..
 その結果、図12に示すように、保持炉100内の金属溶湯は流れFに沿って撹拌されることとなる。このように金属原料溶解装置1(駆動部)は、保持炉100内の金属溶湯を撹拌するポンプとして機能する。 As a result, as shown in FIG. 12, the molten metal in the holding furnace 100 is agitated along the flow F. As described above, the metal raw material melting device 1 (driving unit) functions as a pump for stirring the molten metal in the holding furnace 100.
 また、ローレンツ力により駆動室部2Rの金属溶湯が吐出口P6に向けて駆動されることで、渦室2Aの金属溶湯が吸引され、渦室2Aに螺旋状の引き渦が形成されることとなる。 Further, the molten metal in the drive chamber 2R is driven toward the discharge port P6 by the Lorentz force, so that the molten metal in the vortex chamber 2A is sucked and a spiral pulling vortex is formed in the vortex chamber 2A. Become.
 なお、図2等に示すように、渦室流出路2Qの幅は、渦室出口P3から駆動室入口P4に進むにつれて広くなるようにしてもよい。これにより、駆動室部2Rの幅が広がり、電極4と電極5間の電流路を長くすることができる。その結果、金属溶湯に作用するローレンツ力が大きくなり、駆動部による金属溶湯の駆動力を向上させることができる。 As shown in FIG. 2 and the like, the width of the vortex chamber outflow path 2Q may be widened from the vortex chamber outlet P3 to the drive chamber inlet P4. As a result, the width of the drive chamber portion 2R is widened, and the current path between the electrodes 4 and 5 can be lengthened. As a result, the Lorentz force acting on the molten metal is increased, and the driving force of the molten metal by the driving unit can be improved.
 [溶解部]
 次に、金属溶湯中に投入される金属原料を溶解する溶解部について説明する。
[Dissolved part]
Next, a melting portion that dissolves the metal raw material charged into the molten metal will be described.
 溶解部は、ボディ2に形成された渦室2Aを有する。渦室2Aの金属溶湯は、図12および図13に示すように、駆動部の吸引力によって渦室2Aの金属溶湯が引っ張られて、渦室2Aに螺旋状の引き渦Vが形成される。渦室入口P2から流入した金属溶湯は引き渦Vの螺旋に沿って下降してゆき、渦室2Aの下部に設けられた渦室出口P3から流出して、駆動室部2Rに向かう。 The melting portion has a vortex chamber 2A formed in the body 2. In the molten metal of the vortex chamber 2A, as shown in FIGS. 12 and 13, the molten metal of the vortex chamber 2A is pulled by the suction force of the driving unit, and a spiral pulling vortex V is formed in the vortex chamber 2A. The molten metal flowing in from the vortex chamber inlet P2 descends along the spiral of the pulling vortex V, flows out from the vortex chamber outlet P3 provided in the lower part of the vortex chamber 2A, and heads for the drive chamber portion 2R.
 このように渦室2Aに形成された螺旋状の渦に金属原料投入口P7から金属原料(アルミニウム溶湯についてはアルミニウム切粉など)を投入することで、金属溶湯に金属原料を急速に溶解させることができる。 By charging a metal raw material (aluminum chips or the like for molten aluminum) into the spiral vortex formed in the vortex chamber 2A in this way from the metal raw material input port P7, the metal raw material is rapidly dissolved in the molten metal. Can be done.
 渦室2Aに投入するもの(溶解対象物)としては、切粉または粉状の材料など、比重が比較的小さく、軽くて浮き易い材料であればよい。 The material to be charged into the vortex chamber 2A (dissolution target) may be a material having a relatively small specific gravity, light weight and easy floating, such as chips or powdery materials.
 なお、図7に示すように、渦室流入路2Pの底面2Pbは、渦室2Aの底面2Abよりも高い位置に位置するようにしてもよい。これにより、渦室入口P2から流入する金属溶湯によって渦の底部分が乱されることが抑制されるため、渦室2A内に渦が明瞭に深く形成されるようになる。その結果、金属原料の溶解効率を向上させることができる。 As shown in FIG. 7, the bottom surface 2Pb of the vortex chamber inflow path 2P may be located at a position higher than the bottom surface 2Ab of the vortex chamber 2A. As a result, the bottom portion of the vortex is suppressed from being disturbed by the molten metal flowing in from the vortex chamber inlet P2, so that the vortex is clearly and deeply formed in the vortex chamber 2A. As a result, the dissolution efficiency of the metal raw material can be improved.
 また、図7に示すように、渦室入口P2の底面2Pbの高さは、渦室出口P3の上端の高さと同じにしてもよい。 Further, as shown in FIG. 7, the height of the bottom surface 2Pb of the vortex chamber inlet P2 may be the same as the height of the upper end of the vortex chamber outlet P3.
 また、図7に示すように、渦室出口P3は、その下端が渦室2Aの底面2Abに接するように設けられていてもよい。これにより、同じ液面レベルに対してより深い渦を形成することができ、金属原料の溶解効率を向上させることができる。さらに、金属原料溶解装置1の動作を停止させたときに渦室2A内の金属溶湯が渦室2A内に残留することを防止できる。 Further, as shown in FIG. 7, the vortex chamber outlet P3 may be provided so that its lower end is in contact with the bottom surface 2Ab of the vortex chamber 2A. As a result, a deeper vortex can be formed for the same liquid level, and the dissolution efficiency of the metal raw material can be improved. Further, it is possible to prevent the molten metal in the vortex chamber 2A from remaining in the vortex chamber 2A when the operation of the metal raw material melting device 1 is stopped.
 また、渦室流入路2Pは、図6に示すように、その幅が吸引口P1から渦室入口P2に進むにつれて狭くなるようにしてもよい。これにより、渦室2Aに流入する金属溶湯の流速が上昇し、渦室2Aにしっかりとした渦を形成することができる。 Further, as shown in FIG. 6, the width of the vortex chamber inflow path 2P may be narrowed as it progresses from the suction port P1 to the vortex chamber inlet P2. As a result, the flow velocity of the molten metal flowing into the vortex chamber 2A increases, and a firm vortex can be formed in the vortex chamber 2A.
<作用効果>
 上記のように、本実施形態に係る金属原料溶解装置1は、保持炉100内に設置されて使用されるものであり、ローレンツ力を利用して金属溶湯を駆動する駆動部が溶解部の下流側に設けられ、渦室2Aの金属溶湯を吸引するように構成されている。これにより、渦室2A内に深くしっかりとした引き渦が形成される。このため、金属原料投入口P7から投入された金属原料は、切粉または粉状等の比較的見かけ比重の軽いものであっても、渦の中に螺旋状に引き込まれて金属溶湯中に効率良く溶解する。また、金属原料の投入により温度が低下した金属溶湯が吐出口P6から吐出され、吸引口P1からは高温の金属溶湯が吸引されるため、渦室2A内の金属溶湯の温度は高温に維持され、投入された金属原料を迅速に溶解することができる。
<Effect>
As described above, the metal raw material melting device 1 according to the present embodiment is installed and used in the holding furnace 100, and the driving unit that drives the molten metal using Lorentz force is downstream of the melting unit. It is provided on the side and is configured to suck the molten metal of the vortex chamber 2A. As a result, a deep and firm pulling vortex is formed in the vortex chamber 2A. Therefore, even if the metal raw material input from the metal raw material input port P7 has a relatively light apparent specific gravity such as chips or powder, it is spirally drawn into the vortex and efficiently into the molten metal. Dissolves well. Further, since the molten metal whose temperature has dropped due to the input of the metal raw material is discharged from the discharge port P6 and the hot metal molten metal is sucked from the suction port P1, the temperature of the molten metal in the vortex chamber 2A is maintained at a high temperature. , The input metal raw material can be melted quickly.
 また、本実施形態では、磁場装置3が駆動室部2Rの上方に配置されるため、金属溶湯の流路をボディ2の低い位置に設けることができる。それにより、渦室出口P3を低い位置に設けることが可能となり、渦室2Aに深い渦を形成することができるようになる。その結果、効率良く金属原料を溶解させることができる。 Further, in the present embodiment, since the magnetic field device 3 is arranged above the drive chamber portion 2R, the flow path of the molten metal can be provided at a low position of the body 2. As a result, the vortex chamber outlet P3 can be provided at a low position, and a deep vortex can be formed in the vortex chamber 2A. As a result, the metal raw material can be efficiently melted.
 このように、本実施形態によれば、アルミニウム切粉等の金属原料を迅速かつ効率良く溶解させることができる。 As described above, according to the present embodiment, metal raw materials such as aluminum chips can be dissolved quickly and efficiently.
 さらに、本実施形態によれば、保持炉に外付けされる従来の溶解炉の場合のように、保持炉の壁に穴を開けて溶解炉を接続したり、保持炉もしくは溶解炉の側壁または底壁の近傍に磁場装置を設置等するための大がかりな改造工事が不要であり、保持炉内に金属原料溶解装置1を設置するだけで既存の保持炉に容易に組み込むことができる。その結果、工事費用を大幅に低減することができる。 Further, according to the present embodiment, as in the case of a conventional melting furnace externally attached to the holding furnace, a hole is made in the wall of the holding furnace to connect the melting furnace, or the holding furnace or the side wall of the melting furnace or the side wall of the melting furnace. There is no need for large-scale remodeling work to install a magnetic field device near the bottom wall, and it can be easily incorporated into an existing holding furnace simply by installing the metal raw material melting device 1 in the holding furnace. As a result, the construction cost can be significantly reduced.
 さらに、本実施形態によれば、溶解炉と保持炉との間の接合部分から金属溶湯が漏れ出るおそれが全くないため、従来に比べて極めて安全に使用することができる。また、渦室2Aから金属溶湯が飛び出した場合でも、金属原料溶解装置1が保持炉100内に配置されているため、飛び出した溶湯は保持炉100内に留まり、安全性は損なわれない。 Furthermore, according to the present embodiment, since there is no risk of molten metal leaking from the joint portion between the melting furnace and the holding furnace, it can be used extremely safely as compared with the conventional case. Further, even when the molten metal is ejected from the vortex chamber 2A, the molten metal that has ejected stays in the holding furnace 100 because the metal raw material melting device 1 is arranged in the holding furnace 100, and the safety is not impaired.
 さらに、本実施形態に係る金属原料溶解装置1は、渦室2Aから吸引された金属溶湯を吐出口P6から保持炉100内に吐出することで、保持炉100内の金属溶湯を撹拌するポンプないしスターラとしても機能する。金属原料溶解装置1の保持炉100への設置位置は特に制限されないため、金属原料の溶解または金属溶湯の撹拌が最も効率良く行われる位置(保持炉の隅部など)を選んで金属原料溶解装置1を設置することができる。 Further, the metal raw material melting device 1 according to the present embodiment is a pump or a pump that agitates the molten metal in the holding furnace 100 by discharging the molten metal sucked from the vortex chamber 2A into the holding furnace 100 from the discharge port P6. It also functions as a stirrer. Since the installation position of the metal raw material melting device 1 in the holding furnace 100 is not particularly limited, select a position (such as a corner of the holding furnace) where the metal raw material is melted or the metal molten metal is stirred most efficiently, and the metal raw material melting device is used. 1 can be installed.
 また、本実施形態の金属原料溶解装置1は磁場装置3を含むオールインワン型として構成されているため、金属原料溶解装置1の故障時や清掃時において、保持炉100から金属原料溶解装置1を取り出して新しいものに交換するだけでよい。金属原料溶解装置1を取り出して、吸引口P1や吐出口P6等に付着した非鉄金属の滓を除去するための清掃を容易に行うことができる。また、金属原料溶解装置1に不具合が生じた場合であっても、保持炉100から金属原料溶解装置1を取り出して修理することができる。修理している間も、予備の金属原料溶解装置1を保持炉100内に設置したり、従来方式による溶湯撹拌作業を行うことで、ダウンタイムによる損失を僅少にすることができる。 Further, since the metal raw material melting device 1 of the present embodiment is configured as an all-in-one type including the magnetic field device 3, the metal raw material melting device 1 is taken out from the holding furnace 100 at the time of failure or cleaning of the metal raw material melting device 1. All you have to do is replace it with a new one. The metal raw material melting device 1 can be taken out and cleaned easily for removing slag of non-ferrous metal adhering to the suction port P1 and the discharge port P6. Further, even if a problem occurs in the metal raw material melting device 1, the metal raw material melting device 1 can be taken out from the holding furnace 100 and repaired. Even during the repair, the loss due to downtime can be minimized by installing the spare metal raw material melting device 1 in the holding furnace 100 or performing the molten metal stirring work by the conventional method.
 また、金属原料溶解装置1はボディ2の底面2wが保持炉100の炉底に接するように配置されるため、渦室2Aの底面は従来の外付けの渦室に比べて低い位置にある。これにより、保持炉100の金属溶湯の液面レベルが変動しても、渦室2A内に渦を形成するために必要な溶湯量を確保でき、溶解能力が大きく低下することを回避できる。 Further, since the metal raw material melting device 1 is arranged so that the bottom surface 2w of the body 2 is in contact with the bottom surface of the holding furnace 100, the bottom surface of the vortex chamber 2A is at a lower position than the conventional external vortex chamber. As a result, even if the liquid level of the molten metal in the holding furnace 100 fluctuates, the amount of molten metal required to form a vortex in the vortex chamber 2A can be secured, and it is possible to avoid a large decrease in the melting capacity.
 また、本実施形態に係る金属原料溶解装置1は保持炉100内のどの位置にも設置可能であることから、保持炉100が前炉を有するタイプのものにあっても、容積の小さい前炉に金属原料溶解装置1を設置する必要はない。すなわち、前炉は容積が小さいため原料の投入位置によっては金属溶湯の温度が急激に下がってしまうところ、容積の大きなメインバスに金属原料溶解装置1を設置することで、原料投入時の温度低下を防いで、効率良く金属原料を溶解させることができる。 Further, since the metal raw material melting device 1 according to the present embodiment can be installed at any position in the holding furnace 100, even if the holding furnace 100 has a front furnace, the volume of the front furnace is small. It is not necessary to install the metal raw material melting device 1 in the above. That is, since the volume of the front furnace is small, the temperature of the molten metal drops sharply depending on the position where the raw material is charged. However, by installing the metal raw material melting device 1 in the main bath with a large volume, the temperature drops when the raw material is charged. Can be prevented and the metal raw material can be dissolved efficiently.
 また、本実施形態では、磁場装置3は永久磁石を利用するため、電磁石の場合に比べて消費電力を格段に低減することができるとともに、磁場装置3の構造を簡易にすることができる。 Further, in the present embodiment, since the magnetic field device 3 uses a permanent magnet, the power consumption can be significantly reduced as compared with the case of the electromagnet, and the structure of the magnetic field device 3 can be simplified.
 前述したように本実施形態によれば、従来に比べて大幅に溶解効率を向上させることができる。また、永久磁石によるローレンツ力を利用するため、消費電力を大幅に減らすことができる。このため、100トン炉を例にとると、炉内撹拌のために従来は300~500kW出力の撹拌装置を必要としたが、本実施形態によれば、撹拌装置は不要であり、10kW未満の電力で金属原料溶解装置1を動作させることで炉内撹拌を十分に行うことができる。 As described above, according to the present embodiment, the dissolution efficiency can be significantly improved as compared with the conventional case. Moreover, since the Lorentz force of the permanent magnet is used, the power consumption can be significantly reduced. Therefore, in the case of a 100-ton furnace as an example, a stirring device having an output of 300 to 500 kW was conventionally required for stirring in the furnace, but according to the present embodiment, the stirring device is unnecessary and the stirring device is less than 10 kW. By operating the metal raw material melting device 1 with electric power, stirring in the furnace can be sufficiently performed.
 また、本実施形態では、メカニカルポンプを使用せずに炉内の金属溶湯を撹拌するため、メカニカルポンプのメンテナンスを行う必要がない。よって、メンテナンス性を向上させ、ランニングコストを大幅に低減させることができる。 Further, in the present embodiment, since the molten metal in the furnace is agitated without using the mechanical pump, it is not necessary to perform maintenance on the mechanical pump. Therefore, the maintainability can be improved and the running cost can be significantly reduced.
 また、本実施形態に係る金属原料溶解装置1は、ボディ2内に磁場装置3を備えており、駆動室部2R中において所定の磁場強度が得られるように予め磁場装置収納室2Bの底面2Bbの厚さ等が設計されている。したがって、本実施形態によれば、保持炉への金属原料溶解装置1の組み込みにあたって、磁場装置を保持炉の側壁または底壁の近傍に設置する場合のように保持炉の壁の厚さなどを考慮して磁場装置3の磁場強度を調整ないし設定する必要がない。 Further, the metal raw material melting device 1 according to the present embodiment includes a magnetic field device 3 in the body 2, and the bottom surface 2Bb of the magnetic field device storage chamber 2B is obtained in advance so that a predetermined magnetic field strength can be obtained in the drive chamber portion 2R. The thickness etc. is designed. Therefore, according to the present embodiment, when incorporating the metal raw material melting device 1 into the holding furnace, the thickness of the wall of the holding furnace is adjusted as in the case where the magnetic field device is installed near the side wall or the bottom wall of the holding furnace. It is not necessary to adjust or set the magnetic field strength of the magnetic field device 3 in consideration.
 また、一般に保持炉の側壁や底壁は分厚いため、保持炉の外部に磁場装置を配置して炉内の金属溶湯を十分な駆動力で駆動するには、磁場装置3の磁場強度をかなり大きくしなければならず、磁場装置3の大型化や高コスト化が避けられない。これに対し、本実施形態では、金属原料溶解装置1は磁場装置3を内蔵しており、ボディ2内において磁場装置3と駆動室部2Rは比較的薄い耐火材壁により隔てられ配置されていることから、比較的小さい磁場強度で十分な駆動力を確保することができ、従来の外付けタイプの磁場装置に比べて磁場装置の小型化・低コスト化を図ることができる。 In addition, since the side walls and bottom wall of the holding furnace are generally thick, the magnetic field strength of the magnetic field device 3 is considerably increased in order to arrange the magnetic field device outside the holding furnace and drive the molten metal in the furnace with sufficient driving force. This is inevitable, and the size and cost of the magnetic field device 3 are inevitably increased. On the other hand, in the present embodiment, the metal raw material melting device 1 has a built-in magnetic field device 3, and the magnetic field device 3 and the drive chamber 2R are arranged in the body 2 so as to be separated by a relatively thin fireproof material wall. Therefore, it is possible to secure a sufficient driving force with a relatively small magnetic field strength, and it is possible to reduce the size and cost of the magnetic field device as compared with the conventional external type magnetic field device.
 さらに、本実施形態では、金属原料投入口P7に投入された金属原料を金属溶湯中に引き込み溶解する駆動力としてローレンツ力を利用する。このため、電流および磁場強度のうち少なくともいずれか一方を調整することで、所望の吸引力を発生させ、渦室2Aに渦を形成することができる。例えば、直流電源61が出力する電流の大きさによる調整(一次調整)を行った後、駆動室部2R内の磁場強度による調整(二次調整)を行うことにより金属溶湯の吸引力を調整することができる。このように磁場強度を調整するための手段を複数備えることにより、本実施形態によれば、金属溶湯の駆動力の調整を容易にすることができるとともに駆動力の調整範囲の幅を拡げることができる。また、永久磁石を駆動室部2Rに近づけることで、電流を増やすことなく駆動力を増強させることができる。すなわち、二次調整を行うことにより、一次調整に比べてランニングコストを抑えることができる。 Further, in the present embodiment, the Lorentz force is used as a driving force for drawing and melting the metal raw material charged into the metal raw material input port P7 into the molten metal. Therefore, by adjusting at least one of the current and the magnetic field strength, a desired attractive force can be generated and a vortex can be formed in the vortex chamber 2A. For example, the suction force of the molten metal is adjusted by adjusting the magnitude of the current output by the DC power supply 61 (primary adjustment) and then adjusting the magnetic field strength in the drive chamber 2R (secondary adjustment). be able to. By providing a plurality of means for adjusting the magnetic field strength in this way, according to the present embodiment, it is possible to easily adjust the driving force of the molten metal and widen the range of adjusting the driving force. it can. Further, by bringing the permanent magnet closer to the drive chamber portion 2R, the driving force can be increased without increasing the current. That is, by performing the secondary adjustment, the running cost can be suppressed as compared with the primary adjustment.
 このように本実施形態では、駆動力の大きさを電流および磁場強度の2つのパラメータにより調整可能である。ここで、駆動力(ローレンツ力)は大きければ良いというものではなく、金属原料を効率良く溶解するためにシステムごとに適正な大きさの値とすることが望ましい。本実施形態によれば、2つのパラメータ(すなわち、電流と磁場強度)により駆動力を調整可能であるため、駆動力をシステムに応じた適正な大きさに容易に設定することができる。 As described above, in this embodiment, the magnitude of the driving force can be adjusted by two parameters of current and magnetic field strength. Here, the driving force (Lorentz force) does not have to be large, but it is desirable to set the value to an appropriate size for each system in order to efficiently dissolve the metal raw material. According to the present embodiment, since the driving force can be adjusted by two parameters (that is, current and magnetic field strength), the driving force can be easily set to an appropriate magnitude according to the system.
 次に、上述した実施形態に係る金属原料溶解装置の変形例1~3について説明する。いずれの変形例によっても、上記と同様の効果を得ることができる。 Next, modifications 1 to 3 of the metal raw material melting apparatus according to the above-described embodiment will be described. The same effect as described above can be obtained by any of the modified examples.
<変形例1>
 本変形例に係る金属原料溶解装置1Aでは、図16に示すように、渦室2Aの形状の中心軸が鉛直方向から所定の角度傾いている。これにより、切粉等の原料が渦により取り込まれ易くすることができる。より詳しくは、渦室2Aが傾いて設けられていることで、金属溶湯の渦はその頂部付近で一部が崩れ落ち、渦室2Aに投入された金属原料に覆い被さることとなる。その結果、さらに効率良くアルミニウム切粉等の金属原料の溶解を行うことができる。
<Modification example 1>
In the metal raw material melting device 1A according to this modification, as shown in FIG. 16, the central axis of the shape of the vortex chamber 2A is tilted by a predetermined angle from the vertical direction. As a result, raw materials such as chips can be easily taken in by the vortex. More specifically, since the vortex chamber 2A is provided at an angle, a part of the vortex of the molten metal collapses near the top thereof and covers the metal raw material charged into the vortex chamber 2A. As a result, metal raw materials such as aluminum chips can be dissolved more efficiently.
<変形例2>
 本変形例に係る金属原料溶解装置1Bでは、図17に示すように、渦室2Aの下流側だけでなく、渦室2Aの上流側にも駆動部が設けられている。すなわち、本変形例では、ボディ2に渦室2Aを挟んで2つの駆動部が設けられている。これにより、金属溶湯の駆動力がさらに大きくなるため、渦室2Aにしっかりとした深い渦を形成するとともに、保持炉100内の金属溶湯を大きな撹拌力で撹拌することができる。
<Modification 2>
In the metal raw material melting device 1B according to this modification, as shown in FIG. 17, a drive unit is provided not only on the downstream side of the vortex chamber 2A but also on the upstream side of the vortex chamber 2A. That is, in this modification, the body 2 is provided with two drive units with the vortex chamber 2A interposed therebetween. As a result, the driving force of the molten metal is further increased, so that a firm and deep vortex can be formed in the vortex chamber 2A, and the molten metal in the holding furnace 100 can be agitated with a large stirring force.
 本変形例では、渦室入口P2は上流側の駆動室部2RBの駆動室出口P5Bに連通し、渦室出口P3は下流側の駆動室部2Rの駆動室入口P4に連通している。 In this modification, the vortex chamber inlet P2 communicates with the drive chamber outlet P5B of the drive chamber portion 2RB on the upstream side, and the vortex chamber outlet P3 communicates with the drive chamber inlet P4 of the drive chamber portion 2R on the downstream side.
 なお、渦室2Aの下流側に設けられた駆動部に駆動力に比べて、渦室2Aの上流側に設けられた駆動部の駆動力を小さくしてもよい。これにより、駆動力を高めつつ、渦室2Aに引き渦を形成することができる。駆動力の調整は、渦室2Aの上流側に設けられた駆動部の電極4B,5B間に流す電流の大きさを、渦室2Aの下流側に設けられた駆動部の電極4,5間に流す電流よりも小さくする、および/または、渦室2Aの上流側に設けられた駆動部の磁場装置3の高さを渦室2Aの下流側に設けられた駆動部の磁場装置3よりも高くする(すなわち、駆動室部2Rの磁場強度を低下させる)ことにより行うことが可能である。 The driving force of the driving unit provided on the upstream side of the vortex chamber 2A may be smaller than the driving force of the driving unit provided on the downstream side of the vortex chamber 2A. As a result, a pulling vortex can be formed in the vortex chamber 2A while increasing the driving force. To adjust the driving force, the magnitude of the current flowing between the electrodes 4B and 5B of the driving unit provided on the upstream side of the vortex chamber 2A is adjusted between the electrodes 4 and 5 of the driving unit provided on the downstream side of the vortex chamber 2A. The height of the magnetic field device 3 of the drive unit provided on the upstream side of the vortex chamber 2A should be smaller than the current flowing through the vortex chamber 2A, and / or the height of the magnetic field device 3 of the drive unit provided on the downstream side of the vortex chamber 2A. This can be done by increasing the value (that is, decreasing the magnetic field strength of the drive chamber 2R).
<変形例3>
 本変形例に係る金属原料溶解装置1Cでは、図18に示すように、渦室2Aの下流側に代えて、渦室2Aの上流側に駆動部が設けられている。本変形例では、渦室入口P2は上流側の駆動室部2RBの駆動室出口P5Bに連通し、渦室出口P3はボディ2の吐出口P6Bに連通している。
<Modification example 3>
In the metal raw material melting device 1C according to this modification, as shown in FIG. 18, a drive unit is provided on the upstream side of the vortex chamber 2A instead of the downstream side of the vortex chamber 2A. In this modification, the vortex chamber inlet P2 communicates with the drive chamber outlet P5B of the drive chamber portion 2RB on the upstream side, and the vortex chamber outlet P3 communicates with the discharge port P6B of the body 2.
 以上、本発明に係る実施形態および変形例について説明した。上記のように本発明に係る金属原料溶解装置は、オールインワン型のものとして構成されている。すなわち、本発明に係る金属原料溶解装置は、単体完結型アセンブリとして構成されており、他に一切の部材ないし装置を必要とせずに、自装置だけで、溶解炉として機能するとともにスターラとしても機能する。よって、本発明に係る金属原料溶解装置は産業利用上極めて有用である。 The embodiments and modifications according to the present invention have been described above. As described above, the metal raw material melting apparatus according to the present invention is configured as an all-in-one type. That is, the metal raw material melting device according to the present invention is configured as a single unit complete assembly, and functions as a melting furnace and also as a stirrer by itself without requiring any other members or devices. To do. Therefore, the metal raw material melting apparatus according to the present invention is extremely useful for industrial use.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した実施形態に限定されるものではない。特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Based on the above description, those skilled in the art may be able to conceive of additional effects and various modifications of the present invention, but the embodiments of the present invention are not limited to the above-described embodiments. Various additions, changes and partial deletions are possible without departing from the conceptual idea and purpose of the present invention derived from the contents defined in the claims and their equivalents.
1,1A,1B,1C 金属原料溶解装置
2 ボディ
2A 渦室
2Ab 底面
2B 磁場装置収納室
2Bb 底面
2C1,2C2 筒部
2P 渦室流入路
2Pb 底面
2Q 渦室流出路
2R 駆動室部
2Rs1,2Rs2 側壁
2S 流出路
2u (ボディの)天面
2w (ボディの)底面
3 磁場装置
31 磁石体
32 送風装置
32a ブロワー
32b 接続管
32c フレキシブル接続管
32d 送風管
33 収納容器
33a 外筒
33b 断熱材筒
33c ステンレス筒
33c1 上底
33c2 下底
33d,33e,33f 蓋
33da,33ea,33fa 孔
4,4B,5,5B 電極
6 電源装置
61 直流電源
62 制御部
7 配線
100 金属溶湯保持炉
1000 金属溶湯溶解保持システム
ES1,ES2 溶湯溜まり部
F (金属溶湯の)流れ
H1,H2 空気孔
I 電流
M 金属溶湯
P1 吸引口
P2 渦室入口
P3 渦室出口
P4 駆動室入口
P5 駆動室出口
P6 吐出口
P7 金属原料投入口
S,T 空間
V (渦室の)渦
1,1A, 1B, 1C Metal raw material melting device 2 Body 2A Vortex chamber 2Ab Bottom surface 2B Magnetic field device storage chamber 2Bb Bottom surface 2C1,2C2 Cylinder 2P Vortex chamber inflow path 2Pb Bottom surface 2Q Vortex chamber outflow path 2R Drive chamber 2Rs1,2Rs2 Side wall 2S Outflow path 2u Top surface (of body) 2w Bottom surface (of body) 3 Magnetic field device 31 Magnet body 32 Blower 32a Blower 32b Connection pipe 32c Flexible connection pipe 32d Blower pipe 33 Storage container 33a Outer cylinder 33b Insulation material cylinder 33c Stainless steel cylinder 33c1 Upper bottom 33c2 Lower bottom 33d, 33e, 33f Lid 33da, 33ea, 33fa Holes 4, 4B, 5, 5B Electrode 6 Power supply device 61 DC power supply 62 Control unit 7 Wiring 100 Metal molten metal holding furnace 1000 Metal molten metal melting holding system ES1, ES2 Molten metal pool F (of metal molten metal) Flow H1, H2 Air hole I Current M Metal molten metal P1 Suction port P2 Swirl chamber inlet P3 Swirl chamber outlet P4 Drive chamber inlet P5 Drive chamber outlet P6 Discharge port P7 Metal raw material inlet S, T space V (of the vortex chamber) vortex

Claims (15)

  1.  金属溶湯保持炉内に設置される金属原料溶解装置であって、
     吸引口と吐出口とを連通路で連通したボディに設けられており、前記金属溶湯保持炉の金属溶湯を前記吸引口から吸引して前記吐出口から吐出するように駆動する駆動部と、
     前記ボディに設けられており、前記駆動部が金属溶湯を駆動することにより形成される渦中に投入される金属原料を溶解する溶解部と、
     を備え、
     前記駆動部は、
     前記連通路の途中に形成され、駆動室入口と駆動室出口を有する駆動室部と、
     前記ボディの天面から底面に向かう方向に沿って前記天面から穿けた止り穴として前記駆動室部の上方部分に形成された磁場装置収納室と、
     前記磁場装置収納室に収納され、前記駆動室部内の金属溶湯に上下方向に磁力線を走らせる磁場装置と、
     前記駆動室入口と前記駆動室出口を結ぶ方向と交差する幅方向に前記駆動室部を挟むように配置され、前記駆動室部内の金属溶湯を介して前記幅方向に電流を流すための一対の電極と、
     を有し、
     前記溶解部は、前記ボディの前記天面から前記連通路に連通するまで穿設された渦室を有し、
     前記渦室は、前記ボディの前記天面に開口した金属原料投入口と、前記渦室の側壁に開口した渦室入口と、前記渦室の側壁に開口した渦室出口とを有し、
     前記渦室入口および前記渦室出口は、前記渦室入口から流入して前記渦室出口から流出する金属溶湯が前記渦室内に金属溶湯の渦を形成するように、前記渦室の接線方向に沿って開口する位置に設けられ、
     前記渦室入口は前記ボディの前記吸引口と連通し且つ前記渦室出口は前記駆動室入口に連通し、または、前記渦室入口は前記駆動室出口に連通し前記渦室出口は前記ボディにおける前記吐出口に連通することを特徴とする金属原料溶解装置。
    A metal raw material melting device installed in a molten metal holding furnace.
    A drive unit which is provided in a body in which a suction port and a discharge port are communicated with each other and drives the metal molten metal of the metal molten metal holding furnace to be sucked from the suction port and discharged from the discharge port.
    A melting unit provided on the body and for dissolving the metal raw material charged into the vortex formed by the driving unit driving the molten metal.
    With
    The drive unit
    A drive chamber unit formed in the middle of the passageway and having a drive chamber inlet and a drive chamber outlet,
    A magnetic field device storage chamber formed in an upper portion of the drive chamber portion as a blind hole drilled from the top surface along the direction from the top surface to the bottom surface of the body.
    A magnetic field device that is housed in the magnetic field device storage chamber and runs a magnetic field line in the vertical direction on the molten metal in the drive chamber.
    A pair of drive chamber portions are arranged so as to sandwich the drive chamber portion in a width direction intersecting the direction connecting the drive chamber inlet and the drive chamber outlet, and a current is passed in the width direction through the molten metal in the drive chamber portion. With electrodes
    Have,
    The melting portion has a vortex chamber formed from the top surface of the body until it communicates with the communication passage.
    The vortex chamber has a metal raw material input port opened on the top surface of the body, a vortex chamber inlet opened on the side wall of the vortex chamber, and a vortex chamber outlet opened on the side wall of the vortex chamber.
    The vortex chamber inlet and the vortex chamber outlet are tangential to the vortex chamber so that the metal molten metal flowing in from the vortex chamber inlet and flowing out from the vortex chamber outlet forms a vortex of the metal molten metal in the vortex chamber. It is provided at a position that opens along
    The vortex chamber inlet communicates with the suction port of the body and the vortex chamber outlet communicates with the drive chamber inlet, or the vortex chamber inlet communicates with the drive chamber outlet and the vortex chamber outlet communicates with the body. A metal raw material melting device characterized by communicating with the discharge port.
  2.  前記吸引口と前記渦室入口とを連通する渦室流入路の底面は、前記渦室の底面よりも高い位置に位置することを特徴とする請求項1に記載の金属原料溶解装置。 The metal raw material melting device according to claim 1, wherein the bottom surface of the vortex chamber inflow path communicating the suction port and the vortex chamber inlet is located at a position higher than the bottom surface of the vortex chamber.
  3.  前記渦室出口と前記駆動室入口とを連通する渦室流出路の幅は、前記渦室出口から前記駆動室入口に進むにつれて広くなることを特徴とする請求項1または2に記載の金属原料溶解装置。 The metal raw material according to claim 1 or 2, wherein the width of the vortex chamber outflow path communicating the vortex chamber outlet and the drive chamber inlet increases from the vortex chamber outlet to the drive chamber inlet. Melting device.
  4.  前記渦室出口は、その下端が前記渦室の底面に接するように設けられていることを特徴とする請求項1~3のいずれかに記載の金属原料溶解装置。 The metal raw material melting apparatus according to any one of claims 1 to 3, wherein the vortex chamber outlet is provided so that its lower end is in contact with the bottom surface of the vortex chamber.
  5.  前記ボディは、一体の耐火材からなることを特徴とする請求項1~4のいずれかに記載の金属原料溶解装置。 The metal raw material melting device according to any one of claims 1 to 4, wherein the body is made of an integral refractory material.
  6.  前記磁場装置は、前記磁場装置収納室に縦方向に沿って位置調整可能に収納されて、前記駆動室部内の磁場強度を調整可能としたことを特徴とする請求項1~5のいずれかに記載の金属原料溶解装置。 The magnetic field device according to any one of claims 1 to 5, wherein the magnetic field device is housed in the magnetic field device storage chamber so as to be adjustable in position along the vertical direction, and the magnetic field strength in the drive chamber portion can be adjusted. The metal raw material melting apparatus described.
  7.  前記ボディには、
     前記駆動室部の第1の側壁と前記磁場装置収納室の底面とを連通させる第1の溶湯溜まり部と、
     前記駆動室部の第2の側壁と前記磁場装置収納室の底面とを連通させる第2の溶湯溜まり部と、
     が設けられており、
     前記一対の電極のうち一方の電極である第1の電極は、前記駆動室部から前記第1の溶湯溜まり部に流れ込んだ金属溶湯に接触するように配置され、
     前記一対の電極のうち他方の電極である第2の電極は、前記駆動室部から前記第2の溶湯溜まり部に流れ込んだ金属溶湯に接触するように配置されていることを特徴とする請求項1~6のいずれかに記載の金属原料溶解装置。
    The body
    A first molten metal pool that communicates the first side wall of the drive chamber with the bottom surface of the magnetic field device storage chamber, and
    A second molten metal pool that communicates the second side wall of the drive chamber with the bottom surface of the magnetic field device storage chamber, and
    Is provided,
    The first electrode, which is one of the pair of electrodes, is arranged so as to come into contact with the molten metal that has flowed from the drive chamber to the first molten metal pool.
    The second electrode, which is the other electrode of the pair of electrodes, is arranged so as to come into contact with the molten metal that has flowed from the drive chamber portion into the second molten metal pool portion. The metal raw material melting apparatus according to any one of 1 to 6.
  8.  前記ボディには、
     前記磁場装置収納室の前記底面における前記第1の溶湯溜まり部の開口を囲むように前記底面から凸設され、前記第1の電極が挿入される第1の筒部と、
     前記磁場装置収納室の前記底面における前記第2の溶湯溜まり部の開口を囲むように前記底面から凸設され、前記第2の電極が挿入される第2の筒部と、
     が設けられていることを特徴とする請求項7に記載の金属原料溶解装置。
    The body
    A first tubular portion that is projected from the bottom surface and into which the first electrode is inserted so as to surround the opening of the first molten metal pool portion on the bottom surface of the magnetic field device storage chamber.
    A second tubular portion that is projected from the bottom surface and into which the second electrode is inserted so as to surround the opening of the second molten metal pool portion on the bottom surface of the magnetic field device storage chamber.
    The metal raw material melting apparatus according to claim 7, wherein the metal raw material melting apparatus is provided.
  9.  前記磁場装置は、底面および上面が磁化された永久磁石と、前記永久磁石を貫通する中空の送風管と、前記送風管の一端に冷却用の空気を送り込むブロワーと、を有し、
     前記送風管の他端から噴出し、前記磁場装置収納室の前記底面に吹き付けられ反射した空気は、前記永久磁石の側面を通過しエアカーテンを形成することを特徴とする請求項7または8に記載の金属原料溶解装置。
    The magnetic field device includes a permanent magnet whose bottom surface and upper surface are magnetized, a hollow blower tube penetrating the permanent magnet, and a blower that sends cooling air to one end of the blower tube.
    According to claim 7 or 8, the air ejected from the other end of the blower pipe and blown and reflected on the bottom surface of the magnetic field device storage chamber passes through the side surface of the permanent magnet to form an air curtain. The metal raw material melting apparatus described.
  10.  前記磁場装置収納室の側面および/または底面に断熱層が設けられていることを特徴とする請求項7~9のいずれかに記載の金属原料溶解装置。 The metal raw material melting device according to any one of claims 7 to 9, wherein a heat insulating layer is provided on the side surface and / or the bottom surface of the magnetic field device storage chamber.
  11.  前記渦室の中心軸が鉛直方向から所定の角度傾いていることを特徴とする請求項1ないし10のいずれかに記載の金属原料溶解装置。 The metal raw material melting apparatus according to any one of claims 1 to 10, wherein the central axis of the vortex chamber is tilted at a predetermined angle from the vertical direction.
  12.  前記一対の電極に電気的に接続された電源と、
     前記電源を制御して電流を出力させる制御部と、を有する電源装置を備え、
     前記制御部は、前記金属溶湯保持炉内の金属溶湯の液面レベルに応じて前記電流の大きさを変化させることを特徴とする請求項1ないし11のいずれかに記載の金属原料溶解装置。
    A power supply electrically connected to the pair of electrodes and
    A power supply device including a control unit that controls the power supply and outputs a current is provided.
    The metal raw material melting device according to any one of claims 1 to 11, wherein the control unit changes the magnitude of the electric current according to the liquid level of the molten metal in the molten metal holding furnace.
  13.  前記制御部は、前記液面レベルが所定のレベルよりも低い場合、前記電流を上げることを特徴とする請求項12に記載の金属原料溶解装置。 The metal raw material melting device according to claim 12, wherein the control unit raises the current when the liquid level is lower than a predetermined level.
  14.  請求項1~13のいずれかに記載の金属原料溶解装置と、
     前記金属原料溶解装置が内部に設置される金属溶湯保持炉と、
     を備えることを特徴とする金属溶湯溶解保持システム。
    The metal raw material melting apparatus according to any one of claims 1 to 13.
    A metal molten metal holding furnace in which the metal raw material melting device is installed, and
    A metal molten metal melting and holding system characterized by being provided with.
  15.  金属溶湯保持炉内に設置される金属原料溶解装置を用いた金属原料の溶解方法であって、前記金属原料溶解装置は、吸引口と吐出口とを連通路で連通したボディに設けられ、前記金属溶湯保持炉の金属溶湯を前記吸引口から吸引して前記吐出口から吐出するように駆動する駆動部と、前記ボディに設けられ、前記ボディの天面から前記連通路に連通するまで穿設された渦室を有する溶解部と、を有し、
     前記駆動部が前記ボディの駆動室部内の金属溶湯をローレンツ力により駆動して前記渦室内の金属溶湯を吸引することにより前記渦室に渦を形成するステップと、
     前記ボディの天面に開口した金属原料投入口から前記形成された渦の中に金属原料を投入して溶解させるステップと、
     を備えることを特徴とする金属原料溶解方法。
    A method for melting a metal raw material using a metal raw material melting device installed in a molten metal holding furnace. The metal raw material melting device is provided on a body in which a suction port and a discharge port are communicated with each other through a continuous passage. A drive unit that drives the molten metal of the molten metal holding furnace to be sucked from the suction port and discharged from the discharge port, and is provided on the body until it communicates from the top surface of the body to the communication passage. With a melting part having a vortex chamber
    A step in which the drive unit drives the molten metal in the drive chamber of the body by Lorentz force and sucks the molten metal in the vortex chamber to form a vortex in the vortex chamber.
    A step of charging a metal raw material into the formed vortex from a metal raw material input port opened on the top surface of the body and dissolving the metal raw material.
    A method for dissolving a metal raw material, which comprises the above.
PCT/JP2020/028332 2019-07-23 2020-07-21 Metal raw material melting device, molten metal melting and holding system, and metal raw material melting method WO2021015210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-135488 2019-07-23
JP2019135488A JP2021018040A (en) 2019-07-23 2019-07-23 Metal material melting device, molten metal melting holding system ad metal material melting method

Publications (1)

Publication Number Publication Date
WO2021015210A1 true WO2021015210A1 (en) 2021-01-28

Family

ID=74194215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028332 WO2021015210A1 (en) 2019-07-23 2020-07-21 Metal raw material melting device, molten metal melting and holding system, and metal raw material melting method

Country Status (2)

Country Link
JP (1) JP2021018040A (en)
WO (1) WO2021015210A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179834A (en) * 1988-12-29 1990-07-12 Shinko Electric Co Ltd Device for melting aluminum-based metal turnings
JPH07301490A (en) * 1994-05-09 1995-11-14 Moruganaito Carbon Kk Melting furnace
JP2006177612A (en) * 2004-12-22 2006-07-06 Kenzo Takahashi Agitation device
JP2010005647A (en) * 2008-06-25 2010-01-14 Kenzo Takahashi Aluminum rapid melting furnace, and melting furnace system with aluminum melting furnace
JP2015158279A (en) * 2014-01-24 2015-09-03 高橋 謙三 Permanent magnet type molten metal agitating device, and melting furnace and continuous casting device including the same
CN107270702A (en) * 2017-06-27 2017-10-20 石家庄爱迪尔电气有限公司 Electromagnetic propulsion formula waste aluminum recovery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179834A (en) * 1988-12-29 1990-07-12 Shinko Electric Co Ltd Device for melting aluminum-based metal turnings
JPH07301490A (en) * 1994-05-09 1995-11-14 Moruganaito Carbon Kk Melting furnace
JP2006177612A (en) * 2004-12-22 2006-07-06 Kenzo Takahashi Agitation device
JP2010005647A (en) * 2008-06-25 2010-01-14 Kenzo Takahashi Aluminum rapid melting furnace, and melting furnace system with aluminum melting furnace
JP2015158279A (en) * 2014-01-24 2015-09-03 高橋 謙三 Permanent magnet type molten metal agitating device, and melting furnace and continuous casting device including the same
CN107270702A (en) * 2017-06-27 2017-10-20 石家庄爱迪尔电气有限公司 Electromagnetic propulsion formula waste aluminum recovery system

Also Published As

Publication number Publication date
JP2021018040A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
AU2014203045B2 (en) Metal melt circulating drive device and main bath including the same
US9494366B1 (en) System and method for pumping molten metal and melting metal scrap
CN109312750B (en) Multi-cavity molten metal pump
CN106222445A (en) A kind of aluminum anodizing equipment and aluminum anodizing technique
RU2443961C2 (en) Method and device for induction stirring of liquid metal
JPH03129286A (en) Melting device for machine chips
WO2021015210A1 (en) Metal raw material melting device, molten metal melting and holding system, and metal raw material melting method
KR101823946B1 (en) Permanent magnet-type molten metal stirring device and melting furnace and continuous casting device comprising same
US9360255B2 (en) Method and arrangement for vortex reduction in a metal making process
JP2007210011A (en) Apparatus for tapping molten metal
US9051623B2 (en) Apparatus for melting a solid metal
US8246715B2 (en) Adjustable vortexer apparatus
CN108027212B (en) Metallurgical device
US20230147586A1 (en) Multi-purpose pump system for a metal furnace and related methods
KR101104798B1 (en) Controlling apparatus for molten steel
KR20190103415A (en) Furnace Assembly for Metal Fabrication Process
EP4313443A1 (en) Tundish for continuous casting
CN110062867A (en) Fusing and/or the improvement and relative improvement of stirring molten metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843673

Country of ref document: EP

Kind code of ref document: A1